

1 **Title**

2 Divergent evolutionary strategies preempt tissue collision in fly gastrulation

3 **Authors**

4 Bipasha Dey^{1,4}, Verena Kaul^{2,4}, Girish Kale^{2,4}, Maily Scorcelletti², Michiko Takeda¹, Yu-Chiun Wang^{1,5},
5 Steffen Lemke^{2,3,5}

6 **Affiliations/author information**

7 ¹RIKEN Center for Biosystems Dynamics Research, Kobe, Japan

8 ²Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany

9 ³Institute of Biology, University of Hohenheim, Stuttgart, Germany

10 ⁴These authors contributed equally.

11 ⁵Correspondence: Y.-C.W. (yu-chiun.wang@riken.jp) and S.L. (steffen.lemke@uni-hohenheim.de).

12 **Abstract**

13 Metazoan development proceeds through a series of morphogenetic events that sculpt body plans and
14 organ structures. In the early embryonic stages, morphogenetic processes involving growth and
15 deformation occur concurrently. Forces generated in one tissue can thus increase mechanical stress in
16 the neighboring tissue, potentially disrupting spatial patterning, morphological robustness, and
17 consequently decreasing organismal fitness. How organisms evolved mechanisms to reduce or release
18 inter-tissue stresses remains poorly understood. Here we combined phylogenetic survey across a whole
19 insect order (Diptera), quantitative live imaging, and functional mechanical perturbation to investigate the
20 evolution of mechanical stress management during epithelial expansions in the gastrulating fly embryos.
21 We find that two distinct cellular mechanisms exist in Diptera to prevent the accumulation of compressive
22 stress that can arise when the expanding head and trunk tissues collide. In Cyclorrhapha, a monophyletic
23 dipteran subgroup including the fruit fly *Drosophila melanogaster*, the head-trunk boundary undergoes
24 active out-of-plane deformation to form a transient epithelial fold, called the cephalic furrow (CF), which
25 acts as a mechanical sink to preempt head-trunk collision. Genetic or optogenetic elimination of the CF
26 leads to tissue buckling, yielding deleterious effects of axial distortion that likely results from unmitigated
27 release of compressive stress. Non-cyclorrhaphan flies, by contrast, lack CF formation and instead
28 display widespread out-of-plane division in the head, which shortens the duration of its expansion and
29 reduces surface area increase. Reorienting head mitosis in *Drosophila* from in-plane to out-of-plane
30 partially suppresses the need for epithelial out-of-plane deformation, suggesting that out-of-plane division
31 can act as an alternative mechanical sink to prevent tissue collision. Our data suggest that programs of
32 mechanical stress management can emerge abruptly under selective pressure of inter-tissue mechanical
33 conflict in early embryonic development.

34 **Keywords:** epithelial folding, cell division orientation, gastrulation, tissue tectonic, cephalic furrow, tissue-
35 scale mechanics, optogenetics, comparative approach, morphogenesis evolution, *Drosophila*,
36 *Chironomus*, non-model fly species

37 **Main text**

38 The development of multicellular organisms proceeds through a series of morphogenetic events that
39 sculpt tissue morphology. Morphogenesis is fundamentally a mechanical process that involves both
40 tissue-intrinsic active stress as well as passive deformation caused by external forces. In animals,
41 morphogenesis starts during gastrulation, when simple cell clusters or sheets are transformed into more
42 complex embryonic tissues with inner layers and curved shapes. During gastrulation, morphogenetic
43 processes occur simultaneously within a mechanical continuum, characterized by the absence of clear
44 spatial segregation and distinct material compartmentalization. This raises the question of how forces
45 emanating from one morphogenetic process may influence another. One possibility is that extrinsic forces
46 may be co-opted to facilitate local deformation¹⁻⁶. In cases where conflict between adjacent tissues leads
47 to the accumulation of mechanical stress, however, it is unclear whether the orderedness and robustness
48 of development is contingent upon the evolution of specific mechanisms capable of managing the stress.
49 Very few studies have examined how organisms deal with inter-tissue morphogenetic stress. Revealing
50 the evolutionary trajectory of mechanical stress management would require: one, a combined effort of
51 well-resolved phylogeny; two, broad sampling and documentation of phenotypic states from
52 representative clades; and three, functional assessment through genetic and mechanical perturbation.

53 Gastrulation in the fruit flies *Drosophila melanogaster* (henceforth *Drosophila*) begins with concurrent
54 morphogenetic movements of all three germ layers^{7,8}. At gastrulation onset, mesoderm internalizes
55 through ventral furrow (VF) formation, endoderm internalization begins with posterior midgut (PMG)
56 invagination, and in the region where the head ectoderm abuts the trunk ectoderm forms a deep epithelial
57 fold, called the cephalic furrow (CF)⁹⁻¹¹. The onset of these morphogenetic movements are immediately
58 followed by a convergent extension event called germband extension (GBE) that elongates the anterior-
59 posterior (A-P) axis of the trunk ectoderm¹². Coincident with GBE, a series of locally synchronous events
60 of mitosis, localized to the so-called mitotic domains (MDs), occur in a spatially stereotypical and
61 temporally ordered manner, with 4 out of 5 of them located in the head ectoderm¹³. Thus, the first 30 min
62 of *Drosophila* gastrulation is characterized by the simultaneous occurrence of multiple morphogenetic
63 events. Among these, the CF is unique. It is a transient epithelial fold that forms and retracts back to the
64 embryonic surface, but does not give rise to any internal cell type or tissue structure¹³. Because CF
65 positioning is precise^{9,14}, it is likely that its formation is critical for embryonic development, although its
66 function remains unknown. One hypothesis, based on the fact that the CF is formed specifically at the
67 head-trunk boundary, proposes that the CF functions as an anterior barrier to guide the long-range,
68 posterior-directed flow of GBE¹⁵. This hypothesis would predict that the CF is unique to insects that
69 undergo GBE. A contrasting hypothesis posits deep conservation between the CF and the vertebrate

70 head-trunk boundary on the basis of homologous gene expression¹⁶. Neither hypothesis has as of yet
71 been put to rigorous tests of phylogenetic and functional analysis.

72 **The cephalic furrow: a morphogenetic innovation at the head-trunk interface of Cyclorrhaphan**
73 **flies**

74 To gain insights into the evolutionary history and the developmental function of the CF, we conducted a
75 phylogenetic survey and asked whether the CF is universal throughout the insect order of Diptera. We
76 comprehensively surveyed classic and modern literature (Fig. 1 Supplementary table 1), and
77 complemented that with our own imaging data and analyses in species that are phylogenetically
78 informative. We defined the CF as a deep epithelial fold formed at the head-trunk boundary in the early
79 gastrula and found that it is present only in embryos of cyclorrhaphan flies, but not in non-cyclorrhaphan
80 flies (Fig. 1a-f; Fig. 1 Supplement 1). In contrast, there is clear evidence for GBE in all dipteran species
81 that we have examined or for which we could find reference images (Fig. 1 Supplement 1; Fig. 1
82 Supplementary table 1). These data suggest that the CF is an evolutionary novelty and a synapomorphic
83 character for the monophyletic group of Cyclorrhapha.

84 Direct comparison between *Drosophila* and the midge *Chironomus riparius* (henceforth *Chironomus*), a
85 representative non-cyclorrhaphan species (Fig. 1a; Chironomidae), provides the most unequivocal
86 evidence yet that non-cyclorrhaphan flies do not form the CF. In *Drosophila*, CF initiation is concurrent
87 with the onset of PMG invagination⁹, and the furrow structure persists for about 90 min before it fully
88 retracts back to the surface. Live imaging of *Chironomus* embryos reveals a complete lack of infoldings at
89 the head-trunk boundary, from the blastoderm stage to the end of GBE (Fig. 1 Supplement 1). In
90 *Drosophila*, CF initiation occurs at ~33% embryo length (EL) where the apical cell surface area can be
91 seen to decrease in one to two columns of linearly aligned initiating cells^{9,14}. To visualize this, we color-
92 coded cell apical surface areas in the region between ~28 to 39% EL (Fig. 1g). In *Chironomus*, no such
93 apical surface decrease could be observed in the area between ~28 to 52% EL (Fig. 1h). Furthermore,
94 while we could observe progressive internalization of cells into the CF in *Drosophila*, incorporating cells
95 from both the head and the trunk ectoderm (Fig. 1 Supplement 2a, and Fig. 1 Movie S1 top panel, both
96 show ~10 to 75% EL), no such cell internalization could be seen at the head-trunk boundary in
97 *Chironomus* (Fig. 1 Supplement 2b, and Fig. 1 Movie S1 bottom panel, both show ~15 to 85% EL). We
98 conclude that *Chironomus* embryos do not form CF.

99 Finally, CF formation in *Drosophila* requires overlapping expression of the transcription factors
100 Buttonhead (Btd) and Even-skipped (Eve), which combinatorially define a single or a double column of
101 cells where the lateral membrane contracts to initiate the CF^{9,10} (Fig. 1i). *Megaselia abdita* (henceforth,
102 *Megaselia*), a representative species that branched off near the cyclorrhaphan stem group (Fig. 1a,
103 Phoridae)¹⁷, forms the CF (Fig. 1d) and shows such an overlap (Fig. 1j). This suggests the Btd/Eve
104 overlap is a conserved feature associated with CF formation in Cyclorrhapha, and predicts its absence in

105 non-cyclorrhaphan flies. To test this, we cloned the *Chironomus* orthologs of *btd* and *eve*, and analyzed
106 their expression pattern (*Cri-btd* and *Cri-eve*, see Fig. 1 Supplement 3 for the protein tree). In blastoderm
107 stage embryos, *Cri-btd* is expressed in two separate domains in the head region (Fig. 1k); *Cri-eve* is
108 expressed in six stripes, while the seventh pair-rule stripe comes up at the posterior pole after the onset
109 of GBE (Fig. 1l). Importantly, the patterns do not overlap (Fig. 1k, l). These data suggest non-
110 cyclorrhaphan flies lack the positional code necessary for CF initiation. Indeed, another non-
111 cyclorrhaphan fly *Clogmia albipunctata* (henceforth *Clogmia*; Fig. 1a, Psychodidae) lacks the CF (Fig. 1f;
112 Fig. 1 Supplement 1), and, as demonstrated in an independent study by Vellutini *et al.*^(footnote 1), shows no
113 overlapping expression between *btd* and *eve*¹⁸. These results suggest that the evolutionary origin of the
114 CF is associated with a change of the expression domain of *btd* and the gain of its overlap with the first
115 stripe of *eve* (called *eve1* hereafter) in the stem group of Cyclorrhapha. We conclude that the CF is a
116 morphogenetic innovation with a complex underlying program of genetic patterning, cellular mechanics
117 and tissue behaviors, none of which could be detected in *Chironomus*, and are expected to be absent in
118 all other non-cyclorrhaphan flies.

119 **Genetic and optogenetic ablation of CF causes ectodermal buckling at the head-trunk interface**

120 To elucidate how the CF arose as an evolutionary novelty, we sought to characterize the functional role of
121 the CF during development. This has been challenging because both *btd* and *eve* mutants lead to
122 significant patterning defects outside the head-trunk boundary. To overcome this, we blocked CF
123 formation by specifically eliminating the expression of *eve1*. We engineered a full-length *eve* genomic
124 construct, removing enhancer elements that confer the expression of *eve1*, while leaving all other cis-
125 regulatory elements intact^{19,20} (Fig. 2 Supplement 1a; see Methods). We introduced this into an *eve* null
126 genetic background, yielding the *eve1*^{KO} line, and confirmed that the *eve1*^{KO} embryos lack *eve1*
127 expression (Fig. 2 Supplement 1b). We then performed live imaging and found that at gastrulation onset
128 they lack planar polarized Myosin accumulation in the cells predicted to initiate the CF⁹ and consequently
129 do not form the CF (Fig. 2a, b; Fig. 2 Movie S1). Instead, the head-trunk interface undergoes a late stage
130 out-of-plane deformation (Fig. 2c, d; Fig. 2 Movie S2) referred to as the ‘head-trunk buckles’ hereafter for
131 the following reasons. First, they occur without localized Myosin enrichment (Fig. 2a, b; Fig. 2 Movie S1).
132 Second, cells that initiate the head-trunk buckle move inward abruptly, rather than undergoing gradual
133 shortening as seen in a normal CF, leading to a large surface indentation that differs from the narrow
134 surface cleft of CF (Fig. 2a, b; Fig. 2 Movie S1). Third, the head-trunk buckle occurs ~12 min after the
135 onset of PMG invagination, whereas CF initiation and PMG onset are concurrent (Fig. 2i; Fig. 2 Movie
136 S2). Lastly, the D-V position of the head-trunk buckles vary among embryos (Fig. 2 Supplement 1c),
137 contrasting with the CF, which typically starts laterally and spreads dorsally and ventrally⁹. The lack of
138 localized Myosin, the lack of a stereotypical spatial pattern, the delayed timing, and the abruptness with

¹ This study has been submitted back-to-back with the present manuscript. Both pre-prints are available on bioRxiv.

139 which the buckles are formed without localized cell shape change, all suggest that these are not
140 genetically patterned active deformations, but are consistent with passive buckling. Similar head-trunk
141 buckles could also be observed in the classic *eve* and *btd* mutants (Fig. 2e, f, i; Fig. 2 Movie S2),
142 confirming previous reports^{9,10} and the independent study by Vellutini *et al.*¹⁸, thus validating the use of
143 *eve* or *btd* mutants, or global RNAi knockdown (see below), in generating the head-trunk buckles.

144 To rule out the possibility that the head-trunk buckles arise from local alteration of genetic patterning, we
145 mechanically blocked CF formation using an optogenetic system, the opto-DNRho1 system^{9,21}, that
146 inhibits actomyosin contractility. To block CF formation, we illuminated the entire CF region on one side of
147 the embryo with a narrow ROI (See Methods) so as not to perturb contractility elsewhere. This treatment
148 completely eliminates CF formation, and buckling was observed at the head-trunk boundary similar to the
149 *eve*^{1KO} embryo (Fig. 2g-i; Fig. 2 Movie S3). This reaffirms our assertion that the head-trunk interface
150 buckles in the absence of CF and that buckling occurs in the absence of local increase of actomyosin
151 contractility given the presence of photoactivated opto-DNRho1. It also rules out local genetic
152 perturbation as a probable cause of buckling as the opto-DNRho1 system does not incur patterning
153 change. Thus, both genetic and mechanical blockage of CF initiation results in passive buckling, raising
154 the possibility that when the CF does not form, compressive stress accumulates in the ectodermal regions
155 flanking the head-trunk interface.

156 In search of the potential source of compressive stress, we made two observations. First, we observed a
157 correlation between mitosis and buckling in embryos in which the CF is optogenetically inhibited, as the
158 head-trunk buckle typically starts when the cells of the MD2, the second mitotic domain, undergo mitotic
159 rounding (Fig. 2 Supplement 1d; Fig. 2 Movie S3). This also confirms that buckling is delayed relative to
160 the normal timing of CF initiation, as in the wild-type the MD2 cells round up well after CF initiation, when
161 a substantial furrow structure is already present (Fig. 2 Supplement 1d; Fig. 2 Movie S3). Second, the
162 anterior edge of the trunk ectoderm can be seen as moving inward as the buckle deepens out-of-plane
163 (Fig. 2 Movie S3), suggesting that GBE may be involved in the head-trunk buckling. In sum, the head-
164 trunk buckling could be related to compressive stress generated during head expansion via mitosis and
165 trunk expansion via convergent-extension.

166 **Collision of two persistent, coherent tissue flows at the head-trunk interface likely leads to
167 accumulation of compressive stress**

168 To gain insights into how compressive stress arises at the head-trunk boundary, we characterized the
169 tissue flow field using particle image velocimetry (PIV) and analyzed it relative to the head-trunk boundary
170 and the lateral midline (See Methods and Fig. 2 Supplement 1e for a representative image of PIV
171 superimposed on the embryo image.). In the wild-type embryos, we observed a local, convergent flow at
172 the head-trunk boundary where the CF is formed, suggesting that the CF behaves as a tissue sink and
173 that the head and trunk tissues flow into this sink (Fig. 2j, control at gastrulation onset). Indeed, ~5

174 columns of cells on both the head and trunk sides adjacent to the CF initiating cells become incorporated
175 into the CF (Fig. 1 Supplement 2a; Fig. 1 Movie S1 top panel). PIV analysis also reveals that the CF
176 breaks the continuity of the flow field by separating it into two persistent, regionally coherent flows in the
177 flanking tissues – a posterior-ward flow in the head and a ventral-ward flow in the trunk that diverges
178 along the A-P axis (Fig. 2j, control at MD1 telophase onset). This suggests that without a sink, the head
179 and the trunk tissue flows would have collided at the head-trunk interface. In contrast, the *eve1^{KO}* embryo
180 displays a single, uninterrupted flow field at the onset of gastrulation, as predicted in a previous
181 computational model when the CF is absent¹⁵ (Fig. 2j, *eve1^{KO}* at gastrulation onset). This supports the
182 premise that the CF functions as a sink. As the embryo begins to buckle, a local convergent flow emerges
183 at the head-trunk boundary, similar to the one we observed at the CF in the wild-type, suggesting that the
184 buckle also behaves as a sink (Fig. 2j, *eve1^{KO}* at MD1 telophase onset). The head-trunk buckle breaks
185 the continuity of the flow field, similar to the CF, further supporting the idea that the head-trunk boundary
186 interfaces two colliding tissue flows. We observed similar flow fields in embryos that lack *Btd* expression,
187 confirming these analyses (Fig. 2 Supplement 1f). Analogous to the collision of tectonic plates, which can
188 lead to out-of-plane deformation of Earth's crust, we propose that tissue flows driven by the expanding
189 head and trunk regions undergo 'tissue tectonic collision' at the head-trunk boundary, causing local
190 accumulation of compressive stress and leading to tissue buckling when the genetically programmed
191 sink, the CF, is absent.

192 **The depth and persistence of head-trunk buckle is reduced when mitosis or trunk convergent
193 extension is blocked**

194 To test this hypothesis, we asked whether a reduction of tissue flow in either the head or trunk dampens
195 buckling. In case of head expansion, we consider the possibility that cell division in the head MDs drives
196 the posterior-ward tissue flow. As the columnar epithelial cells divide, they round up during metaphase
197 and transiently expand their apical surface (see below). Such a surface expansion can effectively enlarge
198 the entire head region, leading to the posterior-ward tissue flow, because the embryo is bilaterally
199 symmetric and spatially confined within the stiff vitelline membrane. To block cell division, we removed
200 the zygotic activity of String (Stg)/Cdc25, which activates Cdk1 to drive mitosis in each MD^{22,23}. In
201 *stg/cdc25* mutants, CF initiation occurs normally, indicating that mitosis in the head MDs is not required
202 for CF initiation (Fig. 2 Supplement 2a, c, d; Fig. 2 Movie S4). To examine the effect of division-driven
203 head expansion on tissue collision at the head-trunk boundary, we induced buckling using RNAi
204 knockdown of *btd* in *stg/cdc25* mutants. We observed two classes of phenotype: class I exhibits late
205 onset of buckling with reduced depth and persistence (*stg*(I); Fig. 2k, l; Fig. 2 Supplement 2b, e; Fig. 2
206 Movies S4, S5), while class II shows complete lack of buckling (*stg*(II); Fig. 2k-n), similar to the phenotype
207 reported in the independent study by Vellutini *et al.*¹⁸. These data thus support the hypothesis that head
208 expansion contributes to buckling, presumably by driving the posterior-ward flow of the head that collides
209 with the trunk.

210 In the trunk, tissue flow stems from the combined effect of VF formation and GBE¹⁵ the former of which is
211 known to drive the ventral-ward flow¹⁵, while the latter likely accounts for the A-P divergent flow, in light of
212 our PIV analysis that shows the anterior-ward flow of the trunk ectoderm (Fig. 2j), in addition to the well-
213 characterized posterior-ward flow². To examine whether reduction of trunk extension can dampen
214 buckling, we used a quadruple mutant line of *knirps hunchback forkhead* and *tailless* (*khft*) to abrogate
215 GBE^{24,25}. The *khft* quadruple mutant eliminates both local junctional transition and external drag force
216 exerted by PMG invagination, the two active processes involved in GBE², and thus its trunk ectoderm
217 exhibits no axis elongation whatsoever (Fig. 2 Supplement 2a; Fig. 2 Movie S4). In contrast, CF initiation
218 is normal, indicating that CF initiation does not require GBE. We then inhibited CF initiation using *btd*
219 RNAi in the *khft* mutant and saw no head-trunk buckling at all (Fig. 2k-m, o; but note the existence of late
220 buckling linked to mitoses, Fig. 2 Supplement 2b, e; Fig. 2 Movies S4, S5). These data suggest that trunk
221 extension along the A-P axis contributes to buckling, likely due to a GBE-driven, A-P divergent flow that
222 collides with the head ectoderm.

223 Together, data presented above support our hypothesis that genetically programmed tissue expansion in
224 the head and trunk results in tissue collision, producing head-trunk buckles when the CF does not form.
225 The expanding head and trunk indeed ‘fuel’ the CF, as both *stg* and *khft* mutants form shallower and less
226 persistent CF than the wild-type (Fig. 2 Supplement 2c, d). Thus, although the CF is initiated by the local
227 increase of actomyosin contractility⁹, its subsequent, extensive invagination requires the expansion of the
228 neighboring tissues. Given the pliability of invagination depth and persistence, we conclude that the CF
229 has the capacity to ‘absorb’ the tissue surfaces of the expanding neighbors, acting as a *bona fide*,
230 genetically patterned mechanical sink that guides the tissue flow, thereby preemptively preventing tissue
231 collision and buckling at the head-trunk interface. This interpretation is further corroborated by the *in silico*
232 simulation performed in the independent study by Vellutini *et al.*¹⁸.

233 **Abrogation of CF formation increases frequency of midline distortion**

234 The precision and robustness with which the CF is formed suggest that its spatial patterning and temporal
235 dynamics are under selective pressure. Thus, CF formation must confer fitness^{9,14}. To test this, we asked
236 whether head-trunk buckling has a deleterious effect on embryonic development. We eliminated the CF
237 bilaterally using the opto-DNRho1 system such that the phenotypic effects can only be attributed to loss
238 of the CF, but not altered genetic patterning. We then imaged the ventral half of the embryo to monitor
239 embryonic development for ~1.5 hours after the onset of gastrulation. We first confirmed that optogenetic
240 perturbation indeed eliminates CF initiation as gastrulation commences (Fig. 3a, b; Fig. 3 Movie S1). The
241 VF initiates normally, indicating the effect of optogenetic perturbation is restricted to the CF. VF formation
242 continues with closure as the mesectodermal cells meet, resulting in a straight ventral midline. After the
243 ventral midline forms, strikingly, we observed an increased frequency of midline distortion or rotation in
244 embryos in which the CF is blocked, as compared to the sham control that maintains a bilaterally
245 symmetric body plan (Fig. 3a, b, e; Fig. 3 Movie S1). In embryos in which the CF is optogenetically

246 eliminated, the extent to which the ventral midline becomes distorted is variable, with strong midline
247 distortion often associated with bilateral asymmetry of head-trunk buckling. These results suggest that
248 releasing compressive stress via buckling is intrinsically stochastic, whereas programmed, active
249 deformation, such the CF, reduces such stochasticity. We further confirmed that *btd* mutants (Fig. 3c, d, f;
250 Fig. 3 Movie S2) and *btd* RNAi embryos (Fig. 3 Supplement 1) also show midline distortions. These data
251 provide direct evidence that loss of the CF has a deleterious effect on embryonic development that can
252 be observed soon after gastrulation onset.

253 **Mitosis in the head ectoderm is primarily oriented out-of-plane in non-Cyclorrhaphan flies**

254 Our data thus far suggest that cyclorrhaphan flies, exemplified by *Drosophila*, avoid tissue collision at the
255 head-trunk boundary and the accumulation of compressive stress via genetically programmed out-of-
256 plane deformation in the form of the CF. Lacking the CF, the non-cyclorrhaphan embryos likely would
257 need an alternative mechanism to dissipate compressive stress, since we find that cell density is not
258 lower in the non-cyclorrhaphan embryos than in *Drosophila* (Fig. 4 Supplement 1), and that the trunk
259 ectoderm undergoes axial elongation via GBE (Fig. 1 Supplement 1). We considered the possibility that
260 early head morphogenesis differs between cyclorrhaphan and non-cyclorrhaphan flies. Using nuclei as a
261 proxy for cells, we examined the epithelial morphology in the head region, defined as the anterior third of
262 the embryo. We observed a monolayer epithelial architecture in the cyclorrhaphan flies *Drosophila* and
263 *Megaselia* during early gastrulation (Fig. 4a). In contrast, in the non-cyclorrhaphan *Clogmia* and
264 *Chironomus* a large area of the head epithelium displays a double layer of nuclei (Fig. 4a). Such double
265 layering could result from pseudo-stratification or cell extrusion. We ruled these out through live imaging
266 of the *Chironomus* embryos with a membrane marker (Fig. 4 Supplement 2). Instead, live imaging
267 revealed that many mitotic cells form their cytokinetic ring parallel to the embryo surface, indicative of out-
268 of-plane division (Fig. 4d). These data reveal that non-cyclorrhaphan flies differ from cyclorrhaphan flies
269 in how cell divisions are oriented in the head region, which might affect head expansion.

270 To investigate the impact of division orientation on head expansion, we first characterized head mitosis in
271 the *Chironomus* embryo. Live imaging on the lateral side of the embryo reveals that the first cells that
272 divide are located in the anterior-most region of the head, which we designated as MD1 in accordance
273 with the *Drosophila* MD naming convention, where domain number is designated chronologically¹³ (Fig.
274 4b). Following divisions in MD1, cells in a large lateral domain posterior to MD1 begin to divide, which we
275 designated as MD2 (Fig. 4b). MD2 cells can be seen as beginning to round up as they enter mitosis, ~7.5
276 min after the onset of gastrulation, while the first cell that enters telophase does so at ~13 min post
277 gastrulation onset. These observations indicate that head mitosis occurs soon after the onset of
278 gastrulation and temporally overlaps with trunk expansion, at comparable timing as in *Drosophila* (Fig. 4
279 Supplement 3a).

280 We further characterized the cell division plane in the *Chironomus* head. We observed out-of-plane
281 divisions in MD1 (data not shown), but since the MD1 cells are located near the anterior pole where the
282 embryo surface is highly curved and thus challenging to analyze, we focused on the more accessible
283 MD2. Of all the MD2 cells for which the division orientation can be determined unambiguously, about 50%
284 divide out-of-plane (Fig. 4 Supplement 3b). Cells of each division mode occupy a distinct spatial domain,
285 which we termed MD2o and MD2i, respectively, for out-of-plane and in-plane domains (Fig. 4c). MD2o
286 resides in the anterior part of the domain and has an ellipsoid shape; MD2i is posterior and ventral to
287 MD2o and has a crescent shape. The two subdomains undergo division sequentially: the first division
288 occurs in the center of MD2o, from where the subsequent divisions spread out as a concentric wave
289 traveling across the remainder of MD2o, followed by divisions in MD2i (Fig. 4c; Fig. 4 Supplement 3c; Fig.
290 4 Movie S1). Thus, head mitosis in *Chironomus* differs substantially from that in *Drosophila*: in *Drosophila*
291 all three MDs (MD1, 2, and 5) that are spatial-temporally equivalent to *Chironomus* MD2 display in-plane
292 divisions, while the only head MD that exhibits out-of-plane divisions is the relatively late MD9¹³.

293 **Out-of-plane divisions show reduced surface expansion and a more rapid release of expansile
294 stress**

295 We hypothesized that in *Chironomus* out-of-plane divisions attenuate the degree of head expansion,
296 thereby avoiding the need to release compressive stress via out-of-plane tissue deformation. To test this
297 possibility, we quantified the temporal dynamics of MD2 surface expansion. As the cell enters mitosis, its
298 apical area increases due to mitotic rounding. Prior to telophase onset, an in-plane dividing on average
299 cell reaches an apical area ~1.9-fold of the initial area prior to rounding. Following cytokinesis, the two
300 daughter cells reach a combined area of 2-fold, after which they shrink back and occupy a combined
301 surface area identical to that of the mother cell. The total duration of expansion is ~24 min (Fig. 4e; Fig. 4
302 Supplement 4a). In contrast, the out-of-plane dividing cell expands only to ~1.6-fold by telophase for a
303 duration of only ~9 min. Furthermore, for the daughter cell that remains on the surface following
304 cytokinesis, the occupied surface area decreases rapidly, first to the size of the mother cell and then
305 further down to ~0.8-fold of the apical area prior to division (Fig. 4e; Fig. 4 Supplement 4b). These results
306 suggest that out-of-plane divisions require smaller surface area, exert a lesser degree of expansile stress
307 to the neighboring cells, and do so over a shorter period of time.

308 Given that cell divisions within each domain are not fully synchronous (Fig. 4 Supplement 3c), we next
309 measured surface expansion at the tissue level, comparing MD2o with MD2i for ~30 cells in each domain.
310 We found that MD2o expands for ~12 min and to a maximum of ~1.4-fold of the initial area, while MD2i
311 expands for ~25 min and to a maximum of ~1.6-fold (Fig. 4f), indicating that the differences observed
312 between in- and out-of-plane divisions in individual cells are conserved at the tissue level. Taken
313 together, our results reveal that the orientation of cell division constitutes a critical parameter that likely
314 controls the accrued compressive stress, suggesting that non-cyclorrhaphan flies use out-of-plane
315 divisions as an alternative mechanism to avoid tissue collision during ectodermal expansion.

316 **Reorienting head mitosis out-of-plane suppresses CF-region buckling in *Drosophila***

317 During *Drosophila* gastrulation, spatial-temporally restricted expression of the mitotic spindle anchoring
318 protein Inscuteable (Insc) is required for out-of-plane divisions in MD9^{26,27}. We cloned the *Chironomus*
319 ortholog of *insc* and found that it is expressed throughout the entire head region (Fig. 4g). Although we
320 have not been able to assay its functional requirement in division orientation (see Discussion), the
321 expression pattern of *insc* implies that the entire head region of the *Chironomus* embryo is genetically
322 conducive to out-of-plane division.

323 Taking advantage of the fact that in *Drosophila* Insc is necessary and can be sufficient to instruct out-of-
324 plane division²⁶, we overexpressed Insc (Insc^{OE}) throughout the head region of the *Drosophila* embryo
325 (see Methods), in an attempt to reorient mitotic spindles in cells that normally exhibit in-plane division to
326 divide out-of-plane. We then asked whether out-of-plane division can replace the reliance on epithelial
327 out-of-plane deformation for dissipation of compressive stress, along with *btd* RNAi to mimic the
328 *Chironomus* head morphogenesis. We focused on MD1 and MD5, and confirmed the altered plane of
329 division through the existence of a circular cytokinetic ring parallel to the embryo surface in most of the
330 cells in these domains (Fig. 4h, i). We then assayed the effect of Insc^{OE} on domain expansion in the *btd*
331 RNAi embryos. For both MD1 and MD5, Insc^{OE} results in a reduced area expansion, i.e. from 2-fold to
332 1.8-fold in MD1 (Fig. 4j) and from 2.8-fold to 2-fold in MD5 (Fig. 4k). The reduction of area expansion is
333 qualitatively comparable to the differences between in- and out-of-plane divisions in *Chironomus* MD2i
334 and MD2o, suggesting that Insc^{OE} effectively converts the *Drosophila* head into a *Chironomus*-like state,
335 allowing us to ask whether widespread out-of-plane divisions can function as a mechanical sink to release
336 compressive stress.

337 To test this, we examined the effect of Insc^{OE} and found that although 60% of embryos (Class II) undergo
338 head-trunk buckling comparable to *btd* RNAi alone, 40% of the embryos (Class I) showed near complete
339 loss of the head-trunk buckle (Fig. 4l, m; Fig. 4 Movie S2). Embryos with the Class I phenotype tend to
340 form smaller buckles either in the region between MD1 and MD5 or posterior to MD6, or both. In this
341 context, we know from material science that moderately compressing a thin elastic film residing on a soft
342 compliant substrate results in the formation of short wavelength wrinkles, while further compression
343 beyond a critical threshold pushes the system towards a ‘wrinkle-to-fold transition’, where the deformation
344 becomes localized to a single, deep fold, while all other wrinkles vanish^{28,29}. The small buckles that form
345 under Insc^{OE} are reminiscent of the short wavelength wrinkles that form on the elastic film when the
346 compressive load is below the transition threshold, whereas the deep head-trunk buckle may result from
347 wrinkle-to-fold transition. Thus, Insc^{OE} appears to reduce the compressive load to a level near the critical
348 point of fold transition, yielding a divergent phenotype. In support of this, Insc^{OE} decreases CF depth in
349 the wild-type background (Fig. 4 Supplement 5). Thus, Insc^{OE} partially suppresses head-trunk buckling,
350 supporting our hypothesis that orienting mitotic divisions out-of-plane helps dissipate compressive stress
351 to prevent head-trunk collision. In sum, our comparative and functional studies reveal the existence of two

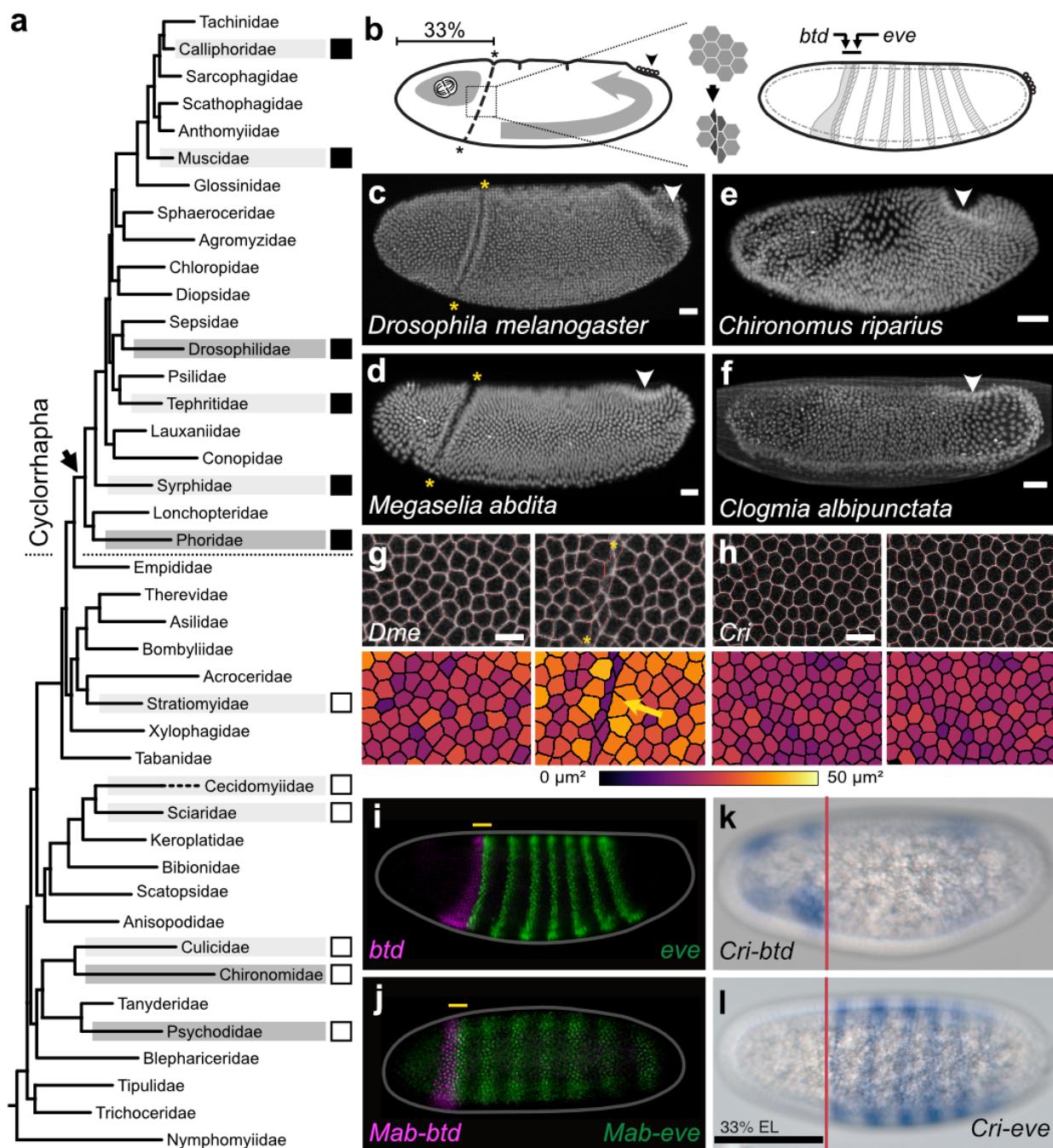
352 programmed morphogenetic solutions to epithelial buckling that can arise due to tissue collision – out-of-
353 plane deformation, in the form of the CF in cyclorrhaphan flies, and out-of-plane division in non-
354 cyclorrhaphan flies.

355 **Discussion**

356 Our phylogenetic survey provides evidence that the CF, a deep, transient epithelial fold that forms during
357 early *Drosophila* gastrulation, is an evolutionary novelty and a derived character in the monophyletic
358 group of Cyclorrhapha. As such, our data do not support the hypothesis that homologizes the CF with the
359 vertebrate midbrain-hindbrain boundary on the basis of homologous gene expression with deep
360 conservation across phyla¹⁶. Instead, data in ours and the independent study by Vellutini *et al.*¹⁸ both
361 support the model that CF formation preempts compressive stress to prevent tissue buckling in the
362 context of a physically confined embryo. As such, the CF executes a mechanical function that provides
363 one possible solution for dipteran gastrulation where the head and trunk tissues expand concurrently. Our
364 data also do not support the hypothesis that the CF functions as an immobile fence to break the symmetry
365 of GBE tissue flow¹⁵. On the contrary, we find that trunk ectodermal cells are incorporated, and thus ‘flow’,
366 into the CF to increase its depth, indicating that the CF is a sink and a mobile barrier that prevents
367 intermixing of head and trunk tissues. As blocking CF formation causes midline distortion similar to loss of
368 PMG specification, our results suggest that active deformation orchestrated in CF formation, like PMG,
369 buffers stochastic bilateral asymmetry intrinsic to GBE³⁰. Furthermore, our phylogenetic mapping reveals
370 an abrupt and near concurrent emergence of the two morphogenetic traits: predominantly in-plane
371 division for the early mitotic cells in the head and active out-of-plane deformation at the head-trunk
372 boundary (the CF). Notably, species that represent the most basal branches of Cyclorrhapha, such as
373 *Megaselia*, contain both of these traits, raising the intriguing question regarding which of them evolved
374 first.

375 If in-plane division arose first, the increased spatial demand and the prolonged surface expansion
376 associated with in-plane division would likely have exerted stronger compressive stress on the head-trunk
377 boundary, increasing the likelihood that it would buckle. Given that buckling and normal GBE are both
378 intrinsically stochastic and can increase the probability of bilateral asymmetry³⁰ (Fig. 3), it is likely that
379 organisms with in-plane head divisions could have only arisen and survived initially under conditions that
380 were more favorable to stress dissipation, e.g. slower developmental rate or cooler temperature,
381 tempering the likelihood of axial distortion. Under such conditions, the presence of genetically
382 programmed out-of-plane deformation, such as CF formation, would have likely increased developmental
383 robustness and allowed adaptation to a wider range of developmental and environmental conditions. This
384 hypothesis predicts that reorienting head division from primarily out-of-plane to in-plane can cause
385 ectodermal buckling in *Chironomus*. Unfortunately, testing this hypothesis has been challenging, as our
386 preliminary attempt at reorienting the division plane in *Chironomus* via downregulation of *Insc* expression
387 has not been successful, suggesting that early anterior expression of *insc* is just one of several redundant

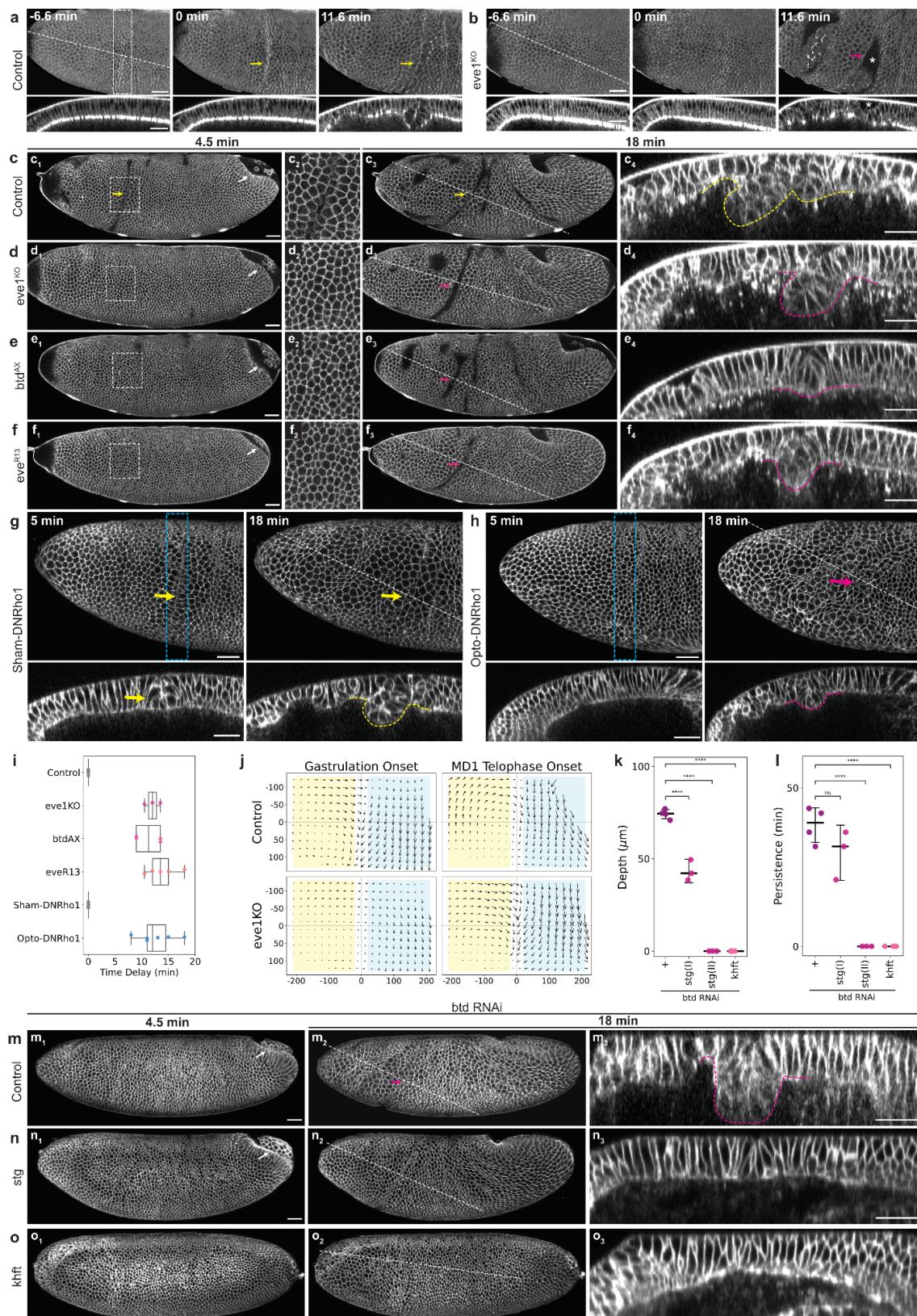
388 mechanisms to orient the division plane in *Chironomus*. Additional cellular components and mechanical
389 conditions may include high surface tension in the mitotic cortex and dedicated cues for anchorage of
390 mitotic spindle at the lateral cortex^{31–34}. The evolutionary transition to in-plane division would thus require
391 more than a mere restriction of *insc* expression. Indeed, the presence of both out- and in-plane dividers
392 within the *Chironomus* head MDs despite the presence of *Insc* suggests potential volatility of division
393 orientation in the last common ancestor of cyclorrhaphan and non-cyclorrhaphan flies.


394 If the CF evolved first, arising prior to the conversion of predominant in-plane divisions in the head,
395 compressive stresses in the head may have been initially low or absent, and the CF may have arisen for
396 a different, currently unknown function. In this scenario, active folding of a CF at the head-trunk boundary
397 would have pulled on the neighboring tissue, making it energetically more favorable for cells in the head
398 region to divide in-plane, potentially paving the way for an eventual evolutionary transition to obligatory in-
399 plane division, e.g. by the loss of early *insc* expression in the head and the gain of additional cellular and
400 mechanical conditions that can promote in-plane division. This scenario posits that the CF was co-opted
401 secondarily to function as a mechanical sink, following the evolution of in-plane divisions in the head.
402 Support for this could come from identification of additional functions of the CF during development.
403 Previous studies provided some hints. For example, one hypothesis proposes that the CF serves as a
404 temporary storage of cells that will subsequently contribute to future head development³⁵, while lineage
405 tracing experiments suggest that the MD2 cells that form a part of the CF give rise to the floor of the
406 pharynx and associated macrophages or muscle cells³⁶. It would thus be worthwhile employing methods
407 established in our work and the independent study by Vellutini *et al.*¹⁸ to further explore the possibility that
408 the CF carries out additional functions in *Drosophila*, *Megaselia*, and potentially other species
409 representing the basal branches of Cyclorrhapha.

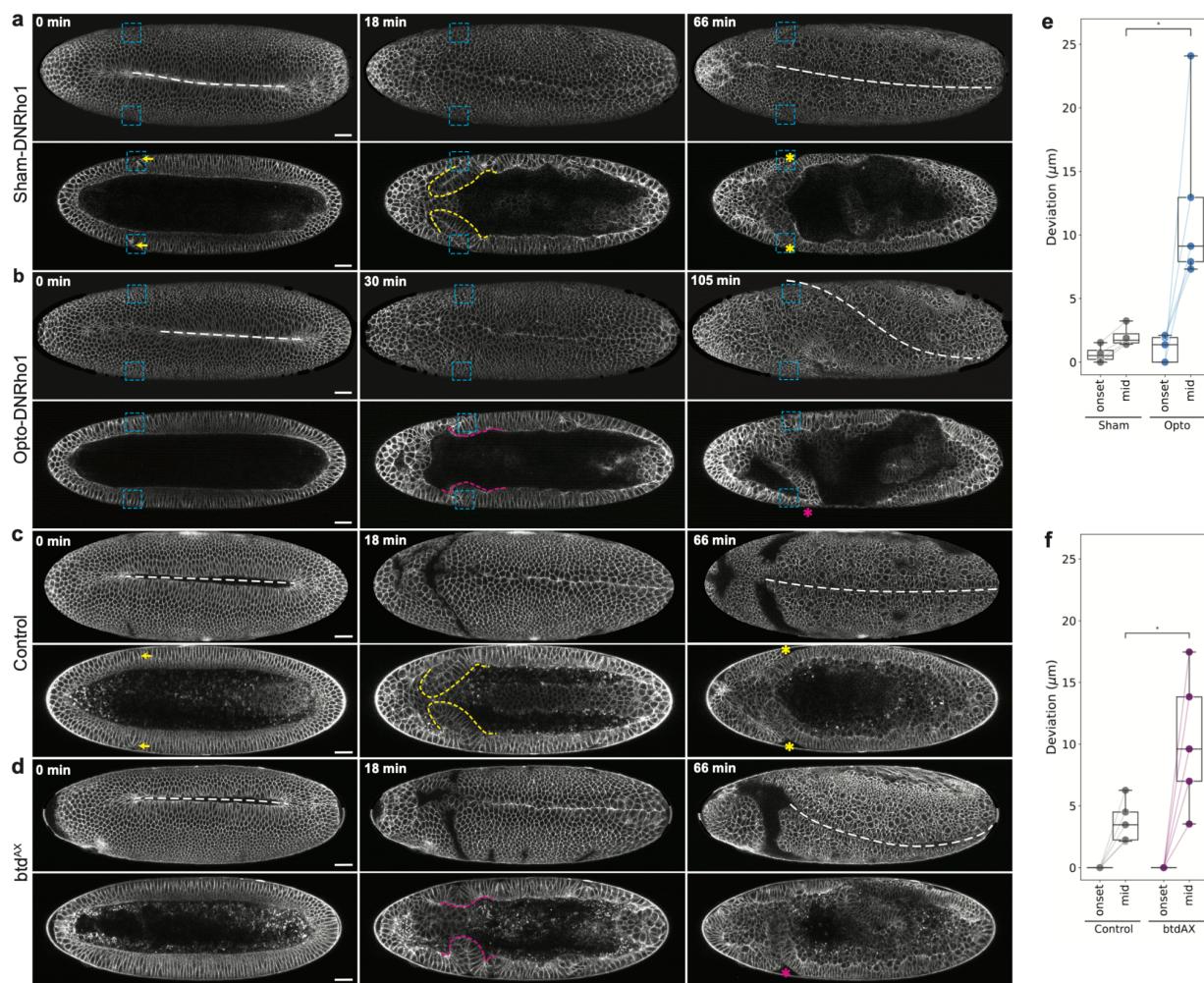
410 CF formation in *Drosophila* has been previously shown to represent a morphogenetic process whose
411 spatial precision depends on not only the robustness of genetic patterning, but also mechanical self-
412 organization⁹. Our surprising findings of the CF as an evolutionary novelty, and its co-evolution with the
413 reorientation of the plane of mitotic division in a neighboring tissue, may provide a unique window to peek
414 into the role of mechanics in the evolution of morphogenetic processes. In particular, our work raises the
415 possibility that inter-tissue mechanical conflict, or mechanical constraint in general, constitutes a
416 mechanism of positive feedback³⁷ that could drive rapid evolutionary transitions and the seemingly abrupt
417 emergence of morphogenetic traits.

418

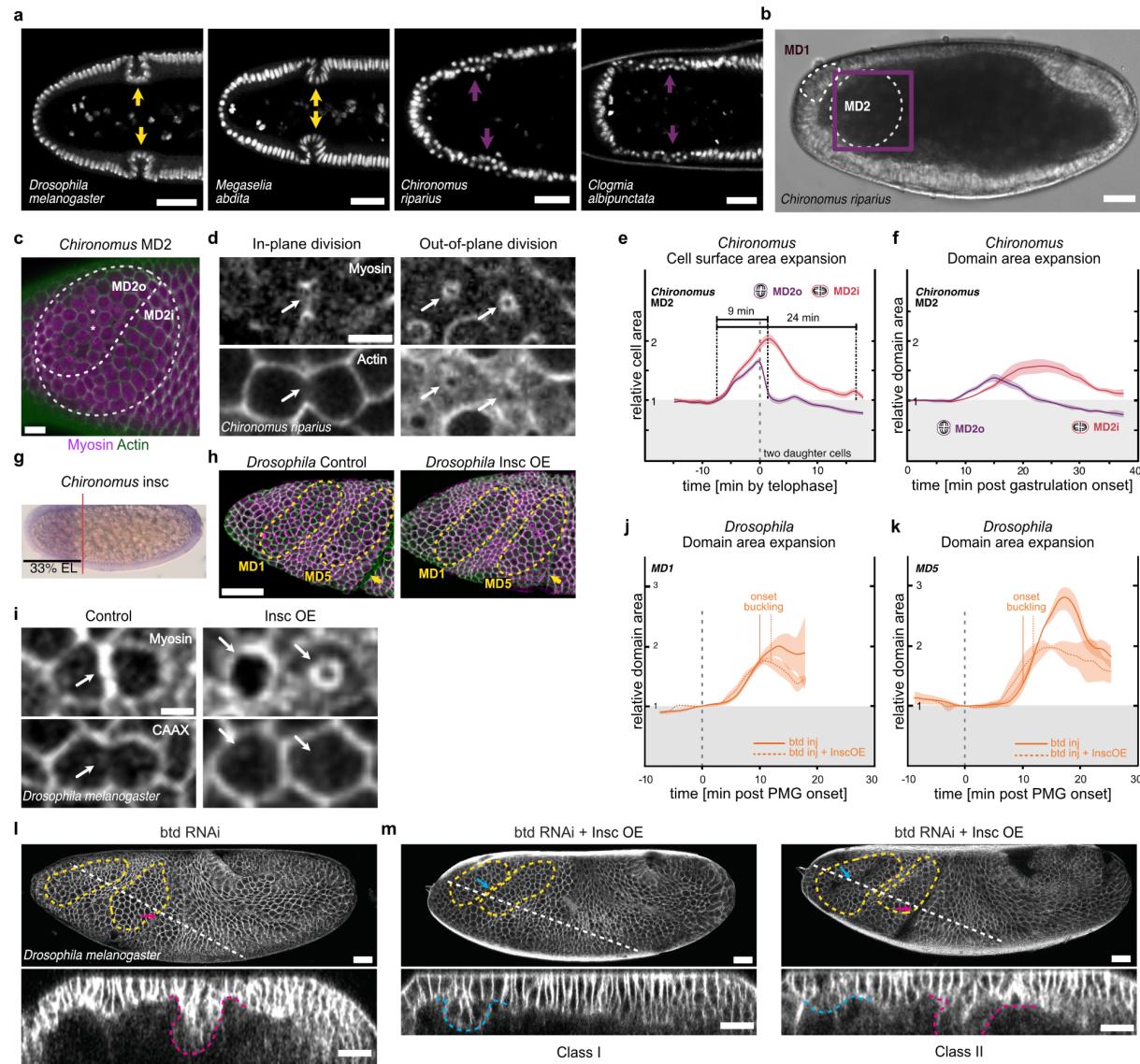
419 **Figures**


420 **Fig. 1 | The CF is an evolutionary innovation at the head-trunk interface of flies.**

421 **a**, Phylogenetic tree showing major fly families (adapted from Wiegmann et al., 2011¹⁷) marking the
 422 presence (filled boxes) or absence (empty boxes) of a CF in embryos belonging to various fly species,
 423 indicating that the CF appeared once (arrow) in the phylogeny of Diptera, and then did not disappear.
 424 Highlights indicate families for which species were evaluated (light) and studied (dark) in this work. See
 425 also, Fig. 1 Supplementary table 1. **b**, The schematics summarize our understanding of the spatio-


427 temporal occurrence of the CF (its location in embryo coordinates and its chronology relative to other
428 morphogenetic events), the causal tissue level changes, and the genetic program that dictates its
429 formation. **c-f**, Representative images of fixed embryos at comparable stages from the four selected
430 species, *Drosophila melanogaster* (Drosophilidae) (**c**, n=13 embryos), *Megaselia abdita* (Phoridae) (**d**,
431 n=13 embryos), *Chironomus riparius* (Chironomidae) (**e**, n=24 embryos), and *Clogmia albipunctata*
432 (Psychodidae) (**f**, n=13 embryos). White arrowheads, the extent of ectoderm elongation; yellow asterisks,
433 the CF. Scale bars, 25 μ m. **g, h**, Mesoscopic view of the head-trunk boundary region in *Drosophila* (**g**,
434 n=3) and *Chironomus* (**h**, n=3) embryos at t=-3 (left) or 0 (right) min relative to the onset of gastrulation.
435 Asterisks, the CF region; arrow, the reduction in apical cell areas in *Drosophila*. Such reduction in apical
436 area is not observed in *Chironomus* embryos. LUT bar, the color-code used for cell area. Scale bars, 10
437 μ m. **i, j**, Maximum projections showing the partial overlap (yellow line) of Btd (red) and Eve (green)
438 expression patterns via immunofluorescence in *Drosophila* (**i**, n=3 embryos) or fluorescent *in situ*
439 hybridization for *Mab-btd* and *Mab-eve* in *Megaselia* (**j**, n=3 embryos). **k, l**, *in-situ* hybridization reveals
440 transcript distributions of *Cri-btd* (**k**, n=3 embryos) and *Cri-eve* (**l**, n=3 embryos) in *Chironomus*; stainings
441 are aligned along the A-P axis and indicate a lack of overlap in their expression patterns. Vertical lines,
442 the anterior boundary of *Cri-eve1* at 33%EL (egg length).

443 **Fig. 2 | The CF functions as a mechanical sink to prevent tissue collision.**

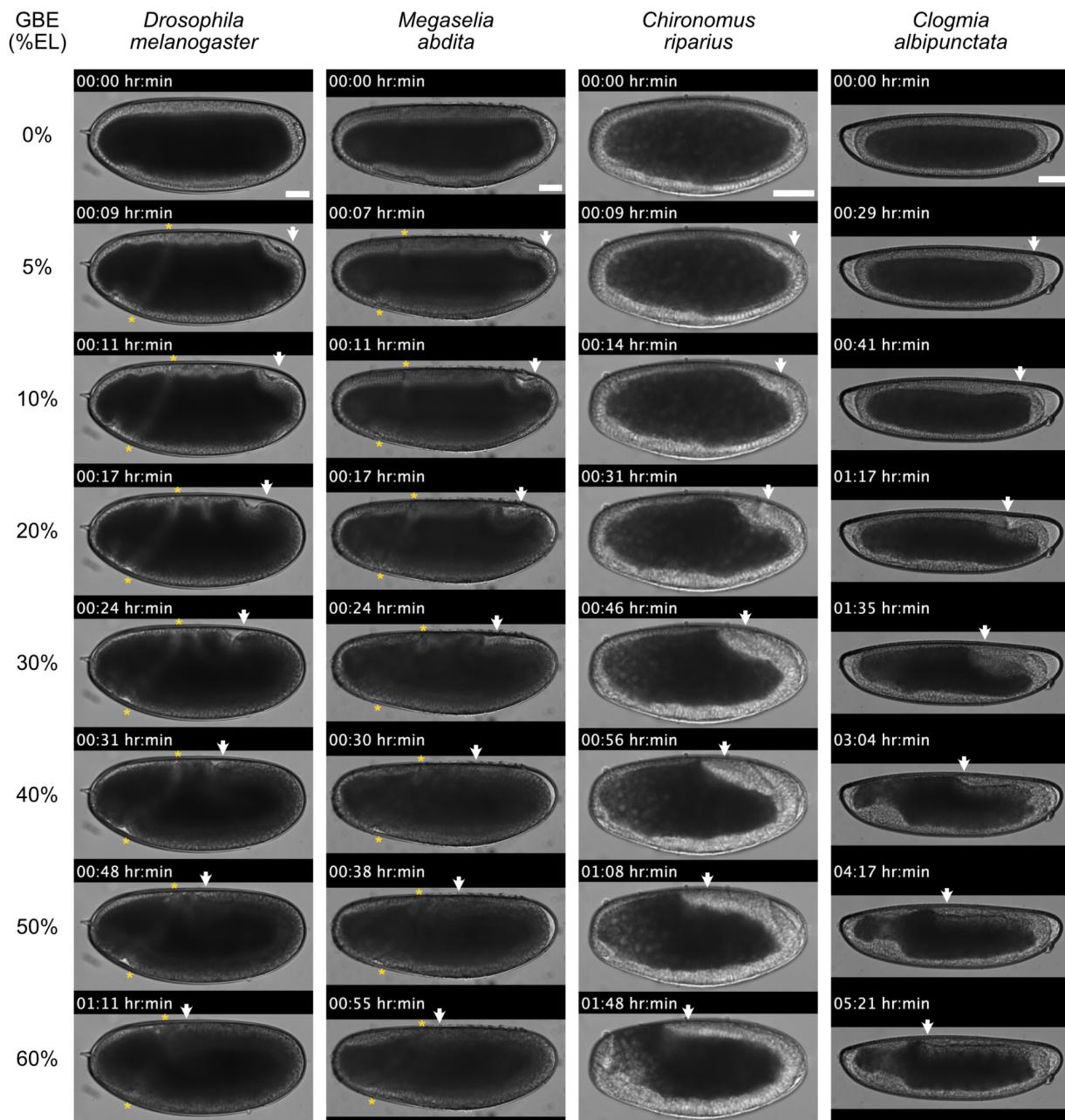

445 **a, b**, Time-lapse series of a representative control (**a**, *eve*^{1KO} /+, n=3) or *eve*^{1KO} (**b**, n=4) embryo
446 expressing MyoII-mKate2 showing a lateral surface projection (top rows) of the anterior half of the embryo
447 that includes the head-trunk boundary and a z-axis reslice (bottom rows). The z-axis reslices were
448 generated along the white dashed lines drawn on the lateral surface projection view. Note the reslice
449 views were cropped such that the lengths of the dashed line do not correspond to the widths of the reslice
450 view. This style of annotation and reslice representation applies to the reslices in all figures. Dashed
451 rectangle denotes planar polarized MyoII accumulation prior to CF initiation; asterisks, wide surface
452 indentation resulting from head-trunk buckling. **c–f**, Time-lapse series of a representative control (**c**,
453 *Gap43-mCherry* /+, n=6), *eve*^{1KO} (**d**, n=3), *btd*^{AX} (**e**, n=4), or *eve*^{R13} (**f**, n=6) embryo, visualized with a
454 membrane marker (*Gap43-mCherry*) showing a lateral surface projection (c1-f1; c3-f3), an enlarged view
455 of the CF region (c2-f2, of the area highlighted with a dashed rectangle in c1-f1) and a z-axis reslice (c4-
456 f4). **g, h**, Time-lapse series of a representative sham control (**g**, Sham-DNRho1, n=4) or a photoactivated
457 (**h**, Opto-DNRho1, n=7) embryo expressing the Opto-DNRho1 system, visualized with a membrane
458 marker (3xmScarlet-CaaX) showing a lateral surface projection of the anterior half of the embryo that
459 includes the head-trunk boundary (top rows) and a z-axis reslice (bottom rows). Blue dashed rectangles,
460 illumination ROIs for the sham activation or photoactivation. **i**, Timing of the onset of CF or head-trunk
461 buckling relative to gastrulation onset. Sample size, Control=6, *eve*^{1KO}=3, *btd*^{AX}=4, *eve*^{R13}=5, Sham-
462 DNRho1=3, Opto-DNRho1=6. **j**, Tissue flow fields visualized with PIV in control (n=3) and *eve*^{1KO} (n=2) at
463 the onset of gastrulation and MD1 telophase. Yellow shaded rectangles, head region; blue shaded
464 rectangles, trunk regions; x-origin, head-trunk boundary; y-origin, lateral midline. Unit, pixel. **k, l**,
465 Maximum depths (**k**) or durations (**l**) of head-trunk buckles in *btd* RNAi embryos with additional genetic
466 manipulations plotted with median and error bars indicating 95% confidence interval. The *stg* mutants
467 show two classes (I and II) of phenotypes. One-way ANOVA Tukey post-hoc test; ****, p < 0.0001; ns, not
468 significant (p > 0.05). Sample size: Control=4, *stg*(I)=3, *stg*(II)=3, *khft*=3. **m, n, o**, Time-lapse series of *btd*
469 RNAi embryos in control (**m**, n=5), *stg* (**n**, n=6), or *khft* (**o**, n=3) genetic background, visualized with a
470 membrane marker (3xmScarlet-CaaX) showing a lateral surface projection (m1-o1; m2-o2) and a z-axis
471 reslice (m3-o3). Sample size, same as in **k, l**, Common annotations: white arrows, PMG; yellow arrows
472 and yellow dashed outlines, CFs; magenta arrows and magenta dashed outlines, head-trunk buckles.
473 Time is relative to the onset of gastrulation. Scale bars, 30 μ m.

474 **Fig. 3 | Loss of the CF causes midline distortion.**

475
476 **a-d**, Time-lapse series of a representative sham control (**a**, Sham-DNRho1, n=4), or photoactivated (**b**,
477 Opto-DNRho1, n=5) embryo expressing the Opto-DNRho1 system, visualized with 3xmScarlet-CaaX, or a
478 control (**c**, *Gap43-mCherry*/+, n=6) or *btd^{AX}* (**d**, n=6) embryo, visualized with *Gap43-mCherry*, showing a
479 ventral surface projection (top rows) and a single coronal section (bottom rows). Blue dashed rectangles,
480 illumination ROIs for the sham activation or photoactivation; white dashed lines, ventral midlines; yellow
481 arrows and yellow dashed outlines, CF; yellow asterisks, bilaterally symmetric CFs; magenta arrows and
482 magenta dashed outlines, head-trunk buckles; magenta asterisks, laterally asymmetric buckles. Time is
483 relative to the onset of gastrulation. Scale bars, 30 μ m. **e, f**, Box plots showing mean deviation of the
484 manually-marked ventral midline from the expected linear ventral midline position measured at the onset
485 of gastrulation (onset) and a mid-gastrulation (mid) stage when deviation reaches a maximum. Whiskers,
486 min and max. Mann-Whitney U test; *, p < 0.05. Sample size: Sham=4, Opto=5, Control=4, *btd^{AX}*=5.

487 **Fig. 4 | In flies without a cephalic furrow, out-of-plane cell divisions provide an alternative sink to**
 488 **prevent tissue collision.**

489


490 **a**, Nuclear staining (DRAQ5) in the anterior half of fixed embryos of the 4 representative species with a
 491 single row of nuclei in flies with a CF (yellow arrows) and a double row of nuclei (magenta arrows) in flies
 492 without CF. n= 13, 13, 24, and 13 embryos respectively for *Drosophila*, *Megaselia*, *Chironomus*, and
 493 *Clogmia*. Scale bars: 50 μ m for *Drosophila* and *Megaselia*; 25 μ m for *Chironomus* and *Clogmia*. **b**,
 494 Position of MD1 and MD2 in the *Chironomus* head. Scale bars, 25 μ m. **c**, A close-up sum projection of
 495 MD2 (purple box in **b**) showing the subdivision of MD2 into MD2o and MD2i by division plane visualized
 496 by cell outlines (LifeAct-mCherry) and cytokinetic rings (Sqh-eGFP). Asterisks, the first dividing cells.
 497 Scale bars, 25 μ m. **d**, Cellular view of the dividing cells in MD2 using Actin and Myosin to visualize cell
 498 outlines (LifeAct-mCherry) and cytokinetic rings (Sqh-eGFP). Arrows, cytokinesis with cytokinetic rings

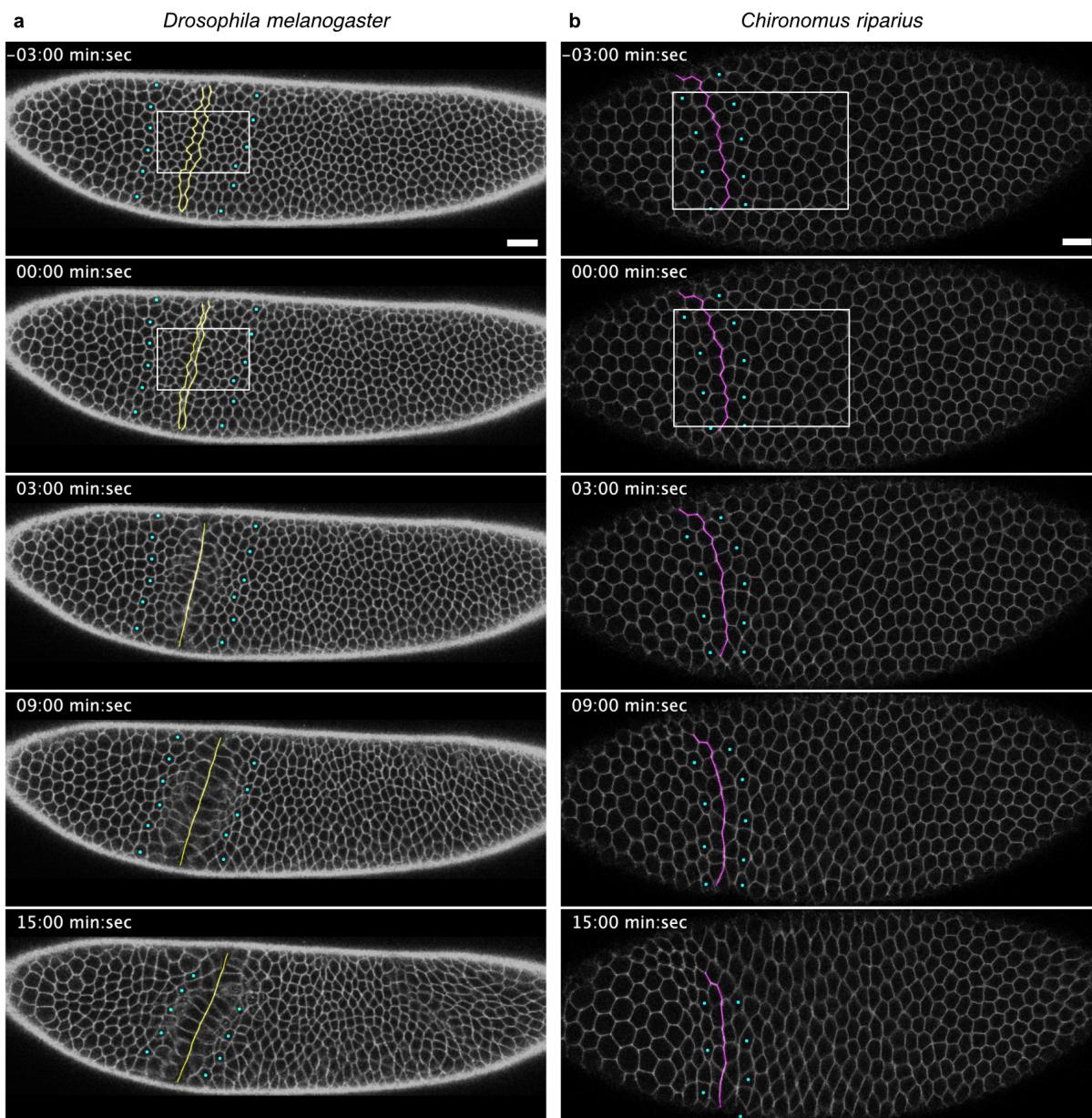
499 perpendicular (in-plane) and parallel (out-of-plane) to the apical surface. Scale bars, 5 μm . **e**, change of
500 individual apical cell surface areas during division for cells dividing out-of-plane (MD2o) and in-plane
501 (MD2i). A value of 1 corresponds to equal area as the mother cell at blastoderm stage, while a value >1
502 indicates expansion. Following completion of telophase, 2 daughter cells remain on the surface for in-
503 plane divisions (sum plotted), compared to only the more apical daughter cell for out-of-plane divisions.
504 (n=24 out-of-plane and 18 in-plane divisions from 3 embryos) **f**, Change in apical surface area of MD2
505 subdomains following the onset of gastrulation (n=3 embryos). **g**, *In situ* hybridization showing a broad
506 expression pattern for *Cri-insc* in the head domain (n=3 embryos). For reference, the vertical line
507 indicates the anterior boundary of the *eve1* region at 33%EL similar to Fig. 1k and l. **h**, Lateral surface
508 projection of the *Drosophila* head region in a representative control or *InscOE* embryo visualized with
509 membrane (3xmScarlet-CaaX, green) and MyoII (Sqh-eGFP, magenta) markers showing MD1 and MD5 (yellow
510 dashed outlines). Yellow arrow, CF. Scale bars, 50 μm . **i**, Cellular view of telophase cells in MD5
511 showing the cell outlines (3xmScarlet-CaaX) and cytokinetic rings (Sqh-eGFP) in a control (n=5) or
512 *InscOE* (n=5) embryo. Scale bar, 5 μm . **j**, **k**, Change in apical surface area of MD1 (**j**) and MD5 (**k**) during
513 mitosis in control (n=3) and *InscOE* (n=3) embryos that have been injected for *btd* RNAi knockdown. Time
514 is relative to the onset of gastrulation. **l**, **m**, Lateral surface projection (top panels) and z-axis reslice
515 (bottom panels) views of a representative *btd* RNAi embryo (**l**, n=5), or *btd* RNAi embryo with *Insc OE* (**m**;
516 Class I, n=3; Class II, n=4), visualized with a membrane marker (3xmScarlet-CaaX). Magenta arrows and
517 magenta dashed outlines, head-trunk buckles; cyan arrows and cyan dashed outlines, small buckles near
518 or inside MDs. Scale bars, 30 μm .

519 **Figure supplements**

520 **Fig. 1 Supplement 1 | Progression of GBE is comparable in all species, while only *Drosophila* and**

521 ***Megaselia* show a CF.**

522

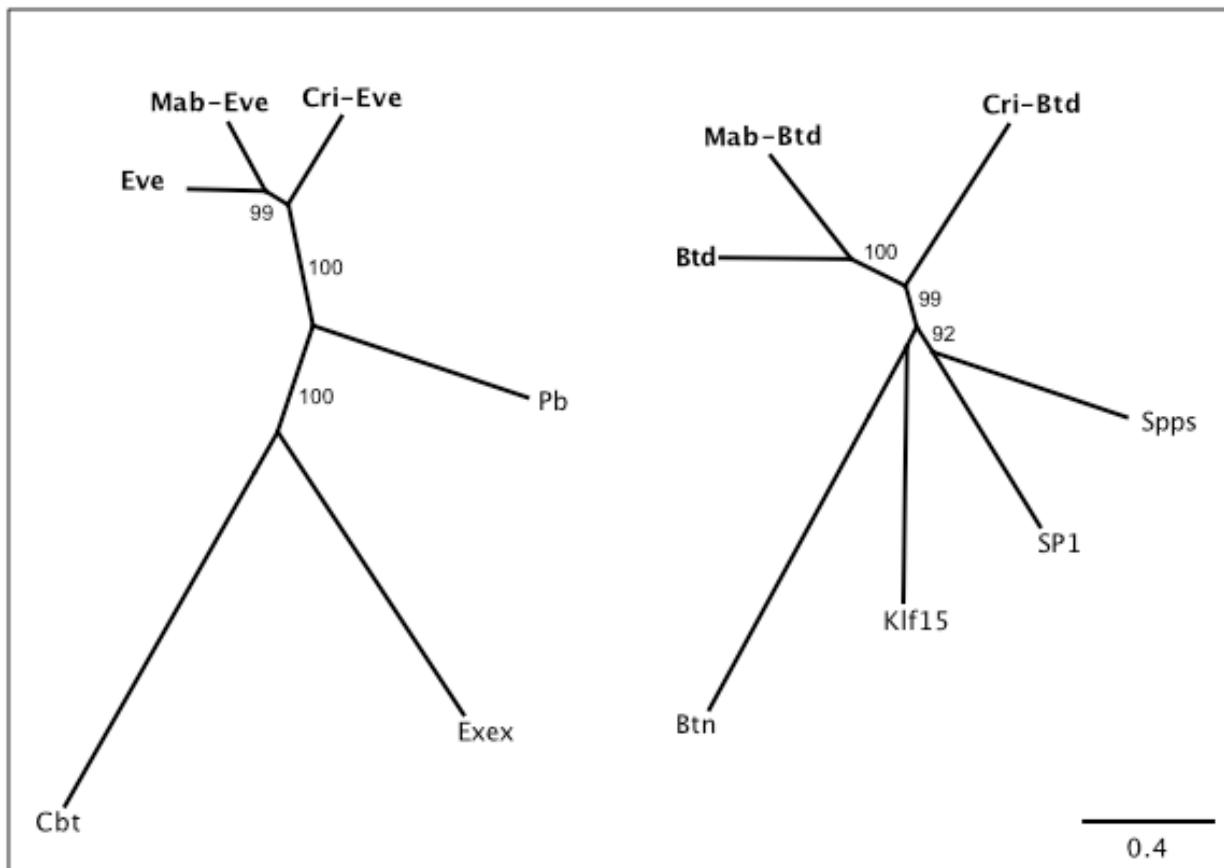

523 Figure shows montages of representative DIC recordings of developing embryos from our four species of

524 interest. T_0 is defined as the initiation of gastrulation. Asterisks mark/track the CF in *Drosophila* and

525 *Megaselia*, while the arrow tracks the posterior end of the ectoderm in all species. n= 35, 24, 27, and 42

526 embryos respectively for *Drosophila*, *Megaselia*, *Chironomus*, and *Clogmia*. Scale bars 50 μ m.

527 **Fig. 1 Supplement 2 | *Chironomus* does not form a CF at the head-trunk boundary.**



528
529 **a** and **b**, Montage of snapshots from a single z-slice over time, from live imaging *Drosophila* (**a**, n=3) and
530 *Chironomus* (**b**, n=3) embryos, expressing cell membrane markers. In the examples shown, the regions
531 correspond to ~10 to 75% EL for *Drosophila* and ~15 to 85% EL for *Chironomus*. T_0 is defined as initiation
532 of gastrulation. The jagged colored lines mark the cell boundaries between head and trunk ectoderm. The
533 boundaries are inferred from the appearance of CF in *Drosophila* embryo, while in case of *Chironomus*
534 embryo the differences in cell shape changes dictate the placement of the boundary. Cyan dots track
535 cells that can be followed from the first frame and end-up close to the head-trunk boundary in the last
536 frame. While the straightening of the jagged lines is comparable in both species, the subsequent cell

537 shape changes prior to formation of the CF and the tissue flow towards the head-trunk boundary are
538 absent in *Chironomus*. Boxes indicate the regions shown in Fig. 1g and h. Scale bar, 20 μm *Drosophila*,
539 10 μm *Chironomus*.

540 **Fig. 1 Supplement 3 | Protein tree of predicted orthologs of eve and btd in *Megaselia* and**

541 *Chironomus*.

542

543 Phylogenetic distances of Even-skipped (Eve) and Buttonhead (Btd), its predicted orthologs in *Megaselia*

544 and *Chironomus*, as well as the three most closely related proteins in *Drosophila* were calculated in

545 Geneious using Jukes-Cantor as the genetic distance model. Numbers refer to reliability values in

546 percent, with values shown only above 80. RefSeq protein sequences from NCBI for *Drosophila*

547 *melanogaster* are Btd (Buttonhead, NP_511100), Btn (Buttonless, NP_732768), Cbt (Cabut,

548 NP_722636), Eve (Even-skipped, NP_523670), Exex (Extra-extra, NP_648164), Klf15 (Kruppel-like factor

549 15, NP_572185), Pb (Proboscipedia, NP_476669), SP1 (SP1, NP_727360), and Spps (SP1 like factor,

550 NP_651232). Scale bar is the number of changes per site.

551 **Fig. 1 Supplement 4 | Literature survey for the presence or absence of CF in diptera.**

a. Family	b. Species	c. Literature	d. Figure panels of interest	e. Image type	f. presence of GBE	CF	
Cyclorrhapha	Calliphoridae	<i>Calliphora erythrocephala</i> <i>Lucilia sericata</i> <i>Lucilia sericata</i> <i>calliphora vicina</i>	Davis et al, 1968 Mellenthin et al., 2006 Blechert et al., 2011 Martin-Vega et al. 2016	Figure 1c-h Figure 1c, d Figure 3e, f Figure 2e-i	drawings * transillumination DIC <i>in-situ</i> transillumination	?	?
	Muscaidae	<i>Musca domestica</i> <i>Stomoxys calcitrans</i> <i>Musca domestica</i> <i>Musca domestica</i>	Cantwell, 1976 Ajidaga et al., 1983 Sommer, 1991 Wratten et al., 2006	Figure 8, 9, 10 Figure 20,21,23 Figure 4e, 9a Figure 2f	stained sections SEM DIC <i>in-situ</i> DIC <i>in-situ</i> **	■	■
	Drosophilidae	<i>Drosophila melanogaster</i> <i>Drosophila melanogaster</i> <i>Drosophila melanogaster</i> <i>Drosophila melanogaster</i>	Bownes, 1975 Turner and Mahowald, 1977 Eritano et al., 2020 [This study]	Figure 2, 3 Figure 1, 3, 6, 8-12 Figure 1a Figure 1c	transillumination SEM fluorescence live imaging nuclear staining	■	■
	Tephritidae	<i>Dacus tryoni</i> <i>Ceratitis capitata</i> <i>Bactrocera oleae</i> <i>Bactrocera dorsalis</i> <i>Ceratitis capitata</i>	Anderson, 1962 Stefani et al., 2002 Genc, 2014 Suksuwan et al., 2017 Strobl, 2022	plate 2c-e Figure 2d Figure 2b Figure 1e Figure 2l	stained sections transillumination transillumination transillumination fluorescence	■	■
	Syrphidae	<i>Episyphus balteatus</i> <i>Episyphus balteatus</i>	Lemke and Schmidt-Ott 2009 Lemke et al., 2010	Figure 2d Figure 2e, e'	DIC <i>in-situ</i> DIC <i>in-situ</i>	■	■
	Phoridae	<i>Megaselia abdita</i> <i>Megaselia abdita</i> <i>Megaselia abdita</i>	Wotton et al., 2014 Caroti et al., 2015 [This study]	Figure 2 (stage 6-8) Figure 3c-d' Figure 1d	DIC time lapse fluorescence nuclear staining	■	■
	Stratiomyidae	<i>Hermetia illucens</i>	Tollenaar et al., 2021	Figure 1e	transillumination ***	■	?
	Cecidomyiidae	<i>Wachtliella persicariae</i> <i>Heteropeza pygmaea</i> <i>Aphidoletes aphidimyza</i>	Wolf, 1969 Kaiser and Went, 1987 Havelka et al., 2007	Figure 3l-n Figure 1a Figure 4a	transillumination drawings * transillumination	■ ? ■	□ ? □
	Sciaridae	<i>Sciarra coprophila</i> <i>Sciarra spec</i> <i>Rhynchosciara americana</i> <i>Rhynchosciara americana</i> <i>Bradysia hygida</i>	DuBois, 1932 Butt 1934 Vanario-Alonso et al., 1996 Carvalho et al., 1999 Uliana et al., 2018	Figure 6 Figure F Figure 1d-g Figure 2b, c Figure 3D2-4	drawings * drawings * nuclear staining nuclear staining nuclear staining	? ? ■ ■ ■	? ? □ □ □
	Culicidae	<i>Aedes dorsalis</i> <i>Culex tarsalis</i> <i>Culex pipiens</i> <i>Aedes aegypti</i> <i>Anopheles gambiae</i> <i>Culex quinquefasciatus</i> <i>Culex quinquefasciatus</i>	Telford, 1957 Rosay, 1959 Idris, 1960 Raminani and Cupp, 1975 Goltsev et al., 2004 Juhn et al., 2008 Yoon et al., 2019	Figure 4 Figure 3-5 Figure 18b-g Figure 21 Figure 1e Figure 5e-h Figure 4e	drawings * drawings * drawings * stained sections **** DIC <i>in-situ</i> DIC <i>in-situ</i> DIC <i>in-situ</i>	? ? ? ■ ■ □ □	? ? ? ? □ □ □
non-Cyclorrhapha	Chironomidae	<i>Chironomus riparius</i> <i>Chironomus riparius</i> <i>Chironomus riparius</i> <i>Chironomus riparius</i> <i>Chironomus riparius</i>	Weismann 1863 Ritter 1890 Klomp et al., 2015 Urbansky et al., 2016 [This study]	Figure 5-10 Figure 12, 18, 19 Figure 55 Figure 1f Figure 1e	drawings * drawings * DIC <i>in-situ</i> nuclear staining nuclear staining	?	?
	Simuliidae	<i>Simulium pictipens</i>	Gambrell and Jahn, 1933	Figure 16, 20	drawings *	?	?
	Psychodidae	<i>Phlebotomus papatasii</i> <i>Clogmia albipunctata</i> <i>Clogmia albipunctata</i> <i>Clogmia albipunctata</i> <i>Clogmia albipunctata</i> <i>Clogmia albipunctata</i>	Abbassy et al., 1995 Rohr et al., 1999 Garcia-Solache et al., 2010 Jimenez-Guri et al., 2014 Yoon et al., 2019 [This study]	Figure 7, 11, 12 Figure 4c Figure 1c, d Figure 2 (stage 6-9) Figure 2e Figure 1f	stained sections DIC <i>in-situ</i> DIC time lapse DIC time lapse DIC <i>in-situ</i> nuclear staining	■ ■ ■ ■ ■ ■	□ □ □ □ □ □

553 This supplementary table compiles a list of literature references where evidence for the presence or
554 absence of CF and GBE in a broad range of species encompassing the whole order of Diptera could be
555 found. **a**, Fly families in the order of Diptera for which references could be found. **b** and **c**, Names of the
556 species and the corresponding references. **d**, Reference figure panels with images of embryos at various
557 stages of early gastrulation that were used to interpret the presence or absence of GBE and CF. **e**,
558 Description of image datatype in **d**. SEM, scanning electron micrographs; DIC, Differential Interference
559 Contrast imaging; *in-situ*, whole mount micrographs of embryos from RNA *in-situ* hybridization
560 experiments. **f**, Interpretation of the presence or absence of GBE and CF based on images in **d**. Black
561 boxes, presence; hollow boxes, absence; question marks, unclear (see comments below).
562 *, Descriptive drawings are a classic resource for the depiction of embryonic development. However, we
563 have refrained from using these as definitive evidence for the presence or absence of GBE and/or CF in a
564 given family, due to the potential for subjective interpretations⁵⁸.
565 **, unclear evidence for CF due to absence of images during early gastrulation. Note a late furrow is
566 visible in the image, though the stage is too late to fulfill the definition of CF.
567 ***, unclear evidence for CF due to absence of images during early gastrulation. Although no furrow is
568 visible during late gastrulation, presence of an early transient furrow can not be excluded.
569 ****, unclear evidence for CF due to absence of images from the anterior region of the embryo.

570 **Supplementary references**

571 Abbassy, Magda M., Nadia Helmy, Mostafa Osman, Stanton E. Cope, and Steven M. Presley. 1995.
572 "Embryogenesis of the Sand Fly Phlebotomus Papatasi (Diptera: Psychodidae): Cell Cleavage,
573 Blastoderm Formation, and Gastrulation." *Annals of the Entomological Society of America* 88 (6):
574 809–14. <https://doi.org/10.1093/aesa/88.6.809>.

575 Ajidagba, Peace, C. W. Pitts, and D. E. Bay. 1983. "Early Embryogenesis in the Stable Fly (Diptera:
576 Muscidae)." *Annals of the Entomological Society of America* 76 (4): 616–23.
577 <https://doi.org/10.1093/aesa/76.4.616>.

578 Anderson, D. T. 1962. "The Embryology of *Dacus Tryoni* (Frogg.) [Diptera, Trypetidae (= Tephritidae)],
579 the Queensland Fruit-Fly ." *Development* 10 (3): 248–92. <https://doi.org/10.1242/dev.10.3.248>.

580 Blechert, O., D. Douglas, and S. Baumgartner. 2011. "Conserved Function of the Krüppel Gap Gene in
581 the Blowfly *Lucilia Sericata*, despite Anterior Shift of Expression." *Insect Molecular Biology* 20 (2):
582 257–65. <https://doi.org/10.1111/j.1365-2583.2010.01063.x>.

583 Bois, Anne Marie Du. 1932. "A Contribution to the Embryology of *Sciara* (Diptera)." *Journal of Morphology*
584 54 (1): 161–95. <https://doi.org/10.1002/jmor.1050540105>.

585 Bownes, Mary. 1975. "A Photographic Study of Development in the Living Embryo of *Drosophila*
586 *Melanogaster*." *Development* 33 (3): 789–801. <https://doi.org/10.1242/dev.33.3.789>.

587 Butt, F. H. 1934. "Embryology of *Sciara* (Sciaridae: Diptera)." *Annals of the Entomological Society of*
588 *America* 27 (4): 565–79. <https://doi.org/10.1093/aesa/27.4.565>.

589 Cantwell, George E., Anthony J. Nappi, and John George Stoffolano. 1976. "Embryonic and
590 Postembryonic Development of the House Fly (*Musca Domestica* L.)." *U.S. Dep. Agric. Tech. Bull.*, 1–
591 69.

592 Caroti, Francesca, Silvia Urbansky, Maike Wosch, and Steffen Lemke. 2015. "Germ Line Transformation
593 and *In Vivo* Labeling of Nuclei in Diptera: Report on *Megaselia Abdita* (Phoridae) and *Chironomus*
594 *Riparius* (Chironomidae)." *Development Genes and Evolution* 225 (3): 179–86.
595 <https://doi.org/10.1007/s00427-015-0504-5>.

596 Carvalho, J.C, C.E Vanario-Alonso, T.M.C Silva, and E. Abdelhay. 1999. "Specialized Features of
597 Rhynchosciara Americana Embryogenesis." *International Journal of Insect Morphology and*
598 *Embryology* 28 (4): 309–19. [https://doi.org/10.1016/S0020-7322\(99\)00040-9](https://doi.org/10.1016/S0020-7322(99)00040-9).

599 Davis, Catherine W.C., Johanna Krause, and Gerhard Krause. 1968. "Morphogenetic Movements and
600 Segmentation of Posterior Egg Fragments in Vitro - Calliphora Erythrocephala Meig., Diptera."
601 *Wilhelm Roux' Archiv Für Entwicklungsmechanik Der Organismen* 161 (3): 209–40.
602 <https://doi.org/10.1007/BF00573803>.

603 Eritano, Anthony S., Claire L. Bromley, Antonio Bolea Albero, Lucas Schütz, Fu-Lai Wen, Michiko
604 Takeda, Takashi Fukaya, et al. 2020. "Tissue-Scale Mechanical Coupling Reduces Morphogenetic
605 Noise to Ensure Precision during Epithelial Folding." *Developmental Cell* 53 (2): 212-228.e12.
606 <https://doi.org/10.1016/j.devcel.2020.02.012>.

607 Gambrell, F. L., and Lydia A. Jahn. 1933. "The Embryology of the Black Fly, Simulium Pictipes Hagen."
608 *Annals of the Entomological Society of America* 26 (4): 641–71.
609 <https://doi.org/10.1093/aesa/26.4.641>.

610 García-Solache, Mónica, Johannes Jaeger, and Michael Akam. 2010. "A Systematic Analysis of the Gap
611 Gene System in the Moth Midge Clogmia Albipunctata." *Developmental Biology* 344 (1): 306–18.
612 <https://doi.org/10.1016/j.ydbio.2010.04.019>.

613 Genç, Hanife. 2014. "Embryonic Development of the Olive Fruit Fly, Bactrocera Oleae Rossi (Diptera:
614 Tephritidae), in Vivo." *Turkish Journal of Zoology* 38 (5): 598–602. <https://doi.org/10.3906/zoo-1305-19>.

615 Goltsev, Yury, William Hsiong, Gregory Lanzaro, and Mike Levine. 2004. "Different Combinations of Gap
616 Repressors for Common Stripes in Anopheles and Drosophila Embryos." *Developmental Biology*
617 275 (2): 435–46. <https://doi.org/10.1016/j.ydbio.2004.08.021>.

618 Havelka, Jan, Vladimír Jr. Landa, and Vladimír Landa. 2007. "Embryogenesis of Aphidoletes Aphidimyza
619 (Diptera: Cecidomyiidae): Morphological Markers for Staging of Living Embryos." *European Journal*
620 *of Entomology* 104 (1): 81–87. <https://doi.org/10.14411/eje.2007.013>.

621 Idris, Bahaa Eldien M. 1960. "DIE ENTWICKLUNG IM NORMALEN EI VON CULEX PIPiens L.
622 (DIPTERA)." *Zeitschrift Für Morphologie Und Ökologie Der Tiere* 49 (4): 387–429.
623 <https://www.jstor.org/stable/43262061>.

624 Jiménez-Guri, Eva, Karl R. Wotton, Brenda Gavilán, and Johannes Jaeger. 2014. "A Staging Scheme for
625 the Development of the Moth Midge Clogmia Albipunctata." Edited by Peter K. Dearden. *PLoS ONE*
626 9 (1): e84422. <https://doi.org/10.1371/journal.pone.0084422>.

627 Juhn, J., O. Marinotti, E. Calvo, and A. A. James. 2008. "Gene Structure and Expression of Nanos (Nos)
628 and Oskar (Osk) Orthologues of the Vector Mosquito, Culex Quinquefasciatus." *Insect Molecular*
629 *Biology* 17 (5): 545–52. <https://doi.org/10.1111/j.1365-2583.2008.00823.x>.

630 Kaiser, Johannes, and Dirk F. Went. 1987. "Early Embryonic Development of the Dipteran Insect
631 Heteropeza Pygmaea in the Presence of Cytoskeleton-Affecting Drugs." *Roux's Archives of*
632 *Developmental Biology* 196 (6): 356–66. <https://doi.org/10.1007/BF00375772>.

633 Klomp, Jeff, Derek Athy, Chun Wai Kwan, Natasha I. Bloch, Thomas Sandmann, Steffen Lemke, and Urs
634 Schmidt-Ott. 2015. "A Cysteine-Clamp Gene Drives Embryo Polarity in the Midge Chironomus."
635 *Science* 348 (6238): 1040–42. <https://doi.org/10.1126/science.aaa7105>.

636 Lemke, Steffen, Stephanie E. Busch, Dionysios A. Antonopoulos, Folker Meyer, Marc H. Domanus, and
637 Urs Schmidt-Ott. 2010. "Maternal Activation of Gap Genes in the Hover Fly Episyphus."
638 *Development* 137 (15): 2604–2604. <https://doi.org/10.1242/dev.055558>.

639 Lemke, Steffen, and Urs Schmidt-Ott. 2009. "Evidence for a Composite Anterior Determinant in the Hover
640 Fly Episyphus Balteatus (Syrphidae), a Cyclorrhaphan Fly with an Anterodorsal Serosa Anlage."
641 *Development* 136 (1): 117–27. <https://doi.org/10.1242/dev.030270>.

642 Martín-Vega, Daniel, and Martin J. R. Hall. 2016. "Estimating the Age of Calliphora Vicina Eggs (Diptera:
643 Calliphoridae): Determination of Embryonic Morphological Landmarks and Preservation of Egg

645 Samples." *International Journal of Legal Medicine* 130 (3): 845–54. <https://doi.org/10.1007/s00414-015-1308-x>.

646 Mellenthin, Katja, Khalid Fahmy, Reda A. Ali, Axel Hunding, Sol Da Rocha, and Stefan Baumgartner.

647 2006. "Wingless Signaling in a Large Insect, the Blowfly *Lucilia Sericata*: A Beautiful Example of

648 Evolutionary Developmental Biology." *Developmental Dynamics* 235 (2): 347–60.

649 <https://doi.org/10.1002/dvdy.20632>.

650 Raminani, L.N., and E.W. Cupp. 1975. "Early Embryology of *Aedes Aegypti* (L.) (Diptera: Culicidae)." *International Journal of Insect Morphology and Embryology* 4 (6): 517–28.

651 [https://doi.org/10.1016/0020-7322\(75\)90028-8](https://doi.org/10.1016/0020-7322(75)90028-8).

652 Ritter, Richard. 1890. "Die Entwicklung Der Geschlechtsorgane Und Des Darmes Bei *Chiromomus*." *Zeitschrift Für Wiss Zool Bd* 50: 408–27.

653 Rohr, Klaus B., Diethard Tautz, and Klaus Sander. 1999. "Segmentation Gene Expression in the

654 Mothmidge *Clogmia Albipunctata* (Diptera, Psychodidae) and Other Primitive Dipterans." *Development Genes and Evolution* 209 (3): 145–54. <https://doi.org/10.1007/s004270050238>.

655 Rosay, Bettina. 1959. "Gross External Morphology of Embryos of *Culex Tarsalis* Coquillett (Diptera: Culicidae)1." *Annals of the Entomological Society of America* 52 (4): 481–84.

656 <https://doi.org/10.1093/aesa/52.4.481>.

657 Sommer, R., and D. Tautz. 1991. "Segmentation Gene Expression in the Housefly *Musca Domestica*." *Development* 113 (2): 419–30. <https://doi.org/10.1242/dev.113.2.419>.

658 Stefani, R N, D Selivon, and A L P Perondini. 2002. "Early Developmental Stages of *Ceratitis Capitata* Embryos." *Proceedings of the 6th International Fruit Fly Symposium*, no. May: 55–58.

659 Strobl, Frederic, Marc F. Schetelig, and Ernst H.K. Stelzer. 2022. "In Toto Light Sheet Fluorescence

660 Microscopy Live Imaging Datasets of *Ceratitis Capitata* Embryonic Development." *Scientific Data* 9 (1): 1–9. <https://doi.org/10.1038/s41597-022-01443-x>.

661 Suksuwan, Worramin, Xiaoli Cai, Lertluk Ngernsiri, and Stefan Baumgartner. 2017. "Segmentation Gene

662 Expression Patterns in *Bactrocera Dorsalis* and Related Insects: Regulation and Shape of

663 Blastoderm and Larval Cuticle." *The International Journal of Developmental Biology* 61 (6–7): 439–50. <https://doi.org/10.1387/ijdb.160277sb>.

664 Telford, Allan D. 1957. "The Pasture *Aedes* of Central and Northern California. The Egg Stage: Gross

665 Embryology and Resistance to Desiccation." *Annals of the Entomological Society of America* 50 (6): 537–43. <https://doi.org/10.1093/aesa/50.6.537>.

666 Tollenaar, W., L. Joosten, and E. Schmitt. 2021. "The Phases and Effects of Low Temperature Exposure

667 on Embryonic Development in *Hermetia Illucens* (L.) (Diptera: Stratiomyidae)." *Journal of Insects as*

668 *Food and Feed* 8 (4): 379–86. <https://doi.org/10.3920/JIFF2020.0165>.

669 Turner, F.Rudolf, and Anthony P. Mahowald. 1977. "Scanning Electron Microscopy of *Drosophila*

670 *Melanogaster* Embryogenesis." *Developmental Biology* 57 (2): 403–16.

671 [https://doi.org/10.1016/0012-1606\(77\)90225-1](https://doi.org/10.1016/0012-1606(77)90225-1).

672 Uliana, João Vitor Cardoso, Guilherme Thomaz Pereira Brancini, James Castelli-Gair Hombría, Luciano

673 Antonio Digiampietri, Luiz Paulo Andrioli, and Nadia Monesi. 2018. "Characterizing the Embryonic

674 Development of *B. Hygida* (Diptera: Sciaridae) Following Enzymatic Treatment to Permeabilize the

675 Serosal Cuticle." *Mechanisms of Development* 154 (July): 270–76.

676 <https://doi.org/10.1016/j.mod.2018.08.002>.

677 Urbansky, Silvia, Paula González Avalos, Maike Wosch, and Steffen Lemke. 2016. "Folded Gastrulation

678 and T48 Drive the Evolution of Coordinated Mesoderm Internalization in Flies." *eLife* 5 (September):

679 1–20. <https://doi.org/10.7554/eLife.18318>.

680 Vanario-Alonso, C. E., R. Sutton, J. C. Carvalho, M. Yussa, T. M. C. Silva, and E. Abdelhay. 1996.

681 "Embryonic Expression of the Engrailed Homologue of *Rhynchosciara Americana*." *Roux's Archives*

682 *of Developmental Biology* 205 (7–8): 432–36. <https://doi.org/10.1007/BF00377223>.

683 Weismann, August. 1863. "Die Entwicklung Der Dipteren Im Ei Nach Beobachtungen an *Chironomus*

694 Spec., *Musca Vomitoria Und Pulex Canis.*" *Zeitschrift Für Wiss Zool Bd* 13: 107–220.

695 Wolf, Rainer. 1969. "Kinematik Und Feinstruktur Plasmatischer Faktorenbereiche Des Eies

696 *VonWachtliella Persicariae L. (Diptera).*" *Wilhelm Roux' Archiv Für Entwicklungsmechanik Der*

697 *Organismen* 162 (2): 121–60. <https://doi.org/10.1007/BF00573537>.

698 Wotton, Karl R., Eva Jiménez-Guri, Belén García Matheu, and Johannes Jaeger. 2014. "A Staging

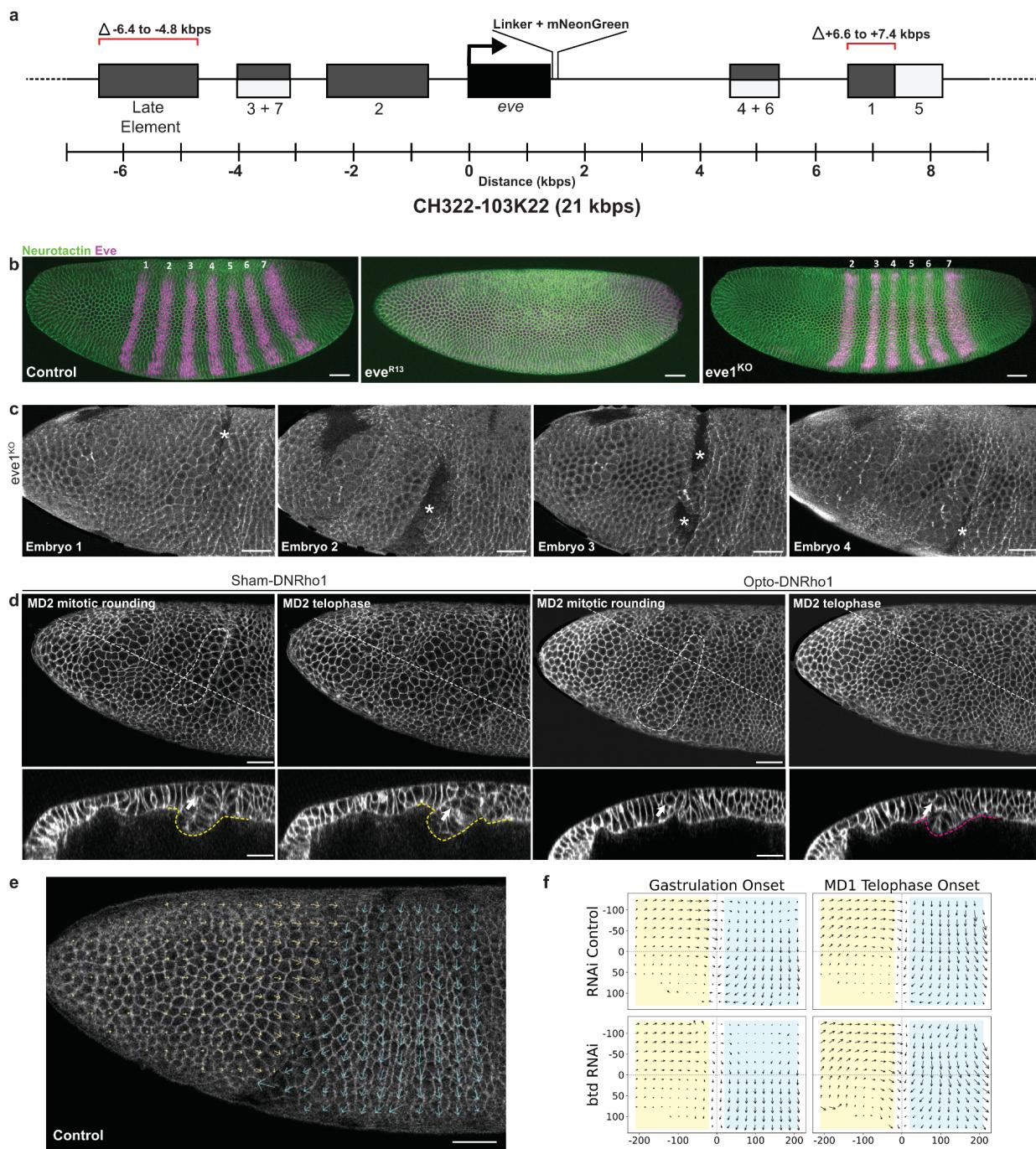
699 Scheme for the Development of the Scuttle Fly *Megaselia Abdita*." Edited by Peter K. Dearden.

700 *PLoS ONE* 9 (1): e84421. <https://doi.org/10.1371/journal.pone.0084421>.

701 Wratten, Naomi S., Alistair P. McGregor, Philip J. Shaw, and Gabriel A. Dover. 2006. "Evolutionary and

702 Functional Analysis of the Tailless Enhancer in *Musca Domestica* and *Drosophila Melanogaster*."

703 *Evolution & Development* 8 (1): 6–15. <https://doi.org/10.1111/j.1525-142X.2006.05070.x>.

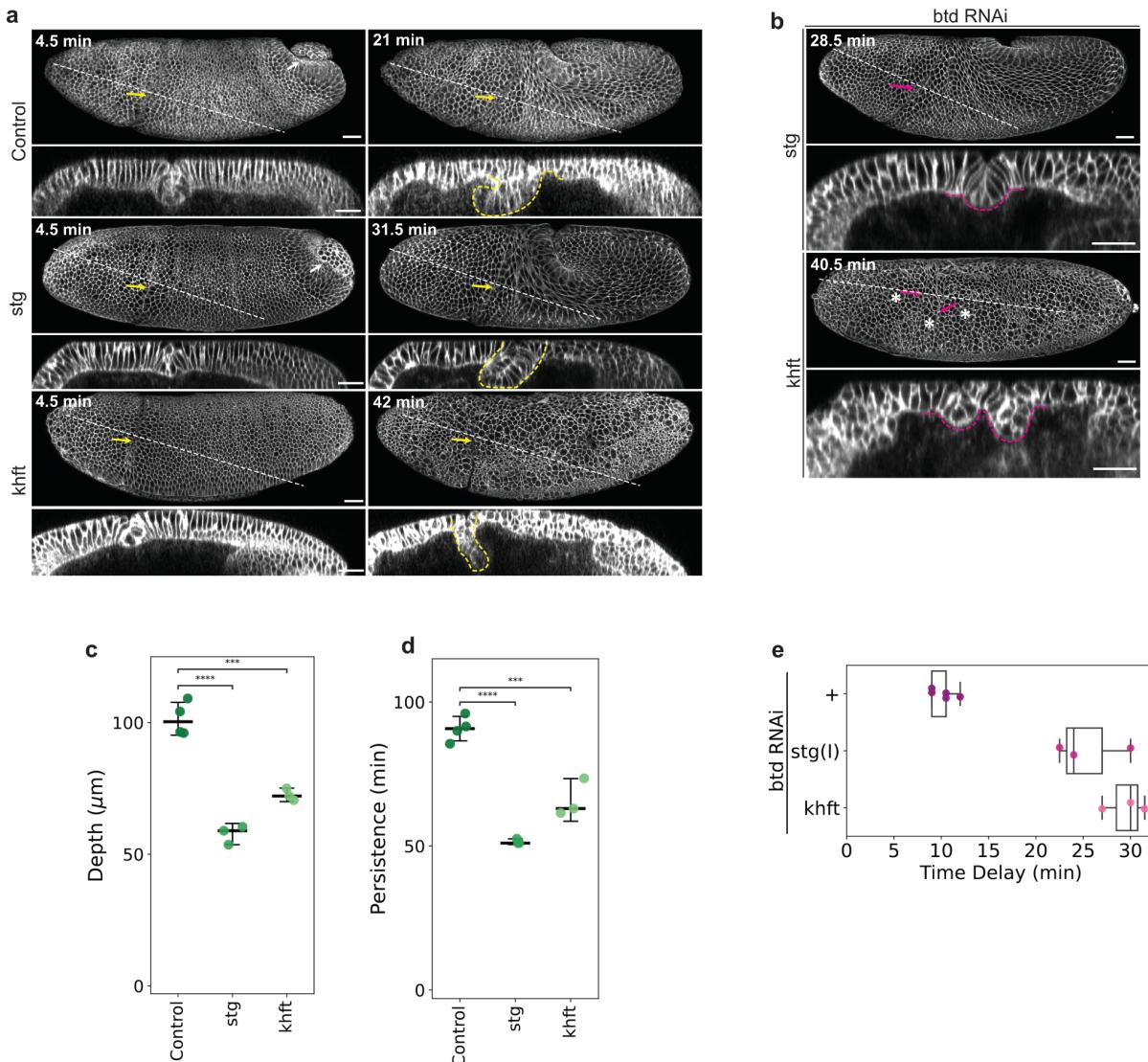

704 Yoon, Yoseop, Jeff Klomp, Ines Martin-Martin, Frank Criscione, Eric Calvo, Jose Ribeiro, and Urs

705 Schmidt-Ott. 2019. "Embryo Polarity in Moth Flies and Mosquitoes Relies on Distinct Old Genes

706 with Localized Transcript Isoforms." *ELife* 8 (October): 1–30. <https://doi.org/10.7554/eLife.46711>.

707

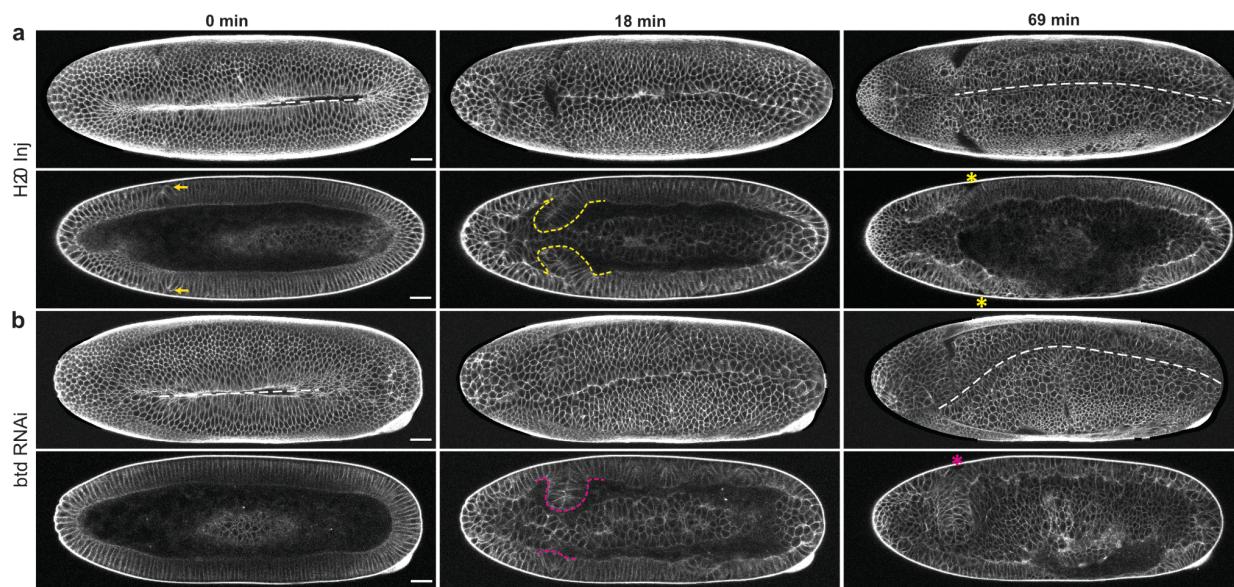
708 **Fig. 2 Supplement 1 | Phenotypic analysis following genetic or optogenetic ablation of the CF.**



709

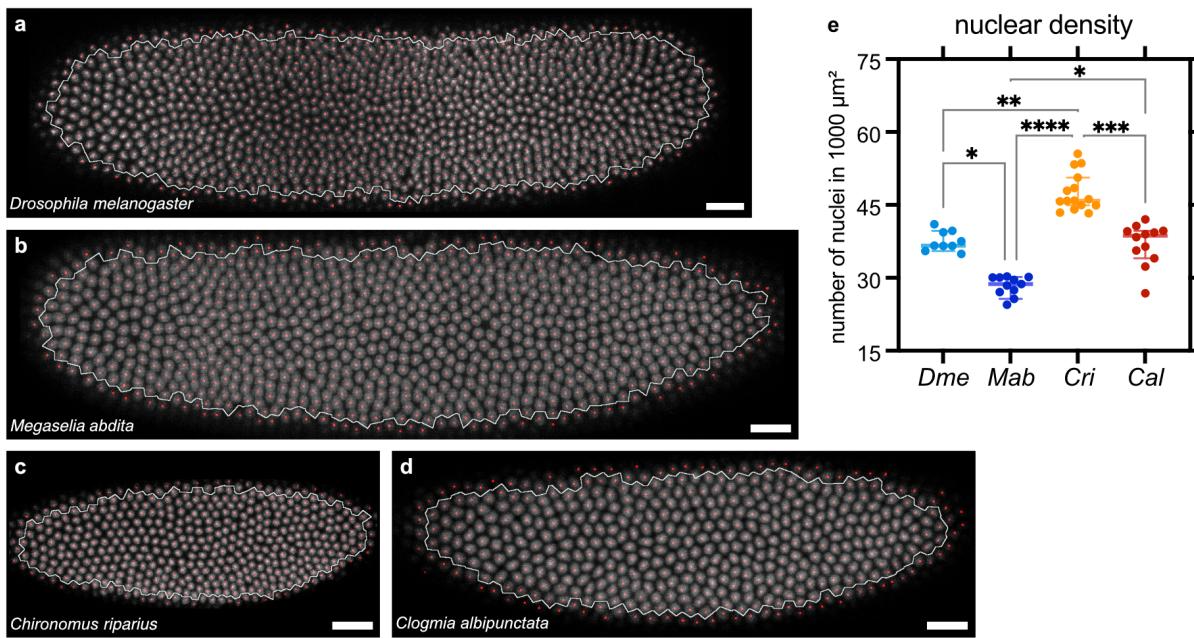
710 **a**, Schematic representation of the $eve^{CH322-103K22}$ - $mNeonGreen\Delta st1\Delta LE$ construct. eve , transcriptional
 711 region of the eve gene; numerics (1, 2, 3+7, 4+6 and 5) and Late element, enhancer regions; scale,
 712 genomic coordinates relative to the transcriptional start of eve . **b**, Lateral surface projection of membrane
 713 (labeled with anti-Neurotactin, green) and Eve (magenta) immunofluorescence in a representative control
 714 ($n=5$), eve^{R13} ($n=10$) or eve^{1KO} ($n=14$) embryo imaged on the lateral side. Numerics, the Eve stripes. **c**,
 715 Lateral surface projection of four representative eve^{1KO} embryos ($n=4$) expressing MyoII-mKate2 showing

716 variable D-V positions of the initial head-trunk buckles (white asterisks). **d**, Lateral surface projection of a
717 representative sham control (Sham-DNRho1) or a photoactivated (Opto-DNRho1) embryo expressing the
718 Opto-DNRho1 system, visualized with a membrane marker (3xmScarlet-CaaX) showing the anterior half
719 of the embryo that includes the head-trunk boundary (top rows) and a z-axis reslice (bottom rows) at two
720 time points. White dashed outlines and white arrows, rounding or dividing MD2 cells; yellow outlines, CFs;
721 magenta outline, head-trunk buckle. Note in the sham control MD2 rounding occurs when the out-of-plane
722 deformation of the CF was already present, while the onset of head-trunk buckle coincided with MD2
723 rounding when the CF was eliminated via optogenetic inhibition of DNRho1. **e**, Representative image of a
724 control embryo superimposed with tissue flow field visualized with PIV. Yellow and cyan arrows are vector
725 fields of the head and trunk regions, respectively. Scale bar, 30 μ m. **f**, Tissue flow fields visualized with
726 PIV in RNAi control (n=4) and *btd* RNAi (n=5) embryos at the onset of gastrulation and MD1 telophase.
727 Yellow shaded rectangles, head region; blue shaded rectangles, trunk regions; x-origin, head-trunk
728 boundary; y-origin, lateral midline. Unit, arbitrary unit.


729 **Fig. 2 Supplement 2 | The effects of head mitosis and trunk convergent-extension on the CF and**
 730 **head-trunk buckling when the CF is lost.**

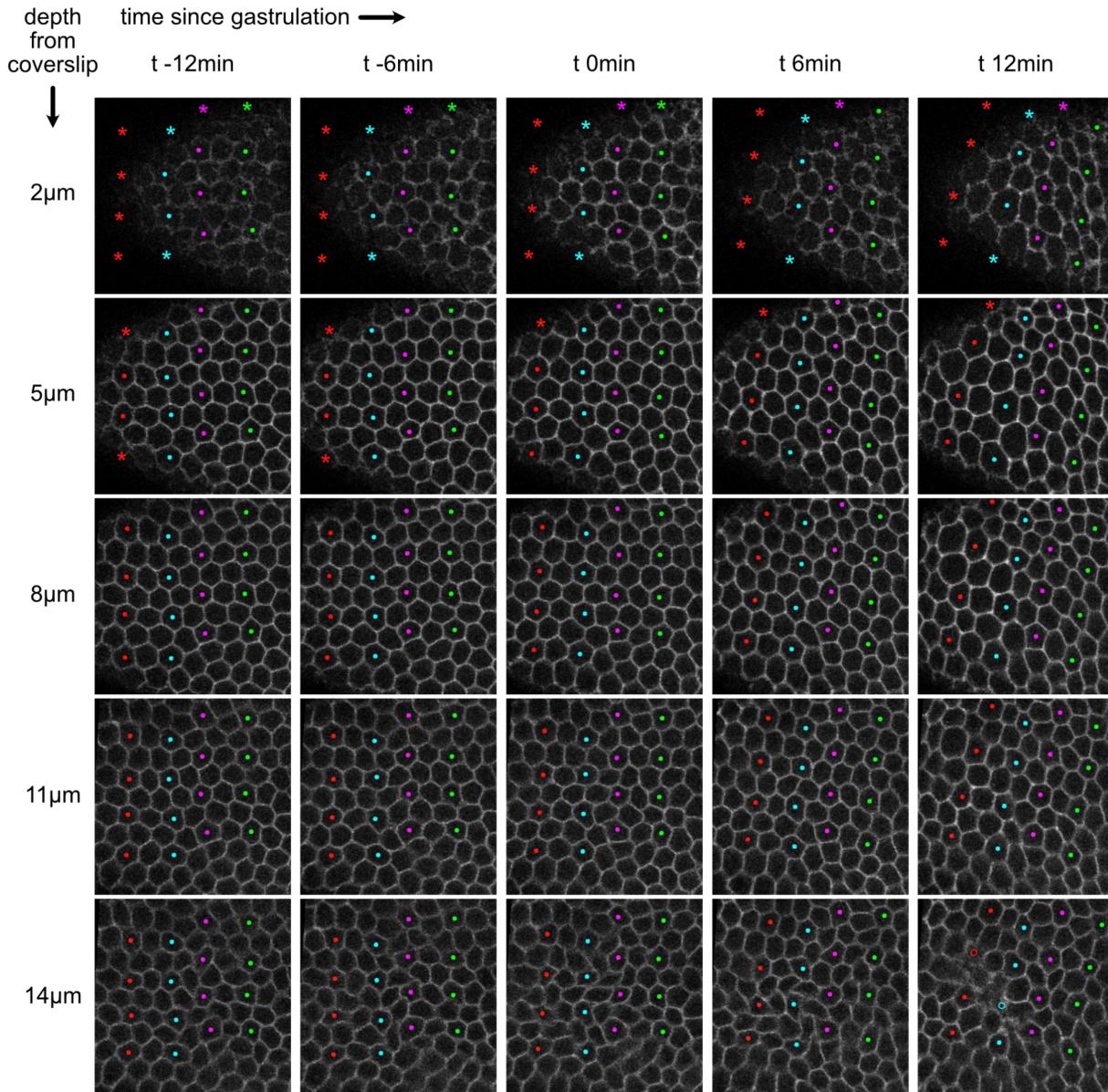
731
 732 **a**, Time-lapse series of a representative control (*mat-tub-3xmScarlet-CaaX*+/+ with water injection, n=4),
 733 *stg* mutant (n=3), or *khft* (n=5) embryo, visualized with 3xmScarlet-CaaX showing a lateral surface
 734 projection (top rows) and a z-axis reslice (bottom rows). White arrows, PMG; yellow arrows and yellow
 735 dashed outlines, CFs. Time is relative to the onset of gastrulation. Scale bars, 30 μm. **b**, Lateral surface
 736 projection (top panels) and z-axis reslice (bottom panels) of 3xmScarlet-CaaX showing late-stage
 737 buckling in *stg* (n=3) or *khft* (n=3) mutants (average buckle depth 40.31 ± 5.31 μm). Magenta arrows and
 738 magenta dashed outlines, head-trunk buckles; asterisks, late MDs (likely MD5, 6, and 11, based on their
 739 location, though the timing appears abnormal). Time is relative to the onset of gastrulation. Scale bars, 30
 740 μm. **c**, **d**, Maximum depths (**c**) or durations (**d**) of the CF plotted with median and error bars indicating
 741 95% confidence interval. One-way ANOVA Tukey post-hoc test; ****, p < 0.0001; **, p < 0.001. Sample

742 size: control=4 ,*stg*=3, *khft*=3. **e**, Timing of the onset of late buckling in the *stg*(I) and *khft* embryos that
743 have been injected with *btd* RNAi, as compared to *btd* RNAi alone. Time is relative to the onset of
744 gastrulation. Sample size: Control (*btd* RNAi alone)=5, *stg*(I)=3, *khft*=3.


745 **Fig. 3 Supplement 1 | Elimination of the CF via *btd* RNAi also causes midline distortion.**

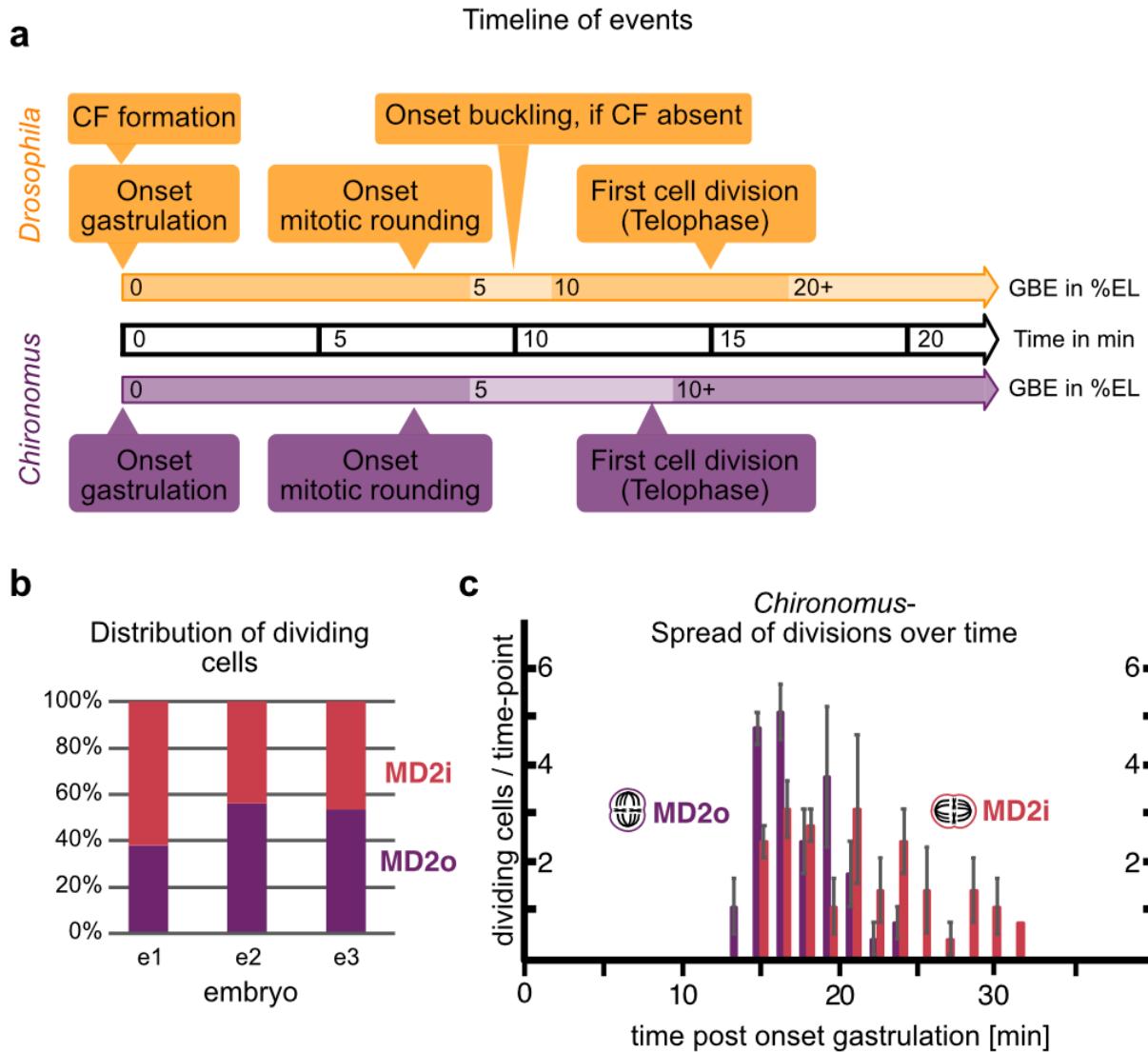
746

747 **a, b,** Time-lapse series of a representative water injection control (**a**, H₂O inj, n=5) or *btd* RNAi (**b**, n=5)
748 embryo, visualized with a 3xmScarlet-CaaX showing a ventral surface projection (top rows) and a single
749 coronal section (bottom rows). White dashed lines, ventral midlines; yellow arrows and yellow dashed
750 outlines, CF; yellow asterisks, bilaterally symmetric CFs; magenta arrows and magenta dashed outlines,
751 head-trunk buckles; magenta asterisks, bilaterally asymmetric buckles. Time is relative to the onset of
752 gastrulation. Scale bars, 30 μ m.

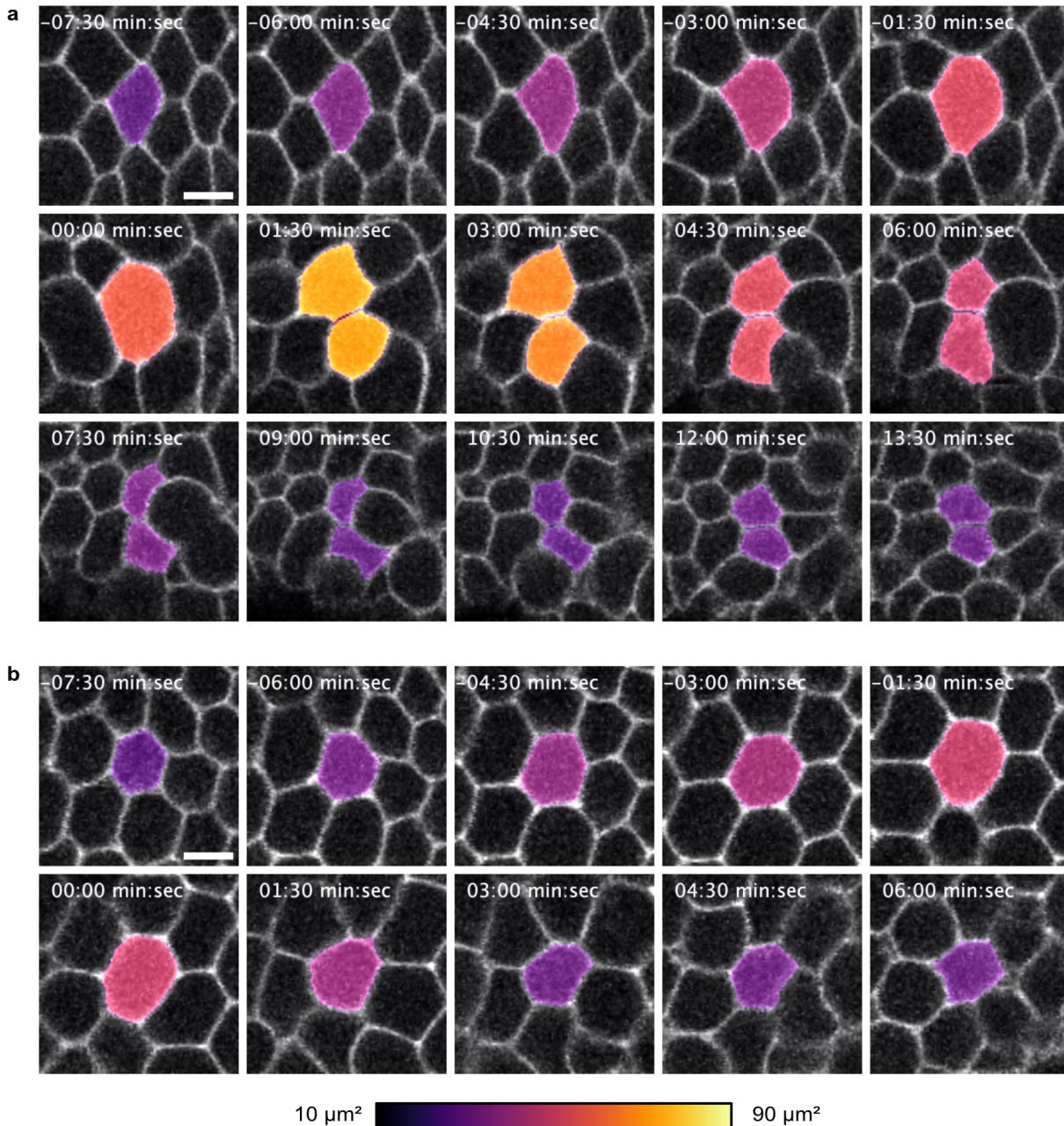

753 **Fig. 4 Supplement 1 | Blastoderm cell density is comparable across species.**

754

755 **a-d**, Shown are representative images from fixed embryos of our species of interest, stained with DRAQ5
756 (see methods), and segmented nuclei; nuclei are shown in gray-scale, with semi-automatically generated
757 red dots as tags for individual nuclei. The distribution of the dots is used to compute the white boundary.
758 The nuclear density is estimated as the number of red dots divided by the area of the region bounded by
759 the white boundary. Scale bars, 20 μm . **e**, Plot shows the distribution of nuclear density, with each dot
760 representing data from one embryo, bold horizontal line indicating median, and whiskers showing 95%
761 confidence intervals. Embryos were pooled from at least 2 fixation and staining rounds. n= 9, 11, 15, and
762 12 embryos respectively for *Drosophila*, *Megaselia*, *Chironomus*, and *Clogmia*. The trends in the changes
763 in nuclear density in these species do not match with presence or absence of a CF. *, p<0.05; **, p<0.01;
764 ***, p<0.001; ****, p<0.0001; non-significant differences are omitted.

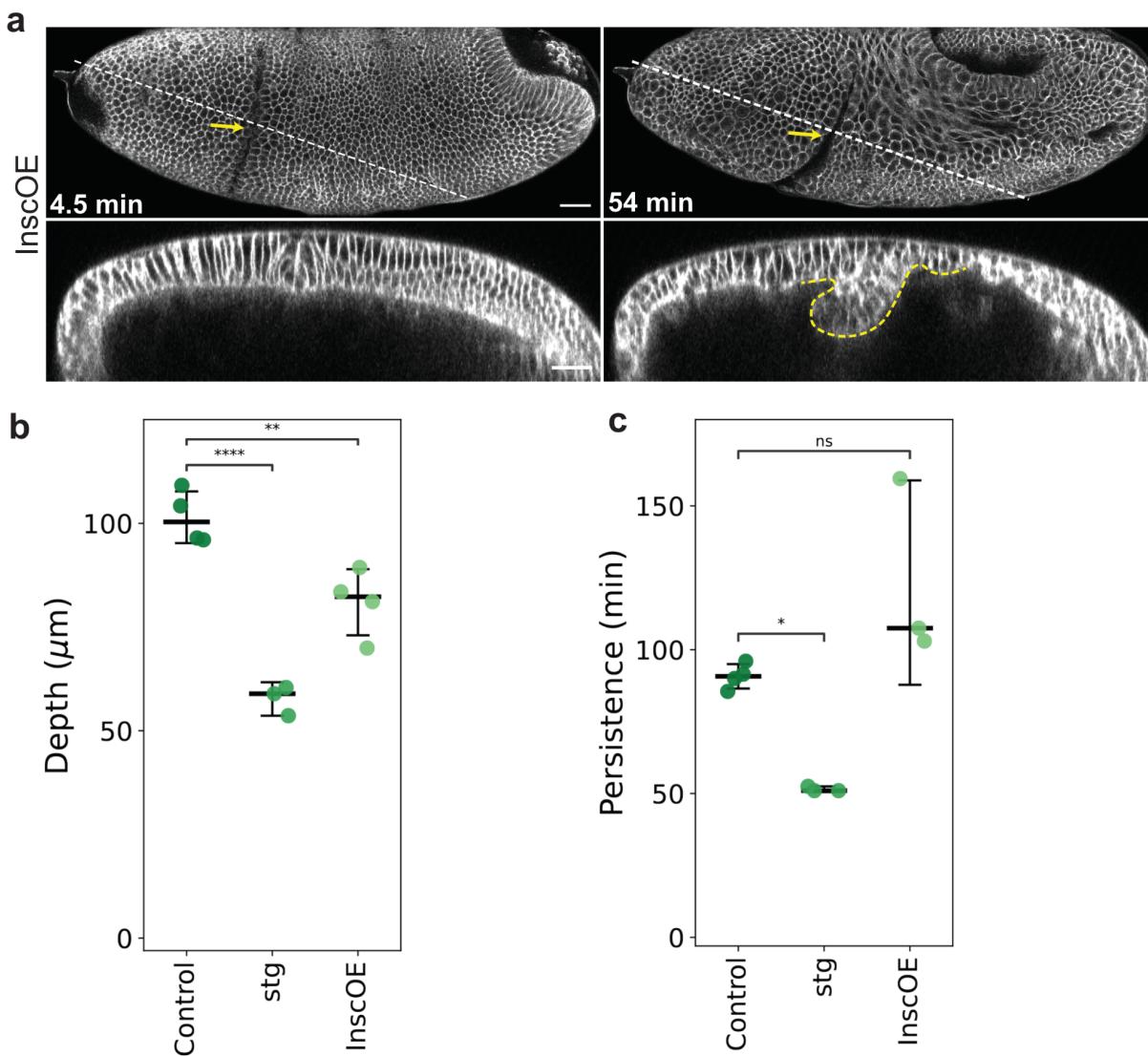

765 **Fig. 4 Supplement 2 | Distribution of nuclei in 2 layers can not be explained by delamination or**
766 **pseudostratification.**

767
768 Time lapse recordings of cell behavior in the head of early *Chironomus* embryos to test whether the two
769 layers of nuclei observed in the head region of fixed *Chironomus* and *Clogmia* embryos (Fig. 4a) might
770 stem from pseudostratification or cell extrusion. In either of the scenarios, a fraction of nuclei are known
771 to be basally located, and we would expect to find wedge or cone shaped cells^{38,39}. Accordingly, we
772 reject either alternative explanations as we observe cells to be columnar till they begin mitotic rounding.
773 Montages show different z-stacks arranged along columns, while different time points arranged along
774 rows, in the head region of a representative *Chironomus* embryo (n=3). Each panel is 50x50 μm. In total
775 16 cells are marked in all of the panels using colored dots. Some cells could not be seen in the z-stacks


776 near the surface due to the curvature of the embryo, and in such cases asterisks approximate the cell
777 position. Some cells could not be seen in the z-stacks in basal regions due to mitotic rounding as they
778 retract from the basal side, and in such cases hollow markers approximate the cell position deep inside
779 the embryo.

780 **Fig. 4 Supplement 3 | Division event timeline in *Drosophila* and *Chironomus* and spread of**
 781 **divisions over time in *Chironomus* MD2.**

782
 783 **a**, Timeline of division events (yellow-*Drosophila*, magenta-*Chironomus*) in absolute time (in min) post
 784 gastrulation onset, defined as the onset of PMG in *Drosophila* and the onset of ventral-ward tissue flow in
 785 *Chironomus*. The onset of mitotic rounding was determined by the first cell displaying rounding in the
 786 domains analyzed (MD1 in *Drosophila*, MD2o in *Chironomus*). Complementary, the degree of GBE by %
 787 egg length (EL) in this timeframe is given for each fly. **b**, Distribution of cells dividing out-of-plane
 788 (magenta/MD2o) and in-plane (red/MD2o) in the 3 embryos analyzed. **c**, Spread of divisions over time in
 789 *Chironomus* MD2o and MD2i in time post onset of gastrulation. Bars represent the number of cells
 790 entering telophase within a 90s window. n=3 embryos.


791 **Fig. 4 Supplement 4 | Time course of an out-of-plane vs. in-plane division, with associated**
792 **changes in apical cell area in *Chironomus* embryos.**

793
794 **a** and **b**, Time course of an in-plane division (**a**) and an out-of-plane division (**b**) with T_0 defined the same
795 way as that in Fig. 4e, i.e., the onset of telophase. Cells are chosen from a representative embryo, **a** from
796 MD2i and **b** from MD2o. The LUT bar at the bottom indicates the color-code used for cell apical area.
797 Scale bars 5 μm .

798

799 **Fig. 4 Supplement 5 | The effect of *Insc* overexpression on CF formation.**

800
801 **a**, Time-lapse series of a representative embryo of *Insc* overexpression in the head region (InscOE, n=5),
802 visualized with 3xmScarlet-CaaX showing a lateral surface projection (top rows) and a z-axis reslice
803 (bottom rows). Yellow arrows and yellow dashed outlines, CFs. Time is relative to the onset of
804 gastrulation. The CF reaches the maximal depth at 54 min. Scale bars, 30 μ m. **b**, **c**, Maximum depths
805 (Sample size: control=4 ,stg=3, InscOE=4) (**b**) or durations (Sample size: control=4 ,stg=3, InscOE=3) (**c**)
806 of the CF plotted with median and error bars indicating 95% confidence interval. One-way ANOVA Tukey
807 post-hoc test; ****, p < 0.0001; **, p < 0.01; *, p < 0.1. Control and stg measurements were replicated
808 from Fig. 2 Supplement 2c, d.

809 **Figure legends [movies]**

810 **Figure 1 Movie S1 | *Chironomus* does not form a CF at the head-trunk boundary**

811 Lateral view from a single z-slice of a developing *Drosophila* (top panel) and *Chironomus* (bottom panel)
812 embryos, expressing cell membrane markers. The regions correspond to ~10 to 75% EL for *Drosophila*
813 and ~15 to 85% EL for *Chironomus*. The colored lines mark the cell boundaries between head and trunk
814 ectoderm. The boundaries are inferred from the appearance of CF in *Drosophila* embryo, while in case of
815 *Chironomus* embryo the differences in cell shape changes dictate the placement of the boundary. Cyan
816 dots track cells that can be followed from the first frame and end-up close to the head-trunk boundary in
817 the last frame. While the straightening of the jagged lines is comparable in both species, the subsequent
818 cell shape changes prior to formation of the CF and the tissue flow towards the head-trunk boundary are
819 absent in *Chironomus*. Fig. 1g and h show time points -3 min and 0 min in the boxed region. We are
820 presenting extra timepoints in the *Chironomus* embryo to compensate for slower development. Scale bar,
821 20 μ m *Drosophila*, 10 μ m *Chironomus*.

822 **Figure 2 Movie S1 | *eve*^{1KO} lacks Myoll planar polarization in the pre-CF domain**

823 Lateral surface projection of the head region (top panels) and z-axis reslice view (bottom panels) of
824 control and *eve*^{1KO} embryos expressing Myoll-mKate2. White rectangle outlines Myoll planar polarization
825 preceding CF initiation, while no clear Myoll polarization was observed in *eve*^{1KO}. Yellow arrow, CF
826 initiation; magenta arrow, onset of buckling. Time is relative to the onset of gastrulation. Scale bar, 30 μ m.

827 **Figure 2 Movie S2 | Genetic ablation of the CF leads to buckling in the head-trunk boundary**

828 Lateral surface projection of control, *eve*^{1KO}, *btd*^{AX} and *eve*^{R13} embryos expressing Gap43-mCherry.
829 White arrows, PMG; yellow arrows, CFs; magenta arrows, head-trunk buckles. Time is relative to the
830 onset of gastrulation. Scale bars, 30 μ m.

831 **Figure 2 Movie S3 | Blocking CF formation via optogenetic inactivation of Myoll leads to head-
832 trunk buckling**

833 Lateral surface projection of the head region and z-axis reslice view of embryos expressing the opto-
834 DNRho1 system, visualized with 3xmScarlet-CaaX, each of which was illuminated with 0% (Sham-
835 DNRho1) or 0.1% (Opto-DNRho1) 405 nm laser light within the blue rectangle. Yellow arrows, CFs;
836 magenta arrows, buckles. Time is relative to the onset of gastrulation. Scale bars, 30 μ m.

837 **Figure 2 Movie S4 | CF initiation occurs normally in *stg* and *khft* embryos, while buckling in the
838 *btd* RNAi embryo is suppressed when mitosis or GBE is abrogated (via *stg* or *khft* mutant)**

839 Lateral surface projection of control, *stg* and *khft* embryos (left column) and *btd* RNAi, *btd* RNAi+*stg* and
840 *btd* RNAi+*khft* embryos (right column), all visualized with 3xmScarlet-CaaX. White arrows, PMG; yellow
841 arrows, CFs; magenta arrows, buckles. Time is relative to the onset of gastrulation. Scale bars, 30 μ m.

842 **Figure 2 Movie S5 | Reslice view of *btd* RNAi embryos reveals head-trunk buckling is suppressed**
843 **when mitosis or GBE is abrogated (via *stg* or *khft* mutant)**

844 Z-axis reslice view of *btd* RNAi, *btd* RNAi+*stg* and *btd* RNAi+*khft* embryos, visualized with 3xmScarlet-
845 CaaX. Time is relative to the onset of gastrulation. Scale bars, 30 μ m.

846 **Figure 3 Movie S1 | Bilateral elimination of the CF via optogenetic inhibition of MyoII causes**
847 **ventral midline distortion**

848 Ventral surface projection of embryos expressing the opto-DNRho1 system, visualized with 3xmScarlet-
849 CaaX, each of which was illuminated with 0% (Sham-DNRho1) or 0.1% (Opto-DNRho1) 405 nm laser
850 light within the blue rectangles. White lines, ventral midline. Time is relative to the onset of gastrulation.
851 Scale bars, 30 μ m.

852 **Figure 3 Movie S2 | Genetic ablation of the CF via *btd* mutant also causes ventral midline**
853 **distortion**

854 Ventral surface projection of control and *btd*^{AX} embryos expressing 3xmScarlet-CaaX. White lines, ventral
855 midline. Time is relative to the onset of gastrulation. Scale bars, 30 μ m.

856 **Figure 4 Movie S1 | Temporal dynamics of divisions in the *Chironomus* MD2o and MD2i**

857 Lateral view of *Chironomus riparius* head in embryos injected with Gap43-eGFP mRNA. Dividing cells are
858 marked 5 timepoints before their division and 3 timepoints after division. Out-of-plane divisions (MD2o)
859 are colored magenta to cyan and in-plane divisions (MD2i) are red to yellow. Scale bar is 10 μ m.

860 **Figure 4 Movie S2 | Mitotic rounding and cytokinetic ring positioning during cell division in**
861 ***Chironomus riparius* in and out-of-plane divisions**

862 Cellular view of *Chironomus riparius* MD2 cells dividing in different planes. Dividing cells are indicated
863 with a cell outline (gray) based on sum projections of actin (LifeAct-mCherry/green) with cytokinetic ring
864 visualized by Sqh-eGFP (magenta). Representative cells were chosen. Scale bars 5 μ m.

865 **Figure 4 Movie S3 | *InscOE* reorients the division plane in MD1 and MD5 to out-of-plane division**

866 Lateral surface projection of the head region of control and *InscOE* embryos expressing Sqh-eGFP
867 (magenta) and 3xmScarlet-CaaX (green). Time is relative to the onset of gastrulation. Scale bars, 30 μ m.

868

869 **Figure 4 MovieS4 | Two classes of phenotypes in *InscOE + btd RNAi***

870 Lateral surface projection (top panels) and z-axis reslice (bottom panels) views of *btd RNAi* embryos
871 overexpressing *Insc* showing two classes of phenotype, visualized with 3xmScarlet-CaaX. White arrows,
872 PMG; magenta arrows and magenta dashed outlines, head-trunk buckles; cyan arrows and cyan dashed
873 outlines, small buckles near or inside MDs. Time is relative to the onset of gastrulation. Scale bars, 30
874 μm .

875 **Methods**

876 **Experimental Animals**

877 *Drosophila* embryos were collected on apple juice agar plates with yeast paste at 22°C or at temperatures
878 indicated in the section below. The laboratory cultures of *Megaselia abdita* (Sander strain) and
879 *Chironomus riparius* (Bergstrom strain) were maintained as described; *Megaselia* embryos were collected
880 on apple juice agar plates with fish food paste at 25°C, *Chironomus* embryos as freshly deposited egg
881 packages at ambient room temperature (23-26°C)⁴⁰. The laboratory culture of *Clogmia albipunctata* was
882 maintained as described; embryos were obtained after experimental egg activation through osmotic
883 shock^{41,42}.

884 ***Drosophila* genetics and transgenic lines**

885 *Drosophila* lines used for live imaging were *MyoII-eGFP* (also known as *Sqh-eGFP*)⁴³, *Gap43-mCherry*⁴⁴,
886 *MyoII-mKate2*⁴⁵, and *mat-tub-3xmScarlet-CaaX* (this study). The membrane imaging line *mat-tub-*
887 *3xmScarlet-CaaX* was cloned into the pBabr vector containing the mat-tub promoter (a gift from D. St.
888 Johnston, Gurdon Institute, UK)⁴⁶ and the spaghetti-squash 3' UTR, followed by Ψ C31 site-directed
889 integration into the attP2 or attP40 landing sites at WellGenetics, Inc. (Taipei, Taiwan).

890 *Drosophila* mutant alleles used were *eve*^{R13} (FlyBase ID: FBal0003885), *btd*^{AX} (FlyBase ID:
891 FBal0030657), *stg*^{7M53} (FlyBase ID: FBal0016176), and the quadruple mutant²⁵ *knirps*^{IID48} (FlyBase ID:
892 FBal0005780) *hunchback*^{7M48} (FlyBase ID: FBal0005395) *forkhead*^{E200} (FlyBase ID: FBal0004007)
893 *tailless*^{L10} (FlyBase ID:FBal0016889). In live imaging experiments, the mutant embryos were identified
894 based on the absence of a balancer-linked reporter construct, hb0.7-Venus-NLS, inserted on the FM7h,
895 CyO, or TM3 balancer⁹.

896 To generate the *eve*^{1KO} line, an *eve* genomic rescue construct, *eve*^{CH322-103K22-mNeonGreen}, was first
897 created using *P[acman]*^{CH322-103K22} (BACPAC Resources, Center at Children's Hospital Oakland Research
898 Institute), a BAC construct that encompasses the entire *eve* locus, from which the stop codon of *eve* was
899 replaced with mNeonGreen following a linker (N-ter-GSAGSAAGSGEV-C-ter) via a standard protocol
900^{47,48}. To completely eliminate *eve* expression in the Eve1 region, the stripe1 (st1; +6.6 kb to +7.4 kb
901 relative to the transcriptional start site of *eve*)¹⁹ and late element (LE; -6.4 kb to -4.8 kb)²⁰ enhancers were
902 deleted from *eve*^{CH322-103K22-mNeonGreen} through homologous recombination using the following
903 homology arm sequences: st1 – left:
904 GCAAGTCCGAGACAAATCCACAAATATTGTCAACTCTTGGCTCTAATCTG, right:
905 CCAAGGCCGCAAAGTCAACAAGTCGGCAGCAAATTCCCTTGCCGGCGA; LE – left:
906 TTGCGTTGAGCTACGTTACTTACATTTCCCACATGAGTCGGGCATACA, right:
907 TCGATGGGTTGGTCACAATGTGGTGGCCTCTAACATTGCAAGGCTTTAC. The resultant BAC

908 construct, *eve*^{CH322-103K22}-*mNeonGreenΔst1ΔLE* (Fig. 2 Supplement 1a) was integrated into PBac{y[+]-
909 attP-3B}VK00033 at Rainbow transgenics, USA, and crossed into the *eve*^{R13} mutant line to generate the
910 *eve*^{1KO} line. Identification of *eve*^{1KO} embryos in live imaging experiments were performed as above,
911 based on the absence of a balancer-linked reporter construct, hb0.7-Venus-NLS, inserted on the CyO⁹.

912 For *Insc* overexpression, males of *UAS-insc* were crossed to *nos-GAL4-GCN4-bcd3'UTR*, which directs
913 target gene expression in the head region of resultant embryos⁴⁹. The flies were incubated at 25°C. For
914 opto-DNRho1 experiments, females of *UASp-pmGFP-CIBN; UASp-CRY2-Rho1[N19, Y189]*²¹ (a gift from
915 B. He, Dartmouth College, USA) were crossed to males of *mataTub-Gal4VP16^{67C}; mataTub-Gal4VP16¹⁵*
916 double driver containing the *mat-tub-3xmScarlet-CaaX* imaging marker. The resultant F1 flies were used
917 to set up egg deposition cages that were kept at 18°C for collection of embryos used in the experiments.

918 Protein tree

919 Predicted protein sequences of *even-skipped* and *buttonhead* were used as query to identify closely
920 related genes in *Drosophila* and putative orthologs in *Megaselia abdita* and *Chironomus riparius* using
921 BLAST. Protein alignments were performed in Geneious by MUSCLE alignment with standard
922 parameters. The protein tree was assembled using Jukes-Cantor as the genetic distance model and
923 UPCMA tree build method, with a bootstrap of 1000 replicates.

924 Cloning, and mRNA and dsRNA synthesis

925 *Cri-btd*, *Cri-eve*, *Cri-insc*, *Cri-sqh*, *Mab-btd*, and *Mab-eve* were identified from transcriptome sequences
926 and cloned after PCR amplification from cDNA. In vivo reporters for cell outlines and MyoII in *Chironomus*
927 were based on GAP43-linker-eGFP and Cri-Sqh-linker-eGFP fusion constructs, which were injected as *in*
928 *vitro* synthesized mRNAs. The template of the Gap43-eGFP fusion construct was generated by in-frame
929 Gibson cloning of the Gap43 encoding sequence, a short linker (GSAGSAAGSGEV), and a previously
930 published pSP35T expression vector (pSP-Mab-bsg-eGFP) with 3'-terminal eGFP⁵⁰. Analogously, the
931 template of the Cri-Sqh-eGFP fusion construct was generated using a full length fragment of *Cri-sqh*
932 amplified by PCR from cDNA. Nascent mRNAs were generated using SP6 polymerase, followed by
933 capping and polyA-tailing with dedicated Capping and PolyA kits (Cellscript). Synthesized mRNA was
934 dissolved in H₂O.

935 For *btd* RNAi experiments in *Drosophila*, double stranded RNA (dsRNA) was synthesized on templates
936 that contain the T7 promoter sequence (5'-TAATACGACTCACTATAGGGTACT-3') at each end using a
937 MEGAscript T7 kit (Ambion); templates were amplified from 0–4 h embryonic cDNA using specific primers
938 (5'-AGCAGATGACGACGACAACA-3; 5'-TACTCGGACTTCATGTGGCA-3). For *insc* RNAi experiments in
939 *Chironomus*, dsRNA was synthesized as previously described⁵¹. The dsRNAs comprised the following

940 gene fragments (pos. 1 refers to first nucleotide in ORF): *btd*, pos. 1487 to 1817 ; *Cri-insc*, pos. 466 to
941 1892.

942 **Injections**

943 For dsRNA injections in *Drosophila*, 0-1 hr old (up to stage 2) embryos were collected, dechorionated with
944 bleach and mounted on an agar pad. The mounted embryos were then picked up using a coverslip
945 painted with glue (prepared by immersing bits of scotch tape in heptane), desiccated for 10-14 min using
946 Drierite (W. A. Hammond Drierite Co.) and covered with a mixture of Halocarbon oil 700 and 27 (Sigma-
947 Aldrich) with a ratio of 3:1. Needles for injection were prepared from micro-capillaries (Drummond
948 Microcaps, O.D. 0.97 mm, I.D. 0.7 mm) pulled with a Sutter P-97/IVF and beveled with a Narishige pipette
949 beveler (EG-44). Injections were performed on a Zeiss Axio Observer D1 inverted microscope using a
950 Narishige manipulator (MO-202U) and microinjector (IM300). A volume of ~144 pL solution with a
951 concentration of 1.1-1.6 µg/µl dsRNA was injected into the embryo. Embryos were kept at 25°C after
952 injection in a moist chamber until early to mid-cellularization, followed by live imaging.

953 For injections in *Chironomus*, embryos were collected, prepared, and injected essentially as described⁴⁰.
954 Embryos were injected before the start of cellularization (approximately four hours after egg deposition),
955 and then kept in a moist chamber until the onset of gastrulation. Throughout all procedures, embryos
956 were kept at 25°C (± 1 °C). Owing to their small size, *Chironomus* embryos (200 mm length) were always
957 injected into the center of the yolk (50% of A-P axis). Embryos were injected with dsRNA typically at
958 concentrations of 300 to 700 ng/ml; mRNA was injected typically at concentrations of 1.5-2.5 µg/µl (Cri-
959 Gap43-eGFP and Cri-Sqh-eGFP). LiveAct-mCherry protein was injected at ~4.5 mg/ml.

960 **Live imaging**

961 Live imaging of *Drosophila* embryos was done using two-photon scanning microscopy with a 25X water
962 immersion objective (N.A.= 1.05) on an upright Olympus FVMPE-4GDRS system with an InSight
963 DeepSee pulsed IR Dual-Line laser system (Spectra Physics) or an inverted Olympus FVRS-F2SJ
964 system equipped with a Maitai DeepSee and an InSight DeepSee pulsed IR laser systems (Spectra
965 Physics), or with a Plan-Apochromat 25X oil immersion objective (N.A.= 0.8) on a Zeiss LSM980 inverted
966 microscope equipped with a Chameleon laser (Coherent Int). For eGFP and Venus, a tunable laser line
967 was tuned at 920 nm and 950 nm, respectively, while for mKate2, mCherry or mScarlet either a fixed line
968 at 1040 nm on the upright system, or a tunable line tuned at 1100 nm on the inverted system was used.
969 Three different general settings were used: 1) a z stack of ~80 µm depth, image size of 539.5 x185.5 µm
970 and a z step size of 2 µm with a 90 s time interval for an *en face* lateral view or ventral view of the whole
971 embryo, 2) a z stack of ~60 µm depth. Image size of 253.5 x152 µm and a z-step size of 1.5 µm with a
972 50 s time interval for an *en face* lateral view of the head domain, 3) a z stack of ~40 µm depth, image

973 dimension of 208.3 x152 μm and a z-step size of 1 μm with a 45 s time interval for the recording of cell
974 division dynamics in the MDs of the head.

975 Live imaging of *Chironomus* embryos was performed on a Leica SP8 confocal using a 63x glycerol
976 immersion objective (N.A.=1.30). Z-stacks of ~25 μm depth were acquired at a z-step size of 1 μm and 90
977 sec time interval. All recordings were performed at 25°C.

978 Time-lapse imaging to visualize germband extension was performed on Nikon Eclipse-Ti microscope, in
979 differential interference contrast (DIC) mode, using a 20x objective (N.A.=0.8) for *Drosophila*, *Megaselia*,
980 *Chironomus*, and *Clogmia*, with 1 frame every min. All recordings were performed at 25°C.

981 **Optogenetics**

982 The opto-DNRho1 system²¹ contains a dominant negative form of Rho1 (DNRho1) lacking the membrane
983 localization signal and tagged with the photosensitive Cryptochrome 2 (CRY2), and a membrane-
984 anchored N-terminal domain of the CIB1 protein (CIBN). Following blue light illumination, CRY2
985 undergoes a conformational change to bind to CIBN, thereby recruiting DNRho1 to the plasma membrane
986 to inhibit cortical actomyosin contractility. Fly crosses, cages for egg deposition, and embryos prior to
987 processing were kept in the dark. To prevent unwanted photoactivation, embryos were processed, staged
988 and mounted in a dark room with the desk lamp and the brightfield light source on the stereo microscope
989 both covered by a light red filter (#182, Lee filters, UK). Imaging was performed on an Olympus FVMPE-
990 RS system with a 25X (N.A.=1.05) water immersion objective and with the 1040 nm fixed laser line from
991 an InSight DeepSee pulsed IR Dual-Line laser system (Spectra Physics) for the membrane marker
992 3xmScarlet-CaaX. Photoactivation of the CRY2-CIBN system was achieved with a 405-nm diode laser set
993 at 0.1% laser intensity, which produced 5.48 μW power measured at the sample position. This protocol
994 has been first benchmarked on VF formation to confirm that it resulted in a complete blockage of apical
995 constriction²¹. The laser was set at 0% for sham control. Two experimental designs were used: 1) For
996 lateral imaging with unilateral photoactivation (Fig. 2g, h; Fig. 2 Supplement 1d; Fig. 2 Movie S3), an ROI
997 of 28.15 x 197.05 μm centered on 'the pre-CF domain'⁵² covering the entire region of CF initiation along
998 the D-V circumference was illuminated for a scanning duration of 3 s, beginning at 16~33 min prior to the
999 onset of gastrulation and repeated every 90 s; 2) For ventral imaging with bilateral photoactivation (Fig.
1000 3a, b; Fig. 3 Movie S1), two ROIs of 33.78 x 33.78 μm each covering one side of the CF was illuminated,
1001 for a scanning duration of 3 s, repeated every 180 s. Photoactivation began 18-30 min prior to the onset
1002 of gastrulation.

1003 **Immunofluorescence and fixed imaging**

1004 For antibody staining, embryos were fixed by a heat-methanol method⁵³ and immunostained with mouse
1005 monoclonal anti-Neurotactin (1:20, BP106, Developmental Studies Hybridoma Bank), rabbit polyclonal

1006 anti-Eve (1:500, gift from M. Biggin, Lawrence Berkeley National Laboratory, USA), and rat polyclonal
1007 anti-Btd (1: 500, gift from E. Wieschaus). Imaging was performed on a Leica SP8 system using a 20x
1008 (N.A.=0.75) multi-immersion objective with oil immersion with a total z depth of 60-90 μ m and a z-step
1009 size of 1.04 μ m.

1010 For DNA staining, embryos were fixed by heat and devitellinized as described⁵⁴, followed by staining with
1011 DRAQ5 (1:1000, 1 hr). Imaging was performed on a Leica SP8 system with a 20x glycerol objective
1012 (N.A.=0.75) for *Drosophila*, *Megaselia*, and *Clogmia*, and with a 63x glycerol objective (N.A.=1.3) for
1013 *Chironomus*, with a z-step size of 1 μ m in a z-range that covers a half of the embryo.

1014 For in situ hybridization, embryos were fixed by a heat-formaldehyde method⁵⁰. Transcripts were detected
1015 histochemically or fluorescently as described⁵⁵, using RNA probes for *Mab-btd* (comprising 1473 nts from
1016 +1 to 1473, with pos. +1 referring to first nucleotide in ORF), *Mab-eve* (comprising 984 nts, from position
1017 365 to 996 of the putative CDS and 351 nts of 3'UTR), *Cri-btd* (comprising 831 nts from 476 to 1306), *Cri-*
1018 *eve* (comprising 892 nts from 30 to 921), and *Cri-insc* (comprising 1427 nts from 466 to 1892) labeled
1019 with either digoxigenin or fluorescein.

1020 **Image processing and quantification**

1021 Images were processed, assembled into figures and converted into videos using FIJI, Affinity Designer,
1022 and Adobe Illustrator. Quantitative data were analyzed and processed by Excel and custom-made Python
1023 scripts using Numpy, Pandas, and SciPy libraries. Plots were generated in GraphPad Prism or with
1024 Python scripts using Matplotlib and Seaborn graphic libraries. The sections below provide brief
1025 descriptions of image processing and analysis procedures.

1026 **Surface projection.** For *en face* views, the FIJI plugin Local Z Projector⁵⁶ was used to project a surface
1027 of interest from a 3D stack onto a 2D surface, taking into account the curvature of the embryo. The
1028 reference plane that represents the contour of the embryo surface was derived from a Gaussian-blurred
1029 image of the original 3D stack image with a σ value of 2~4, followed by binarization with a customized
1030 threshold, which results in a smooth height map for z projection. For an optimal projection, three main
1031 parameters were considered, 1) median post filter for the height map, 2) ΔZ , and 3) offset for the
1032 maximum intensity projection. These parameters were standardized such that errors at the boundary of
1033 the embryo with the highest curvature and auto-fluorescence from the vitelline membrane closest to the
1034 topmost Z-slice were avoided. Whole embryo projections for embryos expressing Gap43-mCherry were
1035 done with $\Delta Z=0$ and offset= 3 or 4, while for embryos expressing 3xmScarletCaaX, $\Delta Z=0$ and offset=2 or
1036 3 were used. For embryos expressing MyoII-GFP and MyoII-mKate2, $\Delta Z=3$ and offset=4 or 5 were used.

1037 **Re-slice along the z-axis.** Re-slices were created using the re-slice tool in Fiji. A straight line
1038 approximately perpendicular to the CF or the head-trunk buckle was drawn and positioned between MD5

1039 and MD9 to ensure the consistency of the slicing positioning along the D-V axis in all genotypes, except
1040 for the *stg* mutants where there is no cell division and the *khft* mutants where MD pattern is partially
1041 disrupted.

1042 **Time annotation.** Time-lapse images of laterally mounted *Drosophila* embryos were aligned temporally
1043 based on the fact that the initiation timings of CF, VF and PMG are concurrent, marking the onset of
1044 gastrulation⁹. For embryos imaged on the lateral side, the onset of PMG invagination was annotated
1045 based on a visual criteria of PMG surface flattening and the first major dorsal movement of the pole cells,
1046 with the exception of *khft* mutants in which the PMG was absent, and VF onset was used to define
1047 gastrulation onset. For embryos imaged on the ventral side, the first frame at which the cells in the VF
1048 move out of plane was set as gastrulation onset.

1049 Time-lapse images of laterally positioned *Chironomus* embryos were aligned temporally based on the
1050 observation that similar to *Drosophila* the initiation timings of VF and PMG are concurrent, marking the
1051 onset of gastrulation. For laterally imaged embryos (PMG not visible), the onset of gastrulation was
1052 determined based on a visual criteria of first collective ventral-ward cell movement.

1053 Fig. 4 Supplement 3 puts the dynamics of head divisions in *Drosophila* and *Chironomus* head ectoderm
1054 on a common timeline based on these time annotations.

1055 **Measurement of CF or buckle depth.** The depth of the CF or the buckles was measured at the time
1056 point where the invagination reaches the maximum depth. The segmented line tool in Fiji was used to
1057 trace the depth of the furrow starting from the vitelline membrane to the basal end of the epithelial cell at
1058 the CF or buckle tip.

1059 **Particle Image Velocimetry (PIV).** PIV was performed on surface projections using the iterative PIV
1060 plugin in Fiji (<https://sites.google.com/site/qingzongtseng/piv?authuser=0#h.khn09c6h1n39>). Only the
1061 anterior half of the embryo was analyzed. Progressively decreasing Image interrogation window size of
1062 88, 44 and 22 pixels was done with a search window of size 178, 88 and 44 respectively for each
1063 successive PIV iterations. The output of the 2nd iteration of PIV was used for the final vector plot. Time
1064 alignment of multiple embryos was based on gastrulation onset as described above. MD1 telophase
1065 onset was the one frame before the first MD1 cell undergoing cytokinesis. For the vector plot, vector
1066 coordinates were translated such that the x-axis origin was set at the CF or the buckle, hence
1067 representing the head-trunk boundary, while the y-axis origin represents the lateral midline. For each time
1068 point (gastrulation onset and MD1 telophase), vector fields from three successive time frames were
1069 averaged. Averaged vectors from multiple embryos were plotted with the size of the arrow representing
1070 the magnitude of the velocity and therefore the flow speed. The vector lengths were extended by a factor
1071 of two for better visualization.

1072 **Nuclear density.** Nuclear density was assessed at the end of cellularization by nuclear segmentation
1073 using 'Find Maxima' in Fiji, followed by manual corrections and Voronoi tessellation to generate a pseudo-
1074 cell territory around each maximum; territories at the edge of the image were excluded. The median of the
1075 pseudo-cell territory area was used to estimate nuclear density.

1076 **Measurement of surface area in mitotic cells and regions.** The surface area of individual mitotic cells
1077 or mitotically active regions was obtained by surface area segmentation of embryos expressing a
1078 fluorescent reporter for membranes using the *TissueAnalyzer*⁵⁷ plugin in Fiji. *Chironomus* embryos
1079 expressed Gap43-eGFP, and segmentation was performed on a single z-slice 4 μ m below the cell apex;
1080 *Drosophila* embryos expressed 3xmScarlet-CaaX, and segmentation was performed on surface
1081 projections generated using the FIJI plugin Local Z Projector as described above. For the analysis of
1082 individual dividing cells, segmentation was carried out separately for each timepoint and cells were then
1083 tracked manually over time (24 out-of-plane and 18 in-plane dividing cells from 3 embryos). For each time
1084 point, the area of tracked cells was extracted. Following an in-plane division, both daughter cells were
1085 tracked and their area summed. Following an out-of-plane division, only the cell remaining at the surface
1086 was tracked; occasional short contacts of the bottom cell to the apical surface were not included in the
1087 analysis. Time annotation was performed respective to each individual cell's onset of telophase. For the
1088 quantification of mitotically active domains, the largest possible representative area of a given mitotic
1089 domain with fully traceable cells was chosen. Domain areas were tracked and extracted manually for 3
1090 embryos. For domain analysis time annotation was based on onset of gastrulation (described above).

1091 **Analysis of ventral midline deviation.** For an estimate of deviation from the expected linear ventral
1092 midline, the actual ventral midlines were marked manually using the segmented line tool in FIJI at the
1093 onset of gastrulation ('onset') and a later time point ('mid') when the midline exhibits maximal distortion.
1094 The resultant ROIs were converted into points using built-in macro function *Roi.getContainedPoints* in
1095 FIJI, and the coordinates were analyzed using a Python code. To compute deviation, a linear fit to the
1096 midline coordinate was first generated as the expected midline for the onset stage, which was then
1097 translated to the linear fit for the midline coordinates marked at the 'mid' stage, while preserving the
1098 slope, as the expected midline for the mid stage. For each stage, the mean distance from the marked
1099 midline coordinates to the expected midline was calculated and plotted as 'Deviation' in Fig. 3c, f.

1100 **Statistical Analyses**

1101 Python scripts using SciPy library were implemented to conduct one-way ANOVA followed by Tukey's
1102 multiple comparison post hoc test for comparing means from more than two groups, and Mann-Whitney U
1103 test as a non-parametric independent test. All of the statistical details of experiments, including the
1104 number of experiments (n), which represents the number of embryos used unless otherwise noted, were
1105 indicated in the figure legends.

1106 Statistical analysis to compare the blastoderm cell densities across species was done using GraphPad
1107 Prism, where we estimated the statistical significance using one-way ANOVA with Kruskal-Wallis non-
1108 parametric test, without correcting for multiple comparisons (Uncorrected Dunn's test). The same program
1109 was also used to calculate medians and the 95% confidence intervals on the median.

1110 **Data and Code Availability**

1111 Data and codes developed for data analysis are available upon request from the corresponding authors.

1112 **Acknowledgements:** We thank the BACPAC Resources, Center at Children's Hospital Oakland
1113 Research Institute, the Developmental Studies Hybridoma Bank, the Bloomington and Kyoto *Drosophila*
1114 Stock Centers, Yohanns Bellaïche, Mark Biggins, Stefano De Renzis, Nathalie Dostatni, Bing He, Shigeo
1115 Hayashi and Eric Wieschaus for sharing reagents; Shigeo Hayashi, Lars Hufnagel, and Jochen Wittbrodt
1116 for support; Anthony Eritano for initial characterization of the *eve*^{1KO} line; Lucas Schütz and Atalay Tok for
1117 initial conceptualization and observations of division orientation in *Chironomus*; Laura Popp and Maike
1118 Fath for cloning and initial characterization of gene expression in *Chironomus*; members of the Hayashi,
1119 Obata and Yoo laboratories for discussions; Anna Erzberger and Girish Deshpande for critical reading
1120 and comments on the manuscript. This work was supported by the core funding at RIKEN BDR; the
1121 Human Frontier Scientific Program (HFSP) Young Investigators grant to S.L. and Y.-C.W.
1122 (RGY0082/2015); a Research Grant by the Deutsche Forschungsgemeinschaft to S.L. (LE 2787/3-1);
1123 G.K. was supported by HFSP Long-term postdoctoral fellowship (LT000597/2019-L).

1124 **Author Contributions:** Y.-C.W and S.L. conceived, designed and supervised the study; B.D., V.K., G.K.,
1125 M.S., M.T., and Y.-C.W. generated the reagents, wrote software code, and performed the experiments;
1126 B.D., V.K., G.K., M.S., M.T., Y.-C.W., and S.L. analyzed the data and prepared the visualization; B.D.,
1127 V.K., G.K., Y.-C.W and S.L. wrote and edited the manuscript.

1128 **Competing interests:** The authors declare no competing financial interest.

1129 **Additional Information:** Supplementary Information is available for this paper. Reprints and permissions
1130 information is available on the journal website. Correspondence and requests for materials should be
1131 addressed to Y.-C.W. (yu-chiun.wang@riken.jp) and S.L. (steffen.lemke@uni-hohenheim.de).

1132 **References**

1133 1. Savin, T., Kurpios, N.A., Shyer, A.E., Florescu, P., Liang, H., Mahadevan, L., and Tabin, C.J. (2011).
1134 On the growth and form of the gut. *Nature* 476, 57–62. 10.1038/nature10277.

1135 2. Collinet, C., Rauzi, M., Lenne, P.-F., and Lecuit, T. (2015). Local and tissue-scale forces drive
1136 oriented junction growth during tissue extension. *Nat. Cell Biol.* 17, 1247–1258. 10.1038/ncb3226.

1137 3. Lardennois, A., Pásti, G., Ferraro, T., Llense, F., Mahou, P., Pontabry, J., Rodriguez, D., Kim, S.,
1138 Ono, S., Beaurepaire, E., et al. (2019). An actin-based viscoplastic lock ensures progressive body-
1139 axis elongation. *Nature* 573, 266–270. 10.1038/s41586-019-1509-4.

1140 4. Zhang, H., Landmann, F., Zahreddine, H., Rodriguez, D., Koch, M., and Labouesse, M. (2011). A
1141 tension-induced mechanotransduction pathway promotes epithelial morphogenesis. *Nature* 471, 99–
1142 103. 10.1038/nature09765.

1143 5. Shyer, A.E., Tallinen, T., Nerurkar, N.L., Wei, Z., Gil, E.S., Kaplan, D.L., Tabin, C.J., and Mahadevan,
1144 L. (2013). Villification: how the gut gets its villi. *Sci. N. Y. NY* 342, 212–218.
1145 10.1126/science.1238842.

1146 6. Lye, C.M., Blanchard, G.B., Naylor, H.W., Muresan, L., Huisken, J., Adams, R.J., and Sanson, B.
1147 (2015). Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila.
1148 *PLoS Biol.* 13, e1002292. 10.1371/journal.pbio.1002292.

1149 7. Gheisari, E., Aakhte, M., and Müller, H.-A.J. (2020). Gastrulation in *Drosophila melanogaster*:
1150 Genetic control, cellular basis and biomechanics. *Mech. Dev.* 163, 103629.
1151 10.1016/j.mod.2020.103629.

1152 8. Martin, A.C. (2020). The Physical Mechanisms of *Drosophila* Gastrulation: Mesoderm and Endoderm
1153 Invagination. *Genetics* 214, 543–560. 10.1534/genetics.119.301292.

1154 9. Eritano, A.S., Bromley, C.L., Albero, A.B., Schütz, L., Wen, F.-L., Takeda, M., Fukaya, T., Sami,
1155 M.M., Shibata, T., Lemke, S., et al. (2020). Tissue-Scale Mechanical Coupling Reduces
1156 Morphogenetic Noise to Ensure Precision during Epithelial Folding. *Dev. Cell* 53, 212–228.e12.
1157 10.1016/j.devcel.2020.02.012.

1158 10. Vincent, A., Blankenship, J.T., and Wieschaus, E. (1997). Integration of the head and trunk
1159 segmentation systems controls cephalic furrow formation in *Drosophila*. *Dev. Camb. Engl.* 124,
1160 3747–3754.

1161 11. Spencer, A.K., Siddiqui, B.A., and Thomas, J.H. (2015). Cell shape change and invagination of the
1162 cephalic furrow involves reorganization of F-actin. *Dev. Biol.* 402, 192–207.
1163 10.1016/j.ydbio.2015.03.022.

1164 12. Kong, D., Wolf, F., and Grosshans, J. (2017). Forces directing germ-band extension in *Drosophila*
1165 embryos. *Mech. Dev.* 144, 11–22. 10.1016/j.mod.2016.12.001.

1166 13. Foe, V.E. (1989). Mitotic domains reveal early commitment of cells in *Drosophila* embryos. *Dev.*
1167 *Camb. Engl.* 107, 1–22.

1168 14. Liu, F., Morrison, A.H., and Gregor, T. (2013). Dynamic interpretation of maternal inputs by the

1169 Drosophila segmentation gene network. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 6724–6729.

1170 10.1073/pnas.1220912110.

1171 15. Dicko, M., Saramito, P., Blanchard, G.B., Lye, C.M., Sanson, B., and Étienne, J. (2017). Geometry
1172 can provide long-range mechanical guidance for embryogenesis. *PLoS Comput. Biol.* **13**, e1005443.
1173 10.1371/journal.pcbi.1005443.

1174 16. Tallafuß, A., and Bally-Cuif, L. (2002). Formation of the head–trunk boundary in the animal body plan:
1175 an evolutionary perspective. *Gene* **287**, 23–32. 10.1016/S0378-1119(01)00829-0.

1176 17. Wiegmann, B.M., Trautwein, M.D., Winkler, I.S., Barr, N.B., Kim, J.-W., Lambkin, C., Bertone, M.A.,
1177 Cassel, B.K., Bayless, K.M., Heimberg, A.M., et al. (2011). Episodic radiations in the fly tree of life.
1178 *Proc. Natl. Acad. Sci.* **108**, 5690–5695. 10.1073/pnas.1012675108.

1179 18. Vellutini, B.C., Cuenca, M.B., Krishna, A., Szałapak, A., Modes, C.D., and Tomančák, P. (2023). Pre-
1180 patterned epithelial invagination prevents mechanical instability during fly gastrulation.
1181 2023.03.30.534554. 10.1101/2023.03.30.534554.

1182 19. Fujioka, M., Emi-Sarker, Y., Yusibova, G.L., Goto, T., and Jaynes, J.B. (1999). Analysis of an even-
1183 skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm
1184 enhancers, and multi-stripe positioning by gap gene repressor gradients. *Dev. Camb. Engl.* **126**,
1185 2527–2538.

1186 20. Fujioka, M., Miskiewicz, P., Raj, L., Gulledge, A.A., Weir, M., and Goto, T. (1996). Drosophila Paired
1187 regulates late even-skipped expression through a composite binding site for the paired domain and
1188 the homeodomain. *Development* **122**, 2697–2707. 10.1242/dev.122.9.2697.

1189 21. Guo, H., Swan, M., and He, B. (2022). Optogenetic inhibition of actomyosin reveals mechanical
1190 bistability of the mesoderm epithelium during Drosophila mesoderm invagination. *eLife* **11**, e69082.
1191 10.7554/eLife.69082.

1192 22. Edgar, B.A., Lehman, D.A., and O'Farrell, P.H. (1994). Transcriptional regulation of string (cdc25): a
1193 link between developmental programming and the cell cycle. *Development* **120**, 3131–3143.
1194 10.1242/dev.120.11.3131.

1195 23. Edgar, B.A., and O'Farrell, P.H. (1990). The three postblastoderm cell cycles of Drosophila
1196 embryogenesis are regulated in G2 by string. *Cell* **62**, 469–480.

1197 24. Irvine, K.D., and Wieschaus, E. (1994). Cell intercalation during Drosophila germband extension and
1198 its regulation by pair-rule segmentation genes. *Dev. Camb. Engl.* **120**, 827–841.

1199 25. Zallen, J.A., and Wieschaus, E. (2004). Patterned gene expression directs bipolar planar polarity in
1200 Drosophila. *Dev. Cell* **6**, 343–355.

1201 26. Kraut, R., Chia, W., Jan, L.Y., Jan, Y.N., and Knoblich, J.A. (1996). Role of inscuteable in orienting
1202 asymmetric cell divisions in Drosophila. *Nature* **383**, 50–55. 10.1038/383050a0.

1203 27. Kraut, R., and Campos-Ortega, J.A. (1996). inscuteable, A Neural Precursor Gene
1204 of Drosophila, Encodes a Candidate for a Cytoskeleton Adaptor Protein. *Dev. Biol.* **174**, 65–81.
1205 10.1006/dbio.1996.0052.

1206 28. Brau, F., Damman, P., Diamant, H., and Witten, T.A. (2013). Wrinkle to fold transition: influence of
1207 the substrate response. *Soft Matter* 9, 8177. 10.1039/c3sm50655j.

1208 29. Pocivavsek, L., Dellsy, R., Kern, A., Johnson, S., Lin, B., Lee, K.Y.C., and Cerdá, E. (2008). Stress
1209 and Fold Localization in Thin Elastic Membranes. *Science* 320, 912–916. 10.1126/science.1154069.

1210 30. Smits, C.M., Dutta, S., Jain-Sharma, V., Streichan, S.J., and Shvartsman, S.Y. (2023). Maintaining
1211 symmetry during body axis elongation. *Curr. Biol.* 33, 3536–3543.e6. 10.1016/j.cub.2023.07.050.

1212 31. di Pietro, F., Echard, A., and Morin, X. (2016). Regulation of mitotic spindle orientation: an integrated
1213 view. *EMBO Rep.* 17, 1106–1130. 10.15252/embr.201642292.

1214 32. Finegan, T.M., and Bergstrahl, D.T. (2019). Division orientation: disentangling shape and mechanical
1215 forces. *Cell Cycle* 18, 1187–1198. 10.1080/15384101.2019.1617006.

1216 33. Chanet, S., Sharan, R., Khan, Z., and Martin, A.C. (2017). Myosin 2-Induced Mitotic Rounding
1217 Enables Columnar Epithelial Cells to Interpret Cortical Spindle Positioning Cues. *Curr. Biol. CB* 0.
1218 10.1016/j.cub.2017.09.039.

1219 34. Camuglia, J., Chanet, S., and Martin, A.C. (2022). Morphogenetic forces planar polarize LGN/Pins in
1220 the embryonic head during *Drosophila* gastrulation. *eLife* 11, e78779. 10.7554/eLife.78779.

1221 35. Turner, F.R., and Mahowald, A.P. (1977). Scanning electron microscopy of *Drosophila melanogaster*
1222 embryogenesis: II. Gastrulation and segmentation. *Dev. Biol.* 57, 403–416. 10.1016/0012-
1223 1606(77)90225-1.

1224 36. Cambridge, S.B., Davis, R.L., and Minden, J.S. (1997). *Drosophila* Mitotic Domain Boundaries as
1225 Cell Fate Boundaries. *Science* 277, 825–828. 10.1126/science.277.5327.825.

1226 37. Crespi, B.J. (2004). Vicious circles: positive feedback in major evolutionary and ecological transitions.
1227 *Trends Ecol. Evol.* 19, 627–633. 10.1016/j.tree.2004.10.001.

1228 38. Gudipaty, S.A., and Rosenblatt, J. (2017). Epithelial cell extrusion: Pathways and pathologies. *Semin.*
1229 *Cell Dev. Biol.* 67, 132–140. 10.1016/j.semcdb.2016.05.010.

1230 39. Norden, C. (2017). Pseudostratified epithelia - cell biology, diversity and roles in organ formation at a
1231 glance. *J. Cell Sci.* 130, 1859–1863. 10.1242/jcs.192997.

1232 40. Caroti, F., Urbansky, S., Wosch, M., and Lemke, S. (2015). Germ line transformation and *in vivo*
1233 labeling of nuclei in Diptera: report on *Megaselia abdita* (Phoridae) and *Chironomus riparius*
1234 (Chironomidae). *Dev. Genes Evol.* 225, 179–186. 10.1007/s00427-015-0504-5.

1235 41. Stauber, M., Prell, A., and Schmidt-Ott, U. (2002). A single Hox3 gene with composite bicoid and
1236 zerknüllt expression characteristics in non-Cyclorrhaphan flies. *Proc. Natl. Acad. Sci.* 99, 274–279.
1237 10.1073/pnas.012292899.

1238 42. Rohr, K.B., Tautz, D., and Sander, K. (1999). Segmentation gene expression in the mothmidge
1239 *Clogmia albipunctata* (Diptera, Psychodidae) and other primitive dipterans. *Dev. Genes Evol.* 209,
1240 145–154. 10.1007/s004270050238.

1241 43. Royou, A., Sullivan, W., and Karess, R. (2002). Cortical recruitment of nonmuscle myosin II in early
1242 syncytial *Drosophila* embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. *J*

1243 Cell Biol 158, 127–137. 10.1083/jcb.200203148.

1244 44. Izquierdo, E., Quinkler, T., and De Renzis, S. (2018). Guided morphogenesis through optogenetic
1245 activation of Rho signalling during early *Drosophila* embryogenesis. Nat. Commun. 9, 2366.
1246 10.1038/s41467-018-04754-z.

1247 45. Pinheiro, D., Hannezo, E., Herszterg, S., Bosveld, F., Gaugue, I., Balakireva, M., Wang, Z., Cristo, I.,
1248 Rigaud, S.U., Markova, O., et al. (2017). Transmission of cytokinesis forces via E-cadherin dilution
1249 and actomyosin flows. Nature 545, 103–107. 10.1038/nature22041.

1250 46. Shulman, J.M., Benton, R., and St Johnston, D. (2000). The *Drosophila* Homolog of *C. elegans* PAR-
1251 1 Organizes the Oocyte Cytoskeleton and Directs oskar mRNA Localization to the Posterior Pole.
1252 Cell 101, 377–388. 10.1016/S0092-8674(00)80848-X.

1253 47. Venken, K.J.T., He, Y., Hoskins, R.A., and Bellen, H.J. (2006). P[acman]: a BAC transgenic platform
1254 for targeted insertion of large DNA fragments in *D. melanogaster*. Sci. N. Y. NY 314, 1747–1751.
1255 10.1126/science.1134426.

1256 48. Venken, K.J.T., Carlson, J.W., Schulze, K.L., Pan, H., He, Y., Spokony, R., Wan, K.H., Koriabine, M.,
1257 de Jong, P.J., White, K.P., et al. (2009). Versatile P[acman] BAC libraries for transgenesis studies in
1258 *Drosophila melanogaster*. Nat. Methods 6, 431–434. 10.1038/nmeth.1331.

1259 49. Janody, F., Reischl, J., and Dostatni, N. (2000). Persistence of Hunchback in the terminal region of
1260 the *Drosophila* blastoderm embryo impairs anterior development. Dev. Camb. Engl. 127, 1573–1582.
1261 10.1038/337138a0.

1262 50. Caroti, F., González Avalos, E., Noeske, V., González Avalos, P., Kromm, D., Wosch, M., Schütz, L.,
1263 Hufnagel, L., and Lemke, S. (2018). Decoupling from yolk sac is required for extraembryonic tissue
1264 spreading in the scuttle fly *Megaselia abdita*. eLife 7, 165. 10.7554/eLife.34616.

1265 51. Stauber, M., Taubert, H., and Schmidt-Ott, U. (2000). Function of bicoid and hunchback homologs in
1266 the basal cyclorrhaphan fly *Megaselia* (Phoridae). Proc. Natl. Acad. Sci. 97, 10844–10849.
1267 10.1073/pnas.190095397.

1268 52. Blankenship, J.T., and Wieschaus, E. (2001). Two new roles for the *Drosophila* AP patterning system
1269 in early morphogenesis. Dev. Camb. Engl. 128, 5129–5138.

1270 53. Müller, H.A., and Wieschaus, E. (1996). armadillo, bazooka, and stardust are critical for early stages
1271 in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in
1272 *Drosophila*. J Cell Biol 134, 149–163. 10.1083/jcb.134.1.149.

1273 54. Rafiqi, A.M., Lemke, S., and Schmidt-Ott, U. (2011). *Megaselia abdita*: Fixing and Devitellinizing
1274 Embryos. Cold Spring Harb. Protoc. 2011, pdb.prot5602. 10.1101/pdb.prot5602.

1275 55. Lemke, S., and Schmidt-Ott, U. (2009). Evidence for a composite anterior determinant in the hover fly
1276 *Episyrphus balteatus* (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage. Dev.
1277 Camb. Engl. 136, 117–127. 10.1242/dev.030270.

1278 56. Herbert, S., Valon, L., Mancini, L., Dray, N., Caldarelli, P., Gros, J., Esposito, E., Shorte, S.L., Bally-
1279 Cuif, L., Aulner, N., et al. (2021). LocalZProjector and DeProj: a toolbox for local 2D projection and

1280 accurate morphometrics of large 3D microscopy images. *BMC Biol.* **19**, 136. 10.1186/s12915-021-
1281 01037-w.

1282 57. Aigouy, B., Umetsu, D., and Eaton, S. (2016). Segmentation and Quantitative Analysis of Epithelial
1283 Tissues. In *Drosophila: Methods and Protocols Methods in Molecular Biology.*, C. Dahmann, ed.
1284 (Springer), pp. 227–239. 10.1007/978-1-4939-6371-3_13.

1285 58. Sander, K. Chironomid embryology in the 19th century: Insights and errors of its pioneers, especially
1286 August Weismann (1834-1914), and some 20th century sequels. in *Late 20th Century Research on*
1287 *Chironomidae: An Anthology from the 13th International Symposium on Chironomidae* 1–16 (2000).