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107  Abstract

108 Understanding the molecular and cellular mechanisms that underlie complex traits
109  inpigs is crucial for enhancing their genetic improvement program and unleashing their
110  substantial potentials in human biomedicine research. Here, we conducted a meta-
111 GWAS analysis for 232 complex traits with 28.3 million imputed whole-genome
112 sequence variants in 70,328 individuals from 14 pig breeds. We identified a total of
113 6,878 genomic regions associated with 139 complex traits. By integrating with the Pig
114 Genotype-Tissue Expression (PigGTEx) resource, we systemically explored the
115  biological context and regulatory circuits through which these trait-associated variants
116  act and finally prioritized 16,664 variant-gene-tissue-trait circuits. For instance,
117 1s344053754 regulates the expression of UGT2B31 in the liver by affecting the activity
118  ofregulatory elements and ultimately influences litter weight at weaning. Furthermore,
119  we investigated the conservation of genetic and regulatory mechanisms underlying 136
120  human traits and 232 pig traits. Overall, our multi-breed meta-GWAS in pigs provides
121  invaluable resources and novel insights for understanding the regulatory and
122 evolutionary mechanisms of complex traits in both pigs and humans.

123
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124  Introduction

125 Pigs are globally recognized as one of the most important farm animals, with pork
126  production reaching 106.1 million tons in 2021'. Understanding the genetic control of
127  complex phenotypes in pigs help us genetically maximize their production efficiency?,
128  and improve their health and welfare®*, while minimizing environmental challenges>-*
129  through advanced precision breeding techniques. For example, genomic selection
130  substantially and durably enhance the efficiency of pig breeding programs in terms of
131 reliability, genetic trends, and inbreeding rates’. Genome editing also protect pigs from
132 porcine reproductive and respiratory syndrome virus and reduce economic losses®. On
133  top of their great economic importance as a primary source of animal protein for
134  humans’, pigs have been widely accepted as a model for studying human biology and
135  diseases, including Alzheimer's disease'’, cardiovascular disease!!, wound healing!%!3,
136  human reproduction'®, the human gastrointestinal tract'’, dry eye'®, and immunological
137 studies'’"!?. Therefore, investigating the genetic and biological architecture of complex
138  traits in pigs will not only benefit the pig breeding industry but also to human
139  biomedical research.

140 Performing a genome-wide association study (GWAS) is a commonly used strategy
141 for dissecting complex trait/disease genetics®*?%. As of June 10, 2023, the Pig
142 quantitative trait loci (QTL) database (Pig QTLdb) has reported 48,844 QTL,
143 representing 673 distinct traits and 279 trait variants>>. However, causal variants and
144 genes underlying most of these QTL regions remain unknown due to the large amount
145  of linkage disequilibrium (LD) of genetic variants within pig populations/breeds®*.
146  Cross-ancestry/population meta-GWAS analysis has been proposed as an efficient
147  approach for identifying trait-associated variants shared between populations and
148  accelerate statistical fine-mapping of causal variants and genes through reducing
149  LD?*?>?7 In addition, the majority of genetic variants identified in GWAS were located
150  in non-coding genomic regions®®, and were significantly enriched in cis-regulatory
151  elements, including promoters and enhancers®>*’, as well as gene expression QTL
152  (eQTL) in relevant tissues’!. This suggests that GWAS variants might exert their effect
153  via regulating gene expression. Therefore, it is of great interest to prioritize the causal
154  variants, genes, pathways, and tissues of complex traits through systematically
155  integrating functional annotation data such as FAANG?®? and FarmGTEXx resources>>.

156 Here, we collected and analyzed phenotypes and genotypes of 70,328 pigs from 59
157  populations representing 14 pig breeds to identify genetic variants underlying complex
158  traits in pigs. After imputing genotypes to a whole genome sequence level using a multi-
159  breed reference panel®®, we conducted a comprehensive cross-population/breed meta-
160 GWAS analysis for 232 complex traits. We then integrated multi-tissue regulatory
161  elements from the FAANG project®> and multi-tissue molQTL from the PigGTEx
162  project® to systematically resolve the functional molecular basis of complex traits in
163  pigs. To further investigate the potential of pigs as model organisms for human biology
164  and diseases, we compared the genetic regulations of 136 human complex phenotypes
165 and 232 pig complex phenotypes. Finally, we developed an open-access and user-
166  friendly website (http://pigbiobank.ipiginc.com/home) for the research community to
167  query and download the genetic associations of complex traits in pigs (Fig. 1a).
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168

169  Results

170  Summary of genotypes and phenotypes

171 After excluding ancestral outliers within each of the 59 populations based on
172 population structure analysis (details see Methods), we retained 69,242 pigs genotyped
173 by SNP arrays (with an average of 45,418 autosomal SNPs) or low-coverage whole-
174  genome sequencing (WGS) (with 198,178 autosomal SNPs) for subsequent analysis,
175  including 20,706 Duroc, 9,159 Landrace, 34,540 Yorkshire, and 4,837 individuals from
176 11 other breeds (Table S1). We imputed genotypes of all the 69,242 animals to the
177  sequence level, using the multi-breed Pig Genomics Reference Panel (PGRP version 1)
178  from the PigGTEx project®® as the reference panel, which comprises 42,523,218
179  autosomal biallelic SNPs from 1,602 WGS data worldwide (Fig. 1b-c). The average
180  concordance rates and genotype correlations between imputed and observed genotypes
181  were 96.67% and 93.86%, respectively, across breeds (Fig. Sla-c, Table S1). We further
182  assessed the genotype imputation accuracy in 65 WGS samples (35 Duroc and 30
183  Suhuai) that were independent of PGRP (Table S2). The observed concordance rates
184  between the imputed and WGS-called genotypes were 93.34% and 91.13% (genotype
185  correlations of 90.21% and 87.22%), respectively (Fig. 1d, S1d). The genotype
186  imputation accuracy was influenced by the minor allele frequency (MAF) and dosage
187  R-squared (DR?, the estimated squared correlation between the estimated allele dose
188  and the true allele dose) (Fig. Sle-h). We thus considered 28,297,602 SNPs with both
189  DR? > 0.8 and MAF > 0.01 in each population for subsequent analysis. As expected,
190  the population structure of GWAS samples estimated by imputed genotypes was
191  consistent with that estimated from raw genotypes (correlation > 0.99) (Fig. S11). The
192 imputed SNPs were evenly distributed across diverse genomic features (Fig. S1j-1).
193  Altogether, these results supported the reliability of our imputed genotype data.

194  Intotal, we collected 271 continuous traits across 59 pig populations in 14 breeds, with
195  an average sample size of 1,141 for each population and each trait (ranging from 116
196  in Total number of born to 9,246 in Average daily gain), representing 5 main trait
197  categories and 17 subcategories: Production (n = 57,612; Feed intake (n = 240),
198  Growth (n =57,612), Feed conversion (n = 19,095)), Meat and Carcass (n = 65,883;
199  Fatness (n = 60,203), Anatomy (n = 52,470), Chemistry (n = 368), Fatty acid content
200 (n=368), Texture (n = 140), Meat color (n = 140), pH (n = 140)), Health (n = 2,139;
201  Immune capacity (n = 1,317), Blood parameters (n = 2,139)), Reproduction (n =
202 71,637; Reproductive traits (n =41,569), Litter traits (n =51,717), Reproductive organs
203  (n = 40,914)), and Exterior (n = 6,625; Behavioral (n = 2,797), Conformation (n =
204  3,828)) (Fig. S2a). In addition, we collected 15 binary traits across 23 populations in 3
205 breeds with an average sample size of 1,025 (ranging from 160 in Number of
206 mummified pigs of parity 1 to 9,246 in Teat number symmetry), representing
207 Reproduction category (Litter traits (n = 12,655) and Reproductive organs (n = 24,087))
208  (Fig. S2a). After filtering out samples with low-quality genotypes and phenotypes
209  (Methods), we retained 249 continuous traits (average sample size of 1,136) and 11
210  binary traits (average sample size of 1,035) for subsequent analysis. The average
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211 backfat thickness (M_BFT) had the largest cumulative sample size of 58,725 (Fig. 1e).
212 Across all the traits, we observed an average heritability of 0.27, ranging from 0.02 for
213 Teat number (left) to 0.97 for Lysozyme level (Table S3, Fig. S2b-c).

214  Individual GWAS and meta-GWAS analysis

215 We conducted GWAS for 249 individual continuous traits and 11 binary traits in each
216  population, yielding a total of 2,117 GWAS summary statistics (Table S3). To ensure
217  the quality and reliability of these individual GWAS results for subsequent meta-
218  analysis, we applied stringent quality control using multiple strategies, including SE-N
219  plot, P-Z plot, EAF plot, and Acc (Methods). This resulted in 2,056 high-quality GWAS
220  summary statistics, representing 221 continuous traits and 11 binary traits (Fig. S2d-j).
221 Of these, 78 traits were not previously reported in Pig QTLdb (release 46)*
222  (https://www.animalgenome.org/cgi-bin/QTLdb/SS/index). In total, we detected 8,098
223 QTLs (P < 5X 10®) for 154 traits, representing 7,011 non-overlapping lead SNPs
224 (5,665 SNPs with m-value > 0.9 in at least one study, while the m-value represents the
225  posterior probability of the effect estimated by METASOFT). The correlations of SNP
226  effects were significantly higher for the same traits across different populations/breeds
227  compared to different traits within the same populations/breeds (Fig. S3a-b).
228  Interestingly, among the 5,665 lead SNPs, 69.88% were only detected in one population
229  for a specific trait (Fig. S3c), and their MAFs were higher in the target populations
230  compared to the remaining populations (Fig. S3d). For instance, rs323720776 was
231  associated with Average daily gain (birth-100kg) only in a Yorkshire pig population,
232 with its MAF in this population (MAF = 0.46) being higher than in others (average
233  MAF = 0.27) (Fig. S3e). These findings suggest that population-specific associations
234  may arise from differences in variant segregation between populations.

235 To detect population-shared associations with small effect sizes that could not be
236 detected by individual GWAS due to limited sample size**, we conducted meta-GWAS
237  analyses for each of the 232 complex traits across populations/breeds using individual
238 GWAS summary statistics. Out of these traits, 25 common traits had larger sample sizes
239  and were classified as main traits (M_traits), covering the categories of Growth, Fatness,
240  Reproductive, Anatomy, Reproductive organs and Litter trait (Table S3). Furthermore,
241  we conducted 36 within-breed meta-GWAS analyses for the Duroc, Landrace and
242 Yorkshire breeds, focusing on 12 M_traits with large sample sizes in all of the three
243 breeds (prefixed with ‘D _’°, ‘L’ and ‘Y ’, respectively), to explore potential breed-
244 specific genetic regulation mechanisms for complex traits. The average sample size of
245  these 268 meta-GWAS analyses was 6,409, ranging from 137 for dressing percentage
246  t0 56,165 for M_BFT (Table S4). Overall, we detected 6,878 QTLs for 139 traits in 169
247  meta-GWAS analyses (P < 5X107%), representing 6,233 non-overlapping lead SNPs
248  (Table S5, Fig. 2a). These lead SNPs were distributed across all the 18 autosomes (Fig.
249  2b) and had smaller MAFs than random SNPs (Fig. S4a). Furthermore, the number of
250  significant QTLs detected in meta-GWAS showed positive correlations with both
251  sample size (Pearson’s » = 0.69, P = 1.36x10%°) and trait heritability (Pearson’s r =
252 0.49, P=9.59x107) (Fig. 2c-d), consistent with findings in humans®%*’,

253 In comparison to Pig QTLdb (release 46)**, we identified 14,704 novel QTLs for 209
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254  traits in both individual GWAS and meta-GWAS (Fig. S4b-c). Furthermore, we
255  employed two strategies to validate the detected lead SNPs. Firstly, we conducted meta-
256  GWAS for average daily gain (ADG) in independent populations, including 42,790
257  Duroc pigs, 88,984 Landrace pigs, and 69,606 Yorkshire pigs. The association signals
258  detected in these different independent populations were significantly enriched in the
259  QTL regions of ADG detected in this study (Fig. S4d). Secondly, we used suggestively
260  significant lead SNPs (P < 1X107) to predict genetic values of litter size/teat number
261  across seven pig breeds. We observed that Jiaxinghei, Erhualian, and Meishan pigs
262  exhibited higher predicted values than Landrace and Duroc (Fig. 2e, Fig. S4e). This
263  aligns with previous findings that Meishan pigs maintained a higher number of follicles
264  during the follicular phase than Landrace hybrid pigs*®. In summary, these results
265 illustrate that lead SNPs detected here are reliable and shared among populations/breeds.

266 In comparison with individual GWASs, we identified 5,955 novel QTLs in meta-
267  analyses for 147 traits (Fig. 2f). For instance, rs320375241 was non-significant for
268  ADG in any individual GWASs, but was identified as a significant lead SNP of ADG
269 in the meta-analysis (Fig. 2g). Furthermore, we found 7,058 QTLs in individual
270  GWAS:Ss that were not detected in the meta-GWASs (referred to as class A QTLs) (Fig.
271 2f). When compared to the QTLs detected in both individual GWASs and meta-GWASs
272 (referred to as class B QTLs), the lead SNPs of class A QTLs tended to have different
273  directions of effects on the trait across study populations (Fig. S4f). Additionally, the
274 populations in which class A QTLs were detected had a smaller proportion of the total
275  sample size in the meta-analysis of the trait (Fig. S4g). These findings suggest that
276  GWAS variants with opposite directions of effect among populations, or GWAS
277  variants detected in populations with small sample sizes, may result in undetectable
278  QTLs in meta-analyses.

279 To characterize the genetic regulation of complex traits (Fig. S3c), we here only
280  considered QTLs/lead SNPs identified in the meta-GWAS analysis. Across all the 64
281  meta-analyses with a number of lead SNPs > 10, we observed a negative correlation
282  between MAF and effect size of lead SNPs, with a median Pearson correlation of -0.65,
283  ranging from -0.88 in the GGT trait to -0.27 in the number of mummified pigs (Fig.
284  S5a). This suggests that variants significantly associated with complex traits might be
285  under negative selection, similar to previous findings in humans***!. Among these
286  correlations, we observed differences among Duroc, Landrace and Yorkshire in the
287  correlations between MAF and effect size of lead SNPs for ADG and teat number
288 (TNUM). Specifically, the negative correlation for ADG was weaker in Duroc
289  compared to Landrace and Yorkshire (Fig. S5b), while the ADG phenotype value in
290  Duroc was higher than in Landrace and Yorkshire (Fig. S5¢). Of note, we found the
291  opposite result for TNUM (Fig. S5d-e). This finding suggests that the three breeds have
292  undergone different levels of artificial selection for different complex traits of economic
293  importance. In the all-breed meta-analyses of 12 M _traits, we identified 1,460 novel
294  QTLs compared to within-breed meta-analyses in Duroc, Landrace, and Yorkshire (Fig.
295  S5f). Most of the breed-specific QTLs (median 77%) detected in the within-breed meta-
296  analysis exhibited different directions of effect between breeds (Fig. S5g). For instance,
297  the effect size of the lead SNP 6 163238739 A G for ADG in Duroc was 7.53 (P =
298 3.22X10°%), while it was -4.40 (P =0.18) in Landrace and -3.99 (P = 0.05) in Yorkshire,
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299  while this SNP was not associated with ADG in the all-breed meta-analysis (effect size
300 =2.58,P=0.01) (Fig. S5h). This suggests that associations with different directions of
301 effect between breeds will be offset in the all-breed meta-GWAS analysis, leading to
302  reduced statistical power.

303  Pleiotropy of genetic variants in complex traits

304 To explore breed-specific and shared trait-associations among Duroc, Landrace and
305  Yorkshire breeds, we estimated the posterior probability (m-value) of lead SNPs for
306 each trait using METASOFT*. In 12 M_traits, we identified 6,624 SNPs exclusively
307 in one breed and 2,378 SNPs in at least two breeds (m-value > 0.9). For example, in
308 BFT, 1,840 SNPs were exclusively detected in one breed, while 667 SNPs were
309 detected in at least two breeds (Fig. 3a). Breed-specific trait-associated variants had
310  higher MAFs in the breed where they were detected compared to the other breeds (Fig.
311  3b). In addition, SNPs exclusively detected in one breed had a significantly greater
312  effect on traits compared to those detected in multiple breeds (Fig. 3¢). To gain further
313  insights into the regulatory mechanisms of these breed-specific and shared SNPs, we
314  conducted functional annotation and enrichment analysis. Our results revealed that
315  SNPs detected in all three breeds were significantly enriched in tissue-specific gene
316  regions (less than five tissues) (Fig. 3d). SNPs detected in at least two breeds showed a
317  significantly higher enrichment in active promoters and enhancers compared to breed-
318  specific SNPs (Fig. 3e). Additionally, by examining Z-scores of lead SNPs detected
319  exclusively in one breed, we were able to cluster the 36 meta-GWASs of the 12 M_traits
320 based on breed, whereas by examining Z-scores of lead SNPs detected in all three
321  breeds, we were able to cluster the 36 meta-GWASs of the 12 M _traits based on trait
322 (Fig. S6).

323 Among 3,581 lead SNPs of 232 traits, 2,100 were associated with at least two traits,
324  with one SNP associated with up to 152 traits (15 21820815 A G, m-value > 0.9,
325 phastCons = 0.554) (Fig. 3g). For instance, we identified 7s320916522 near MC4R on
326  chromosome I as being associated with M_ADG (P =1.09X 107", M= 1), M_BFT (P
327 =4.56X10°!, M =1)),and M_LMDEP (P =6.90X 10"1%, M = 1)) (Fig. 3f). MC4R has
328  been extensively demonstrated to be linked to muscle and fat deposition in pigs* .
329  Notably, similar traits shared a greater number of lead SNPs, such as TNUM-related
330 traits (Fig. S7). Moreover, we observed a trend where lead SNPs with higher pleiotropy
331  exhibited smaller effects on traits (Fig. 3h). This result is consistent with the ‘network
332  pleiotropy’ hypothesis proposed by Boyle, Li, and Pritchard, which suggests that small
333  perturbations in a densely connected functional network have at least a small effect on
334 all phenotypes affected by the network*®.

335 Regulatory architecture underlying complex traits

336 To explore the biological context and regulatory circuits by which the detected trait-
337  associated variants act, we examined multi-layered biological data, including genomic
338  variants, mammalian conserved elements and regulatory elements, to annotate lead
339  SNPs and genome-wide significant SNPs of all the 169 meta-GWASs. Among 6,233
340  lead SNPs, 0.95% were located in coding regions, while 99.05% were in noncoding
341  regions. Specifically, 43.26% were located in introns, 39.42% in intergenic regions,
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342 9.29% in promoters, and 52.99% in enhancers (Fig. 4a and Fig. S8a). We obtained
343  similar results when analyzing human GWAS variants (Fig. S8b). Lead SNPs were
344  observed to be more concentrated around the transcription start sites (TSS) of protein-
345  coding genes compared to non-lead SNPs (Fig. S8c¢). Furthermore, lead SNPs exhibited
346  significant enrichment in protein-coding regions (CDS) (18.10-fold, P < 1X 1079,
347  conserved elements (6.52-fold, P = 5.65X10"®), and regulatory elements, particularly
348 in active regulatory elements such as active promoters (TssA) and enhancers (EnhA)
349  (Fig. 4a and Fig. S8d-e). Additionally, lead SNPs had lower PhastCons scores
350 (indicating weaker evolutionary constraints) with a median of 0.023, compared to non-
351 lead SNPs (median of 0.062) with matching MAF and linkage disequilibrium (LD) of
352  significant SNPs (Fig. 4b).

353 To further investigate the regulatory role of genetic variants on complex traits, we
354  integrated five types of molecular QTLs (molQTLs, including cis-eQTLs for PCG
355  expression, cis-eeQTLs for exon expression, cis-IncQTLs for IncRNA expression, cis-
356 enQTLs for enhancer expression, and cis-sQTLs for alternative splicing) from 34
357  tissues in the PigGTEx resource®®. We performed summary-based heritability
358  enrichment analyses and detected 357 (52.12%) significantly enriched molQTL-trait
359  pairs for 84 out of 147 meta-GWAS summaries (normal test, FDR < 0.05) (Fig. S8f,
360 Table S6). In general, the five types of molQTL were significantly enriched for
361 heritability of all the 15 M_traits (normal test, FDR < 0.05) (Fig. 4c). Furthermore, in
362 muscle (Fig. 4d) and liver (Fig S8g), independent eQTL and sQTL with different ranks
363  explained higher heritability compared to MAF-matched SNPs. These results suggest
364 that variants regulating molecular phenotypes, such as gene expression, play an
365  important role in the genetic mechanism underlying complex traits.

366 To investigate the relationship between tissue-sharing patterns of eGenes and
367 complex traits, we categorized eGenes into seven tissue-sharing groups®>. We then
368  performed heritability enrichment analyses for these groups of eGenes using meta-
369 GWAS summary statistics, resulting in 531 significantly enriched gene group-trait pairs
370  for 87 complex traits (normal test, FDR < 0.05) (Table S7). Our enrichment analyses
371  revealed that complex traits were regulated by eGenes with different patterns of tissue-
372 sharing (Fig. 4e). Specifically, we observed a notable enrichment of Backfat thickness
373  (BFT) related traits for eGenes with lower tissue-sharing degree, while ADG-related
374 traits were significantly enriched for eGenes with higher tissue-sharing degree (Fig. 4e).
375  Furthermore, the lead SNP rs7108824455 for M_BFT acted as an eQTL for LGALSI3
376  (tissue-specific magnitude = 10) in adipose (P = 7.84x102%) (Fig. 4f). LGALSI3 is
377  expressed in lung, duodenum, fetal thymus, jejunum, blood, adipose, ileum, ovary,
378  small intestine, and spleen (Fig. S8h), serving as one of the serum biomarkers in early
379  pregnancy**°. This finding suggests that regulatory variants may affect M_BFT by
380 influencing gene expression in certain tissues during early pregnancy. In addition, the
381 lead SNP rs324200444 of M_ADG also acted as an eQTL for ABCCI0 in various
382 tissues including the liver (P = 2.80x10'"), colon (P = 7.91x10°®), large intestine (P =
383  5.92x1077), and muscle (P = 1.34x107) (Fig.4g). ABCCI0 exhibits widespread
384  expression across different tissues (Fig. S81) and serves as a genetic marker for pig
385 growth®!. This finding suggests that regulatory variants affect M_ ADG by modulating
386  gene expression in multiple tissues.
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387  Tissue-specific regulation of GWAS loci

388 To further investigate the tissue-mediated patterns of genetic regulation of complex
389 traits, we conducted enrichment analyses of GWAS signals using tissue-specific genes
390  across 34 tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
391 (KEGG) pathways enrichment analyses of tissue-specific genes confirmed the known
392  biology of respective tissues (Table S8, Fig. S9a). For example, genes highly expressed
393  in muscle were significantly enriched in actin filament binding and muscle contraction
394  (Fig. S9a). Our GWAS signal enrichment analyses demonstrated that significant SNPs
395  of traits were significantly enriched in tissue-specific genes of functionally related
396 tissues (Fig. S9b). For example, the liver was found to be the most enriched tissue for
397  Dboth litter weight (weaning) (M_TLWT_ Weaning) (10.14-fold, P < 0.001) and body
398  weight (M_BW) (6.84-fold, P < 0.001), and the ovary was identified as the most
399  enriched tissue for gestation length (M_GD) (5.62-fold, P <0.001) (Fig. 5a).

400 Furthermore, we integrated multi-omics data from the PigGTEx to explore the
401  detailed regulatory mechanisms of tissue-specific regulation of complex traits. We
402  finally prioritized 16,664 variant-gene-tissue-trait circuits, 19,532 variant-exon-tissue-
403  trait circuits, 3,982 variant-IncRNA-tissue-trait circuits, 3,320 variant-enhancer-tissue-
404  trait circuits, 19,516 variant-splicing-tissue-trait circuits (Table S9). For instance,
405  UGT2B31, the most highly expressed gene in the liver compared to other tissues (Fig.
406  S10a), was significantly associated with M_TLWT Weaning by both gene-based
407  GWAS and TWAS (Fig. 5b). Furthermore, its cis-eQTL in the liver colocalized with the
408  GWAS locus (rs344053754) of M_TLWT Weaning (P = 5.62x107), which resides in
409 the active enhancer regions of the liver and intestine but no other tissues (Fig. 5b, Fig.
410 S10b). UGT2B31 is a metabolic enzyme in the liver of various animals>?>°. The pattern
411  of MRAP2 was similar to that of UGT2B31, with a higher expression in milk than in
412 most tissues (Fig. S10c). MRAP2 was also significantly associated with M_ADG in
413  both gene-based GWAS and TWAS. We observed a significant colocalization between
414  the GWAS locus (rs340663967) of M_ADG and cis-eQTL of MRAP2 in milk (P =
415  2.86x10°%). The colocalized SNP fell into the ATAC region in only muscle and
416  cerebellum (Fig. 5c, Fig. S10d). Interestingly, MRAP2 was previously identified as a
417 candidate gene for M_ADG in pigs>®. These results provided important insights that
418  regulatory variants affect gene expression by influencing the activity of regulatory
419  elements in specific tissues, which in turn impact complex traits.

420  Gene mapping of complex traits between pigs and humans

421 To explore the sharing of genetic regulatory mechanisms of complex traits between
422  species, we first conducted heritability enrichment analyses for 169 meta-GWASs in
423  pigs and 136 complex traits in humans based on the orthologues GWAS signals (P < 5
424 x 10%) (Table S10). We obtained 616 significantly enriched pig-human trait pairs
425  (enrichment fold > 1 and P < 0.05) (Table S11), including Cholesteryl ester transfer
426  protein activity (S_CEPTA) in pigs vs. high cholesterol in humans (enrichment fold =
427 68.74, P = 2.15x10%); Total Cholesterol (S_CHOL T) in pigs vs. Triglycerides in
428 humans (enrichment fold = 18.17, P=1.20x10%), and Feed conversion ratio (30-100kg)
429 (S_FEEDCON 30T100) in pigs vs. insulin resistance (HOMA-IR) in humans
430  (enrichment fold = 16.44, P = 7.52x103) (Fig. 6a-b). Permutation analysis
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431  demonstrated that the orthologous regions of pig QTLs explained higher heritability of
432  human complex traits compared to randomly selected regions (Fig. S11). We also
433  estimated Pearson’s correlations of pig-human trait pairs based on the absolute Z-score
434  of orthologous variants from GWAS summary statistics and found significant
435  correlations of trait pairs with physiological correlations (Fig. 6¢c, Table S12). For
436  example, the semen sexuality score (S SESS DRP) in pigs was significantly correlated
437  with C61 Malignant neoplasm of the prostate in humans (Pearson’s » = -0.09, P =
438 2.60x10*) (Fig. 6¢c). These findings indicate that genetic regulatory mechanisms of
439  certain complex traits were shared between humans and pigs. Furthermore, we
440  discovered that rs322242884 was suggestively associated with L ADG in Landrace
441  pigs (Z-score = -4.53, P = 5.80x10®), and its homologous variant rs11877146 was
442  significantly associated with body fat percentage in human (Z-score = 6.06, P =
443 1.33x107) (Fig. 6d). Notably, rs11877146 and rs322242884 were eQTLs for NPCI in
444 the muscle of both humans (P = 6.70x107) and pigs (P = 7.20x107), respectively, as
445  well as eQTLs for TMEM241 in the brain for both species (P = 6.70x10 and P =
446 1.78x10* respectively), with the similar regulatory effects on gene expression (Fig. 6e-
447  f). Previous studies have linked NPCI to body weight and adipocyte processes in a
448  variety of animals>® %! and TMEM?241 has been associated with bone degeneration and
449  osteoporosis®?. These results provided evidence that there might be shared regulatory
450  mechanisms underlying complex traits between humans and pigs.

451  Discussion

452 Understanding the genetic foundation of complex traits in pigs have significant
453  implications for improving their genetics, economic contributions, and even medical
454  advancements. While genetic association for major economic traits in commercial pig
455  breeds has been extensively studied, comprehensive GWAS covering a large scale of
456  domesticated pig breeds, as well as a wide range of phenotypes, has not been available.
457  Here, we aimed to establish the largest genetic association atlas of pig complex traits to
458  date by analyzing 70,328 pigs covering 14 pig breeds from various geographic areas.

459 We identified 6,878 lead variants associated with 139 traits in 169 GWAS meta-
460 analyses (Table S5). The majority of the lead SNPs (99.05%) were located in non-
461  coding regions, including intergenic (39.42%) and intron (43.26%) regions (Fig. S8a).
462  This suggests that these SNPs influence complex traits through playing a crucial role in
463  regulating gene activity®. Additionally, the enrichment of lead SNPs in flanking
464  regions of coding sequence further supports the notion that trait-associated SNPs tend
465  to be located in regulatory regions (Fig. 4a and Fig. S8d-e). We also found that lead
466  variants for complex traits usually altered the activity of regulatory elements in specific
467  tissues (Fig. 5b-c). It highlights the importance of tissue-specific gene regulation in
468  determining phenotypic outcomes. The potential epistatic interactions among these
469  genetic variants require further investigation with a larger sample size®*. The similarity
470  in genetic structure between complex traits in pigs and humans is noteworthy (Fig. 6).
471  This finding suggests that pigs can serve as valuable models for studying human
472 complex traits, offering insights that can contribute to medical advancements in humans.

473 We make the summary statistics of 268 meta-GWAS available to the research
474  community to facilitate further understanding of the genetic structure of complex traits.
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475  Our database provides the comprehensive relationship among genetic variants, genes,
476  tissues and complex traits, which will be useful for dissecting the genetics of complex
477 traits in pigs.
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524  Figure 1. The overall study design and summary of genotypes and phenotypes.

525  (a) Overview of study design. Genotyping arrays: [llumina Porcine SNP60K Bead Chip (N =
526 10,870), the GeneSeek Genomic Profiler (GGP) Porcine SNP80 BeadChip (N = 4,724), the GGP
527  Procine SNP50 BeadChip (N = 29,789), the KPS Porcine Breeding Chip (N = 21,618), the
528  GenoBaits Porcine SNP50K BeadChip (N = 454) and low-coverage sequence (N = 2,873). WGS:
529  Whole genome sequence. GWAS: genome-wide association study. TWAS: transcriptome-wide
530  association study. SMR: summary data-based Mendelian randomization. (b-¢) Principal component
531 analysis of PGRP (b) and GWAS (¢) populations, which were conducted based on all 57,600
532  individuals (samples with genotype data) and a total of 1,603 shared array SNPs using PLINK
533  (v1.90)** (parameters: --geno 0.1 --mind 0.1 --indep-pairwise 50 5 0.5 --maf 0.01 and --pca 10). The
534 first two principal components were plotted using the geom_point function from ggplot2 (v3.3.6) in
535 R (v4.1.2). (d) The imputation accuracy of PGRP in independent WGS data. This was 93.34% =+
536  7.64% for Duroc pigs (commercial breed and within PGRP) and 91.13% = 10.49% for Suhuai pigs
537  (domesticated breed and outside PGRP). The imputation accuracy was calculated as the
538  concordance rate between the imputed and observed genotypes. (e) The total sample size for each


https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.09.561393; this version posted October 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

539 trait in meta-GWAS analyses. Traits were classified into five main categories.
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542  Figure 2. Summary and validation of quantitative trait loci (QTL) for pig complex

543  traits.

544 (a) The number of QTL for 12 sub trait-categories. (b) Fuji-plot summarizes the 6,878 lead SNPs
545 (P < 5x10®) identified in 169 meta-GWAS analyses. It was completed using the Fuji-plot script
546  developed by Kanai et al.*> The inner-most ring (ring 1) indicates the number of traits associated
547  with each SNP. Rings 2-170 indicate the 169 traits. The order of traits is shown in Table S3 (starting
548  with the inner-most ring). The points indicate the genomic position of the 6,878 SNPs associated
549  with the traits. (¢) Pearson correlation between sample size and the number of lead SNPs (P < 5X
550 107®) in 169 meta-GWASs with lead SNPs detected. (d) Pearson correlation between heritability
551  and the number of lead SNPs (P <5 X 107%) in 27 meta-GWASs (sample size > 15,000). Heritability
552  was estimated using LD score regression (LDSC)*. The Pearson correlation coefficient in (c-d) was
553  calculated by the cortest function in R. (e) Results of genomic predictions for individuals from
554 several pig breeds in the PGRP with large phenotype differences, based on a linear mixed model
555  and genomic information from suggestive lead variants (P < 1x10-) in the total number born alive
556  (M_NBA). The x-axis labels indicate the different pig breeds. The y-axis labels indicate the genomic
557  estimated breeding values (GEBVs). The black error bars are the standard errors of GEBVs. (f) The
558  number of different categories of QTLs detected in individual GWAS and meta-GWAS. (g)
559  rs320375241 associated with Average daily gain (M_ADG) in individual GWASs of population a,
560 b, and c and meta GWAS, respectively. The a, b, and ¢ were three random populations for M_ADG.
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Figure 3. Distribution and functional annotation of QTLs.

(a) Manbhattan plots of backfat thickness (BFT) meta-analysis in Duroc (top), Landrace (middle)
and Yorkshire (bottom). Colors and shapes indicate the breed specificity of SNPs with m-values >
0.9. (b) Distribution of MAFs in three breeds of traits-associated SNPs detected only in the current
breed. (¢) Distribution of the absolute values of the z-score of SNPs associated with traits detected
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in different numbers of breeds on traits. The significance of differences between groups was
calculated by the #.test function in R. (d) Enrichment of trait-associated SNPs detected in different
numbers of breeds in gene regions with different degrees of tissue sharing. (e) Enrichment of trait-
associated SNPs detected in different numbers of breeds in different categories of genomic regions,
conserved elements and regulatory elements. (f) Local Manhattan of meta-analysis of M_BFT (top),
Loin muscle depth (M_LMDEP) (middle), and M_ADG (bottom) on chromosome 1. (g) Density
plot of the number of traits for which SNPs associated (m-value > 0.9). (h) Distribution of the
absolute values of the z-score of SNPs associated with different numbers of traits (m-value > 0.9).
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578  Figure 4. Exploiting the PigGTEX resource to decipher regulatory mechanisms of
579  GWAS loci.

580 (a) Results of annotation and enrichment of lead SNP and genome-wide level significant SNPs in
581  different categories of genomic regions, conserved elements and regulatory elements. The red dots

582  indicate the proportion of associated SNPs located in category C. The bars indicate the enrichment
583  for category C. Significance was indicated by *, ** and *** for P < 0.05, 0.01 and 0.001,
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584  respectively. (b) The mean DNA sequence constraints (PhastCons scores of 100 vertebrate genomes)
585  for lead SNPs in each trait and non-lead SNPs matched with lead SNPs for linkage disequilibrium
586  (within 0.1) and minor allele frequency (MAF) (within 0.02). The ks.test function of R (v4.1.2) is
587  used to test the difference between groups. (¢) The heritability enrichment for five types of
588  molecular cis-QTLs in 18 main traits. The dashed line represented the enrichment fold = 1. The
589  error bar represented the standard error of the enrichment fold. cis-eQTL: gene expression QTL,
590  cis-sQTL: splicing QTL, cis-eeQTL: exon expression, cis-IncQTL: IncRNA expression QTL, cis-
591  enQTL: enhancer expression QTL. The details of trait names are described in Table S4. (d) The
592  estimated total SNPs heritability contributed by different ranks of independent molecular QTL
593  (molQTL) in Muscle for 268 complex traits. Rank=1, 2 and >2 represented the first, secondary and
594  more than secondary independent molQTLs, respectively. Significance was indicated by *** for
595 P <0.001, which was obtained by the Wilcox test. (e) The heritability enrichment for the genes of
596  seven tissue-sharing gradients in 59 complex traits. The red color represented the scaled heritability
597  enrichment fold. Black borders indicated heritability enrichment fold greater than 1. The “*”
598 indicated heritability significant enrichment (Normal test, P < 0.05). Column clusters were produced
599 by the dist function with the “euclidean” method and the Aclust function with the “complete” method
600 in R. The heatmap was plotted by ggplot2 package (v3.3.2) in R (v4.2.1). (f) The lead SNP
601  rs1108824455 in backfat thickness (M_BFT) was also eQTL of LGALSI3 (tissue-specific
602  magnitude = 10) in five tissues. The top local Manhattan plot was the GWAS of M_BFT for the lead
603  wvariant (rs1108824455). The middle local Manhattan plot was the eQTL mapping of LGALS!3 for
604  all of the tissues. (g) The lead SNP rs324200444 in average daily gain (M_ADG) was also eQTL of
605  ABCCI0 (tissue-sharing magnitude = 33) in four tissues. The top local Manhattan plot was the
606  GWAS of M_ADG for the lead variant (rs324200444). The middle local Manhattan plot was the
607  eQTL mapping of ABCC10 for all of the tissues. Shapes in (f-g) indicate different tissues. The filled
608  colors in (f-g) represent linkage disequilibrium. The diagram below in (f-g) indicates the positions
609  and strand direction of genes in the locus.

610
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Figure 5. Tissue-specific regulation of GWAS loci.

Chromosome 1 position (Mb)

(a) Enrichment results for significant associated SNPs of 19 main traits with large sample sizes in
tissue-specific functional regions (the top 1,000 tissue-specific highly expressed genes per tissue
and their upstream and downstream 100kb regions) in each of 34 tissues. Colors indicate enrichment
fold. Rows indicate traits and columns indicate tissues. Enrichment for trait-tissue pairs Et = pr
(proportion of significant SNPs for trait 7 located in functional regions of tissue 77)/gt (proportion
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618  of all SNPs located in functional regions of tissue 7i), which calculated by BEDTools v2.25.0%".
619  Associated SNPs were resampled 1,000 times with MAF within 0.02 and LD within 0.1 matched to
620  calculate enrichment significance. An Et greater than one and P less than 0.05 indicates that
621  associated SNPs are significantly enriched in functional regions of tissue 7i. (b) The association of
622  UGT2B31 with litter weight (weaning) (M_TLWT Weaning). The top one Manhattan plot
623  represents the gene-based GWAS results of M_TLWT_ Weaning. The top two Manhattan plot
624  represents the single-tissue TWAS results of M_ TLWT_ Weaning in the liver. Followed by the two
625  following Manhattan plots show the colocalization of M_TLWT Weaning GWAS (up) and cis-
626  eQTL (down) of UGT2B31 on chromosome 8 in the liver. The blue triangles indicate the colocalized
627  wvariants of UGT2B31 in the liver (rs344053754). The bottom panel is for chromatin states around
628  UGT2B31 on chromosome 8. (¢) The association of MRAP2 with average daily gain (M_ADG).
629  The top one Manhattan plot represents the gene-based GWAS results of M_ADG. The top two
630  Manbhattan plot represents the single-tissue TWAS results of M_ADG in the milk. Followed by the
631  two following Manhattan plots show the colocalization of M_ADG GWAS (up) and cis-eQTL
632  (down) of MRAP2 on chromosome 1 in the milk. The blue triangles indicate the colocalized variants
633  of MRAP2 in milk (rs340663967). The bottom panel is for chromatin states around MRAP2 on
634  chromosome 1.
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637  Figure 6. Comparison of complex trait genetics between humans and pigs.

638 (a) The heritability enrichment fold between human and pig complex traits is calculated by
639  LDSC. Colors indicate trait categories. (b) The alluvium-stratum plot showed the correlation
640  between human and pig complex traits. The alluvium between human-pig trait pairs indicates
641  the heritability enrichment fold > 1 and the P < 0.05. Colors indicate trait categories. (c¢) The P
642  value was derived from the Pearson’s correlation test of traits between humans and pigs, which
643  was estimated by the absolute Z score of homologous variants from GWAS summary statistics.
644  Each point is a trait pair. The red line is the corrected significant threshold (P = 0.05 / 136). Top
645  trait pairs are labeled. (d-f) Similar regulatory mechanisms between body fatness rate (BFR) in
646  humans and average daily gain (D_ADG) in pigs. (d) The top is a local Manhattan plot of
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647  GWAS for D_ADG in pigs. The bottom is a local Manhattan plot of GWAS for BFR in humans.
648  The red triangles represent homozygous variants of humans (rs11877146) and pigs
649  (rs322242884). Colored dots indicate LD with the homozygous variants. (e) Top and bottom
650  are the effects of homozygous variants in (d) on the expression of homozygous gene NPC/ in
651  muscle of pigs and humans, respectively. (f) Top and bottom are the effects of homologous
652  variants in (d) on the expression of the homologous gene TMEM241 in the brains of pigs and
653  humans, respectively. The significance tests in (e-f) were performed by the wilcox.test function
654  of the ggsignif package in R (v4.2.1).

655
656
657
658

659
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660

661  Methods

662  Ethics

663  This is not applicable because no biological samples were collected, and no animal handling
664  was performed for this study.

665 GWAS dataset

666  In total, we collected 70,328 pigs with genotype and phenotype data from 59 study populations
667 (14 public populations) covering 14 pig breeds (Table S1). We conducted comprehensive data
668  preparation and standardization for the study data regarding phenotype and genotype according
669  to the previously published protocol®.

670  Genotype data

671  We genotyped these pigs from these 59 populations using low-coverage sequence (N = 2,873)
672  or genotyping arrays, including the Illumina Porcine SNP60K Bead Chip (N = 10,870), the
673  GeneSeek Genomic Profiler (GGP) Porcine SNP80 BeadChip (N = 4,724), the GGP Procine
674  SNP50 BeadChip (N = 29,789), the KPS Porcine Breeding Chip (N = 21,618), the GenoBaits
675  Porcine SNP50K BeadChip (N =454). We constructed a standard pipeline to uniformly process
676  individual-level genotype data for all 59 populations. Briefly, we first converted the coordinate
677  of the genomic version of genotype data to the Sscrofall.l (v100) and only kept the autosomal
678  Dbiallelic SNPs. To remove the outliers within each population, we performed principal
679  component analysis (PCA) for each of the 59 populations using PLINK (v1.9)** based on LD-
680  independent SNPs with parameter: “--mind 0.1 --geno 0.9 --maf 0.01 --indep-pairwise 50 5 0.5
681  -- pca 10”. We visualized the principal components (PCs) of each population in R (v3.4.3) and
682  then excluded a total of 1,086 individuals who were outliers using PLINK (v1.9). Finally, we
683  retained 69,242 individuals for downstream analyses, including 20,706 Duroc pigs, 34,540
684  Yorkshire pigs, 9,159 Landrace pigs and 4,837 other pigs.

685 Genotype imputation

686  To obtain genotype data at whole-genome sequence (WGS) level, we performed genotype
687  imputation for each population based on multi-breed Pig Genomics Reference Panel (PGRP v1)
688  from PigGTEx™, which consists of 42,523,218 autosomal biallelic SNPs from 1,602 WGS
689  samples covering over 100 pig breeds. We firstly removed duplicate alleles from array data
690  using PLINK (v1.9)* with parameter: “--list-duplicate-vars ids-only suppress-first, --exclude
691  plink.dupvar --recode vcf bgz” and kept biallelic SNPs using BCFtools (v1.9)"7. We then
692  employed conform-gt program (http://faculty.washington.edu/browning/conform-gt.html) to
693  revise strand inconsistencies of SNPs based on pre-phasing genotype data®. We imputed the
694  genotype data of target populations to sequence level using Beagle (v5.1)®" and filtered out
695  variants with dosage R-squared (DR2) < 0.8 and MAF < 0.01 within each population. Finally,
696  we retained a total of 28,297,603 SNPs across all 59 populations for downstream analysis
697  (Table S1).

698 To evaluate the accuracy of genotype imputation, we employed two strategies (Fig. S1a). (1)
699  We conducted 20 rounds of five-fold cross-validation using genotype data or 60,720 samples
700  from 53 GWAS populations that had individual-level genotype data. Specifically, in each round
701  of cross-validation, we randomly selected 20% of SNPs in chromosome 6 of the target panel as
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702  a validation set and imputed them using PGRP as a reference panel via Beagle (v5.1). We
703  measured the imputation accuracy by calculating the concordance rate and Pearson’s
704  correlation between the imputed and true genotypes in the validation set. (2) We obtained 65
705  WGS samples from NCBI that were independent of PGRP, comprising of 35 Duroc pigs
706  (PRINA712489) and 30 Suhuai pigs (PRINA791712) (Table S2). We employed Trimmomatic
707 (v0.39)% to filter out the adaptors and low-quality reads, mapped clean reads to Sus scrofall.l
708  (v100) using BWA-MEM (v0.7.5a-r405) with default parameters®®, and marked duplicated
709  reads using Picard (v2.21.2) (http://broadinstitute.github.io/picard/). We called SNPs for these
710  samples using Genome Analysis Toolkit (GATK) (v4.1.4.1)" with parameter: “QD> 2, MQ <
711 40, FS > 60, SOR > 3, MQRankSum < -12.5 and ReadPosRankSum < -8, resulting in
712 17,182,138 and 15,696,890 biallelic autosomal SNPs for Duroc and Suhuai, respectively. For
713  the purpose of evaluating the accuracy of genotype imputation, we masked SNPs that were not
714 overlapped with these SNPs obtained from SNP array and then imputed them to WGS level
715  using PGRP as reference panel via Beagle (v5.1). Finally, we calculated the concordance rate
716  and Pearson’s correlation between imputed genotypes with DR2 > 0.8 and MAF > 0.01 and
717  those called directly from the WGS.

718  Phenotype data

719  Atotal of 286 complex traits (15 binary traits and 271 continuous traits) were available for the
720 59 populations (Table S3), which belonged to five main trait-categories (i.e., Reproduction,
721  Meat and Carcass, Health, Production, and Exterior) and 17 sub trait-categories (i.e., Litter,
722 Reproductive, Growth, Reproductive organs, Blood parameters, Immune capacity, Anatomy,
723 Fatness, Fatty acid content, Feed conversion, Conformation, Meat color, Chemistry, Feed intake,
724  pH, Texture, and Behavioral).

725  In particular, 49 out of 286 traits have phenotypic records in multiple time points for the same
726  individual (e.g., sperm traits and litter sizes, detailed in Table S3) and were referred to as
727  “multiple time points trait” (i.e., MT-trait). For these 49 MT traits, we calculated the de-
728  regressed proofs (DRP) as their phenotype measures using DMU (v6-R5-2-EM64T)7!. We first
729  estimated breeding values (EBV) in each population based on pedigree information using a
730  single-trait repeatability model implemented in the DMUAI module of DMU. The statistical
731  model is:

732 y=Xb +Z;a +Z,pe +e,

733 where y is the vector of phenotypic values for all individuals; b is the vector of the effects of
734  covariates (e.g., year-season of ejaculation, age of pigs at months or collection interval (days));
735 a~N(0,Ac?) is the vector of additive genetic effects, with A and o2 denoting the pedigree-
736  based additive genetic relationship matrix and additive genetic variance; pe~N (0, Icrpe) is the
737  vector of permanent environmental effects with O'ge denoting the identity matrix and the
738  permanent environmental variance; X, Z;, and Z, are the incidence matrices assigning
739  observations to covariates effects, additive genetic effects, and permanent environmental effects,
740  respectively; e~N(0,I02) is the vector of random residual effects, with I and 02 denoting
741 the identity matrix and the residual variance. To eliminate the bias from relatives, we calculated
742 the DRP and weights for each pig using the methods described by Garrick et al.”” with the
743 following model:

Z,PAZPA+4k _Zk yPA
2 lesv] =37

744 [ ey

745  where y; is information equivalent to a right-hand-side element pertaining to the individual,
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746 PA isthe parental average EBV; EBV; isthe EBV for animal i; Zp,Zps and Z;Z; reflect the
747  unknown information content of the parental average and individual (plus information from
748  any of its offspring and/or subsequent generations). Their formulas were as follows:

749 ZppZpp = k(0.50 — 4) + 0.5k\/o% + 16/8,

750 LZ; = 8ZppZpp + 2k(26 — 1),

751 k= (1-h?)/h?,a =1/(0.5—RELp,), § = (0.5 — RELp,)/(1 — REL)),
752 DRP = y! = —2kPA+(ZZiiZZii+2k)EBVi’

753 RELpgp = 1 — k/(ZZ; + k),

754  where A? is the estimated heritability; RELp, is the reliability of the parental average EBV;
755  REL; isthereliability of the EBV for animal i; RELpgp is the reliability of the DRP for animal

_p2
756  i. The weights can be derived from w; = o RELl h) TRELo ]2’ where c¢= 0.2 is assumed to
- DRP DRP

757  represent the proportion of genetic variation for which genotypes cannot account is 0.2. Finally,

758  we used the DRP and weights for each pig above for the downstream association analysis.

759  Individual GWAS

760  We conducted individual GWAS for each trait in each population as described below and
761  referred to this as “individual GWAS” throughout the manuscript (Table S3).

762 For binary traits, we performed association analysis with a logistic mixed model using
763  fastGWA-GLMM implemented in GCTA (v1.94.0)". The statistical model is:

764 logit(p) = xsBs + XcBe + 8,

765  where y is a vector of phenotypic values, n is a vector of p; = P(y; = 1|, X¢i, gi) with
766  p; being the probability of subject i being a case given the subject’s genotype Xx;, covariates
767 X and random genetic effect g;; X is a vector of genotype variables of a variant of interest
768  with its effect Bg; X, is the incidence matrix of fixed-effect covariates (farms, sex, year,
769  season and the first five genotype PCs) with their corresponding coefficients .; g is a vector
770  of effects that capture genetic and common environmental effects shared among related
771 individuals, g~N(0, Gcé) with G being the sparse GRM with all the small off-diagonal
772  elements (for example, those <0.05) set to zero and O'é being the corresponding variance
773 component.

774 For quantitative traits, we performed association analysis with a mixed linear model using
775  fastGWA implemented in GCTA (v1.94.0)7*. The statistical model is:

776 y=X,Bs + XBc+ 8+ e,

777  where y, X, Bs, X, Bc and g are the same as those in the above logistic mixed model; e
778  is the vector of residuals with e~N(0, Ic2).

779 Specifically, for 49 MT-traits, we employed MMAP (v2021 08 19 22 30.intel)
780  (https://mmap.github.io/) to perform association analysis based on their DRP and weights for
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781  each pig. We conducted the individual GWAS based on a mixed linear model:
782 Y=1p+Xb+g+e

783  wherey is the vector of DRP for the given trait, p is the global mean, and 1 is a vector of ones;
784 X s the genotype of a candidate variant (coded as 0, 1, or 2 copies of the minor allele) for the
785  animals with observations in y, and b is a vector of marker effects; g is a vector of polygenic
786  effects accounting for population structure with g~N (O, GU;), where the genomic relationship

787  matrix (G) was built using the imputed SNPs and aj is the genetic variance, and e is a vector

788  of random residual errors with e~N(0,Ro?), where o2 is residual error variance and R is a

789  diagonal matrix that adjusts g2 to account for the heterogeneous variance of DRP for each pig,
790  the weights included in R.

791  Meta-analysis of GWAS

792  To enable individual GWASs from different populations to be comparable in the meta-analysis,
793  we checked all summary statistics based on EasyQC®.

794 First, to detect issues related to trait transformations, we first examined the relationship
795  between the inverse of the median standard error of all SNPs beta estimates and the square root
796  of the sample size (SE-N plot) across multiple study files for each trait. For outliers, we
797  examined the raw phenotype data and reran association analysis. The calibration factor ¢ of the
798  SE-N plot was approximated from the autosomal SNPs of the PGRP reference panel as

1

IZMAFj(l—MAFj)

800  comparing the reported P values of each SNP with the P values computed from the Z-statistics
801  (Z-statistics= B;/SE(f);) based on reported beta estimate and standard error (P-Z plots). Third,
802  we plotted the effect allele frequency (EAF) from study-specific against EAF from PGRP to
803  identify strand issues or allele miscoding that could severely reduce statistical power. Fourth,
804  we grasped the potential problems with population stratification by the genomic control (GC)
805 inflation factor (Agc, from 0.86 to 2.39 with an average of 1.11). After we reconstructed the
806  association analyses by using the first five principal components as additional covariates, the
807  Acc decreased (from 0.56 to 1.58 with an average of 1.04). Fifth, we excluded SNPs with
808  missing or nonsensical information (e.g., P values < 0 or >1, or non-numeric values such as
809  “NA”) from summary statistics.

799  c~median . Second, we examined the analytical issues for each study by

810 We performed meta-analyses on the cleaned GWAS results for each trait using METAL
811  (v2011-03-25)", based on an inverse variance-weighted fixed effects model that weights effect
812  size estimates according to estimated standard errors and allows for different population
813  frequencies of genotypes and alleles. Genomic control correction was applied for all input files
814  in the analysis. SNPs included in the meta-analysis were present in at least one individual
815 GWAS, and the total number of SNPs for each trait is shown in Table S4.

816  Definition of QTL

817  For both individual GWASs and meta-GWAS, we used P < 5.0 x 10 as the genome-wide
818  significance threshold and defined lead SNPs and QTLs on the basis of genomic position. For
819 each GWAS summary, we defined the significant SNP with the smallest P-value in each
820  chromosome as the first lead SNP and the significant SNP with the smallest P-value outside the
821  IMb-region upstream and downstream of the first lead SNP as the second lead SNP. This
822  process was iterated until no significant SNPs were left in that chromosome. Different traits
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823  can share lead SNPs. We defined the two most distant significant SNPs within 0.5Mb on each
824  side of the lead SNPs as the boundaries of the QTLs. In addition, we performed a stepwise
825  conditional analysis to extend the candidate regions and define broad QTLs, in which adjacent
826  significant SNPs within the broad QTL region are within 1Mb apart.

827  QTL Validation
828  To validate the QTL regions we identified, we used the following three strategies.

829 First, we compared the QTL regions with those for the same traits reported in the Pig
830  Quantitative  Trait Locus (QTL) database (Pig QTLdb  version  46)*
831  (https://www.animalgenome.org/cgi-bin/QTLdb/SS/index). We performed a filtering process
832  on the downloaded QTL regions, excluding those with missing start/end position information
833  and those smaller than 1bp or larger than 1Mp. This resulted in a final retention of 302,784
834  autosomal QTL regions. Among these, we successfully matched 151 traits with traits in our
835  study. Regions, where there was at least 1bp of overlap with the same trait, were considered
836  successfully validated (defined as ‘“TRUE’), while those without overlap were classified as
837  ‘FALSE’.

838 Second, we validated the QTL regions in independent populations. For this, we performed
839  nine individual GWASs for average daily gain (ADG) on a total of 42,790 pigs, 88,984 pigs,
840  and 69,606 pigs from three populations of Duroc, Landrace, and Yorkshire, respectively, using
841  the MLMA model of GCTA (v1.94.0)". This statistical model was consistent with one of the
842  fastGWA models used in our study. Subsequently, we conducted within-breed meta-GWAS
843  analyses and all-breed meta-analysis using the same method as in this study. We identified the
844  QTL regions in these meta-analyses using the same method as in our study and calculated the
845  enrichment fold of these regions in the QTL regions of ADG detected in our study.

846 Third, we used information on suggestively significant lead SNPs (P < 1.0 x 10~°) for breed-
847  level genomic prediction to validate the functional reliability of the QTLs. For this, we
848  performed genomic predictions in seven pig breeds from PGRP, including 54 Meishan, 24
849  FErhualian, 41 Jiaxinghei, 226 Yorkshire, 51 Landrace, 138 Duroc, and 43 Pietrain pigs. We
850  extracted the genotypes of the lead SNPs from PGRP using Beftools (v1.9)”7 and their effect
851  sizes from GWAS summary statistics. Whereafter, we used a linear mixed model to fit the
852  genotype and effect size for genomic prediction in each breed. The model formula we used for
853  each breed was:

M
i=1

855 where y 1is a vector of predicted phenotypes, g; is the effect size of lead SNP i in GWAS
856  summary statistics, Z; is the vector of the genotype of lead SNP i containing 0, 1 and 2. We
857  fitted the model using R v 4.2.1.

858  Pleiotropic variants across breeds and traits

859  To identify variants with effects on traits shared among breeds, we extracted the effect sizes
860  and standard errors of lead SNPs from a total of 36 meta-analyses for 12 traits in Duroc,
861  Landrace and Yorkshire pigs. We then used METASOFT (v2.0.1)*, a procedure that corrects
862  for the effect of sample size on association analysis, to calculate the posterior probability of the
863  lead SNP effect for each trait in each breed. We employed the same method to identify GWAS
864  variants with pleiotropic effects on multiple traits. We considered an M-value greater than 0.9
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865 as evidence of an effect.

866  Annotation and enrichment of significant/lead variants in functional categories

867  To investigate the molecular mechanisms of significant/lead SNPs, we examined multiple
868  layers of biological data.

869 First, we annotated significant/lead SNPs in several genomic categories: (i) 20 genomic
870  variants, including intron variants and intergenic region variants, using SnpEff (v.4.3)"". (ii) the
871  seven groups categorized by genomic locations with respect to protein-coding genes, i.e., CDS,
872  promoter (100kb upstream and downstream of the protein-coding gene TSS), S’UTR + 2kb
873  upstream, 3’'UTR + 2kb downstream, protein-coding genes, non-protein-coding genes, and
874  intron regions. (iii) the downloaded mammalian conserved elements identified from Multiple
875  Sequence Alignments (MSA) using the Genomic Evolutionary Rate Profiling (GERP) software
876 based on 103 mammals (https://ftp.ensembl.org/pub/release-100/bed/ensembl-
877  compara/103_mammals.gerp constrained element/). (iv) the 14 chromatin states detected
878  from 14 major pig tissues’® to investigate the regulatory function. (v) the tissue-specific
879  functional regions of 34 tissues in FarmGTEx*. Here, we borrowed the top 1,000 tissue-
880  specific highly expressed genes, along with their upstream and downstream 100kb regions in
881  each tissue, to represent the tissue-specific functional regions.

882 Second, we estimated the enrichment and significant P-value of significant/lead SNPs across
883  the various genomic categories. For genomic variants, we used the oddsratio function of fmsb
884  (v0.7.5) package” in R (v4.1.2) to perform enrichment and estimate significance. The
885  enrichment for category C (Ec) = pc (proportion of significant/lead SNPs located in category C)
886  / gc (proportion of all SNPs located in category C). For the genomic regions of protein-coding
887  genes, conserved elements, chromatin states and tissue-specific functional regions, we used two
888  methods to estimate the enrichment: (i) we employed the R/Bioconductor package locus
889  overlap analysis (LOLA v1.22.0)* to estimate the enrichment and P-values, and (ii) we used
890  BEDTools (v2.25.0)”’ to estimate the enrichment. The enrichment for category C (Ec) = pc
891  (proportion of category C in all significantly enriched trait-category pairs Et) / gc (proportion
892  of category C in the genome). Here, the enrichment for trait-category pairs Et = pr (proportion
893  of significant/lead SNPs for trait T located in category C)/qr (proportion of all SNPs located in
894  category (). We performed a permutation test by resampling the association signals 10,000
895  times to determine if the observed SNPs located in the annotation category were greater than
896  expected by chance, using the R package regioneR (v1.24.0)*'. Additionally, we resampled the
897  SNPs matching the MAF (within 0.02) and LD (within 0.1) of the association signals 1,000
898  times for the permutation test. An Ec greater than one and a P-value less than 0.05 indicated
899 that significant/lead SNPs were significantly enriched in category C.

900 In addition, to understand the evolutionary sequence conservation of association variants, we
901 downloaded PhastCons scores for 100 vertebrate species from UCSC
902  (http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/hg38.100way.phastCons
903 /). We converted the Wiggle files of PhastCons scores to BED files using the BEDOPS tool
904  (v2.4.40)%, and then we lifted them over from the human genome 38 (h38) to Sscrofall.l using
905  UCSC's LiftOver tool®,

906 Summary-based genetic parameter estimation

907  To estimate the genetic parameters for all pig complex traits, we first harmonized all 268 GWAS
908 summary data using the munge sumstats.py function of the linkage disequilibrium score
909  regression (LDSC v1.0.1)* with parameters: “--sumstats --N —out”, and estimated linkage
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910  disequilibrium (LD) score from PGRP using PLINK (v1.90)* with parameter: “--ld-wind-kb
911  1000”. Second, we estimated the narrow-sense heritability for complex traits based on summary
912 using LDSC (v1.0.1) with parameters: “--h2, --ref-1d-chr, --w-1d-chr and --out”.

913  Heritability enrichment of regulatory variants

914  To investigate the impact of regulatory variants on complex traits, we extracted significant cis-
915 molQTLs from five molecular phenotypes in 34 tissues, including 2,930,627 cis-eQTLs for
916  protein-coding gene expression, 2,842,703 cis-eeQTLs for exon expression, 2,628,257 cis-
917  sQTLs for alternative splicing, 2,703,774 cis-enQTLs for enhancer and 2,056,718 cis-IncQTLs
918  for IncRNA?*. We used the BLD-Thin model of LDAK (v5.0)* to estimate the heritability and
919  performed heritability enrichment analysis for these molQTLs in 169 meta-GWAS summaries
920  that detected lead SNPs using an optional parameter: “--check-sums NO”.

921 To further explore the effects of independent regulatory variants on complex traits, we divided
922  independent eQTLs into three groups based on their rank for each eGene from muscle and liver
923  tissues, including primary-, secondary- and third-rank independent eQTLs. We performed the
924  same heritability enrichment analysis for these independent eQTLs in the 169 meta-GWAS
925  summaries. We did not consider the results for enrichment folds less than 0. Additionally, we
926  obtained P-values based on the enrichment fold and their standard errors using a one-sided
927  normality test. We adjusted the P-value using the p.adjust function with the FDR method in R
928  v4.2.1. The heritability enrichment with FDR < 0.05 was considered a significant pair. The
929  formula for estimating the P-value was:

x—0

930 = e
p = norm( - )
931 Where x represented the heritability enrichment fold, and o was the standard error of the
932  heritability enrichment fold.
933 To evaluate the performance of heritability enrichment for independent molQTLs, we

934  randomly selected the same number of MAF-matched SNPs for each rank of independent
935 molQTLs for muscle and liver tissue and performed heritability enrichment. We extracted the
936  total SNPs heritability contributed by each category to compare the performance of heritability
937  enrichment.

938  Heritability enrichment of tissue-sharing/specific genes on complex traits

939  To investigate the regulatory patterns of tissue-sharing/specific genes for complex traits, we
940  conducted heritability enrichment analysis of these genes in GWAS summaries using LDAK
941  (the BLD-Thin model)**. Initially, we categorized protein-coding genes into seven groups (1-5,
942 6-10, 11-15, 16-20, 21-25, 26-30, 31-34 tissues) based on the magnitude of tissue-
943  sharing/specificity derived from the cis-eQTL meta-analysis results across all 34 tissues™.
944  Subsequently, we extracted significant cis-eQTLs for each gene and organized them according
945  to their respective tissue-sharing/specific gene groups. Next, we randomly selected 500,000
946  variants for each gene group to generate an annotation file. Finally, we used the annotation file
947  to calculate the tagging file and conducted the heritability enrichment analysis.

948  Colocalization of GWAS summary with cis-molQTL

949  To investigate the contribution of molecular phenotypes to the genetic regulation of complex
950 traits, we performed a colocalization analysis of molQTL and GWAS signals using fastENLOC
951  (v1.0)*. The details of our colocalization methods have been described in our previous work??.
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952  Summary-based transcriptome-wide association study (TWAS)

953  To explore whether the overall cis-genetic component of a molecular phenotype is associated
954  with complex traits, we conducted both single- and multi-tissue TWAS using S-PrediXcan®
955  and S-MultiXcan in MetaXcan (v0.6.11)*7, based on summary statistics from meta-GWASs.
956  Our TWAS methods have been previously described in detail*>. We applied the Bonferroni
957  correction for multiple testing and considered a corrected P-value of less than 0.05 to be
958  significant.

959  Mendelian randomization (MR) analysis between molQTL and GWAS loci

960  To infer the causality between molecular phenotypes and complex traits, we conducted an
961  integrative MR analysis using the SMR tool (v1.03) with genetic variants as instrumental
962  variables®. The method used has been previously described in detail®*. To account for multiple
963  testing, we applied the Bonferroni correction and defined a corrected P-value of less than 0.05
964  as significant.

965 Finally, we prioritized variant-gene/exon/IncRNA/enhancer/splicing-tissue-trait circuits that
966  were validated by at least one method, including TWAS, colocalization, and MR. These circuits
967  exhibited significant tissue-trait associations in enrichment analyses of GWAS significant
968  signals and tissue-specific functional regions.

969  Heritability enrichment of human complex traits

970  To investigate whether the regulatory mechanisms of complex traits were conserved between
971  humans and pigs, we used lead variants with extended windows in 169 pig complex traits to
972  determine the heritability enrichment in human complex traits. Initially, we obtained public
973  GWAS summary statistics for 136 human complex traits, representing 18 trait domains (Table
974  S10). We then mapped the genomic regions located 1 Mb upstream and downstream of the lead
975  variants for each pig complex trait to the human genome (GRCh38/hg38) using UCSC’s
976  LiftOver tool®. Subsequently, we implemented heritability enrichment analysis using these
977  genomic regions for the 136 human complex traits by LDSC (v1.0.1)*. Finally, we selected
978  human-pig trait pairs with a heritability enrichment fold greater than 1 and a P-value less than
979  0.05 for further downstream analysis.

980 We also conducted a validation study to evaluate the performance of heritability enrichment
981  of pig QTL regions in humans. For this, we randomly selected QTL regions and performed
982  heritability enrichment analysis. Initially, we removed the regions already mapped with pig
983  QTL regions based on human genome information. Next, we randomly selected an equal
984  number of regions with matching widths from the remaining human genome for each pig
985  complex trait. Finally, we used these selected regions for heritability enrichment analysis on
986  the summary statistics of 136 human complex traits.

987  The correlation between humans and pigs in GWAS summary statistics

988  To explore the correlation between pigs and humans in GWAS summary statistics, we first
989  obtained homozygous variants shared between pigs (version: Sus scrofall.l) and human
990  (GRCh38/hg38) using LiftOver®>. Second, we matched the homozygous variants for 268 pig
991  GWAS summary statistics and 136 human GWAS summary statistics. Third, we performed a
992  Pearson correlation test between the absolute value of the Z-score of homozygous variants from
993  humans and pigs in R v4.2.1. We considered a threshold of 0.05/136=3.68 X 10* as significant
994  for the trait pairs.
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995  Reporting summary

996  Further information on research design is available in the Nature Research Reporting Summary
997  linked to this article.

998
999  References

1000 1. Tongyu Yang, Zuli Wang, Xiaohong Liu, Shuihua Xie, H. Z. Development of the

1001 world pig industry in 2021 and Trends in 2022. Swine Ind. Sci. 39, 34-38 (2022).
1002 2. Gutierrez-Reinoso, M. A., Aponte, P. M. & Garcia-Herreros, M. Genomic Analysis,
1003 Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals 11,
1004 599 (2021).

1005 3. Vukasinovic, N., Bacciu, N., Przybyla, C. A., Boddhireddy, P. & DeNise, S. K.

1006 Development of genetic and genomic evaluation for wellness traits in US Holstein
1007 cows. J. Dairy Sci. 100, 428-438 (2017).

1008 4. McNeel, A. K., Reiter, B. C., Weigel, D., Osterstock, J. & Di Croce, F. A. Validation
1009 of genomic predictions for wellness traits in US Holstein cows. J. Dairy Sci. 100,
1010 9115-9124 (2017).

1011 5. Strandén, |., Kantanen, J., Lidauer, M. H., Mehti@ T. & Negussie, E. Animal board
1012 invited review: Genomic-based improvement of cattle in response to climate change.
1013 animal 16, 100673 (2022).

1014 6. Hayes, B. J., Lewin, H. A. & Goddard, M. E. The future of livestock breeding:

1015 genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends
1016 Genet. 29, 206-214 (2013).

1017 7. Tribout, T., Larzul, C. & Phocas, F. Efficiency of genomic selection in a purebred pig
1018 male line. J. Anim. Sci. 90, 41644176 (2012).

1019 8. Whitworth, K. M. et al. Gene-edited pigs are protected from porcine reproductive and
1020 respiratory syndrome virus. Nat. Biotechnol. 34, 20-22 (2016).

1021 9. de Almeida, A. M. & Bendixen, E. Pig proteomics: A review of a species in the

1022 crossroad between biomedical and food sciences. J. Proteomics 75, 4296-4314

1023 (2012).

1024  10.  Jakobsen, J. E. et al. Expression of the Alzheimer’s Disease Mutations ABPP695sw
1025 and PSEN1M1461 in Double-Transgenic G@tingen Minipigs. J. Alzheimer’s Dis. 53,
1026 1617-1630 (2016).

1027 11. Barallobre-Barreiro, J. et al. Proteomics Analysis of Cardiac Extracellular Matrix
1028 Remodeling in a Porcine Model of Ischemia/Reperfusion Injury. Circulation 125,
1029 789-802 (2012).

1030 12.  Brasileiro, A. C. L., Oliveira, D. C. de, Silva, P. B. da & Rocha, J. K. S. de L. Impact


https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.09.561393; this version posted October 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

1031
1032

1033
1034

1035
1036

1037
1038

1039
1040
1041

1042
1043

1044
1045

1046
1047

1048
1049

1050
1051

1052
1053
1054

1055
1056
1057

1058
1059

1060
1061

1062
1063

1064
1065

1066

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

of topical nifedipine on wound healing in animal model (pig). J. Vasc. Bras. 19,
(2020).

Hwang, J. et al. Ex Vivo Live Full-Thickness Porcine Skin Model as a Versatile In
Vitro Testing Method for Skin Barrier Research. Int. J. Mol. Sci. 22, 657 (2021).

Mordhorst, B. R. & Prather, R. S. Pig Models of Reproduction. in Animal Models and
Human Reproduction 213-234 (Wiley, 2017). doi:10.1002/9781118881286.ch9.

Burrin, D. et al. Translational Advances in Pediatric Nutrition and Gastroenterology:
New Insights from Pig Models. Annu. Rev. Anim. Biosci. 8, 321-354 (2020).

Menduni, F., Davies, L. N., Madrid-Costa, D., Fratini, A. & Wolffsohn, J. S.
Characterisation of the porcine eyeball as an in-vitro model for dry eye. Contact Lens
Anterior Eye 41, 13-17 (2018).

Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 380, 287-304
(2020).

Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl.
Med. 13, (2021).

Griffith, B. P. et al. Genetically Modified Porcine-to-Human Cardiac
Xenotransplantation. N. Engl. J. Med. 387, 35-44 (2022).

Wang, Q., Tang, J., Han, B. & Huang, X. Advances in genome-wide association
studies of complex traits in rice. Theor. Appl. Genet. 133, 1415-1425 (2020).

Wang, X. et al. Genetic variation in ZmVPP1 contributes to drought tolerance in
maize seedlings. Nat. Genet. 48, 1233-1241 (2016).

Bouwman, A. C. et al. Meta-analysis of genome-wide association studies for cattle
stature identifies common genes that regulate body size in mammals. Nat. Genet. 50,
362-367 (2018).

Hu, Z.-L., Park, C. A. & Reecy, J. M. Bringing the Animal QTLdb and CorrDB into
the future: meeting new challenges and providing updated services. Nucleic Acids Res.
50, D956-D961 (2022).

Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five Years of GWAS
Discovery. Am. J. Hum. Genet. 90, 7-24 (2012).

Shu, X. et al. Identification of novel breast cancer susceptibility loci in meta-analyses
conducted among Asian and European descendants. Nat. Commun. 11, 1217 (2020).

Graham, S. E. et al. The power of genetic diversity in genome-wide association
studies of lipids. Nature 600, 675-679 (2021).

Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power
of diverse populations for discovery and translation. Nat. Genet. 54, 560-572 (2022).

Maurano, M. T. et al. Systematic Localization of Common Disease-Associated


https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.09.561393; this version posted October 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

1067

1068
1069

1070
1071

1072
1073

1074
1075

1076
1077
1078
1079
1080

1081
1082

1083
1084
1085

1086
1087

1088
1089

1090
1091
1092

1093
1094

1095
1096
1097

1098
1099

1100
1101

1102
1103

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Variation in Regulatory DNA. Science (80-. ). 337, 1190-1195 (2012).

Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune
disease variants. Nature 518, 337-343 (2015).

Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-
wide association summary statistics. Nat. Genet. 47, 1228-1235 (2015).

Dimas, A. S. et al. Common Regulatory Variation Impacts Gene Expression in a Cell
Type—Dependent Manner. Science (80-. ). 325, 1246-1250 (2009).

Clark, E. L. et al. From FAANG to fork: application of highly annotated genomes to
improve farmed animal production. Genome Biol. 21, 285 (2020).

The FarmGTEXx-PigGTEX Consortium, Jinyan Teng, Yahui Gao, Hongwei Yin,
Zhonghao Bai, Shuli Liu, Haonan Zeng, Lijing Bai, Zexi Cai, Bingru Zhao, Xiujin Li,
Zhiting Xu, Qing Lin, Zhangyuan Pan, Wenjing Yang, Xiaoshan Yu, Dailu Guan, Yali
Hou, Brittney N. Kee, L. F. A compendium of genetic regulatory effects across pig
tissues. bioRxiv (2022) doi:10.1101/2022.11.11.516073.

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and
richer datasets. Gigascience 4, 7 (2015).

Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human
population structure on large genetic association studies. Nat. Genet. 36, 512-517
(2004).

Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and
Translation. Am. J. Hum. Genet. 101, 5-22 (2017).

Yengo, L. et al. A saturated map of common genetic variants associated with human
height. Nature 610, 704-712 (2022).

Miller, A. T., Picton, H. M., Craigon, J. & Hunter, M. G. Follicle Dynamics and
Aromatase Activity in High-Ovulating Meishan Sows and in Large-White Hybrid
Contemporariesl. Biol. Reprod. 58, 1372-1378 (1998).

Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461,
747-753 (2009).

Gazal, S. et al. Functional architecture of low-frequency variants highlights strength of
negative selection across coding and non-coding annotations. Nat. Genet. 50, 1600—
1607 (2018).

O’Connor, L. J. et al. Extreme Polygenicity of Complex Traits Is Explained by
Negative Selection. Am. J. Hum. Genet. 105, 456-476 (2019).

Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links
cell types to complex human diseases. Nat. Genet. 50, 390-400 (2018).

Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nat. Genet. 47, 291-295 (2015).


https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.09.561393; this version posted October 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

1104
1105

1106
1107

1108
1109
1110

1111
1112
1113

1114
1115

1116
1117
1118

1119
1120

1121
1122

1123
1124
1125

1126
1127
1128

1129
1130
1131
1132

1133
1134

1135
1136
1137

1138
1139

1140

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Han, B. & Eskin, E. Interpreting Meta-Analyses of Genome-Wide Association
Studies. PL0S Genet. 8, 1002555 (2012).

Zeng, H. et al. Meta-analysis of genome-wide association studies uncovers shared
candidate genes across breeds for pig fatness trait. BMC Genomics 23, 786 (2022).

Heidaritabar, M. et al. Genome-wide association studies for additive and dominance
effects for body composition traits in commercial crossbred Piérain pigs. J. Anim.
Breed. Genet. 140, 413-430 (2023).

Calta, J. et al. Possible effects of the MC4R Asp298Asn polymorphism on pig
production traits under ad libitum versus restricted feeding. J. Anim. Breed. Genet.
140, 207-215 (2023).

Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From
Polygenic to Omnigenic. Cell 169, 1177-1186 (2017).

Huppertz, B., Meiri, H., Gizurarson, S., Osol, G. & Sammar, M. Placental protein 13
(PP13): a new biological target shifting individualized risk assessment to personalized
drug design combating pre-eclampsia. Hum. Reprod. Update 19, 391-405 (2013).

Than, N. G. et al. Placental Protein 13 (PP13) 4€* A Placental Immunoregulatory
Galectin Protecting Pregnancy. Front. Immunol. 5, (2014).

Li, X. et al. Analyses of porcine public SNPs in coding-gene regions by re-sequencing
and phenotypic association studies. Mol. Biol. Rep. 38, 3805-3820 (2011).

Kojima, M. & Degawa, M. Sex Differences in the Constitutive Gene Expression of
Sulfotransferases and UDP-glucuronosyltransferases in the Pig Liver: Androgen-
mediated Regulation. Drug Metab. Pharmacokinet. 29, 192-197 (2014).

Soars, M. G. et al. Cloning and characterisation of the first drug-metabolising canine
UDP-glucuronosyltransferase of the 2B subfamily. Biochem. Pharmacol. 65, 1251—
1259 (2003).

Hamamoto-Hardman, B. D., Baden, R. W., McKemig, D. S. & Knych, H. K. Equine
uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning,
expression and initial characterization of morphine metabolism. Vet. Anaesth. Analg.
47, 763-772 (2020).

Heikkinen, A. T. et al. Quantitative ADME Proteomics — CYP and UGT Enzymes in
the Beagle Dog Liver and Intestine. Pharm. Res. 32, 74-90 (2015).

Cai, Z., Christensen, O. F., Lund, M. S., Ostersen, T. & Sahana, G. Large-scale
association study on daily weight gain in pigs reveals overlap of genetic factors for
growth in humans. BMC Genomics 23, 133 (2022).

Quinlan, A. R. & Hall, 1. M. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841-842 (2010).

Altmann, S. W. et al. Niemann-Pick C1 Like 1 Protein Is Critical for Intestinal


https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.09.561393; this version posted October 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

1141

1142
1143
1144

1145
1146
1147

1148
1149

1150
1151

1152
1153

1154
1155

1156
1157

1158
1159
1160

1161
1162

1163
1164

1165
1166

1167
1168

1169
1170

1171
1172
1173

1174
1175

1176

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Cholesterol Absorption. Science (80-. ). 303, 1201-1204 (2004).

Lamri, A., Pigeyre, M., Garver, W. S. & Meyre, D. The Extending Spectrum of
NPC1-Related Human Disorders: From Niemann—Pick C1 Disease to Obesity.
Endocr. Rev. 39, 192-220 (2018).

Castillo, J. J. et al. The Niemann-Pick C1 gene interacts with a high-fat diet to
promote weight gain through differential regulation of central energy metabolism
pathways. Am. J. Physiol. Metab. 313, E183-E194 (2017).

Liu, R. et al. Rare Loss-of-Function Variants in NPC1 Predispose to Human Obesity.
Diabetes 66, 935-947 (2017).

Teng, Z. et al. Deciphering the chromatin spatial organization landscapes during
BMMSC differentiation. J. Genet. Genomics 50, 264-275 (2023).

Bossini-Castillo, L. et al. Immune disease variants modulate gene expression in
regulatory CD4+ T cells. Cell Genomics 2, 100117 (2022).

Wei, W.-H., Hemani, G. & Haley, C. S. Detecting epistasis in human complex traits.
Nat. Rev. Genet. 15, 722-733 (2014).

Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-
analyses. Nat. Protoc. 9, 1192-1212 (2014).

Browning, S. R. & Browning, B. L. Rapid and Accurate Haplotype Phasing and
Missing-Data Inference for Whole-Genome Association Studies By Use of Localized
Haplotype Clustering. Am. J. Hum. Genet. 81, 1084-1097 (2007).

Browning, B. L., Zhou, Y. & Browning, S. R. A One-Penny Imputed Genome from
Next-Generation Reference Panels. Am. J. Hum. Genet. 103, 338-348 (2018).

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30, 2114-2120 (2014).

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows—\Wheeler
transform. Bioinformatics 25, 1754-1760 (2009).

Vinet, L. & Zhedanov, A. A ‘missing’ family of classical orthogonal polynomials. J.
Phys. A Math. Theor. 44, 085201 (2011).

Madsen P, Saensen P, Su G, etal. DMU - a package for analyzing multivariate
mixed models. 2014:27-11 (2006).

Garrick, D. J., Taylor, J. F. & Fernando, R. L. Deregressing estimated breeding values
and weighting information for genomic regression analyses. Genet. Sel. Evol. 41, 55
(2009).

Jiang, L., Zheng, Z., Fang, H. & Yang, J. A generalized linear mixed model
association tool for biobank-scale data. Nat. Genet. 53, 1616-1621 (2021).

Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-


https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.09.561393; this version posted October 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

1177

1178
1179

1180
1181

1182
1183

1184
1185

1186
1187

1188
1189

1190
1191

1192
1193

1194
1195

1196
1197

1198
1199

1200
1201
1202

1203
1204

1205
1206

1207

1208

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

scale data. Nat. Genet. 51, 1749-1755 (2019).

Willer, C. J.,, Li, Y. & Abecasis, G. R. METAL.: Fast and efficient meta-analysis of
genomewide association scans. Bioinformatics 26, 2190-2191 (2010).

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A tool for genome-
wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82 (2011).

Cingolani, P. et al. A program for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff. Fly (Austin). 6, 80-92 (2012).

Pan, Z. et al. Pig genome functional annotation enhances the biological interpretation
of complex traits and human disease. Nat. Commun. 12, (2021).

M, N. fmsb: Functions for Medical Statistics Book with some Demographic Data.
2020-03-12 (2019).

Sheffield, N. C. & Bock, C. LOLA: enrichment analysis for genomic region sets and
regulatory elements in R and Bioconductor. Bioinformatics 32, 587-589 (2016).

Gel, B. et al. regioneR: an R/Bioconductor package for the association analysis of
genomic regions based on permutation tests. Bioinformatics 32, 289-291 (2016).

Neph, S. et al. BEDOPS: high-performance genomic feature operations.
Bioinformatics 28, 1919-1920 (2012).

Navarro Gonzalez, J. et al. The UCSC Genome Browser database: 2021 update.
Nucleic Acids Res. 49, D1046-D1057 (2021).

Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models
using summary statistics. Nat. Genet. 52, 458-462 (2020).

Pividori, M. et al. PhenomeXcan: Mapping the genome to the phenome through the
transcriptome. Sci. Adv. 6, (2020).

Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene
expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1-20
(2018).

Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues
improves association detection. PLOS Genet. 15, 1007889 (2019).

Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts
complex trait gene targets. Nat. Genet. 48, 481-487 (2016).


https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/

