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Abstract 107 

Understanding the molecular and cellular mechanisms that underlie complex traits 108 

in pigs is crucial for enhancing their genetic improvement program and unleashing their 109 

substantial potentials in human biomedicine research. Here, we conducted a meta-110 

GWAS analysis for 232 complex traits with 28.3 million imputed whole-genome 111 

sequence variants in 70,328 individuals from 14 pig breeds. We identified a total of 112 

6,878 genomic regions associated with 139 complex traits. By integrating with the Pig 113 

Genotype-Tissue Expression (PigGTEx) resource, we systemically explored the 114 

biological context and regulatory circuits through which these trait-associated variants 115 

act and finally prioritized 16,664 variant-gene-tissue-trait circuits. For instance, 116 

rs344053754 regulates the expression of UGT2B31 in the liver by affecting the activity 117 

of regulatory elements and ultimately influences litter weight at weaning. Furthermore, 118 

we investigated the conservation of genetic and regulatory mechanisms underlying 136 119 

human traits and 232 pig traits. Overall, our multi-breed meta-GWAS in pigs provides 120 

invaluable resources and novel insights for understanding the regulatory and 121 

evolutionary mechanisms of complex traits in both pigs and humans. 122 

  123 
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Introduction 124 

Pigs are globally recognized as one of the most important farm animals, with pork 125 

production reaching 106.1 million tons in 20211. Understanding the genetic control of 126 

complex phenotypes in pigs help us genetically maximize their production efficiency2, 127 

and improve their health and welfare3,4, while minimizing environmental challenges5,6 128 

through advanced precision breeding techniques. For example, genomic selection 129 

substantially and durably enhance the efficiency of pig breeding programs in terms of 130 

reliability, genetic trends, and inbreeding rates7. Genome editing also protect pigs from 131 

porcine reproductive and respiratory syndrome virus and reduce economic losses8. On 132 

top of their great economic importance as a primary source of animal protein for 133 

humans9, pigs have been widely accepted as a model for studying human biology and 134 

diseases, including Alzheimer's disease10, cardiovascular disease11, wound healing12,13, 135 

human reproduction14, the human gastrointestinal tract15, dry eye16, and immunological 136 

studies17–19. Therefore, investigating the genetic and biological architecture of complex 137 

traits in pigs will not only benefit the pig breeding industry but also to human 138 

biomedical research. 139 

Performing a genome-wide association study (GWAS) is a commonly used strategy 140 

for dissecting complex trait/disease genetics20–22. As of June 10, 2023, the Pig 141 

quantitative trait loci (QTL) database (Pig QTLdb) has reported 48,844 QTL, 142 

representing 673 distinct traits and 279 trait variants23. However, causal variants and 143 

genes underlying most of these QTL regions remain unknown due to the large amount 144 

of linkage disequilibrium (LD) of genetic variants within pig populations/breeds24. 145 

Cross-ancestry/population meta-GWAS analysis has been proposed as an efficient 146 

approach for identifying trait-associated variants shared between populations and 147 

accelerate statistical fine-mapping of causal variants and genes through reducing 148 

LD22,25–27. In addition, the majority of genetic variants identified in GWAS were located 149 

in non-coding genomic regions28, and were significantly enriched in cis-regulatory 150 

elements, including promoters and enhancers29,30, as well as gene expression QTL 151 

(eQTL) in relevant tissues31. This suggests that GWAS variants might exert their effect 152 

via regulating gene expression. Therefore, it is of great interest to prioritize the causal 153 

variants, genes, pathways, and tissues of complex traits through systematically 154 

integrating functional annotation data such as FAANG32 and FarmGTEx resources33.  155 

Here, we collected and analyzed phenotypes and genotypes of 70,328 pigs from 59 156 

populations representing 14 pig breeds to identify genetic variants underlying complex 157 

traits in pigs. After imputing genotypes to a whole genome sequence level using a multi-158 

breed reference panel33, we conducted a comprehensive cross-population/breed meta-159 

GWAS analysis for 232 complex traits. We then integrated multi-tissue regulatory 160 

elements from the FAANG project32 and multi-tissue molQTL from the PigGTEx 161 

project33 to systematically resolve the functional molecular basis of complex traits in 162 

pigs. To further investigate the potential of pigs as model organisms for human biology 163 

and diseases, we compared the genetic regulations of 136 human complex phenotypes 164 

and 232 pig complex phenotypes. Finally, we developed an open-access and user-165 

friendly website (http://pigbiobank.ipiginc.com/home) for the research community to 166 

query and download the genetic associations of complex traits in pigs (Fig. 1a).  167 
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 168 

Results 169 

Summary of genotypes and phenotypes 170 

After excluding ancestral outliers within each of the 59 populations based on 171 

population structure analysis (details see Methods), we retained 69,242 pigs genotyped 172 

by SNP arrays (with an average of 45,418 autosomal SNPs) or low-coverage whole-173 

genome sequencing (WGS) (with 198,178 autosomal SNPs) for subsequent analysis, 174 

including 20,706 Duroc, 9,159 Landrace, 34,540 Yorkshire, and 4,837 individuals from 175 

11 other breeds (Table S1). We imputed genotypes of all the 69,242 animals to the 176 

sequence level, using the multi-breed Pig Genomics Reference Panel (PGRP version 1) 177 

from the PigGTEx project33 as the reference panel, which comprises 42,523,218 178 

autosomal biallelic SNPs from 1,602 WGS data worldwide (Fig. 1b-c). The average 179 

concordance rates and genotype correlations between imputed and observed genotypes 180 

were 96.67% and 93.86%, respectively, across breeds (Fig. S1a-c, Table S1). We further 181 

assessed the genotype imputation accuracy in 65 WGS samples (35 Duroc and 30 182 

Suhuai) that were independent of PGRP (Table S2). The observed concordance rates 183 

between the imputed and WGS-called genotypes were 93.34% and 91.13% (genotype 184 

correlations of 90.21% and 87.22%), respectively (Fig. 1d, S1d). The genotype 185 

imputation accuracy was influenced by the minor allele frequency (MAF) and dosage 186 

R-squared (DR2, the estimated squared correlation between the estimated allele dose 187 

and the true allele dose) (Fig. S1e-h). We thus considered 28,297,602 SNPs with both 188 

DR2 > 0.8 and MAF ≥ 0.01 in each population for subsequent analysis. As expected, 189 

the population structure of GWAS samples estimated by imputed genotypes was 190 

consistent with that estimated from raw genotypes (correlation > 0.99) (Fig. S1i). The 191 

imputed SNPs were evenly distributed across diverse genomic features (Fig. S1j-l). 192 

Altogether, these results supported the reliability of our imputed genotype data. 193 

In total, we collected 271 continuous traits across 59 pig populations in 14 breeds, with 194 

an average sample size of 1,141 for each population and each trait (ranging from 116 195 

in Total number of born to 9,246 in Average daily gain), representing 5 main trait 196 

categories and 17 subcategories: Production (n = 57,612; Feed intake (n = 240), 197 

Growth (n = 57,612), Feed conversion (n = 19,095)), Meat and Carcass (n = 65,883; 198 

Fatness (n = 60,203), Anatomy (n = 52,470), Chemistry (n = 368), Fatty acid content 199 

(n = 368), Texture (n = 140), Meat color (n = 140), pH (n = 140)), Health (n = 2,139; 200 

Immune capacity (n = 1,317), Blood parameters (n = 2,139)), Reproduction (n = 201 

71,637; Reproductive traits (n = 41,569), Litter traits (n = 51,717), Reproductive organs 202 

(n = 40,914)), and Exterior (n = 6,625; Behavioral (n = 2,797), Conformation (n = 203 

3,828)) (Fig. S2a). In addition, we collected 15 binary traits across 23 populations in 3 204 

breeds with an average sample size of 1,025 (ranging from 160 in Number of 205 

mummified pigs of parity 1 to 9,246 in Teat number symmetry), representing 206 

Reproduction category (Litter traits (n = 12,655) and Reproductive organs (n = 24,087)) 207 

(Fig. S2a). After filtering out samples with low-quality genotypes and phenotypes 208 

(Methods), we retained 249 continuous traits (average sample size of 1,136) and 11 209 

binary traits (average sample size of 1,035) for subsequent analysis. The average 210 
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backfat thickness (M_BFT) had the largest cumulative sample size of 58,725 (Fig. 1e). 211 

Across all the traits, we observed an average heritability of 0.27, ranging from 0.02 for 212 

Teat number (left) to 0.97 for Lysozyme level (Table S3, Fig. S2b-c).     213 

Individual GWAS and meta-GWAS analysis 214 

We conducted GWAS for 249 individual continuous traits and 11 binary traits in each 215 

population, yielding a total of 2,117 GWAS summary statistics (Table S3). To ensure 216 

the quality and reliability of these individual GWAS results for subsequent meta-217 

analysis, we applied stringent quality control using multiple strategies, including SE-N 218 

plot, P-Z plot, EAF plot, and λGC (Methods). This resulted in 2,056 high-quality GWAS 219 

summary statistics, representing 221 continuous traits and 11 binary traits (Fig. S2d-j). 220 

Of these, 78 traits were not previously reported in Pig QTLdb (release 46)23 221 

(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index). In total, we detected 8,098 222 

QTLs (P < 5×10-8) for 154 traits, representing 7,011 non-overlapping lead SNPs 223 

(5,665 SNPs with m-value > 0.9 in at least one study, while the m-value represents the 224 

posterior probability of the effect estimated by METASOFT). The correlations of SNP 225 

effects were significantly higher for the same traits across different populations/breeds 226 

compared to different traits within the same populations/breeds (Fig. S3a-b). 227 

Interestingly, among the 5,665 lead SNPs, 69.88% were only detected in one population 228 

for a specific trait (Fig. S3c), and their MAFs were higher in the target populations 229 

compared to the remaining populations (Fig. S3d). For instance, rs323720776 was 230 

associated with Average daily gain (birth-100kg) only in a Yorkshire pig population, 231 

with its MAF in this population (MAF = 0.46) being higher than in others (average 232 

MAF = 0.27) (Fig. S3e). These findings suggest that population-specific associations 233 

may arise from differences in variant segregation between populations. 234 

To detect population-shared associations with small effect sizes that could not be 235 

detected by individual GWAS due to limited sample size35, we conducted meta-GWAS 236 

analyses for each of the 232 complex traits across populations/breeds using individual 237 

GWAS summary statistics. Out of these traits, 25 common traits had larger sample sizes 238 

and were classified as main traits (M_traits), covering the categories of Growth, Fatness, 239 

Reproductive, Anatomy, Reproductive organs and Litter trait (Table S3). Furthermore, 240 

we conducted 36 within-breed meta-GWAS analyses for the Duroc, Landrace and 241 

Yorkshire breeds, focusing on 12 M_traits with large sample sizes in all of the three 242 

breeds (prefixed with ‘D_’, ‘L_’ and ‘Y_’, respectively), to explore potential breed-243 

specific genetic regulation mechanisms for complex traits. The average sample size of 244 

these 268 meta-GWAS analyses was 6,409, ranging from 137 for dressing percentage 245 

to 56,165 for M_BFT (Table S4). Overall, we detected 6,878 QTLs for 139 traits in 169 246 

meta-GWAS analyses (P < 5×10-8), representing 6,233 non-overlapping lead SNPs 247 

(Table S5, Fig. 2a). These lead SNPs were distributed across all the 18 autosomes (Fig. 248 

2b) and had smaller MAFs than random SNPs (Fig. S4a). Furthermore, the number of 249 

significant QTLs detected in meta-GWAS showed positive correlations with both 250 

sample size (Pearson’s r = 0.69, P = 1.36×10-25) and trait heritability (Pearson’s r = 251 

0.49, P = 9.59×10-3) (Fig. 2c-d), consistent with findings in humans36,37.   252 

In comparison to Pig QTLdb (release 46)23, we identified 14,704 novel QTLs for 209 253 
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traits in both individual GWAS and meta-GWAS (Fig. S4b-c). Furthermore, we 254 

employed two strategies to validate the detected lead SNPs. Firstly, we conducted meta-255 

GWAS for average daily gain (ADG) in independent populations, including 42,790 256 

Duroc pigs, 88,984 Landrace pigs, and 69,606 Yorkshire pigs. The association signals 257 

detected in these different independent populations were significantly enriched in the 258 

QTL regions of ADG detected in this study (Fig. S4d). Secondly, we used suggestively 259 

significant lead SNPs (P < 1×10−5) to predict genetic values of litter size/teat number 260 

across seven pig breeds. We observed that Jiaxinghei, Erhualian, and Meishan pigs 261 

exhibited higher predicted values than Landrace and Duroc (Fig. 2e, Fig. S4e). This 262 

aligns with previous findings that Meishan pigs maintained a higher number of follicles 263 

during the follicular phase than Landrace hybrid pigs38. In summary, these results 264 

illustrate that lead SNPs detected here are reliable and shared among populations/breeds.  265 

In comparison with individual GWASs, we identified 5,955 novel QTLs in meta-266 

analyses for 147 traits (Fig. 2f). For instance, rs320375241 was non-significant for 267 

ADG in any individual GWASs, but was identified as a significant lead SNP of ADG 268 

in the meta-analysis (Fig. 2g). Furthermore, we found 7,058 QTLs in individual 269 

GWASs that were not detected in the meta-GWASs (referred to as class A QTLs) (Fig. 270 

2f). When compared to the QTLs detected in both individual GWASs and meta-GWASs 271 

(referred to as class B QTLs), the lead SNPs of class A QTLs tended to have different 272 

directions of effects on the trait across study populations (Fig. S4f). Additionally, the 273 

populations in which class A QTLs were detected had a smaller proportion of the total 274 

sample size in the meta-analysis of the trait (Fig. S4g). These findings suggest that 275 

GWAS variants with opposite directions of effect among populations, or GWAS 276 

variants detected in populations with small sample sizes, may result in undetectable 277 

QTLs in meta-analyses. 278 

To characterize the genetic regulation of complex traits (Fig. S3c), we here only 279 

considered QTLs/lead SNPs identified in the meta-GWAS analysis. Across all the 64 280 

meta-analyses with a number of lead SNPs > 10, we observed a negative correlation 281 

between MAF and effect size of lead SNPs, with a median Pearson correlation of -0.65, 282 

ranging from -0.88 in the GGT trait to -0.27 in the number of mummified pigs (Fig. 283 

S5a). This suggests that variants significantly associated with complex traits might be 284 

under negative selection, similar to previous findings in humans39–41. Among these 285 

correlations, we observed differences among Duroc, Landrace and Yorkshire in the 286 

correlations between MAF and effect size of lead SNPs for ADG and teat number 287 

(TNUM). Specifically, the negative correlation for ADG was weaker in Duroc 288 

compared to Landrace and Yorkshire (Fig. S5b), while the ADG phenotype value in 289 

Duroc was higher than in Landrace and Yorkshire (Fig. S5c). Of note, we found the 290 

opposite result for TNUM (Fig. S5d-e). This finding suggests that the three breeds have 291 

undergone different levels of artificial selection for different complex traits of economic 292 

importance. In the all-breed meta-analyses of 12 M_traits, we identified 1,460 novel 293 

QTLs compared to within-breed meta-analyses in Duroc, Landrace, and Yorkshire (Fig. 294 

S5f). Most of the breed-specific QTLs (median 77%) detected in the within-breed meta-295 

analysis exhibited different directions of effect between breeds (Fig. S5g). For instance, 296 

the effect size of the lead SNP 6_163238739_A_G for ADG in Duroc was 7.53 (P = 297 

3.22×10−8), while it was -4.40 (P = 0.18) in Landrace and -3.99 (P = 0.05) in Yorkshire, 298 
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while this SNP was not associated with ADG in the all-breed meta-analysis (effect size 299 

= 2.58, P = 0.01) (Fig. S5h). This suggests that associations with different directions of 300 

effect between breeds will be offset in the all-breed meta-GWAS analysis, leading to 301 

reduced statistical power.  302 

Pleiotropy of genetic variants in complex traits 303 

To explore breed-specific and shared trait-associations among Duroc, Landrace and 304 

Yorkshire breeds, we estimated the posterior probability (m-value) of lead SNPs for 305 

each trait using METASOFT44. In 12 M_traits, we identified 6,624 SNPs exclusively 306 

in one breed and 2,378 SNPs in at least two breeds (m-value > 0.9). For example, in 307 

BFT, 1,840 SNPs were exclusively detected in one breed, while 667 SNPs were 308 

detected in at least two breeds (Fig. 3a). Breed-specific trait-associated variants had 309 

higher MAFs in the breed where they were detected compared to the other breeds (Fig. 310 

3b). In addition, SNPs exclusively detected in one breed had a significantly greater 311 

effect on traits compared to those detected in multiple breeds (Fig. 3c). To gain further 312 

insights into the regulatory mechanisms of these breed-specific and shared SNPs, we 313 

conducted functional annotation and enrichment analysis. Our results revealed that 314 

SNPs detected in all three breeds were significantly enriched in tissue-specific gene 315 

regions (less than five tissues) (Fig. 3d). SNPs detected in at least two breeds showed a 316 

significantly higher enrichment in active promoters and enhancers compared to breed-317 

specific SNPs (Fig. 3e). Additionally, by examining Z-scores of lead SNPs detected 318 

exclusively in one breed, we were able to cluster the 36 meta-GWASs of the 12 M_traits 319 

based on breed, whereas by examining Z-scores of lead SNPs detected in all three 320 

breeds, we were able to cluster the 36 meta-GWASs of the 12 M_traits based on trait 321 

(Fig. S6).  322 

Among 3,581 lead SNPs of 232 traits, 2,100 were associated with at least two traits, 323 

with one SNP associated with up to 152 traits (15_21820815_A_G, m-value > 0.9, 324 

phastCons = 0.554) (Fig. 3g). For instance, we identified rs320916522 near MC4R on 325 

chromosome 1 as being associated with M_ADG (P = 1.09×10-37, M = 1), M_BFT (P 326 

= 4.56×10-51, M = 1)), and M_LMDEP (P = 6.90×10-10, M = 1)) (Fig. 3f). MC4R has 327 

been extensively demonstrated to be linked to muscle and fat deposition in pigs45–47. 328 

Notably, similar traits shared a greater number of lead SNPs, such as TNUM-related 329 

traits (Fig. S7). Moreover, we observed a trend where lead SNPs with higher pleiotropy 330 

exhibited smaller effects on traits (Fig. 3h). This result is consistent with the ‘network 331 

pleiotropy’ hypothesis proposed by Boyle, Li, and Pritchard, which suggests that small 332 

perturbations in a densely connected functional network have at least a small effect on 333 

all phenotypes affected by the network48.  334 

Regulatory architecture underlying complex traits 335 

To explore the biological context and regulatory circuits by which the detected trait-336 

associated variants act, we examined multi-layered biological data, including genomic 337 

variants, mammalian conserved elements and regulatory elements, to annotate lead 338 

SNPs and genome-wide significant SNPs of all the 169 meta-GWASs. Among 6,233 339 

lead SNPs, 0.95% were located in coding regions, while 99.05% were in noncoding 340 

regions. Specifically, 43.26% were located in introns, 39.42% in intergenic regions, 341 
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9.29% in promoters, and 52.99% in enhancers (Fig. 4a and Fig. S8a). We obtained 342 

similar results when analyzing human GWAS variants (Fig. S8b). Lead SNPs were 343 

observed to be more concentrated around the transcription start sites (TSS) of protein-344 

coding genes compared to non-lead SNPs (Fig. S8c). Furthermore, lead SNPs exhibited 345 

significant enrichment in protein-coding regions (CDS) (18.10-fold, P < 1×10-30), 346 

conserved elements (6.52-fold, P = 5.65×10-8), and regulatory elements, particularly 347 

in active regulatory elements such as active promoters (TssA) and enhancers (EnhA) 348 

(Fig. 4a and Fig. S8d-e). Additionally, lead SNPs had lower PhastCons scores 349 

(indicating weaker evolutionary constraints) with a median of 0.023, compared to non-350 

lead SNPs (median of 0.062) with matching MAF and linkage disequilibrium (LD) of 351 

significant SNPs (Fig. 4b).  352 

To further investigate the regulatory role of genetic variants on complex traits, we 353 

integrated five types of molecular QTLs (molQTLs, including cis-eQTLs for PCG 354 

expression, cis-eeQTLs for exon expression, cis-lncQTLs for lncRNA expression, cis-355 

enQTLs for enhancer expression, and cis-sQTLs for alternative splicing) from 34 356 

tissues in the PigGTEx resource33. We performed summary-based heritability 357 

enrichment analyses and detected 357 (52.12%) significantly enriched molQTL-trait 358 

pairs for 84 out of 147 meta-GWAS summaries (normal test, FDR < 0.05) (Fig. S8f, 359 

Table S6). In general, the five types of molQTL were significantly enriched for 360 

heritability of all the 15 M_traits (normal test, FDR < 0.05) (Fig. 4c). Furthermore, in 361 

muscle (Fig. 4d) and liver (Fig S8g), independent eQTL and sQTL with different ranks 362 

explained higher heritability compared to MAF-matched SNPs. These results suggest 363 

that variants regulating molecular phenotypes, such as gene expression, play an 364 

important role in the genetic mechanism underlying complex traits. 365 

 To investigate the relationship between tissue-sharing patterns of eGenes and 366 

complex traits, we categorized eGenes into seven tissue-sharing groups33. We then 367 

performed heritability enrichment analyses for these groups of eGenes using meta-368 

GWAS summary statistics, resulting in 531 significantly enriched gene group-trait pairs 369 

for 87 complex traits (normal test, FDR < 0.05) (Table S7). Our enrichment analyses 370 

revealed that complex traits were regulated by eGenes with different patterns of tissue-371 

sharing (Fig. 4e). Specifically, we observed a notable enrichment of Backfat thickness 372 

(BFT) related traits for eGenes with lower tissue-sharing degree, while ADG-related 373 

traits were significantly enriched for eGenes with higher tissue-sharing degree (Fig. 4e). 374 

Furthermore, the lead SNP rs1108824455 for M_BFT acted as an eQTL for LGALS13 375 

(tissue-specific magnitude = 10) in adipose (P = 7.84×10-23) (Fig. 4f). LGALS13 is 376 

expressed in lung, duodenum, fetal thymus, jejunum, blood, adipose, ileum, ovary, 377 

small intestine, and spleen (Fig. S8h), serving as one of the serum biomarkers in early 378 

pregnancy49,50. This finding suggests that regulatory variants may affect M_BFT by 379 

influencing gene expression in certain tissues during early pregnancy. In addition, the 380 

lead SNP rs324200444 of M_ADG also acted as an eQTL for ABCC10 in various 381 

tissues including the liver (P = 2.80×10-11), colon (P = 7.91×10-8), large intestine (P = 382 

5.92×10-7), and muscle (P = 1.34×10-5) (Fig.4g). ABCC10 exhibits widespread 383 

expression across different tissues (Fig. S8i) and serves as a genetic marker for pig 384 

growth51. This finding suggests that regulatory variants affect M_ADG by modulating 385 

gene expression in multiple tissues. 386 
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Tissue-specific regulation of GWAS loci 387 

To further investigate the tissue-mediated patterns of genetic regulation of complex 388 

traits, we conducted enrichment analyses of GWAS signals using tissue-specific genes 389 

across 34 tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 390 

(KEGG) pathways enrichment analyses of tissue-specific genes confirmed the known 391 

biology of respective tissues (Table S8, Fig. S9a). For example, genes highly expressed 392 

in muscle were significantly enriched in actin filament binding and muscle contraction 393 

(Fig. S9a). Our GWAS signal enrichment analyses demonstrated that significant SNPs 394 

of traits were significantly enriched in tissue-specific genes of functionally related 395 

tissues (Fig. S9b). For example, the liver was found to be the most enriched tissue for 396 

both litter weight (weaning) (M_TLWT_Weaning) (10.14-fold, P < 0.001) and body 397 

weight (M_BW) (6.84-fold, P < 0.001), and the ovary was identified as the most 398 

enriched tissue for gestation length (M_GD) (5.62-fold, P < 0.001) (Fig. 5a).  399 

 Furthermore, we integrated multi-omics data from the PigGTEx to explore the 400 

detailed regulatory mechanisms of tissue-specific regulation of complex traits. We 401 

finally prioritized 16,664 variant-gene-tissue-trait circuits, 19,532 variant-exon-tissue-402 

trait circuits, 3,982 variant-lncRNA-tissue-trait circuits, 3,320 variant-enhancer-tissue-403 

trait circuits, 19,516 variant-splicing-tissue-trait circuits (Table S9). For instance, 404 

UGT2B31, the most highly expressed gene in the liver compared to other tissues (Fig. 405 

S10a), was significantly associated with M_TLWT_Weaning by both gene-based 406 

GWAS and TWAS (Fig. 5b). Furthermore, its cis-eQTL in the liver colocalized with the 407 

GWAS locus (rs344053754) of M_TLWT_Weaning (P = 5.62×10-7), which resides in 408 

the active enhancer regions of the liver and intestine but no other tissues (Fig. 5b, Fig. 409 

S10b). UGT2B31 is a metabolic enzyme in the liver of various animals52–55. The pattern 410 

of MRAP2 was similar to that of UGT2B31, with a higher expression in milk than in 411 

most tissues (Fig. S10c). MRAP2 was also significantly associated with M_ADG in 412 

both gene-based GWAS and TWAS. We observed a significant colocalization between 413 

the GWAS locus (rs340663967) of M_ADG and cis-eQTL of MRAP2 in milk (P = 414 

2.86×10-6). The colocalized SNP fell into the ATAC region in only muscle and 415 

cerebellum (Fig. 5c, Fig. S10d). Interestingly, MRAP2 was previously identified as a 416 

candidate gene for M_ADG in pigs56. These results provided important insights that 417 

regulatory variants affect gene expression by influencing the activity of regulatory 418 

elements in specific tissues, which in turn impact complex traits. 419 

Gene mapping of complex traits between pigs and humans 420 

To explore the sharing of genetic regulatory mechanisms of complex traits between 421 

species, we first conducted heritability enrichment analyses for 169 meta-GWASs in 422 

pigs and 136 complex traits in humans based on the orthologues GWAS signals (P < 5 423 

× 10-8) (Table S10). We obtained 616 significantly enriched pig-human trait pairs 424 

(enrichment fold > 1 and P < 0.05) (Table S11), including Cholesteryl ester transfer 425 

protein activity (S_CEPTA) in pigs vs. high cholesterol in humans (enrichment fold = 426 

68.74, P = 2.15×10-2); Total Cholesterol (S_CHOL_T) in pigs vs. Triglycerides in 427 

humans (enrichment fold = 18.17, P = 1.20×10-2), and Feed conversion ratio (30-100kg) 428 

(S_FEEDCON_30T100) in pigs vs. insulin resistance (HOMA-IR) in humans 429 

(enrichment fold = 16.44, P = 7.52×10-3) (Fig. 6a-b). Permutation analysis 430 
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demonstrated that the orthologous regions of pig QTLs explained higher heritability of 431 

human complex traits compared to randomly selected regions (Fig. S11). We also 432 

estimated Pearson’s correlations of pig-human trait pairs based on the absolute Z-score 433 

of orthologous variants from GWAS summary statistics and found significant 434 

correlations of trait pairs with physiological correlations (Fig. 6c, Table S12). For 435 

example, the semen sexuality score (S_SESS_DRP) in pigs was significantly correlated 436 

with C61 Malignant neoplasm of the prostate in humans (Pearson’s r = -0.09, P = 437 

2.60×10-4) (Fig. 6c). These findings indicate that genetic regulatory mechanisms of 438 

certain complex traits were shared between humans and pigs. Furthermore, we 439 

discovered that rs322242884 was suggestively associated with L_ADG in Landrace 440 

pigs (Z-score = -4.53, P = 5.80×10-6), and its homologous variant rs11877146 was 441 

significantly associated with body fat percentage in human (Z-score = 6.06, P = 442 

1.33×10-9) (Fig. 6d). Notably, rs11877146 and rs322242884 were eQTLs for NPC1 in 443 

the muscle of both humans (P = 6.70×10-5) and pigs (P = 7.20×10-7), respectively, as 444 

well as eQTLs for TMEM241 in the brain for both species (P = 6.70×10-5 and P = 445 

1.78×10-4, respectively), with the similar regulatory effects on gene expression (Fig. 6e-446 

f). Previous studies have linked NPC1 to body weight and adipocyte processes in a 447 

variety of animals58–61 and TMEM241 has been associated with bone degeneration and 448 

osteoporosis62. These results provided evidence that there might be shared regulatory 449 

mechanisms underlying complex traits between humans and pigs.   450 

Discussion 451 

Understanding the genetic foundation of complex traits in pigs have significant 452 

implications for improving their genetics, economic contributions, and even medical 453 

advancements. While genetic association for major economic traits in commercial pig 454 

breeds has been extensively studied, comprehensive GWAS covering a large scale of 455 

domesticated pig breeds, as well as a wide range of phenotypes, has not been available. 456 

Here, we aimed to establish the largest genetic association atlas of pig complex traits to 457 

date by analyzing 70,328 pigs covering 14 pig breeds from various geographic areas. 458 

We identified 6,878 lead variants associated with 139 traits in 169 GWAS meta-459 

analyses (Table S5). The majority of the lead SNPs (99.05%) were located in non-460 

coding regions, including intergenic (39.42%) and intron (43.26%) regions (Fig. S8a). 461 

This suggests that these SNPs influence complex traits through playing a crucial role in 462 

regulating gene activity63. Additionally, the enrichment of lead SNPs in flanking 463 

regions of coding sequence further supports the notion that trait-associated SNPs tend 464 

to be located in regulatory regions (Fig. 4a and Fig. S8d-e). We also found that lead 465 

variants for complex traits usually altered the activity of regulatory elements in specific 466 

tissues (Fig. 5b-c). It highlights the importance of tissue-specific gene regulation in 467 

determining phenotypic outcomes. The potential epistatic interactions among these 468 

genetic variants require further investigation with a larger sample size64. The similarity 469 

in genetic structure between complex traits in pigs and humans is noteworthy (Fig. 6). 470 

This finding suggests that pigs can serve as valuable models for studying human 471 

complex traits, offering insights that can contribute to medical advancements in humans. 472 

We make the summary statistics of 268 meta-GWAS available to the research 473 

community to facilitate further understanding of the genetic structure of complex traits. 474 
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Our database provides the comprehensive relationship among genetic variants, genes, 475 

tissues and complex traits, which will be useful for dissecting the genetics of complex 476 

traits in pigs. 477 

  478 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2023. ; https://doi.org/10.1101/2023.10.09.561393doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 479 

Zhe Zhang acknowledges funding from National Key R&D Program of China 480 

(2022YFF1000900), the National Natural Science Foundation of China (32022078), the Local 481 

Innovative and Research Teams Project of Guangdong Province (2019BT02N630), and 482 

supporting from National Supercomputer Center in Guangzhou, China. Y.C., Zhe Zhang, J.L., 483 

X.Liu., S.M., and X.D. acknowledge funding from the China Agriculture Research System 484 

(CARS-35). L.F. acknowledges funding from HDR-UK award HDR-9004 and the European 485 

Union’s Horizon 2020 research and innovation n program under the Marie Skłodowska-Curie 486 

grant agreement No 801215. G.E.L., was supported by USDA NIFA AFRI grant numbers 2019-487 

67015-29321 and 2021-67015-33409 and the appropriated project 8042-31000-112-00-D, 488 

“Accelerating Genetic Improvement of Ruminants Through Enhanced Genome Assembly, 489 

Annotation, and Selection” of the USDA Agricultural Research Service (ARS). This research 490 

used resources provided by the SCINet project of the USDA ARS project number 0500-00093-491 

001-00-D. Mention of trade names or commercial products in this article is solely for the 492 

purpose of providing specific information and does not imply recommendation or endorsement 493 

by the USDA. The USDA is an equal opportunity provider and employer. L.M. was supported 494 

in part by AFRI grant numbers 2020-67015-31398 and 2021-67015-33409 from the United 495 

States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA). 496 

R.X. was supported by Australian Research Council’s Discovery Projects (DP200100499). All 497 

the funders had no role in study design, data collection and analysis, decision to publish or 498 

preparation of the manuscript. 499 

We thank all the researchers who have contributed to the publicly available data used in this 500 

research. For the purpose of open access, the author has applied a Creative Commons 501 

Attribution (CC BY) license to any Author Accepted Manuscript version arising from this 502 

submission. 503 

Author contributions 504 

Study design: Zhe Zhang, L.F., F.Z., Y.Z.; Genotype and phenotype data preprocessing: Zhiting 505 

Xu, Z.Zhong, H.Zeng, Xiaoqing Wang, L.S., Xue Wang, Y.Wang, Zipeng Zhang, Y.Lin, C.W., 506 

J.Z., X.Z., Q.L., J.T., S.D., Yuqiang Liu, X.Pan, X.F., R.L., Z.S., C.C., Q.Zhu.; Genotype 507 

imputation: Z.Zhong, Zhiting Xu, H.Zeng, Xiaoqing Wang, H.Y.; Individual GWAS and meta-508 

GWAS analyses: Zhiting Xu, Z.Zhong , B.L., H.Zeng, C.W., Xiaoqing Wang; QTL validation: 509 

Q.L., Z.C., Zhiting Xu; GWAS and multi-omics data integration: X.C., Q.L., J.T., J.W., Zhiting 510 

Xu; Genetic parameter estimation: Q.L., W.Z., S.S., Y.Wu.; Comparison of pig GWAS with 511 

human GWAS: Q.L., Y.Wu., Z.B.; Critical interpretation of analytical results: L.F., Zhe Zhang, 512 

B.L., J.T., Y.G., G.E.L., P.K.M., M.F., S.L., F.Z, Y.Z., Q.Zhang, G.E.L., X.S., R.X., L.M., 513 

M.S.L., G.Sahana, G.Su, Yang Liu, P.L.; Contribution of data and computational resources: Zhe 514 

Zhang, L.F., F.Z., Y.Z., Q.Zhang, Y.C., J.L., X.D., X.Li, M.L., G.T., M.F., P.K.M., A.C., M.A., 515 

D.C.P., M.B., R.H., P.L., X.Y., H.Zhang, X.Liu, D.M., Y.P., Q.W., K.L., L.B., Z.Zhou, Zhong 516 

Xu, X.Peng, S.M.; Drafting the manuscript: Zhe Zhang, L.F., Zhiting Xu, Q.L.. All authors read, 517 

edited, and approved the final manuscript. 518 

Competing interests 519 

The authors declare no competing interests. 520 

  521 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2023. ; https://doi.org/10.1101/2023.10.09.561393doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561393
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures and legends 522 

 523 

Figure 1. The overall study design and summary of genotypes and phenotypes.  524 

(a) Overview of study design. Genotyping arrays: Illumina Porcine SNP60K Bead Chip (N = 525 

10,870), the GeneSeek Genomic Profiler (GGP) Porcine SNP80 BeadChip (N = 4,724), the GGP 526 

Procine SNP50 BeadChip (N = 29,789), the KPS Porcine Breeding Chip (N = 21,618), the 527 

GenoBaits Porcine SNP50K BeadChip (N = 454) and low-coverage sequence (N = 2,873). WGS: 528 

Whole genome sequence. GWAS: genome-wide association study. TWAS: transcriptome-wide 529 

association study. SMR: summary data-based Mendelian randomization. (b-c) Principal component 530 

analysis of PGRP (b) and GWAS (c) populations, which were conducted based on all 57,600 531 

individuals (samples with genotype data) and a total of 1,603 shared array SNPs using PLINK 532 

(v1.90)34 (parameters: --geno 0.1 --mind 0.1 --indep-pairwise 50 5 0.5 --maf 0.01 and --pca 10). The 533 

first two principal components were plotted using the geom_point function from ggplot2 (v3.3.6) in 534 

R (v4.1.2). (d) The imputation accuracy of PGRP in independent WGS data. This was 93.34% ± 535 

7.64% for Duroc pigs (commercial breed and within PGRP) and 91.13% ± 10.49% for Suhuai pigs 536 

(domesticated breed and outside PGRP). The imputation accuracy was calculated as the 537 

concordance rate between the imputed and observed genotypes. (e) The total sample size for each 538 
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trait in meta-GWAS analyses. Traits were classified into five main categories. 539 

 540 

 541 
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Figure 2. Summary and validation of quantitative trait loci (QTL) for pig complex 542 

traits.  543 

(a) The number of QTL for 12 sub trait-categories. (b) Fuji-plot summarizes the 6,878 lead SNPs 544 

(P < 5×10-8) identified in 169 meta-GWAS analyses. It was completed using the Fuji-plot script 545 

developed by Kanai et al.42 The inner-most ring (ring 1) indicates the number of traits associated 546 

with each SNP. Rings 2-170 indicate the 169 traits. The order of traits is shown in Table S3 (starting 547 

with the inner-most ring). The points indicate the genomic position of the 6,878 SNPs associated 548 

with the traits. (c) Pearson correlation between sample size and the number of lead SNPs (P < 5×549 

10−8) in 169 meta-GWASs with lead SNPs detected. (d) Pearson correlation between heritability 550 

and the number of lead SNPs (P < 5×10−8) in 27 meta-GWASs (sample size > 15,000). Heritability 551 

was estimated using LD score regression (LDSC)43. The Pearson correlation coefficient in (c-d) was 552 

calculated by the cor.test function in R. (e) Results of genomic predictions for individuals from 553 

several pig breeds in the PGRP with large phenotype differences, based on a linear mixed model 554 

and genomic information from suggestive lead variants (P < 1×10-5) in the total number born alive 555 

(M_NBA). The x-axis labels indicate the different pig breeds. The y-axis labels indicate the genomic 556 

estimated breeding values (GEBVs). The black error bars are the standard errors of GEBVs. (f) The 557 

number of different categories of QTLs detected in individual GWAS and meta-GWAS. (g) 558 

rs320375241 associated with Average daily gain (M_ADG) in individual GWASs of population a, 559 

b, and c and meta GWAS, respectively. The a, b, and c were three random populations for M_ADG. 560 

 561 
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 562 

Figure 3. Distribution and functional annotation of QTLs.  563 

(a) Manhattan plots of backfat thickness (BFT) meta-analysis in Duroc (top), Landrace (middle) 564 

and Yorkshire (bottom). Colors and shapes indicate the breed specificity of SNPs with m-values > 565 

0.9. (b) Distribution of MAFs in three breeds of traits-associated SNPs detected only in the current 566 

breed. (c) Distribution of the absolute values of the z-score of SNPs associated with traits detected 567 
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in different numbers of breeds on traits. The significance of differences between groups was 568 

calculated by the t.test function in R. (d) Enrichment of trait-associated SNPs detected in different 569 

numbers of breeds in gene regions with different degrees of tissue sharing. (e) Enrichment of trait-570 

associated SNPs detected in different numbers of breeds in different categories of genomic regions, 571 

conserved elements and regulatory elements. (f) Local Manhattan of meta-analysis of M_BFT (top), 572 

Loin muscle depth (M_LMDEP) (middle), and M_ADG (bottom) on chromosome 1. (g) Density 573 

plot of the number of traits for which SNPs associated (m-value > 0.9). (h) Distribution of the 574 

absolute values of the z-score of SNPs associated with different numbers of traits (m-value > 0.9).  575 

 576 
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 577 

Figure 4. Exploiting the PigGTEx resource to decipher regulatory mechanisms of 578 

GWAS loci.  579 

(a) Results of annotation and enrichment of lead SNP and genome-wide level significant SNPs in 580 

different categories of genomic regions, conserved elements and regulatory elements. The red dots 581 

indicate the proportion of associated SNPs located in category C. The bars indicate the enrichment 582 

for category C. Significance was indicated by *, ** and *** for P < 0.05, 0.01 and 0.001, 583 
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respectively. (b) The mean DNA sequence constraints (PhastCons scores of 100 vertebrate genomes) 584 

for lead SNPs in each trait and non-lead SNPs matched with lead SNPs for linkage disequilibrium 585 

(within 0.1) and minor allele frequency (MAF) (within 0.02). The ks.test function of R (v4.1.2) is 586 

used to test the difference between groups. (c) The heritability enrichment for five types of 587 

molecular cis-QTLs in 18 main traits. The dashed line represented the enrichment fold = 1. The 588 

error bar represented the standard error of the enrichment fold. cis-eQTL: gene expression QTL, 589 

cis-sQTL: splicing QTL, cis-eeQTL: exon expression, cis-lncQTL: lncRNA expression QTL, cis-590 

enQTL: enhancer expression QTL. The details of trait names are described in Table S4. (d) The 591 

estimated total SNPs heritability contributed by different ranks of independent molecular QTL 592 

(molQTL) in Muscle for 268 complex traits. Rank=1, 2 and >2 represented the first, secondary and 593 

more than secondary independent molQTLs, respectively. Significance was indicated by *** for 594 

P < 0.001, which was obtained by the Wilcox test. (e) The heritability enrichment for the genes of 595 

seven tissue-sharing gradients in 59 complex traits. The red color represented the scaled heritability 596 

enrichment fold. Black borders indicated heritability enrichment fold greater than 1. The “*” 597 

indicated heritability significant enrichment (Normal test, P < 0.05). Column clusters were produced 598 

by the dist function with the “euclidean” method and the hclust function with the “complete” method 599 

in R. The heatmap was plotted by ggplot2 package (v3.3.2) in R (v4.2.1). (f) The lead SNP 600 

rs1108824455 in backfat thickness (M_BFT) was also eQTL of LGALS13 (tissue-specific 601 

magnitude = 10) in five tissues. The top local Manhattan plot was the GWAS of M_BFT for the lead 602 

variant (rs1108824455). The middle local Manhattan plot was the eQTL mapping of LGALS13 for 603 

all of the tissues. (g) The lead SNP rs324200444 in average daily gain (M_ADG) was also eQTL of 604 

ABCC10 (tissue-sharing magnitude = 33) in four tissues. The top local Manhattan plot was the 605 

GWAS of M_ADG for the lead variant (rs324200444). The middle local Manhattan plot was the 606 

eQTL mapping of ABCC10 for all of the tissues. Shapes in (f-g) indicate different tissues. The filled 607 

colors in (f-g) represent linkage disequilibrium. The diagram below in (f-g) indicates the positions 608 

and strand direction of genes in the locus.  609 

 610 
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 611 

Figure 5. Tissue-specific regulation of GWAS loci.  612 

(a) Enrichment results for significant associated SNPs of 19 main traits with large sample sizes in 613 

tissue-specific functional regions (the top 1,000 tissue-specific highly expressed genes per tissue 614 

and their upstream and downstream 100kb regions) in each of 34 tissues. Colors indicate enrichment 615 

fold. Rows indicate traits and columns indicate tissues. Enrichment for trait-tissue pairs ET = pT 616 

(proportion of significant SNPs for trait Tr located in functional regions of tissue Ti)/qT (proportion 617 
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of all SNPs located in functional regions of tissue Ti), which calculated by BEDTools v2.25.057. 618 

Associated SNPs were resampled 1,000 times with MAF within 0.02 and LD within 0.1 matched to 619 

calculate enrichment significance. An ET greater than one and P less than 0.05 indicates that 620 

associated SNPs are significantly enriched in functional regions of tissue Ti. (b) The association of 621 

UGT2B31 with litter weight (weaning) (M_TLWT_Weaning). The top one Manhattan plot 622 

represents the gene-based GWAS results of M_TLWT_Weaning. The top two Manhattan plot 623 

represents the single-tissue TWAS results of M_TLWT_Weaning in the liver. Followed by the two 624 

following Manhattan plots show the colocalization of M_TLWT_Weaning GWAS (up) and cis-625 

eQTL (down) of UGT2B31 on chromosome 8 in the liver. The blue triangles indicate the colocalized 626 

variants of UGT2B31 in the liver (rs344053754). The bottom panel is for chromatin states around 627 

UGT2B31 on chromosome 8. (c) The association of MRAP2 with average daily gain (M_ADG). 628 

The top one Manhattan plot represents the gene-based GWAS results of M_ADG. The top two 629 

Manhattan plot represents the single-tissue TWAS results of M_ADG in the milk. Followed by the 630 

two following Manhattan plots show the colocalization of M_ADG GWAS (up) and cis-eQTL 631 

(down) of MRAP2 on chromosome 1 in the milk. The blue triangles indicate the colocalized variants 632 

of MRAP2 in milk (rs340663967). The bottom panel is for chromatin states around MRAP2 on 633 

chromosome 1. 634 

 635 

 636 

Figure 6. Comparison of complex trait genetics between humans and pigs.  637 

(a) The heritability enrichment fold between human and pig complex traits is calculated by 638 

LDSC. Colors indicate trait categories. (b) The alluvium-stratum plot showed the correlation 639 

between human and pig complex traits. The alluvium between human-pig trait pairs indicates 640 

the heritability enrichment fold > 1 and the P < 0.05. Colors indicate trait categories. (c) The P 641 

value was derived from the Pearson’s correlation test of traits between humans and pigs, which 642 

was estimated by the absolute Z score of homologous variants from GWAS summary statistics. 643 

Each point is a trait pair. The red line is the corrected significant threshold (P = 0.05 / 136). Top 644 

trait pairs are labeled. (d-f) Similar regulatory mechanisms between body fatness rate (BFR) in 645 

humans and average daily gain (D_ADG) in pigs. (d) The top is a local Manhattan plot of 646 
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GWAS for D_ADG in pigs. The bottom is a local Manhattan plot of GWAS for BFR in humans. 647 

The red triangles represent homozygous variants of humans (rs11877146) and pigs 648 

(rs322242884). Colored dots indicate LD with the homozygous variants. (e) Top and bottom 649 

are the effects of homozygous variants in (d) on the expression of homozygous gene NPC1 in 650 

muscle of pigs and humans, respectively. (f) Top and bottom are the effects of homologous 651 

variants in (d) on the expression of the homologous gene TMEM241 in the brains of pigs and 652 

humans, respectively. The significance tests in (e-f) were performed by the wilcox.test function 653 

of the ggsignif package in R (v4.2.1). 654 

 655 

 656 

 657 

 658 

  659 
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 660 

Methods 661 

Ethics 662 

This is not applicable because no biological samples were collected, and no animal handling 663 

was performed for this study.  664 

GWAS dataset 665 

In total, we collected 70,328 pigs with genotype and phenotype data from 59 study populations 666 

(14 public populations) covering 14 pig breeds (Table S1). We conducted comprehensive data 667 

preparation and standardization for the study data regarding phenotype and genotype according 668 

to the previously published protocol65. 669 

Genotype data 670 

We genotyped these pigs from these 59 populations using low-coverage sequence (N = 2,873) 671 

or genotyping arrays, including the Illumina Porcine SNP60K Bead Chip (N = 10,870), the 672 

GeneSeek Genomic Profiler (GGP) Porcine SNP80 BeadChip (N = 4,724), the GGP Procine 673 

SNP50 BeadChip (N = 29,789), the KPS Porcine Breeding Chip (N = 21,618), the GenoBaits 674 

Porcine SNP50K BeadChip (N = 454). We constructed a standard pipeline to uniformly process 675 

individual-level genotype data for all 59 populations. Briefly, we first converted the coordinate 676 

of the genomic version of genotype data to the Sscrofa11.1 (v100) and only kept the autosomal 677 

biallelic SNPs. To remove the outliers within each population, we performed principal 678 

component analysis (PCA) for each of the 59 populations using PLINK (v1.9)34 based on LD-679 

independent SNPs with parameter: “--mind 0.1 --geno 0.9 --maf 0.01 --indep-pairwise 50 5 0.5 680 

-- pca 10”. We visualized the principal components (PCs) of each population in R (v3.4.3) and 681 

then excluded a total of 1,086 individuals who were outliers using PLINK (v1.9). Finally, we 682 

retained 69,242 individuals for downstream analyses, including 20,706 Duroc pigs, 34,540 683 

Yorkshire pigs, 9,159 Landrace pigs and 4,837 other pigs. 684 

Genotype imputation 685 

To obtain genotype data at whole-genome sequence (WGS) level, we performed genotype 686 

imputation for each population based on multi-breed Pig Genomics Reference Panel (PGRP v1) 687 

from PigGTEx33, which consists of 42,523,218 autosomal biallelic SNPs from 1,602 WGS 688 

samples covering over 100 pig breeds. We firstly removed duplicate alleles from array data 689 

using PLINK (v1.9)34 with parameter: “--list-duplicate-vars ids-only suppress-first, --exclude 690 

plink.dupvar --recode vcf bgz” and kept biallelic SNPs using BCFtools (v1.9)57. We then 691 

employed conform-gt program (http://faculty.washington.edu/browning/conform-gt.html) to 692 

revise strand inconsistencies of SNPs based on pre-phasing genotype data66. We imputed the 693 

genotype data of target populations to sequence level using Beagle (v5.1)67 and filtered out 694 

variants with dosage R-squared (DR2) < 0.8 and MAF < 0.01 within each population. Finally, 695 

we retained a total of 28,297,603 SNPs across all 59 populations for downstream analysis 696 

(Table S1). 697 

To evaluate the accuracy of genotype imputation, we employed two strategies (Fig. S1a). (1) 698 

We conducted 20 rounds of five-fold cross-validation using genotype data or 60,720 samples 699 

from 53 GWAS populations that had individual-level genotype data. Specifically, in each round 700 

of cross-validation, we randomly selected 20% of SNPs in chromosome 6 of the target panel as 701 
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a validation set and imputed them using PGRP as a reference panel via Beagle (v5.1). We 702 

measured the imputation accuracy by calculating the concordance rate and Pearson’s 703 

correlation between the imputed and true genotypes in the validation set. (2) We obtained 65 704 

WGS samples from NCBI that were independent of PGRP, comprising of 35 Duroc pigs 705 

(PRJNA712489) and 30 Suhuai pigs (PRJNA791712) (Table S2). We employed Trimmomatic 706 

(v0.39)68 to filter out the adaptors and low-quality reads, mapped clean reads to Sus scrofa11.1 707 

(v100) using BWA-MEM (v0.7.5a-r405) with default parameters69, and marked duplicated 708 

reads using Picard (v2.21.2) (http://broadinstitute.github.io/picard/). We called SNPs for these 709 

samples using Genome Analysis Toolkit (GATK) (v4.1.4.1)70 with parameter: “QD> 2, MQ < 710 

40, FS > 60, SOR > 3, MQRankSum < -12.5 and ReadPosRankSum < -8”, resulting in 711 

17,182,138 and 15,696,890 biallelic autosomal SNPs for Duroc and Suhuai, respectively. For 712 

the purpose of evaluating the accuracy of genotype imputation, we masked SNPs that were not 713 

overlapped with these SNPs obtained from SNP array and then imputed them to WGS level 714 

using PGRP as reference panel via Beagle (v5.1). Finally, we calculated the concordance rate 715 

and Pearson’s correlation between imputed genotypes with DR2 > 0.8 and MAF > 0.01 and 716 

those called directly from the WGS.  717 

Phenotype data 718 

A total of 286 complex traits (15 binary traits and 271 continuous traits) were available for the 719 

59 populations (Table S3), which belonged to five main trait-categories (i.e., Reproduction, 720 

Meat and Carcass, Health, Production, and Exterior) and 17 sub trait-categories (i.e., Litter, 721 

Reproductive, Growth, Reproductive organs, Blood parameters, Immune capacity, Anatomy, 722 

Fatness, Fatty acid content, Feed conversion, Conformation, Meat color, Chemistry, Feed intake, 723 

pH, Texture, and Behavioral).  724 

In particular, 49 out of 286 traits have phenotypic records in multiple time points for the same 725 

individual (e.g., sperm traits and litter sizes, detailed in Table S3) and were referred to as 726 

“multiple time points trait” (i.e., MT-trait). For these 49 MT_traits, we calculated the de-727 

regressed proofs (DRP) as their phenotype measures using DMU (v6-R5-2-EM64T)71. We first 728 

estimated breeding values (EBV) in each population based on pedigree information using a 729 

single-trait repeatability model implemented in the DMUAI module of DMU. The statistical 730 

model is: 731 

𝐲 = 𝐗𝐛 + 𝐙𝟏𝐚 + 𝐙𝟐𝐩𝐞 + 𝐞, 732 

where y is the vector of phenotypic values for all individuals; b is the vector of the effects of 733 

covariates (e.g., year-season of ejaculation, age of pigs at months or collection interval (days)); 734 

𝐚~𝑁(0, 𝐀𝜎𝑎
2) is the vector of additive genetic effects, with A and 𝜎𝑎

2 denoting the pedigree-735 

based additive genetic relationship matrix and additive genetic variance; 𝐩𝐞~𝑁(0, 𝐈𝜎𝑝𝑒
2 ) is the 736 

vector of permanent environmental effects with 𝜎𝑝𝑒
2   denoting the identity matrix and the 737 

permanent environmental variance; X, 𝐙𝟏 , and 𝐙𝟐  are the incidence matrices assigning 738 

observations to covariates effects, additive genetic effects, and permanent environmental effects, 739 

respectively; 𝐞~𝑁(0, 𝐈𝜎𝑒
2) is the vector of random residual effects, with I and 𝜎𝑒

2 denoting 740 

the identity matrix and the residual variance. To eliminate the bias from relatives, we calculated 741 

the DRP and weights for each pig using the methods described by Garrick et al.72 with the 742 

following model: 743 

[
𝒁𝑃𝐴

, 𝒁𝑃𝐴 + 4𝑘 −2𝑘

−2𝑘 𝒁𝑖
, 𝒁𝑖

] [
𝑃𝐴

𝐸𝐵𝑉𝑖
] = [

𝑦𝑃𝐴
∗

𝑦𝑖
∗ ], 744 

where 𝑦𝑖
∗ is information equivalent to a right-hand-side element pertaining to the individual, 745 
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𝑃𝐴 is the parental average EBV; EBVi is the EBV for animal i; 𝐙PA
, 𝐙PA and 𝐙i

, 𝐙i reflect the 746 

unknown information content of the parental average and individual (plus information from 747 

any of its offspring and/or subsequent generations). Their formulas were as follows: 748 

𝐙PA
, 𝐙PA = k(0.5α − 4) + 0.5k√α2 + 16/δ, 749 

𝐙i
, 𝐙i = δ𝐙PA

, 𝐙PA + 2k(2δ − 1), 750 

k = (1 − h2) h2⁄ , α = 1 (0.5 − RELPA),⁄  δ = (0.5 − RELPA) (1 − RELi)⁄ , 751 

DRP = yi
∗ =

−2kPA+(𝐙i
, 𝐙i+2k)EBVi

𝐙i
, 𝐙i

, 752 

RELDRP = 1 − k (𝐙i
, 𝐙i + k)⁄ , 753 

where h2 is the estimated heritability; 𝑅𝐸𝐿𝑃𝐴 is the reliability of the parental average EBV; 754 

𝑅𝐸𝐿𝑖 is the reliability of the EBV for animal i; RELDRP is the reliability of the DRP for animal 755 

i. The weights can be derived from 𝑤𝑖 =
1−ℎ2

[𝑐+(1−RELDRP) RELDRP⁄ ]ℎ2, where c= 0.2 is assumed to 756 

represent the proportion of genetic variation for which genotypes cannot account is 0.2. Finally, 757 

we used the DRP and weights for each pig above for the downstream association analysis. 758 

Individual GWAS 759 

We conducted individual GWAS for each trait in each population as described below and 760 

referred to this as “individual GWAS” throughout the manuscript (Table S3).  761 

For binary traits, we performed association analysis with a logistic mixed model using 762 

fastGWA-GLMM implemented in GCTA (v1.94.0)73. The statistical model is: 763 

logit(𝛍) = 𝐱𝐬𝛃𝐬 + 𝐗𝐜𝛃𝐜 + 𝐠, 764 

where 𝐲 is a vector of phenotypic values, 𝛍 is a vector of μi = P(yi = 1|xsi, Xci, gi) with 765 

𝜇𝑖 being the probability of subject 𝑖 being a case given the subject’s genotype 𝑥𝑠𝑖, covariates 766 

𝑋𝑐𝑖 and random genetic effect 𝑔𝑖; 𝐱𝐬 is a vector of genotype variables of a variant of interest 767 

with its effect βs ; Xc  is the incidence matrix of fixed-effect covariates (farms, sex, year, 768 

season and the first five genotype PCs) with their corresponding coefficients βc; 𝑔 is a vector 769 

of effects that capture genetic and common environmental effects shared among related 770 

individuals, 𝐠~N(0, 𝐆σg
2)  with 𝐆  being the sparse GRM with all the small off-diagonal 771 

elements (for example, those <0.05) set to zero and σg
2  being the corresponding variance 772 

component. 773 

For quantitative traits, we performed association analysis with a mixed linear model using 774 

fastGWA implemented in GCTA (v1.94.0)74. The statistical model is: 775 

𝐲 = 𝐱𝐬𝛃𝐬 + 𝐗𝐜𝛃𝐜 + 𝐠 + 𝐞, 776 

where 𝐲, 𝐱𝐬, 𝛃𝐬, 𝐗𝐜, 𝛃𝐜 and 𝐠 are the same as those in the above logistic mixed model; 𝑒 777 

is the vector of residuals with 𝐞~N(0, 𝐈σe
2). 778 

Specifically, for 49 MT-traits, we employed MMAP (v2021_08_19_22_30.intel) 779 

(https://mmap.github.io/) to perform association analysis based on their DRP and weights for 780 
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each pig. We conducted the individual GWAS based on a mixed linear model: 781 

𝐘 = 𝟏𝛍 + 𝐗𝐛 + 𝐠 + 𝒆 782 

where y is the vector of DRP for the given trait, μ is the global mean, and 1 is a vector of ones; 783 

X is the genotype of a candidate variant (coded as 0, 1, or 2 copies of the minor allele) for the 784 

animals with observations in y, and b is a vector of marker effects; g is a vector of polygenic 785 

effects accounting for population structure with 𝐠~𝑁(0, 𝐆𝜎𝑔
2), where the genomic relationship 786 

matrix (G) was built using the imputed SNPs and 𝜎𝑔
2 is the genetic variance, and e is a vector 787 

of random residual errors with 𝒆~𝐍(0, 𝐑𝜎𝑒
2), where 𝜎𝑒

2 is residual error variance and R is a 788 

diagonal matrix that adjusts 𝜎𝑒
2 to account for the heterogeneous variance of DRP for each pig, 789 

the weights included in R. 790 

Meta-analysis of GWAS 791 

To enable individual GWASs from different populations to be comparable in the meta-analysis, 792 

we checked all summary statistics based on EasyQC65.  793 

First, to detect issues related to trait transformations, we first examined the relationship 794 

between the inverse of the median standard error of all SNPs beta estimates and the square root 795 

of the sample size (SE-N plot) across multiple study files for each trait. For outliers, we 796 

examined the raw phenotype data and reran association analysis. The calibration factor c of the 797 

SE-N plot was approximated from the autosomal SNPs of the PGRP reference panel as 798 

𝑐~median (
1

√2MAF𝑗(1−𝑀𝐴𝐹𝑗)

). Second, we examined the analytical issues for each study by 799 

comparing the reported P values of each SNP with the P values computed from the Z-statistics 800 

(Z-statistics = 𝛽𝑗/𝑆𝐸(𝛽)𝑗) based on reported beta estimate and standard error (P-Z plots). Third, 801 

we plotted the effect allele frequency (EAF) from study-specific against EAF from PGRP to 802 

identify strand issues or allele miscoding that could severely reduce statistical power. Fourth, 803 

we grasped the potential problems with population stratification by the genomic control (GC) 804 

inflation factor (λGC, from 0.86 to 2.39 with an average of 1.11). After we reconstructed the 805 

association analyses by using the first five principal components as additional covariates, the 806 

λGC decreased (from 0.56 to 1.58 with an average of 1.04). Fifth, we excluded SNPs with 807 

missing or nonsensical information (e.g., P values < 0 or >1, or non-numeric values such as 808 

“NA”) from summary statistics. 809 

We performed meta-analyses on the cleaned GWAS results for each trait using METAL 810 

(v2011-03-25)75, based on an inverse variance-weighted fixed effects model that weights effect 811 

size estimates according to estimated standard errors and allows for different population 812 

frequencies of genotypes and alleles. Genomic control correction was applied for all input files 813 

in the analysis. SNPs included in the meta-analysis were present in at least one individual 814 

GWAS, and the total number of SNPs for each trait is shown in Table S4. 815 

Definition of QTL 816 

For both individual GWASs and meta-GWAS, we used P < 5.0 × 10-8 as the genome-wide 817 

significance threshold and defined lead SNPs and QTLs on the basis of genomic position. For 818 

each GWAS summary, we defined the significant SNP with the smallest P-value in each 819 

chromosome as the first lead SNP and the significant SNP with the smallest P-value outside the 820 

1Mb-region upstream and downstream of the first lead SNP as the second lead SNP. This 821 

process was iterated until no significant SNPs were left in that chromosome. Different traits 822 
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can share lead SNPs. We defined the two most distant significant SNPs within 0.5Mb on each 823 

side of the lead SNPs as the boundaries of the QTLs. In addition, we performed a stepwise 824 

conditional analysis to extend the candidate regions and define broad QTLs, in which adjacent 825 

significant SNPs within the broad QTL region are within 1Mb apart. 826 

QTL Validation 827 

To validate the QTL regions we identified, we used the following three strategies. 828 

First, we compared the QTL regions with those for the same traits reported in the Pig 829 

Quantitative Trait Locus (QTL) database (Pig QTLdb version 46)23 830 

(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index). We performed a filtering process 831 

on the downloaded QTL regions, excluding those with missing start/end position information 832 

and those smaller than 1bp or larger than 1Mp. This resulted in a final retention of 302,784 833 

autosomal QTL regions. Among these, we successfully matched 151 traits with traits in our 834 

study. Regions, where there was at least 1bp of overlap with the same trait, were considered 835 

successfully validated (defined as ‘TRUE’), while those without overlap were classified as 836 

‘FALSE’. 837 

Second, we validated the QTL regions in independent populations. For this, we performed 838 

nine individual GWASs for average daily gain (ADG) on a total of 42,790 pigs, 88,984 pigs, 839 

and 69,606 pigs from three populations of Duroc, Landrace, and Yorkshire, respectively, using 840 

the MLMA model of GCTA (v1.94.0)76. This statistical model was consistent with one of the 841 

fastGWA models used in our study. Subsequently, we conducted within-breed meta-GWAS 842 

analyses and all-breed meta-analysis using the same method as in this study. We identified the 843 

QTL regions in these meta-analyses using the same method as in our study and calculated the 844 

enrichment fold of these regions in the QTL regions of ADG detected in our study. 845 

Third, we used information on suggestively significant lead SNPs (P < 1.0 × 10-5) for breed-846 

level genomic prediction to validate the functional reliability of the QTLs. For this, we 847 

performed genomic predictions in seven pig breeds from PGRP, including 54 Meishan, 24 848 

Erhualian, 41 Jiaxinghei, 226 Yorkshire, 51 Landrace, 138 Duroc, and 43 Pietrain pigs. We 849 

extracted the genotypes of the lead SNPs from PGRP using Bcftools (v1.9)57 and their effect 850 

sizes from GWAS summary statistics. Whereafter, we used a linear mixed model to fit the 851 

genotype and effect size for genomic prediction in each breed. The model formula we used for 852 

each breed was: 853 

𝑦 = ∑ 𝑍𝑖

𝑀

𝑖=1

𝑔𝑖 854 

where 𝑦 is a vector of predicted phenotypes, 𝑔𝑖 is the effect size of lead SNP 𝑖 in GWAS 855 

summary statistics, 𝑍𝑖 is the vector of the genotype of lead SNP 𝑖 containing 0, 1 and 2. We 856 

fitted the model using R v 4.2.1. 857 

Pleiotropic variants across breeds and traits 858 

To identify variants with effects on traits shared among breeds, we extracted the effect sizes 859 

and standard errors of lead SNPs from a total of 36 meta-analyses for 12 traits in Duroc, 860 

Landrace and Yorkshire pigs. We then used METASOFT (v2.0.1)44, a procedure that corrects 861 

for the effect of sample size on association analysis, to calculate the posterior probability of the 862 

lead SNP effect for each trait in each breed. We employed the same method to identify GWAS 863 

variants with pleiotropic effects on multiple traits. We considered an M-value greater than 0.9 864 
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as evidence of an effect. 865 

Annotation and enrichment of significant/lead variants in functional categories  866 

To investigate the molecular mechanisms of significant/lead SNPs, we examined multiple 867 

layers of biological data.  868 

First, we annotated significant/lead SNPs in several genomic categories: (i) 20 genomic 869 

variants, including intron variants and intergenic region variants, using SnpEff (v.4.3)77. (ii) the 870 

seven groups categorized by genomic locations with respect to protein-coding genes, i.e., CDS, 871 

promoter (100kb upstream and downstream of the protein-coding gene TSS), 5’UTR + 2kb 872 

upstream, 3’UTR + 2kb downstream, protein-coding genes, non-protein-coding genes, and 873 

intron regions. (iii) the downloaded mammalian conserved elements identified from Multiple 874 

Sequence Alignments (MSA) using the Genomic Evolutionary Rate Profiling (GERP) software 875 

based on 103 mammals (https://ftp.ensembl.org/pub/release-100/bed/ensembl-876 

compara/103_mammals.gerp_constrained_element/). (iv) the 14 chromatin states detected 877 

from 14 major pig tissues78 to investigate the regulatory function. (v) the tissue-specific 878 

functional regions of 34 tissues in FarmGTEx33. Here, we borrowed the top 1,000 tissue-879 

specific highly expressed genes, along with their upstream and downstream 100kb regions in 880 

each tissue, to represent the tissue-specific functional regions. 881 

Second, we estimated the enrichment and significant P-value of significant/lead SNPs across 882 

the various genomic categories. For genomic variants, we used the oddsratio function of fmsb 883 

(v0.7.5) package79 in R (v4.1.2) to perform enrichment and estimate significance. The 884 

enrichment for category C (EC) = pC (proportion of significant/lead SNPs located in category C) 885 

/ qC (proportion of all SNPs located in category C). For the genomic regions of protein-coding 886 

genes, conserved elements, chromatin states and tissue-specific functional regions, we used two 887 

methods to estimate the enrichment: (i) we employed the R/Bioconductor package locus 888 

overlap analysis (LOLA v1.22.0)80 to estimate the enrichment and P-values, and (ii) we used 889 

BEDTools (v2.25.0)57 to estimate the enrichment. The enrichment for category C (EC) = pC 890 

(proportion of category C in all significantly enriched trait-category pairs ET) / qC (proportion 891 

of category C in the genome). Here, the enrichment for trait-category pairs ET = pT (proportion 892 

of significant/lead SNPs for trait T located in category C)/qT (proportion of all SNPs located in 893 

category C). We performed a permutation test by resampling the association signals 10,000 894 

times to determine if the observed SNPs located in the annotation category were greater than 895 

expected by chance, using the R package regioneR (v1.24.0)81. Additionally, we resampled the 896 

SNPs matching the MAF (within 0.02) and LD (within 0.1) of the association signals 1,000 897 

times for the permutation test. An EC greater than one and a P-value less than 0.05 indicated 898 

that significant/lead SNPs were significantly enriched in category C. 899 

In addition, to understand the evolutionary sequence conservation of association variants, we 900 

downloaded PhastCons scores for 100 vertebrate species from UCSC 901 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/hg38.100way.phastCons902 

/). We converted the Wiggle files of PhastCons scores to BED files using the BEDOPS tool 903 

(v2.4.40)82, and then we lifted them over from the human genome 38 (h38) to Sscrofa11.1 using 904 

UCSC's LiftOver tool83.  905 

Summary-based genetic parameter estimation 906 

To estimate the genetic parameters for all pig complex traits, we first harmonized all 268 GWAS 907 

summary data using the munge_sumstats.py function of the linkage disequilibrium score 908 

regression (LDSC v1.0.1)43 with parameters: “--sumstats --N –out”, and estimated linkage 909 
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disequilibrium (LD) score from PGRP using PLINK (v1.90)34 with parameter: “--ld-wind-kb 910 

1000”. Second, we estimated the narrow-sense heritability for complex traits based on summary 911 

using LDSC (v1.0.1) with parameters: “--h2, --ref-ld-chr, --w-ld-chr and --out”.  912 

Heritability enrichment of regulatory variants  913 

To investigate the impact of regulatory variants on complex traits, we extracted significant cis-914 

molQTLs from five molecular phenotypes in 34 tissues, including 2,930,627 cis-eQTLs for 915 

protein-coding gene expression, 2,842,703 cis-eeQTLs for exon expression, 2,628,257 cis-916 

sQTLs for alternative splicing, 2,703,774 cis-enQTLs for enhancer and 2,056,718 cis-lncQTLs 917 

for lncRNA33. We used the BLD-Thin model of LDAK (v5.0)84 to estimate the heritability and 918 

performed heritability enrichment analysis for these molQTLs in 169 meta-GWAS summaries 919 

that detected lead SNPs using an optional parameter: “--check-sums NO”.  920 

To further explore the effects of independent regulatory variants on complex traits, we divided 921 

independent eQTLs into three groups based on their rank for each eGene from muscle and liver 922 

tissues, including primary-, secondary- and third-rank independent eQTLs. We performed the 923 

same heritability enrichment analysis for these independent eQTLs in the 169 meta-GWAS 924 

summaries. We did not consider the results for enrichment folds less than 0. Additionally, we 925 

obtained P-values based on the enrichment fold and their standard errors using a one-sided 926 

normality test. We adjusted the P-value using the p.adjust function with the FDR method in R 927 

v4.2.1. The heritability enrichment with FDR < 0.05 was considered a significant pair. The 928 

formula for estimating the P-value was: 929 

𝑝 = 𝑛𝑜𝑟𝑚(
𝑥 − 0

𝜎
) 930 

Where 𝑥 represented the heritability enrichment fold, and 𝜎 was the standard error of the 931 

heritability enrichment fold. 932 

To evaluate the performance of heritability enrichment for independent molQTLs, we 933 

randomly selected the same number of MAF-matched SNPs for each rank of independent 934 

molQTLs for muscle and liver tissue and performed heritability enrichment. We extracted the 935 

total SNPs heritability contributed by each category to compare the performance of heritability 936 

enrichment. 937 

Heritability enrichment of tissue-sharing/specific genes on complex traits 938 

To investigate the regulatory patterns of tissue-sharing/specific genes for complex traits, we 939 

conducted heritability enrichment analysis of these genes in GWAS summaries using LDAK 940 

(the BLD-Thin model)84. Initially, we categorized protein-coding genes into seven groups (1-5, 941 

6-10, 11-15, 16-20, 21-25, 26-30, 31-34 tissues) based on the magnitude of tissue-942 

sharing/specificity derived from the cis-eQTL meta-analysis results across all 34 tissues33. 943 

Subsequently, we extracted significant cis-eQTLs for each gene and organized them according 944 

to their respective tissue-sharing/specific gene groups. Next, we randomly selected 500,000 945 

variants for each gene group to generate an annotation file. Finally, we used the annotation file 946 

to calculate the tagging file and conducted the heritability enrichment analysis. 947 

Colocalization of GWAS summary with cis-molQTL  948 

To investigate the contribution of molecular phenotypes to the genetic regulation of complex 949 

traits, we performed a colocalization analysis of molQTL and GWAS signals using fastENLOC 950 

(v1.0)85. The details of our colocalization methods have been described in our previous work33. 951 
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Summary-based transcriptome-wide association study (TWAS) 952 

To explore whether the overall cis-genetic component of a molecular phenotype is associated 953 

with complex traits, we conducted both single- and multi-tissue TWAS using S-PrediXcan86 954 

and S-MultiXcan in MetaXcan (v0.6.11)87, based on summary statistics from meta-GWASs. 955 

Our TWAS methods have been previously described in detail33. We applied the Bonferroni 956 

correction for multiple testing and considered a corrected P-value of less than 0.05 to be 957 

significant. 958 

Mendelian randomization (MR) analysis between molQTL and GWAS loci 959 

To infer the causality between molecular phenotypes and complex traits, we conducted an 960 

integrative MR analysis using the SMR tool (v1.03) with genetic variants as instrumental 961 

variables88. The method used has been previously described in detail33. To account for multiple 962 

testing, we applied the Bonferroni correction and defined a corrected P-value of less than 0.05 963 

as significant. 964 

 Finally, we prioritized variant-gene/exon/lncRNA/enhancer/splicing-tissue-trait circuits that 965 

were validated by at least one method, including TWAS, colocalization, and MR. These circuits 966 

exhibited significant tissue-trait associations in enrichment analyses of GWAS significant 967 

signals and tissue-specific functional regions.  968 

Heritability enrichment of human complex traits 969 

To investigate whether the regulatory mechanisms of complex traits were conserved between 970 

humans and pigs, we used lead variants with extended windows in 169 pig complex traits to 971 

determine the heritability enrichment in human complex traits. Initially, we obtained public 972 

GWAS summary statistics for 136 human complex traits, representing 18 trait domains (Table 973 

S10). We then mapped the genomic regions located 1 Mb upstream and downstream of the lead 974 

variants for each pig complex trait to the human genome (GRCh38/hg38) using UCSC’s 975 

LiftOver tool83. Subsequently, we implemented heritability enrichment analysis using these 976 

genomic regions for the 136 human complex traits by LDSC (v1.0.1)43. Finally, we selected 977 

human-pig trait pairs with a heritability enrichment fold greater than 1 and a P-value less than 978 

0.05 for further downstream analysis. 979 

We also conducted a validation study to evaluate the performance of heritability enrichment 980 

of pig QTL regions in humans. For this, we randomly selected QTL regions and performed 981 

heritability enrichment analysis. Initially, we removed the regions already mapped with pig 982 

QTL regions based on human genome information. Next, we randomly selected an equal 983 

number of regions with matching widths from the remaining human genome for each pig 984 

complex trait. Finally, we used these selected regions for heritability enrichment analysis on 985 

the summary statistics of 136 human complex traits. 986 

The correlation between humans and pigs in GWAS summary statistics 987 

To explore the correlation between pigs and humans in GWAS summary statistics, we first 988 

obtained homozygous variants shared between pigs (version: Sus scrofa11.1) and human 989 

(GRCh38/hg38) using LiftOver83. Second, we matched the homozygous variants for 268 pig 990 

GWAS summary statistics and 136 human GWAS summary statistics. Third, we performed a 991 

Pearson correlation test between the absolute value of the Z-score of homozygous variants from 992 

humans and pigs in R v4.2.1. We considered a threshold of 0.05/136=3.68×10-4 as significant 993 

for the trait pairs. 994 
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Reporting summary 995 

Further information on research design is available in the Nature Research Reporting Summary 996 

linked to this article. 997 

 998 
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