

1 **Title Page:**

2 **Integrating large-scale meta-GWAS and PigGTEx resources to decipher the**
3 **genetic basis of complex traits in pig**

4 Zhiting Xu^{1,†}, Qing Lin^{1,†}, Xiaodian Cai^{1,†}, Zhanming Zhong^{1,†}, Bingjie Li², Jinyan Teng¹,
5 Haonan Zeng¹, Yahui Gao^{1,3,4}, Zexi Cai⁵, Xiaoqing Wang⁶, Liangyu Shi⁶, Xue Wang⁷, Yi
6 Wang⁷, Zipeng Zhang⁷, Yu Lin⁸, Shuli Liu⁹, Hongwei Yin¹⁰, Zhonghao Bai⁵, Chen Wei¹, Jun
7 Zhou¹, Wenjing Zhang¹, Xiaoke Zhang¹, Shaolei Shi¹, Jun Wu¹, Shuqi Diao¹, Yuqiang Liu¹,
8 Xiangchun Pan¹, Xueyan Feng¹, Ruiqi Liu¹, Zhanqin Su¹, Chengjie Chang¹, Qianghui Zhu¹,
9 Yuwei Wu¹, The PigGTEx Consortium, Zhongyin Zhou¹¹, Lijing Bai¹⁰, Kui Li¹⁰, Qishan
10 Wang¹², Yuchun Pan¹², Zhong Xu¹³, Xianwen Peng¹³, Shuqi Mei¹³, Delin Mo¹⁴, Xiaohong
11 Liu¹⁴, Hao Zhang¹, Xiaolong Yuan¹, Yang Liu¹⁵, George E. Liu³, Guosheng Su⁵, Goutam
12 Sahana⁵, Mogens Sandø Lund⁵, Li Ma⁴, Ruidong Xiang^{16,17}, Xia Shen^{18,19,20}, Pinghua Li^{21,22},
13 Ruihuang Huang^{21,22}, Maria Ballester²³, Daniel Crespo-Piazuelo²³, Marcel Amills^{24,25}, Alex
14 Clop²⁴, Peter Karlskov-Mortensen²⁶, Merete Fredholm²⁶, Guoqing Tang⁸, Mingzhou Li⁸,
15 Xuewei Li⁸, Xiangdong Ding⁷, Jiaqi Li¹, Yaosheng Chen¹⁴, Qin Zhang²⁷, Yunxiang Zhao^{28,*},
16 Fuping Zhao^{6,*}, Lingzhao Fang^{5,*}, Zhe Zhang^{1,*}

17 ¹State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research
18 Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics
19 and Molecular Breeding, College of Animal Science, South China Agricultural University,
20 Guangzhou 510642, China

21 ²Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian EH25 9RG, UK

22 ³Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural
23 Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA

24 ⁴ Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
25 20742, USA

26 ⁵Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark

27 ⁶ Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China

28 ⁷College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

29 ⁸Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province,
30 Sichuan Agricultural University, Chengdu 611130, China

31 ⁹Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China

32 ¹⁰Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis
33 Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese
34 Academy of Agricultural Sciences, Shenzhen, 518124, China

35 ¹¹State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese
36 Academy of Sciences, Kunming, Yunnan 650223, China

37 ¹²Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou
38 310058, China

39 ¹³Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry
40 and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430064, China

41 ¹⁴State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou,
42 China

43 ¹⁵College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
44 China

45 ¹⁶Faculty of Veterinary & Agricultural Science, the University of Melbourne, Parkville, VIC 3052,
46 Australia

47 ¹⁷Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia

48 ¹⁸State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University,
49 Shanghai, China

50 ¹⁹Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine
51 (Guangzhou), Fudan University, Guangzhou, China

52 ²⁰Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK

53 ²¹Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China

54 ²²Key Laboratory in Nanjing for Evaluation and Utilization of Livestock and Poultry (Pigs)
55 Resources, Ministry of Agriculture and Rural Areas, China, Nanjing 210095, China

56 ²³Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries
57 (IRTA), Torre Marimon, Caldes de Montbui, Spain

58 ²⁴Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-
59 IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra 08193, Spain

60 ²⁵Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra
61 08193, Spain

62 ²⁶Animal Genetics and Breeding, Department of Veterinary and Animal Sciences, University of
63 Copenhagen, Frederiksberg C, 1870, Denmark

64 ²⁷College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018,
65 China

66 ²⁸College of Animal Science and Technology, Guangxi University, Nanning 530004, China

67

68 [†] Equal contribution

69 *Corresponding Authors:

70 **Zhe Zhang:** College of Animal Science, South China Agricultural University,
71 Guangzhou, China

72 E-mail: zhezhang@scau.edu.cn

73

74 **Lingzhao Fang:** Center for Quantitative Genetics and Genomics (QGG), Aarhus
75 University, Aarhus, Denmark

76 E-mail: lingzhao.fang@qgg.au.dk

77

78 **Fuping Zhao:** Institute of Animal Science, Chinese Academy of Agricultural Sciences,
79 Beijing, China

80 E-mail: zhaofuping@caas.cn

81

82 **Yunxiang Zhao:** College of Animal Science and Technology, Guangxi University, Nanning
83 530004, China

84 E-mail: yunxiangzhao@126.com

85

86 Emails: zhitingxu@126.com; qing_lin1996@126.com; cxt0804@163.com;
87 zhongzhanming204@163.com; Bingjie.Li@sruc.ac.uk; kingyan312@live.cn;
88 hnzeric@hotmail.com; gyhalvin@gmail.com; zexi.cai@qgg.au.dk; wangxiaoqing963@163.com;
89 liangyu_shi@whpu.edu.cn; xwangchnm@163.com; wangyi_chin@163.com;
90 zzp13226665505@126.com ; m16602823934@163.com; liushuli@westlake.edu.cn;
91 yinhongwei@caas.cn; bzh9738@gmail.com; weichenwif@126.com; ZJ13416297035@163.com;
92 ChinJ_Cheung@163.com; zxkstar@163.com; shisl@scau.edu.cn; junwu_99@163.com;
93 saradio@126.com; yuqiangliu123@126.com; pxc_816@126.com; wershinecho11@163.com;
94 ruiqi.liu@stu.scau.edu.cn; jankingsu@163.com; komorebjc@163.com; zhuqianghui07@163.com;
95 wyuw0102@foxmail.com; zhoushongyin@mail.kiz.ac.cn; bailijing0730@163.com; likui@caas.cn;
96 wangqishan@zju.edu.cn; panyc@zju.edu.cn; xz8907@163.com; pxwpal@163.com;
97 msqpaper@163.com; modelin@mail.sysu.edu.cn, liuxh8@mail.sysu.edu.cn;
98 zhanghao@scau.edu.cn; yxl@scau.edu.cn; yangliu@njau.edu.cn; George.Liu@usda.gov;
99 guosheng.su@qgg.au.dk; goutam.sahana@qgg.au.dk, mogens.lund@qgg.au.dk; lima@umd.edu;
100 ruidong.xiang@unimelb.edu.au; xia.shen@ed.ac.uk; lipinghua718@njau.edu.cn;
101 rhhuang@njau.edu.cn; maria.ballester@irta.cat; daniel.crespo@irta.cat; marcel.amills@uab.cat;
102 alex.clop@cragenomica.es; pkm@sund.ku.dk; mf@sund.ku.dk; tyq003@163.com;

103 mingzhou.li@sicau.edu.cn; xuewei.li@sicau.edu.cn, xding@cau.edu.cn; jqli@scau.edu.cn;
104 chyaosh@mail.sysu.edu.cn; qzhang@sdau.edu.cn; yunxiangzhao@gxu.edu.cn;
105 zhaofuping@caas.cn; lingzhao.fang@qgg.au.dk; zhezhang@scau.edu.cn

106 **Keywords:** Pig, GWAS, PigGTE, Complex traits, Meta-analysis

107 **Abstract**

108 Understanding the molecular and cellular mechanisms that underlie complex traits
109 in pigs is crucial for enhancing their genetic improvement program and unleashing their
110 substantial potentials in human biomedicine research. Here, we conducted a meta-
111 GWAS analysis for 232 complex traits with 28.3 million imputed whole-genome
112 sequence variants in 70,328 individuals from 14 pig breeds. We identified a total of
113 6,878 genomic regions associated with 139 complex traits. By integrating with the Pig
114 Genotype-Tissue Expression (PigGTEx) resource, we systematically explored the
115 biological context and regulatory circuits through which these trait-associated variants
116 act and finally prioritized 16,664 variant-gene-tissue-trait circuits. For instance,
117 rs344053754 regulates the expression of *UGT2B31* in the liver by affecting the activity
118 of regulatory elements and ultimately influences litter weight at weaning. Furthermore,
119 we investigated the conservation of genetic and regulatory mechanisms underlying 136
120 human traits and 232 pig traits. Overall, our multi-breed meta-GWAS in pigs provides
121 invaluable resources and novel insights for understanding the regulatory and
122 evolutionary mechanisms of complex traits in both pigs and humans.

123

124 **Introduction**

125 Pigs are globally recognized as one of the most important farm animals, with pork
126 production reaching 106.1 million tons in 2021¹. Understanding the genetic control of
127 complex phenotypes in pigs help us genetically maximize their production efficiency²,
128 and improve their health and welfare^{3,4}, while minimizing environmental challenges^{5,6}
129 through advanced precision breeding techniques. For example, genomic selection
130 substantially and durably enhance the efficiency of pig breeding programs in terms of
131 reliability, genetic trends, and inbreeding rates⁷. Genome editing also protect pigs from
132 porcine reproductive and respiratory syndrome virus and reduce economic losses⁸. On
133 top of their great economic importance as a primary source of animal protein for
134 humans⁹, pigs have been widely accepted as a model for studying human biology and
135 diseases, including Alzheimer's disease¹⁰, cardiovascular disease¹¹, wound healing^{12,13},
136 human reproduction¹⁴, the human gastrointestinal tract¹⁵, dry eye¹⁶, and immunological
137 studies¹⁷⁻¹⁹. Therefore, investigating the genetic and biological architecture of complex
138 traits in pigs will not only benefit the pig breeding industry but also to human
139 biomedical research.

140 Performing a genome-wide association study (GWAS) is a commonly used strategy
141 for dissecting complex trait/disease genetics²⁰⁻²². As of June 10, 2023, the Pig
142 quantitative trait loci (QTL) database (Pig QTLdb) has reported 48,844 QTL,
143 representing 673 distinct traits and 279 trait variants²³. However, causal variants and
144 genes underlying most of these QTL regions remain unknown due to the large amount
145 of linkage disequilibrium (LD) of genetic variants within pig populations/breeds²⁴.
146 Cross-ancestry/population meta-GWAS analysis has been proposed as an efficient
147 approach for identifying trait-associated variants shared between populations and
148 accelerate statistical fine-mapping of causal variants and genes through reducing
149 LD^{22,25-27}. In addition, the majority of genetic variants identified in GWAS were located
150 in non-coding genomic regions²⁸, and were significantly enriched in *cis*-regulatory
151 elements, including promoters and enhancers^{29,30}, as well as gene expression QTL
152 (eQTL) in relevant tissues³¹. This suggests that GWAS variants might exert their effect
153 *via* regulating gene expression. Therefore, it is of great interest to prioritize the causal
154 variants, genes, pathways, and tissues of complex traits through systematically
155 integrating functional annotation data such as FAANG³² and FarmGTEEx resources³³.

156 Here, we collected and analyzed phenotypes and genotypes of 70,328 pigs from 59
157 populations representing 14 pig breeds to identify genetic variants underlying complex
158 traits in pigs. After imputing genotypes to a whole genome sequence level using a multi-
159 breed reference panel³³, we conducted a comprehensive cross-population/breed meta-
160 GWAS analysis for 232 complex traits. We then integrated multi-tissue regulatory
161 elements from the FAANG project³² and multi-tissue molQTL from the PigGTEEx
162 project³³ to systematically resolve the functional molecular basis of complex traits in
163 pigs. To further investigate the potential of pigs as model organisms for human biology
164 and diseases, we compared the genetic regulations of 136 human complex phenotypes
165 and 232 pig complex phenotypes. Finally, we developed an open-access and user-
166 friendly website (<http://pigbiobank.ipiginc.com/home>) for the research community to
167 query and download the genetic associations of complex traits in pigs (Fig. 1a).

168

169 **Results**

170 **Summary of genotypes and phenotypes**

171 After excluding ancestral outliers within each of the 59 populations based on
172 population structure analysis (details see Methods), we retained 69,242 pigs genotyped
173 by SNP arrays (with an average of 45,418 autosomal SNPs) or low-coverage whole-
174 genome sequencing (WGS) (with 198,178 autosomal SNPs) for subsequent analysis,
175 including 20,706 Duroc, 9,159 Landrace, 34,540 Yorkshire, and 4,837 individuals from
176 11 other breeds (Table S1). We imputed genotypes of all the 69,242 animals to the
177 sequence level, using the multi-breed **Pig Genomics Reference Panel** (PGRP version 1)
178 from the PigGTEx project³³ as the reference panel, which comprises 42,523,218
179 autosomal biallelic SNPs from 1,602 WGS data worldwide (Fig. 1b-c). The average
180 concordance rates and genotype correlations between imputed and observed genotypes
181 were 96.67% and 93.86%, respectively, across breeds (Fig. S1a-c, Table S1). We further
182 assessed the genotype imputation accuracy in 65 WGS samples (35 Duroc and 30
183 Suhuai) that were independent of PGRP (Table S2). The observed concordance rates
184 between the imputed and WGS-called genotypes were 93.34% and 91.13% (genotype
185 correlations of 90.21% and 87.22%), respectively (Fig. 1d, S1d). The genotype
186 imputation accuracy was influenced by the minor allele frequency (MAF) and dosage
187 R-squared (DR², the estimated squared correlation between the estimated allele dose
188 and the true allele dose) (Fig. S1e-h). We thus considered 28,297,602 SNPs with both
189 DR² > 0.8 and MAF ≥ 0.01 in each population for subsequent analysis. As expected,
190 the population structure of GWAS samples estimated by imputed genotypes was
191 consistent with that estimated from raw genotypes (correlation > 0.99) (Fig. S1i). The
192 imputed SNPs were evenly distributed across diverse genomic features (Fig. S1j-l).
193 Altogether, these results supported the reliability of our imputed genotype data.

194 In total, we collected 271 continuous traits across 59 pig populations in 14 breeds, with
195 an average sample size of 1,141 for each population and each trait (ranging from 116
196 in Total number of born to 9,246 in Average daily gain), representing 5 main trait
197 categories and 17 subcategories: **Production** (n = 57,612; Feed intake (n = 240),
198 Growth (n = 57,612), Feed conversion (n = 19,095)), **Meat and Carcass** (n = 65,883;
199 Fatness (n = 60,203), Anatomy (n = 52,470), Chemistry (n = 368), Fatty acid content
200 (n = 368), Texture (n = 140), Meat color (n = 140), pH (n = 140)), **Health** (n = 2,139;
201 Immune capacity (n = 1,317), Blood parameters (n = 2,139)), **Reproduction** (n =
202 71,637; Reproductive traits (n = 41,569), Litter traits (n = 51,717), Reproductive organs
203 (n = 40,914)), and **Exterior** (n = 6,625; Behavioral (n = 2,797), Conformation (n =
204 3,828)) (Fig. S2a). In addition, we collected 15 binary traits across 23 populations in 3
205 breeds with an average sample size of 1,025 (ranging from 160 in Number of
206 mummified pigs of parity 1 to 9,246 in Teat number symmetry), representing
207 Reproduction category (Litter traits (n = 12,655) and Reproductive organs (n = 24,087))
208 (Fig. S2a). After filtering out samples with low-quality genotypes and phenotypes
209 (Methods), we retained 249 continuous traits (average sample size of 1,136) and 11
210 binary traits (average sample size of 1,035) for subsequent analysis. The average

211 backfat thickness (M_BFT) had the largest cumulative sample size of 58,725 (Fig. 1e).
212 Across all the traits, we observed an average heritability of 0.27, ranging from 0.02 for
213 Teat number (left) to 0.97 for Lysozyme level (Table S3, Fig. S2b-c).

214 **Individual GWAS and meta-GWAS analysis**

215 We conducted GWAS for 249 individual continuous traits and 11 binary traits in each
216 population, yielding a total of 2,117 GWAS summary statistics (Table S3). To ensure
217 the quality and reliability of these individual GWAS results for subsequent meta-
218 analysis, we applied stringent quality control using multiple strategies, including SE-N
219 plot, P-Z plot, EAF plot, and λ_{GC} (Methods). This resulted in 2,056 high-quality GWAS
220 summary statistics, representing 221 continuous traits and 11 binary traits (Fig. S2d-j).
221 Of these, 78 traits were not previously reported in Pig QTLdb (release 46)²³
222 (<https://www.animalgenome.org/cgi-bin/QTLdb/SS/index>). In total, we detected 8,098
223 QTLs ($P < 5 \times 10^{-8}$) for 154 traits, representing 7,011 non-overlapping lead SNPs
224 (5,665 SNPs with m-value > 0.9 in at least one study, while the m-value represents the
225 posterior probability of the effect estimated by METASOFT). The correlations of SNP
226 effects were significantly higher for the same traits across different populations/breeds
227 compared to different traits within the same populations/breeds (Fig. S3a-b).
228 Interestingly, among the 5,665 lead SNPs, 69.88% were only detected in one population
229 for a specific trait (Fig. S3c), and their MAFs were higher in the target populations
230 compared to the remaining populations (Fig. S3d). For instance, rs323720776 was
231 associated with Average daily gain (birth-100kg) only in a Yorkshire pig population,
232 with its MAF in this population (MAF = 0.46) being higher than in others (average
233 MAF = 0.27) (Fig. S3e). These findings suggest that population-specific associations
234 may arise from differences in variant segregation between populations.

235 To detect population-shared associations with small effect sizes that could not be
236 detected by individual GWAS due to limited sample size³⁵, we conducted meta-GWAS
237 analyses for each of the 232 complex traits across populations/breeds using individual
238 GWAS summary statistics. Out of these traits, 25 common traits had larger sample sizes
239 and were classified as main traits (M_traits), covering the categories of Growth, Fatness,
240 Reproductive, Anatomy, Reproductive organs and Litter trait (Table S3). Furthermore,
241 we conducted 36 within-breed meta-GWAS analyses for the Duroc, Landrace and
242 Yorkshire breeds, focusing on 12 M_traits with large sample sizes in all of the three
243 breeds (prefixed with 'D_', 'L_' and 'Y_', respectively), to explore potential breed-
244 specific genetic regulation mechanisms for complex traits. The average sample size of
245 these 268 meta-GWAS analyses was 6,409, ranging from 137 for dressing percentage
246 to 56,165 for M_BFT (Table S4). Overall, we detected 6,878 QTLs for 139 traits in 169
247 meta-GWAS analyses ($P < 5 \times 10^{-8}$), representing 6,233 non-overlapping lead SNPs
248 (Table S5, Fig. 2a). These lead SNPs were distributed across all the 18 autosomes (Fig.
249 2b) and had smaller MAFs than random SNPs (Fig. S4a). Furthermore, the number of
250 significant QTLs detected in meta-GWAS showed positive correlations with both
251 sample size (Pearson's $r = 0.69$, $P = 1.36 \times 10^{-25}$) and trait heritability (Pearson's $r =$
252 0.49 , $P = 9.59 \times 10^{-3}$) (Fig. 2c-d), consistent with findings in humans^{36,37}.

253 In comparison to Pig QTLdb (release 46)²³, we identified 14,704 novel QTLs for 209

254 traits in both individual GWAS and meta-GWAS (Fig. S4b-c). Furthermore, we
255 employed two strategies to validate the detected lead SNPs. Firstly, we conducted meta-
256 GWAS for average daily gain (ADG) in independent populations, including 42,790
257 Duroc pigs, 88,984 Landrace pigs, and 69,606 Yorkshire pigs. The association signals
258 detected in these different independent populations were significantly enriched in the
259 QTL regions of ADG detected in this study (Fig. S4d). Secondly, we used suggestively
260 significant lead SNPs ($P < 1 \times 10^{-5}$) to predict genetic values of litter size/teat number
261 across seven pig breeds. We observed that Jiaxinghei, Erhualian, and Meishan pigs
262 exhibited higher predicted values than Landrace and Duroc (Fig. 2e, Fig. S4e). This
263 aligns with previous findings that Meishan pigs maintained a higher number of follicles
264 during the follicular phase than Landrace hybrid pigs³⁸. In summary, these results
265 illustrate that lead SNPs detected here are reliable and shared among populations/breeds.

266 In comparison with individual GWASs, we identified 5,955 novel QTLs in meta-
267 analyses for 147 traits (Fig. 2f). For instance, *rs320375241* was non-significant for
268 ADG in any individual GWASs, but was identified as a significant lead SNP of ADG
269 in the meta-analysis (Fig. 2g). Furthermore, we found 7,058 QTLs in individual
270 GWASs that were not detected in the meta-GWASs (referred to as class A QTLs) (Fig.
271 2f). When compared to the QTLs detected in both individual GWASs and meta-GWASs
272 (referred to as class B QTLs), the lead SNPs of class A QTLs tended to have different
273 directions of effects on the trait across study populations (Fig. S4f). Additionally, the
274 populations in which class A QTLs were detected had a smaller proportion of the total
275 sample size in the meta-analysis of the trait (Fig. S4g). These findings suggest that
276 GWAS variants with opposite directions of effect among populations, or GWAS
277 variants detected in populations with small sample sizes, may result in undetectable
278 QTLs in meta-analyses.

279 To characterize the genetic regulation of complex traits (Fig. S3c), we here only
280 considered QTLs/lead SNPs identified in the meta-GWAS analysis. Across all the 64
281 meta-analyses with a number of lead SNPs > 10 , we observed a negative correlation
282 between MAF and effect size of lead SNPs, with a median Pearson correlation of -0.65,
283 ranging from -0.88 in the GGT trait to -0.27 in the number of mummified pigs (Fig.
284 S5a). This suggests that variants significantly associated with complex traits might be
285 under negative selection, similar to previous findings in humans³⁹⁻⁴¹. Among these
286 correlations, we observed differences among Duroc, Landrace and Yorkshire in the
287 correlations between MAF and effect size of lead SNPs for ADG and teat number
288 (TNUM). Specifically, the negative correlation for ADG was weaker in Duroc
289 compared to Landrace and Yorkshire (Fig. S5b), while the ADG phenotype value in
290 Duroc was higher than in Landrace and Yorkshire (Fig. S5c). Of note, we found the
291 opposite result for TNUM (Fig. S5d-e). This finding suggests that the three breeds have
292 undergone different levels of artificial selection for different complex traits of economic
293 importance. In the all-breed meta-analyses of 12 M_traits, we identified 1,460 novel
294 QTLs compared to within-breed meta-analyses in Duroc, Landrace, and Yorkshire (Fig.
295 S5f). Most of the breed-specific QTLs (median 77%) detected in the within-breed meta-
296 analysis exhibited different directions of effect between breeds (Fig. S5g). For instance,
297 the effect size of the lead SNP 6_163238739_A_G for ADG in Duroc was 7.53 ($P =$
298 3.22×10^{-8}), while it was -4.40 ($P = 0.18$) in Landrace and -3.99 ($P = 0.05$) in Yorkshire,

299 while this SNP was not associated with ADG in the all-breed meta-analysis (effect size
300 = 2.58, $P = 0.01$) (Fig. S5h). This suggests that associations with different directions of
301 effect between breeds will be offset in the all-breed meta-GWAS analysis, leading to
302 reduced statistical power.

303 **Pleiotropy of genetic variants in complex traits**

304 To explore breed-specific and shared trait-associations among Duroc, Landrace and
305 Yorkshire breeds, we estimated the posterior probability (m-value) of lead SNPs for
306 each trait using METASOFT⁴⁴. In 12 M_traits, we identified 6,624 SNPs exclusively
307 in one breed and 2,378 SNPs in at least two breeds (m-value > 0.9). For example, in
308 BFT, 1,840 SNPs were exclusively detected in one breed, while 667 SNPs were
309 detected in at least two breeds (Fig. 3a). Breed-specific trait-associated variants had
310 higher MAFs in the breed where they were detected compared to the other breeds (Fig.
311 3b). In addition, SNPs exclusively detected in one breed had a significantly greater
312 effect on traits compared to those detected in multiple breeds (Fig. 3c). To gain further
313 insights into the regulatory mechanisms of these breed-specific and shared SNPs, we
314 conducted functional annotation and enrichment analysis. Our results revealed that
315 SNPs detected in all three breeds were significantly enriched in tissue-specific gene
316 regions (less than five tissues) (Fig. 3d). SNPs detected in at least two breeds showed a
317 significantly higher enrichment in active promoters and enhancers compared to breed-
318 specific SNPs (Fig. 3e). Additionally, by examining Z-scores of lead SNPs detected
319 exclusively in one breed, we were able to cluster the 36 meta-GWASs of the 12 M_traits
320 based on breed, whereas by examining Z-scores of lead SNPs detected in all three
321 breeds, we were able to cluster the 36 meta-GWASs of the 12 M_traits based on trait
322 (Fig. S6).

323 Among 3,581 lead SNPs of 232 traits, 2,100 were associated with at least two traits,
324 with one SNP associated with up to 152 traits (15_21820815_A_G, m-value > 0.9,
325 phastCons = 0.554) (Fig. 3g). For instance, we identified rs320916522 near *MC4R* on
326 chromosome 1 as being associated with M_{ADG} ($P = 1.09 \times 10^{-37}$, M = 1), M_{BFT} (P
327 = 4.56×10^{-51} , M = 1), and M_{LMDEP} ($P = 6.90 \times 10^{-10}$, M = 1)) (Fig. 3f). *MC4R* has
328 been extensively demonstrated to be linked to muscle and fat deposition in pigs⁴⁵⁻⁴⁷.
329 Notably, similar traits shared a greater number of lead SNPs, such as TNUM-related
330 traits (Fig. S7). Moreover, we observed a trend where lead SNPs with higher pleiotropy
331 exhibited smaller effects on traits (Fig. 3h). This result is consistent with the ‘network
332 pleiotropy’ hypothesis proposed by Boyle, Li, and Pritchard, which suggests that small
333 perturbations in a densely connected functional network have at least a small effect on
334 all phenotypes affected by the network⁴⁸.

335 **Regulatory architecture underlying complex traits**

336 To explore the biological context and regulatory circuits by which the detected trait-
337 associated variants act, we examined multi-layered biological data, including genomic
338 variants, mammalian conserved elements and regulatory elements, to annotate lead
339 SNPs and genome-wide significant SNPs of all the 169 meta-GWASs. Among 6,233
340 lead SNPs, 0.95% were located in coding regions, while 99.05% were in noncoding
regions. Specifically, 43.26% were located in introns, 39.42% in intergenic regions,

342 9.29% in promoters, and 52.99% in enhancers (Fig. 4a and Fig. S8a). We obtained
343 similar results when analyzing human GWAS variants (Fig. S8b). Lead SNPs were
344 observed to be more concentrated around the transcription start sites (TSS) of protein-
345 coding genes compared to non-lead SNPs (Fig. S8c). Furthermore, lead SNPs exhibited
346 significant enrichment in protein-coding regions (CDS) (18.10-fold, $P < 1 \times 10^{-30}$),
347 conserved elements (6.52-fold, $P = 5.65 \times 10^{-8}$), and regulatory elements, particularly
348 in active regulatory elements such as active promoters (TssA) and enhancers (EnhA)
349 (Fig. 4a and Fig. S8d-e). Additionally, lead SNPs had lower PhastCons scores
350 (indicating weaker evolutionary constraints) with a median of 0.023, compared to non-
351 lead SNPs (median of 0.062) with matching MAF and linkage disequilibrium (LD) of
352 significant SNPs (Fig. 4b).

353 To further investigate the regulatory role of genetic variants on complex traits, we
354 integrated five types of molecular QTLs (molQTLs, including cis-eQTLs for PCG
355 expression, cis-eeQTLs for exon expression, cis-lncQTLs for lncRNA expression, cis-
356 enQTLs for enhancer expression, and cis-sQTLs for alternative splicing) from 34
357 tissues in the PigGTEX resource³³. We performed summary-based heritability
358 enrichment analyses and detected 357 (52.12%) significantly enriched molQTL-trait
359 pairs for 84 out of 147 meta-GWAS summaries (normal test, FDR < 0.05) (Fig. S8f,
360 Table S6). In general, the five types of molQTL were significantly enriched for
361 heritability of all the 15 M_traits (normal test, FDR < 0.05) (Fig. 4c). Furthermore, in
362 muscle (Fig. 4d) and liver (Fig S8g), independent eQTL and sQTL with different ranks
363 explained higher heritability compared to MAF-matched SNPs. These results suggest
364 that variants regulating molecular phenotypes, such as gene expression, play an
365 important role in the genetic mechanism underlying complex traits.

366 To investigate the relationship between tissue-sharing patterns of eGenes and
367 complex traits, we categorized eGenes into seven tissue-sharing groups³³. We then
368 performed heritability enrichment analyses for these groups of eGenes using meta-
369 GWAS summary statistics, resulting in 531 significantly enriched gene group-trait pairs
370 for 87 complex traits (normal test, FDR < 0.05) (Table S7). Our enrichment analyses
371 revealed that complex traits were regulated by eGenes with different patterns of tissue-
372 sharing (Fig. 4e). Specifically, we observed a notable enrichment of Backfat thickness
373 (BFT) related traits for eGenes with lower tissue-sharing degree, while ADG-related
374 traits were significantly enriched for eGenes with higher tissue-sharing degree (Fig. 4e).
375 Furthermore, the lead SNP *rs1108824455* for M_BFT acted as an eQTL for *LGALS13*
376 (tissue-specific magnitude = 10) in adipose ($P = 7.84 \times 10^{-23}$) (Fig. 4f). *LGALS13* is
377 expressed in lung, duodenum, fetal thymus, jejunum, blood, adipose, ileum, ovary,
378 small intestine, and spleen (Fig. S8h), serving as one of the serum biomarkers in early
379 pregnancy^{49,50}. This finding suggests that regulatory variants may affect M_BFT by
380 influencing gene expression in certain tissues during early pregnancy. In addition, the
381 lead SNP *rs324200444* of M_ADG also acted as an eQTL for *ABCC10* in various
382 tissues including the liver ($P = 2.80 \times 10^{-11}$), colon ($P = 7.91 \times 10^{-8}$), large intestine ($P =$
383 5.92×10^{-7}), and muscle ($P = 1.34 \times 10^{-5}$) (Fig. 4g). *ABCC10* exhibits widespread
384 expression across different tissues (Fig. S8i) and serves as a genetic marker for pig
385 growth⁵¹. This finding suggests that regulatory variants affect M_ADG by modulating
386 gene expression in multiple tissues.

387 **Tissue-specific regulation of GWAS loci**

388 To further investigate the tissue-mediated patterns of genetic regulation of complex
389 traits, we conducted enrichment analyses of GWAS signals using tissue-specific genes
390 across 34 tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
391 (KEGG) pathways enrichment analyses of tissue-specific genes confirmed the known
392 biology of respective tissues (Table S8, Fig. S9a). For example, genes highly expressed
393 in muscle were significantly enriched in actin filament binding and muscle contraction
394 (Fig. S9a). Our GWAS signal enrichment analyses demonstrated that significant SNPs
395 of traits were significantly enriched in tissue-specific genes of functionally related
396 tissues (Fig. S9b). For example, the liver was found to be the most enriched tissue for
397 both litter weight (weaning) (M_TLWT_Weaning) (10.14-fold, $P < 0.001$) and body
398 weight (M_BW) (6.84-fold, $P < 0.001$), and the ovary was identified as the most
399 enriched tissue for gestation length (M_GD) (5.62-fold, $P < 0.001$) (Fig. 5a).

400 Furthermore, we integrated multi-omics data from the PigGTEX to explore the
401 detailed regulatory mechanisms of tissue-specific regulation of complex traits. We
402 finally prioritized 16,664 variant-gene-tissue-trait circuits, 19,532 variant-exon-tissue-
403 trait circuits, 3,982 variant-lncRNA-tissue-trait circuits, 3,320 variant-enhancer-tissue-
404 trait circuits, 19,516 variant-splicing-tissue-trait circuits (Table S9). For instance,
405 *UGT2B31*, the most highly expressed gene in the liver compared to other tissues (Fig.
406 S10a), was significantly associated with M_TLWT_Weaning by both gene-based
407 GWAS and TWAS (Fig. 5b). Furthermore, its *cis*-eQTL in the liver colocalized with the
408 GWAS locus (*rs344053754*) of M_TLWT_Weaning ($P = 5.62 \times 10^{-7}$), which resides in
409 the active enhancer regions of the liver and intestine but no other tissues (Fig. 5b, Fig.
410 S10b). *UGT2B31* is a metabolic enzyme in the liver of various animals⁵²⁻⁵⁵. The pattern
411 of *MRAP2* was similar to that of *UGT2B31*, with a higher expression in milk than in
412 most tissues (Fig. S10c). *MRAP2* was also significantly associated with M_ADG in
413 both gene-based GWAS and TWAS. We observed a significant colocalization between
414 the GWAS locus (*rs340663967*) of M_ADG and *cis*-eQTL of *MRAP2* in milk ($P =$
415 2.86×10^{-6}). The colocalized SNP fell into the ATAC region in only muscle and
416 cerebellum (Fig. 5c, Fig. S10d). Interestingly, *MRAP2* was previously identified as a
417 candidate gene for M_ADG in pigs⁵⁶. These results provided important insights that
418 regulatory variants affect gene expression by influencing the activity of regulatory
419 elements in specific tissues, which in turn impact complex traits.

420 **Gene mapping of complex traits between pigs and humans**

421 To explore the sharing of genetic regulatory mechanisms of complex traits between
422 species, we first conducted heritability enrichment analyses for 169 meta-GWASs in
423 pigs and 136 complex traits in humans based on the orthologues GWAS signals ($P < 5$
424 $\times 10^{-8}$) (Table S10). We obtained 616 significantly enriched pig-human trait pairs
425 (enrichment fold > 1 and $P < 0.05$) (Table S11), including Cholesteryl ester transfer
426 protein activity (S_CEPTA) in pigs vs. high cholesterol in humans (enrichment fold =
427 68.74, $P = 2.15 \times 10^{-2}$); Total Cholesterol (S_CHOL_T) in pigs vs. Triglycerides in
428 humans (enrichment fold = 18.17, $P = 1.20 \times 10^{-2}$), and Feed conversion ratio (30-100kg)
429 (S_FEEDCON_30T100) in pigs vs. insulin resistance (HOMA-IR) in humans
430 (enrichment fold = 16.44, $P = 7.52 \times 10^{-3}$) (Fig. 6a-b). Permutation analysis

431 demonstrated that the orthologous regions of pig QTLs explained higher heritability of
432 human complex traits compared to randomly selected regions (Fig. S11). We also
433 estimated Pearson's correlations of pig-human trait pairs based on the absolute Z-score
434 of orthologous variants from GWAS summary statistics and found significant
435 correlations of trait pairs with physiological correlations (Fig. 6c, Table S12). For
436 example, the semen sexuality score (S_SESS_DRP) in pigs was significantly correlated
437 with C61 Malignant neoplasm of the prostate in humans (Pearson's $r = -0.09$, $P =$
438 2.60×10^{-4}) (Fig. 6c). These findings indicate that genetic regulatory mechanisms of
439 certain complex traits were shared between humans and pigs. Furthermore, we
440 discovered that rs322242884 was suggestively associated with L_ADG in Landrace
441 pigs (Z-score = -4.53, $P = 5.80 \times 10^{-6}$), and its homologous variant rs11877146 was
442 significantly associated with body fat percentage in human (Z-score = 6.06, $P =$
443 1.33×10^{-9}) (Fig. 6d). Notably, rs11877146 and rs322242884 were eQTLs for *NPC1* in
444 the muscle of both humans ($P = 6.70 \times 10^{-5}$) and pigs ($P = 7.20 \times 10^{-7}$), respectively, as
445 well as eQTLs for *TMEM241* in the brain for both species ($P = 6.70 \times 10^{-5}$ and $P =$
446 1.78×10^{-4} , respectively), with the similar regulatory effects on gene expression (Fig. 6e-
447 f). Previous studies have linked *NPC1* to body weight and adipocyte processes in a
448 variety of animals⁵⁸⁻⁶¹ and *TMEM241* has been associated with bone degeneration and
449 osteoporosis⁶². These results provided evidence that there might be shared regulatory
450 mechanisms underlying complex traits between humans and pigs.

451 Discussion

452 Understanding the genetic foundation of complex traits in pigs have significant
453 implications for improving their genetics, economic contributions, and even medical
454 advancements. While genetic association for major economic traits in commercial pig
455 breeds has been extensively studied, comprehensive GWAS covering a large scale of
456 domesticated pig breeds, as well as a wide range of phenotypes, has not been available.
457 Here, we aimed to establish the largest genetic association atlas of pig complex traits to
458 date by analyzing 70,328 pigs covering 14 pig breeds from various geographic areas.

459 We identified 6,878 lead variants associated with 139 traits in 169 GWAS meta-
460 analyses (Table S5). The majority of the lead SNPs (99.05%) were located in non-
461 coding regions, including intergenic (39.42%) and intron (43.26%) regions (Fig. S8a).
462 This suggests that these SNPs influence complex traits through playing a crucial role in
463 regulating gene activity⁶³. Additionally, the enrichment of lead SNPs in flanking
464 regions of coding sequence further supports the notion that trait-associated SNPs tend
465 to be located in regulatory regions (Fig. 4a and Fig. S8d-e). We also found that lead
466 variants for complex traits usually altered the activity of regulatory elements in specific
467 tissues (Fig. 5b-c). It highlights the importance of tissue-specific gene regulation in
468 determining phenotypic outcomes. The potential epistatic interactions among these
469 genetic variants require further investigation with a larger sample size⁶⁴. The similarity
470 in genetic structure between complex traits in pigs and humans is noteworthy (Fig. 6).
471 This finding suggests that pigs can serve as valuable models for studying human
472 complex traits, offering insights that can contribute to medical advancements in humans.

473 We make the summary statistics of 268 meta-GWAS available to the research
474 community to facilitate further understanding of the genetic structure of complex traits.

475 Our database provides the comprehensive relationship among genetic variants, genes,
476 tissues and complex traits, which will be useful for dissecting the genetics of complex
477 traits in pigs.

478

479 **Acknowledgements**

480 Zhe Zhang acknowledges funding from National Key R&D Program of China
481 (2022YFF1000900), the National Natural Science Foundation of China (32022078), the Local
482 Innovative and Research Teams Project of Guangdong Province (2019BT02N630), and
483 supporting from National Supercomputer Center in Guangzhou, China. Y.C., Zhe Zhang, J.L.,
484 X.Liu., S.M., and X.D. acknowledge funding from the China Agriculture Research System
485 (CARS-35). L.F. acknowledges funding from HDR-UK award HDR-9004 and the European
486 Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie
487 grant agreement No 801215. G.E.L., was supported by USDA NIFA AFRI grant numbers 2019-
488 67015-29321 and 2021-67015-33409 and the appropriated project 8042-31000-112-00-D,
489 "Accelerating Genetic Improvement of Ruminants Through Enhanced Genome Assembly,
490 Annotation, and Selection" of the USDA Agricultural Research Service (ARS). This research
491 used resources provided by the SCINet project of the USDA ARS project number 0500-00093-
492 001-00-D. Mention of trade names or commercial products in this article is solely for the
493 purpose of providing specific information and does not imply recommendation or endorsement
494 by the USDA. The USDA is an equal opportunity provider and employer. L.M. was supported
495 in part by AFRI grant numbers 2020-67015-31398 and 2021-67015-33409 from the United
496 States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA).
497 R.X. was supported by Australian Research Council's Discovery Projects (DP200100499). All
498 the funders had no role in study design, data collection and analysis, decision to publish or
499 preparation of the manuscript.

500 We thank all the researchers who have contributed to the publicly available data used in this
501 research. For the purpose of open access, the author has applied a Creative Commons
502 Attribution (CC BY) license to any Author Accepted Manuscript version arising from this
503 submission.

504 **Author contributions**

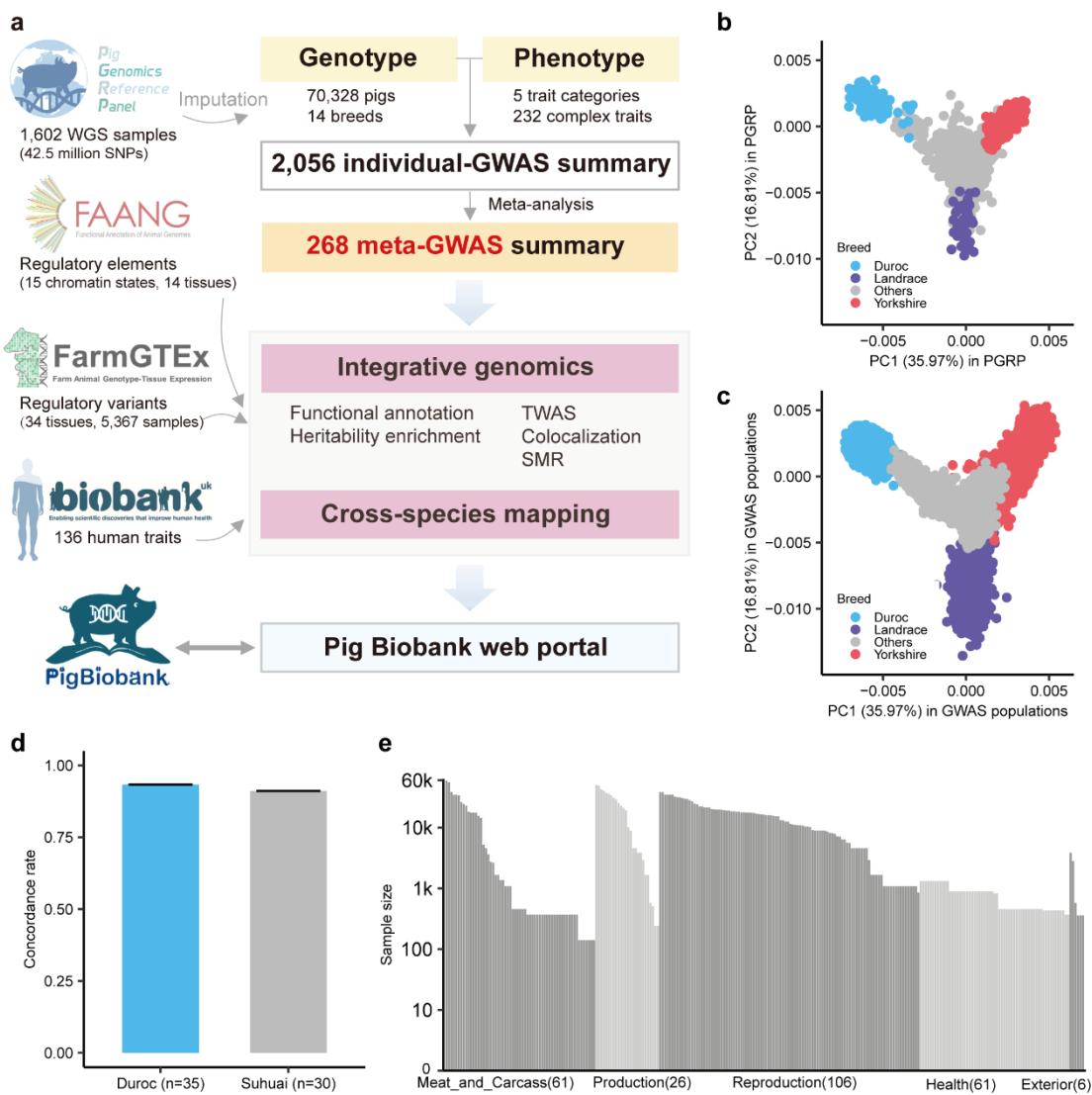
505 Study design: Zhe Zhang, L.F., F.Z., Y.Z.; Genotype and phenotype data preprocessing: Zhiting
506 Xu, Z.Zhong, H.Zeng, Xiaoqing Wang, L.S., Xue Wang, Y.Wang, Zipeng Zhang, Y.Lin, C.W.,
507 J.Z., X.Z., Q.L., J.T., S.D., Yuqiang Liu, X.Pan, X.F., R.L., Z.S., C.C., Q.Zhu.; Genotype
508 imputation: Z.Zhong, Zhiting Xu, H.Zeng, Xiaoqing Wang, H.Y.; Individual GWAS and meta-
509 GWAS analyses: Zhiting Xu, Z.Zhong , B.L., H.Zeng, C.W., Xiaoqing Wang; QTL validation:
510 Q.L., Z.C., Zhiting Xu; GWAS and multi-omics data integration: X.C., Q.L., J.T., J.W., Zhiting
511 Xu; Genetic parameter estimation: Q.L., W.Z., S.S., Y.Wu.; Comparison of pig GWAS with
512 human GWAS: Q.L., Y.Wu., Z.B.; Critical interpretation of analytical results: L.F., Zhe Zhang,
513 B.L., J.T., Y.G., G.E.L., P.K.M., M.F., S.L., F.Z, Y.Z., Q.Zhang, G.E.L., X.S., R.X., L.M.,
514 M.S.L., G.Sahana, G.Su, Yang Liu, P.L.; Contribution of data and computational resources: Zhe
515 Zhang, L.F., F.Z., Y.Z., Q.Zhang, Y.C., J.L., X.D., X.Li, M.L., G.T., M.F., P.K.M., A.C., M.A.,
516 D.C.P., M.B., R.H., P.L., X.Y., H.Zhang, X.Liu, D.M., Y.P., Q.W., K.L., L.B., Z.Zhou, Zhong
517 Xu, X.Peng, S.M.; Drafting the manuscript: Zhe Zhang, L.F., Zhiting Xu, Q.L.. All authors read,
518 edited, and approved the final manuscript.

519 **Competing interests**

520 The authors declare no competing interests.

521

522 **Figures and legends**



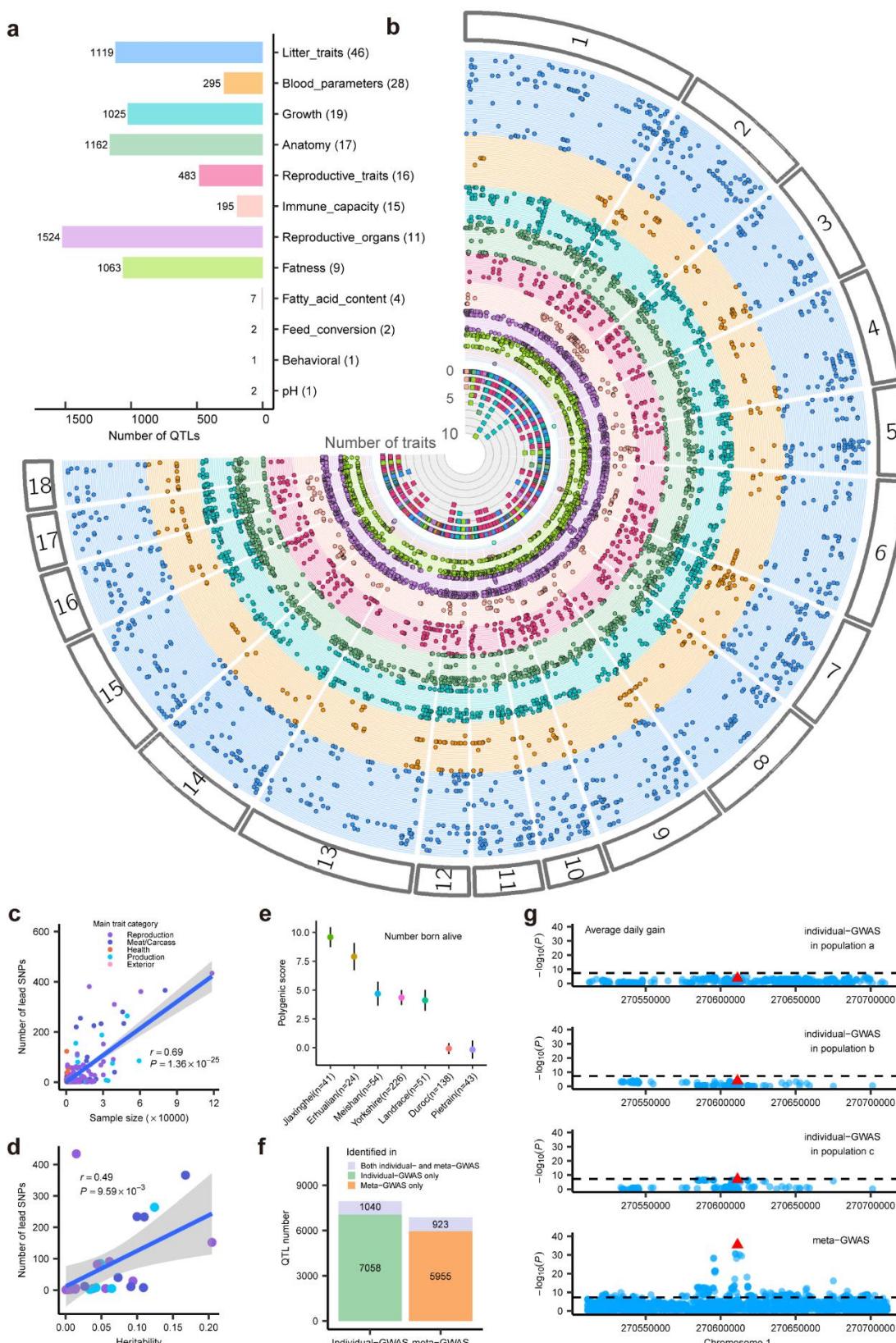
523

524 **Figure 1. The overall study design and summary of genotypes and phenotypes.**

525 **(a)** Overview of study design. Genotyping arrays: Illumina Porcine SNP60K Bead Chip (N = 526 10,870), the GeneSeek Genomic Profiler (GGP) Porcine SNP80 BeadChip (N = 4,724), the GGP 527 Procine SNP50 BeadChip (N = 29,789), the KPS Porcine Breeding Chip (N = 21,618), the 528 GenoBaits Porcine SNP50K BeadChip (N = 454) and low-coverage sequence (N = 2,873). WGS: 529 Whole genome sequence. GWAS: genome-wide association study. TWAS: transcriptome-wide 530 association study. SMR: summary data-based Mendelian randomization. **(b-c)** Principal component 531 analysis of PGRP **(b)** and GWAS **(c)** populations, which were conducted based on all 57,600 532 individuals (samples with genotype data) and a total of 1,603 shared array SNPs using PLINK 533 (v1.90)³⁴ (parameters: --geno 0.1 --mind 0.1 --indep-pairwise 50 5 0.5 --maf 0.01 and --pca 10). The 534 first two principal components were plotted using the geom_point function from ggplot2 (v3.3.6) in 535 R (v4.1.2). **(d)** The imputation accuracy of PGRP in independent WGS data. This was $93.34\% \pm 536 7.64\%$ for Duroc pigs (commercial breed and within PGRP) and $91.13\% \pm 10.49\%$ for Suhuai pigs 537 (domesticated breed and outside PGRP). The imputation accuracy was calculated as the 538 concordance rate between the imputed and observed genotypes. **(e)** The total sample size for each

539 trait in meta-GWAS analyses. Traits were classified into five main categories.

540

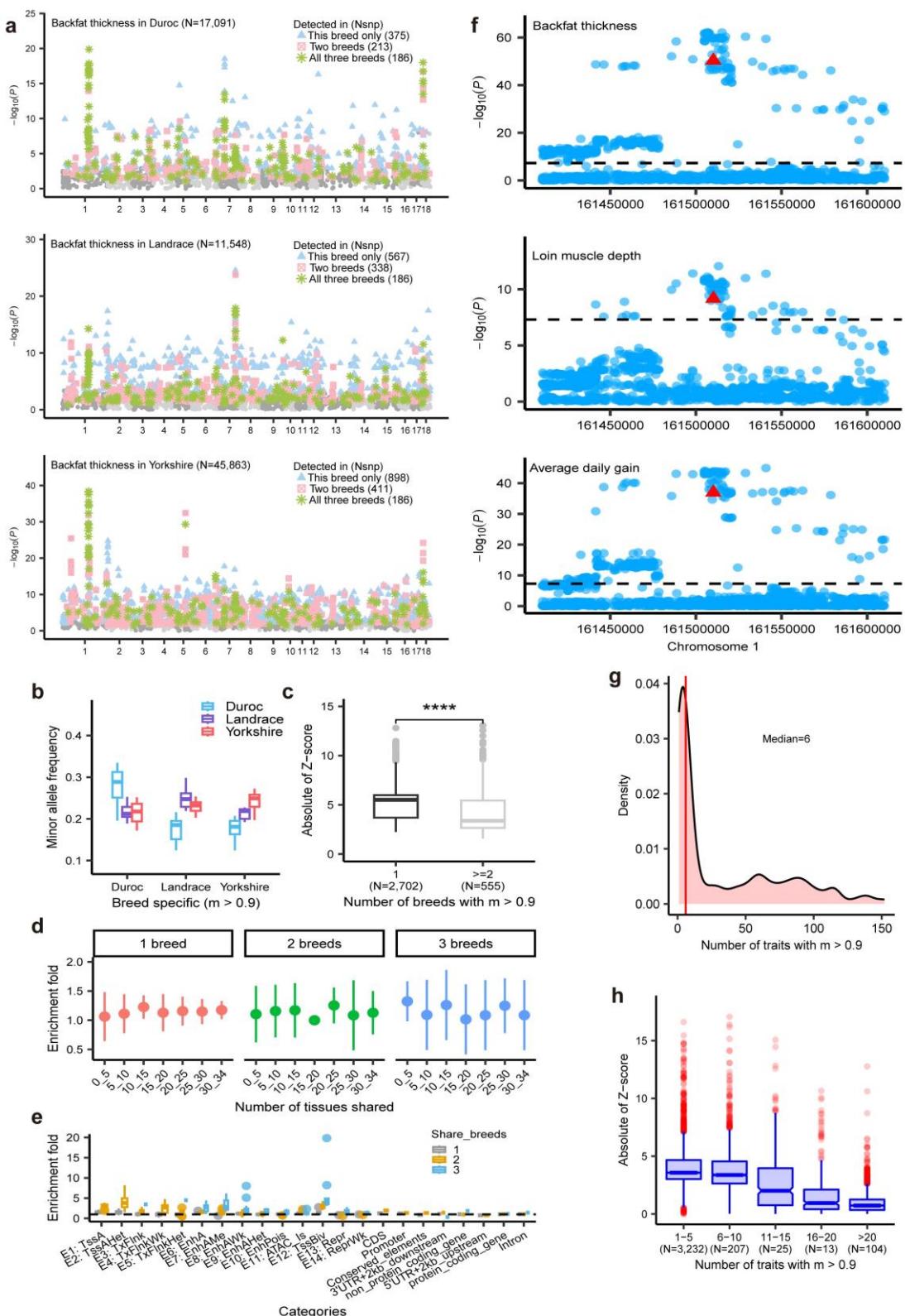


541

542 **Figure 2. Summary and validation of quantitative trait loci (QTL) for pig complex**
543 **traits.**

544 (a) The number of QTL for 12 sub trait-categories. (b) Fuji-plot summarizes the 6,878 lead SNPs
545 ($P < 5 \times 10^{-8}$) identified in 169 meta-GWAS analyses. It was completed using the Fuji-plot script
546 developed by Kanai et al.⁴² The inner-most ring (ring 1) indicates the number of traits associated
547 with each SNP. Rings 2-170 indicate the 169 traits. The order of traits is shown in Table S3 (starting
548 with the inner-most ring). The points indicate the genomic position of the 6,878 SNPs associated
549 with the traits. (c) Pearson correlation between sample size and the number of lead SNPs ($P < 5 \times$
550 10^{-8}) in 169 meta-GWASs with lead SNPs detected. (d) Pearson correlation between heritability
551 and the number of lead SNPs ($P < 5 \times 10^{-8}$) in 27 meta-GWASs (sample size $> 15,000$). Heritability
552 was estimated using LD score regression (LDSC)⁴³. The Pearson correlation coefficient in (c-d) was
553 calculated by the *cor: test* function in R. (e) Results of genomic predictions for individuals from
554 several pig breeds in the PGRP with large phenotype differences, based on a linear mixed model
555 and genomic information from suggestive lead variants ($P < 1 \times 10^{-5}$) in the total number born alive
556 (M_NBA). The x-axis labels indicate the different pig breeds. The y-axis labels indicate the genomic
557 estimated breeding values (GEBVs). The black error bars are the standard errors of GEBVs. (f) The
558 number of different categories of QTLs detected in individual GWAS and meta-GWAS. (g)
559 rs320375241 associated with Average daily gain (M_ADG) in individual GWASs of population a,
560 b, and c and meta GWAS, respectively. The a, b, and c were three random populations for M_ADG.

561



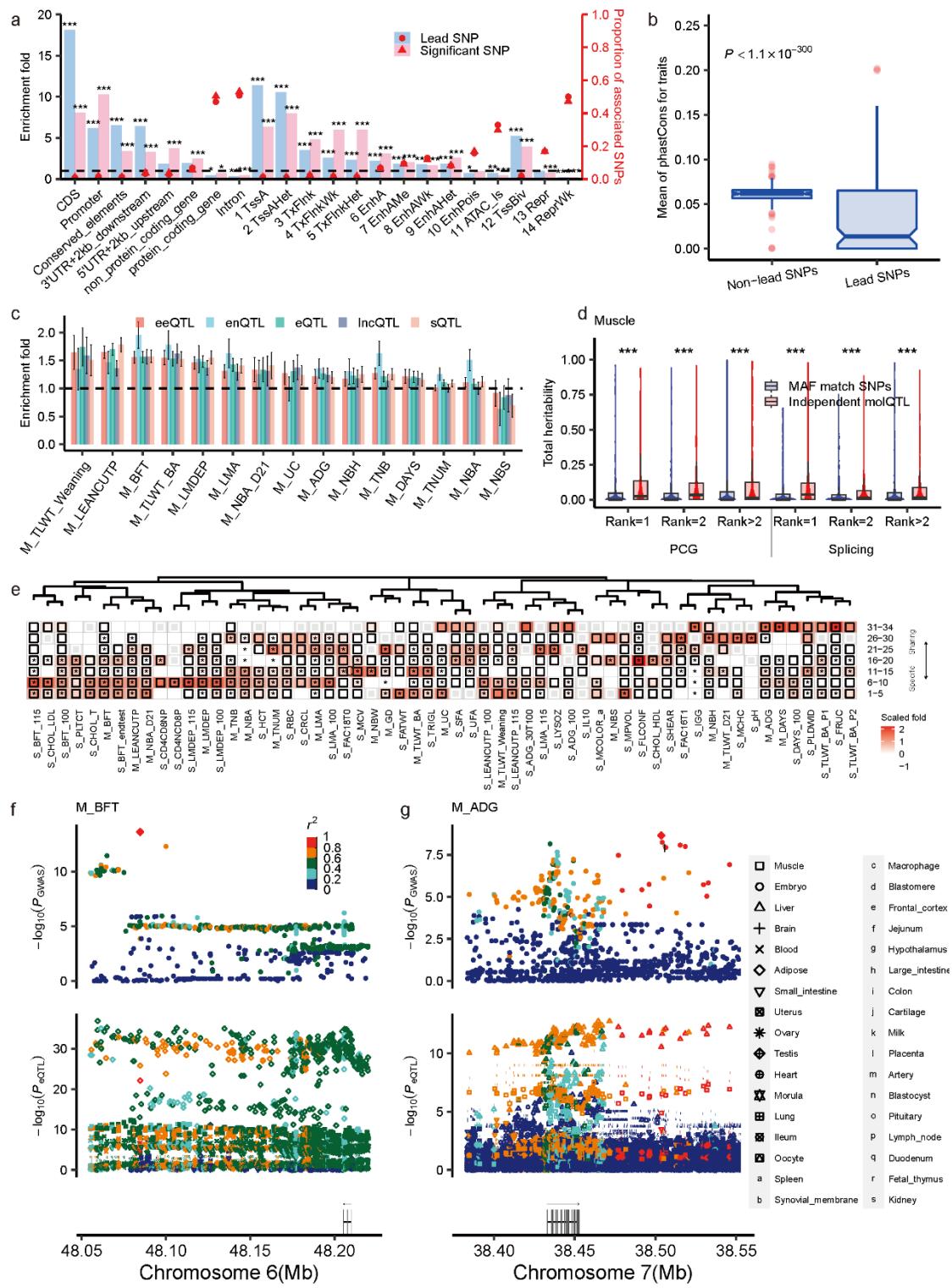
562

563 **Figure 3. Distribution and functional annotation of QTLs.**

564 (a) Manhattan plots of backfat thickness (BFT) meta-analysis in Duroc (top), Landrace (middle)
565 and Yorkshire (bottom). Colors and shapes indicate the breed specificity of SNPs with m -values $>$
566 0.9. (b) Distribution of MAFs in three breeds of traits-associated SNPs detected only in the current
567 breed. (c) Distribution of the absolute values of the z-score of SNPs associated with traits detected

568 in different numbers of breeds on traits. The significance of differences between groups was
569 calculated by the *t.test* function in R. **(d)** Enrichment of trait-associated SNPs detected in different
570 numbers of breeds in gene regions with different degrees of tissue sharing. **(e)** Enrichment of trait-
571 associated SNPs detected in different numbers of breeds in different categories of genomic regions,
572 conserved elements and regulatory elements. **(f)** Local Manhattan of meta-analysis of M_BFT (top),
573 Loin muscle depth (M_LMDEP) (middle), and M_ADG (bottom) on chromosome 1. **(g)** Density
574 plot of the number of traits for which SNPs associated (m-value > 0.9). **(h)** Distribution of the
575 absolute values of the z-score of SNPs associated with different numbers of traits (m-value > 0.9).

576



577

578 **Figure 4. Exploiting the PigGTeX resource to decipher regulatory mechanisms of**
579 **GWAS loci.**

580 **(a)** Results of annotation and enrichment of lead SNP and genome-wide level significant SNPs in
 581 different categories of genomic regions, conserved elements and regulatory elements. The red dots
 582 indicate the proportion of associated SNPs located in category *C*. The bars indicate the enrichment
 583 for category *C*. Significance was indicated by *, ** and *** for $P < 0.05$, 0.01 and 0.001,

584 respectively. **(b)** The mean DNA sequence constraints (PhastCons scores of 100 vertebrate genomes)
585 for lead SNPs in each trait and non-lead SNPs matched with lead SNPs for linkage disequilibrium
586 (within 0.1) and minor allele frequency (MAF) (within 0.02). The *ks.test* function of R (v4.1.2) is
587 used to test the difference between groups. **(c)** The heritability enrichment for five types of
588 molecular *cis*-QTLs in 18 main traits. The dashed line represented the enrichment fold = 1. The
589 error bar represented the standard error of the enrichment fold. *cis*-eQTL: gene expression QTL,
590 *cis*-sQTL: splicing QTL, *cis*-eeQTL: exon expression, *cis*-lncQTL: lncRNA expression QTL, *cis*-
591 enQTL: enhancer expression QTL. The details of trait names are described in Table S4. **(d)** The
592 estimated total SNPs heritability contributed by different ranks of independent molecular QTL
593 (molQTL) in Muscle for 268 complex traits. Rank=1, 2 and >2 represented the first, secondary and
594 more than secondary independent molQTLs, respectively. Significance was indicated by *** for
595 $P < 0.001$, which was obtained by the Wilcox test. **(e)** The heritability enrichment for the genes of
596 seven tissue-sharing gradients in 59 complex traits. The red color represented the scaled heritability
597 enrichment fold. Black borders indicated heritability enrichment fold greater than 1. The “*”
598 indicated heritability significant enrichment (Normal test, $P < 0.05$). Column clusters were produced
599 by the *dist* function with the “euclidean” method and the *hclust* function with the “complete” method
600 in R. The heatmap was plotted by ggplot2 package (v3.3.2) in R (v4.2.1). **(f)** The lead SNP
601 rs1108824455 in backfat thickness (M_BFT) was also eQTL of *LGALS13* (tissue-specific
602 magnitude = 10) in five tissues. The top local Manhattan plot was the GWAS of M_BFT for the lead
603 variant (rs1108824455). The middle local Manhattan plot was the eQTL mapping of *LGALS13* for
604 all of the tissues. **(g)** The lead SNP rs324200444 in average daily gain (M_ADG) was also eQTL of
605 *ABCC10* (tissue-sharing magnitude = 33) in four tissues. The top local Manhattan plot was the
606 GWAS of M_ADG for the lead variant (rs324200444). The middle local Manhattan plot was the
607 eQTL mapping of *ABCC10* for all of the tissues. Shapes in **(f-g)** indicate different tissues. The filled
608 colors in **(f-g)** represent linkage disequilibrium. The diagram below in **(f-g)** indicates the positions
609 and strand direction of genes in the locus.

610

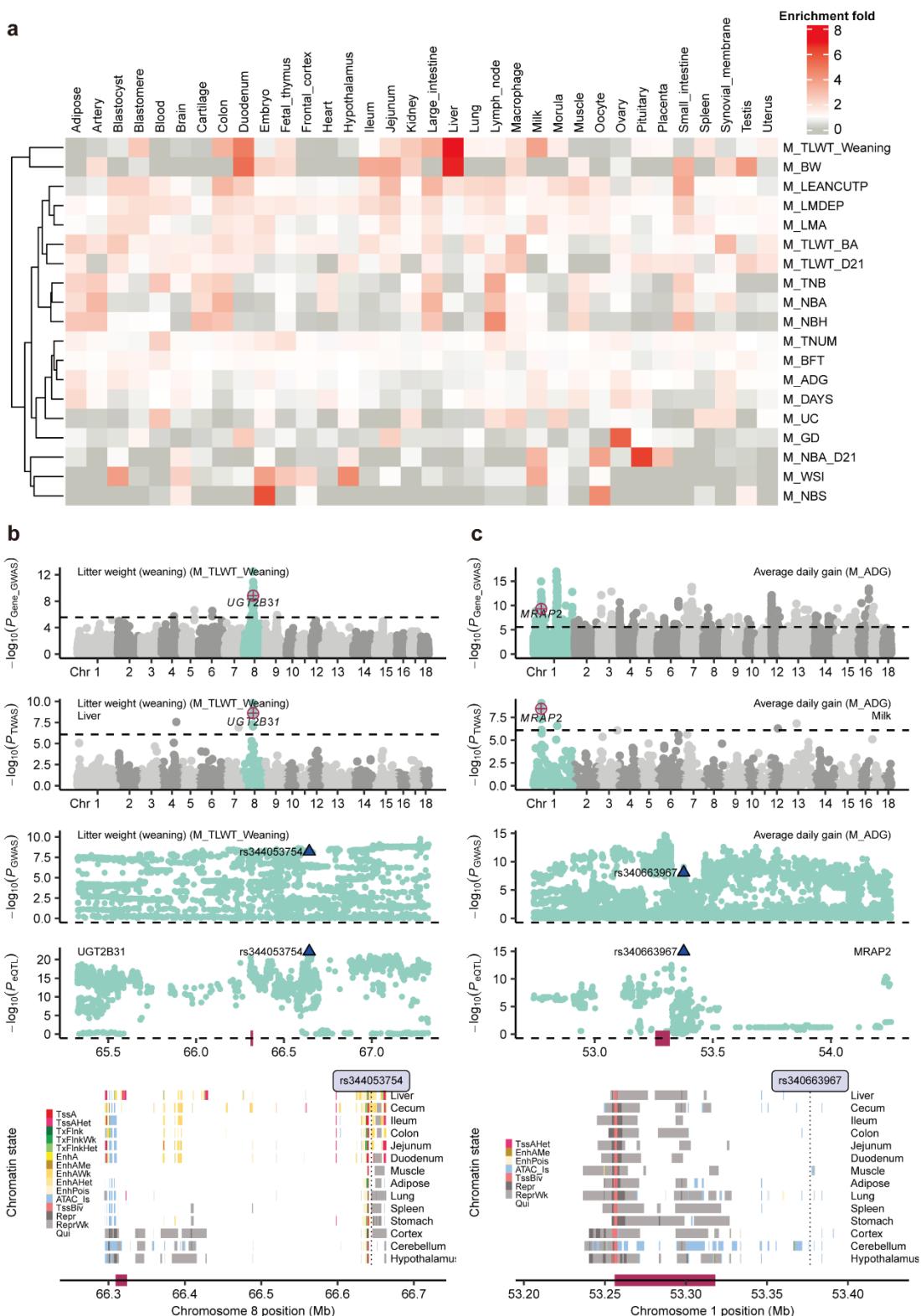
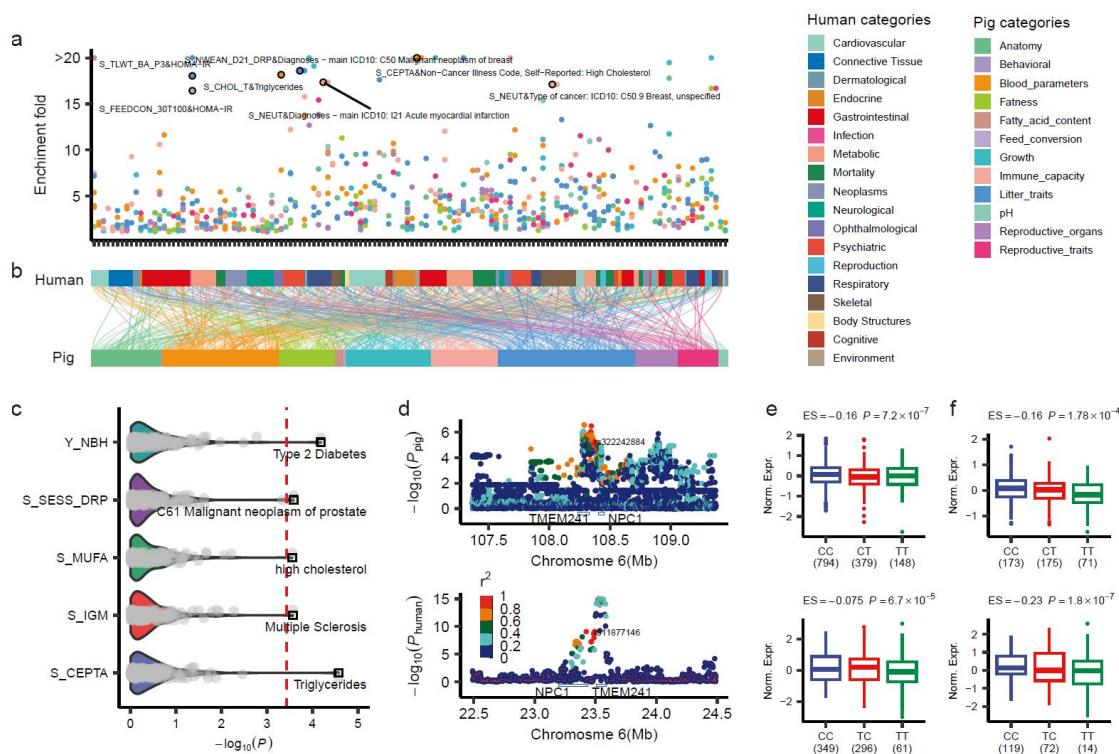


Figure 5. Tissue-specific regulation of GWAS loci.

613 (a) Enrichment results for significant associated SNPs of 19 main traits with large sample sizes in
 614 tissue-specific functional regions (the top 1,000 tissue-specific highly expressed genes per tissue
 615 and their upstream and downstream 100kb regions) in each of 34 tissues. Colors indicate enrichment
 616 fold. Rows indicate traits and columns indicate tissues. Enrichment for trait-tissue pairs $E_T = p_T$
 617 (proportion of significant SNPs for trait T located in functional regions of tissue T_i)/ q_T (proportion

618 of all SNPs located in functional regions of tissue T_i), which calculated by BEDTools v2.25.0⁵⁷.
 619 Associated SNPs were resampled 1,000 times with MAF within 0.02 and LD within 0.1 matched to
 620 calculate enrichment significance. An E_T greater than one and P less than 0.05 indicates that
 621 associated SNPs are significantly enriched in functional regions of tissue T_i . (b) The association of
 622 *UGT2B31* with litter weight (weaning) (M_TLWT_Weaning). The top one Manhattan plot
 623 represents the gene-based GWAS results of M_TLWT_Weaning. The top two Manhattan plot
 624 represents the single-tissue TWAS results of M_TLWT_Weaning in the liver. Followed by the two
 625 following Manhattan plots show the colocalization of M_TLWT_Weaning GWAS (up) and *cis*-
 626 eQTL (down) of *UGT2B31* on chromosome 8 in the liver. The blue triangles indicate the colocalized
 627 variants of *UGT2B31* in the liver (rs344053754). The bottom panel is for chromatin states around
 628 *UGT2B31* on chromosome 8. (c) The association of *MRAP2* with average daily gain (M_ADG).
 629 The top one Manhattan plot represents the gene-based GWAS results of M_ADG. The top two
 630 Manhattan plot represents the single-tissue TWAS results of M_ADG in the milk. Followed by the
 631 two following Manhattan plots show the colocalization of M_ADG GWAS (up) and *cis*-eQTL
 632 (down) of *MRAP2* on chromosome 1 in the milk. The blue triangles indicate the colocalized variants
 633 of *MRAP2* in milk (rs340663967). The bottom panel is for chromatin states around *MRAP2* on
 634 chromosome 1.

635



636

637 **Figure 6. Comparison of complex trait genetics between humans and pigs.**

638 (a) The heritability enrichment fold between human and pig complex traits is calculated by
 639 LDSC. Colors indicate trait categories. (b) The alluvium-stratum plot showed the correlation
 640 between human and pig complex traits. The alluvium between human-pig trait pairs indicates
 641 the heritability enrichment fold > 1 and the $P < 0.05$. Colors indicate trait categories. (c) The P
 642 value was derived from the Pearson's correlation test of traits between humans and pigs, which
 643 was estimated by the absolute Z score of homologous variants from GWAS summary statistics.
 644 Each point is a trait pair. The red line is the corrected significant threshold ($P = 0.05 / 136$). Top
 645 trait pairs are labeled. (d-f) Similar regulatory mechanisms between body fatness rate (BFR) in
 646 humans and average daily gain (D_ADG) in pigs. (d) The top is a local Manhattan plot of

647 GWAS for D_—ADG in pigs. The bottom is a local Manhattan plot of GWAS for BFR in humans.
648 The red triangles represent homozygous variants of humans (rs11877146) and pigs
649 (rs322242884). Colored dots indicate LD with the homozygous variants. **(e)** Top and bottom
650 are the effects of homozygous variants in **(d)** on the expression of homozygous gene *NPC1* in
651 muscle of pigs and humans, respectively. **(f)** Top and bottom are the effects of homologous
652 variants in **(d)** on the expression of the homologous gene *TMEM241* in the brains of pigs and
653 humans, respectively. The significance tests in **(e-f)** were performed by the *wilcox.test* function
654 of the *ggsignif* package in R (v4.2.1).

655

656

657

658

659

660

661 **Methods**

662 **Ethics**

663 This is not applicable because no biological samples were collected, and no animal handling
664 was performed for this study.

665 **GWAS dataset**

666 In total, we collected 70,328 pigs with genotype and phenotype data from 59 study populations
667 (14 public populations) covering 14 pig breeds (Table S1). We conducted comprehensive data
668 preparation and standardization for the study data regarding phenotype and genotype according
669 to the previously published protocol⁶⁵.

670 **Genotype data**

671 We genotyped these pigs from these 59 populations using low-coverage sequence (N = 2,873)
672 or genotyping arrays, including the Illumina Porcine SNP60K Bead Chip (N = 10,870), the
673 GeneSeek Genomic Profiler (GGP) Porcine SNP80 BeadChip (N = 4,724), the GGP Procine
674 SNP50 BeadChip (N = 29,789), the KPS Porcine Breeding Chip (N = 21,618), the GenoBaits
675 Porcine SNP50K BeadChip (N = 454). We constructed a standard pipeline to uniformly process
676 individual-level genotype data for all 59 populations. Briefly, we first converted the coordinate
677 of the genomic version of genotype data to the Sscrofa11.1 (v100) and only kept the autosomal
678 biallelic SNPs. To remove the outliers within each population, we performed principal
679 component analysis (PCA) for each of the 59 populations using PLINK (v1.9)³⁴ based on LD-
680 independent SNPs with parameter: “*--mind 0.1 --geno 0.9 --maf 0.01 --indep-pairwise 50 5 0.5*
681 *--pca 10*”. We visualized the principal components (PCs) of each population in R (v3.4.3) and
682 then excluded a total of 1,086 individuals who were outliers using PLINK (v1.9). Finally, we
683 retained 69,242 individuals for downstream analyses, including 20,706 Duroc pigs, 34,540
684 Yorkshire pigs, 9,159 Landrace pigs and 4,837 other pigs.

685 **Genotype imputation**

686 To obtain genotype data at whole-genome sequence (WGS) level, we performed genotype
687 imputation for each population based on multi-breed Pig Genomics Reference Panel (PGRP v1)
688 from PigGTE³³, which consists of 42,523,218 autosomal biallelic SNPs from 1,602 WGS
689 samples covering over 100 pig breeds. We firstly removed duplicate alleles from array data
690 using PLINK (v1.9)³⁴ with parameter: “*--list-duplicate-vars ids-only suppress-first, --exclude*
691 *plink.dupvar --recode vcf bgz*” and kept biallelic SNPs using BCFtools (v1.9)⁵⁷. We then
692 employed conform-gt program (<http://faculty.washington.edu/browning/conform-gt.html>) to
693 revise strand inconsistencies of SNPs based on pre-phasing genotype data⁶⁶. We imputed the
694 genotype data of target populations to sequence level using Beagle (v5.1)⁶⁷ and filtered out
695 variants with dosage R-squared (DR2) < 0.8 and MAF < 0.01 within each population. Finally,
696 we retained a total of 28,297,603 SNPs across all 59 populations for downstream analysis
697 (Table S1).

698 To evaluate the accuracy of genotype imputation, we employed two strategies (Fig. S1a). (1)
699 We conducted 20 rounds of five-fold cross-validation using genotype data of 60,720 samples
700 from 53 GWAS populations that had individual-level genotype data. Specifically, in each round
701 of cross-validation, we randomly selected 20% of SNPs in chromosome 6 of the target panel as

702 a validation set and imputed them using PGPR as a reference panel via Beagle (v5.1). We
703 measured the imputation accuracy by calculating the concordance rate and Pearson's
704 correlation between the imputed and true genotypes in the validation set. (2) We obtained 65
705 WGS samples from NCBI that were independent of PGPR, comprising of 35 Duroc pigs
706 (PRJNA712489) and 30 Suhuai pigs (PRJNA791712) (Table S2). We employed Trimmomatic
707 (v0.39)⁶⁸ to filter out the adaptors and low-quality reads, mapped clean reads to Sus scrofa11.1
708 (v100) using BWA-MEM (v0.7.5a-r405) with default parameters⁶⁹, and marked duplicated
709 reads using Picard (v2.21.2) (<http://broadinstitute.github.io/picard/>). We called SNPs for these
710 samples using Genome Analysis Toolkit (GATK) (v4.1.4.1)⁷⁰ with parameter: “*QD* > 2, *MQ* <
711 40, *FS* > 60, *SOR* > 3, *MQRankSum* < -12.5 and *ReadPosRankSum* < -8”, resulting in
712 17,182,138 and 15,696,890 biallelic autosomal SNPs for Duroc and Suhuai, respectively. For
713 the purpose of evaluating the accuracy of genotype imputation, we masked SNPs that were not
714 overlapped with these SNPs obtained from SNP array and then imputed them to WGS level
715 using PGPR as reference panel via Beagle (v5.1). Finally, we calculated the concordance rate
716 and Pearson's correlation between imputed genotypes with *DR2* > 0.8 and *MAF* > 0.01 and
717 those called directly from the WGS.

718 **Phenotype data**

719 A total of 286 complex traits (15 binary traits and 271 continuous traits) were available for the
720 59 populations (Table S3), which belonged to five main trait-categories (i.e., Reproduction,
721 Meat and Carcass, Health, Production, and Exterior) and 17 sub trait-categories (i.e., Litter,
722 Reproductive, Growth, Reproductive organs, Blood parameters, Immune capacity, Anatomy,
723 Fatness, Fatty acid content, Feed conversion, Conformation, Meat color, Chemistry, Feed intake,
724 pH, Texture, and Behavioral).

725 In particular, 49 out of 286 traits have phenotypic records in multiple time points for the same
726 individual (e.g., sperm traits and litter sizes, detailed in Table S3) and were referred to as
727 “multiple time points trait” (i.e., MT-trait). For these 49 MT_traits, we calculated the de-
728 regressed proofs (DRP) as their phenotype measures using DMU (v6-R5-2-EM64T)⁷¹. We first
729 estimated breeding values (EBV) in each population based on pedigree information using a
730 single-trait repeatability model implemented in the DMUAI module of DMU. The statistical
731 model is:

732
$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}_1\mathbf{a} + \mathbf{Z}_2\mathbf{pe} + \mathbf{e},$$

733 where \mathbf{y} is the vector of phenotypic values for all individuals; \mathbf{b} is the vector of the effects of
734 covariates (e.g., year-season of ejaculation, age of pigs at months or collection interval (days));
735 $\mathbf{a} \sim N(0, \mathbf{A}\sigma_a^2)$ is the vector of additive genetic effects, with \mathbf{A} and σ_a^2 denoting the pedigree-
736 based additive genetic relationship matrix and additive genetic variance; $\mathbf{pe} \sim N(0, \mathbf{I}\sigma_{pe}^2)$ is the
737 vector of permanent environmental effects with σ_{pe}^2 denoting the identity matrix and the
738 permanent environmental variance; \mathbf{X} , \mathbf{Z}_1 , and \mathbf{Z}_2 are the incidence matrices assigning
739 observations to covariates effects, additive genetic effects, and permanent environmental effects,
740 respectively; $\mathbf{e} \sim N(0, \mathbf{I}\sigma_e^2)$ is the vector of random residual effects, with \mathbf{I} and σ_e^2 denoting
741 the identity matrix and the residual variance. To eliminate the bias from relatives, we calculated
742 the DRP and weights for each pig using the methods described by Garrick et al.⁷² with the
743 following model:

744
$$\begin{bmatrix} \mathbf{Z}_{PA}\mathbf{Z}_{PA} + 4k & -2k \\ -2k & \mathbf{Z}_i\mathbf{Z}_i \end{bmatrix} \begin{bmatrix} PA \\ EBV_i \end{bmatrix} = \begin{bmatrix} y_{PA}^* \\ y_i^* \end{bmatrix},$$

745 where y_i^* is information equivalent to a right-hand-side element pertaining to the individual,

746 PA is the parental average EBV; EBV_i is the EBV for animal i ; $\mathbf{Z}_{PA}\mathbf{Z}_{PA}$ and $\mathbf{Z}_i\mathbf{Z}_i$ reflect the
747 unknown information content of the parental average and individual (plus information from
748 any of its offspring and/or subsequent generations). Their formulas were as follows:

749
$$\mathbf{Z}_{PA}\mathbf{Z}_{PA} = k(0.5\alpha - 4) + 0.5k\sqrt{\alpha^2 + 16/\delta},$$

750
$$\mathbf{Z}_i\mathbf{Z}_i = \delta\mathbf{Z}_{PA}\mathbf{Z}_{PA} + 2k(2\delta - 1),$$

751
$$k = (1 - h^2)/h^2, \alpha = 1/(0.5 - REL_{PA}), \delta = (0.5 - REL_{PA})/(1 - REL_i),$$

752
$$DRP = y_i^* = \frac{-2kPA + (Z_i^*Z_i + 2k)EBV_i}{Z_i^*Z_i},$$

753
$$REL_{DRP} = 1 - k/(Z_i^*Z_i + k),$$

754 where h^2 is the estimated heritability; REL_{PA} is the reliability of the parental average EBV;
755 REL_i is the reliability of the EBV for animal i ; REL_{DRP} is the reliability of the DRP for animal
756 i . The weights can be derived from $w_i = \frac{1-h^2}{[c+(1-REL_{DRP})/REL_{DRP}]h^2}$, where $c=0.2$ is assumed to
757 represent the proportion of genetic variation for which genotypes cannot account is 0.2. Finally,
758 we used the DRP and weights for each pig above for the downstream association analysis.

759 **Individual GWAS**

760 We conducted individual GWAS for each trait in each population as described below and
761 referred to this as “individual GWAS” throughout the manuscript (Table S3).

762 For binary traits, we performed association analysis with a logistic mixed model using
763 fastGWA-GLMM implemented in GCTA (v1.94.0)⁷³. The statistical model is:

764
$$\text{logit}(\boldsymbol{\mu}) = \mathbf{x}_s\boldsymbol{\beta}_s + \mathbf{X}_c\boldsymbol{\beta}_c + \mathbf{g},$$

765 where \mathbf{y} is a vector of phenotypic values, $\boldsymbol{\mu}$ is a vector of $\mu_i = P(y_i = 1 | x_{si}, X_{ci}, g_i)$ with
766 μ_i being the probability of subject i being a case given the subject’s genotype x_{si} , covariates
767 X_{ci} and random genetic effect g_i ; \mathbf{x}_s is a vector of genotype variables of a variant of interest
768 with its effect $\boldsymbol{\beta}_s$; \mathbf{X}_c is the incidence matrix of fixed-effect covariates (farms, sex, year,
769 season and the first five genotype PCs) with their corresponding coefficients $\boldsymbol{\beta}_c$; \mathbf{g} is a vector
770 of effects that capture genetic and common environmental effects shared among related
771 individuals, $\mathbf{g} \sim N(0, \mathbf{G}\sigma_g^2)$ with \mathbf{G} being the sparse GRM with all the small off-diagonal
772 elements (for example, those <0.05) set to zero and σ_g^2 being the corresponding variance
773 component.

774 For quantitative traits, we performed association analysis with a mixed linear model using
775 fastGWA implemented in GCTA (v1.94.0)⁷⁴. The statistical model is:

776
$$\mathbf{y} = \mathbf{x}_s\boldsymbol{\beta}_s + \mathbf{X}_c\boldsymbol{\beta}_c + \mathbf{g} + \mathbf{e},$$

777 where \mathbf{y} , \mathbf{x}_s , $\boldsymbol{\beta}_s$, \mathbf{X}_c , $\boldsymbol{\beta}_c$ and \mathbf{g} are the same as those in the above logistic mixed model; \mathbf{e}
778 is the vector of residuals with $\mathbf{e} \sim N(0, \mathbf{I}\sigma_e^2)$.

779 Specifically, for 49 MT-trait, we employed MMA (v2021_08_19_22_30.intel)
780 (<https://mmap.github.io/>) to perform association analysis based on their DRP and weights for

781 each pig. We conducted the individual GWAS based on a mixed linear model:

782
$$\mathbf{Y} = \mathbf{1}\boldsymbol{\mu} + \mathbf{X}\mathbf{b} + \mathbf{g} + \mathbf{e}$$

783 where \mathbf{y} is the vector of DRP for the given trait, $\boldsymbol{\mu}$ is the global mean, and $\mathbf{1}$ is a vector of ones;
784 \mathbf{X} is the genotype of a candidate variant (coded as 0, 1, or 2 copies of the minor allele) for the
785 animals with observations in \mathbf{y} , and \mathbf{b} is a vector of marker effects; \mathbf{g} is a vector of polygenic
786 effects accounting for population structure with $\mathbf{g} \sim N(0, \mathbf{G}\sigma_g^2)$, where the genomic relationship
787 matrix (\mathbf{G}) was built using the imputed SNPs and σ_g^2 is the genetic variance, and \mathbf{e} is a vector
788 of random residual errors with $\mathbf{e} \sim N(0, \mathbf{R}\sigma_e^2)$, where σ_e^2 is residual error variance and \mathbf{R} is a
789 diagonal matrix that adjusts σ_e^2 to account for the heterogeneous variance of DRP for each pig,
790 the weights included in \mathbf{R} .

791 **Meta-analysis of GWAS**

792 To enable individual GWASs from different populations to be comparable in the meta-analysis,
793 we checked all summary statistics based on EasyQC⁶⁵.

794 First, to detect issues related to trait transformations, we first examined the relationship
795 between the inverse of the median standard error of all SNPs beta estimates and the square root
796 of the sample size (SE-N plot) across multiple study files for each trait. For outliers, we
797 examined the raw phenotype data and reran association analysis. The calibration factor c of the
798 SE-N plot was approximated from the autosomal SNPs of the PGRP reference panel as

799 $c \sim \text{median} \left(\frac{1}{\sqrt{2MAF_j(1-MAF_j)}} \right)$. Second, we examined the analytical issues for each study by

800 comparing the reported P values of each SNP with the P values computed from the Z -statistics
801 (Z -statistics = $\beta_j/SE(\beta_j)$) based on reported beta estimate and standard error (P-Z plots). Third,
802 we plotted the effect allele frequency (EAF) from study-specific against EAF from PGRP to
803 identify strand issues or allele miscoding that could severely reduce statistical power. Fourth,
804 we grasped the potential problems with population stratification by the genomic control (GC)
805 inflation factor (λ_{GC} , from 0.86 to 2.39 with an average of 1.11). After we reconstructed the
806 association analyses by using the first five principal components as additional covariates, the
807 λ_{GC} decreased (from 0.56 to 1.58 with an average of 1.04). Fifth, we excluded SNPs with
808 missing or nonsensical information (e.g., P values < 0 or >1, or non-numeric values such as
809 "NA") from summary statistics.

810 We performed meta-analyses on the cleaned GWAS results for each trait using METAL
811 (v2011-03-25)⁷⁵, based on an inverse variance-weighted fixed effects model that weights effect
812 size estimates according to estimated standard errors and allows for different population
813 frequencies of genotypes and alleles. Genomic control correction was applied for all input files
814 in the analysis. SNPs included in the meta-analysis were present in at least one individual
815 GWAS, and the total number of SNPs for each trait is shown in Table S4.

816 **Definition of QTL**

817 For both individual GWASs and meta-GWAS, we used $P < 5.0 \times 10^{-8}$ as the genome-wide
818 significance threshold and defined lead SNPs and QTLs on the basis of genomic position. For
819 each GWAS summary, we defined the significant SNP with the smallest P -value in each
820 chromosome as the first lead SNP and the significant SNP with the smallest P -value outside the
821 1Mb-region upstream and downstream of the first lead SNP as the second lead SNP. This
822 process was iterated until no significant SNPs were left in that chromosome. Different traits

823 can share lead SNPs. We defined the two most distant significant SNPs within 0.5Mb on each
824 side of the lead SNPs as the boundaries of the QTLs. In addition, we performed a stepwise
825 conditional analysis to extend the candidate regions and define broad QTLs, in which adjacent
826 significant SNPs within the broad QTL region are within 1Mb apart.

827 **QTL Validation**

828 To validate the QTL regions we identified, we used the following three strategies.

829 First, we compared the QTL regions with those for the same traits reported in the Pig
830 Quantitative Trait Locus (QTL) database (Pig QTLdb version 46)²³
831 (<https://www.animalgenome.org/cgi-bin/QTLdb/SS/index>). We performed a filtering process
832 on the downloaded QTL regions, excluding those with missing start/end position information
833 and those smaller than 1bp or larger than 1Mp. This resulted in a final retention of 302,784
834 autosomal QTL regions. Among these, we successfully matched 151 traits with traits in our
835 study. Regions, where there was at least 1bp of overlap with the same trait, were considered
836 successfully validated (defined as ‘TRUE’), while those without overlap were classified as
837 ‘FALSE’.

838 Second, we validated the QTL regions in independent populations. For this, we performed
839 nine individual GWASs for average daily gain (ADG) on a total of 42,790 pigs, 88,984 pigs,
840 and 69,606 pigs from three populations of Duroc, Landrace, and Yorkshire, respectively, using
841 the MLM model of GCTA (v1.94.0)⁷⁶. This statistical model was consistent with one of the
842 fastGWA models used in our study. Subsequently, we conducted within-breed meta-GWAS
843 analyses and all-breed meta-analysis using the same method as in this study. We identified the
844 QTL regions in these meta-analyses using the same method as in our study and calculated the
845 enrichment fold of these regions in the QTL regions of ADG detected in our study.

846 Third, we used information on suggestively significant lead SNPs ($P < 1.0 \times 10^{-5}$) for breed-
847 level genomic prediction to validate the functional reliability of the QTLs. For this, we
848 performed genomic predictions in seven pig breeds from PGRP, including 54 Meishan, 24
849 Erhualian, 41 Jiaxinghei, 226 Yorkshire, 51 Landrace, 138 Duroc, and 43 Pietrain pigs. We
850 extracted the genotypes of the lead SNPs from PGRP using Bcftools (v1.9)⁵⁷ and their effect
851 sizes from GWAS summary statistics. Whereafter, we used a linear mixed model to fit the
852 genotype and effect size for genomic prediction in each breed. The model formula we used for
853 each breed was:

$$854 \quad y = \sum_{i=1}^M Z_i g_i$$

855 where y is a vector of predicted phenotypes, g_i is the effect size of lead SNP i in GWAS
856 summary statistics, Z_i is the vector of the genotype of lead SNP i containing 0, 1 and 2. We
857 fitted the model using R v 4.2.1.

858 **Pleiotropic variants across breeds and traits**

859 To identify variants with effects on traits shared among breeds, we extracted the effect sizes
860 and standard errors of lead SNPs from a total of 36 meta-analyses for 12 traits in Duroc,
861 Landrace and Yorkshire pigs. We then used METASOFT (v2.0.1)⁴⁴, a procedure that corrects
862 for the effect of sample size on association analysis, to calculate the posterior probability of the
863 lead SNP effect for each trait in each breed. We employed the same method to identify GWAS
864 variants with pleiotropic effects on multiple traits. We considered an M-value greater than 0.9

865 as evidence of an effect.

866 **Annotation and enrichment of significant/lead variants in functional categories**

867 To investigate the molecular mechanisms of significant/lead SNPs, we examined multiple
868 layers of biological data.

869 First, we annotated significant/lead SNPs in several genomic categories: (i) 20 genomic
870 variants, including intron variants and intergenic region variants, using SnpEff (v.4.3)⁷⁷. (ii) the
871 seven groups categorized by genomic locations with respect to protein-coding genes, i.e., CDS,
872 promoter (100kb upstream and downstream of the protein-coding gene TSS), 5'UTR + 2kb
873 upstream, 3'UTR + 2kb downstream, protein-coding genes, non-protein-coding genes, and
874 intron regions. (iii) the downloaded mammalian conserved elements identified from Multiple
875 Sequence Alignments (MSA) using the Genomic Evolutionary Rate Profiling (GERP) software
876 based on 103 mammals (https://ftp.ensembl.org/pub/release-100/bed/ensembl-compara/103_mammals.gerp_constrained_element/). (iv) the 14 chromatin states detected
877 from 14 major pig tissues⁷⁸ to investigate the regulatory function. (v) the tissue-specific
878 functional regions of 34 tissues in FarmGTE³³. Here, we borrowed the top 1,000 tissue-
879 specific highly expressed genes, along with their upstream and downstream 100kb regions in
880 each tissue, to represent the tissue-specific functional regions.

882 Second, we estimated the enrichment and significant *P*-value of significant/lead SNPs across
883 the various genomic categories. For genomic variants, we used the *oddsratio* function of fmsb
884 (v0.7.5) package⁷⁹ in R (v4.1.2) to perform enrichment and estimate significance. The
885 enrichment for category C ($E_C = p_C$ (proportion of significant/lead SNPs located in category C)
886 / q_C (proportion of all SNPs located in category C)). For the genomic regions of protein-coding
887 genes, conserved elements, chromatin states and tissue-specific functional regions, we used two
888 methods to estimate the enrichment: (i) we employed the R/Bioconductor package locus
889 overlap analysis (LOLA v1.22.0)⁸⁰ to estimate the enrichment and *P*-values, and (ii) we used
890 BEDTools (v2.25.0)⁵⁷ to estimate the enrichment. The enrichment for category C ($E_C = p_C$
891 (proportion of category C in all significantly enriched trait-category pairs E_T) / q_C (proportion
892 of category C in the genome)). Here, the enrichment for trait-category pairs $E_T = p_T$ (proportion
893 of significant/lead SNPs for trait T located in category C) / q_T (proportion of all SNPs located in
894 category C). We performed a permutation test by resampling the association signals 10,000
895 times to determine if the observed SNPs located in the annotation category were greater than
896 expected by chance, using the R package regioneR (v1.24.0)⁸¹. Additionally, we resampled the
897 SNPs matching the MAF (within 0.02) and LD (within 0.1) of the association signals 1,000
898 times for the permutation test. An E_C greater than one and a *P*-value less than 0.05 indicated
899 that significant/lead SNPs were significantly enriched in category C .

900 In addition, to understand the evolutionary sequence conservation of association variants, we
901 downloaded PhastCons scores for 100 vertebrate species from UCSC
902 (<http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/hg38.100way.phastCons>). We converted the Wiggle files of PhastCons scores to BED files using the BEDOPS tool
903 (v2.4.40)⁸², and then we lifted them over from the human genome 38 (h38) to Sscrofa11.1 using
904 UCSC's LiftOver tool⁸³.

906 **Summary-based genetic parameter estimation**

907 To estimate the genetic parameters for all pig complex traits, we first harmonized all 268 GWAS
908 summary data using the *munge_sumstats.py* function of the linkage disequilibrium score
909 regression (LDSC v1.0.1)⁴³ with parameters: “--sumstats --N --out”, and estimated linkage

910 disequilibrium (LD) score from PGPR using PLINK (v1.90)³⁴ with parameter: “--ld-wind-kb
911 1000”. Second, we estimated the narrow-sense heritability for complex traits based on summary
912 using LDSC (v1.0.1) with parameters: “--h2, --ref-ld-chr, --w-ld-chr and --out”.

913 Heritability enrichment of regulatory variants

914 To investigate the impact of regulatory variants on complex traits, we extracted significant *cis*-
915 molQTLs from five molecular phenotypes in 34 tissues, including 2,930,627 *cis*-eQTLs for
916 protein-coding gene expression, 2,842,703 *cis*-eeQTLs for exon expression, 2,628,257 *cis*-
917 sQTLs for alternative splicing, 2,703,774 *cis*-enQTLs for enhancer and 2,056,718 *cis*-lncQTLs
918 for lncRNA³³. We used the BLD-Thin model of LDAK (v5.0)⁸⁴ to estimate the heritability and
919 performed heritability enrichment analysis for these molQTLs in 169 meta-GWAS summaries
920 that detected lead SNPs using an optional parameter: “--check-sums NO”.

921 To further explore the effects of independent regulatory variants on complex traits, we divided
922 independent eQTLs into three groups based on their rank for each eGene from muscle and liver
923 tissues, including primary-, secondary- and third-rank independent eQTLs. We performed the
924 same heritability enrichment analysis for these independent eQTLs in the 169 meta-GWAS
925 summaries. We did not consider the results for enrichment folds less than 0. Additionally, we
926 obtained *P*-values based on the enrichment fold and their standard errors using a one-sided
927 normality test. We adjusted the *P*-value using the *p.adjust* function with the FDR method in R
928 v4.2.1. The heritability enrichment with FDR < 0.05 was considered a significant pair. The
929 formula for estimating the *P*-value was:

$$930 \quad p = \text{norm}\left(\frac{x - 0}{\sigma}\right)$$

931 Where x represented the heritability enrichment fold, and σ was the standard error of the
932 heritability enrichment fold.

933 To evaluate the performance of heritability enrichment for independent molQTLs, we
934 randomly selected the same number of MAF-matched SNPs for each rank of independent
935 molQTLs for muscle and liver tissue and performed heritability enrichment. We extracted the
936 total SNPs heritability contributed by each category to compare the performance of heritability
937 enrichment.

938 Heritability enrichment of tissue-sharing/specific genes on complex traits

939 To investigate the regulatory patterns of tissue-sharing/specific genes for complex traits, we
940 conducted heritability enrichment analysis of these genes in GWAS summaries using LDAK
941 (the BLD-Thin model)⁸⁴. Initially, we categorized protein-coding genes into seven groups (1-5,
942 6-10, 11-15, 16-20, 21-25, 26-30, 31-34 tissues) based on the magnitude of tissue-
943 sharing/specificity derived from the *cis*-eQTL meta-analysis results across all 34 tissues³³.
944 Subsequently, we extracted significant *cis*-eQTLs for each gene and organized them according
945 to their respective tissue-sharing/specific gene groups. Next, we randomly selected 500,000
946 variants for each gene group to generate an annotation file. Finally, we used the annotation file
947 to calculate the tagging file and conducted the heritability enrichment analysis.

948 Colocalization of GWAS summary with *cis*-molQTL

949 To investigate the contribution of molecular phenotypes to the genetic regulation of complex
950 traits, we performed a colocalization analysis of molQTL and GWAS signals using fastENLOC
951 (v1.0)⁸⁵. The details of our colocalization methods have been described in our previous work³³.

952 **Summary-based transcriptome-wide association study (TWAS)**

953 To explore whether the overall *cis*-genetic component of a molecular phenotype is associated
954 with complex traits, we conducted both single- and multi-tissue TWAS using S-PrediXcan⁸⁶
955 and S-MultiXcan in MetaXcan (v0.6.11)⁸⁷, based on summary statistics from meta-GWASs.
956 Our TWAS methods have been previously described in detail³³. We applied the Bonferroni
957 correction for multiple testing and considered a corrected *P*-value of less than 0.05 to be
958 significant.

959 **Mendelian randomization (MR) analysis between molQTL and GWAS loci**

960 To infer the causality between molecular phenotypes and complex traits, we conducted an
961 integrative MR analysis using the SMR tool (v1.03) with genetic variants as instrumental
962 variables⁸⁸. The method used has been previously described in detail³³. To account for multiple
963 testing, we applied the Bonferroni correction and defined a corrected *P*-value of less than 0.05
964 as significant.

965 Finally, we prioritized variant-gene/exon/lncRNA/enhancer/splicing-tissue-trait circuits that
966 were validated by at least one method, including TWAS, colocalization, and MR. These circuits
967 exhibited significant tissue-trait associations in enrichment analyses of GWAS significant
968 signals and tissue-specific functional regions.

969 **Heritability enrichment of human complex traits**

970 To investigate whether the regulatory mechanisms of complex traits were conserved between
971 humans and pigs, we used lead variants with extended windows in 169 pig complex traits to
972 determine the heritability enrichment in human complex traits. Initially, we obtained public
973 GWAS summary statistics for 136 human complex traits, representing 18 trait domains (Table
974 S10). We then mapped the genomic regions located 1 Mb upstream and downstream of the lead
975 variants for each pig complex trait to the human genome (GRCh38/hg38) using UCSC's
976 LiftOver tool⁸³. Subsequently, we implemented heritability enrichment analysis using these
977 genomic regions for the 136 human complex traits by LDSC (v1.0.1)⁴³. Finally, we selected
978 human-pig trait pairs with a heritability enrichment fold greater than 1 and a *P*-value less than
979 0.05 for further downstream analysis.

980 We also conducted a validation study to evaluate the performance of heritability enrichment
981 of pig QTL regions in humans. For this, we randomly selected QTL regions and performed
982 heritability enrichment analysis. Initially, we removed the regions already mapped with pig
983 QTL regions based on human genome information. Next, we randomly selected an equal
984 number of regions with matching widths from the remaining human genome for each pig
985 complex trait. Finally, we used these selected regions for heritability enrichment analysis on
986 the summary statistics of 136 human complex traits.

987 **The correlation between humans and pigs in GWAS summary statistics**

988 To explore the correlation between pigs and humans in GWAS summary statistics, we first
989 obtained homozygous variants shared between pigs (version: Sus scrofa11.1) and human
990 (GRCh38/hg38) using LiftOver⁸³. Second, we matched the homozygous variants for 268 pig
991 GWAS summary statistics and 136 human GWAS summary statistics. Third, we performed a
992 Pearson correlation test between the absolute value of the Z-score of homozygous variants from
993 humans and pigs in R v4.2.1. We considered a threshold of $0.05/136=3.68 \times 10^{-4}$ as significant
994 for the trait pairs.

995 **Reporting summary**

996 Further information on research design is available in the Nature Research Reporting Summary
997 linked to this article.

998

999 **References**

- 1000 1. Tongyu Yang, Zuli Wang, Xiaohong Liu, Shuihua Xie, H. Z. Development of the
1001 world pig industry in 2021 and Trends in 2022. *Swine Ind. Sci.* **39**, 34–38 (2022).
- 1002 2. Gutierrez-Reinoso, M. A., Aponte, P. M. & Garcia-Herreros, M. Genomic Analysis,
1003 Progress and Future Perspectives in Dairy Cattle Selection: A Review. *Animals* **11**,
1004 599 (2021).
- 1005 3. Vukasinovic, N., Bacciu, N., Przybyla, C. A., Boddhireddy, P. & DeNise, S. K.
1006 Development of genetic and genomic evaluation for wellness traits in US Holstein
1007 cows. *J. Dairy Sci.* **100**, 428–438 (2017).
- 1008 4. McNeel, A. K., Reiter, B. C., Weigel, D., Osterstock, J. & Di Croce, F. A. Validation
1009 of genomic predictions for wellness traits in US Holstein cows. *J. Dairy Sci.* **100**,
1010 9115–9124 (2017).
- 1011 5. Strandén, I., Kantanen, J., Lidauer, M. H., Mehtiö, T. & Negussie, E. Animal board
1012 invited review: Genomic-based improvement of cattle in response to climate change.
1013 *animal* **16**, 100673 (2022).
- 1014 6. Hayes, B. J., Lewin, H. A. & Goddard, M. E. The future of livestock breeding:
1015 genomic selection for efficiency, reduced emissions intensity, and adaptation. *Trends
1016 Genet.* **29**, 206–214 (2013).
- 1017 7. Tribout, T., Larzul, C. & Phocas, F. Efficiency of genomic selection in a purebred pig
1018 male line. *J. Anim. Sci.* **90**, 4164–4176 (2012).
- 1019 8. Whitworth, K. M. *et al.* Gene-edited pigs are protected from porcine reproductive and
1020 respiratory syndrome virus. *Nat. Biotechnol.* **34**, 20–22 (2016).
- 1021 9. de Almeida, A. M. & Bendixen, E. Pig proteomics: A review of a species in the
1022 crossroad between biomedical and food sciences. *J. Proteomics* **75**, 4296–4314
1023 (2012).
- 1024 10. Jakobsen, J. E. *et al.* Expression of the Alzheimer's Disease Mutations A β PP695sw
1025 and PSEN1M146I in Double-Transgenic Göttingen Minipigs. *J. Alzheimer's Dis.* **53**,
1026 1617–1630 (2016).
- 1027 11. Barallobre-Barreiro, J. *et al.* Proteomics Analysis of Cardiac Extracellular Matrix
1028 Remodeling in a Porcine Model of Ischemia/Reperfusion Injury. *Circulation* **125**,
1029 789–802 (2012).
- 1030 12. Brasileiro, A. C. L., Oliveira, D. C. de, Silva, P. B. da & Rocha, J. K. S. de L. Impact

1031 of topical nifedipine on wound healing in animal model (pig). *J. Vasc. Bras.* **19**,
1032 (2020).

1033 13. Hwang, J. *et al.* Ex Vivo Live Full-Thickness Porcine Skin Model as a Versatile In
1034 Vitro Testing Method for Skin Barrier Research. *Int. J. Mol. Sci.* **22**, 657 (2021).

1035 14. Mordhorst, B. R. & Prather, R. S. Pig Models of Reproduction. in *Animal Models and*
1036 *Human Reproduction* 213–234 (Wiley, 2017). doi:10.1002/9781118881286.ch9.

1037 15. Burrin, D. *et al.* Translational Advances in Pediatric Nutrition and Gastroenterology:
1038 New Insights from Pig Models. *Annu. Rev. Anim. Biosci.* **8**, 321–354 (2020).

1039 16. Menduni, F., Davies, L. N., Madrid-Costa, D., Fratini, A. & Wolffsohn, J. S.
1040 Characterisation of the porcine eyeball as an in-vitro model for dry eye. *Contact Lens*
1041 *Anterior Eye* **41**, 13–17 (2018).

1042 17. Pabst, R. The pig as a model for immunology research. *Cell Tissue Res.* **380**, 287–304
1043 (2020).

1044 18. Lunney, J. K. *et al.* Importance of the pig as a human biomedical model. *Sci. Transl.*
1045 *Med.* **13**, (2021).

1046 19. Griffith, B. P. *et al.* Genetically Modified Porcine-to-Human Cardiac
1047 Xenotransplantation. *N. Engl. J. Med.* **387**, 35–44 (2022).

1048 20. Wang, Q., Tang, J., Han, B. & Huang, X. Advances in genome-wide association
1049 studies of complex traits in rice. *Theor. Appl. Genet.* **133**, 1415–1425 (2020).

1050 21. Wang, X. *et al.* Genetic variation in ZmVPP1 contributes to drought tolerance in
1051 maize seedlings. *Nat. Genet.* **48**, 1233–1241 (2016).

1052 22. Bouwman, A. C. *et al.* Meta-analysis of genome-wide association studies for cattle
1053 stature identifies common genes that regulate body size in mammals. *Nat. Genet.* **50**,
1054 362–367 (2018).

1055 23. Hu, Z.-L., Park, C. A. & Reecy, J. M. Bringing the Animal QTLdb and CorrDB into
1056 the future: meeting new challenges and providing updated services. *Nucleic Acids Res.*
1057 **50**, D956–D961 (2022).

1058 24. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five Years of GWAS
1059 Discovery. *Am. J. Hum. Genet.* **90**, 7–24 (2012).

1060 25. Shu, X. *et al.* Identification of novel breast cancer susceptibility loci in meta-analyses
1061 conducted among Asian and European descendants. *Nat. Commun.* **11**, 1217 (2020).

1062 26. Graham, S. E. *et al.* The power of genetic diversity in genome-wide association
1063 studies of lipids. *Nature* **600**, 675–679 (2021).

1064 27. Mahajan, A. *et al.* Multi-ancestry genetic study of type 2 diabetes highlights the power
1065 of diverse populations for discovery and translation. *Nat. Genet.* **54**, 560–572 (2022).

1066 28. Maurano, M. T. *et al.* Systematic Localization of Common Disease-Associated

1067 29. Variation in Regulatory DNA. *Science* (80-). **337**, 1190–1195 (2012).

1068 29. Farh, K. K.-H. *et al.* Genetic and epigenetic fine mapping of causal autoimmune
1069 disease variants. *Nature* **518**, 337–343 (2015).

1070 30. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using genome-
1071 wide association summary statistics. *Nat. Genet.* **47**, 1228–1235 (2015).

1072 31. Dimas, A. S. *et al.* Common Regulatory Variation Impacts Gene Expression in a Cell
1073 Type–Dependent Manner. *Science* (80-). **325**, 1246–1250 (2009).

1074 32. Clark, E. L. *et al.* From FAANG to fork: application of highly annotated genomes to
1075 improve farmed animal production. *Genome Biol.* **21**, 285 (2020).

1076 33. The FarmGTE-X-PigGTE Consortium, Jinyan Teng, Yahui Gao, Hongwei Yin,
1077 Zhonghao Bai, Shuli Liu, Haonan Zeng, Lijing Bai, Zexi Cai, Bingru Zhao, Xiujin Li,
1078 Zhiting Xu, Qing Lin, Zhangyuan Pan, Wenjing Yang, Xiaoshan Yu, Dailu Guan, Yali
1079 Hou, Brittney N. Kee, L. F. A compendium of genetic regulatory effects across pig
1080 tissues. *bioRxiv* (2022) doi:10.1101/2022.11.11.516073.

1081 34. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and
1082 richer datasets. *Gigascience* **4**, 7 (2015).

1083 35. Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human
1084 population structure on large genetic association studies. *Nat. Genet.* **36**, 512–517
1085 (2004).

1086 36. Visscher, P. M. *et al.* 10 Years of GWAS Discovery: Biology, Function, and
1087 Translation. *Am. J. Hum. Genet.* **101**, 5–22 (2017).

1088 37. Yengo, L. *et al.* A saturated map of common genetic variants associated with human
1089 height. *Nature* **610**, 704–712 (2022).

1090 38. Miller, A. T., Picton, H. M., Craigon, J. & Hunter, M. G. Follicle Dynamics and
1091 Aromatase Activity in High-Ovulating Meishan Sows and in Large-White Hybrid
1092 Contemporaries1. *Biol. Reprod.* **58**, 1372–1378 (1998).

1093 39. Manolio, T. A. *et al.* Finding the missing heritability of complex diseases. *Nature* **461**,
1094 747–753 (2009).

1095 40. Gazal, S. *et al.* Functional architecture of low-frequency variants highlights strength of
1096 negative selection across coding and non-coding annotations. *Nat. Genet.* **50**, 1600–
1097 1607 (2018).

1098 41. O'Connor, L. J. *et al.* Extreme Polygenicity of Complex Traits Is Explained by
1099 Negative Selection. *Am. J. Hum. Genet.* **105**, 456–476 (2019).

1100 42. Kanai, M. *et al.* Genetic analysis of quantitative traits in the Japanese population links
1101 cell types to complex human diseases. *Nat. Genet.* **50**, 390–400 (2018).

1102 43. Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from
1103 polygenicity in genome-wide association studies. *Nat. Genet.* **47**, 291–295 (2015).

1104 44. Han, B. & Eskin, E. Interpreting Meta-Analyses of Genome-Wide Association
1105 Studies. *PLoS Genet.* **8**, e1002555 (2012).

1106 45. Zeng, H. *et al.* Meta-analysis of genome-wide association studies uncovers shared
1107 candidate genes across breeds for pig fatness trait. *BMC Genomics* **23**, 786 (2022).

1108 46. Heidaritabar, M. *et al.* Genome-wide association studies for additive and dominance
1109 effects for body composition traits in commercial crossbred Piétrain pigs. *J. Anim.*
1110 *Breed. Genet.* **140**, 413–430 (2023).

1111 47. Calta, J. *et al.* Possible effects of the MC4R Asp298Asn polymorphism on pig
1112 production traits under ad libitum versus restricted feeding. *J. Anim. Breed. Genet.*
1113 **140**, 207–215 (2023).

1114 48. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From
1115 Polygenic to Omnipotent. *Cell* **169**, 1177–1186 (2017).

1116 49. Huppertz, B., Meiri, H., Gizurarson, S., Osol, G. & Sammar, M. Placental protein 13
1117 (PP13): a new biological target shifting individualized risk assessment to personalized
1118 drug design combating pre-eclampsia. *Hum. Reprod. Update* **19**, 391–405 (2013).

1119 50. Than, N. G. *et al.* Placental Protein 13 (PP13) – A Placental Immunoregulatory
1120 Galectin Protecting Pregnancy. *Front. Immunol.* **5**, (2014).

1121 51. Li, X. *et al.* Analyses of porcine public SNPs in coding-gene regions by re-sequencing
1122 and phenotypic association studies. *Mol. Biol. Rep.* **38**, 3805–3820 (2011).

1123 52. Kojima, M. & Degawa, M. Sex Differences in the Constitutive Gene Expression of
1124 Sulfotransferases and UDP-glucuronosyltransferases in the Pig Liver: Androgen-
1125 mediated Regulation. *Drug Metab. Pharmacokinet.* **29**, 192–197 (2014).

1126 53. Soars, M. G. *et al.* Cloning and characterisation of the first drug-metabolising canine
1127 UDP-glucuronosyltransferase of the 2B subfamily. *Biochem. Pharmacol.* **65**, 1251–
1128 1259 (2003).

1129 54. Hamamoto-Hardman, B. D., Baden, R. W., McKemie, D. S. & Knych, H. K. Equine
1130 uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning,
1131 expression and initial characterization of morphine metabolism. *Vet. Anaesth. Analg.*
1132 **47**, 763–772 (2020).

1133 55. Heikkinen, A. T. *et al.* Quantitative ADME Proteomics – CYP and UGT Enzymes in
1134 the Beagle Dog Liver and Intestine. *Pharm. Res.* **32**, 74–90 (2015).

1135 56. Cai, Z., Christensen, O. F., Lund, M. S., Ostersen, T. & Sahana, G. Large-scale
1136 association study on daily weight gain in pigs reveals overlap of genetic factors for
1137 growth in humans. *BMC Genomics* **23**, 133 (2022).

1138 57. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
1139 genomic features. *Bioinformatics* **26**, 841–842 (2010).

1140 58. Altmann, S. W. *et al.* Niemann-Pick C1 Like 1 Protein Is Critical for Intestinal

1141 58. Cholesterol Absorption. *Science* (80-). **303**, 1201–1204 (2004).

1142 59. Lamri, A., Pigeyre, M., Garver, W. S. & Meyre, D. The Extending Spectrum of
1143 NPC1-Related Human Disorders: From Niemann–Pick C1 Disease to Obesity.
1144 *Endocr. Rev.* **39**, 192–220 (2018).

1145 60. Castillo, J. J. *et al.* The Niemann-Pick C1 gene interacts with a high-fat diet to
1146 promote weight gain through differential regulation of central energy metabolism
1147 pathways. *Am. J. Physiol. Metab.* **313**, E183–E194 (2017).

1148 61. Liu, R. *et al.* Rare Loss-of-Function Variants in NPC1 Predispose to Human Obesity.
1149 *Diabetes* **66**, 935–947 (2017).

1150 62. Teng, Z. *et al.* Deciphering the chromatin spatial organization landscapes during
1151 BMMSC differentiation. *J. Genet. Genomics* **50**, 264–275 (2023).

1152 63. Bossini-Castillo, L. *et al.* Immune disease variants modulate gene expression in
1153 regulatory CD4+ T cells. *Cell Genomics* **2**, 100117 (2022).

1154 64. Wei, W.-H., Hemani, G. & Haley, C. S. Detecting epistasis in human complex traits.
1155 *Nat. Rev. Genet.* **15**, 722–733 (2014).

1156 65. Winkler, T. W. *et al.* Quality control and conduct of genome-wide association meta-
1157 analyses. *Nat. Protoc.* **9**, 1192–1212 (2014).

1158 66. Browning, S. R. & Browning, B. L. Rapid and Accurate Haplotype Phasing and
1159 Missing-Data Inference for Whole-Genome Association Studies By Use of Localized
1160 Haplotype Clustering. *Am. J. Hum. Genet.* **81**, 1084–1097 (2007).

1161 67. Browning, B. L., Zhou, Y. & Browning, S. R. A One-Penny Imputed Genome from
1162 Next-Generation Reference Panels. *Am. J. Hum. Genet.* **103**, 338–348 (2018).

1163 68. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1164 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

1165 69. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler
1166 transform. *Bioinformatics* **25**, 1754–1760 (2009).

1167 70. Vinet, L. & Zhedanov, A. A ‘missing’ family of classical orthogonal polynomials. *J.*
1168 *Phys. A Math. Theor.* **44**, 085201 (2011).

1169 71. Madsen P, Sørensen P, Su G, *et al.* DMU - a package for analyzing multivariate
1170 mixed models. 2014:27–11 (2006).

1171 72. Garrick, D. J., Taylor, J. F. & Fernando, R. L. Deregressing estimated breeding values
1172 and weighting information for genomic regression analyses. *Genet. Sel. Evol.* **41**, 55
1173 (2009).

1174 73. Jiang, L., Zheng, Z., Fang, H. & Yang, J. A generalized linear mixed model
1175 association tool for biobank-scale data. *Nat. Genet.* **53**, 1616–1621 (2021).

1176 74. Jiang, L. *et al.* A resource-efficient tool for mixed model association analysis of large-

1177 scale data. *Nat. Genet.* **51**, 1749–1755 (2019).

1178 75. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of
1179 genomewide association scans. *Bioinformatics* **26**, 2190–2191 (2010).

1180 76. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A tool for genome-
1181 wide complex trait analysis. *Am. J. Hum. Genet.* **88**, 76–82 (2011).

1182 77. Cingolani, P. *et al.* A program for annotating and predicting the effects of single
1183 nucleotide polymorphisms, SnpEff. *Fly (Austin)*. **6**, 80–92 (2012).

1184 78. Pan, Z. *et al.* Pig genome functional annotation enhances the biological interpretation
1185 of complex traits and human disease. *Nat. Commun.* **12**, (2021).

1186 79. M, N. fmsb: Functions for Medical Statistics Book with some Demographic Data.
1187 2020-03-12 (2019).

1188 80. Sheffield, N. C. & Bock, C. LOLA: enrichment analysis for genomic region sets and
1189 regulatory elements in R and Bioconductor. *Bioinformatics* **32**, 587–589 (2016).

1190 81. Gel, B. *et al.* regioneR: an R/Bioconductor package for the association analysis of
1191 genomic regions based on permutation tests. *Bioinformatics* **32**, 289–291 (2016).

1192 82. Neph, S. *et al.* BEDOPS: high-performance genomic feature operations.
1193 *Bioinformatics* **28**, 1919–1920 (2012).

1194 83. Navarro Gonzalez, J. *et al.* The UCSC Genome Browser database: 2021 update.
1195 *Nucleic Acids Res.* **49**, D1046–D1057 (2021).

1196 84. Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models
1197 using summary statistics. *Nat. Genet.* **52**, 458–462 (2020).

1198 85. Pividori, M. *et al.* PhenomeXcan: Mapping the genome to the phenotype through the
1199 transcriptome. *Sci. Adv.* **6**, (2020).

1200 86. Barbeira, A. N. *et al.* Exploring the phenotypic consequences of tissue specific gene
1201 expression variation inferred from GWAS summary statistics. *Nat. Commun.* **9**, 1–20
1202 (2018).

1203 87. Barbeira, A. N. *et al.* Integrating predicted transcriptome from multiple tissues
1204 improves association detection. *PLOS Genet.* **15**, e1007889 (2019).

1205 88. Zhu, Z. *et al.* Integration of summary data from GWAS and eQTL studies predicts
1206 complex trait gene targets. *Nat. Genet.* **48**, 481–487 (2016).

1207 .

1208