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Accelerated brain change in healthy adults is associated with genetic
risk for Alzheimer’s disease and uncovers adult lifespan memory de-
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Abstract

Across healthy adult life our brains undergo gradual structural change in a pattern of atrophy that resembles
accelerated brain changes in Alzheimer’s disease (AD). Here, using four polygenic risk scores for AD (PRS-
AD) in a longitudinal adult lifespan sample aged 30 to 89 years (2-7 timepoints), we show that healthy indi-
viduals who lose brain volume faster than expected for their age, have a higher genetic AD risk. We first
demonstrate PRS-AD associations with change in early Braak regions, namely hippocampus, entorhinal cor-
tex, and amygdala, and find evidence these extend beyond that predicted by APOE genotype. Next, following
the hypothesis that brain changes in ageing and AD are largely shared, we performed machine learning
classification on brain change trajectories conditional on age in longitudinal AD patient-control data, to obtain
a list of AD-accelerated features and model change in these in adult lifespan data. We found PRS-AD was
associated with a multivariate marker of accelerated change in many of these features in healthy adults, and
that most individuals above ~50 years of age are on an accelerated change trajectory in AD-accelerated
brain regions. Finally, high PRS-AD individuals also high on a multivariate marker of change showed more
adult lifespan memory decline, compared to high PRS-AD individuals with less brain change. Our results
support a dimensional account linking normal brain ageing with AD, suggesting AD risk genes speed up the
shared pattern of ageing- and AD-related neurodegeneration that starts early, occurs along a continuum, and
tracks memory change in healthy adults.

Introduction

Advanced age is the primary risk factor for Alzheimer’s disease (AD) — the leading cause of dementia. Across
healthy adult life and ageing, our brains undergo gradual and widespread structural changes'*. Many of
these changes are qualitatively similar to atrophy patterns seen in AD, suggesting shared vulnerability of
brain systems in ageing and AD%. For example, medial temporal lobe regions including hippocampus and
entorhinal cortex are amongst the earliest affected regions in AD in terms of structural atrophy and tau dep-
osition®®, and each exhibits accelerated structural loss from around ~50 years of age. Prior to this, many
brain structures exhibit slow but steady average volume reduction from early adulthood ?'%-'3, Beyond spe-
cific regions, whole-cortical atrophy patterns are also largely shared between ageing and AD*®, with charac-
teristic temporo-parietal atrophy patterns in AD also found to a lesser degree in healthy people, including
those at low AD risk>'. It has been argued this parallel pattern is critical to understand®, because reported
AD incidence increases exponentially after 65 years of age '>6.

If brain regions vulnerable in AD also exhibit gradual change during adult life, healthy individuals at higher
AD risk may show faster atrophy over extended age spans. Polygenic risk scores for AD (PRS-AD) calculated
from AD risk variants found in genome-wide association studies (GWAS) provide a marker to test this; in AD
patients, higher genetic AD risk links with longitudinal outcomes including faster brain and cognitive decline,
earlier AD onset, and clinical progression'’-'°. In healthy adults, however, attempts to link genetic AD risk to
alterations in brain structure have typically been cross-sectional and yielded mixed results?®-2¢, For example,
although many studies report no effect of APOE-¢4 on cross-sectional hippocampal volumes?®28, recent
large-scale studies found smaller hippocampal volumes in older £4 carriers®’28. However, evidence suggests
smaller hippocampal volume as a function of genetic AD risk is evident in neonates?®, children?3° and young
adults3'*?, and longitudinal work suggests the effect of AD risk genes upon lower hippocampal volume is
roughly equivalent from childhood to old age?. Further, many 70-year-olds have similar size brain measures
to many 30-year-olds, and individual differences in brain structure at any age typically exceed the magnitude
of change effects through ageing?23. Hence, brain differences observed in older at-risk individuals may be
ascribable to preexisting differences from early life. Consequently, only longitudinal designs are suited to
examine whether elevated genetic AD risk confers a direct genetic effect on the slope of brain ageing across
the healthy adult lifespan.

Longitudinal studies attempting to link brain changes to genetic AD risk in healthy adults have been incon-
clusive, often restricted to small samples of older adults3+-%¢, and lifespan samples of healthy individuals with
extensive follow-up over large age-spans are lacking. Small studies have reported group-level effects3+3% or
no effect of APOE-¢4 upon hippocampal change in healthy older adults®”. Another study found evidence that
PRS-AD related to hippocampal and entorhinal thinning in an older sample enriched for APOE-¢4 and
memory concerns, though did not report polygenic effects beyond APOE®. Additionally, in a large sample of
healthy older individuals, hippocampal change was found to be greater in APOE-¢4 carriers (N=748)%. How-
ever, a recent GWAS?® (N=15,640) observed that an association between APOE and faster hippocampal
and amygdala change in ageing disappeared when accounting for disease status (notably, the sample in-
cluded many AD cases). Thus, the effect of APOE upon brain change in candidate AD regions was seemingly
driven by disease-related processes and not detected in healthy brains®. Moreover, the trajectories of
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genetically high-risk versus low-risk groups provide little evidence that genetic AD risk affects the slope of
brain decline across the adult lifespan®2425. Individualized estimates of the degree to which a healthy per-
son’s brain is changing more or less than expected for their age may be better suited to answer whether
genetic AD risk impacts the slope of brain ageing in healthy adults.

Regions with greater brain atrophy in AD are encompassed within the Braak staging scheme®4°. This de-
scribes the spatiotemporal sequence of tau deposition®#! — from a cortical entorhinal epicentre (stage 1) to
hippocampus (stage Il), amygdala and inferior temporal cortex (stage Ill), and later to the rest of cortex34°.
This “AD signature™ is not specific to AD but also found to a lesser degree in normal ageing®%42. Beyond
this core set of regions with seemingly shared vulnerability to the effects of ageing and AD, many other brain
features exhibit accelerated change in AD. Applying a data-driven approach to first delineate these in AD
patients — combined with multivariate analyses using individualized brain change estimates in healthy adult
lifespan data — may reveal new insights into whether genetic AD risk influences the slope of brain ageing in
a select few or across many AD-relevant features in healthy adults.

Finally, several studies suggest that genetic AD risk is subtly related to longitudinal memory decline in healthy
older adults**=%5, and one adult lifespan study reported genetic AD risk was weakly associated with decline
in a composite cognitive and memory score*®. Thus, AD risk genes may influence differences in memory
decline trajectories that are protracted through life and begin in early adulthood*>~8. However, the extent to
which AD risk genes influence brain and cognitive outcomes probably differs also between individuals at
comparatively high genetic risk, which may explain why genetic risk alone is not highly predictive of cognitive
change*®*°. Given that individualized approaches to risk assessment are predicated on assessing the con-
junction of risks, considering known genetic AD risk together with a brain risk marker may improve identifi-
cation of individuals at higher AD risk, also in healthy adult lifespan data.

Here, in a healthy adult lifespan sample with frequent longitudinal follow-up, we establish that individuals
changing more than their age would predict in AD-accelerated brain regions are at significantly enhanced
genetic AD risk (2-7 timepoints, 1430 scans from 420 individuals aged 30 to 89 years). Using genome-wide
significant single nucleotide polymorphisms (SNPs; p < 5x10®) from four AD GWAS, we first 1) show that
PRS-AD significantly associates with more age-relative change in early Braak stage regions. Next, to empir-
ically identify brain features with accelerated change in AD, we run machine learning (ML) binary classifica-
tion on the individual-specific slopes derived from longitudinal AD patient-control data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI; scans = 4410, N = 978, 2-9 timepoints). Modelling change in these
in our healthy adult lifespan sample, we 2) show that PRS-AD is significantly associated with change in many
AD-accelerated brain features in healthy adults. In an independent replication sample with notably less fol-
low-up (2-3 timepoints), we corroborate some of the observed PRS-AD associations with brain change in
healthy adults. Last, we 3) show that high PRS-AD individuals also high on a multivariate brain change
marker show greater drop-off in memory over the adult lifespan, compared to high PRS-AD individuals with
less brain change. Thus, the conjunction of a multivariate brain change marker and known genetic risk helped
identify a subset of individuals showing more memory decline over their healthy adult life (30-89 years).

Results

Age-relative brain change across the healthy adult lifespan associates with genetic AD risk
Univariate analyses: A priori ROI’s: To estimate age-relative brain change in adult lifespan data, we used
all longitudinal scans fitting age-range and inclusion criteria (=30 years of age; Methods). This allowed us to
obtain the best-fitting age trajectory models from which we could subsequently estimate how much an indi-
vidual’s change trajectory deviated from the population-average (i.e., from the level of change predicted given
age), via individual-specific random slopes in a Generalized Additive Mixed Model of age (Methods). We first
explored brain change in initial hippocampal ROI's — Braak Stage 11°°. Fig. 1A-C shows the longitudinal
lifespan trajectory, and individual-specific degree of absolute and age-relative change for the left hippocam-
pus (see Sl Fig. 1 for right hippocampus). As expected?, most individuals aged >30 years exhibited hippo-
campal volume loss, but to differing degrees, and very few individual-specific slopes were estimated to show
growth over time. As also expected, the degree of absolute hippocampal change accelerated on average
between the ages of 50 and 60 years. The degree of age-relative change was significantly associated with
PRS-AD in the hypothesized negative direction: on average across the adult lifespan (30-89 years), individ-
uals exhibiting more hippocampal loss than expected given their age had significantly higher PRS-AD. This
genetic association was probed separately for the bilateral hippocampi (left: B = -.22, 1(212) = -3.3, p=.001;
right: B = -.16, t = 2.4, p=.015; [PRS-AD Jansen]; covariates: mean age, sex, N timepoints, and interval
between first and last timepoint), and was significant using all four GWAS-derived scores. To ensure we were
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191 capturing ageing-specific effects at some point (see Sl Fig. 1), we tested the association using change rates
192 extracted from progressively older age-ranges (i.e., progressively discarding data from comparatively
193 younger individuals; Methods). This also ensured that the analysis outcome was not based on a single arbi-
194 trary decision such as the age range to test the average association across®'-°2. FDR-correction was applied
195 across all 576 PRS-AD tests reported in this analysis. We then tested whether surviving associations re-
196 mained statistically significant at p<.05 using polygenic scores computed without APOE (PRS-ADMAPOE),
197 assuming a 5% chance false positive rate per structure. Despite the progressively smaller sample size, all
198 tested PRS-AD associations with age-relative hippocampal change (left and right) were significant at p<.05
199 [uncorrected] using all four scores (coloured points in Fig. 1E-F denote associations at p<.05 [uncorrected];
200 see lower panels for respective effect sizes). 31 of the 36 tests (86%) with age-relative left hippocampal
201 change, and 25/36 (69%) with age-relative right hippocampal change, survived FDR-correction (see lower
202 panels in Fig 1E-F; partial r? effect size is shown for associations surviving FDR-correction). Using PRS-AD
203 to predict absolute hippocampal change instead in comparable statistical models (i.e., also correcting for
204 mean age), PRS-AD associations were also mostly significant after FDR correction (47/72 [65%] survived
205 correction). Probing whether FDR-corrected associations with change remained after discounting the effect
206 of APOE per each structure tested, 19/58 (33%) PRS-AD"APCE associations with left hippocampal change
207 (age-relative or absolute) remained significant at p<.05, surpassing the 5% false positive rate expected by
208 chance (black crosses in Fig. 1E-F denote partial r?> of PRS-AD™APOE where significant [p<.05]). For right
209 hippocampus, 6/45 (13%) of the FDR-corrected associations remained significant at p<.05 with PRS-AD-
210 "APOE also surpassing the chance false positive rate (Fig. 1F). Post-hoc tests confirmed the impression that
211 the estimated regression coefficients became more negative as the age subset steadily comprised only older
212 individuals (Fig. 1E-F); on average across change metrics, each increasing age subset was associated with
213 areduction in the negative beta coefficient of -.026 for left hippocampus (t = -14.1; pperm = 9.9€), and -.023
214 for right hippocampus (t = -15.4; pperm = 9.9€#). Alternative post-hoc analyses dependent on power across
215 the full age-range (30-89 years) found significant PRS-AD x age (mean) interactions upon age-relative
216 change in left and right hippocampi for all four scores but these did not survive multiple comparison correction
217 (Sl Table 1; Sl Fig. 3).
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FIGURE 1

Hippocampal change in healthy adults associates with genetic AD risk. Exclusively longitudinal data was used to
estimate individual-specific age-relative and absolute change in hippocampus (Braak stage Il), modelling the adult
lifespan trajectories using GAMMs with random slopes. a Adult lifespan trajectory for left hippocampus from 30-89 years
(data corrected for sex and scanner). Lines connect longitudinal observations per participant. b Absolute change per
individual (datapoints) in left hippocampus as a function of their mean age across timepoints. ¢ Estimated age-relative
change per individual in left hippocampus (i.e., individual-specific slopes) as a function of their mean age across
timepoints. Black stroke indicates whether or not genetic data was available per participant and thus whether the data-
point was included in the PRS-AD association tests. d More negative age-relative change in both left and right hippo-
campus was associated with significantly higher PRS-AD on average across the full adult lifespan sample with genetic
data (30-89 years; N=229; association visualized for one score [Jansen]); age and covariate-corrected [Methods]; colour
and datapoint size depicts mean age). e-f PRS-AD associations with age-relative change (left facet) and absolute change
(right facet) in left (E) and right (F) hippocampus, using the four GWAS-derived scores, tested for progressively older
age-ranges to ensure capture of ageing-specific effects (i.e., moving from left to right on the X-axis, the leftmost age-
range represents the association tests across the full adult lifespan on average [30-89 years; N=229], whereas the right-
most age-range shows the associations tested in only the oldest adults [70-89 years]; standardized 3). Significant asso-
ciations at p < .05 are depicted in colour (upper panels). For associations surviving FDR-correction, partial r? of PRS-AD
is shown (lower panels). Where the association survived FDR-correction, we retested the association after removing
APOE (PRS-ADMAPOE) Partial r2 of PRS-AD"APCE js depicted by a black cross if the FDR-corrected association remained
significant (p < .05). Ribbons and error bars depict 95% CI.

We then repeated the procedure for Braak stage | (entorhinal) and Ill regions (subcortical and cortical ROIs;
Methods). For Braak stage |, we observed no significant PRS-AD associations with change (age-relative or
absolute) in left entorhinal cortex, but observed several significant associations with each in right entorhinal
cortex, 5 of which survived correction (Fig. 2A). 3 of these FDR-corrected associations remained significant
at p<.05 with PRS-AD™APYE (ysing absolute change; lower panels in Fig. 2A), surpassing the false positive
rate. Post-hoc tests confirmed that the estimated regression coefficients became more negative as the age
subset comprised only older individuals for right (beta reduction = -.013, t = -7.8, pperm = .018) but not for left
entorhinal cortex (beta reduction = -.008, t = -5.0, pperm = .10). However, alternative post-hoc analyses across
the full age-range (30-89 years) found no PRS-AD x age (mean) interactions upon age-relative entorhinal
change, suggesting our data may have been underpowered to detect a two-way continuous interaction (SI
Fig. 3; SI Table 1).

For the subcortical Braak Stage Ill region (amygdala), we similarly observed negative associations between
age-relative change in left and right amygdala and PRS-AD (Fig. 2B), 21 of which were significant after FDR
correction, and using absolute change instead yielded similar results (15 surviving associations). 4/11 (36%)
PRS-ADMAPOE gssociations remained significant at p<.05 for left amygdala (surpassing the false positive
rate), whereas no associations with right amygdala change remained after excluding APOE. The estimated
regression coefficients became stronger as the age subset comprised only older individuals (beta reduction
left amygdala = -.018, t = -7.6, pperm = .002; right amygdala = -.019, t = 10.0 pperm = .004), though alternative
analyses dependent on power across the full age-range found no post-corrected significant PRS-AD x age
(mean) interactions upon age-relative change in amygdala (S| Fig. 3; S| Table 1). For the cortical component
of Stage lll, none of the tested PRS-AD associations with change in left or right cortex survived correction
(Fig. 2C), the regression coefficients became stronger as the age subset comprised only older individuals in
each (beta reduction left cortex = -.011, t = -6.2, pperm = .013; right cortex = -.013, t = -6.3; pperm = .004), and
we found no significant PRS-AD x age (mean) interactions in alternative analyses across the full age-range
(S| Fig. 3; Sl Table 1).
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progressively older age-ranges to ensure capture of ageing-specific effects (i.e., moving from left to right on the X-axis,
the leftmost age-range represents the association across the full adult lifespan on average [30-89 years; N=229],
whereas the rightmost age-range shows the associations tested in only the oldest adults [70-89 years]; standardized
B). Significant associations at p < .05 are depicted in colour (upper panels). Partial r> of PRS-AD is shown for all asso-
ciations surviving FDR-correction (lower panels; lower panels in A [left] and C [left and right] are correctly empty be-
cause no association survived correction). Where the association survived FDR-correction, we retested the association
after removing APOE (PRS-AD™APOR) Partial r> of PRS-AD™APCE s depicted by a black cross if the FDR-corrected as-
sociation remained significant (p < .05). Error bars depict 95% CI.

Multivariate analyses: data-driven features exhibiting accelerated change in AD

Given the univariate results, we expected that multivariate measures of change would be better suited to
detect PRS-AD associations with brain change in healthy adults. Thus, we sought to empirically obtain a list
of brain features with accelerated change in AD, then test whether multivariate change across these features
relates to PRS-AD in the LCBC healthy adult lifespan discovery sample (Methods). First, in longitudinal AD
patient-control data from ADNI (S| Table 2), we defined two longitudinal groups we could be maximally con-
fident consisted of healthy individuals and those succumbing to AD based on diagnosis: NC-long consisted
of normal controls consistently classed as healthy over time, whereas AD-long comprised all individuals with
an AD diagnosis by their final timepoint (Fig. 3A; Methods). Then, in 364 features we modelled a GAMM of
age (irrespective of group), and entered the individual-specific slopes into ML binary classification (Fig. 3B).
Group differences in slopes (age-relative change) were in the expected direction (Fig. 3C). The top features
deemed most important for separating AD-long from NC-long individuals based on age-relative change in
ADNI included many well-known AD brain vulnerabilities (e.g., ventricles, medial temporal and temporo-pa-
rietal regions; see Fig. 4A; though our intention was not to refine prediction of AD cases, we note the model

300 achieved an area under the curve [AUC] of .952 in independent data from the Australian Imaging Biomarker
301 & Lifestyle Flagship Study of Ageing [AIBL]; Fig. 3D-F; Sl Fig. 4).
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305 FIGURE 3
306 Visualization of longitudinal AD analysis pipeline. a Longitudinal grouping in ADNI data. X-axis denotes the scan
307 observations across timepoints used in the final sample. Each line represents a participant and colour denotes longitu-
308 dinal group membership. Single-timepoint ADNI diagnoses (Y-axis; NC normal controls, MCI mild cognitive impairment,
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AD Alzheimer’s disease) were used to define two longitudinal groups of AD and NC individuals (AD-long; N = 606, obs
= 2730; NC-long, N = 372; obs = 1680). NC-long individuals were classified as healthy at every timepoint whereas AD-
long individuals were diagnosed with AD by their final timepoint (Methods). Single-timepoint MCI diagnoses were con-
sidered only for the purpose of defining the longitudinal AD group. Note that because the grouping used all diagnosis
observations (i.e., not only scan observations), trajectories of individuals that appear to end with a NC or MCI diagnosis
nevertheless correspond to individuals with an AD diagnosis by their final timepoint, as do those seemingly reverting
(Methods). b GAMMs of Age (across groups; upper plot) were used to model age-relative change (individual-specific
slopes) in 364 brain features (shown for one example feature). The ADNI-derived individual-specific slopes were then
used as input to machine learning binary classification using XGBoost % ¢ Most features exhibited significant group-
differences in age-relative change between AD-long and NC-long as expected (datapoints denote t-statistics for t-tests;
black stroke indicates significant associations at p(FDR)<.05). d-f Out-of-sample prediction for the binary classifier
(AIBL data; Sl Fig. 4) including receiver operator curve (d), confusion matrix and performance metrics (e). The purpose
of the classification procedure was to empirically derive brain features with accelerated change in AD, to use these in
healthy adult lifespan data.
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In the LCBC healthy adult lifespan discovery sample, we then calculated the principal component of age-
relative change across the first 50 features with model-implied importance (PC1change: hippocampal and
amygdala volumes were not included in PC1rchange to ensure these did not drive the multivariate effect; see
the maroon bar in Fig. 4A; explaining 13% variance). As hypothesized, 14 of the 36 tested associations
relating PC1rechange to PRS-AD were FDR-corrected significant (Fig. 4B; FDR-correction applied across all
144 PRS-AD tests in this analysis). Again, post-hoc tests confirmed that the estimated regression coefficients
became stronger as the age subset comprised only older individuals (beta reduction = -.023, t =-9.9, pperm =
.002) and alternative analyses across the full age-range found post-corrected significant PRS-AD x age
(mean) interactions upon PC1change ysing all four scores (S| Table 3). Next, to determine the age at which
brain change in AD-accelerated features starts increasing in healthy adults, we took the principal component
of absolute change across the same set of 50 features (PC12°sChange; explaining 45% variance) plotted as a
function of mean age (Fig. 4C). The results suggested that all individuals were on a trajectory of change in
AD features that showed onset of accelerated change around age ~50 in healthy adults (Fig. 4C; see Sl Fig.
10 for derivative plots). Further, change trajectories were steepest in features most important for separating
AD-patients from controls (S| Fig. 6). To ensure that the multivariate associations were not driven by one or
a few brain features, we ran a sliding window PCA within the 50-89 year age-range (Methods). PRS-AD
associations with age-relative change were evident when calculating PC1 across many combinations of fea-
tures, including those relatively lower down in terms of model importance (coloured bars in Fig. 4A denote
feature windows for the PCA and link with the coloured points denoting p-values for the PRS-AD associations
in Fig. 4D; see Sl Fig. 7 for correlations between features). 13 of the tested associations were significant
after FDR correction, illustrating that multivariate change across many AD-accelerated features relates to
PRS-AD in healthy adults (Fig. 4D). The data suggested that PRS-AD associations derived via this method
were largely though not entirely driven by APOE (3 of the 27 [11%] FDR-corrected tests remained significant
at p < .05 using PRS-AD"APOE surpassing the 5% false positive rate; lower panels in Fig. 4).

B
Healthy adult lifespan
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FIGURE 4

ADNI-derived features applied to the healthy adult lifespan. a Top features for classifying AD-long from NC-long
individuals in ADNI data based on age-relative change. Coloured bars indicate feature selections across which we cal-
culated PC1 and link with the subsequent plots. b PRS-AD associations in healthy adult lifespan data (LCBC sample)
using the principal component of age-relative change across the top 50 brain features with accelerated change in AD
(excluding hippocampal and amygdala volumes; PC1¢'change: maroon bar in a). Datapoints show (-log10) p-values for
the association with PC1rechange tested at progressively older age-ranges, for all four scores. Dashed line indicates p =
.05, and datapoints with black stroke denote significant PRS-AD associations at p<.05. Datapoints above the dotted
line are significant at p(FDR)<.05. Smaller right inset plot shows the standardized Beta values as a function of age-
range (Betas inversed to be negative due to the non-directional nature of PCA). Bottom plot shows partial r> of PRS-AD
for all associations surviving FDR-correction. Where the association survived FDR-correction, we retested the
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association after removing APOE (PRS-AD"APOE), Partial r? of PRS-ADMAPOE js depicted by a black cross if the FDR-
corrected association remained significant (p < .05). Error bars depict 95% CI. ¢ The principal component of absolute
change across the top 50 brain features with accelerated change in AD (excluding hippocampal and amygdala volume;
maroon bar in a), plotted as a function of mean age across timepoints. Accelerated brain change in AD-accelerated
features was evident between ages 50-60. Note that since the y-axis represents change, the slope of the curve repre-
sents acceleration (see also Sl Figs. 10-11). d PCA-based sliding window analysis within the age-range 50-89 years.
Colours and order correspond to the coloured bars in a, which show the selection of features across which the principal
component of age-relative change was calculated and used to test associations with PRS-AD. Dashed line indicates p
= .05, and datapoints with black stroke denote significant PRS-AD associations at p < .05. Datapoints above the dotted
line are significant at p(FDR)<.05. Ih=left hemisphere, rh=right hemisphere, vol=volume (subcortical); int=intensity (sub-
cortical); w-g=grey/white matter contrast. Subcortical features (aseg) are delineated with “.”, whereas cortical features
(aparc) are delineated with “_”.

As a final proof-of-principle, we directly applied the ADNI-derived model weights to the LCBC healthy adult
lifespan discovery sample. This prediction incorporates information from the weights of all 364 features
(Methods). The dependent variable was the model-implied log odds of having AD (probADre/Change; Methods).
Importantly, because the model was trained on an index of relative brain change conditional on age, the
logistic prediction applied to the healthy adult lifespan data cannot be interpreted in terms of its implied binary
outcome (i.e., AD/no-AD). This is because the model could assign the same probability of having AD to a
hypothetical 30-year-old with an estimated additional brain loss of 10mm?®/year as to a 60-year-old with the
same additional brain loss, even though change and AD risk are higher in the 60-year-old, because change
is over and above the mean brain loss anticipated at age 60 (see Fig. 1C). We nevertheless hypothesized
the learned model weights would be useful, and would relate to PRS-AD in a similar way to the raw age-
relative change values in specific features. As expected, almost all of the tested PRS-AD associations with
probADChange were significant at p<.05, 14 of which survived correction; see S| Fig. 5B). Repeating all steps
of the model estimation procedure using absolute change instead (from hyperparameter estimation to pre-
diction; AUC = .933 in unseen data from AIBL), we found far fewer significant PRS-AD associations with
probAD?@bschange (7 survived correction; S| Fig. 5C-D), suggesting relative change is a superior marker for
capturing individual differences in brain ageing. Again, the data indicated PRS-AD associations derived by
this method were largely though not entirely driven by APOE (8 [38%)] of the FDR-corrected tests with change
remained significant using PRS-AD™APCE; S| Fig. 5; FDR-correction applied across all 72 PRS-AD tests in
this analysis).

Replication analysis

To reduce the number of tests, in an independent adult lifespan replication sample with fewer follow-up points
(2-3 timepoints; Lifebrain replication sample), we tested PRS-AD associations using hippocampal and amyg-
dala change, and the principal component of age-relative change across the first 50 AD-accelerated features,
not including hippocampal or amygdala volume (i.e., PC1re/Change; Fig 4A). For hippocampus, we observed
similarly negative effects, 22 of which were significant for age-relative change (p < .05 [uncorrected]; 31 for
absolute change; Fig. 5A). Similar to the discovery sample, PRS-AD effects on age-relative hippocampal
change were larger than absolute change, and often remained significant after discounting APOE (black
crosses in Fig. 5A denote partial r? for PRS-AD"™APE where this remained significant). For amygdala, we
observed no significant PRS-AD associations within any age-range, and we also observed no significant
associations with PC1Change (Fig. 5B-C). However, like the discovery sample, all healthy individuals lay on
a trajectory of accelerated change in AD features, with a similar onset of acceleration around the age of 50
years (Fig. 5D; Sl Fig. 10).
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association across the full adult lifespan on average [30-88 years; N=293], whereas the rightmost age-range shows the
associations tested in only the oldest adults [60-88 years]). Univariate associations were tested for a left and right hip-
pocampus, and b left and right amygdala. Significant associations at p < .05 are depicted in colour (upper panels).
Here, partial r> of PRS-AD is shown for all associations that were significant at p < .05 (lower panels). Where the asso-
ciation was significant (p < .05 [uncorrected]), we retested the association after removing APOE (PRS-ADMAPOR) Par-
tial r2 of PRS-ADMAPOE js depicted by a black cross if the association remained significant (p < .05). ¢ Multivariate PRS-
AD association tests using the principal component of age-relative change across the top 50 brain features with accel-
erated change in AD (excluding hippocampal and amygdala volumes; PC1rchange; gg in Fig 4A-B). Datapoints show (-
log10) p-values for the association with PC1¢/Change tested at progressively older age-ranges, for all four scores.
Smaller plot shows the standardized Beta values as a function of age-range (Betas inversed to be negative due to the
non-directional nature of PCA). Dashed line indicates p = .05. d The principal component of absolute change across
the top 50 brain features with accelerated change in AD (excluding hippocampal and amygdala volumes; maroon bar in
Fig 4A), plotted as a function of mean age across timepoints. Accelerated brain change in AD-accelerated features was
evident around age 50-60. Note that since the y-axis represents change, the slope of the curve represents acceleration
(see also Sl Fig. 10). Error bars depict 95% CI.

Memory change analysis

Finally, in the LCBC healthy adult lifespan discovery sample, we used the association between the principal
component of age-relative change across the first 50 AD-accelerated features — here including hippocampal
and amygdala volumes (PC1r/Change1-50) _ and the principal component across the four PRS-AD scores
(PC1PRS-AD; explaining 87%) to separate individuals into discrete groups, representing the conjunction of
brain change and genetic risk factors. We hypothesized that high PRS-AD individuals also showing more
age-relative change in AD-accelerated features would exhibit more longitudinal memory decline (pink quad-
rant 4 in Fig. 6D; Methods). Akin to the brain analysis, memory-change estimates were derived via the indi-
vidual-specific random slopes in a GAMM of age, and we used longitudinal memory observations from the
full adult lifespan sample to optimize memory-change estimates in the subset of participants that also had
genetic data (Methods). Fig. 6A-C shows the longitudinal lifespan trajectory, and individual-specific degree
of absolute and age-relative change in memory performance on the California Verbal Learning Test (CVLT,;
PC1 across subtests). Absolute memory change was predominantly negative, with memory decline occurring
gradually across the adult lifespan and accelerating around the mid ~60s (Fig. 6B; though we also observed
a trend towards steeper slopes in mid-life prior to this; S| Fig. 11). As hypothesized, genetically exposed
individuals also high on a multivariate marker of age-relative brain change (PC1r¢/change1-50) showed signifi-
cantly more age-relative (p = .01) and absolute memory decline (p = .003) on average across the adult
lifespan, compared to high PRS-AD individuals with less relative brain change. These group differences in
memory change were not driven by differences in APOE-¢4 carriership (Fig. 6E-F; main models corrected
for carriership, mean age, sex, N timepoints, interval between first and last timepoint), and persisted in alter-
native models controlling for the number of APOE-¢4 alleles (p = .009; p = .003) and baseline memory per-
formance (p = .008; p = .002). In the main model, we also observed a significant difference in absolute
memory change between the high PRS-AD-high brain change group and the low PRS-AD-low brain change
group (p = .026; Fig. 6E). Finally, the reported group differences in memory-change persisted when correcting
for differences in genetic risk (PC1PRSAP) but not for differences in multivariate brain change (S| Fig. 12).
These data suggest the conjunction of risk markers — a multivariate marker of change in AD-vulnerable fea-
tures and known PRS-AD - helped identify a subset of comparatively high-risk individuals showing more
longitudinal memory decline in healthy adult lifespan data (30-89 years).
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468 FIGURE 6

469 Longitudinal memory change analyses. Exclusively longitudinal data was used to estimate individual-specific age-

470
471
472

relative and absolute change in CVLT task performance (PC1 across subtests), modelling the adult lifespan trajectories
using GAMMs with random individual-specific slopes. a Adult lifespan trajectory analysis for CVLT memory performance
from 30-89 years. Lines connect longitudinal observations per participant. b Absolute memory change per individual

473 (datapoints) in CVLT task performance plotted as a function of their mean age across timepoints. ¢ Estimated age-
474  relative change per individual in CVLT task performance (individual-specific slopes). For each participant with memory
475 change data, black stroke indicates whether or not genetic data was available. d The association between the principal
476 component across the four PRS-AD scores and the principal component of age-relative change across the first 50 ADNI-
477 derived features (listed in Fig. 4A) was used to define four quadrant-groups representing the conjunction of brain and
478 genetic risk factors. e Memory change for individuals with both memory change and genetic data within the quadrant
479 groups. Individuals at higher PRS-AD who also exhibited more age-relative brain change (pink) in AD-accelerated fea-

480 tures showed significantly more age-relative (left plot) and absolute (right plot) change in memory performance across
481 the healthy adult lifespan, relative to high PRS-AD individuals estimated to show less relative brain change (distributions
482 visualized for these two groups; datapoints corrected for covariates including mean age and APOE-e4 carriership [Meth-
483  ods]).
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Discussion

Genetic AD risk is robustly associated with the slope of brain ageing in healthy adults. Specifically, we found
healthy individuals changing faster than expected for their age in early Braak Stage regions — bilateral hip-
pocampus, amygdala, and right entorhinal cortex — are at significantly enhanced genetic AD risk, and these
polygenic associations extend beyond the risk conferred by APOE alone. We also found that multivariate
change across many AD-accelerated brain features can be used to detect PRS-AD associations with faster-
than-expected brain ageing in healthy adults, and demonstrate that accelerated change in AD features is
evident in most healthy individuals over age ~50. Furthermore, we find that ML models trained on longitudinal
AD patient-control data can be directly applied to healthy adult lifespan data and the prediction relates to
PRS-AD in healthy adults. Finally, high PRS-AD individuals showing faster-than-expected brain change ex-
hibited more longitudinal memory decline compared to high PRS-AD individuals with less brain change, on
average across the healthy adult lifespan (30-89 years), and independent of APOE-¢4. Thus, the conjunction
of our novel multivariate brain change marker and known PRS-AD found a subset of individuals exhibiting
more memory decline across the healthy adult lifespan.

Age-relative brain change across the adult lifespan associates with genetic AD risk

Univariate analyses: apriori ROI’s

Univariate analyses using change in early Braak stage regions consistently revealed significant PRS-AD
associations in healthy adults, illustrating accelerated brain ageing in genetically at-risk individuals. The clear-
est genetic effects upon faster brain ageing were in bilateral hippocampi; healthy individuals at higher genetic
AD risk lose hippocampal volume faster than their age would predict — observed consistently using all four
scores. Particularly for left hippocampus, the association often remained after discounting APOE, suggesting
differences in left hippocampal loss also arise from genetic factors beyond APOE. However, we also ob-
served PRS-AD"™APOE gssociations with right hippocampal change, and also confirmed these in independent
data. Shrinkage of the hippocampus — a critical structure underpinning episodic memory and spatial naviga-
tion operations — is a well-known AD risk marker in patient populations®32%4, with atrophy rates predicting
clinical conversion®®. However, most studies in healthy adults have not linked genetic AD risk to hippocampal
change3®% or find the slope of hippocampal age trajectories does not differ as a function of genetic AD
risk220-26 — including in large adult lifespan samples?*?® and our previous report in overlapping data?. And
since AD risk genes influence hippocampal differences early in life?2°%, cross-sectional findings in healthy
older adults?-2%7 cannot attribute genetic effects to accelerated brain ageing®. By specifically isolating
within-individual genetic effects on accelerated brain ageing, the present study confirms AD risk genes also
influence normal variation in hippocampal change rates in healthy adults.

This agrees with a study by Harrison et al.* finding a longitudinal relationship between hippocampal change
and PRS-AD in older adults. Notably, however, that study recruited individuals with memory complaints and
a family AD history via memory clinics. In contrast, our sample comprised healthy adults in longitudinal stud-
ies which are well-established to be biased toward maintaining high performers®°. It also agrees with a study
finding more hippocampal atrophy in healthy older APOE-¢4 carriers®®. However, we also found AD risk
SNP’s beyond APOE predict hippocampal ageing trajectories in healthy adults, which to our knowledge has
not been shown. Previously, we did not find consistent evidence PRS-AD or APOE-¢4 alters the slope of
hippocampal ageing, but found a group-level offset effect suggesting the difference between high- and low-
risk individuals in hippocampal volume was as large at age ~25 as at age ~802. However, that study primarily
used a PRS-AD constructed with many more SNP’s (p<.05%°), and did find some, albeit inconsistent, evi-
dence for a slope effect using the same SNP association p-value as here. Here, by taking an individual-
centric approach to estimate change trajectories, we found genome-wide significant SNPs could explain up
to ~13% variance in hippocampal change rates (effect sizes after discounting APOE were smaller; ~5%; Fig.
1E-F). This purely longitudinal marker of relative brain ageing consistently excelled, exhibiting stronger rela-
tionships to PRS-AD than absolute change that were detectable over wider age-spans. The data also indi-
cated PRS-AD-change associations were not driven only by the oldest adults, though older adults likely con-
tributed more of the individual differences in brain change signal (SI. Fig. 12), in line with the observed ten-
dency towards stronger genetic effects upon slopes in older individuals, and theories positing genetic effects
become amplified in old age when neural resources are depleted®”.

PRS-AD also linked with accelerated loss in right entorhinal cortex (stage 1) and bilateral amygdala (stage
[1). This also agrees with Harrison et al.*®, wherein entorhinal change was related to a PRS-AD (APOE
inclusive) in older adults with memory complaints, and may also fit with a recent cross-sectional study finding
right entorhinal cortex exhibits amongst the largest structural differences in older APOE-¢4 carriers?®. How-
ever, we also found evidence PRS-AD-entorhinal change associations extend beyond APOE. Similarly, ac-
celerated amygdala loss was associated with PRS-AD in healthy adults, and we found evidence SNP’s
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beyond APOE influence left amygdala change trajectories. These data contradict a recent GWAS finding the
effect of APOE upon amygdala and hippocampal slopes, with increasing influence of the APOE-indexing
SNP (rs429358) with age, disappeared after accounting for disease in a heavily patient-derived sample®,
suggesting APOE-mediated slope differences were driven by patients. To our knowledge, we are the first to
document accelerated amygdala decline in healthy adults harbouring more AD risk variants. Still, while amyg-
dala effects were clear in the discovery sample — currently the most densely sampled MRI dataset for longi-
tudinal lifespan follow-up — these did not replicate in an independent sample with less follow-up, hence this
awaits replication. Regardless, in healthy ageing as in AD, medial temporal lobe structures exhibit early vul-
nerability to structural loss®, highest expression of top AD risk genes (e.g., APOE, BIN1, CLU®?%4), and we
find PRS-AD influences accelerated change in these structures in healthy adults. Speculatively, faster atro-
phy rates may co-occur with faster tau accumulation, possibly consistent with higher tau in risk-allele carri-
ers®4%5, Critical questions concern what mechanisms underlie the shared vulnerability of these structures to
lifespan influences and AD, which in the presence of AD risk genes speed up normal age-related neuro-
degeneration. One candidate shared characteristic may be a high degree of plasticity85-8,

Multivariate analyses: data-driven features exhibiting accelerated change in AD

Through empirically delineating brain features with accelerated change in AD, we found that accelerated
brain ageing across many combinations of AD-accelerated brain features relates to PRS-AD in healthy
adults. Furthermore, we observed replicable evidence that almost everyone above age ~50 is on an accel-
erated trajectory of neurodegenerative ageing in features wherein change reliably separates AD patients
from controls, consistent with work documenting overlapping mean atrophy patterns in ageing and AD*54,
These individualized data suggest that neurodegeneration occurs along a continuum from healthy ageing to
AD. Furthermore, since it is unlikely that most healthy adults in both samples here would be amyloid positive,
this may run counter to the amyloid cascade hypothesis, which posits plaque build-up as an initial triggering
event for subsequent neurodegeneration®®"". Likely, our unique approach to link AD changes to normal
ageing benefitted from using multivariate analyses across change data in healthy adults. We also found that
ML models trained on longitudinal change in AD can be applied to healthy adult lifespan data and the pre-
diction relates to PRS-AD. This seemed to work best when the model was trained on estimates of change
conditional on age (S| Fig. 5), likely because this places often extreme change values in AD on a scale more
comparable across ages, and because modelling relative change in AD versus controls enables identification
of features exhibiting a quantitative difference in change despite the presence of a similar qualitative pattern.
That our patient-control groups were based on two extremes (consistently healthy versus becoming AD) only
further emphasizes the difference lies more in degree than kind, as does the fact that our ML model also
captured 100% of independent AD cases (Fig. 3). PRS-AD associations beyond Braak stages appeared
largely though not entirely driven by APOE (Fig. 4; Sl Fig. 5). Thus, our study yields new knowledge on the
widespread impact of AD risk genes upon accelerated brain ageing in healthy adults, while highlighting that
the border between neurodegeneration in ageing and AD is far from clear.

Of note, though PRS-AD effects were not entirely driven by allelic variation in APOE, PRS-AD"AFOE associ-
ations were most evident using the genome-wide significant SNP’s/weightings reported by Jansen et al.”? or
Lambert et al.?°, suggesting these SNP sets beyond APOE better capture differences in brain ageing in
healthy adults (in both samples; Figs. 1-2; Fig. 5). We also found no evidence including more SNP’s in-
creased sensitivity to detect genetic effects upon healthy adult brain ageing, with or without APOE (SI Fig.
2), in line with studies in patients”®’4. APOE accounted for much of the predictive power of PRS-AD, as
associations typically disappeared or were attenuated using PRS-AD™APE_ This fits with work finding PRS-
AD associations with cognitive, lifestyle, and metabolic factors in healthy adults are largely driven by APOE™,
and with data indicating limited utility of SNP’s beyond APOE to predict AD-relevant traits™®.

Memory change analysis

Individuals at higher genetic risk that also showed more brain ageing in AD-accelerated features exhibited
more longitudinal memory decline across adult life (30-89 years). Hence, knowing an individual's genetic risk
in and of itself was insufficient, as it was not necessarily reflected in brain and cognitive outcomes. However,
considered together with a multivariate marker of brain change, we found a subset of high PRS-AD individ-
uals whose brain status over time was reflected in a greater drop-off in memory that was protracted across
adult life (Fig. 6D-E). Moreover, the analyses suggested group differences in memory decline were more
driven by brain change differences than by genetic differences. Hence, our change marker provided crucial
information for detecting comparatively at-risk individuals in healthy adult lifespan data, beyond that provided
by genetic risk alone. These results support and extend previous studies finding PRS-AD*34446 or APOE-
£4* relates to longitudinal memory decline across adult life, and possibly shed light on why reported associ-
ations are often weak**~% or absent*°. They also underscore the need for follow-up data over extended age-
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spans when the goal is early prediction or prevention of AD. Future research should examine the biological
and exposure-related factors that lead some high PRS-AD individuals to decline more in brain and memory
where others remain resilient, as well as combine multivariate change with other biomarkers (e.g., tau, in-
flammation, or amyloid) as we move towards a future of individualized risk assessment.

Our study has several strengths. First, our longitudinal marker of individual-specific brain change circumvents
the drawbacks of other approaches attempting to capture interindividual differences in brain ageing — such
as brain age models’® — which do not necessarily relate to longitudinal change””. Second, we used the full
breadth of the adult lifespan data to estimate individual-specific brain and memory change, each in a single
model, using all longitudinal scans. This likely optimized the change estimates for all, including the subset
with genetic data, likely in part due to improved age trajectory modelling from which one can subsequently
estimate the deviation of an individual's change trajectory. This is exemplified in S| Fig. 9, wherein we found
PRS-AD-change associations in the same individuals in the BETULA study improved when their individual-
specific slopes were estimated together with NESDA study data, compared to when estimated in BETULA
data alone. Further, largely to ensure we were capturing ageing-specific processes at some point (see SI
Fig. 1), we allowed the data to be increasingly comprised of only older individuals and repeatedly tested PRS-
AD associations with change. As inferences based on significance are affected by arbitrary analysis choices,
we took inspiration from multiverse methods to systematically define a defensible set of analysis choices to
perform analyses across®"%2. In our case, the principle arbitrary covariate was the age-range to test the
association across, and the influence of this arbitrary choice on statistical significance is made clear in Fig.
2, Fig. 4B and Fig. 5, despite accounting for age- and time-related covariates. Adopting this approach, we
could ensure capture of ageing-specific processes, document the stability of PRS-AD-change associations
in healthy adults, and ensure the results were independent of a single arbitrary decision®'-%2, thus increasing
their robustness.

There are also limitations. First, our approach disregards heterogeneity in ageing or AD-related atrophy; we
considered all individuals obtaining an AD diagnosis over time as a single group, contrasting their average
change against all consistently healthy individuals. For our purpose of delineating features with faster aver-
age change in AD, this was reasonable, as there may be a predominant AD atrophy pattern’® and it is this
that overlaps with the average ageing pattern®®42. However, as there are known AD subtypes®#°, an im-
portant question is whether individual variability in AD atrophy presentation traces to heterogeneity in brain
change in healthy adults. Second, as with most large-scale brain studies, we relied on FreeSurfer-derived
measures. While these are well-validated and reliable®'-83, it is possible measures such as entorhinal cortex
may be less reliable®3. Indeed, that we observed no PRS-AD associations with left entorhinal change was
surprising, and possibly manual entorhinal tracing may have led to different results. Third, longitudinal
lifespan studies inevitably culminate in unrepresentative samples comprised of a higher proportion of cogni-
tively high-performers®®. Since even in healthy adults we find variation in brain ageing slopes that maps onto
AD-related genetic variation and memory outcomes, it is possible the population effect-sizes may be larger.
Fourth, we used only structural MRI measures sensitive to detecting small changes in brain structure that
ultimately form a continuous, lifelong process of change. Including additional imaging or biomarkers will help
refine detection of AD-risk in healthy adults. Finally, we do not know which individuals included here will be
diagnosed with AD later in life. While our analyses suggest one could assign differential transition probabili-
ties to healthy individuals, only time and follow-up data will tell.

Conclusion

In conclusion, brain ageing trajectories in healthy adults are robustly altered by the presence of AD risk
genes, in many brain features, and beyond APOE. We show brain features most susceptible to faster dete-
rioration in AD are on a trajectory of accelerated change from age ~50 in healthy individuals, and that models
trained on AD patients can be applied to adult lifespan data and the prediction relates to genetic AD risk in
healthy adults. Finally, genetically at-risk individuals also high on a marker of brain change showed more
adult lifespan memory decline, compared to genetically at-risk individuals with less brain change — suggesting
our brain change marker enhanced the value of already knowing an individual’s genetic risk. AD risk genes
are likely not AD-specific, but induce variation in the speed of the shared pattern of ageing- and AD-related
neurodegeneration along a continuum in healthy adults. Our results call for a dimensional approach to late-
onset AD as not being clearly distinct from normal brain ageing.

15


https://doi.org/10.1101/2023.10.09.559446
http://creativecommons.org/licenses/by-nc-nd/4.0/

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

718
719

720
721
722
723
724
725

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.09.559446; this version posted October 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Methods

Samples

Age-relative change estimation

Adult lifespan discovery sample: After applying exclusion criteria (see below), an exclusively longitudinal
adult lifespan sample (minimum two timepoints) comprising 1430 scans from 420 healthy individuals aged
30 to 89 years (248 females; mean age [SD] = 63.7 [14.4]; 2-7 timepoints [median = 3]; follow-up range = .15
- 11.1 years) was drawn from the Center for Lifespan Changes in Brain and Cognition database (LCBC;
Department of Psychology, University of Oslo; see S| Note). Observations were collected across 3 scanners.
Prior to participation, all individuals were screened via health and neuropsychological assessments, and the
following exclusion criteria were applied across LCBC studies: evidence of neurodegenerative, neurologic or
psychiatric disorders, use of medication known to affect the central nervous system (CNS), history of disease/
injury affecting CNS function, and MRI contraindications as assessed by a clinician. Additionally, to guard
against including participants with incipient AD in our sample, we here excluded adults whose scores on the
Mini Mental State Exam (MMSE)® suggested longitudinal cognitive deficit with no later recovery (MMSE <
25 at their final timepoint; 2 participants; 4 scans), and adults aged 40+ whose scores on the Beck Depression
Inventory (BDI)® or Geriatric Depression Scale (GDS)® suggested depression symptoms over time with no
later recovery (BDI > 21 or GDS > 10 at their final timepoint; 7 participants; 32 scans). All LCBC studies were
approved by the Norwegian Regional Committee for Medical and Health Research Ethics, complied with
ethical regulations, and all participants provided informed consent.

Adult lifespan replication sample: To test replication, we used the two remaining longitudinal adult cohorts
from the Lifebrain consortium that had up to three MRI timepoints available: the BETULA project®” and the
Netherlands Study of Depression and Anxiety (NESDA) 8. BETULA participants underwent dementia as-
sessment by a clinician using cognitive data and medical records, and those reporting neurological disorders
(stroke, AD, other dementias, MS), or presenting with severe memory deficits or MRI contraindications were
excluded. NESDA participants reporting neurological disorders (stroke, AD, other dementias, MS), or pre-
senting with severe memory deficits or MRI contraindications were excluded. One extreme outlier in the
change data of each sample was also detected and excluded here (see Sl Fig. 8). In all, we collated the data
from 449 scans from 182 individuals aged 31 - 88 from BETULA (mean age = 64.3 [11.9], 2-3 timepoints,
follow-up = 3.5 — 7.7 years; 85 females), with 331 scans from 138 individuals from NESDA aged 30 - 65
(mean age = 45.1 [7.9], 2-3 timepoints, follow-up = 1 — 10 years; 91 females), into a single adult lifespan
replication sample (S| Table 4). Although neurologically normal, 97 of the NESDA participants were diag-
nosed with a current or remitted depressive and/or anxiety disorder, whereas 41 had no history of mental
health disorders.

Polygenic risk associations

To test associations with PRS-AD we used the subset of participants with both quality-controlled genetic data
(European ancestry) and longitudinal change estimates, as estimated from the full adult lifespan models with
all participants (also those without genetic data). For the discovery sample, 229 participants had genetic and
brain change data. For the replication sample, 175 participants from BETULA and 118 from NESDA (92
diagnosed) had genetic and brain change data.

AD samples: We used exclusively longitudinal data from the Alzheimer's Disease Neuroimaging Initiative
(ADNI®), and the single-timepoint ADNI diagnosis (normal controls [NC]; mild cognitive impairment [MCI];
AD) to define two longitudinal groups based on final-timepoint diagnosis (2-9 timepoints): NC-long consisted
of subjects classed as NC at every diagnosed timepoint; AD-long consisted of all subjects where the final
diagnosed timepoint was AD’. After grouping, for subjects where scanner field strength changed over time
(from 1.5T to 3T), we used observations from the scanner with the most timepoints (or where equal used the
3T scans). In all, NC-long consisted of 1680 scans from 372 subjects, and AD-long consisted of 2730 scans
from 606 subjects (S| Table 2). The ADNI (PI: Michael W. Weiner, MD) was launched in 2003, with a goal of
testing whether serial MRI can be used to measure the progression of MCI and early AD (see
https://adni.loni.usc.edu/about/). An independent AD-control sample consisting of 107 scans from 39 AD-
long subjects and 435 scans from 128 NC-long subjects was used for validation of ML models (AIBL dataset;
data collected by the AIBL study group®; Sl Fig. 4).

Genotyping and polygenic scores

In the LCBC dataset, buccal swab and saliva samples were collected for DNA extraction, followed by ge-
nome-wide genotyping using the Global Screening Array (lllumina, Inc., San Diego, CA). For a full description
of genotyping, post-genotyping, and quality control and imputation methods applied to the genetic samples
here, see?®"92, We used the summary statistics from four previous large-scale GWAS of AD®3 two of which
included AD-by-proxy subjects based on parental status’2%. We then computed polygenic risk scores based
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on the genome-wide significant SNPs reported in each (p < 5 x108), weighted by their allelic effect sizes.
Prior to this, shared SNPs between each GWAS and our data were pruned to be nearly independent using
PLINK® with the following parameters --clump-p1 0.9999 --clump-p2 0.9999 —clump-r2 0.1 —clump-kb 500.
The linkage disequilibrium structure was based on the European subpopulation of the 1000 Genomes Project
Phase 3%. Because of the complexity of the major histocompatibility complex region (build hg19; chr6:
25,652,429-33,368,333), we removed SNPs in this region except the most significant one prior to pruning.
We computed the four PRS-AD both with and without SNPs from the APOE region (build hg19; chr19:
44,909,011-45,912,650). We chose a genome-wide significant SNP threshold based on recent studies show-
ing highest discrimination ability between patients and controls’74. We also reasoned PRS’ constructed with
more relaxed p-value thresholds will be less comparable across the four scores. As an exploratory analysis,
we tested two other thresholds proposed to be optimal in patient-control data (p<10-%7?; p<0.1°"). From the
summary files, we removed SNPs not in the reference data, with minor allele frequencies <.05, or with low
imputation scores. Genetic ancestry factors (GAFs) were computed using established principal components
methods. For the discovery sample analyses, we used the first 10 as covariates in genetic analyses®. For
genetic analyses in the combined Lifebrain replication sample, the first 4 were used as covariates (NESDA
data was prepared using ENIGMA protocols requiring 4 GAFs®").

MRI acquisition and pre-processing

T1-weighted (T1w) anatomical scans from each MRI dataset (acquisition parameters in S| Table 5) were
processed using FreeSurfer's longitudinal stream® (v.7.1 for LCBC, BETULA, ADNI and AIBL, v6.0 for
NESDA), yielding a reconstructed cortex and subcortex for each participant and timepoint'®-1%!, Data for the
main discovery sample comprised T1w magnetization prepared rapid gradient echo (MPRAGE) sequences
collected on 3 scanners at Oslo University Hospital; a 1.5T Avanto (599 scans), a 3T Skyra (769 scans), and
a 3T Prisma (62 scans; Siemens Medical Solutions, Germany).

A priori ROIs

We first analyzed subcortical and cortical volumes for a priori defined ROI's based on known AD vulnerability.
These were based on the Braak staging scheme, initially defined using post-mortem measures of tau®® and
subsequently applied to in vivo imaging'%2. Similar to others'?'%3 we used FreeSurfer regions from the aseg
and Desikan-Killiany (DK) atlas'® that anatomically approximate the various stages (see https:/ja-
gustlab.neuro.berkeley.edu/s/Braak_ROI-3I2g.pdf). ROIs were constructed separately per hemisphere’. Af-
ter initial analyses with our main hippocampal ROI's — corresponding to Braak Stage I1°° — we analyzed ROI's
corresponding to Stages | (entorhinal) and Stage 11I°°, the latter we subdivided into a subcortical (amygdala)
and a composite cortical ROI (parahippocampal, fusiform, lingual).

Data-driven ROls

To empirically derive brain features with accelerated change in AD, we used machine learning in ADNI data
(below) on a total of 364 features from the aseg and DK atlas'®, comprising measures of cortical volume,
area, thickness, grey matter/white matter contrast, subcortical volume and intensity (Fig. 3). This set of 364
features was also extracted and modelled within the discovery and replication samples.

Statistical analysis

Age-relative brain change across the adult lifespan

We used Generalized Additive Mixed Models (GAMMs, gamm4 v 0.2-6'%) to estimate age models for each
of the 364 brain features, fitting a nonlinear term for age (corrected for sex, scanner, and intracranial volume,
knots = 8). We specified random intercepts and slopes for each participant. This enabled fitting an individual-
specific linear model (level and slope) across all of their timepoints, to estimate how each person’s slope as
a function of age deviates from the average nonlinear estimation. For an age model of e.g., hippocampus,
random slopes are interpretable as the extent of additional (or reduced) hippocampal change an individual
exhibits relative to the predicted change given their age (taking other covariates into consideration). Hence,
we refer to this as an estimate of “age-relative change”. To partition unique variance associated with individ-
ual-specific slope, the estimation requires that a number of participants have three or more timepoints, alt-
hough estimates are also produced for participants with fewer, but then are drawn from a population distri-
bution more skewed towards the sample mean '%. This estimation is equivalent to estimating factor scores,
and as such is psychometrically superior to manual calculations of change. Absolute change was calculated
by adding the random slopes to the first derivative of the GAMM average age trajectory.

Polygenic risk associations

Univariate analysis: a priori ROI's

For each of our a priori ROls, we used the random slopes as response variable in linear models with a PRS-
AD predictor and the following covariates: mean age (across timepoints), sex, N timepoints, interval between

17


https://doi.org/10.1101/2023.10.09.559446
http://creativecommons.org/licenses/by-nc-nd/4.0/

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.09.559446; this version posted October 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

first and last timepoint, and 10 genetic PCs (GAFs). We tested the associations between PRS-AD (4 scores;
tested separately) and age-relative change with progressively older age-ranges (i.e., 30-89, 35-89, 40-89 ...
70-89). The reasons for this were threefold. First, because some brain features were estimated to have more
negative individual-specific slopes in younger adults compared with middle-age (S| Fig. 1), we could not test
the association across the entire age-range (30-89) and ensure we were capturing only ageing-specific pro-
cesses. Second, it enabled assessing the stability of PRS-AD associations detectable in adult lifespan data
(note that older age-ranges correspond to smaller sample sizes). Third, because empirical outcomes are
influenced by arbitrary analysis decisions, we took inspiration from multiverse methods that attempt to reduce
such bias by testing associations across a set of theoretically justified alternatives 5'-52, We also tested each
association with absolute change, and False Discovery Rate (FDR) correction was applied across all 576
PRS-AD tests (8 structures x 4 scores x 9 age-ranges x 2 change metrics; significance considered at p[FDR]
< .05). For surviving PRS-AD associations, we tested whether the FDR-corrected association including
APOE remained significant at p < .05 using PRS-AD™AP°E and determined whether the number of significant
hits exceeded the 5% false positive rate per structure. We also ran post-hoc tests to confirm that the PRS-
AD-change estimates became more negative as the age subset steadily comprised only older individuals
(see Fig. 1E-F). Here, we used the pre-computed beta estimates from all PRS-AD-change models (age-
relative and absolute; all four scores) as response variable, and the age-range as predictor (coded 0-8), and
tested the linear effect of age-range upon the PRS-AD beta estimates (main effect across change models).
The observed coefficient thus represents the strengthening of the negative PRS-AD-change association for
each increasing age subset. Next, we permuted the empirical p-value for this observed association, by gen-
erating a null distribution across 1000 random permutations of the age variable (mean age) in the PRS-AD
change associations, then recalculating the effect of age-range (randomized) upon the PRS-AD beta esti-
mates.

Multivariate analyses: data-driven features exhibiting accelerated change in AD

Machine learning model in AD

We repeated the procedure to estimate age-relative change in ADNI data, fitting a GAMM of age across NC-
long and AD-long groups (Fig. 3A; covariates: sex, field strength). To guard against overfitting the age tra-
jectories and account for the roughly three-decade drop in age coverage in the AD datasets (S| Table 2), we
reduced the number of knots in the GAMM to 5. Next, we ran machine learning binary classification with
XGBoost (https://xgboost.readthedocs.io®), using the random individual-specific slopes (age-relative
change) across all 364 features as input. Hyperparameters were chosen using 10-fold cross validation across
500 random combinations of the following possible parameter values: nrounds (100 — 600, step = 50), eta
(0.01, 0.05, 0.1, 0.15, 0.2), max_depth (2-8, step = 1), gamma (0.5 — 1.5, step = 0.5), min_child_weight (1 —
4, step = 1). To reduce the risk of overfitting to the training data and increase generalizability, we selected
the final hyperparameters based on the mean AUC obtained across the 500 iterations of 10-fold cross-vali-
dation, where each iteration logged the maximum AUC achieved across folds (final hyperparameters:
nrounds = 500, eta = 0.2, max_depth =5, gamma = 1, min_child_weight = 1). This approach ensures a more
robust and stable estimate of model performance across diverse data subsets while also avoiding potential
overfitting to a single hyperparameter combination. For comparison, we also computed a classification model
using absolute brain change as input following the same procedure (hyperparameters: nrounds = 600, eta =
0.01, max_depth = 7, gamma = 0.5, min_child_weight = 2). Model performance was evaluated in AIBL data
(Fig. 3; Sl Fig. 4).

Application to healthy adult lifespan data

First, we extracted the feature matrix to derive a list of brain features important for classifying AD-long from
NC-long individuals based on age-relative change in ADNI. Then, in the LCBC healthy adult lifespan discov-
ery sample, we calculated the principal component of age-relative change (PC1/Change) gcross the top 50
features, not including hippocampal and amygdala volumes (to ensure these did not drive the effect). We
then used PC1e/Change tg test for PRS-AD associations with change in our healthy adult lifespan sample, at
progressively older age-ranges, for all four scores. Next, we aimed to ensure the observed multivariate as-
sociations were not disproportionately driven by one or a few brain features. To do this, we first calculated
the age at which absolute brain change accelerates, reasoning analyses within this age-range would give
maximal chance of detecting PRS-AD effects upon individual ageing trajectories. Here, we took the principal
component of absolute change across the same set of features (PC12°s¢hange) plotted as a function of mean
age. Then, within the 50-89 years age-range (Fig. 4C), we ran a sliding window PCA, iteratively calculating
PC1 across 20 features with a step size of 3, across the first ~100 features (complete windows of 20 up to
98 features; 27 windows), and tested PC1 associations with PRS-AD within each window. FDR-correction
was applied across all 144 PRS-AD tests in this analysis, and surviving associations were tested with PRS-
ADnoAPOE_
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As a final proof-of-principle, we applied the weights from the binary classification procedure in AD-control
data directly to the healthy adult lifespan data (i.e., LCBC as test data). This prediction uses information from
the weights of all 364 features. Here, the dependent variable was calculated as log[p/(1-p)], where p is the
model-implied probability of having AD (probADr/change) The aim of this was not to classify healthy individuals
as AD or not, but rather test our hypothesis that the learned model weights would nevertheless prove useful,
and would relate to PRS-AD in healthy adult lifespan data. We also tested whether predictions derived from
the ML model based on absolute change were related to PRS-AD. Again, FDR-correction was applied across
all 72 PRS-AD tests in this analysis, and surviving associations were tested with PRS-AD"APOE,

Replication analysis

We first ran a GAMM separately in each of the replication cohorts, revealing a strong outlier for each in the
hippocampal change data (-7.4SD in BETULA; +5.5SD in NESDA,; see Sl Fig. 8). Then, we collated the data
and ran a GAMM comparable to the main analysis (scanner covariate indexed study cohort), estimated the
random slopes, and excluded these two outliers (Sl Fig. 8). Similar to the main analysis, we expected includ-
ing as many longitudinal observations as possible in the GAMM would optimize the change estimates for all.
Testing this assumption post-hoc, we found that in the same individuals with genetic data from BETULA,
beta estimates with left hippocampal change were significantly lower when their random slopes were esti-
mated together with NESDA data, relative to only using BETULA data (p = .009; S| Fig. 9). To reduce the
number of tests, we tested PRS-AD associations with change in hippocampus and amygdala, and with PC17e"
Change (top 50 AD-accelerated features excluding hippocampal and amygdala volumes). PRS-AD models
matched the discovery sample, except for an added cohort covariate. We tested the model at progressively
older age-ranges for all four scores (here until a lower age-bound of 60, above which the sample was com-
prised entirely of BETULA subjects). Where the association was significant (p < .05 [uncorrected]), we tested
whether it remained significant with PRS-AD™APCE, We considered it a replication where the number of sig-
nificant tests per structure exceeded the 5% false positive rate. Lastly, we assessed whether the trajectory
of accelerated brain ageing in AD features mirrored the discovery sample (i.e., modelled PC13bsChange gg g
function of mean age).

Memory change analysis

Finally, we tested differences in memory change between groups of individuals defined by the conjunction of
brain and genetic risk markers. We hypothesized higher PRS-AD individuals also high on a multivariate
marker of brain change would show more memory decline across the adult lifespan. This analysis proceeded
in two parts. First, we took the principal component across the four PRS-AD scores (PC1PRSAD; explaining
87%), and used the association between PC1PRSADP and the principal component across the first 50 AD-
accelerated features (here including hippocampal and amygdala volumes), to divide individuals into quadrant
groups (Fig. 6D; pink group denotes individuals high on both risk factors). Second, from the full adult lifespan
discovery sample described above (N = 420; scans = 1430), we identified those with observations on the
California Verbal Learning Test (CVLT)'%’. Of these, we discarded individuals with non-usable memory data
(due to being part of on-off memory training projects at LCBC; see S| Note 1 for information on the projects
that comprised the LCBC sample). In the resulting data (713 observations from 267 individuals), we took the
principal component across the three main CVLT subtests (learning, immediate, and delayed free recall;
scaled) to index general memory, expressed the loadings as a proportion of the maximum loading, and kept
only those with longitudinal memory observations (707 observations from 261 individuals). Then, we ran a
GAMM of age on Memory (sex corrected, knots = 8). Akin to the brain analysis, age-relative memory change
was estimated via the random slopes, and absolute memory change was calculated by adding the slopes to
the first derivative of the GAMM average age trajectory. Having estimated memory change using as many
longitudinal CVLT observations as possible — 108 individuals had both memory change and genetic data
(i.e., were included in the quadrant-groups). Finally, we tested our hypothesis that the high brain change-
high PRS-AD group would exhibit more adult lifespan memory decline, setting this group to the intercept, in
linear models of quadrant-group on memory change, correcting for group differences in mean age, sex, N
timepoints, interval between first and last timepoint, and APOE-¢4 carriership (main model). These were
tested using both age-relative and absolute memory change. Alternative models correcting for the number
of APOE-¢4 alleles, baseline memory, PC1PRSAD gnd PC1reChange’-50 were also run.
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