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Accelerated brain change in healthy adults is associated with genetic 1 
risk for Alzheimer’s disease and uncovers adult lifespan memory de-2 
cline 3 
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Abstract 70 
Across healthy adult life our brains undergo gradual structural change in a pattern of atrophy that resembles 71 
accelerated brain changes in Alzheimer’s disease (AD). Here, using four polygenic risk scores for AD (PRS-72 
AD) in a longitudinal adult lifespan sample aged 30 to 89 years (2-7 timepoints), we show that healthy indi-73 
viduals who lose brain volume faster than expected for their age, have a higher genetic AD risk. We first 74 
demonstrate PRS-AD associations with change in early Braak regions, namely hippocampus, entorhinal cor-75 
tex, and amygdala, and find evidence these extend beyond that predicted by APOE genotype. Next, following 76 
the hypothesis that brain changes in ageing and AD are largely shared, we performed machine learning 77 
classification on brain change trajectories conditional on age in longitudinal AD patient-control data, to obtain 78 
a list of AD-accelerated features and model change in these in adult lifespan data. We found PRS-AD was 79 
associated with a multivariate marker of accelerated change in many of these features in healthy adults, and 80 
that most individuals above ~50 years of age are on an accelerated change trajectory in AD-accelerated 81 
brain regions. Finally, high PRS-AD individuals also high on a multivariate marker of change showed more 82 
adult lifespan memory decline, compared to high PRS-AD individuals with less brain change. Our results 83 
support a dimensional account linking normal brain ageing with AD, suggesting AD risk genes speed up the 84 
shared pattern of ageing- and AD-related neurodegeneration that starts early, occurs along a continuum, and 85 
tracks memory change in healthy adults. 86 
 87 
 88 

 89 
Introduction 90 
Advanced age is the primary risk factor for Alzheimer’s disease (AD) – the leading cause of dementia. Across 91 
healthy adult life and ageing, our brains undergo gradual and widespread structural changes1–4. Many of 92 
these changes are qualitatively similar to atrophy patterns seen in AD, suggesting shared vulnerability of 93 
brain systems in ageing and AD5–7. For example, medial temporal lobe regions including hippocampus and 94 
entorhinal cortex are amongst the earliest affected regions in AD in terms of structural atrophy and tau dep-95 
osition8,9, and each exhibits accelerated structural loss from around ~50 years of age. Prior to this, many 96 
brain structures exhibit slow but steady average volume reduction from early adulthood 2,10–13. Beyond spe-97 
cific regions, whole-cortical atrophy patterns are also largely shared between ageing and AD4,6, with charac-98 
teristic temporo-parietal atrophy patterns in AD also found to a lesser degree in healthy people, including 99 
those at low AD risk5,14. It has been argued this parallel pattern is critical to understand4, because reported 100 
AD incidence increases exponentially after 65 years of age 15,16. 101 

 102 
If brain regions vulnerable in AD also exhibit gradual change during adult life, healthy individuals at higher 103 
AD risk may show faster atrophy over extended age spans. Polygenic risk scores for AD (PRS-AD) calculated 104 
from AD risk variants found in genome-wide association studies (GWAS) provide a marker to test this; in AD 105 
patients, higher genetic AD risk links with longitudinal outcomes including faster brain and cognitive decline, 106 
earlier AD onset, and clinical progression17–19. In healthy adults, however, attempts to link genetic AD risk to 107 
alterations in brain structure have typically been cross-sectional and yielded mixed results20–26. For example, 108 
although many studies report no effect of APOE-ε4 on cross-sectional hippocampal volumes20–26, recent 109 
large-scale studies found smaller hippocampal volumes in older ε4 carriers27,28. However, evidence suggests 110 
smaller hippocampal volume as a function of genetic AD risk is evident in neonates29, children2,30 and young 111 
adults31,32, and longitudinal work suggests the effect of AD risk genes upon lower hippocampal volume is 112 
roughly equivalent from childhood to old age2. Further, many 70-year-olds have similar size brain measures 113 
to many 30-year-olds, and individual differences in brain structure at any age typically exceed the magnitude 114 
of change effects through ageing2,33. Hence, brain differences observed in older at-risk individuals may be 115 
ascribable to preexisting differences from early life. Consequently, only longitudinal designs are suited to 116 
examine whether elevated genetic AD risk confers a direct genetic effect on the slope of brain ageing across 117 
the healthy adult lifespan. 118 
  119 
Longitudinal studies attempting to link brain changes to genetic AD risk in healthy adults have been incon-120 
clusive, often restricted to small samples of older adults34–36, and lifespan samples of healthy individuals with 121 
extensive follow-up over large age-spans are lacking. Small studies have reported group-level effects34,35 or 122 
no effect of APOE-ε4 upon hippocampal change in healthy older adults37. Another study found evidence that 123 
PRS-AD related to hippocampal and entorhinal thinning in an older sample enriched for APOE-ε4 and 124 
memory concerns, though did not report polygenic effects beyond APOE36. Additionally, in a large sample of 125 
healthy older individuals, hippocampal change was found to be greater in APOE-ε4 carriers (N=748)38. How-126 
ever, a recent GWAS39 (N=15,640) observed that an association between APOE and faster hippocampal 127 
and amygdala change in ageing disappeared when accounting for disease status (notably, the sample in-128 
cluded many AD cases). Thus, the effect of APOE upon brain change in candidate AD regions was seemingly 129 
driven by disease-related processes and not detected in healthy brains39. Moreover, the trajectories of 130 
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genetically high-risk versus low-risk groups provide little evidence that genetic AD risk affects the slope of 131 
brain decline across the adult lifespan2,24,25. Individualized estimates of the degree to which a healthy per-132 
son’s brain is changing more or less than expected for their age may be better suited to answer whether 133 
genetic AD risk impacts the slope of brain ageing in healthy adults. 134 
 135 
Regions with greater brain atrophy in AD are encompassed within the Braak staging scheme8,40. This de-136 
scribes the spatiotemporal sequence of tau deposition9,41 – from a cortical entorhinal epicentre (stage I) to 137 
hippocampus (stage II), amygdala and inferior temporal cortex (stage III), and later to the rest of cortex8,40. 138 
This “AD signature”9 is not specific to AD but also found to a lesser degree in normal ageing5,6,42. Beyond 139 
this core set of regions with seemingly shared vulnerability to the effects of ageing and AD, many other brain 140 
features exhibit accelerated change in AD. Applying a data-driven approach to first delineate these in AD 141 
patients – combined with multivariate analyses using individualized brain change estimates in healthy adult 142 
lifespan data – may reveal new insights into whether genetic AD risk influences the slope of brain ageing in 143 
a select few or across many AD-relevant features in healthy adults. 144 
 145 
Finally, several studies suggest that genetic AD risk is subtly related to longitudinal memory decline in healthy 146 
older adults43–45, and one adult lifespan study reported genetic AD risk was weakly associated with decline 147 
in a composite cognitive and memory score46. Thus, AD risk genes may influence differences in memory 148 
decline trajectories that are protracted through life and begin in early adulthood45–48. However, the extent to 149 
which AD risk genes influence brain and cognitive outcomes probably differs also between individuals at 150 
comparatively high genetic risk, which may explain why genetic risk alone is not highly predictive of cognitive 151 
change46,49. Given that individualized approaches to risk assessment are predicated on assessing the con-152 
junction of risks, considering known genetic AD risk together with a brain risk marker may improve identifi-153 
cation of individuals at higher AD risk, also in healthy adult lifespan data. 154 
 155 
Here, in a healthy adult lifespan sample with frequent longitudinal follow-up, we establish that individuals 156 
changing more than their age would predict in AD-accelerated brain regions are at significantly enhanced 157 
genetic AD risk (2-7 timepoints, 1430 scans from 420 individuals aged 30 to 89 years). Using genome-wide 158 
significant single nucleotide polymorphisms (SNPs; p < 5×10-8) from four AD GWAS, we first 1) show that 159 
PRS-AD significantly associates with more age-relative change in early Braak stage regions. Next, to empir-160 
ically identify brain features with accelerated change in AD, we run machine learning (ML) binary classifica-161 
tion on the individual-specific slopes derived from longitudinal AD patient-control data from the Alzheimer’s 162 
Disease Neuroimaging Initiative (ADNI; scans = 4410, N = 978, 2-9 timepoints). Modelling change in these 163 
in our healthy adult lifespan sample, we 2) show that PRS-AD is significantly associated with change in many 164 
AD-accelerated brain features in healthy adults. In an independent replication sample with notably less fol-165 
low-up (2-3 timepoints), we corroborate some of the observed PRS-AD associations with brain change in 166 
healthy adults. Last, we 3) show that high PRS-AD individuals also high on a multivariate brain change 167 
marker show greater drop-off in memory over the adult lifespan, compared to high PRS-AD individuals with 168 
less brain change. Thus, the conjunction of a multivariate brain change marker and known genetic risk helped 169 
identify a subset of individuals showing more memory decline over their healthy adult life (30-89 years). 170 

 171 
 172 

Results 173 
Age-relative brain change across the healthy adult lifespan associates with genetic AD risk 174 
Univariate analyses: A priori ROI’s: To estimate age-relative brain change in adult lifespan data, we used 175 
all longitudinal scans fitting age-range and inclusion criteria (³30 years of age; Methods). This allowed us to 176 
obtain the best-fitting age trajectory models from which we could subsequently estimate how much an indi-177 
vidual’s change trajectory deviated from the population-average (i.e., from the level of change predicted given 178 
age), via individual-specific random slopes in a Generalized Additive Mixed Model of age (Methods). We first 179 
explored brain change in initial hippocampal ROI’s – Braak Stage II50. Fig. 1A-C shows the longitudinal 180 
lifespan trajectory, and individual-specific degree of absolute and age-relative change for the left hippocam-181 
pus (see SI Fig. 1 for right hippocampus). As expected2, most individuals aged ³30 years exhibited hippo-182 
campal volume loss, but to differing degrees, and very few individual-specific slopes were estimated to show 183 
growth over time. As also expected, the degree of absolute hippocampal change accelerated on average 184 
between the ages of 50 and 60 years. The degree of age-relative change was significantly associated with 185 
PRS-AD in the hypothesized negative direction: on average across the adult lifespan (30-89 years), individ-186 
uals exhibiting more hippocampal loss than expected given their age had significantly higher PRS-AD. This 187 
genetic association was probed separately for the bilateral hippocampi (left: β = -.22, t(212) = -3.3, p=.001; 188 
right: β = -.16, t = 2.4, p=.015; [PRS-AD Jansen]; covariates: mean age, sex, N timepoints, and interval 189 
between first and last timepoint), and was significant using all four GWAS-derived scores. To ensure we were 190 
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capturing ageing-specific effects at some point (see SI Fig. 1), we tested the association using change rates 191 
extracted from progressively older age-ranges (i.e., progressively discarding data from comparatively 192 
younger individuals; Methods). This also ensured that the analysis outcome was not based on a single arbi-193 
trary decision such as the age range to test the average association across51,52. FDR-correction was applied 194 
across all 576 PRS-AD tests reported in this analysis. We then tested whether surviving associations re-195 
mained statistically significant at p<.05 using polygenic scores computed without APOE (PRS-ADnoAPOE), 196 
assuming a 5% chance false positive rate per structure. Despite the progressively smaller sample size, all 197 
tested PRS-AD associations with age-relative hippocampal change (left and right) were significant at p<.05 198 
[uncorrected] using all four scores (coloured points in Fig. 1E-F denote associations at p<.05 [uncorrected]; 199 
see lower panels for respective effect sizes). 31 of the 36 tests (86%) with age-relative left hippocampal 200 
change, and 25/36 (69%) with age-relative right hippocampal change, survived FDR-correction (see lower 201 
panels in Fig 1E-F; partial r2 effect size is shown for associations surviving FDR-correction). Using PRS-AD 202 
to predict absolute hippocampal change instead in comparable statistical models (i.e., also correcting for 203 
mean age), PRS-AD associations were also mostly significant after FDR correction (47/72 [65%] survived 204 
correction). Probing whether FDR-corrected associations with change remained after discounting the effect 205 
of APOE per each structure tested, 19/58 (33%) PRS-ADnoAPOE associations with left hippocampal change 206 
(age-relative or absolute) remained significant at p<.05, surpassing the 5% false positive rate expected by 207 
chance (black crosses in Fig. 1E-F denote partial r2 of PRS-ADnoAPOE where significant [p<.05]). For right 208 
hippocampus, 6/45 (13%) of the FDR-corrected associations remained significant at p<.05 with PRS-AD-209 
noAPOE, also surpassing the chance false positive rate (Fig. 1F). Post-hoc tests confirmed the impression that 210 
the estimated regression coefficients became more negative as the age subset steadily comprised only older 211 
individuals (Fig. 1E-F); on average across change metrics, each increasing age subset was associated with 212 
a reduction in the negative beta coefficient of -.026 for left hippocampus (t = -14.1; pperm = 9.9e-4), and -.023 213 
for right hippocampus (t = -15.4; pperm = 9.9e-4). Alternative post-hoc analyses dependent on power across 214 
the full age-range (30-89 years) found significant PRS-AD × age (mean) interactions upon age-relative 215 
change in left and right hippocampi for all four scores but these did not survive multiple comparison correction 216 
(SI Table 1; SI Fig. 3). 217 

 218 

 219 
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 220 
 221 
FIGURE 1 222 
Hippocampal change in healthy adults associates with genetic AD risk. Exclusively longitudinal data was used to 223 
estimate individual-specific age-relative and absolute change in hippocampus (Braak stage II), modelling the adult 224 
lifespan trajectories using GAMMs with random slopes. a Adult lifespan trajectory for left hippocampus from 30-89 years 225 
(data corrected for sex and scanner). Lines connect longitudinal observations per participant. b Absolute change per 226 
individual (datapoints) in left hippocampus as a function of their mean age across timepoints. c Estimated age-relative 227 
change per individual in left hippocampus (i.e., individual-specific slopes) as a function of their mean age across 228 
timepoints. Black stroke indicates whether or not genetic data was available per participant and thus whether the data-229 
point was included in the PRS-AD association tests. d More negative age-relative change in both left and right hippo-230 
campus was associated with significantly higher PRS-AD on average across the full adult lifespan sample with genetic 231 
data (30-89 years; N=229; association visualized for one score [Jansen]); age and covariate-corrected [Methods]; colour 232 
and datapoint size depicts mean age). e-f PRS-AD associations with age-relative change (left facet) and absolute change 233 
(right facet) in left (E) and right (F) hippocampus, using the four GWAS-derived scores, tested for progressively older 234 
age-ranges to ensure capture of ageing-specific effects (i.e., moving from left to right on the X-axis, the leftmost age-235 
range represents the association tests across the full adult lifespan on average [30-89 years; N=229], whereas the right-236 
most age-range shows the associations tested in only the oldest adults [70-89 years]; standardized β). Significant asso-237 
ciations at p < .05 are depicted in colour (upper panels). For associations surviving FDR-correction, partial r2 of PRS-AD 238 
is shown (lower panels). Where the association survived FDR-correction, we retested the association after removing 239 
APOE (PRS-ADnoAPOE). Partial r2 of PRS-ADnoAPOE is depicted by a black cross if the FDR-corrected association remained 240 
significant (p < .05). Ribbons and error bars depict 95% CI. 241 
 242 
 243 
 244 
We then repeated the procedure for Braak stage I (entorhinal) and III regions (subcortical and cortical ROIs; 245 
Methods). For Braak stage I, we observed no significant PRS-AD associations with change (age-relative or 246 
absolute) in left entorhinal cortex, but observed several significant associations with each in right entorhinal 247 
cortex, 5 of which survived correction (Fig. 2A). 3 of these FDR-corrected associations remained significant 248 
at p<.05 with PRS-ADnoAPOE (using absolute change; lower panels in Fig. 2A), surpassing the false positive 249 
rate. Post-hoc tests confirmed that the estimated regression coefficients became more negative as the age 250 
subset comprised only older individuals for right (beta reduction = -.013, t = -7.8, pperm = .018) but not for left 251 
entorhinal cortex (beta reduction = -.008, t = -5.0, pperm = .10). However, alternative post-hoc analyses across 252 
the full age-range (30-89 years) found no PRS-AD × age (mean) interactions upon age-relative entorhinal 253 
change, suggesting our data may have been underpowered to detect a two-way continuous interaction (SI 254 
Fig. 3; SI Table 1). 255 
 256 
For the subcortical Braak Stage III region (amygdala), we similarly observed negative associations between 257 
age-relative change in left and right amygdala and PRS-AD (Fig. 2B), 21 of which were significant after FDR 258 
correction, and using absolute change instead yielded similar results (15 surviving associations). 4/11 (36%) 259 
PRS-ADnoAPOE associations remained significant at p<.05 for left amygdala (surpassing the false positive 260 
rate), whereas no associations with right amygdala change remained after excluding APOE. The estimated 261 
regression coefficients became stronger as the age subset comprised only older individuals (beta reduction 262 
left amygdala = -.018, t = -7.6, pperm = .002; right amygdala = -.019, t = 10.0 pperm = .004), though alternative 263 
analyses dependent on power across the full age-range found no post-corrected significant PRS-AD × age 264 
(mean) interactions upon age-relative change in amygdala (SI Fig. 3; SI Table 1). For the cortical component 265 
of Stage III, none of the tested PRS-AD associations with change in left or right cortex survived correction 266 
(Fig. 2C), the regression coefficients became stronger as the age subset comprised only older individuals in 267 
each (beta reduction left cortex = -.011, t = -6.2, pperm = .013; right cortex = -.013, t = -6.3; pperm = .004), and 268 
we found no significant PRS-AD × age (mean) interactions in alternative analyses across the full age-range 269 
(SI Fig. 3; SI Table 1). 270 
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 271 
FIGURE 2 272 
Change in early Braak stage regions in healthy adults associates with genetic AD risk. PRS-AD associations 273 
with age-relative change and absolute change in brain regions encompassed within a Braak stage I (entorhinal) and b-274 
c Braak stage III regions (amygdala and inferior temporal cortical ROI), using the four GWAS-derived scores, tested for 275 
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progressively older age-ranges to ensure capture of ageing-specific effects (i.e., moving from left to right on the X-axis, 276 
the leftmost age-range represents the association across the full adult lifespan on average [30-89 years; N=229], 277 
whereas the rightmost age-range shows the associations tested in only the oldest adults [70-89 years]; standardized 278 
β). Significant associations at p < .05 are depicted in colour (upper panels). Partial r2 of PRS-AD is shown for all asso-279 
ciations surviving FDR-correction (lower panels; lower panels in A [left] and C [left and right] are correctly empty be-280 
cause no association survived correction). Where the association survived FDR-correction, we retested the association 281 
after removing APOE (PRS-ADnoAPOE). Partial r2 of PRS-ADnoAPOE is depicted by a black cross if the FDR-corrected as-282 
sociation remained significant (p < .05). Error bars depict 95% CI. 283 
 284 
 285 
Multivariate analyses: data-driven features exhibiting accelerated change in AD 286 
Given the univariate results, we expected that multivariate measures of change would be better suited to 287 
detect PRS-AD associations with brain change in healthy adults. Thus, we sought to empirically obtain a list 288 
of brain features with accelerated change in AD, then test whether multivariate change across these features 289 
relates to PRS-AD in the LCBC healthy adult lifespan discovery sample (Methods). First, in longitudinal AD 290 
patient-control data from ADNI (SI Table 2), we defined two longitudinal groups we could be maximally con-291 
fident consisted of healthy individuals and those succumbing to AD based on diagnosis: NC-long consisted 292 
of normal controls consistently classed as healthy over time, whereas AD-long comprised all individuals with 293 
an AD diagnosis by their final timepoint (Fig. 3A; Methods). Then, in 364 features we modelled a GAMM of 294 
age (irrespective of group), and entered the individual-specific slopes into ML binary classification (Fig. 3B). 295 
Group differences in slopes (age-relative change) were in the expected direction (Fig. 3C). The top features 296 
deemed most important for separating AD-long from NC-long individuals based on age-relative change in 297 
ADNI included many well-known AD brain vulnerabilities (e.g., ventricles, medial temporal and temporo-pa-298 
rietal regions; see Fig. 4A; though our intention was not to refine prediction of AD cases, we note the model 299 
achieved an area under the curve [AUC] of .952 in independent data from the Australian Imaging Biomarker 300 
& Lifestyle Flagship Study of Ageing [AIBL]; Fig. 3D-F; SI Fig. 4). 301 
 302 
 303 

 304 
FIGURE 3 305 
Visualization of longitudinal AD analysis pipeline. a Longitudinal grouping in ADNI data. X-axis denotes the scan 306 
observations across timepoints used in the final sample. Each line represents a participant and colour denotes longitu-307 
dinal group membership. Single-timepoint ADNI diagnoses (Y-axis; NC normal controls, MCI mild cognitive impairment, 308 
AD Alzheimer’s disease) were used to define two longitudinal groups of AD and NC individuals (AD-long; N = 606, obs 309 
= 2730; NC-long, N = 372; obs = 1680). NC-long individuals were classified as healthy at every timepoint whereas AD-310 
long individuals were diagnosed with AD by their final timepoint (Methods). Single-timepoint MCI diagnoses were con-311 
sidered only for the purpose of defining the longitudinal AD group. Note that because the grouping used all diagnosis 312 
observations (i.e., not only scan observations), trajectories of individuals that appear to end with a NC or MCI diagnosis 313 
nevertheless correspond to individuals with an AD diagnosis by their final timepoint, as do those seemingly reverting 314 
(Methods). b GAMMs of Age (across groups; upper plot) were used to model age-relative change (individual-specific 315 
slopes) in 364 brain features (shown for one example feature). The ADNI-derived individual-specific slopes were then 316 
used as input to machine learning binary classification using XGBoost 53 c Most features exhibited significant group-317 
differences in age-relative change between AD-long and NC-long as expected (datapoints denote t-statistics for t-tests; 318 
black stroke indicates significant associations at p(FDR)<.05). d-f Out-of-sample prediction for the binary classifier 319 
(AIBL data; SI Fig. 4) including receiver operator curve (d), confusion matrix and performance metrics (e). The purpose 320 
of the classification procedure was to empirically derive brain features with accelerated change in AD, to use these in 321 
healthy adult lifespan data. 322 
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 323 
 324 
 325 
In the LCBC healthy adult lifespan discovery sample, we then calculated the principal component of age-326 
relative change across the first 50 features with model-implied importance (PC1relChange; hippocampal and 327 
amygdala volumes were not included in PC1relChange to ensure these did not drive the multivariate effect; see 328 
the maroon bar in Fig. 4A; explaining 13% variance). As hypothesized, 14 of the 36 tested associations 329 
relating PC1relChange to PRS-AD were FDR-corrected significant (Fig. 4B; FDR-correction applied across all 330 
144 PRS-AD tests in this analysis). Again, post-hoc tests confirmed that the estimated regression coefficients 331 
became stronger as the age subset comprised only older individuals (beta reduction = -.023, t = -9.9, pperm = 332 
.002) and alternative analyses across the full age-range found post-corrected significant PRS-AD × age 333 
(mean) interactions upon PC1relChange using all four scores (SI Table 3). Next, to determine the age at which 334 
brain change in AD-accelerated features starts increasing in healthy adults, we took the principal component 335 
of absolute change across the same set of 50 features (PC1absChange; explaining 45% variance) plotted as a 336 
function of mean age (Fig. 4C). The results suggested that all individuals were on a trajectory of change in 337 
AD features that showed onset of accelerated change around age ~50 in healthy adults (Fig. 4C; see SI Fig. 338 
10 for derivative plots). Further, change trajectories were steepest in features most important for separating 339 
AD-patients from controls (SI Fig. 6). To ensure that the multivariate associations were not driven by one or 340 
a few brain features, we ran a sliding window PCA within the 50-89 year age-range (Methods). PRS-AD 341 
associations with age-relative change were evident when calculating PC1 across many combinations of fea-342 
tures, including those relatively lower down in terms of model importance (coloured bars in Fig. 4A denote 343 
feature windows for the PCA and link with the coloured points denoting p-values for the PRS-AD associations 344 
in Fig. 4D; see SI Fig. 7 for correlations between features). 13 of the tested associations were significant 345 
after FDR correction, illustrating that multivariate change across many AD-accelerated features relates to 346 
PRS-AD in healthy adults (Fig. 4D). The data suggested that PRS-AD associations derived via this method 347 
were largely though not entirely driven by APOE (3 of the 27 [11%] FDR-corrected tests remained significant 348 
at p < .05 using PRS-ADnoAPOE, surpassing the 5% false positive rate; lower panels in Fig. 4). 349 
 350 

 351 
 352 
FIGURE 4 353 
ADNI-derived features applied to the healthy adult lifespan. a Top features for classifying AD-long from NC-long 354 
individuals in ADNI data based on age-relative change. Coloured bars indicate feature selections across which we cal-355 
culated PC1 and link with the subsequent plots. b PRS-AD associations in healthy adult lifespan data (LCBC sample) 356 
using the principal component of age-relative change across the top 50 brain features with accelerated change in AD 357 
(excluding hippocampal and amygdala volumes; PC1relChange; maroon bar in a). Datapoints show (-log10) p-values for 358 
the association with PC1relChange, tested at progressively older age-ranges, for all four scores. Dashed line indicates p = 359 
.05, and datapoints with black stroke denote significant PRS-AD associations at p<.05. Datapoints above the dotted 360 
line are significant at p(FDR)<.05. Smaller right inset plot shows the standardized Beta values as a function of age-361 
range (Betas inversed to be negative due to the non-directional nature of PCA). Bottom plot shows partial r2 of PRS-AD 362 
for all associations surviving FDR-correction. Where the association survived FDR-correction, we retested the 363 
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association after removing APOE (PRS-ADnoAPOE). Partial r2 of PRS-ADnoAPOE is depicted by a black cross if the FDR-364 
corrected association remained significant (p < .05). Error bars depict 95% CI. c The principal component of absolute 365 
change across the top 50 brain features with accelerated change in AD (excluding hippocampal and amygdala volume; 366 
maroon bar in a), plotted as a function of mean age across timepoints. Accelerated brain change in AD-accelerated 367 
features was evident between ages 50-60. Note that since the y-axis represents change, the slope of the curve repre-368 
sents acceleration (see also SI Figs. 10-11). d PCA-based sliding window analysis within the age-range 50-89 years. 369 
Colours and order correspond to the coloured bars in a, which show the selection of features across which the principal 370 
component of age-relative change was calculated and used to test associations with PRS-AD. Dashed line indicates p 371 
= .05, and datapoints with black stroke denote significant PRS-AD associations at p < .05. Datapoints above the dotted 372 
line are significant at p(FDR)<.05. lh=left hemisphere, rh=right hemisphere, vol=volume (subcortical); int=intensity (sub-373 
cortical); w-g=grey/white matter contrast. Subcortical features (aseg) are delineated with “.”, whereas cortical features 374 
(aparc) are delineated with “_”. 375 
 376 
 377 
 378 
As a final proof-of-principle, we directly applied the ADNI-derived model weights to the LCBC healthy adult 379 
lifespan discovery sample. This prediction incorporates information from the weights of all 364 features 380 
(Methods). The dependent variable was the model-implied log odds of having AD (probADrelChange; Methods). 381 
Importantly, because the model was trained on an index of relative brain change conditional on age, the 382 
logistic prediction applied to the healthy adult lifespan data cannot be interpreted in terms of its implied binary 383 
outcome (i.e., AD/no-AD). This is because the model could assign the same probability of having AD to a 384 
hypothetical 30-year-old with an estimated additional brain loss of 10mm3/year as to a 60-year-old with the 385 
same additional brain loss, even though change and AD risk are higher in the 60-year-old, because change 386 
is over and above the mean brain loss anticipated at age 60 (see Fig. 1C). We nevertheless hypothesized 387 
the learned model weights would be useful, and would relate to PRS-AD in a similar way to the raw age-388 
relative change values in specific features. As expected, almost all of the tested PRS-AD associations with 389 
probADrelChange were significant at p<.05, 14 of which survived correction; see SI Fig. 5B). Repeating all steps 390 
of the model estimation procedure using absolute change instead (from hyperparameter estimation to pre-391 
diction; AUC = .933 in unseen data from AIBL), we found far fewer significant PRS-AD associations with 392 
probADabsChange (7 survived correction; SI Fig. 5C-D), suggesting relative change is a superior marker for 393 
capturing individual differences in brain ageing. Again, the data indicated PRS-AD associations derived by 394 
this method were largely though not entirely driven by APOE (8 [38%] of the FDR-corrected tests with change 395 
remained significant using PRS-ADnoAPOE; SI Fig. 5; FDR-correction applied across all 72 PRS-AD tests in 396 
this analysis). 397 
 398 
Replication analysis 399 
To reduce the number of tests, in an independent adult lifespan replication sample with fewer follow-up points 400 
(2-3 timepoints; Lifebrain replication sample), we tested PRS-AD associations using hippocampal and amyg-401 
dala change, and the principal component of age-relative change across the first 50 AD-accelerated features, 402 
not including hippocampal or amygdala volume (i.e., PC1relChange; Fig. 4A). For hippocampus, we observed 403 
similarly negative effects, 22 of which were significant for age-relative change (p < .05 [uncorrected]; 31 for 404 
absolute change; Fig. 5A). Similar to the discovery sample, PRS-AD effects on age-relative hippocampal 405 
change were larger than absolute change, and often remained significant after discounting APOE (black 406 
crosses in Fig. 5A denote partial r2 for PRS-ADnoAPOE where this remained significant). For amygdala, we 407 
observed no significant PRS-AD associations within any age-range, and we also observed no significant 408 
associations with PC1relChange (Fig. 5B-C). However, like the discovery sample, all healthy individuals lay on 409 
a trajectory of accelerated change in AD features, with a similar onset of acceleration around the age of 50 410 
years (Fig. 5D; SI Fig. 10). 411 
 412 
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 413 
 414 

FIGURE 5 415 
Replication PRS-AD associations with age-relative and absolute change in an independent adult lifespan sample 416 
(Lifebrain replication sample), using the four GWAS-derived scores, for progressively older age-ranges to ensure cap-417 
ture of ageing-specific effects (i.e., moving from left to right on the X-axis, the leftmost age-range represents the 418 
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association across the full adult lifespan on average [30-88 years; N=293], whereas the rightmost age-range shows the 419 
associations tested in only the oldest adults [60-88 years]). Univariate associations were tested for a left and right hip-420 
pocampus, and b left and right amygdala. Significant associations at p < .05 are depicted in colour (upper panels). 421 
Here, partial r2 of PRS-AD is shown for all associations that were significant at p < .05 (lower panels). Where the asso-422 
ciation was significant (p < .05 [uncorrected]), we retested the association after removing APOE (PRS-ADnoAPOE). Par-423 
tial r2 of PRS-ADnoAPOE is depicted by a black cross if the association remained significant (p < .05). c Multivariate PRS-424 
AD association tests using the principal component of age-relative change across the top 50 brain features with accel-425 
erated change in AD (excluding hippocampal and amygdala volumes; PC1relChange; as in Fig 4A-B). Datapoints show (-426 
log10) p-values for the association with PC1relChange, tested at progressively older age-ranges, for all four scores. 427 
Smaller plot shows the standardized Beta values as a function of age-range (Betas inversed to be negative due to the 428 
non-directional nature of PCA). Dashed line indicates p = .05. d The principal component of absolute change across 429 
the top 50 brain features with accelerated change in AD (excluding hippocampal and amygdala volumes; maroon bar in 430 
Fig 4A), plotted as a function of mean age across timepoints. Accelerated brain change in AD-accelerated features was 431 
evident around age 50-60. Note that since the y-axis represents change, the slope of the curve represents acceleration 432 
(see also SI Fig. 10). Error bars depict 95% CI. 433 
 434 
 435 
Memory change analysis  436 
Finally, in the LCBC healthy adult lifespan discovery sample, we used the association between the principal 437 
component of age-relative change across the first 50 AD-accelerated features – here including hippocampal 438 
and amygdala volumes (PC1relChange1-50) – and the principal component across the four PRS-AD scores 439 
(PC1PRS-AD; explaining 87%) to separate individuals into discrete groups, representing the conjunction of 440 
brain change and genetic risk factors. We hypothesized that high PRS-AD individuals also showing more 441 
age-relative change in AD-accelerated features would exhibit more longitudinal memory decline (pink quad-442 
rant 4 in Fig. 6D; Methods). Akin to the brain analysis, memory-change estimates were derived via the indi-443 
vidual-specific random slopes in a GAMM of age, and we used longitudinal memory observations from the 444 
full adult lifespan sample to optimize memory-change estimates in the subset of participants that also had 445 
genetic data (Methods). Fig. 6A-C shows the longitudinal lifespan trajectory, and individual-specific degree 446 
of absolute and age-relative change in memory performance on the California Verbal Learning Test (CVLT; 447 
PC1 across subtests). Absolute memory change was predominantly negative, with memory decline occurring 448 
gradually across the adult lifespan and accelerating around the mid ~60s (Fig. 6B; though we also observed 449 
a trend towards steeper slopes in mid-life prior to this; SI Fig. 11). As hypothesized, genetically exposed 450 
individuals also high on a multivariate marker of age-relative brain change (PC1relChange1-50) showed signifi-451 
cantly more age-relative (p = .01) and absolute memory decline (p = .003) on average across the adult 452 
lifespan, compared to high PRS-AD individuals with less relative brain change. These group differences in 453 
memory change were not driven by differences in APOE-ε4 carriership (Fig. 6E-F; main models corrected 454 
for carriership, mean age, sex, N timepoints, interval between first and last timepoint), and persisted in alter-455 
native models controlling for the number of APOE-ε4 alleles (p = .009; p = .003) and baseline memory per-456 
formance (p = .008; p = .002). In the main model, we also observed a significant difference in absolute 457 
memory change between the high PRS-AD-high brain change group and the low PRS-AD-low brain change 458 
group (p = .026; Fig. 6E). Finally, the reported group differences in memory-change persisted when correcting 459 
for differences in genetic risk (PC1PRS-AD) but not for differences in multivariate brain change (SI Fig. 12). 460 
These data suggest the conjunction of risk markers – a multivariate marker of change in AD-vulnerable fea-461 
tures and known PRS-AD – helped identify a subset of comparatively high-risk individuals showing more 462 
longitudinal memory decline in healthy adult lifespan data (30-89 years). 463 
 464 
 465 
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 466 
 467 
FIGURE 6 468 
Longitudinal memory change analyses. Exclusively longitudinal data was used to estimate individual-specific age-469 
relative and absolute change in CVLT task performance (PC1 across subtests), modelling the adult lifespan trajectories 470 
using GAMMs with random individual-specific slopes. a Adult lifespan trajectory analysis for CVLT memory performance 471 
from 30-89 years. Lines connect longitudinal observations per participant. b Absolute memory change per individual 472 
(datapoints) in CVLT task performance plotted as a function of their mean age across timepoints. c Estimated age-473 
relative change per individual in CVLT task performance (individual-specific slopes). For each participant with memory 474 
change data, black stroke indicates whether or not genetic data was available. d The association between the principal 475 
component across the four PRS-AD scores and the principal component of age-relative change across the first 50 ADNI-476 
derived features (listed in Fig. 4A) was used to define four quadrant-groups representing the conjunction of brain and 477 
genetic risk factors. e Memory change for individuals with both memory change and genetic data within the quadrant 478 
groups. Individuals at higher PRS-AD who also exhibited more age-relative brain change (pink) in AD-accelerated fea-479 
tures showed significantly more age-relative (left plot) and absolute (right plot) change in memory performance across 480 
the healthy adult lifespan, relative to high PRS-AD individuals estimated to show less relative brain change (distributions 481 
visualized for these two groups; datapoints corrected for covariates including mean age and APOE-e4 carriership [Meth-482 
ods]). 483 
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Discussion 484 
Genetic AD risk is robustly associated with the slope of brain ageing in healthy adults. Specifically, we found 485 
healthy individuals changing faster than expected for their age in early Braak Stage regions – bilateral hip-486 
pocampus, amygdala, and right entorhinal cortex – are at significantly enhanced genetic AD risk, and these 487 
polygenic associations extend beyond the risk conferred by APOE alone. We also found that multivariate 488 
change across many AD-accelerated brain features can be used to detect PRS-AD associations with faster-489 
than-expected brain ageing in healthy adults, and demonstrate that accelerated change in AD features is 490 
evident in most healthy individuals over age ~50. Furthermore, we find that ML models trained on longitudinal 491 
AD patient-control data can be directly applied to healthy adult lifespan data and the prediction relates to 492 
PRS-AD in healthy adults. Finally, high PRS-AD individuals showing faster-than-expected brain change ex-493 
hibited more longitudinal memory decline compared to high PRS-AD individuals with less brain change, on 494 
average across the healthy adult lifespan (30-89 years), and independent of APOE-ε4. Thus, the conjunction 495 
of our novel multivariate brain change marker and known PRS-AD found a subset of individuals exhibiting 496 
more memory decline across the healthy adult lifespan. 497 
 498 
Age-relative brain change across the adult lifespan associates with genetic AD risk 499 
Univariate analyses: apriori ROI’s 500 
Univariate analyses using change in early Braak stage regions consistently revealed significant PRS-AD 501 
associations in healthy adults, illustrating accelerated brain ageing in genetically at-risk individuals. The clear-502 
est genetic effects upon faster brain ageing were in bilateral hippocampi; healthy individuals at higher genetic 503 
AD risk lose hippocampal volume faster than their age would predict – observed consistently using all four 504 
scores. Particularly for left hippocampus, the association often remained after discounting APOE, suggesting 505 
differences in left hippocampal loss also arise from genetic factors beyond APOE. However, we also ob-506 
served PRS-ADnoAPOE associations with right hippocampal change, and also confirmed these in independent 507 
data. Shrinkage of the hippocampus – a critical structure underpinning episodic memory and spatial naviga-508 
tion operations – is a well-known AD risk marker in patient populations9,32,54, with atrophy rates predicting 509 
clinical conversion55. However, most studies in healthy adults have not linked genetic AD risk to hippocampal 510 
change39,56 or find the slope of hippocampal age trajectories does not differ as a function of genetic AD 511 
risk2,20–26 – including in large adult lifespan samples24,25 and our previous report in overlapping data2. And 512 
since AD risk genes influence hippocampal differences early in life2,29,30, cross-sectional findings in healthy 513 
older adults27,28,57 cannot attribute genetic effects to accelerated brain ageing58. By specifically isolating 514 
within-individual genetic effects on accelerated brain ageing, the present study confirms AD risk genes also 515 
influence normal variation in hippocampal change rates in healthy adults. 516 
 517 
This agrees with a study by Harrison et al.36 finding a longitudinal relationship between hippocampal change 518 
and PRS-AD in older adults. Notably, however, that study recruited individuals with memory complaints and 519 
a family AD history via memory clinics. In contrast, our sample comprised healthy adults in longitudinal stud-520 
ies which are well-established to be biased toward maintaining high performers59. It also agrees with a study 521 
finding more hippocampal atrophy in healthy older APOE-ε4 carriers38. However, we also found AD risk 522 
SNP’s beyond APOE predict hippocampal ageing trajectories in healthy adults, which to our knowledge has 523 
not been shown. Previously, we did not find consistent evidence PRS-AD or APOE-ε4 alters the slope of 524 
hippocampal ageing, but found a group-level offset effect suggesting the difference between high- and low-525 
risk individuals in hippocampal volume was as large at age ~25 as at age ~802. However, that study primarily 526 
used a PRS-AD constructed with many more SNP’s (p<.0560), and did find some, albeit inconsistent, evi-527 
dence for a slope effect using the same SNP association p-value as here. Here, by taking an individual-528 
centric approach to estimate change trajectories, we found genome-wide significant SNPs could explain up 529 
to ~13% variance in hippocampal change rates (effect sizes after discounting APOE were smaller; ~5%; Fig. 530 
1E-F). This purely longitudinal marker of relative brain ageing consistently excelled, exhibiting stronger rela-531 
tionships to PRS-AD than absolute change that were detectable over wider age-spans. The data also indi-532 
cated PRS-AD-change associations were not driven only by the oldest adults, though older adults likely con-533 
tributed more of the individual differences in brain change signal (SI. Fig. 12), in line with the observed ten-534 
dency towards stronger genetic effects upon slopes in older individuals, and theories positing genetic effects 535 
become amplified in old age when neural resources are depleted61. 536 

 537 
PRS-AD also linked with accelerated loss in right entorhinal cortex (stage I) and bilateral amygdala (stage 538 
III). This also agrees with Harrison et al.36, wherein entorhinal change was related to a PRS-AD (APOE 539 
inclusive) in older adults with memory complaints, and may also fit with a recent cross-sectional study finding 540 
right entorhinal cortex exhibits amongst the largest structural differences in older APOE-ε4 carriers28. How-541 
ever, we also found evidence PRS-AD-entorhinal change associations extend beyond APOE. Similarly, ac-542 
celerated amygdala loss was associated with PRS-AD in healthy adults, and we found evidence SNP’s 543 
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beyond APOE influence left amygdala change trajectories. These data contradict a recent GWAS finding the 544 
effect of APOE upon amygdala and hippocampal slopes, with increasing influence of the APOE-indexing 545 
SNP (rs429358) with age, disappeared after accounting for disease in a heavily patient-derived sample39, 546 
suggesting APOE-mediated slope differences were driven by patients. To our knowledge, we are the first to 547 
document accelerated amygdala decline in healthy adults harbouring more AD risk variants. Still, while amyg-548 
dala effects were clear in the discovery sample – currently the most densely sampled MRI dataset for longi-549 
tudinal lifespan follow-up – these did not replicate in an independent sample with less follow-up, hence this 550 
awaits replication. Regardless, in healthy ageing as in AD, medial temporal lobe structures exhibit early vul-551 
nerability to structural loss5, highest expression of top AD risk genes (e.g., APOE, BIN1, CLU62–64), and we 552 
find PRS-AD influences accelerated change in these structures in healthy adults. Speculatively, faster atro-553 
phy rates may co-occur with faster tau accumulation, possibly consistent with higher tau in risk-allele carri-554 
ers64,65. Critical questions concern what mechanisms underlie the shared vulnerability of these structures to 555 
lifespan influences and AD, which in the presence of AD risk genes speed up normal age-related neuro-556 
degeneration. One candidate shared characteristic may be a high degree of plasticity66–68.  557 

 558 
Multivariate analyses: data-driven features exhibiting accelerated change in AD 559 
Through empirically delineating brain features with accelerated change in AD, we found that accelerated 560 
brain ageing across many combinations of AD-accelerated brain features relates to PRS-AD in healthy 561 
adults. Furthermore, we observed replicable evidence that almost everyone above age ~50 is on an accel-562 
erated trajectory of neurodegenerative ageing in features wherein change reliably separates AD patients 563 
from controls, consistent with work documenting overlapping mean atrophy patterns in ageing and AD4,5,14. 564 
These individualized data suggest that neurodegeneration occurs along a continuum from healthy ageing to 565 
AD. Furthermore, since it is unlikely that most healthy adults in both samples here would be amyloid positive, 566 
this may run counter to the amyloid cascade hypothesis, which posits plaque build-up as an initial triggering 567 
event for subsequent neurodegeneration69–71. Likely, our unique approach to link AD changes to normal 568 
ageing benefitted from using multivariate analyses across change data in healthy adults. We also found that 569 
ML models trained on longitudinal change in AD can be applied to healthy adult lifespan data and the pre-570 
diction relates to PRS-AD. This seemed to work best when the model was trained on estimates of change 571 
conditional on age (SI Fig. 5), likely because this places often extreme change values in AD on a scale more 572 
comparable across ages, and because modelling relative change in AD versus controls enables identification 573 
of features exhibiting a quantitative difference in change despite the presence of a similar qualitative pattern. 574 
That our patient-control groups were based on two extremes (consistently healthy versus becoming AD) only 575 
further emphasizes the difference lies more in degree than kind, as does the fact that our ML model also 576 
captured 100% of independent AD cases (Fig. 3). PRS-AD associations beyond Braak stages appeared 577 
largely though not entirely driven by APOE (Fig. 4; SI Fig. 5). Thus, our study yields new knowledge on the 578 
widespread impact of AD risk genes upon accelerated brain ageing in healthy adults, while highlighting that 579 
the border between neurodegeneration in ageing and AD is far from clear. 580 

 581 
Of note, though PRS-AD effects were not entirely driven by allelic variation in APOE, PRS-ADnoAPOE associ-582 
ations were most evident using the genome-wide significant SNP’s/weightings reported by Jansen et al.72 or 583 
Lambert et al.60, suggesting these SNP sets beyond APOE better capture differences in brain ageing in 584 
healthy adults (in both samples; Figs. 1-2; Fig. 5). We also found no evidence including more SNP’s in-585 
creased sensitivity to detect genetic effects upon healthy adult brain ageing, with or without APOE (SI Fig. 586 
2), in line with studies in patients73,74. APOE accounted for much of the predictive power of PRS-AD, as 587 
associations typically disappeared or were attenuated using PRS-ADnoAPOE. This fits with work finding PRS-588 
AD associations with cognitive, lifestyle, and metabolic factors in healthy adults are largely driven by APOE75, 589 
and with data indicating limited utility of SNP’s beyond APOE to predict AD-relevant traits18. 590 

 591 
Memory change analysis 592 
Individuals at higher genetic risk that also showed more brain ageing in AD-accelerated features exhibited 593 
more longitudinal memory decline across adult life (30-89 years). Hence, knowing an individual’s genetic risk 594 
in and of itself was insufficient, as it was not necessarily reflected in brain and cognitive outcomes. However, 595 
considered together with a multivariate marker of brain change, we found a subset of high PRS-AD individ-596 
uals whose brain status over time was reflected in a greater drop-off in memory that was protracted across 597 
adult life (Fig. 6D-E). Moreover, the analyses suggested group differences in memory decline were more 598 
driven by brain change differences than by genetic differences. Hence, our change marker provided crucial 599 
information for detecting comparatively at-risk individuals in healthy adult lifespan data, beyond that provided 600 
by genetic risk alone. These results support and extend previous studies finding PRS-AD43,44,46 or APOE-601 
ε445 relates to longitudinal memory decline across adult life, and possibly shed light on why reported associ-602 
ations are often weak43–46 or absent49. They also underscore the need for follow-up data over extended age-603 
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spans when the goal is early prediction or prevention of AD. Future research should examine the biological 604 
and exposure-related factors that lead some high PRS-AD individuals to decline more in brain and memory 605 
where others remain resilient, as well as combine multivariate change with other biomarkers (e.g., tau, in-606 
flammation, or amyloid) as we move towards a future of individualized risk assessment. 607 

 608 
Our study has several strengths. First, our longitudinal marker of individual-specific brain change circumvents 609 
the drawbacks of other approaches attempting to capture interindividual differences in brain ageing – such 610 
as brain age models76 – which do not necessarily relate to longitudinal change77. Second, we used the full 611 
breadth of the adult lifespan data to estimate individual-specific brain and memory change, each in a single 612 
model, using all longitudinal scans. This likely optimized the change estimates for all, including the subset 613 
with genetic data, likely in part due to improved age trajectory modelling from which one can subsequently 614 
estimate the deviation of an individual’s change trajectory. This is exemplified in SI Fig. 9, wherein we found 615 
PRS-AD-change associations in the same individuals in the BETULA study improved when their individual-616 
specific slopes were estimated together with NESDA study data, compared to when estimated in BETULA 617 
data alone. Further, largely to ensure we were capturing ageing-specific processes at some point (see SI 618 
Fig. 1), we allowed the data to be increasingly comprised of only older individuals and repeatedly tested PRS-619 
AD associations with change. As inferences based on significance are affected by arbitrary analysis choices, 620 
we took inspiration from multiverse methods to systematically define a defensible set of analysis choices to 621 
perform analyses across51,52. In our case, the principle arbitrary covariate was the age-range to test the 622 
association across, and the influence of this arbitrary choice on statistical significance is made clear in Fig. 623 
2, Fig. 4B and Fig. 5, despite accounting for age- and time-related covariates. Adopting this approach, we 624 
could ensure capture of ageing-specific processes, document the stability of PRS-AD-change associations 625 
in healthy adults, and ensure the results were independent of a single arbitrary decision51,52, thus increasing 626 
their robustness.  627 
 628 
There are also limitations. First, our approach disregards heterogeneity in ageing or AD-related atrophy; we 629 
considered all individuals obtaining an AD diagnosis over time as a single group, contrasting their average 630 
change against all consistently healthy individuals. For our purpose of delineating features with faster aver-631 
age change in AD, this was reasonable, as there may be a predominant AD atrophy pattern78 and it is this 632 
that overlaps with the average ageing pattern5,6,42. However, as there are known AD subtypes78–80, an im-633 
portant question is whether individual variability in AD atrophy presentation traces to heterogeneity in brain 634 
change in healthy adults. Second, as with most large-scale brain studies, we relied on FreeSurfer-derived 635 
measures. While these are well-validated and reliable81–83, it is possible measures such as entorhinal cortex 636 
may be less reliable83. Indeed, that we observed no PRS-AD associations with left entorhinal change was 637 
surprising, and possibly manual entorhinal tracing may have led to different results. Third, longitudinal 638 
lifespan studies inevitably culminate in unrepresentative samples comprised of a higher proportion of cogni-639 
tively high-performers59. Since even in healthy adults we find variation in brain ageing slopes that maps onto 640 
AD-related genetic variation and memory outcomes, it is possible the population effect-sizes may be larger. 641 
Fourth, we used only structural MRI measures sensitive to detecting small changes in brain structure that 642 
ultimately form a continuous, lifelong process of change. Including additional imaging or biomarkers will help 643 
refine detection of AD-risk in healthy adults. Finally, we do not know which individuals included here will be 644 
diagnosed with AD later in life. While our analyses suggest one could assign differential transition probabili-645 
ties to healthy individuals, only time and follow-up data will tell. 646 
 647 
Conclusion 648 
In conclusion, brain ageing trajectories in healthy adults are robustly altered by the presence of AD risk 649 
genes, in many brain features, and beyond APOE. We show brain features most susceptible to faster dete-650 
rioration in AD are on a trajectory of accelerated change from age ~50 in healthy individuals, and that models 651 
trained on AD patients can be applied to adult lifespan data and the prediction relates to genetic AD risk in 652 
healthy adults. Finally, genetically at-risk individuals also high on a marker of brain change showed more 653 
adult lifespan memory decline, compared to genetically at-risk individuals with less brain change – suggesting 654 
our brain change marker enhanced the value of already knowing an individual’s genetic risk. AD risk genes 655 
are likely not AD-specific, but induce variation in the speed of the shared pattern of ageing- and AD-related 656 
neurodegeneration along a continuum in healthy adults. Our results call for a dimensional approach to late-657 
onset AD as not being clearly distinct from normal brain ageing. 658 
 659 
 660 
 661 
 662 
 663 

 664 
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Methods 665 
Samples 666 
Age-relative change estimation 667 
Adult lifespan discovery sample: After applying exclusion criteria (see below), an exclusively longitudinal 668 
adult lifespan sample (minimum two timepoints) comprising 1430 scans from 420 healthy individuals aged 669 
30 to 89 years (248 females; mean age [SD] = 63.7 [14.4]; 2-7 timepoints [median = 3]; follow-up range = .15 670 
- 11.1 years) was drawn from the Center for Lifespan Changes in Brain and Cognition database (LCBC; 671 
Department of Psychology, University of Oslo; see SI Note). Observations were collected across 3 scanners. 672 
Prior to participation, all individuals were screened via health and neuropsychological assessments, and the 673 
following exclusion criteria were applied across LCBC studies: evidence of neurodegenerative, neurologic or 674 
psychiatric disorders, use of medication known to affect the central nervous system (CNS), history of disease/ 675 
injury affecting CNS function, and MRI contraindications as assessed by a clinician. Additionally, to guard 676 
against including participants with incipient AD in our sample, we here excluded adults whose scores on the 677 
Mini Mental State Exam (MMSE)84 suggested longitudinal cognitive deficit with no later recovery (MMSE < 678 
25 at their final timepoint; 2 participants; 4 scans), and adults aged 40+ whose scores on the Beck Depression 679 
Inventory (BDI)85 or Geriatric Depression Scale (GDS)86 suggested depression symptoms over time with no 680 
later recovery (BDI > 21 or GDS > 10 at their final timepoint; 7 participants; 32 scans). All LCBC studies were 681 
approved by the Norwegian Regional Committee for Medical and Health Research Ethics, complied with 682 
ethical regulations, and all participants provided informed consent. 683 

 684 
Adult lifespan replication sample: To test replication, we used the two remaining longitudinal adult cohorts 685 
from the Lifebrain consortium that had up to three MRI timepoints available: the BETULA project87 and the 686 
Netherlands Study of Depression and Anxiety (NESDA) 88. BETULA participants underwent dementia as-687 
sessment by a clinician using cognitive data and medical records, and those reporting neurological disorders 688 
(stroke, AD, other dementias, MS), or presenting with severe memory deficits or MRI contraindications were 689 
excluded. NESDA participants reporting neurological disorders (stroke, AD, other dementias, MS), or pre-690 
senting with severe memory deficits or MRI contraindications were excluded. One extreme outlier in the 691 
change data of each sample was also detected and excluded here (see SI Fig. 8). In all, we collated the data 692 
from 449 scans from 182 individuals aged 31 - 88 from BETULA (mean age = 64.3 [11.9], 2-3 timepoints, 693 
follow-up = 3.5 – 7.7 years; 85 females), with 331 scans from 138 individuals from NESDA aged 30 - 65 694 
(mean age = 45.1 [7.9], 2-3 timepoints, follow-up = 1 – 10 years; 91 females), into a single adult lifespan 695 
replication sample (SI Table 4). Although neurologically normal, 97 of the NESDA participants were diag-696 
nosed with a current or remitted depressive and/or anxiety disorder, whereas 41 had no history of mental 697 
health disorders. 698 
 699 
Polygenic risk associations 700 
To test associations with PRS-AD we used the subset of participants with both quality-controlled genetic data 701 
(European ancestry) and longitudinal change estimates, as estimated from the full adult lifespan models with 702 
all participants (also those without genetic data). For the discovery sample, 229 participants had genetic and 703 
brain change data. For the replication sample, 175 participants from BETULA and 118 from NESDA (92 704 
diagnosed) had genetic and brain change data. 705 
 706 
AD samples: We used exclusively longitudinal data from the Alzheimer’s Disease Neuroimaging Initiative 707 
(ADNI89), and the single-timepoint ADNI diagnosis (normal controls [NC]; mild cognitive impairment [MCI]; 708 
AD) to define two longitudinal groups based on final-timepoint diagnosis (2–9 timepoints): NC-long consisted 709 
of subjects classed as NC at every diagnosed timepoint; AD-long consisted of all subjects where the final 710 
diagnosed timepoint was AD7. After grouping, for subjects where scanner field strength changed over time 711 
(from 1.5T to 3T), we used observations from the scanner with the most timepoints (or where equal used the 712 
3T scans). In all, NC-long consisted of 1680 scans from 372 subjects, and AD-long consisted of 2730 scans 713 
from 606 subjects (SI Table 2). The ADNI (PI: Michael W. Weiner, MD) was launched in 2003, with a goal of 714 
testing whether serial MRI can be used to measure the progression of MCI and early AD (see 715 
https://adni.loni.usc.edu/about/). An independent AD-control sample consisting of 107 scans from 39 AD-716 
long subjects and 435 scans from 128 NC-long subjects was used for validation of ML models (AIBL dataset; 717 
data collected by the AIBL study group90; SI Fig. 4).   718 

 719 
Genotyping and polygenic scores 720 
In the LCBC dataset, buccal swab and saliva samples were collected for DNA extraction, followed by ge-721 
nome-wide genotyping using the Global Screening Array (Illumina, Inc., San Diego, CA). For a full description 722 
of genotyping, post-genotyping, and quality control and imputation methods applied to the genetic samples 723 
here, see2,91,92. We used the summary statistics from four previous large-scale GWAS of AD60,93 two of which 724 
included AD-by-proxy subjects based on parental status72,94. We then computed polygenic risk scores based 725 
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on the genome-wide significant SNPs reported in each (p < 5 ×10-8), weighted by their allelic effect sizes. 726 
Prior to this, shared SNPs between each GWAS and our data were pruned to be nearly independent using 727 
PLINK95 with the following parameters --clump-p1 0.9999 --clump-p2 0.9999 –clump-r2 0.1 –clump-kb 500. 728 
The linkage disequilibrium structure was based on the European subpopulation of the 1000 Genomes Project 729 
Phase 396. Because of the complexity of the major histocompatibility complex region (build hg19; chr6: 730 
25,652,429-33,368,333), we removed SNPs in this region except the most significant one prior to pruning. 731 
We computed the four PRS-AD both with and without SNPs from the APOE region (build hg19; chr19: 732 
44,909,011-45,912,650). We chose a genome-wide significant SNP threshold based on recent studies show-733 
ing highest discrimination ability between patients and controls73,74. We also reasoned PRS’ constructed with 734 
more relaxed p-value thresholds will be less comparable across the four scores. As an exploratory analysis, 735 
we tested two other thresholds proposed to be optimal in patient-control data (p<10-572; p<0.197). From the 736 
summary files, we removed SNPs not in the reference data, with minor allele frequencies <.05, or with low 737 
imputation scores. Genetic ancestry factors (GAFs) were computed using established principal components 738 
methods. For the discovery sample analyses, we used the first 10 as covariates in genetic analyses98. For 739 
genetic analyses in the combined Lifebrain replication sample, the first 4 were used as covariates (NESDA 740 
data was prepared using ENIGMA protocols requiring 4 GAFs91). 741 
 742 
MRI acquisition and pre-processing 743 
T1-weighted (T1w) anatomical scans from each MRI dataset (acquisition parameters in SI Table 5) were 744 
processed using FreeSurfer’s longitudinal stream99 (v.7.1 for LCBC, BETULA, ADNI and AIBL, v6.0 for 745 
NESDA), yielding a reconstructed cortex and subcortex for each participant and timepoint100,101. Data for the 746 
main discovery sample comprised T1w magnetization prepared rapid gradient echo (MPRAGE) sequences 747 
collected on 3 scanners at Oslo University Hospital; a 1.5T Avanto (599 scans), a 3T Skyra (769 scans), and 748 
a 3T Prisma (62 scans; Siemens Medical Solutions, Germany).  749 
 750 
A priori ROIs 751 
We first analyzed subcortical and cortical volumes for a priori defined ROI’s based on known AD vulnerability. 752 
These were based on the Braak staging scheme, initially defined using post-mortem measures of tau50 and 753 
subsequently applied to in vivo imaging102. Similar to others102,103, we used FreeSurfer regions from the aseg 754 
and Desikan-Killiany (DK) atlas104 that anatomically approximate the various stages (see https://ja-755 
gustlab.neuro.berkeley.edu/s/Braak_ROI-3l2g.pdf). ROIs were constructed separately per hemisphere7. Af-756 
ter initial analyses with our main hippocampal ROI’s – corresponding to Braak Stage II50 – we analyzed ROI’s 757 
corresponding to Stages I (entorhinal) and Stage III50, the latter we subdivided into a subcortical (amygdala) 758 
and a composite cortical ROI (parahippocampal, fusiform, lingual). 759 

 760 
Data-driven ROIs 761 
To empirically derive brain features with accelerated change in AD, we used machine learning in ADNI data 762 
(below) on a total of 364 features from the aseg and DK atlas104, comprising measures of cortical volume, 763 
area, thickness, grey matter/white matter contrast, subcortical volume and intensity (Fig. 3). This set of 364 764 
features was also extracted and modelled within the discovery and replication samples. 765 
 766 
Statistical analysis 767 
Age-relative brain change across the adult lifespan 768 
We used Generalized Additive Mixed Models (GAMMs, gamm4 v 0.2-6105) to estimate age models for each 769 
of the 364 brain features, fitting a nonlinear term for age (corrected for sex, scanner, and intracranial volume, 770 
knots = 8). We specified random intercepts and slopes for each participant. This enabled fitting an individual-771 
specific linear model (level and slope) across all of their timepoints, to estimate how each person’s slope as 772 
a function of age deviates from the average nonlinear estimation. For an age model of e.g., hippocampus, 773 
random slopes are interpretable as the extent of additional (or reduced) hippocampal change an individual 774 
exhibits relative to the predicted change given their age (taking other covariates into consideration). Hence, 775 
we refer to this as an estimate of “age-relative change”. To partition unique variance associated with individ-776 
ual-specific slope, the estimation requires that a number of participants have three or more timepoints, alt-777 
hough estimates are also produced for participants with fewer, but then are drawn from a population distri-778 
bution more skewed towards the sample mean 106. This estimation is equivalent to estimating factor scores, 779 
and as such is psychometrically superior to manual calculations of change. Absolute change was calculated 780 
by adding the random slopes to the first derivative of the GAMM average age trajectory. 781 

 782 
Polygenic risk associations 783 
Univariate analysis: a priori ROI’s 784 
For each of our a priori ROIs, we used the random slopes as response variable in linear models with a PRS-785 
AD predictor and the following covariates: mean age (across timepoints), sex, N timepoints, interval between 786 
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first and last timepoint, and 10 genetic PCs (GAFs). We tested the associations between PRS-AD (4 scores; 787 
tested separately) and age-relative change with progressively older age-ranges (i.e., 30-89, 35-89, 40-89 … 788 
70-89). The reasons for this were threefold. First, because some brain features were estimated to have more 789 
negative individual-specific slopes in younger adults compared with middle-age (SI Fig. 1), we could not test 790 
the association across the entire age-range (30-89) and ensure we were capturing only ageing-specific pro-791 
cesses. Second, it enabled assessing the stability of PRS-AD associations detectable in adult lifespan data 792 
(note that older age-ranges correspond to smaller sample sizes). Third, because empirical outcomes are 793 
influenced by arbitrary analysis decisions, we took inspiration from multiverse methods that attempt to reduce 794 
such bias by testing associations across a set of theoretically justified alternatives 51,52. We also tested each 795 
association with absolute change, and False Discovery Rate (FDR) correction was applied across all 576 796 
PRS-AD tests (8 structures × 4 scores × 9 age-ranges × 2 change metrics; significance considered at p[FDR] 797 
< .05). For surviving PRS-AD associations, we tested whether the FDR-corrected association including 798 
APOE remained significant at p < .05 using PRS-ADnoAPOE, and determined whether the number of significant 799 
hits exceeded the 5% false positive rate per structure. We also ran post-hoc tests to confirm that the PRS-800 
AD-change estimates became more negative as the age subset steadily comprised only older individuals 801 
(see Fig. 1E-F). Here, we used the pre-computed beta estimates from all PRS-AD-change models (age-802 
relative and absolute; all four scores) as response variable, and the age-range as predictor (coded 0-8), and 803 
tested the linear effect of age-range upon the PRS-AD beta estimates (main effect across change models). 804 
The observed coefficient thus represents the strengthening of the negative PRS-AD-change association for 805 
each increasing age subset. Next, we permuted the empirical p-value for this observed association, by gen-806 
erating a null distribution across 1000 random permutations of the age variable (mean age) in the PRS-AD 807 
change associations, then recalculating the effect of age-range (randomized) upon the PRS-AD beta esti-808 
mates. 809 

 810 
Multivariate analyses: data-driven features exhibiting accelerated change in AD 811 
Machine learning model in AD 812 
We repeated the procedure to estimate age-relative change in ADNI data, fitting a GAMM of age across NC-813 
long and AD-long groups (Fig. 3A; covariates: sex, field strength). To guard against overfitting the age tra-814 
jectories and account for the roughly three-decade drop in age coverage in the AD datasets (SI Table 2), we 815 
reduced the number of knots in the GAMM to 5. Next, we ran machine learning binary classification with 816 
XGBoost (https://xgboost.readthedocs.io53), using the random individual-specific slopes (age-relative 817 
change) across all 364 features as input. Hyperparameters were chosen using 10-fold cross validation across 818 
500 random combinations of the following possible parameter values: nrounds (100 – 600, step = 50), eta 819 
(0.01, 0.05, 0.1, 0.15, 0.2), max_depth (2-8, step = 1), gamma (0.5 – 1.5, step = 0.5), min_child_weight (1 – 820 
4, step = 1). To reduce the risk of overfitting to the training data and increase generalizability, we selected 821 
the final hyperparameters based on the mean AUC obtained across the 500 iterations of 10-fold cross-vali-822 
dation, where each iteration logged the maximum AUC achieved across folds (final hyperparameters: 823 
nrounds = 500, eta = 0.2, max_depth = 5, gamma = 1, min_child_weight = 1). This approach ensures a more 824 
robust and stable estimate of model performance across diverse data subsets while also avoiding potential 825 
overfitting to a single hyperparameter combination. For comparison, we also computed a classification model 826 
using absolute brain change as input following the same procedure (hyperparameters: nrounds = 600, eta = 827 
0.01, max_depth = 7, gamma = 0.5, min_child_weight = 2). Model performance was evaluated in AIBL data 828 
(Fig. 3; SI Fig. 4). 829 
 830 
Application to healthy adult lifespan data 831 
First, we extracted the feature matrix to derive a list of brain features important for classifying AD-long from 832 
NC-long individuals based on age-relative change in ADNI. Then, in the LCBC healthy adult lifespan discov-833 
ery sample, we calculated the principal component of age-relative change (PC1relChange) across the top 50 834 
features, not including hippocampal and amygdala volumes (to ensure these did not drive the effect). We 835 
then used PC1relChange to test for PRS-AD associations with change in our healthy adult lifespan sample, at 836 
progressively older age-ranges, for all four scores. Next, we aimed to ensure the observed multivariate as-837 
sociations were not disproportionately driven by one or a few brain features. To do this, we first calculated 838 
the age at which absolute brain change accelerates, reasoning analyses within this age-range would give 839 
maximal chance of detecting PRS-AD effects upon individual ageing trajectories. Here, we took the principal 840 
component of absolute change across the same set of features (PC1absChange), plotted as a function of mean 841 
age. Then, within the 50-89 years age-range (Fig. 4C), we ran a sliding window PCA, iteratively calculating 842 
PC1 across 20 features with a step size of 3, across the first ~100 features (complete windows of 20 up to 843 
98 features; 27 windows), and tested PC1 associations with PRS-AD within each window. FDR-correction 844 
was applied across all 144 PRS-AD tests in this analysis, and surviving associations were tested with PRS-845 
ADnoAPOE.  846 
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 847 
As a final proof-of-principle, we applied the weights from the binary classification procedure in AD-control 848 
data directly to the healthy adult lifespan data (i.e., LCBC as test data). This prediction uses information from 849 
the weights of all 364 features. Here, the dependent variable was calculated as log[p/(1-p)], where p is the 850 
model-implied probability of having AD (probADrelChange). The aim of this was not to classify healthy individuals 851 
as AD or not, but rather test our hypothesis that the learned model weights would nevertheless prove useful, 852 
and would relate to PRS-AD in healthy adult lifespan data. We also tested whether predictions derived from 853 
the ML model based on absolute change were related to PRS-AD. Again, FDR-correction was applied across 854 
all 72 PRS-AD tests in this analysis, and surviving associations were tested with PRS-ADnoAPOE. 855 
 856 
Replication analysis 857 
We first ran a GAMM separately in each of the replication cohorts, revealing a strong outlier for each in the 858 
hippocampal change data (-7.4SD in BETULA; +5.5SD in NESDA; see SI Fig. 8). Then, we collated the data 859 
and ran a GAMM comparable to the main analysis (scanner covariate indexed study cohort), estimated the 860 
random slopes, and excluded these two outliers (SI Fig. 8). Similar to the main analysis, we expected includ-861 
ing as many longitudinal observations as possible in the GAMM would optimize the change estimates for all. 862 
Testing this assumption post-hoc, we found that in the same individuals with genetic data from BETULA, 863 
beta estimates with left hippocampal change were significantly lower when their random slopes were esti-864 
mated together with NESDA data, relative to only using BETULA data (p = .009; SI Fig. 9). To reduce the 865 
number of tests, we tested PRS-AD associations with change in hippocampus and amygdala, and with PC1rel-866 
Change (top 50 AD-accelerated features excluding hippocampal and amygdala volumes). PRS-AD models 867 
matched the discovery sample, except for an added cohort covariate. We tested the model at progressively 868 
older age-ranges for all four scores (here until a lower age-bound of 60, above which the sample was com-869 
prised entirely of BETULA subjects). Where the association was significant (p < .05 [uncorrected]), we tested 870 
whether it remained significant with PRS-ADnoAPOE. We considered it a replication where the number of sig-871 
nificant tests per structure exceeded the 5% false positive rate. Lastly, we assessed whether the trajectory 872 
of accelerated brain ageing in AD features mirrored the discovery sample (i.e., modelled PC1absChange as a 873 
function of mean age). 874 
 875 
Memory change analysis 876 
Finally, we tested differences in memory change between groups of individuals defined by the conjunction of 877 
brain and genetic risk markers. We hypothesized higher PRS-AD individuals also high on a multivariate 878 
marker of brain change would show more memory decline across the adult lifespan. This analysis proceeded 879 
in two parts. First, we took the principal component across the four PRS-AD scores (PC1PRS-AD; explaining 880 
87%), and used the association between PC1PRS-AD and the principal component across the first 50 AD-881 
accelerated features (here including hippocampal and amygdala volumes), to divide individuals into quadrant 882 
groups (Fig. 6D; pink group denotes individuals high on both risk factors). Second, from the full adult lifespan 883 
discovery sample described above (N = 420; scans = 1430), we identified those with observations on the 884 
California Verbal Learning Test (CVLT)107. Of these, we discarded individuals with non-usable memory data 885 
(due to being part of on-off memory training projects at LCBC; see SI Note 1 for information on the projects 886 
that comprised the LCBC sample). In the resulting data (713 observations from 267 individuals), we took the 887 
principal component across the three main CVLT subtests (learning, immediate, and delayed free recall; 888 
scaled) to index general memory, expressed the loadings as a proportion of the maximum loading, and kept 889 
only those with longitudinal memory observations (707 observations from 261 individuals). Then, we ran a 890 
GAMM of age on Memory (sex corrected, knots = 8). Akin to the brain analysis, age-relative memory change 891 
was estimated via the random slopes, and absolute memory change was calculated by adding the slopes to 892 
the first derivative of the GAMM average age trajectory. Having estimated memory change using as many 893 
longitudinal CVLT observations as possible – 108 individuals had both memory change and genetic data 894 
(i.e., were included in the quadrant-groups). Finally, we tested our hypothesis that the high brain change-895 
high PRS-AD group would exhibit more adult lifespan memory decline, setting this group to the intercept, in 896 
linear models of quadrant-group on memory change, correcting for group differences in mean age, sex, N 897 
timepoints, interval between first and last timepoint, and APOE-ε4 carriership (main model). These were 898 
tested using both age-relative and absolute memory change. Alternative models correcting for the number 899 
of APOE-ε4 alleles, baseline memory, PC1PRS-AD, and PC1relChange1-50, were also run.  900 
 901 

 902 
 903 
 904 
 905 

 906 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.09.559446doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.559446
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Acknowledgements 907 
Scripts were run on the Colossus processing cluster at the University of Oslo, and on resources provided by UNINETT Sigma2 (project 908 
NN9769K). LCBC funding: grant 302854 (FRIPRO; to Y.W.), European Research Council under grants 283634, 725025 (to A.M.F.), 909 
and 313440 (to K.B.W.); Norwegian Research Council (to A.M.F. and K.B.W.) under grants 249931 (TOPPFORSK) and, The National 910 
Association for Public Health’s dementia research program, Norway (to A.M.F). The Lifebrain project is funded by the EU Horizon 2020 911 
Grant: “Healthy minds 0–100 years: Optimising the use of European brain imaging cohorts (Lifebrain).” Grant agreement number: 912 
732592. The Betula project was supported by a Scholar grant from Knut and Alice Wallenberg’s (KAW) foundation to L.N. The infra-913 
structure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health 914 
Research and Development (ZonMw, grant number 10-000-1002) and financial contributions by participating universities and mental 915 
health care organizations (VU University Medical Center, GGZ inGeest, Leiden University Medical Center, Leiden University, GGZ 916 
Rivierduinen, University Medical Center Groningen, University of Groningen, Lentis, GGZ Friesland, GGZ Drenthe, Rob Giel 917 
Onderzoekscentrum). Some of the data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging 918 
Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-919 
12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and 920 
through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon 921 
Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli 922 
Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO 923 
Ltd.;Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development 924 
LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis 925 
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. 926 
The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are 927 
facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California 928 
Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University 929 
of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. The 930 
ADNI researchers contributed data but did not participate in analysis or writing of this report. Some of the data used in the preparation 931 
of this article were obtained from the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) funded by the Com-932 
monwealth Scientific and Industrial Research Organisation (CSIRO), which was made available at the ADNI database 933 
(www.loni.usc.edu/ADNI). The AIBL researchers contributed data but did not participate in analysis or writing of this report. 934 
 935 

  936 
 937 

References 938 
 939 

1. Sexton, C. E. et al. Accelerated changes in white matter microstructure during aging: A longitudinal diffusion tensor imaging study. J. Neurosci. 34, 15425–940 
15436 (2014). 941 

2. Walhovd, K. B. et al. Genetic risk for Alzheimer disease predicts hippocampal volume through the human lifespan. Neurol. Genet. 6, (2020). 942 
3. Vidal-Pineiro, D. et al. Cellular correlates of cortical thinning throughout the lifespan. Sci. Rep. 10, 1–14 (2020). 943 
4. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M. & Walhovd, K. B. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the 944 

cerebral cortex and the hippocampus. Prog. Neurobiol. 117, 20–40 (2014). 945 
5. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M. & Walhovd, K. B. Brain changes in older adults at very low risk for Alzheimer’s disease. J. Neurosci. 33, 946 

8237–42 (2013). 947 
6. Fjell, A. M. et al. One-Year Brain Atrophy Evident in Healthy Aging. 29, 15223–15231 (2009). 948 
7. Roe, J. M. et al. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease. Nat. Commun. 12, 1–11 (2021). 949 
8. Braak, H. & Braak, E. Staging of Alzheimer-Related Cortical Destruction. Rev. Clin. Neurosci. 33, 403–408 (1993). 950 
9. Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 19, 687–700 (2018). 951 
10. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, (2022). 952 
11. Rutherford, S. et al. Charting brain growth and aging at high spatial precision. Elife 11, 1–15 (2022). 953 
12. Walhovd, K. B. et al. Neurodevelopmental origins of lifespan changes in brain and cognition. Proc. Natl. Acad. Sci. U. S. A. 113, 9357–9362 (2016). 954 
13. Raz, N. et al. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb. Cortex 15, 1676–1689 (2005). 955 
14. Fjell, A. M. et al. Accelerating cortical thinning: Unique to dementia or universal in aging? Cereb. Cortex 24, 919–934 (2014). 956 
15. Corrada, M. M., Brookmeyer, R., Paganini-Hill, A., Berlau, D. & Kawas, C. H. Dementia incidence continues to increase with age in the oldest old the 90+ 957 

study. Ann. Neurol. 67, 114–121 (2010). 958 
16. Jorm, A. . & Jolley, D. The incidence of dementia: A meta-analysis. Neurology 51, 728–733 (1998). 959 
17. Desikan, R. S. et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med. 14, 960 

1–17 (2017). 961 
18. Altmann, A. et al. A comprehensive analysis of methods for assessing polygenic burden on Alzheimer’s disease pathology and risk beyond APOE. Brain 962 

Commun. 2, (2020). 963 
19. Logue, M. W. et al. Use of an Alzheimer’s disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. Mol. Psychiatry 24, 421–430 964 

(2019). 965 
20. Lyall, D. M. et al. Association between APOE e4 and white matter hyperintensity volume , but not total brain volume or white matter integrity. 1468–1476 966 

(2020). 967 
21. Machulda, M. M. et al. Effect of APOE ?4 Status on Intrinsic Network Connectivity in Cognitively Normal Elderly Subjects. 68, 1131–1136 (2011). 968 
22. Habes, X. M. et al. Relationship between APOE Genotype and Structural MRI Measures throughout Adulthood in the Study of Health in Pomerania Population-969 

Based Cohort. (2016). 970 
23. Bunce, D. et al. APOE genotype and entorhinal cortex volume in non-demented community-dwelling adults in midlife and early old age. J. Alzheimer’s Dis. 30, 971 

935–942 (2012). 972 
24. Henson, R. N. et al. Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort. (2020). 973 

doi:10.1177/2398212820961704 974 
25. Jack, C. R. et al. Age, Sex, and APOEε4 Effects on Memory, Brain Structure, and β-Amyloid Across the Adult Life Span. 55905, 511–519 (2022). 975 
26. Protas, H. D. et al. Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-976 

Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease. 70, 320–325 (2013). 977 
27. Foo, H. et al. Associations between Alzheimer ’ s disease polygenic risk scores and hippocampal sub fi eld volumes in 17 , 161 UK Biobank participants. 978 

Neurobiol. Aging 98, 108–115 (2021). 979 
28. Du, J. et al. Exploration of Alzheimer ’ s Disease MRI Biomarkers Using APOE4 Carrier Status in the UK Biobank. 1–30 (2021). 980 
29. Knickmeyer, R. C. et al. Common Variants in Psychiatric Risk Genes Predict Brain Structure at Birth. 1230–1246 (2014). doi:10.1093/cercor/bhs401 981 
30. Axelrud, L. K. et al. Polygenic risk score for Alzheimer’s disease: Implications for memory performance and hippocampal volumes in early life. Am. J. 982 

Psychiatry 175, 555–563 (2018). 983 
31. Foley, S. F. et al. Multimodal Brain Imaging Reveals Structural Differences in Alzheimer’s Disease Polygenic Risk Carriers: A Study in Healthy Young Adults. 984 

Biol. Psychiatry 81, 154–161 (2017). 985 
32. Mormino, E. C. et al. Polygenic risk of Alzheimer disease is associated with early- and late-life processes. Neurology 87, 481–488 (2016). 986 
33. Fjell, A. M. et al. Self-reported sleep relates to hippocampal atrophy across the adult lifespan - results from the Lifebrain consortium. Sleep 1–15 (2019). 987 

doi:10.1093/sleep/zsz280 988 
34. Donix, M. et al. Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism. Neuroimage 53, 37–43 (2010). 989 
35. Lu, P. H. et al. Apolipoprotein e genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: A tensor-based morphometry 990 

study. J. Alzheimer’s Dis. 23, 433–442 (2011). 991 
36. Harrison, T. M., Mahmood, Z., Lau, E. P., Karacozoff, A. M. & Alison, C. An Alzheimer ’ s Disease Genetic Risk Score Predicts Longitudinal Thinning of 992 

Hippocampal Complex Subregions in Healthy Older Adults. 3, 1–13 (2016). 993 
37. Taylor, J. L. et al. Neurobiology of Aging APOE-epsilon4 and aging of medial temporal lobe gray matter in healthy adults older than 50 years. NBA 35, 2479–994 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.09.559446doi: bioRxiv preprint 

https://ida.loni.usc.edu/collaboration/access/www.fnih.org
https://doi.org/10.1101/2023.10.09.559446
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

2485 (2014). 995 
38. Gorbach, T. et al. Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers. Alzheimer’s 996 

Dement. Diagnosis, Assess. Dis. Monit. 12, 1–9 (2020). 997 
39. Brouwer, R. M. et al. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat. Neurosci. 25, 421–432 (2022). 998 
40. Braak, H. & Braak, E. Staging of Alzheimer’s Disease-Related Neurofibrillary Changes. Neurobiol. Aging 16, 271–284 (1995). 999 
41. Joie, R. La et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci. Transl. Med. 1000 

12, 1–13 (2020). 1001 
42. Roe, J. M. et al. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s Disease - bioxRiv. bioRxiv 1002 

2020.06.18.158980 (2020). doi:10.1101/2020.06.18.158980 1003 
43. Marioni, R. E. et al. Genetic Stratification to Identify Risk Groups for Alzheimer’s Disease. J. Alzheimer’s Dis. 57, 275–283 (2017). 1004 
44. Hayden, K. M., Lutz, M. W., Kuchibhatla, M., Germain, C. & Plassman, B. L. Effect of APOE and CD33 on cognitive decline. PLoS One 10, 1–10 (2015). 1005 
45. Caselli, R. J. et al.  Longitudinal Modeling of Age-Related Memory Decline and the APOE ε4 Effect . N. Engl. J. Med. 361, 255–263 (2009). 1006 
46. Kauppi, K., Rönnlund, M., Nordin Adolfsson, A., Pudas, S. & Adolfsson, R. Effects of polygenic risk for Alzheimer’s disease on rate of cognitive decline in 1007 

normal aging. Transl. Psychiatry 10, (2020). 1008 
47. Salthouse, T. A. What and when of cognitive aging. Curr. Dir. Psychol. Sci. 13, 140–144 (2004). 1009 
48. Salthouse, T. A. Why Are There Different Age Relations in Cross-Sectional and Longitudinal Comparisons of Cognitive Functioning? Curr. Dir. Psychol. Sci. 1010 

23, 252–256 (2014). 1011 
49. Harris, S. E. et al. Polygenic risk for alzheimer’s disease is not associated with cognitive ability or cognitive aging in non-demented older people. J. Alzheimer’s 1012 

Dis. 39, 565–574 (2014). 1013 
50. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991). 1014 
51. Simonsohn, U., Simmons, J. P. & Nelson, L. D. Specification curve analysis. Nat. Hum. Behav. 4, 1208–1214 (2020). 1015 
52. Steegen, S., Tuerlinckx, F., Gelman, A. & Vanpaemel, W. Increasing Transparency Through a Multiverse Analysis. (2016). doi:10.1177/1745691616658637 1016 
53. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 13-17-Augu, 785–794 (2016). 1017 
54. Heijer, T. Den et al. magnetic resonance imaging in early dementia and cognitive decline. 6, (2010). 1018 
55. Jack, C. R. et al. Comparison of different MRI brain athrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600 (2004). 1019 
56. Lupton, M. K. et al. The effect of increased genetic risk for Alzheimer’s disease on hippocampal and amygdala volume. Neurobiol. Aging 40, 68–77 (2016). 1020 
57. Chauhan, G. et al. Association of Alzheimer’s disease GWAS loci with MRI markers of brain aging. Neurobiol. Aging 36, 1765.e7-1765.e16 (2015). 1021 
58. Walhovd, K. B., Lövden, M. & Fjell, A. M. Timing of lifespan influences on brain and cognition. Trends Cogn. Sci. 1–15 (2023). doi:10.1016/j.tics.2023.07.001 1022 
59. Storsve, A. B. et al. Differential Longitudinal Changes in Cortical Thickness, Surface Area and Volume across the Adult Life Span: Regions of Accelerating and 1023 

Decelerating Change. J. Neurosci. 34, 8488–98 (2014). 1024 
60. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013). 1025 
61. Papenberg, G., Lindenberger, U. & Bäckman, L. Aging-related magnification of genetic effects on cognitive and brain integrity. Trends Cogn. Sci. 19, 506–514 1026 

(2015). 1027 
62. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012). 1028 
63. Wei, Y. et al. Statistical testing in transcriptomic-neuroimaging studies: A how-to and evaluation of methods assessing spatial and gene specificity. Hum. Brain 1029 

Mapp. 43, 885–901 (2022). 1030 
64. Franzmeier, N. et al. The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nat. Commun. 10, 1–12 (2019). 1031 
65. Therriault, J. et al. Association of Apolipoprotein e ϵ4 with Medial Temporal Tau Independent of Amyloid-β. JAMA Neurol. 77, 470–479 (2020). 1032 
66. Mesulam, M. A Plasticity-Based Theory of the Pathogenesis of Alzheimer ’ s Disease. Ann. N. Y. Acad. Sci. 42–52 1033 
67. Walhovd, K. B. et al. Premises of plasticity - And the loneliness of the medial temporal lobe. Neuroimage 131, 48–54 (2016). 1034 
68. Douaud, G. et al. A common brain network links development , aging , and vulnerability to disease. 111, 17648–17653 (2014). 1035 
69. Jack, C. R. et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 1036 

207–216 (2013). 1037 
70. Hardy, J. A., Higgins, G. A., Hardy, J. A. & Higgins, G. A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science (80-. ). 256, 184–185 (1992). 1038 
71. Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794–799 (2015). 1039 
72. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 1040 

(2019). 1041 
73. de Rojas, I. et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat. Commun. 12, (2021). 1042 
74. Zhang, Q. et al. Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture. Nat. Commun. 11, 1–11 (2020). 1043 
75. Korologou-Linden, R. et al. The causes and consequences of Alzheimer’s disease: phenome-wide evidence from Mendelian randomization. Nat. Commun. 13, 1044 

(2022). 1045 
76. Cole, J. H. & Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends Neurosci. 40, 681–690 (2017). 1046 
77. Vidal-Pineiro, D. et al. Individual variations in ‘brain age’ relate to early-life factors more than to longitudinal brain change. Elife 10, 1–19 (2021). 1047 
78. Ferreira, D., Nordberg, A. & Westman, E. Biological subtypes of Alzheimer disease A systematic review and meta-analysis. 0, (2020). 1048 
79. Vogel, J. W. et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27, 871–881 (2021). 1049 
80. Mohanty, R., Ferreira, D., Nordberg, A. & Westman, E. Associations between different tau - PET patterns and longitudinal atrophy in the Alzheimer ’ s disease 1050 

continuum : biological and methodological perspectives from disease heterogeneity. Alzheimers. Res. Ther. 1–16 (2023). doi:10.1186/s13195-023-01173-1 1051 
81. Cardinale, F. et al. Validation of FreeSurfer-Estimated Brain Cortical Thickness: Comparison with Histologic Measurements. Neuroinformatics 12, 535–542 1052 

(2014). 1053 
82. Han, X. et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. 1054 

Neuroimage 32, 180–94 (2006). 1055 
83. Leng, Y., Ng, K. E. T., Vogrin, S. J., Meade, C. & Ngo, M. Comparative Utility of Manual versus Automated Segmentation of Hippocampus and Entorhinal 1056 

Cortex Volumes in a Memory Clinic Sample. 68, 159–171 (2019). 1057 
84. Folstein, M. F., Folstein, S. E. & McHugh, P. R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. 1058 

Res. 12, 189–98 (1975). 1059 
85. Beck, A. T., Ward, C., Mendelson, M., Mock, J. & Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 4, 561 (1961). 1060 
86. Yesavage, J. A. et al. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 17, 37–49 (1982). 1061 
87. Nilsson, L. G. et al. The betula prospective cohort study: Memory, health, and aging. Aging, Neuropsychol. Cogn. 4, 1–32 (1997). 1062 
88. Penninx, B. W. J. H. et al. Cohort profile of the longitudinal Netherlands Study of Depression and Anxiety (NESDA) on etiology, course and consequences of 1063 

depressive and anxiety disorders. J. Affect. Disord. 287, 69–77 (2021). 1064 
89. Weiner, M. W. et al. The Alzheimer’s disease neuroimaging initiative: A review of papers published since its inception. Alzheimer’s Dement. 8, (2012). 1065 
90. Ellis, K. A. et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: Methodology and baseline characteristics of 1112 individuals 1066 

recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatrics 21, 672–687 (2009). 1067 
91. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science (80-. ). 367, (2020). 1068 
92. Hong, S. et al. TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer’s disease biomarker levels. Alzheimer’s Dement. 17, 1628–1069 

1640 (2021). 1070 
93. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. 1071 

Genet. 51, 414–430 (2019). 1072 
94. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 1073 

(2021). 1074 
95. Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 1075 
96. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). 1076 
97. Leonenko, G. et al. Identifying individuals with high risk of Alzheimer’s disease using polygenic risk scores. Nat. Commun. 12, (2021). 1077 
98. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, 2074–2093 (2006). 1078 
99. Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 53, 1181–96 (2010). 1079 
100. Fischl, Sereno, M. I., Tootell, R. B. & Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 1080 

272–84 (1999). 1081 
101. Fischl, Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 1082 

(1999). 1083 
102. Schöll, M. et al. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron 89, 971–982 (2016). 1084 
103. Franzmeier, N. et al. Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat. Commun. 11, 1–17 (2020). 1085 
104. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 1086 

31, 968–80 (2006). 1087 
105. Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. R package version 0.2-5, available at https://cran.r-1088 

project.org/web/packages/gamm4/gamm4.pdf. (2017). 1089 
106. Demidenko, E. Mixed models: theory and applications with R. (John Wiley & Sons, 2013). 1090 
107. Delis, D. C., Kramer, J. H., Kaplan, E. & Thompkins, B. A. O. CVLT: California verbal learning test-adult version: manual. (Psychological Corporation, 1987). 1091 
 1092 
 1093 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.09.559446doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.559446
http://creativecommons.org/licenses/by-nc-nd/4.0/

