

1 **Accelerated brain change in healthy adults is associated with genetic  
2 risk for Alzheimer's disease and uncovers adult lifespan memory de-  
3 cline**

4

5 **Authors and affiliations**

6 James M. Roe<sup>1\*</sup>, Didac Vidal-Piñeiro<sup>1</sup>, Øystein Sørensen<sup>1</sup>, Håkon Grydeland<sup>1</sup>, Esten H. Leonardsen<sup>1,2</sup>,  
7 Olena Iakunchykova<sup>1</sup>, Mengyu Pan<sup>1,3</sup>, Athanasia Mowinckel<sup>1</sup>, Marie Strømstad<sup>1</sup>, Laura Nawijn<sup>4</sup>, Yuri Mi-  
8 laneschi<sup>4</sup>, Micael Andersson<sup>5,6</sup>, Sara Pudas<sup>5,6</sup>, Anne Cecilie Sjøli Bråthen<sup>1</sup>, Jonas Kransberg<sup>1</sup>, Emilie  
9 Sogn Falch<sup>1</sup>, Knut Øverbye<sup>1</sup>, Rogier A. Kievit<sup>7</sup>, Klaus P. Ebmeier<sup>8</sup>, Ulman Lindenberger<sup>9,10</sup>, Paolo  
10 Ghisletta<sup>11,12</sup>, Naiara Demnitz<sup>13</sup>, Carl-Johan Boraxbekk<sup>14,15,16</sup>, for the Alzheimer's Disease Neuroimaging  
11 Initiative<sup>†</sup>, and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing <sup>‡</sup>, Brenda Pen-  
12 ninx<sup>4</sup>, Lars Bertram<sup>17</sup>, Lars Nyberg<sup>5</sup>, Kristine B. Walhovd<sup>1,18</sup>, Anders M. Fjell<sup>1,18</sup> & Yunpeng Wang<sup>1</sup>

13

14

15 <sup>1</sup>Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway.

16 <sup>2</sup>Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University  
17 of Oslo, Oslo, Norway.

18 <sup>3</sup>Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.

19 <sup>4</sup>Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The  
20 Netherlands.

21 <sup>5</sup>Department of Integrative Medical Biology, Umeå University, Sweden.

22 <sup>6</sup>Umeå center for Functional Brain Imaging, Umeå University, Sweden.

23 <sup>7</sup>Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center,  
24 Nijmegen, The Netherlands.

25 <sup>8</sup>Department of Psychiatry and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Warneford Hospital, Oxford,  
26 United Kingdom.

27 <sup>9</sup>Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.

28 <sup>10</sup>Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London.

29 <sup>11</sup>Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland.

30 <sup>12</sup>Faculty of Psychology, UniDistance Suisse, Brig, Switzerland.

31 <sup>13</sup>Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen  
32 University Hospital – Amager and Hvidovre, Copenhagen, Denmark.

33 <sup>14</sup>Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark. (CJ)

34 <sup>15</sup>Department of Radiation Sciences, Diagnostic Radiology, and Umeå Center for Functional Brain Imaging (UFBI), Umeå University,  
35 Umeå Sweden.

36 <sup>16</sup>Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Co-  
37 penhagen, Denmark.

38 <sup>17</sup>Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Germany.

39 <sup>18</sup>Computation Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo,  
40 Norway.

41

42

43

44

45

46

47

48

49

50

51

52 \*Address correspondence to James M. Roe, Department of Psychology, PO Box 1094 Blindern, 0317 Oslo, Norway.

53 Email: [j.m.roe@psykologi.uio.no](mailto:j.m.roe@psykologi.uio.no)

54

55 <sup>†</sup>Some of the data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI)  
56 database (adni.loni.usc.edu). ADNI investigators contributed to the design and implementation of ADNI and/or provided data but  
57 did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found  
58 at: [http://adni.loni.usc.edu/wp-content/uploads/how\\_to\\_apply/ADNI\\_Acknowledgement\\_List.pdf](http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf).

59

60 <sup>‡</sup>Some of the data used in the preparation of this article were obtained from the Australian Imaging Biomarkers and Lifestyle Flagship Study  
61 of Ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), which was made available at the  
62 ADNI database ([www.loni.usc.edu/ADNI](http://www.loni.usc.edu/ADNI)). The AIBL researchers contributed data but did not participate in analysis or writing of this report.

63

64 **Running title:** Brain change across healthy adult life relates to genetic risk for Alzheimer's

65 **Keywords:** Lifespan neuroscience, ageing, longitudinal, polygenic risk, cognitive decline

66 **Open access license:** yes

67

68 The authors declare no competing interests

69

70 **Abstract**

71 Across healthy adult life our brains undergo gradual structural change in a pattern of atrophy that resembles  
72 accelerated brain changes in Alzheimer's disease (AD). Here, using four polygenic risk scores for AD (PRS-  
73 AD) in a longitudinal adult lifespan sample aged 30 to 89 years (2-7 timepoints), we show that healthy indi-  
74 viduals who lose brain volume faster than expected for their age, have a higher genetic AD risk. We first  
75 demonstrate PRS-AD associations with change in early Braak regions, namely hippocampus, entorhinal cor-  
76 tex, and amygdala, and find evidence these extend beyond that predicted by *APOE* genotype. Next, following  
77 the hypothesis that brain changes in ageing and AD are largely shared, we performed machine learning  
78 classification on brain change trajectories conditional on age in longitudinal AD patient-control data, to obtain  
79 a list of AD-accelerated features and model change in these in adult lifespan data. We found PRS-AD was  
80 associated with a multivariate marker of accelerated change in many of these features in healthy adults, and  
81 that most individuals above ~50 years of age are on an accelerated change trajectory in AD-accelerated  
82 brain regions. Finally, high PRS-AD individuals also high on a multivariate marker of change showed more  
83 adult lifespan memory decline, compared to high PRS-AD individuals with less brain change. Our results  
84 support a dimensional account linking normal brain ageing with AD, suggesting AD risk genes speed up the  
85 shared pattern of ageing- and AD-related neurodegeneration that starts early, occurs along a continuum, and  
86 tracks memory change in healthy adults.

87  
88  
89

90 **Introduction**

91 Advanced age is the primary risk factor for Alzheimer's disease (AD) – the leading cause of dementia. Across  
92 healthy adult life and ageing, our brains undergo gradual and widespread structural changes<sup>1-4</sup>. Many of  
93 these changes are qualitatively similar to atrophy patterns seen in AD, suggesting shared vulnerability of  
94 brain systems in ageing and AD<sup>5-7</sup>. For example, medial temporal lobe regions including hippocampus and  
95 entorhinal cortex are amongst the earliest affected regions in AD in terms of structural atrophy and tau dep-  
96 osition<sup>8,9</sup>, and each exhibits accelerated structural loss from around ~50 years of age. Prior to this, many  
97 brain structures exhibit slow but steady average volume reduction from early adulthood<sup>2,10-13</sup>. Beyond spe-  
98 cific regions, whole-cortical atrophy patterns are also largely shared between ageing and AD<sup>4,6</sup>, with charac-  
99 teristic temporo-parietal atrophy patterns in AD also found to a lesser degree in healthy people, including  
100 those at low AD risk<sup>5,14</sup>. It has been argued this parallel pattern is critical to understand<sup>4</sup>, because reported  
101 AD incidence increases exponentially after 65 years of age<sup>15,16</sup>.

102 If brain regions vulnerable in AD also exhibit gradual change during adult life, healthy individuals at higher  
103 AD risk may show faster atrophy over extended age spans. Polygenic risk scores for AD (PRS-AD) calculated  
104 from AD risk variants found in genome-wide association studies (GWAS) provide a marker to test this; in AD  
105 patients, higher genetic AD risk links with longitudinal outcomes including faster brain and cognitive decline,  
106 earlier AD onset, and clinical progression<sup>17-19</sup>. In healthy adults, however, attempts to link genetic AD risk to  
107 alterations in brain structure have typically been cross-sectional and yielded mixed results<sup>20-26</sup>. For example,  
108 although many studies report no effect of *APOE*- $\epsilon$ 4 on cross-sectional hippocampal volumes<sup>20-26</sup>, recent  
109 large-scale studies found smaller hippocampal volumes in older  $\epsilon$ 4 carriers<sup>27,28</sup>. However, evidence suggests  
110 smaller hippocampal volume as a function of genetic AD risk is evident in neonates<sup>29</sup>, children<sup>2,30</sup> and young  
111 adults<sup>31,32</sup>, and longitudinal work suggests the effect of AD risk genes upon lower hippocampal volume is  
112 roughly equivalent from childhood to old age<sup>2</sup>. Further, many 70-year-olds have similar size brain measures  
113 to many 30-year-olds, and individual differences in brain structure at any age typically exceed the magnitude  
114 of change effects through ageing<sup>2,33</sup>. Hence, brain differences observed in older at-risk individuals may be  
115 ascribable to preexisting differences from early life. Consequently, only longitudinal designs are suited to  
116 examine whether elevated genetic AD risk confers a direct genetic effect on the slope of brain ageing across  
117 the healthy adult lifespan.

118  
119 Longitudinal studies attempting to link brain changes to genetic AD risk in healthy adults have been incon-  
120 clusive, often restricted to small samples of older adults<sup>34-36</sup>, and lifespan samples of healthy individuals with  
121 extensive follow-up over large age-spans are lacking. Small studies have reported group-level effects<sup>34,35</sup> or  
122 no effect of *APOE*- $\epsilon$ 4 upon hippocampal change in healthy older adults<sup>37</sup>. Another study found evidence that  
123 PRS-AD related to hippocampal and entorhinal thinning in an older sample enriched for *APOE*- $\epsilon$ 4 and  
124 memory concerns, though did not report polygenic effects beyond *APOE*<sup>36</sup>. Additionally, in a large sample of  
125 healthy older individuals, hippocampal change was found to be greater in *APOE*- $\epsilon$ 4 carriers (N=748)<sup>38</sup>. How-  
126 ever, a recent GWAS<sup>39</sup> (N=15,640) observed that an association between *APOE* and faster hippocampal  
127 and amygdala change in ageing disappeared when accounting for disease status (notably, the sample in-  
128 cluded many AD cases). Thus, the effect of *APOE* upon brain change in candidate AD regions was seemingly  
129 driven by disease-related processes and not detected in healthy brains<sup>39</sup>. Moreover, the trajectories of

131 genetically high-risk versus low-risk groups provide little evidence that genetic AD risk affects the slope of  
132 brain decline across the adult lifespan<sup>2,24,25</sup>. Individualized estimates of the degree to which a healthy per-  
133 son's brain is changing more or less than expected for their age may be better suited to answer whether  
134 genetic AD risk impacts the slope of brain ageing in healthy adults.

135  
136 Regions with greater brain atrophy in AD are encompassed within the Braak staging scheme<sup>8,40</sup>. This de-  
137 scribes the spatiotemporal sequence of tau deposition<sup>9,41</sup> – from a cortical entorhinal epicentre (stage I) to  
138 hippocampus (stage II), amygdala and inferior temporal cortex (stage III), and later to the rest of cortex<sup>8,40</sup>.  
139 This “AD signature”<sup>9</sup> is not specific to AD but also found to a lesser degree in normal ageing<sup>5,6,42</sup>. Beyond  
140 this core set of regions with seemingly shared vulnerability to the effects of ageing and AD, many other brain  
141 features exhibit accelerated change in AD. Applying a data-driven approach to first delineate these in AD  
142 patients – combined with multivariate analyses using individualized brain change estimates in healthy adult  
143 lifespan data – may reveal new insights into whether genetic AD risk influences the slope of brain ageing in  
144 a select few or across many AD-relevant features in healthy adults.

145  
146 Finally, several studies suggest that genetic AD risk is subtly related to longitudinal memory decline in healthy  
147 older adults<sup>43–45</sup>, and one adult lifespan study reported genetic AD risk was weakly associated with decline  
148 in a composite cognitive and memory score<sup>46</sup>. Thus, AD risk genes may influence differences in memory  
149 decline trajectories that are protracted through life and begin in early adulthood<sup>45–48</sup>. However, the extent to  
150 which AD risk genes influence brain and cognitive outcomes probably differs also between individuals at  
151 comparatively high genetic risk, which may explain why genetic risk alone is not highly predictive of cognitive  
152 change<sup>46,49</sup>. Given that individualized approaches to risk assessment are predicated on assessing the con-  
153 junction of risks, considering known genetic AD risk together with a brain risk marker may improve identifi-  
154 cation of individuals at higher AD risk, also in healthy adult lifespan data.

155  
156 Here, in a healthy adult lifespan sample with frequent longitudinal follow-up, we establish that individuals  
157 changing more than their age would predict in AD-accelerated brain regions are at significantly enhanced  
158 genetic AD risk (2–7 timepoints, 1430 scans from 420 individuals aged 30 to 89 years). Using genome-wide  
159 significant single nucleotide polymorphisms (SNPs;  $p < 5 \times 10^{-8}$ ) from four AD GWAS, we first 1) show that  
160 PRS-AD significantly associates with more age-relative change in early Braak stage regions. Next, to empiri-  
161 cally identify brain features with accelerated change in AD, we run machine learning (ML) binary classifica-  
162 tion on the individual-specific slopes derived from longitudinal AD patient-control data from the Alzheimer’s  
163 Disease Neuroimaging Initiative (ADNI; scans = 4410, N = 978, 2–9 timepoints). Modelling change in these  
164 in our healthy adult lifespan sample, we 2) show that PRS-AD is significantly associated with change in many  
165 AD-accelerated brain features in healthy adults. In an independent replication sample with notably less fol-  
166 low-up (2–3 timepoints), we corroborate some of the observed PRS-AD associations with brain change in  
167 healthy adults. Last, we 3) show that high PRS-AD individuals also high on a multivariate brain change  
168 marker show greater drop-off in memory over the adult lifespan, compared to high PRS-AD individuals with  
169 less brain change. Thus, the conjunction of a multivariate brain change marker and known genetic risk helped  
170 identify a subset of individuals showing more memory decline over their healthy adult life (30–89 years).

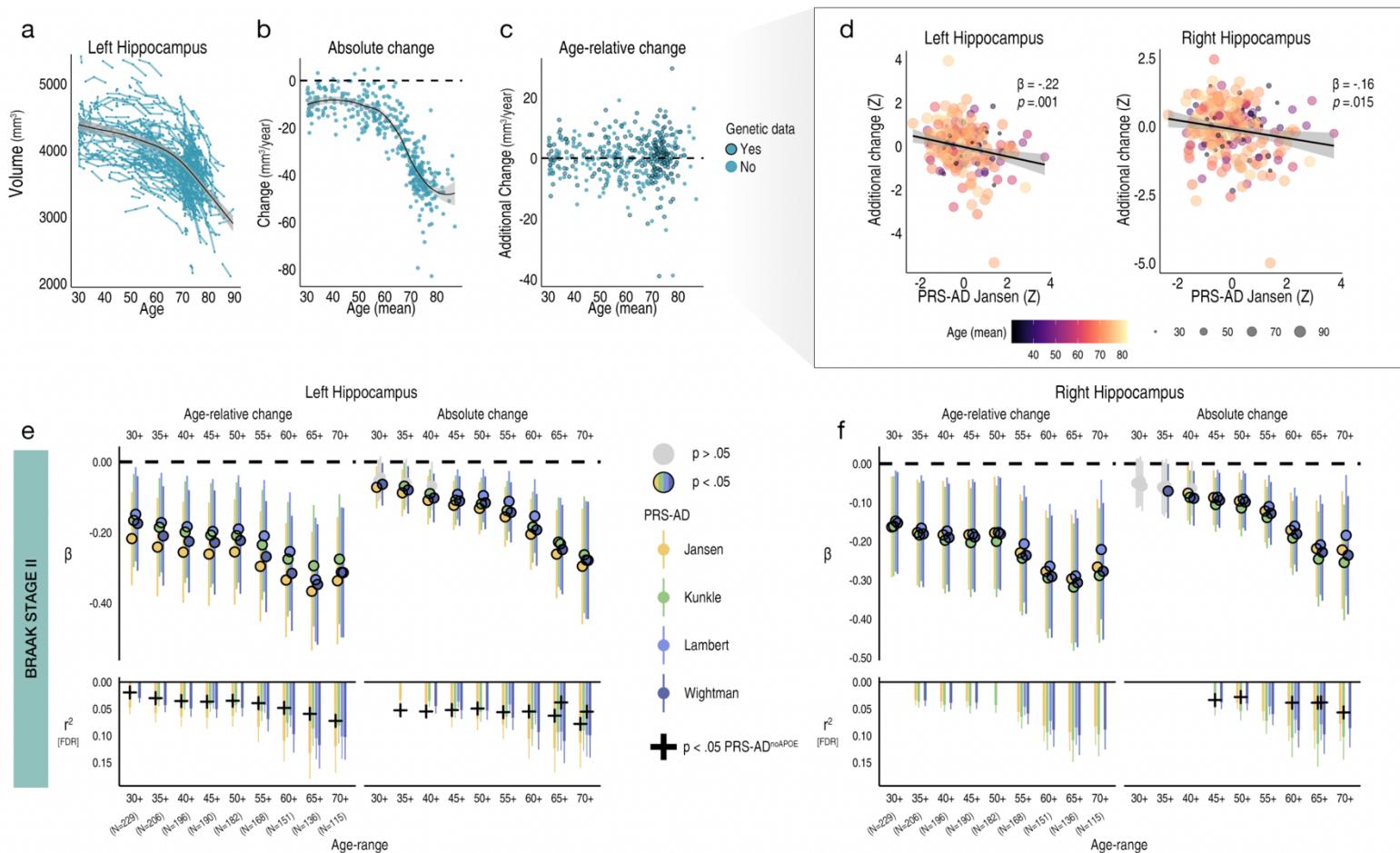
171  
172

## 173 **Results**

### 174 **Age-relative brain change across the healthy adult lifespan associates with genetic AD risk**

175 **Univariate analyses: A priori ROI’s:** To estimate age-relative brain change in adult lifespan data, we used  
176 all longitudinal scans fitting age-range and inclusion criteria ( $\geq 30$  years of age; Methods). This allowed us to  
177 obtain the best-fitting age trajectory models from which we could subsequently estimate how much an indi-  
178 vidual’s change trajectory deviated from the population-average (i.e., from the level of change predicted given  
179 age), via individual-specific random slopes in a Generalized Additive Mixed Model of age (Methods). We first  
180 explored brain change in initial hippocampal ROI’s – Braak Stage II<sup>50</sup>. Fig. 1A–C shows the longitudinal  
181 lifespan trajectory, and individual-specific degree of absolute and age-relative change for the left hippocam-  
182 pus (see SI Fig. 1 for right hippocampus). As expected<sup>2</sup>, most individuals aged  $\geq 30$  years exhibited hippocam-  
183 pal volume loss, but to differing degrees, and very few individual-specific slopes were estimated to show  
184 growth over time. As also expected, the degree of absolute hippocampal change accelerated on average  
185 between the ages of 50 and 60 years. The degree of age-relative change was significantly associated with  
186 PRS-AD in the hypothesized negative direction: on average across the adult lifespan (30–89 years), individ-  
187 uals exhibiting more hippocampal loss than expected given their age had significantly higher PRS-AD. This  
188 genetic association was probed separately for the bilateral hippocampi (left:  $\beta = -.22$ ,  $t(212) = -3.3$ ,  $p = .001$ ;  
189 right:  $\beta = -.16$ ,  $t = 2.4$ ,  $p = .015$ ; [PRS-AD Jansen]; covariates: mean age, sex, N timepoints, and interval  
190 between first and last timepoint), and was significant using all four GWAS-derived scores. To ensure we were

191 capturing ageing-specific effects at some point (see *SI Fig. 1*), we tested the association using change rates  
 192 extracted from progressively older age-ranges (i.e., progressively discarding data from comparatively  
 193 younger individuals; Methods). This also ensured that the analysis outcome was not based on a single arbit-  
 194 rary decision such as the age range to test the average association across<sup>51,52</sup>. FDR-correction was applied  
 195 across all 576 PRS-AD tests reported in this analysis. We then tested whether surviving associations re-  
 196 mained statistically significant at  $p < .05$  using polygenic scores computed without *APOE* (PRS-AD<sup>noAPOE</sup>),  
 197 assuming a 5% chance false positive rate per structure. Despite the progressively smaller sample size, all  
 198 tested PRS-AD associations with age-relative hippocampal change (left and right) were significant at  $p < .05$   
 199 [uncorrected] using all four scores (coloured points in *Fig. 1E-F* denote associations at  $p < .05$  [uncorrected];  
 200 see lower panels for respective effect sizes). 31 of the 36 tests (86%) with age-relative left hippocampal  
 201 change, and 25/36 (69%) with age-relative right hippocampal change, survived FDR-correction (see lower  
 202 panels in *Fig 1E-F*; partial  $r^2$  effect size is shown for associations surviving FDR-correction). Using PRS-AD  
 203 to predict absolute hippocampal change instead in comparable statistical models (i.e., also correcting for  
 204 mean age), PRS-AD associations were also mostly significant after FDR correction (47/72 [65%] survived  
 205 correction). Probing whether FDR-corrected associations with change remained after discounting the effect  
 206 of *APOE* per each structure tested, 19/58 (33%) PRS-AD<sup>noAPOE</sup> associations with left hippocampal change  
 207 (age-relative or absolute) remained significant at  $p < .05$ , surpassing the 5% false positive rate expected by  
 208 chance (black crosses in *Fig. 1E-F* denote partial  $r^2$  of PRS-AD<sup>noAPOE</sup> where significant [ $p < .05$ ]). For right  
 209 hippocampus, 6/45 (13%) of the FDR-corrected associations remained significant at  $p < .05$  with PRS-AD-  
 210 <sup>noAPOE</sup>, also surpassing the chance false positive rate (*Fig. 1F*). Post-hoc tests confirmed the impression that  
 211 the estimated regression coefficients became more negative as the age subset steadily comprised only older  
 212 individuals (*Fig. 1E-F*); on average across change metrics, each increasing age subset was associated with  
 213 a reduction in the negative beta coefficient of  $-.026$  for left hippocampus ( $t = -14.1$ ;  $p_{perm} = 9.9e^{-4}$ ), and  $-.023$   
 214 for right hippocampus ( $t = -15.4$ ;  $p_{perm} = 9.9e^{-4}$ ). Alternative post-hoc analyses dependent on power across  
 215 the full age-range (30-89 years) found significant PRS-AD  $\times$  age (mean) interactions upon age-relative  
 216 change in left and right hippocampi for all four scores but these did not survive multiple comparison correction  
 217 (*SI Table 1*; *SI Fig. 3*).  
 218



219

220

221

222 **FIGURE 1**

223 **Hippocampal change in healthy adults associates with genetic AD risk.** Exclusively longitudinal data was used to  
224 estimate individual-specific age-relative and absolute change in hippocampus (Braak stage II), modelling the adult  
225 lifespan trajectories using GAMMs with random slopes. **a** Adult lifespan trajectory for left hippocampus from 30-89 years  
226 (data corrected for sex and scanner). Lines connect longitudinal observations per participant. **b** Absolute change per  
227 individual (datapoints) in left hippocampus as a function of their mean age across timepoints. **c** Estimated age-relative  
228 change per individual in left hippocampus (i.e., individual-specific slopes) as a function of their mean age across  
229 timepoints. Black stroke indicates whether or not genetic data was available per participant and thus whether the data-  
230 point was included in the PRS-AD association tests. **d** More negative age-relative change in both left and right hippo-  
231 campus was associated with significantly higher PRS-AD on average across the full adult lifespan sample with genetic  
232 data (30-89 years; N=229; association visualized for one score [Jansen]); age and covariate-corrected [Methods]; colour  
233 and datapoint size depicts mean age). **e-f** PRS-AD associations with age-relative change (left facet) and absolute change  
234 (right facet) in left (E) and right (F) hippocampus, using the four GWAS-derived scores, tested for progressively older  
235 age-ranges to ensure capture of ageing-specific effects (i.e., moving from left to right on the X-axis, the leftmost age-  
236 range represents the association tests across the full adult lifespan on average [30-89 years; N=229], whereas the right-  
237 most age-range shows the associations tested in only the oldest adults [70-89 years]; standardized  $\beta$ ). Significant asso-  
238 ciations at  $p < .05$  are depicted in colour (upper panels). For associations surviving FDR-correction, partial  $r^2$  of PRS-AD  
239 is shown (lower panels). Where the association survived FDR-correction, we retested the association after removing  
240 APOE (PRS-AD<sup>noAPOE</sup>). Partial  $r^2$  of PRS-AD<sup>noAPOE</sup> is depicted by a black cross if the FDR-corrected association remained  
241 significant ( $p < .05$ ). Ribbons and error bars depict 95% CI.

242

243

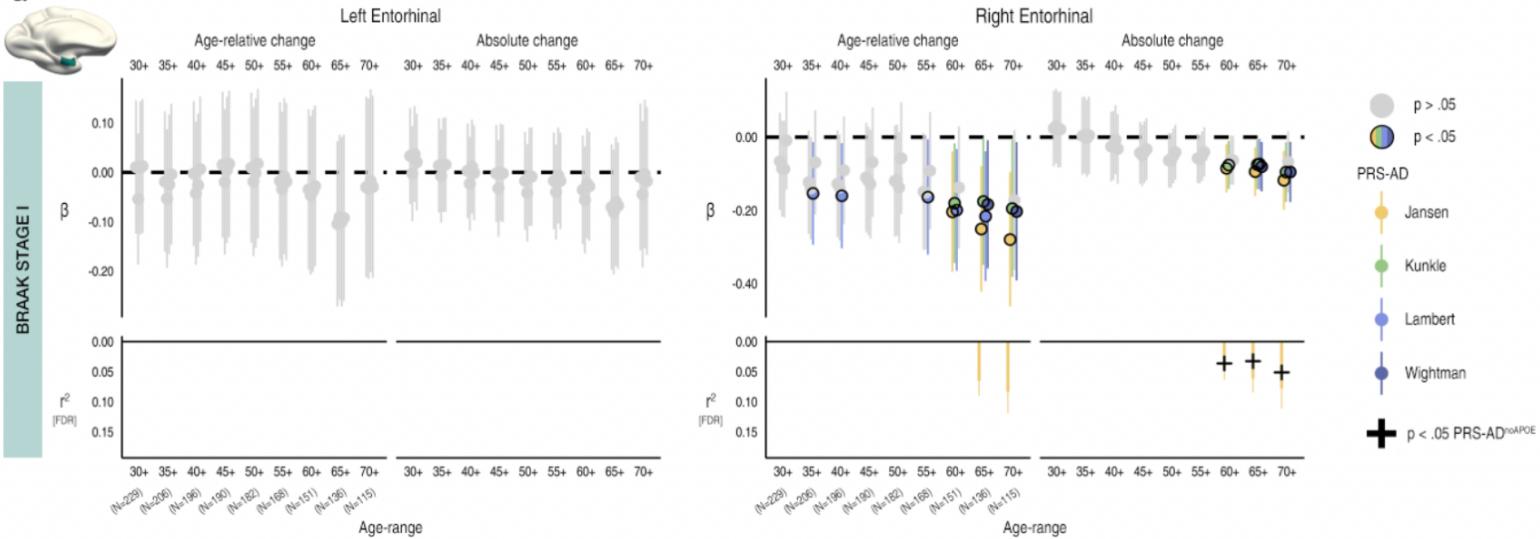
244

245 We then repeated the procedure for Braak stage I (entorhinal) and III regions (subcortical and cortical ROIs;  
246 Methods). For Braak stage I, we observed no significant PRS-AD associations with change (age-relative or  
247 absolute) in left entorhinal cortex, but observed several significant associations with each in right entorhinal  
248 cortex, 5 of which survived correction (Fig. 2A). 3 of these FDR-corrected associations remained significant  
249 at  $p < .05$  with PRS-AD<sup>noAPOE</sup> (using absolute change; lower panels in Fig. 2A), surpassing the false positive  
250 rate. Post-hoc tests confirmed that the estimated regression coefficients became more negative as the age  
251 subset comprised only older individuals for right (beta reduction =  $-.013$ ,  $t = -7.8$ ,  $p_{perm} = .018$ ) but not for left  
252 entorhinal cortex (beta reduction =  $-.008$ ,  $t = -5.0$ ,  $p_{perm} = .10$ ). However, alternative post-hoc analyses across  
253 the full age-range (30-89 years) found no PRS-AD  $\times$  age (mean) interactions upon age-relative entorhinal  
254 change, suggesting our data may have been underpowered to detect a two-way continuous interaction (SI  
255 Fig. 3; SI Table 1).

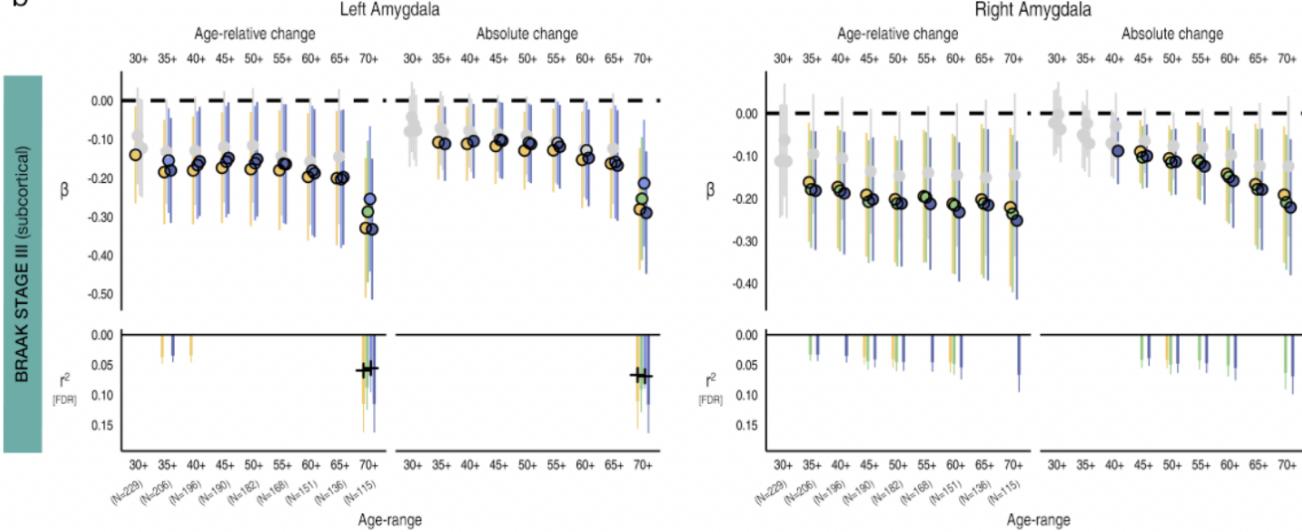
256

257 For the subcortical Braak Stage III region (amygdala), we similarly observed negative associations between  
258 age-relative change in left and right amygdala and PRS-AD (Fig. 2B), 21 of which were significant after FDR  
259 correction, and using absolute change instead yielded similar results (15 surviving associations). 4/11 (36%)  
260 PRS-AD<sup>noAPOE</sup> associations remained significant at  $p < .05$  for left amygdala (surpassing the false positive  
261 rate), whereas no associations with right amygdala change remained after excluding APOE. The estimated  
262 regression coefficients became stronger as the age subset comprised only older individuals (beta reduction  
263 left amygdala =  $-.018$ ,  $t = -7.6$ ,  $p_{perm} = .002$ ; right amygdala =  $-.019$ ,  $t = 10.0$ ,  $p_{perm} = .004$ ), though alternative  
264 analyses dependent on power across the full age-range found no post-corrected significant PRS-AD  $\times$  age  
265 (mean) interactions upon age-relative change in amygdala (SI Fig. 3; SI Table 1). For the cortical component  
266 of Stage III, none of the tested PRS-AD associations with change in left or right cortex survived correction  
267 (Fig. 2C), the regression coefficients became stronger as the age subset comprised only older individuals in  
268 each (beta reduction left cortex =  $-.011$ ,  $t = -6.2$ ,  $p_{perm} = .013$ ; right cortex =  $-.013$ ,  $t = -6.3$ ,  $p_{perm} = .004$ ), and  
269 we found no significant PRS-AD  $\times$  age (mean) interactions in alternative analyses across the full age-range  
270 (SI Fig. 3; SI Table 1).

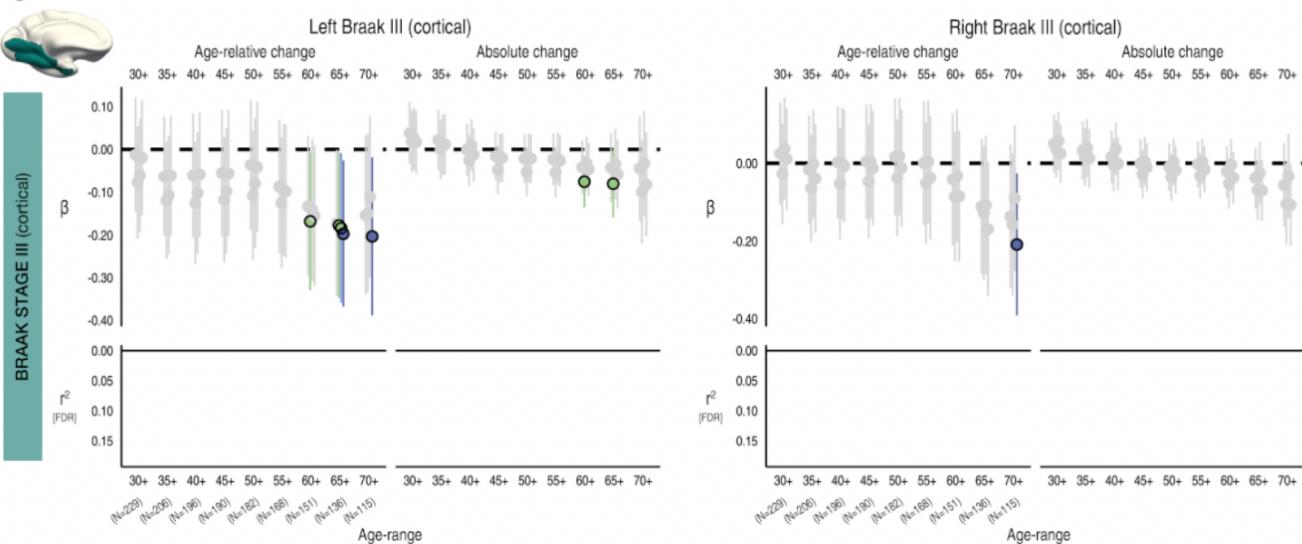
a



b



c



271

272 **FIGURE 2**

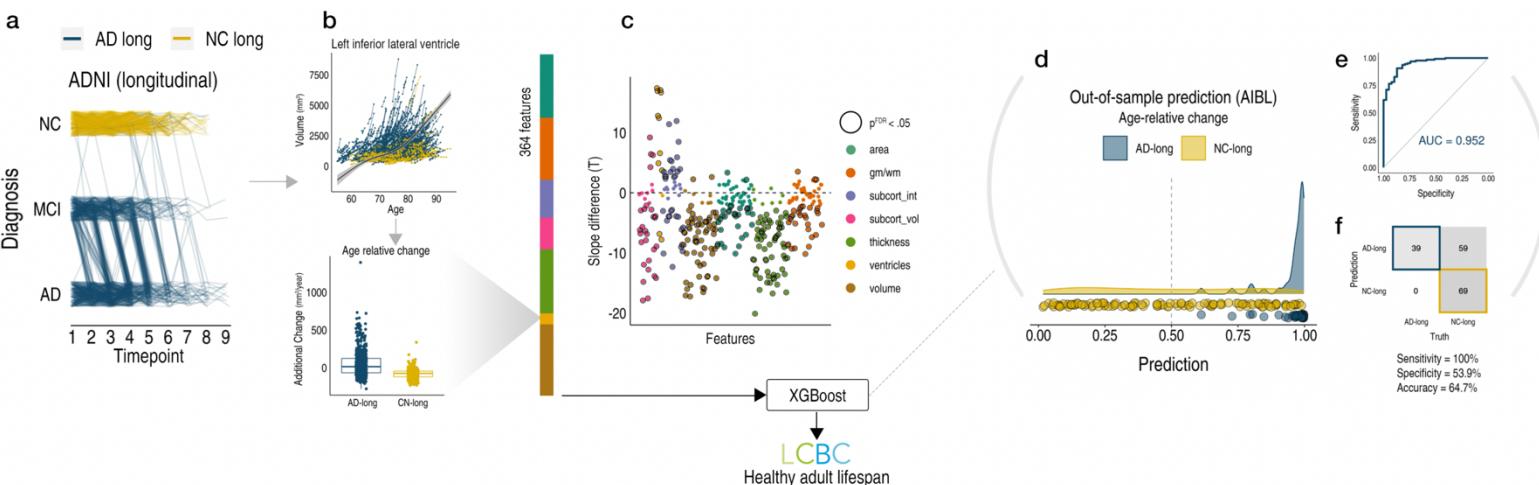
273 **Change in early Braak stage regions in healthy adults associates with genetic AD risk.** PRS-AD associations  
 274 with age-relative change and absolute change in brain regions encompassed within **a** Braak stage I (entorhinal) and **b-**  
 275 **c** Braak stage III regions (amygdala and inferior temporal cortical ROI), using the four GWAS-derived scores, tested for

276 progressively older age-ranges to ensure capture of ageing-specific effects (i.e., moving from left to right on the X-axis,  
 277 the leftmost age-range represents the association across the full adult lifespan on average [30-89 years; N=229],  
 278 whereas the rightmost age-range shows the associations tested in only the oldest adults [70-89 years]; standardized  
 279  $\beta$ ). Significant associations at  $p < .05$  are depicted in colour (upper panels). Partial  $r^2$  of PRS-AD is shown for all asso-  
 280 ciations surviving FDR-correction (lower panels; lower panels in A [left] and C [left and right] are correctly empty be-  
 281 cause no association survived correction). Where the association survived FDR-correction, we retested the association  
 282 after removing APOE (PRS-AD<sup>noAPOE</sup>). Partial  $r^2$  of PRS-AD<sup>noAPOE</sup> is depicted by a black cross if the FDR-corrected as-  
 283 sociation remained significant ( $p < .05$ ). Error bars depict 95% CI.  
 284  
 285

286 **Multivariate analyses: data-driven features exhibiting accelerated change in AD**

287 Given the univariate results, we expected that multivariate measures of change would be better suited to  
 288 detect PRS-AD associations with brain change in healthy adults. Thus, we sought to empirically obtain a list  
 289 of brain features with accelerated change in AD, then test whether multivariate change across these features  
 290 relates to PRS-AD in the LCBC healthy adult lifespan discovery sample (Methods). First, in longitudinal AD  
 291 patient-control data from ADNI (SI Table 2), we defined two longitudinal groups we could be maximally con-  
 292 fident consisted of healthy individuals and those succumbing to AD based on diagnosis: *NC-long* consisted  
 293 of normal controls consistently classed as healthy over time, whereas *AD-long* comprised all individuals with  
 294 an AD diagnosis by their final timepoint (Fig. 3A; Methods). Then, in 364 features we modelled a GAMM of  
 295 age (irrespective of group), and entered the individual-specific slopes into ML binary classification (Fig. 3B).  
 296 Group differences in slopes (age-relative change) were in the expected direction (Fig. 3C). The top features  
 297 deemed most important for separating *AD-long* from *NC-long* individuals based on age-relative change in  
 298 ADNI included many well-known AD brain vulnerabilities (e.g., ventricles, medial temporal and temporo-pa-  
 299 riatal regions; see Fig. 4A; though our intention was not to refine prediction of AD cases, we note the model  
 300 achieved an area under the curve [AUC] of .952 in independent data from the Australian Imaging Biomarker  
 301 & Lifestyle Flagship Study of Ageing [AIBL]; Fig. 3D-F; SI Fig. 4).

302  
 303

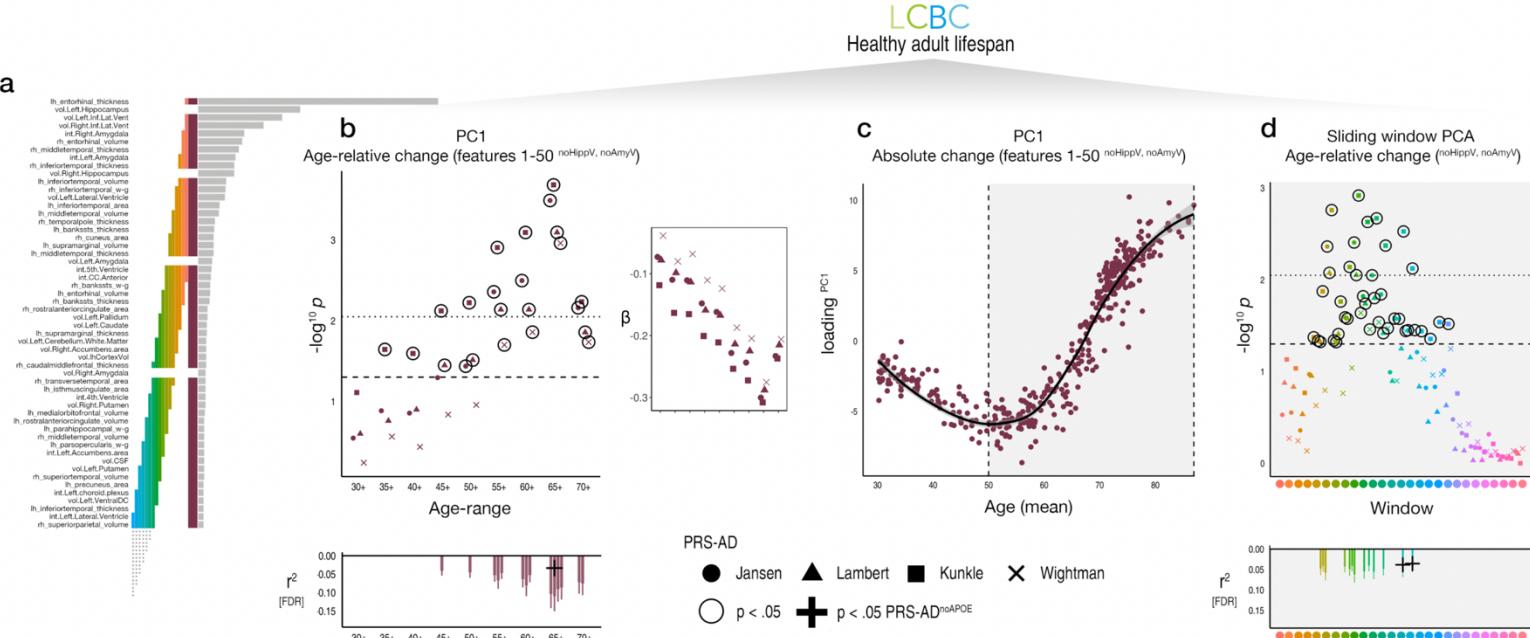


304  
 305 **FIGURE 3**  
 306 **Visualization of longitudinal AD analysis pipeline.** **a** Longitudinal grouping in ADNI data. X-axis denotes the scan  
 307 observations across timepoints used in the final sample. Each line represents a participant and colour denotes longitu-  
 308 dinal group membership. Single-timepoint ADNI diagnoses (Y-axis; NC normal controls, MCI mild cognitive impairment,  
 309 AD Alzheimer's disease) were used to define two longitudinal groups of AD and NC individuals (AD-long; N = 606, obs  
 310 = 2730; NC-long, N = 372; obs = 1680). NC-long individuals were classified as healthy at every timepoint whereas AD-  
 311 long individuals were diagnosed with AD by their final timepoint (Methods). Single-timepoint MCI diagnoses were con-  
 312 sidered only for the purpose of defining the longitudinal AD group. Note that because the grouping used all diagnosis  
 313 observations (i.e., not only scan observations), trajectories of individuals that appear to end with a NC or MCI diagnosis  
 314 nevertheless correspond to individuals with an AD diagnosis by their final timepoint, as do those seemingly reverting  
 315 (Methods). **b** GAMMs of Age (across groups; upper plot) were used to model age-relative change (individual-specific  
 316 slopes) in 364 brain features (shown for one example feature). The ADNI-derived individual-specific slopes were then  
 317 used as input to machine learning binary classification using XGBoost<sup>53</sup>. **c** Most features exhibited significant group-  
 318 differences in age-relative change between AD-long and NC-long as expected (datapoints denote t-statistics for t-tests;  
 319 black stroke indicates significant associations at  $p(FDR) < .05$ ). **d-f** Out-of-sample prediction for the binary classifier  
 320 (AIBL data; SI Fig. 4) including receiver operator curve (d), confusion matrix and performance metrics (e). The purpose  
 321 of the classification procedure was to empirically derive brain features with accelerated change in AD, to use these in  
 322 healthy adult lifespan data.

323  
324  
325

In the LCBC healthy adult lifespan discovery sample, we then calculated the principal component of age-relative change across the first 50 features with model-implied importance ( $PC1^{relChange}$ ; hippocampal and amygdala volumes were not included in  $PC1^{relChange}$  to ensure these did not drive the multivariate effect; see the maroon bar in [Fig. 4A](#); explaining 13% variance). As hypothesized, 14 of the 36 tested associations relating  $PC1^{relChange}$  to PRS-AD were FDR-corrected significant ([Fig. 4B](#); FDR-correction applied across all 144 PRS-AD tests in this analysis). Again, post-hoc tests confirmed that the estimated regression coefficients became stronger as the age subset comprised only older individuals (beta reduction = -.023,  $t = -9.9$ ,  $p_{perm} = .002$ ) and alternative analyses across the full age-range found post-corrected significant  $PRS-AD \times \text{age}$  (mean) interactions upon  $PC1^{relChange}$  using all four scores ([SI Table 3](#)). Next, to determine the age at which brain change in AD-accelerated features starts increasing in healthy adults, we took the principal component of absolute change across the same set of 50 features ( $PC1^{absChange}$ ; explaining 45% variance) plotted as a function of mean age ([Fig. 4C](#)). The results suggested that all individuals were on a trajectory of change in AD features that showed onset of accelerated change around age  $\sim 50$  in healthy adults ([Fig. 4C](#); see [SI Fig. 10](#) for derivative plots). Further, change trajectories were steepest in features most important for separating AD-patients from controls ([SI Fig. 6](#)). To ensure that the multivariate associations were not driven by one or a few brain features, we ran a sliding window PCA within the 50-89 year age-range (Methods). PRS-AD associations with age-relative change were evident when calculating  $PC1$  across many combinations of features, including those relatively lower down in terms of model importance (coloured bars in [Fig. 4A](#) denote feature windows for the PCA and link with the coloured points denoting p-values for the PRS-AD associations in [Fig. 4D](#); see [SI Fig. 7](#) for correlations between features). 13 of the tested associations were significant after FDR correction, illustrating that multivariate change across many AD-accelerated features relates to PRS-AD in healthy adults ([Fig. 4D](#)). The data suggested that PRS-AD associations derived via this method were largely though not entirely driven by *APOE* (3 of the 27 [11%] FDR-corrected tests remained significant at  $p < .05$  using  $PRS-AD^{noAPOE}$ , surpassing the 5% false positive rate; lower panels in [Fig. 4](#)).

350



351

551

FIGURE 4

**FIGURE 4**  
**ADNI-derived features applied to the healthy adult lifespan.** **a** Top features for classifying *AD-long* from *NC-long* individuals in ADNI data based on age-relative change. Coloured bars indicate feature selections across which we calculated PC1 and link with the subsequent plots. **b** PRS-AD associations in healthy adult lifespan data (LCBC sample) using the principal component of age-relative change across the top 50 brain features with accelerated change in AD (excluding hippocampal and amygdala volumes;  $PC1^{relChange}$ , maroon bar in a). Datapoints show (-log10) p-values for the association with  $PC1^{relChange}$  tested at progressively older age-ranges, for all four scores. Dashed line indicates  $p = .05$ , and datapoints with black stroke denote significant PRS-AD associations at  $p < .05$ . Datapoints above the dotted line are significant at  $p(FDR) < .05$ . Smaller right inset plot shows the standardized Beta values as a function of age-range (Betas inverted to be negative due to the non-directional nature of PCA). Bottom plot shows partial  $r^2$  of PRS-AD for all associations surviving FDR-correction. Where the association survived FDR-correction, we retested the

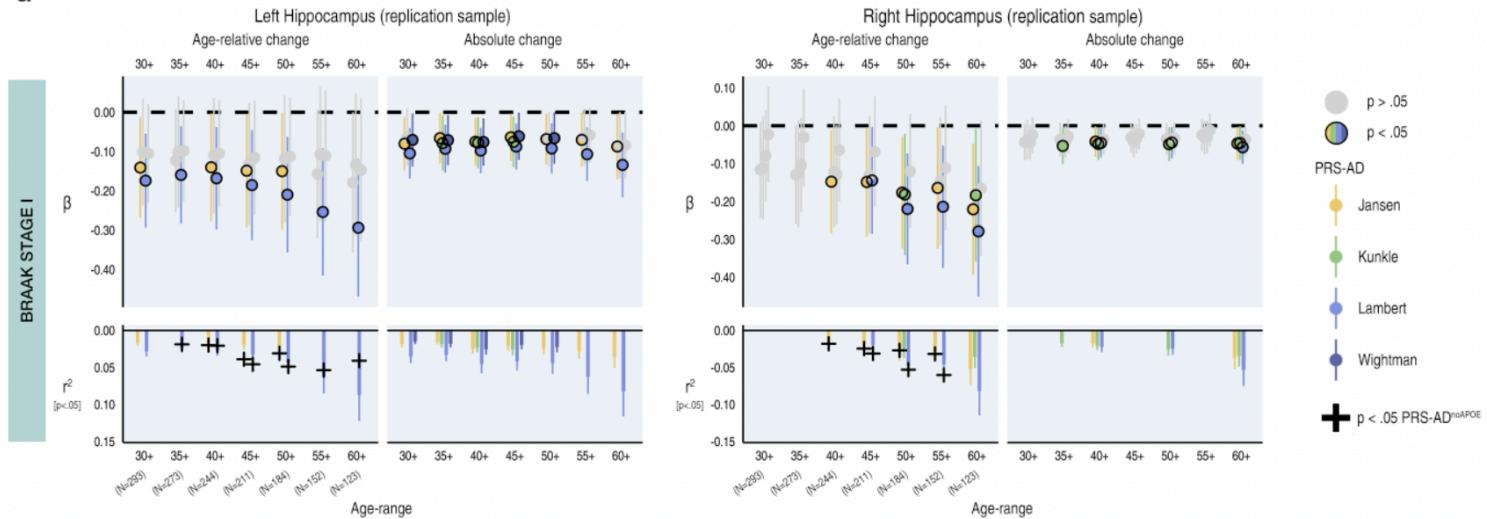
364 association after removing *APOE* (PRS-AD<sup>noAPOE</sup>). Partial  $r^2$  of PRS-AD<sup>noAPOE</sup> is depicted by a black cross if the FDR-  
365 corrected association remained significant ( $p < .05$ ). Error bars depict 95% CI. **c** The principal component of absolute  
366 change across the top 50 brain features with accelerated change in AD (excluding hippocampal and amygdala volume;  
367 maroon bar in a), plotted as a function of mean age across timepoints. Accelerated brain change in AD-accelerated  
368 features was evident between ages 50-60. Note that since the y-axis represents change, the slope of the curve repre-  
369 sents acceleration (see also [SI Figs. 10-11](#)). **d** PCA-based sliding window analysis within the age-range 50-89 years.  
370 Colours and order correspond to the coloured bars in a, which show the selection of features across which the principal  
371 component of age-relative change was calculated and used to test associations with PRS-AD. Dashed line indicates  $p$   
372 = .05, and datapoints with black stroke denote significant PRS-AD associations at  $p < .05$ . Datapoints above the dotted  
373 line are significant at  $p(\text{FDR}) < .05$ . lh=left hemisphere, rh=right hemisphere, vol=volume (subcortical); int=intensity (sub-  
374 cortical); w-g=grey/white matter contrast. Subcortical features (aseg) are delineated with “.”, whereas cortical features  
375 (aparc) are delineated with “\_”.

376  
377  
378  
379 As a final proof-of-principle, we directly applied the ADNI-derived model weights to the LCBC healthy adult  
380 lifespan discovery sample. This prediction incorporates information from the weights of all 364 features  
381 (Methods). The dependent variable was the model-implied log odds of having AD (probAD<sup>relChange</sup>; Methods).  
382 Importantly, because the model was trained on an index of relative brain change conditional on age, the  
383 logistic prediction applied to the healthy adult lifespan data cannot be interpreted in terms of its implied binary  
384 outcome (i.e., AD/no-AD). This is because the model could assign the same probability of having AD to a  
385 hypothetical 30-year-old with an estimated additional brain loss of 10mm<sup>3</sup>/year as to a 60-year-old with the  
386 same additional brain loss, even though change and AD risk are higher in the 60-year-old, because change  
387 is over and above the mean brain loss anticipated at age 60 (see [Fig. 1C](#)). We nevertheless hypothesized  
388 the learned model weights would be useful, and would relate to PRS-AD in a similar way to the raw age-  
389 relative change values in specific features. As expected, almost all of the tested PRS-AD associations with  
390 probAD<sup>relChange</sup> were significant at  $p < .05$ , 14 of which survived correction; see [SI Fig. 5B](#)). Repeating all steps  
391 of the model estimation procedure using absolute change instead (from hyperparameter estimation to pre-  
392 diction; AUC = .933 in unseen data from AIBL), we found far fewer significant PRS-AD associations with  
393 probAD<sup>absChange</sup> (7 survived correction; [SI Fig. 5C-D](#)), suggesting relative change is a superior marker for  
394 capturing individual differences in brain ageing. Again, the data indicated PRS-AD associations derived by  
395 this method were largely though not entirely driven by *APOE* (8 [38%] of the FDR-corrected tests with change  
396 remained significant using PRS-AD<sup>noAPOE</sup>; [SI Fig. 5](#); FDR-correction applied across all 72 PRS-AD tests in  
397 this analysis).

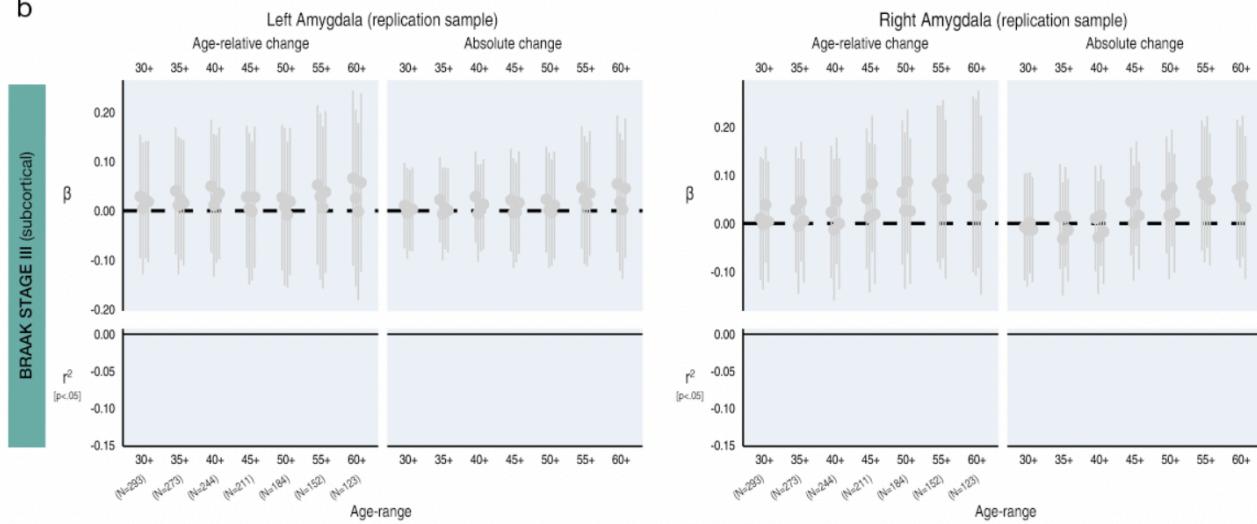
398  
399 **Replication analysis**  
400 To reduce the number of tests, in an independent adult lifespan replication sample with fewer follow-up points  
401 (2-3 timepoints; Lifebrain replication sample), we tested PRS-AD associations using hippocampal and amygdala  
402 change, and the principal component of age-relative change across the first 50 AD-accelerated features,  
403 not including hippocampal or amygdala volume (i.e., PC1<sup>relChange</sup>; [Fig. 4A](#)). For hippocampus, we observed  
404 similarly negative effects, 22 of which were significant for age-relative change ( $p < .05$  [uncorrected]; 31 for  
405 absolute change; [Fig. 5A](#)). Similar to the discovery sample, PRS-AD effects on age-relative hippocampal  
406 change were larger than absolute change, and often remained significant after discounting *APOE* (black  
407 crosses in [Fig. 5A](#) denote partial  $r^2$  for PRS-AD<sup>noAPOE</sup> where this remained significant). For amygdala, we  
408 observed no significant PRS-AD associations within any age-range, and we also observed no significant  
409 associations with PC1<sup>relChange</sup> ([Fig. 5B-C](#)). However, like the discovery sample, all healthy individuals lay on  
410 a trajectory of accelerated change in AD features, with a similar onset of acceleration around the age of 50  
411 years ([Fig. 5D](#); [SI Fig. 10](#)).

412

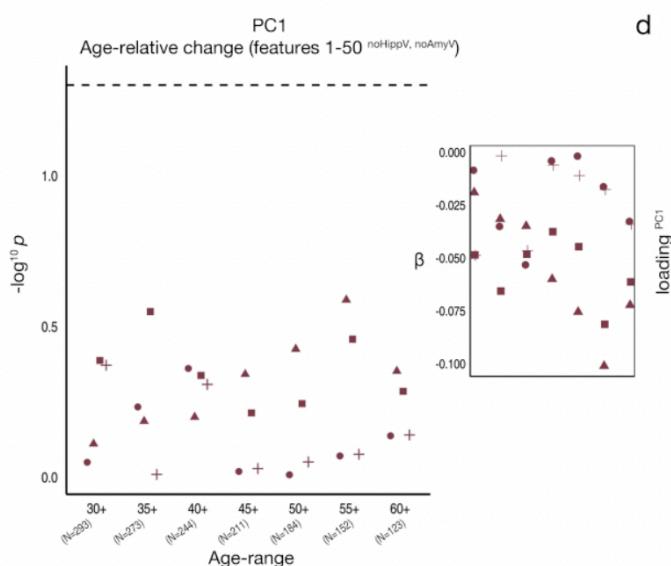
a



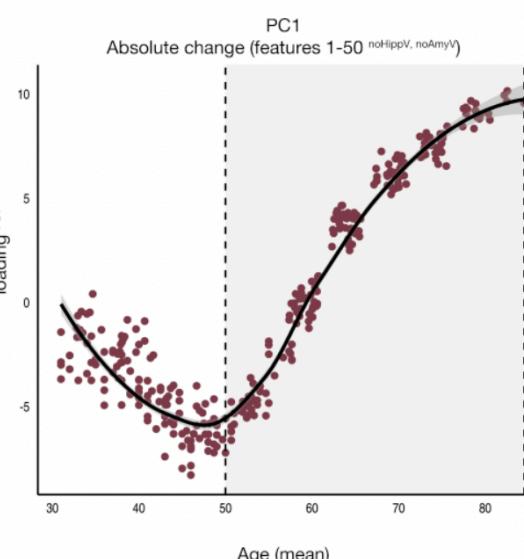
b



c



d



413

414

415 **FIGURE 5**

416 **Replication** PRS-AD associations with age-relative and absolute change in an independent adult lifespan sample  
 417 (Lifebrain replication sample), using the four GWAS-derived scores, for progressively older age-ranges to ensure cap-  
 418 ture of ageing-specific effects (i.e., moving from left to right on the X-axis, the leftmost age-range represents the

419 association across the full adult lifespan on average [30-88 years; N=293], whereas the rightmost age-range shows the  
420 associations tested in only the oldest adults [60-88 years]). Univariate associations were tested for **a** left and right hippocampus, and **b** left and right amygdala. Significant associations at  $p < .05$  are depicted in colour (upper panels).  
421 Here, partial  $r^2$  of PRS-AD is shown for all associations that were significant at  $p < .05$  (lower panels). Where the association  
422 was significant ( $p < .05$  [uncorrected]), we retested the association after removing *APOE* (PRS-AD<sup>noAPOE</sup>). Partial  
423  $r^2$  of PRS-AD<sup>noAPOE</sup> is depicted by a black cross if the association remained significant ( $p < .05$ ). **c** Multivariate PRS-  
424 AD association tests using the principal component of age-relative change across the top 50 brain features with accelerated  
425 change in AD (excluding hippocampal and amygdala volumes; PC1<sup>relChange</sup>; as in [Fig 4A-B](#)). Datapoints show (-  
426 log10) p-values for the association with PC1<sup>relChange</sup>, tested at progressively older age-ranges, for all four scores.  
427 Smaller plot shows the standardized Beta values as a function of age-range (Betas inverted to be negative due to the  
428 non-directional nature of PCA). Dashed line indicates  $p = .05$ . **d** The principal component of absolute change across  
429 the top 50 brain features with accelerated change in AD (excluding hippocampal and amygdala volumes; maroon bar in  
430 [Fig 4A](#)), plotted as a function of mean age across timepoints. Accelerated brain change in AD-accelerated features was  
431 evident around age 50-60. Note that since the y-axis represents change, the slope of the curve represents acceleration  
432 (see also [SI Fig. 10](#)). Error bars depict 95% CI.  
433

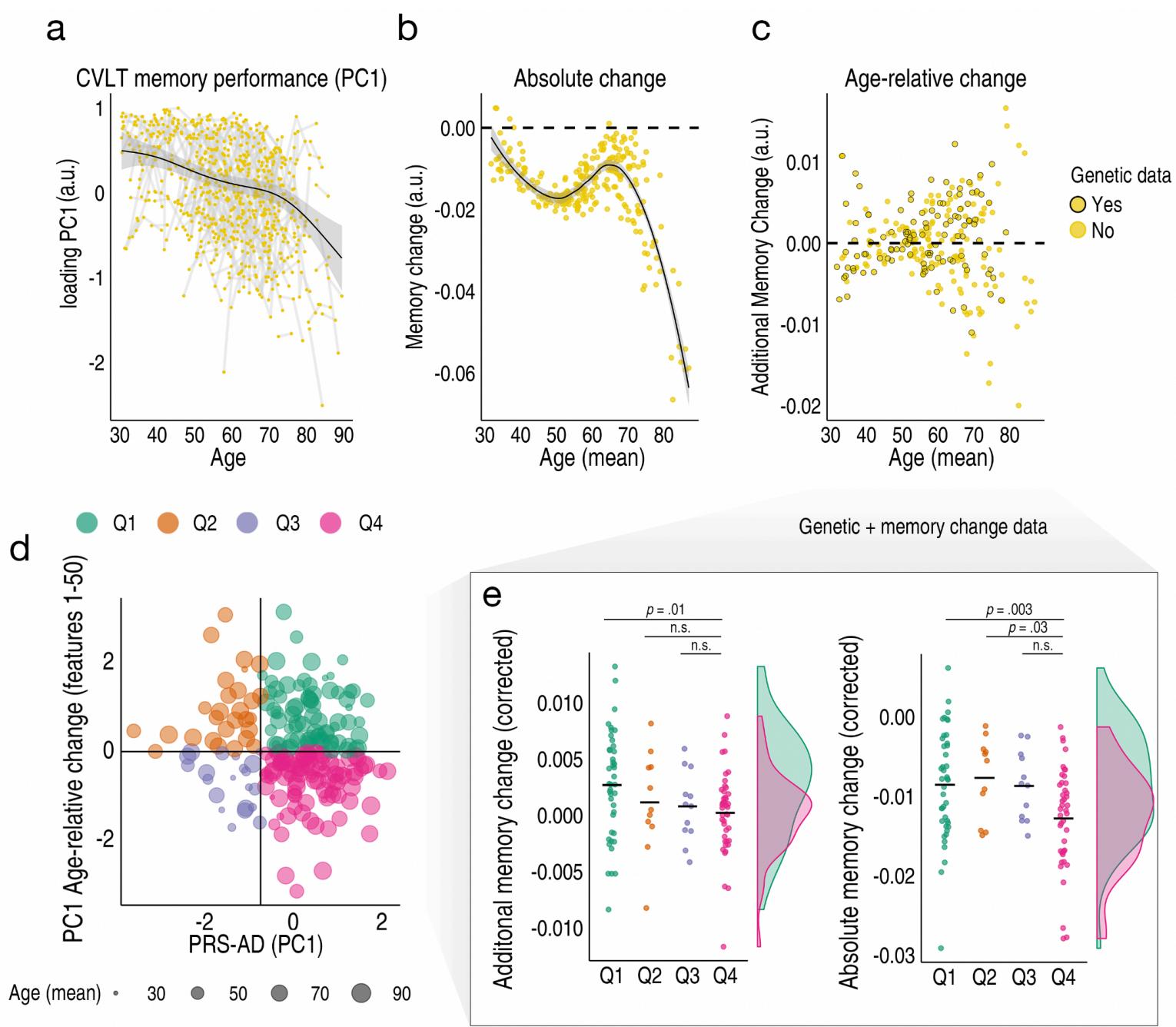
434

435

### 436 **Memory change analysis**

437 Finally, in the LCBC healthy adult lifespan discovery sample, we used the association between the principal  
438 component of age-relative change across the first 50 AD-accelerated features – here including hippocampal  
439 and amygdala volumes (PC1<sup>relChange1-50</sup>) – and the principal component across the four PRS-AD scores  
440 (PC1<sup>PRS-AD</sup>; explaining 87%) to separate individuals into discrete groups, representing the conjunction of  
441 brain change and genetic risk factors. We hypothesized that high PRS-AD individuals also showing more  
442 age-relative change in AD-accelerated features would exhibit more longitudinal memory decline (pink quad-  
443 rant 4 in [Fig. 6D](#); Methods). Akin to the brain analysis, memory-change estimates were derived via the indi-  
444 vidual-specific random slopes in a GAMM of age, and we used longitudinal memory observations from the  
445 full adult lifespan sample to optimize memory-change estimates in the subset of participants that also had  
446 genetic data (Methods). [Fig. 6A-C](#) shows the longitudinal lifespan trajectory, and individual-specific degree  
447 of absolute and age-relative change in memory performance on the California Verbal Learning Test (CVLT;  
448 PC1 across subtests). Absolute memory change was predominantly negative, with memory decline occurring  
449 gradually across the adult lifespan and accelerating around the mid ~60s ([Fig. 6B](#); though we also observed  
450 a trend towards steeper slopes in mid-life prior to this; [SI Fig. 11](#)). As hypothesized, genetically exposed  
451 individuals also high on a multivariate marker of age-relative brain change (PC1<sup>relChange1-50</sup>) showed signifi-  
452 cantly more age-relative ( $p = .01$ ) and absolute memory decline ( $p = .003$ ) on average across the adult  
453 lifespan, compared to high PRS-AD individuals with less relative brain change. These group differences in  
454 memory change were not driven by differences in *APOE-ε4* carriership ([Fig. 6E-F](#); main models corrected  
455 for carriership, mean age, sex, N timepoints, interval between first and last timepoint), and persisted in alter-  
456 native models controlling for the number of *APOE-ε4* alleles ( $p = .009$ ;  $p = .003$ ) and baseline memory per-  
457 formance ( $p = .008$ ;  $p = .002$ ). In the main model, we also observed a significant difference in absolute  
458 memory change between the high PRS-AD-high brain change group and the low PRS-AD-low brain change  
459 group ( $p = .026$ ; [Fig. 6E](#)). Finally, the reported group differences in memory-change persisted when correcting  
460 for differences in genetic risk (PC1<sup>PRS-AD</sup>) but not for differences in multivariate brain change ([SI Fig. 12](#)).  
461 These data suggest the conjunction of risk markers – a multivariate marker of change in AD-vulnerable fea-  
462 tures and known PRS-AD – helped identify a subset of comparatively high-risk individuals showing more  
463 longitudinal memory decline in healthy adult lifespan data (30-89 years).  
464

465



466  
467  
468 **FIGURE 6**  
469 **Longitudinal memory change analyses.** Exclusively longitudinal data was used to estimate individual-specific age-  
470 relative and absolute change in CVLT task performance (PC1 across subtests), modelling the adult lifespan trajectories  
471 using GAMMs with random individual-specific slopes. **a** Adult lifespan trajectory analysis for CVLT memory performance  
472 from 30-89 years. Lines connect longitudinal observations per participant. **b** Absolute memory change per individual  
473 (datapoints) in CVLT task performance plotted as a function of their mean age across timepoints. **c** Estimated age-  
474 relative change per individual in CVLT task performance (individual-specific slopes). For each participant with memory  
475 change data, black stroke indicates whether or not genetic data was available. **d** The association between the principal  
476 component across the four PRS-AD scores and the principal component of age-relative change across the first 50 ADNI-  
477 derived features (listed in Fig. 4A) was used to define four quadrant-groups representing the conjunction of brain and  
478 genetic risk factors. **e** Memory change for individuals with both memory change and genetic data within the quadrant  
479 groups. Individuals at higher PRS-AD who also exhibited more age-relative brain change (pink) in AD-accelerated fea-  
480 tures showed significantly more age-relative (left plot) and absolute (right plot) change in memory performance across  
481 the healthy adult lifespan, relative to high PRS-AD individuals estimated to show less relative brain change (distributions  
482 visualized for these two groups; datapoints corrected for covariates including mean age and APOE-e4 carriership [Meth-  
483 ods]).

## 484 Discussion

485 Genetic AD risk is robustly associated with the slope of brain ageing in healthy adults. Specifically, we found  
486 healthy individuals changing faster than expected for their age in early Braak Stage regions – bilateral hip-  
487 pocampus, amygdala, and right entorhinal cortex – are at significantly enhanced genetic AD risk, and these  
488 polygenic associations extend beyond the risk conferred by *APOE* alone. We also found that multivariate  
489 change across many AD-accelerated brain features can be used to detect PRS-AD associations with faster-  
490 than-expected brain ageing in healthy adults, and demonstrate that accelerated change in AD features is  
491 evident in most healthy individuals over age ~50. Furthermore, we find that ML models trained on longitudinal  
492 AD patient-control data can be directly applied to healthy adult lifespan data and the prediction relates to  
493 PRS-AD in healthy adults. Finally, high PRS-AD individuals showing faster-than-expected brain change ex-  
494 hibited more longitudinal memory decline compared to high PRS-AD individuals with less brain change, on  
495 average across the healthy adult lifespan (30-89 years), and independent of *APOE-ε4*. Thus, the conjunction  
496 of our novel multivariate brain change marker and known PRS-AD found a subset of individuals exhibiting  
497 more memory decline across the healthy adult lifespan.

498

### 499 *Age-relative brain change across the adult lifespan associates with genetic AD risk*

#### 500 *Univariate analyses: apriori ROI's*

501 Univariate analyses using change in early Braak stage regions consistently revealed significant PRS-AD  
502 associations in healthy adults, illustrating accelerated brain ageing in genetically at-risk individuals. The clear-  
503 est genetic effects upon faster brain ageing were in bilateral hippocampi; healthy individuals at higher genetic  
504 AD risk lose hippocampal volume faster than their age would predict – observed consistently using all four  
505 scores. Particularly for left hippocampus, the association often remained after discounting *APOE*, suggesting  
506 differences in left hippocampal loss also arise from genetic factors beyond *APOE*. However, we also ob-  
507 served PRS-AD<sup>noAPOE</sup> associations with right hippocampal change, and also confirmed these in independent  
508 data. Shrinkage of the hippocampus – a critical structure underpinning episodic memory and spatial naviga-  
509 tion operations – is a well-known AD risk marker in patient populations<sup>9,32,54</sup>, with atrophy rates predicting  
510 clinical conversion<sup>55</sup>. However, most studies in healthy adults have not linked genetic AD risk to hippocampal  
511 change<sup>39,56</sup> or find the slope of hippocampal age trajectories does not differ as a function of genetic AD  
512 risk<sup>2,20-26</sup> – including in large adult lifespan samples<sup>24,25</sup> and our previous report in overlapping data<sup>2</sup>. And  
513 since AD risk genes influence hippocampal differences early in life<sup>2,29,30</sup>, cross-sectional findings in healthy  
514 older adults<sup>27,28,57</sup> cannot attribute genetic effects to accelerated brain ageing<sup>58</sup>. By specifically isolating  
515 within-individual genetic effects on accelerated brain ageing, the present study confirms AD risk genes also  
516 influence normal variation in hippocampal change rates in healthy adults.

517

518 This agrees with a study by Harrison et al.<sup>36</sup> finding a longitudinal relationship between hippocampal change  
519 and PRS-AD in older adults. Notably, however, that study recruited individuals with memory complaints and  
520 a family AD history via memory clinics. In contrast, our sample comprised healthy adults in longitudinal studies  
521 which are well-established to be biased toward maintaining high performers<sup>59</sup>. It also agrees with a study  
522 finding more hippocampal atrophy in healthy older *APOE-ε4* carriers<sup>38</sup>. However, we also found AD risk  
523 SNP's beyond *APOE* predict hippocampal ageing trajectories in healthy adults, which to our knowledge has  
524 not been shown. Previously, we did not find consistent evidence PRS-AD or *APOE-ε4* alters the slope of  
525 hippocampal ageing, but found a group-level offset effect suggesting the difference between high- and low-  
526 risk individuals in hippocampal volume was as large at age ~25 as at age ~80<sup>2</sup>. However, that study primarily  
527 used a PRS-AD constructed with many more SNP's ( $p < 0.05^{60}$ ), and did find some, albeit inconsistent, evi-  
528 dence for a slope effect using the same SNP association p-value as here. Here, by taking an individual-  
529 centric approach to estimate change trajectories, we found genome-wide significant SNPs could explain up  
530 to ~13% variance in hippocampal change rates (effect sizes after discounting *APOE* were smaller; ~5%; Fig.  
531 1E-F). This purely longitudinal marker of *relative* brain ageing consistently excelled, exhibiting stronger rela-  
532 tionships to PRS-AD than absolute change that were detectable over wider age-spans. The data also indi-  
533 cated PRS-AD-change associations were not driven only by the oldest adults, though older adults likely con-  
534 tributed more of the individual differences in brain change signal (SI. Fig. 12), in line with the observed ten-  
535 dency towards stronger genetic effects upon slopes in older individuals, and theories positing genetic effects  
536 become amplified in old age when neural resources are depleted<sup>61</sup>.

537

538 PRS-AD also linked with accelerated loss in right entorhinal cortex (stage I) and bilateral amygdala (stage  
539 III). This also agrees with Harrison et al.<sup>36</sup>, wherein entorhinal change was related to a PRS-AD (*APOE*  
540 inclusive) in older adults with memory complaints, and may also fit with a recent cross-sectional study finding  
541 right entorhinal cortex exhibits amongst the largest structural differences in older *APOE-ε4* carriers<sup>28</sup>. How-  
542 ever, we also found evidence PRS-AD-entorhinal change associations extend beyond *APOE*. Similarly, ac-  
543 celerated amygdala loss was associated with PRS-AD in healthy adults, and we found evidence SNP's

544 beyond *APOE* influence left amygdala change trajectories. These data contradict a recent GWAS finding the  
545 effect of *APOE* upon amygdala and hippocampal slopes, with increasing influence of the *APOE*-indexing  
546 SNP (rs429358) with age, disappeared after accounting for disease in a heavily patient-derived sample<sup>39</sup>,  
547 suggesting *APOE*-mediated slope differences were driven by patients. To our knowledge, we are the first to  
548 document accelerated amygdala decline in healthy adults harbouring more AD risk variants. Still, while amygdala  
549 effects were clear in the discovery sample – currently the most densely sampled MRI dataset for longitudinal  
550 lifespan follow-up – these did not replicate in an independent sample with less follow-up, hence this  
551 awaits replication. Regardless, in healthy ageing as in AD, medial temporal lobe structures exhibit early vulnerabil-  
552 ity to structural loss<sup>5</sup>, highest expression of top AD risk genes (e.g., *APOE*, *BIN1*, *CLU*<sup>62–64</sup>), and we  
553 find PRS-AD influences accelerated change in these structures in healthy adults. Speculatively, faster atrophy  
554 rates may co-occur with faster tau accumulation, possibly consistent with higher tau in risk-allele carriers<sup>64,65</sup>. Critical  
555 questions concern what mechanisms underlie the shared vulnerability of these structures to  
556 lifespan influences and AD, which in the presence of AD risk genes speed up normal age-related neuro-  
557 degeneration. One candidate shared characteristic may be a high degree of plasticity<sup>66–68</sup>.

#### 558 559 **Multivariate analyses: data-driven features exhibiting accelerated change in AD**

560 Through empirically delineating brain features with accelerated change in AD, we found that accelerated  
561 brain ageing across many combinations of AD-accelerated brain features relates to PRS-AD in healthy  
562 adults. Furthermore, we observed replicable evidence that almost everyone above age ~50 is on an accelerated  
563 trajectory of neurodegenerative ageing in features wherein change reliably separates AD patients  
564 from controls, consistent with work documenting overlapping mean atrophy patterns in ageing and AD<sup>4,5,14</sup>.  
565 These individualized data suggest that neurodegeneration occurs along a continuum from healthy ageing to  
566 AD. Furthermore, since it is unlikely that most healthy adults in both samples here would be amyloid positive,  
567 this may run counter to the amyloid cascade hypothesis, which posits plaque build-up as an initial triggering  
568 event for subsequent neurodegeneration<sup>69–71</sup>. Likely, our unique approach to link AD changes to normal  
569 ageing benefitted from using multivariate analyses across change data in healthy adults. We also found that  
570 ML models trained on longitudinal change in AD can be applied to healthy adult lifespan data and the pre-  
571 dictive relates to PRS-AD. This seemed to work best when the model was trained on estimates of change  
572 conditional on age (SI Fig. 5), likely because this places often extreme change values in AD on a scale more  
573 comparable across ages, and because modelling relative change in AD versus controls enables identification  
574 of features exhibiting a quantitative difference in change despite the presence of a similar qualitative pattern.  
575 That our patient-control groups were based on two extremes (consistently healthy versus becoming AD) only  
576 further emphasizes the difference lies more in degree than kind, as does the fact that our ML model also  
577 captured 100% of independent AD cases (Fig. 3). PRS-AD associations beyond Braak stages appeared  
578 largely though not entirely driven by *APOE* (Fig. 4; SI Fig. 5). Thus, our study yields new knowledge on the  
579 widespread impact of AD risk genes upon accelerated brain ageing in healthy adults, while highlighting that  
580 the border between neurodegeneration in ageing and AD is far from clear.

581  
582 Of note, though PRS-AD effects were not entirely driven by allelic variation in *APOE*, PRS-AD<sup>noAPOE</sup> associa-  
583 tions were most evident using the genome-wide significant SNP's/weightings reported by Jansen et al.<sup>72</sup> or  
584 Lambert et al.<sup>60</sup>, suggesting these SNP sets beyond *APOE* better capture differences in brain ageing in  
585 healthy adults (in both samples; Figs. 1–2; Fig. 5). We also found no evidence including more SNP's in-  
586 creased sensitivity to detect genetic effects upon healthy adult brain ageing, with or without *APOE* (SI Fig.  
587 2), in line with studies in patients<sup>73,74</sup>. *APOE* accounted for much of the predictive power of PRS-AD, as  
588 associations typically disappeared or were attenuated using PRS-AD<sup>noAPOE</sup>. This fits with work finding PRS-  
589 AD associations with cognitive, lifestyle, and metabolic factors in healthy adults are largely driven by *APOE*<sup>75</sup>,  
590 and with data indicating limited utility of SNP's beyond *APOE* to predict AD-relevant traits<sup>18</sup>.

#### 591 592 **Memory change analysis**

593 Individuals at higher genetic risk that also showed more brain ageing in AD-accelerated features exhibited  
594 more longitudinal memory decline across adult life (30–89 years). Hence, knowing an individual's genetic risk  
595 in and of itself was insufficient, as it was not necessarily reflected in brain and cognitive outcomes. However,  
596 considered together with a multivariate marker of brain change, we found a subset of high PRS-AD individ-  
597 uals whose brain status over time was reflected in a greater drop-off in memory that was protracted across  
598 adult life (Fig. 6D–E). Moreover, the analyses suggested group differences in memory decline were more  
599 driven by brain change differences than by genetic differences. Hence, our change marker provided crucial  
600 information for detecting comparatively at-risk individuals in healthy adult lifespan data, beyond that provided  
601 by genetic risk alone. These results support and extend previous studies finding PRS-AD<sup>43,44,46</sup> or *APOE*-  
602  $\epsilon 4$ <sup>45</sup> relates to longitudinal memory decline across adult life, and possibly shed light on why reported associa-  
603 tions are often weak<sup>43–46</sup> or absent<sup>49</sup>. They also underscore the need for follow-up data over extended age-

spans when the goal is early prediction or prevention of AD. Future research should examine the biological and exposure-related factors that lead some high PRS-AD individuals to decline more in brain and memory where others remain resilient, as well as combine multivariate change with other biomarkers (e.g., tau, inflammation, or amyloid) as we move towards a future of individualized risk assessment.

Our study has several strengths. First, our longitudinal marker of individual-specific brain change circumvents the drawbacks of other approaches attempting to capture interindividual differences in brain ageing – such as brain age models<sup>76</sup> – which do not necessarily relate to longitudinal change<sup>77</sup>. Second, we used the full breadth of the adult lifespan data to estimate individual-specific brain and memory change, each in a single model, using all longitudinal scans. This likely optimized the change estimates for all, including the subset with genetic data, likely in part due to improved age trajectory modelling from which one can subsequently estimate the deviation of an individual's change trajectory. This is exemplified in [SI Fig. 9](#), wherein we found PRS-AD-change associations in the same individuals in the BETULA study improved when their individual-specific slopes were estimated together with NESDA study data, compared to when estimated in BETULA data alone. Further, largely to ensure we were capturing ageing-specific processes at some point (see [SI Fig. 1](#)), we allowed the data to be increasingly comprised of only older individuals and repeatedly tested PRS-AD associations with change. As inferences based on significance are affected by arbitrary analysis choices, we took inspiration from multiverse methods to systematically define a defensible set of analysis choices to perform analyses across<sup>51,52</sup>. In our case, the principle arbitrary covariate was the age-range to test the association across, and the influence of this arbitrary choice on statistical significance is made clear in [Fig. 2](#), [Fig. 4B](#) and [Fig. 5](#), despite accounting for age- and time-related covariates. Adopting this approach, we could ensure capture of ageing-specific processes, document the stability of PRS-AD-change associations in healthy adults, and ensure the results were independent of a single arbitrary decision<sup>51,52</sup>, thus increasing their robustness.

There are also limitations. First, our approach disregards heterogeneity in ageing or AD-related atrophy; we considered all individuals obtaining an AD diagnosis over time as a single group, contrasting their average change against all consistently healthy individuals. For our purpose of delineating features with faster average change in AD, this was reasonable, as there may be a predominant AD atrophy pattern<sup>78</sup> and it is this that overlaps with the average ageing pattern<sup>5,6,42</sup>. However, as there are known AD subtypes<sup>78–80</sup>, an important question is whether individual variability in AD atrophy presentation traces to heterogeneity in brain change in healthy adults. Second, as with most large-scale brain studies, we relied on FreeSurfer-derived measures. While these are well-validated and reliable<sup>81–83</sup>, it is possible measures such as entorhinal cortex may be less reliable<sup>83</sup>. Indeed, that we observed no PRS-AD associations with left entorhinal change was surprising, and possibly manual entorhinal tracing may have led to different results. Third, longitudinal lifespan studies inevitably culminate in unrepresentative samples comprised of a higher proportion of cognitively high-performers<sup>59</sup>. Since even in healthy adults we find variation in brain ageing slopes that maps onto AD-related genetic variation and memory outcomes, it is possible the population effect-sizes may be larger. Fourth, we used only structural MRI measures sensitive to detecting small changes in brain structure that ultimately form a continuous, lifelong process of change. Including additional imaging or biomarkers will help refine detection of AD-risk in healthy adults. Finally, we do not know which individuals included here will be diagnosed with AD later in life. While our analyses suggest one could assign differential transition probabilities to healthy individuals, only time and follow-up data will tell.

**Conclusion**  
In conclusion, brain ageing trajectories in healthy adults are robustly altered by the presence of AD risk genes, in many brain features, and beyond *APOE*. We show brain features most susceptible to faster deterioration in AD are on a trajectory of accelerated change from age ~50 in healthy individuals, and that models trained on AD patients can be applied to adult lifespan data and the prediction relates to genetic AD risk in healthy adults. Finally, genetically at-risk individuals also high on a marker of brain change showed more adult lifespan memory decline, compared to genetically at-risk individuals with less brain change – suggesting our brain change marker enhanced the value of already knowing an individual's genetic risk. AD risk genes are likely not AD-specific, but induce variation in the speed of the shared pattern of ageing- and AD-related neurodegeneration along a continuum in healthy adults. Our results call for a dimensional approach to late-onset AD as not being clearly distinct from normal brain ageing.

659  
660  
661  
662  
663  
664

665 **Methods**

666 **Samples**

667 **Age-relative change estimation**

668 **Adult lifespan discovery sample:** After applying exclusion criteria (see below), an exclusively longitudinal  
669 adult lifespan sample (minimum two timepoints) comprising 1430 scans from 420 healthy individuals aged  
670 30 to 89 years (248 females; mean age [SD] = 63.7 [14.4]; 2-7 timepoints [median = 3]; follow-up range = .15  
671 - 11.1 years) was drawn from the Center for Lifespan Changes in Brain and Cognition database (LCBC;  
672 Department of Psychology, University of Oslo; see [SI Note](#)). Observations were collected across 3 scanners.  
673 Prior to participation, all individuals were screened via health and neuropsychological assessments, and the  
674 following exclusion criteria were applied across LCBC studies: evidence of neurodegenerative, neurologic or  
675 psychiatric disorders, use of medication known to affect the central nervous system (CNS), history of disease/  
676 injury affecting CNS function, and MRI contraindications as assessed by a clinician. Additionally, to guard  
677 against including participants with incipient AD in our sample, we here excluded adults whose scores on the  
678 Mini Mental State Exam (MMSE)<sup>84</sup> suggested longitudinal cognitive deficit with no later recovery (MMSE <  
679 25 at their final timepoint; 2 participants; 4 scans), and adults aged 40+ whose scores on the Beck Depression  
680 Inventory (BDI)<sup>85</sup> or Geriatric Depression Scale (GDS)<sup>86</sup> suggested depression symptoms over time with no  
681 later recovery (BDI > 21 or GDS > 10 at their final timepoint; 7 participants; 32 scans). All LCBC studies were  
682 approved by the Norwegian Regional Committee for Medical and Health Research Ethics, complied with  
683 ethical regulations, and all participants provided informed consent.  
684

685 **Adult lifespan replication sample:** To test replication, we used the two remaining longitudinal adult cohorts  
686 from the Lifebrain consortium that had up to three MRI timepoints available: the BETULA project<sup>87</sup> and the  
687 Netherlands Study of Depression and Anxiety (NESDA)<sup>88</sup>. BETULA participants underwent dementia as-  
688 sessment by a clinician using cognitive data and medical records, and those reporting neurological disorders  
689 (stroke, AD, other dementias, MS), or presenting with severe memory deficits or MRI contraindications were  
690 excluded. NESDA participants reporting neurological disorders (stroke, AD, other dementias, MS), or pre-  
691 presenting with severe memory deficits or MRI contraindications were excluded. One extreme outlier in the  
692 change data of each sample was also detected and excluded here (see [SI Fig. 8](#)). In all, we collated the data  
693 from 449 scans from 182 individuals aged 31 - 88 from BETULA (mean age = 64.3 [11.9], 2-3 timepoints,  
694 follow-up = 3.5 – 7.7 years; 85 females), with 331 scans from 138 individuals from NESDA aged 30 - 65  
695 (mean age = 45.1 [7.9], 2-3 timepoints, follow-up = 1 – 10 years; 91 females), into a single adult lifespan  
696 replication sample ([SI Table 4](#)). Although neurologically normal, 97 of the NESDA participants were diag-  
697 nosed with a current or remitted depressive and/or anxiety disorder, whereas 41 had no history of mental  
698 health disorders.  
699

700 **Polygenic risk associations**

701 To test associations with PRS-AD we used the subset of participants with both quality-controlled genetic data  
702 (European ancestry) and longitudinal change estimates, as estimated from the full adult lifespan models with  
703 all participants (also those without genetic data). For the discovery sample, 229 participants had genetic and  
704 brain change data. For the replication sample, 175 participants from BETULA and 118 from NESDA (92  
705 diagnosed) had genetic and brain change data.  
706

707 **AD samples:** We used exclusively longitudinal data from the Alzheimer's Disease Neuroimaging Initiative  
708 (ADNI)<sup>89</sup>, and the single-timepoint ADNI diagnosis (normal controls [NC]; mild cognitive impairment [MCI];  
709 AD) to define two longitudinal groups based on final-timepoint diagnosis (2–9 timepoints): *NC-long* consisted  
710 of subjects classed as NC at every diagnosed timepoint; *AD-long* consisted of all subjects where the final  
711 diagnosed timepoint was AD<sup>7</sup>. After grouping, for subjects where scanner field strength changed over time  
712 (from 1.5T to 3T), we used observations from the scanner with the most timepoints (or where equal used the  
713 3T scans). In all, *NC-long* consisted of 1680 scans from 372 subjects, and *AD-long* consisted of 2730 scans  
714 from 606 subjects ([SI Table 2](#)). The ADNI (PI: Michael W. Weiner, MD) was launched in 2003, with a goal of  
715 testing whether serial MRI can be used to measure the progression of MCI and early AD (see  
716 <https://adni.loni.usc.edu/about/>). An independent AD-control sample consisting of 107 scans from 39 *AD-*  
717 *long* subjects and 435 scans from 128 *NC-long* subjects was used for validation of ML models (AIBL dataset;  
718 data collected by the AIBL study group<sup>90</sup>; [SI Fig. 4](#)).  
719

720 **Genotyping and polygenic scores**

721 In the LCBC dataset, buccal swab and saliva samples were collected for DNA extraction, followed by ge-  
722 nome-wide genotyping using the Global Screening Array (Illumina, Inc., San Diego, CA). For a full description  
723 of genotyping, post-genotyping, and quality control and imputation methods applied to the genetic samples  
724 here, see<sup>2,91,92</sup>. We used the summary statistics from four previous large-scale GWAS of AD<sup>60,93</sup> two of which  
725 included AD-by-proxy subjects based on parental status<sup>72,94</sup>. We then computed polygenic risk scores based

726 on the genome-wide significant SNPs reported in each ( $p < 5 \times 10^{-8}$ ), weighted by their allelic effect sizes.  
727 Prior to this, shared SNPs between each GWAS and our data were pruned to be nearly independent using  
728 PLINK<sup>95</sup> with the following parameters --clump-p1 0.9999 --clump-p2 0.9999 --clump-r2 0.1 --clump-kb 500.  
729 The linkage disequilibrium structure was based on the European subpopulation of the 1000 Genomes Project  
730 Phase 3<sup>96</sup>. Because of the complexity of the major histocompatibility complex region (build hg19; chr6:  
731 25,652,429-33,368,333), we removed SNPs in this region except the most significant one prior to pruning.  
732 We computed the four PRS-AD both with and without SNPs from the APOE region (build hg19; chr19:  
733 44,909,011-45,912,650). We chose a genome-wide significant SNP threshold based on recent studies showing  
734 highest discrimination ability between patients and controls<sup>73,74</sup>. We also reasoned PRS' constructed with  
735 more relaxed p-value thresholds will be less comparable across the four scores. As an exploratory analysis,  
736 we tested two other thresholds proposed to be optimal in patient-control data ( $p < 10^{-572}$ ;  $p < 0.1^{97}$ ). From the  
737 summary files, we removed SNPs not in the reference data, with minor allele frequencies <.05, or with low  
738 imputation scores. Genetic ancestry factors (GAFs) were computed using established principal components  
739 methods. For the discovery sample analyses, we used the first 10 as covariates in genetic analyses<sup>98</sup>. For  
740 genetic analyses in the combined Lifebrain replication sample, the first 4 were used as covariates (NESDA  
741 data was prepared using ENIGMA protocols requiring 4 GAFs<sup>91</sup>).  
742

#### 743 **MRI acquisition and pre-processing**

744 T1-weighted (T1w) anatomical scans from each MRI dataset (acquisition parameters in [SI Table 5](#)) were  
745 processed using FreeSurfer's longitudinal stream<sup>99</sup> (v.7.1 for LCBC, BETULA, ADNI and AIBL, v6.0 for  
746 NESDA), yielding a reconstructed cortex and subcortex for each participant and timepoint<sup>100,101</sup>. Data for the  
747 main discovery sample comprised T1w magnetization prepared rapid gradient echo (MPRAGE) sequences  
748 collected on 3 scanners at Oslo University Hospital; a 1.5T Avanto (599 scans), a 3T Skyra (769 scans), and  
749 a 3T Prisma (62 scans; Siemens Medical Solutions, Germany).  
750

#### 751 **A priori ROIs**

752 We first analyzed subcortical and cortical volumes for *a priori* defined ROI's based on known AD vulnerability.  
753 These were based on the Braak staging scheme, initially defined using post-mortem measures of tau<sup>50</sup> and  
754 subsequently applied to *in vivo* imaging<sup>102</sup>. Similar to others<sup>102,103</sup>, we used FreeSurfer regions from the aseg  
755 and Desikan-Killiany (DK) atlas<sup>104</sup> that anatomically approximate the various stages (see [https://jagustlab.neuro.berkeley.edu/s/Braak\\_ROI-3I2g.pdf](https://jagustlab.neuro.berkeley.edu/s/Braak_ROI-3I2g.pdf)). ROIs were constructed separately per hemisphere<sup>7</sup>. Af-  
756 ter initial analyses with our main hippocampal ROI's – corresponding to Braak Stage II<sup>50</sup> – we analyzed ROI's  
757 corresponding to Stages I (entorhinal) and Stage III<sup>50</sup>, the latter we subdivided into a subcortical (amygdala)  
758 and a composite cortical ROI (parahippocampal, fusiform, lingual).  
759

#### 760 **Data-driven ROIs**

761 To empirically derive brain features with accelerated change in AD, we used machine learning in ADNI data  
762 (below) on a total of 364 features from the aseg and DK atlas<sup>104</sup>, comprising measures of cortical volume,  
763 area, thickness, grey matter/white matter contrast, subcortical volume and intensity ([Fig. 3](#)). This set of 364  
764 features was also extracted and modelled within the discovery and replication samples.  
765

#### 766 **Statistical analysis**

##### 767 **Age-relative brain change across the adult lifespan**

768 We used Generalized Additive Mixed Models (GAMMs, gamm4 v 0.2-6<sup>105</sup>) to estimate age models for each  
769 of the 364 brain features, fitting a nonlinear term for age (corrected for sex, scanner, and intracranial volume,  
770 knots = 8). We specified random intercepts and slopes for each participant. This enabled fitting an individual-  
771 specific linear model (level and slope) across all of their timepoints, to estimate how each person's slope as  
772 a function of age deviates from the average nonlinear estimation. For an age model of e.g., hippocampus,  
773 random slopes are interpretable as the extent of additional (or reduced) hippocampal change an individual  
774 exhibits relative to the predicted change given their age (taking other covariates into consideration). Hence,  
775 we refer to this as an estimate of "age-relative change". To partition unique variance associated with individ-  
776 ual-specific slope, the estimation requires that a number of participants have three or more timepoints, alt-  
777 though estimates are also produced for participants with fewer, but then are drawn from a population distri-  
778 bution more skewed towards the sample mean<sup>106</sup>. This estimation is equivalent to estimating factor scores,  
779 and as such is psychometrically superior to manual calculations of change. Absolute change was calculated  
780 by adding the random slopes to the first derivative of the GAMM average age trajectory.  
781

#### 782 **Polygenic risk associations**

##### 783 **Univariate analysis: a priori ROI's**

784 For each of our *a priori* ROIs, we used the random slopes as response variable in linear models with a PRS-  
785 AD predictor and the following covariates: mean age (across timepoints), sex, N timepoints, interval between

787 first and last timepoint, and 10 genetic PCs (GAFs). We tested the associations between PRS-AD (4 scores;  
788 tested separately) and age-relative change with progressively older age-ranges (i.e., 30-89, 35-89, 40-89 ...  
789 70-89). The reasons for this were threefold. First, because some brain features were estimated to have more  
790 negative individual-specific slopes in younger adults compared with middle-age (SI Fig. 1), we could not test  
791 the association across the entire age-range (30-89) and ensure we were capturing only ageing-specific pro-  
792 cesses. Second, it enabled assessing the stability of PRS-AD associations detectable in adult lifespan data  
793 (note that older age-ranges correspond to smaller sample sizes). Third, because empirical outcomes are  
794 influenced by arbitrary analysis decisions, we took inspiration from multiverse methods that attempt to reduce  
795 such bias by testing associations across a set of theoretically justified alternatives<sup>51,52</sup>. We also tested each  
796 association with absolute change, and False Discovery Rate (FDR) correction was applied across all 576  
797 PRS-AD tests (8 structures  $\times$  4 scores  $\times$  9 age-ranges  $\times$  2 change metrics; significance considered at  $p[\text{FDR}]$   
798  $< .05$ ). For surviving PRS-AD associations, we tested whether the FDR-corrected association including  
799 APOE remained significant at  $p < .05$  using PRS-AD<sup>noAPOE</sup>, and determined whether the number of significant  
800 hits exceeded the 5% false positive rate per structure. We also ran post-hoc tests to confirm that the PRS-  
801 AD-change estimates became more negative as the age subset steadily comprised only older individuals  
802 (see Fig. 1E-F). Here, we used the pre-computed beta estimates from all PRS-AD-change models (age-  
803 relative and absolute; all four scores) as response variable, and the age-range as predictor (coded 0-8), and  
804 tested the linear effect of age-range upon the PRS-AD beta estimates (main effect across change models).  
805 The observed coefficient thus represents the strengthening of the negative PRS-AD-change association for  
806 each increasing age subset. Next, we permuted the empirical p-value for this observed association, by gen-  
807 erating a null distribution across 1000 random permutations of the age variable (mean age) in the PRS-AD  
808 change associations, then recalculating the effect of age-range (randomized) upon the PRS-AD beta esti-  
809 mates.

810  
811 **Multivariate analyses: data-driven features exhibiting accelerated change in AD**  
812 **Machine learning model in AD**  
813 We repeated the procedure to estimate age-relative change in ADNI data, fitting a GAMM of age across *NC-*  
814 *long* and *AD-long* groups (Fig. 3A; covariates: sex, field strength). To guard against overfitting the age tra-  
815 jectories and account for the roughly three-decade drop in age coverage in the AD datasets (SI Table 2), we  
816 reduced the number of knots in the GAMM to 5. Next, we ran machine learning binary classification with  
817 XGBoost (<https://xgboost.readthedocs.io><sup>53</sup>), using the random individual-specific slopes (age-relative  
818 change) across all 364 features as input. Hyperparameters were chosen using 10-fold cross validation across  
819 500 random combinations of the following possible parameter values: nrounds (100 – 600, step = 50), eta  
820 (0.01, 0.05, 0.1, 0.15, 0.2), max\_depth (2-8, step = 1), gamma (0.5 – 1.5, step = 0.5), min\_child\_weight (1 –  
821 4, step = 1). To reduce the risk of overfitting to the training data and increase generalizability, we selected  
822 the final hyperparameters based on the mean AUC obtained across the 500 iterations of 10-fold cross-vali-  
823 dation, where each iteration logged the maximum AUC achieved across folds (final hyperparameters:  
824 nrounds = 500, eta = 0.2, max\_depth = 5, gamma = 1, min\_child\_weight = 1). This approach ensures a more  
825 robust and stable estimate of model performance across diverse data subsets while also avoiding potential  
826 overfitting to a single hyperparameter combination. For comparison, we also computed a classification model  
827 using absolute brain change as input following the same procedure (hyperparameters: nrounds = 600, eta =  
828 0.01, max\_depth = 7, gamma = 0.5, min\_child\_weight = 2). Model performance was evaluated in AIBL data  
829 (Fig. 3; SI Fig. 4).

830  
831 **Application to healthy adult lifespan data**  
832 First, we extracted the feature matrix to derive a list of brain features important for classifying *AD-long* from  
833 *NC-long* individuals based on age-relative change in ADNI. Then, in the LCBC healthy adult lifespan discov-  
834 ery sample, we calculated the principal component of age-relative change (PC1<sup>relChange</sup>) across the top 50  
835 features, not including hippocampal and amygdala volumes (to ensure these did not drive the effect). We  
836 then used PC1<sup>relChange</sup> to test for PRS-AD associations with change in our healthy adult lifespan sample, at  
837 progressively older age-ranges, for all four scores. Next, we aimed to ensure the observed multivariate as-  
838 sociations were not disproportionately driven by one or a few brain features. To do this, we first calculated  
839 the age at which absolute brain change accelerates, reasoning analyses within this age-range would give  
840 maximal chance of detecting PRS-AD effects upon individual ageing trajectories. Here, we took the principal  
841 component of absolute change across the same set of features (PC1<sup>absChange</sup>), plotted as a function of mean  
842 age. Then, within the 50-89 years age-range (Fig. 4C), we ran a sliding window PCA, iteratively calculating  
843 PC1 across 20 features with a step size of 3, across the first ~100 features (complete windows of 20 up to  
844 98 features; 27 windows), and tested PC1 associations with PRS-AD within each window. FDR-correction  
845 was applied across all 144 PRS-AD tests in this analysis, and surviving associations were tested with PRS-  
846 AD<sup>noAPOE</sup>.

847  
848 As a final proof-of-principle, we applied the weights from the binary classification procedure in AD-control  
849 data directly to the healthy adult lifespan data (i.e., LCBC as test data). This prediction uses information from  
850 the weights of all 364 features. Here, the dependent variable was calculated as  $\log[p/(1-p)]$ , where  $p$  is the  
851 model-implied probability of having AD ( $\text{probAD}^{\text{relChange}}$ ). The aim of this was not to classify healthy individuals  
852 as AD or not, but rather test our hypothesis that the learned model weights would nevertheless prove useful,  
853 and would relate to PRS-AD in healthy adult lifespan data. We also tested whether predictions derived from  
854 the ML model based on absolute change were related to PRS-AD. Again, FDR-correction was applied across  
855 all 72 PRS-AD tests in this analysis, and surviving associations were tested with PRS-AD<sup>noAPOE</sup>.  
856

### 857 **Replication analysis**

858 We first ran a GAMM separately in each of the replication cohorts, revealing a strong outlier for each in the  
859 hippocampal change data (-7.4SD in BETULA; +5.5SD in NESDA; see [SI Fig. 8](#)). Then, we collated the data  
860 and ran a GAMM comparable to the main analysis (scanner covariate indexed study cohort), estimated the  
861 random slopes, and excluded these two outliers ([SI Fig. 8](#)). Similar to the main analysis, we expected including  
862 as many longitudinal observations as possible in the GAMM would optimize the change estimates for all.  
863 Testing this assumption post-hoc, we found that in the same individuals with genetic data from BETULA,  
864 beta estimates with left hippocampal change were significantly lower when their random slopes were esti-  
865 mated together with NESDA data, relative to only using BETULA data ( $p = .009$ ; [SI Fig. 9](#)). To reduce the  
866 number of tests, we tested PRS-AD associations with change in hippocampus and amygdala, and with  $\text{PC1}^{\text{rel-}}\text{Change}$   
867 (top 50 AD-accelerated features excluding hippocampal and amygdala volumes). PRS-AD models  
868 matched the discovery sample, except for an added cohort covariate. We tested the model at progressively  
869 older age-ranges for all four scores (here until a lower age-bound of 60, above which the sample was com-  
870 prised entirely of BETULA subjects). Where the association was significant ( $p < .05$  [uncorrected]), we tested  
871 whether it remained significant with PRS-AD<sup>noAPOE</sup>. We considered it a replication where the number of sig-  
872 nificant tests per structure exceeded the 5% false positive rate. Lastly, we assessed whether the trajectory  
873 of accelerated brain ageing in AD features mirrored the discovery sample (i.e., modelled  $\text{PC1}^{\text{absChange}}$  as a  
874 function of mean age).  
875

### 876 **Memory change analysis**

877 Finally, we tested differences in memory change between groups of individuals defined by the conjunction of  
878 brain and genetic risk markers. We hypothesized higher PRS-AD individuals also high on a multivariate  
879 marker of brain change would show more memory decline across the adult lifespan. This analysis proceeded  
880 in two parts. First, we took the principal component across the four PRS-AD scores ( $\text{PC1}^{\text{PRS-AD}}$ ; explaining  
881 87%), and used the association between  $\text{PC1}^{\text{PRS-AD}}$  and the principal component across the first 50 AD-  
882 accelerated features (here including hippocampal and amygdala volumes), to divide individuals into quadrant  
883 groups ([Fig. 6D](#); pink group denotes individuals high on both risk factors). Second, from the full adult lifespan  
884 discovery sample described above ( $N = 420$ ; scans = 1430), we identified those with observations on the  
885 California Verbal Learning Test (CVLT)<sup>107</sup>. Of these, we discarded individuals with non-useable memory data  
886 (due to being part of on-off memory training projects at LCBC; see [SI Note 1](#) for information on the projects  
887 that comprised the LCBC sample). In the resulting data (713 observations from 267 individuals), we took the  
888 principal component across the three main CVLT subtests (learning, immediate, and delayed free recall;  
889 scaled) to index general memory, expressed the loadings as a proportion of the maximum loading, and kept  
890 only those with longitudinal memory observations (707 observations from 261 individuals). Then, we ran a  
891 GAMM of age on Memory (sex corrected, knots = 8). Akin to the brain analysis, age-relative memory change  
892 was estimated via the random slopes, and absolute memory change was calculated by adding the slopes to  
893 the first derivative of the GAMM average age trajectory. Having estimated memory change using as many  
894 longitudinal CVLT observations as possible – 108 individuals had both memory change and genetic data  
895 (i.e., were included in the quadrant-groups). Finally, we tested our hypothesis that the high brain change-  
896 high PRS-AD group would exhibit more adult lifespan memory decline, setting this group to the intercept, in  
897 linear models of quadrant-group on memory change, correcting for group differences in mean age, sex, N  
898 timepoints, interval between first and last timepoint, and *APOE-ε4* carriership (main model). These were  
899 tested using both age-relative and absolute memory change. Alternative models correcting for the number  
900 of *APOE-ε4* alleles, baseline memory,  $\text{PC1}^{\text{PRS-AD}}$ , and  $\text{PC1}^{\text{relChange1-50}}$ , were also run.  
901  
902  
903  
904  
905  
906

## 907 Acknowledgements

908 Scripts were run on the Colossus processing cluster at the University of Oslo, and on resources provided by UNINETT Sigma2 (project  
909 NN9769K). LCBC funding: grant 302854 (FRIPRO; to Y.W.), European Research Council under grants 283634, 725025 (to A.M.F.),  
910 and 313440 (to K.B.W.); Norwegian Research Council (to A.M.F. and K.B.W.) under grants 249931 (TOPPFORSK) and, The National  
911 Association for Public Health's dementia research program, Norway (to A.M.F.). The Lifebrain project is funded by the EU Horizon 2020  
912 Grant: "Healthy minds 0–100 years: Optimising the use of European brain imaging cohorts (Lifebrain)." Grant agreement number:  
913 732592. The Betula project was supported by a Scholar grant from Knut and Alice Wallenberg's (KAW) foundation to L.N. The infra-  
914 structure for the NESDA study ([www.nesda.nl](http://www.nesda.nl)) is funded through the Geestkracht program of the Netherlands Organisation for Health  
915 Research and Development (ZonMw, grant number 10-000-1002) and financial contributions by participating universities and mental  
916 health care organizations (VU University Medical Center, GGZ inGeest, Leiden University Medical Center, Leiden University, GGZ  
917 Rivierduinen, University Medical Center Groningen, University of Groningen, Lelystad, GGZ Friesland, GGZ Drenthe, Rob Giel  
918 Onderzoekscentrum). Some of the data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging  
919 Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-  
920 12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and  
921 through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon  
922 Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli  
923 Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO  
924 Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development  
925 LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis  
926 Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics.  
927 The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are  
928 facilitated by the Foundation for the National Institutes of Health ([www.fnih.org](http://www.fnih.org)). The grantee organization is the Northern California  
929 Institute for Research and Education, and the study is coordinated by the Laboratory for Neuro Imaging at the University of Southern California. The  
930 ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. The  
931 ADNI researchers contributed data but did not participate in analysis or writing of this report. Some of the data used in the preparation  
932 of this article were obtained from the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) funded by the Com-  
933 monwealth Scientific and Industrial Research Organisation (CSIRO), which was made available at the ADNI database  
934 ([www.loni.usc.edu/ADNI](http://www.loni.usc.edu/ADNI)). The AIBL researchers contributed data but did not participate in analysis or writing of this report.

## 938 References

1. Sexton, C. E. *et al.* Accelerated changes in white matter microstructure during aging: A longitudinal diffusion tensor imaging study. *J. Neurosci.* **34**, 15425–15436 (2014).
2. Walhovd, K. B. *et al.* Genetic risk for Alzheimer disease predicts hippocampal volume through the human lifespan. *Neurol. Genet.* **6**, (2020).
3. Vidal-Pineiro, D. *et al.* Cellular correlates of cortical thinning throughout the lifespan. *Sci. Rep.* **10**, 1–14 (2020).
4. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M. & Walhovd, K. B. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. *Prog. Neurobiol.* **117**, 20–40 (2014).
5. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M. & Walhovd, K. B. Brain changes in older adults at very low risk for Alzheimer's disease. *J. Neurosci.* **33**, 8237–42 (2013).
6. Fjell, A. M. *et al.* One-Year Brain Atrophy Evident in Healthy Aging. **29**, 15223–15231 (2009).
7. Roe, J. M. *et al.* Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer's disease. *Nat. Commun.* **12**, 1–11 (2021).
8. Braak, H. & Braak, E. Staging of Alzheimer-Related Cortical Destruction. *Rev. Clin. Neurosci.* **33**, 403–408 (1993).
9. Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. *Nat. Rev. Neurosci.* **19**, 687–700 (2018).
10. Bethlehem, R. A. I. *et al.* Brain charts for the human lifespan. *Nature* **604**, (2022).
11. Rutherford, S. *et al.* Charting brain growth and aging at high spatial precision. *Elife* **11**, 1–15 (2022).
12. Walhovd, K. B. *et al.* Neurodevelopmental origins of lifespan changes in brain and cognition. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 9357–9362 (2016).
13. Raz, N. *et al.* Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. *Cereb. Cortex* **15**, 1676–1689 (2005).
14. Fjell, A. M. *et al.* Accelerating cortical thinning: Unique to dementia or universal in aging? *Cereb. Cortex* **24**, 919–934 (2014).
15. Corrada, M. M., Brookmeyer, R., Paganini-Hill, A., Berlau, D. & Kawas, C. H. Dementia incidence continues to increase with age in the oldest old the 90+ study. *Ann. Neurol.* **67**, 114–121 (2010).
16. Jorm, A. . & Jolley, D. The incidence of dementia: A meta-analysis. *Neurology* **51**, 728–733 (1998).
17. Desikan, R. S. *et al.* Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. *PLoS Med.* **14**, 1–17 (2017).
18. Altmann, A. *et al.* A comprehensive analysis of methods for assessing polygenic burden on Alzheimer's disease pathology and risk beyond APOE. *Brain Commun.* **2**, (2020).
19. Logue, M. W. *et al.* Use of an Alzheimer's disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. *Mol. Psychiatry* **24**, 421–430 (2019).
20. Lyall, D. M. *et al.* Association between APOE e4 and white matter hyperintensity volume , but not total brain volume or white matter integrity. 1468–1476 (2020).
21. Machulda, M. M. *et al.* Effect of APOE ?4 Status on Intrinsic Network Connectivity in Cognitively Normal Elderly Subjects. **68**, 1131–1136 (2011).
22. Habes, X. M. *et al.* Relationship between APOE Genotype and Structural MRI Measures throughout Adulthood in the Study of Health in Pomerania Population-Based Cohort. (2016).
23. Bunce, D. *et al.* APOE genotype and entorhinal cortex volume in non-demented community-dwelling adults in midlife and early old age. *J. Alzheimer's Dis.* **30**, 935–942 (2012).
24. Henson, R. N. *et al.* Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort. (2020). doi:10.1177/2398212820961704
25. Jack, C. R. *et al.* Age, Sex, and APOE?4 Effects on Memory, Brain Structure, and ?-Amyloid Across the Adult Life Span. **55905**, 511–519 (2022).
26. Protas, H. D. *et al.* Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease. **70**, 320–325 (2013).
27. Foo, H. *et al.* Associations between Alzheimer 's disease polygenic risk scores and hippocampal sub fi eld volumes in 17 , 161 UK Biobank participants. *Neurobiol. Aging* **98**, 108–115 (2021).
28. Du, J. *et al.* Exploration of Alzheimer 's Disease MRI Biomarkers Using APOE4 Carrier Status in the UK Biobank. 1–30 (2021).
29. Knickmeyer, R. C. *et al.* Common Variants in Psychiatric Risk Genes Predict Brain Structure at Birth. 1230–1246 (2014). doi:10.1093/cercor/bhs401
30. Axelrud, L. K. *et al.* Polygenic risk score for Alzheimer's disease: Implications for memory performance and hippocampal volumes in early life. *Am. J. Psychiatry* **175**, 555–563 (2018).
31. Foley, S. F. *et al.* Multimodal Brain Imaging Reveals Structural Differences in Alzheimer's Disease Polygenic Risk Carriers: A Study in Healthy Young Adults. *Biol. Psychiatry* **81**, 154–161 (2017).
32. Mormino, E. C. *et al.* Polygenic risk of Alzheimer disease is associated with early- and late-life processes. *Neurology* **87**, 481–488 (2016).
33. Fjell, A. M. *et al.* Self-reported sleep relates to hippocampal atrophy across the adult lifespan - results from the Lifebrain consortium. *Sleep* 1–15 (2019). doi:10.1093/sleep/zsz280
34. Donix, M. *et al.* Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism. *Neuroimage* **53**, 37–43 (2010).
35. Lu, P. H. *et al.* Apolipoprotein e genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: A tensor-based morphometry study. *J. Alzheimer's Dis.* **23**, 433–442 (2011).
36. Harrison, T. M., Mahmood, Z., Lau, E. P., Karacozoff, A. M. & Alison, C. An Alzheimer 's Disease Genetic Risk Score Predicts Longitudinal Thinning of Hippocampal Complex Subregions in Healthy Older Adults. **3**, 1–13 (2016).
37. Taylor, J. L. *et al.* Neurobiology of Aging APOE-epsilon4 and aging of medial temporal lobe gray matter in healthy adults older than 50 years. *NBA* **35**, 2479–

2485 (2014).

38. Gorbach, T. *et al.* Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers. *Alzheimer's Dement. Diagnosis, Assess. Dis. Monit.* **12**, 1–9 (2020).

39. Brouwer, R. M. *et al.* Genetic variants associated with longitudinal changes in brain structure across the lifespan. *Nat. Neurosci.* **25**, 421–432 (2022).

40. Braak, H. & Braak, E. Staging of Alzheimer's Disease-Related Neurofibrillary Changes. *Neurobiol. Aging* **16**, 271–284 (1995).

41. Joie, R. La *et al.* Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET. *Sci. Transl. Med.* **12**, 1–13 (2020).

42. Roe, J. M. *et al.* Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer's Disease - bioRxiv. *bioRxiv* 2020.06.18.158980 (2020). doi:10.1101/2020.06.18.158980

43. Marioni, R. E. *et al.* Genetic Stratification to Identify Risk Groups for Alzheimer's Disease. *J. Alzheimer's Dis.* **57**, 275–283 (2017).

44. Hayden, K. M., Lutz, M. W., Kuchibhatla, M., German, C. & Plassman, B. L. Effect of APOE and CD33 on cognitive decline. *PLoS One* **10**, 1–10 (2015).

45. Caselli, R. J. *et al.* Longitudinal Modeling of Age-Related Memory Decline and the APOE ε4 Effect. *N. Engl. J. Med.* **361**, 255–263 (2009).

46. Kauppi, K., Rönnlund, M., Nordin Adolfsson, A., Pudas, S. & Adolfsson, R. Effects of polygenic risk for Alzheimer's disease on rate of cognitive decline in normal aging. *Transl. Psychiatry* **10**, (2020).

47. Salthouse, T. A. What and when of cognitive aging. *Curr. Dir. Psychol. Sci.* **13**, 140–144 (2004).

48. Salthouse, T. A. Why Are There Different Age Relations in Cross-Sectional and Longitudinal Comparisons of Cognitive Functioning? *Curr. Dir. Psychol. Sci.* **23**, 252–256 (2014).

49. Harris, S. E. *et al.* Polygenic risk for Alzheimer's disease is not associated with cognitive ability or cognitive aging in non-demented older people. *J. Alzheimer's Dis.* **39**, 565–574 (2014).

50. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. *Acta Neuropathol.* **82**, 239–259 (1991).

51. Simonsohn, U., Simmons, J. P. & Nelson, L. D. Specification curve analysis. *Nat. Hum. Behav.* **4**, 1208–1214 (2020).

52. Steegen, S., Tuerlinckx, F., Gelman, A. & Vanpaemel, W. Increasing Transparency Through a Multiverse Analysis. (2016). doi:10.1177/1745691616658637

53. Chen, T. & Guestin, C. XGBoost: A scalable tree boosting system. *Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.* **13-17-Aug**, 785–794 (2016).

54. Heijer, T. Den *et al.* magnetic resonance imaging in early dementia and cognitive decline. **6**, (2010).

55. Jack, C. R. *et al.* Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. *Neurology* **62**, 591–600 (2004).

56. Lupton, M. K. *et al.* The effect of increased genetic risk for Alzheimer's disease on hippocampal and amygdala volume. *Neurobiol. Aging* **40**, 68–77 (2016).

57. Chauhan, G. *et al.* Association of Alzheimer's disease GWAS loci with MRI markers of brain aging. *Neurobiol. Aging* **36**, 1765.e7–1765.e16 (2015).

58. Walhovd, K. B., Lövden, M. & Fjell, A. M. Timing of lifespan influences on brain and cognition. *Trends Cogn. Sci.* 1–15 (2023). doi:10.1016/j.tics.2023.07.001

59. Storsve, A. B. *et al.* Differential Longitudinal Changes in Cortical Thickness, Surface Area and Volume across the Adult Life Span: Regions of Accelerating and Decelerating Change. *J. Neurosci.* **34**, 8488–98 (2014).

60. Lambert, J. C. *et al.* Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. *Nat. Genet.* **45**, 1452–1458 (2013).

61. Papenberg, G., Lindenberger, U. & Bäckman, L. Aging-related magnification of genetic effects on cognitive and brain integrity. *Trends Cogn. Sci.* **19**, 506–514 (2015).

62. Hawrylycz, M. J. *et al.* An anatomically comprehensive atlas of the adult human brain transcriptome. *Nature* **489**, 391–399 (2012).

63. Wei, Y. *et al.* Statistical testing in transcriptomic-neuroimaging studies: A how-to and evaluation of methods assessing spatial and gene specificity. *Hum. Brain Mapp.* **43**, 885–901 (2022).

64. Franzmeier, N. *et al.* The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. *Nat. Commun.* **10**, 1–12 (2019).

65. Therriault, J. *et al.* Association of Apolipoprotein e ε4 with Medial Temporal Tau Independent of Amyloid-β. *JAMA Neurol.* **77**, 470–479 (2020).

66. Mesulam, M. A Plasticity-Based Theory of the Pathogenesis of Alzheimer's Disease. *Ann. N. Y. Acad. Sci.* 42–52

67. Walhovd, K. B. *et al.* Premises of plasticity - And the loneliness of the medial temporal lobe. *Neuroimage* **131**, 48–54 (2016).

68. Douaud, G. *et al.* A common brain network links development, aging, and vulnerability to disease. **111**, 17648–17653 (2014).

69. Jack, C. R. *et al.* Tracking pathophysiological processes in Alzheimer's disease: An updated hypothetical model of dynamic biomarkers. *Lancet Neurol.* **12**, 207–216 (2013).

70. Hardy, J. A., Higgins, G. A., Hardy, J. A. & Higgins, G. A. Alzheimer's Disease: The Amyloid Cascade Hypothesis. *Science (80-.)* **256**, 184–185 (1992).

71. Herrup, K. The case for rejecting the amyloid cascade hypothesis. *Nat. Neurosci.* **18**, 794–799 (2015).

72. Jansen, I. E. *et al.* Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. *Nat. Genet.* **51**, 404–413 (2019).

73. de Rojas, I. *et al.* Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. *Nat. Commun.* **12**, (2021).

74. Zhang, Q. *et al.* Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture. *Nat. Commun.* **11**, 1–11 (2020).

75. Korologou-Linden, R. *et al.* The causes and consequences of Alzheimer's disease: genome-wide evidence from Mendelian randomization. *Nat. Commun.* **13**, (2022).

76. Cole, J. H. & Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. *Trends Neurosci.* **40**, 681–690 (2017).

77. Vidal-Pineiro, D. *et al.* Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change. *Elife* **10**, 1–19 (2021).

78. Ferreira, D., Nordberg, A. & Westman, E. Biological subtypes of Alzheimer disease A systematic review and meta-analysis. **0**, (2020).

79. Vogel, J. W. *et al.* Four distinct trajectories of tau deposition identified in Alzheimer's disease. *Nat. Med.* **27**, 871–881 (2021).

80. Mohanty, R., Ferreira, D., Nordberg, A. & Westman, E. Associations between different tau - PET patterns and longitudinal atrophy in the Alzheimer 's disease continuum: biological and methodological perspectives from disease heterogeneity. *Alzheimers. Res. Ther.* 1–16 (2023). doi:10.1186/s13195-023-01173-1

81. Cardinale, F. *et al.* Validation of FreeSurfer-Estimated Brain Cortical Thickness: Comparison with Histologic Measurements. *Neuroinformatics* **12**, 535–542 (2014).

82. Han, X. *et al.* Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. *Neuroimage* **32**, 180–94 (2006).

83. Leng, Y., Ng, K. E. T., Vogrin, S. J., Meade, C. & Ngo, M. Comparative Utility of Manual versus Automated Segmentation of Hippocampus and Entorhinal Cortex Volumes in a Memory Clinic Sample. **68**, 159–171 (2019).

84. Folstein, M. F., Folstein, S. E. & McHugh, P. R. 'Mini-mental state'. A practical method for grading the cognitive state of patients for the clinician. *J. Psychiatr. Res.* **12**, 189–98 (1975).

85. Beck, A. T., Ward, C., Mendelson, M., Mock, J. & Erbaugh, J. An Inventory for Measuring Depression. *Arch. Gen. Psychiatry* **4**, 561 (1961).

86. Yesavage, J. A. *et al.* Development and validation of a geriatric depression screening scale: A preliminary report. *J. Psychiatr. Res.* **17**, 37–49 (1982).

87. Nilsson, L. G. *et al.* The betula prospective cohort study: Memory, health, and aging. *Aging, NeuroPsychol. Cogn.* **4**, 1–32 (1997).

88. Penninx, B. W. J. H. *et al.* Cohort profile of the longitudinal Netherlands Study of Depression and Anxiety (NESDA) on etiology, course and consequences of depressive and anxiety disorders. *J. Affect. Disord.* **287**, 69–77 (2021).

89. Weiner, M. W. *et al.* The Alzheimer's disease neuroimaging initiative: A review of papers published since its inception. *Alzheimer's Dement.* **8**, (2012).

90. Ellis, K. A. *et al.* The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: Methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. *Int. Psychogeriatrics* **21**, 672–687 (2009).

91. Grasby, K. L. *et al.* The genetic architecture of the human cerebral cortex. *Science (80-.)* **367**, (2020).

92. Hong, S. *et al.* TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer's disease biomarker levels. *Alzheimer's Dement.* **17**, 1628–1640 (2021).

93. Kunkle, B. W. *et al.* Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. *Nat. Genet.* **51**, 414–430 (2019).

94. Wightman, D. P. *et al.* A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease. *Nat. Genet.* **53**, 1276–1282 (2021).

95. Purcell, S. *et al.* PLINK: A tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

96. Auton, A. *et al.* A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).

97. Leonenko, G. *et al.* Identifying individuals with high risk of Alzheimer's disease using polygenic risk scores. *Nat. Commun.* **12**, (2021).

98. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. *PLoS Genet.* **2**, 2074–2093 (2006).

99. Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach. *Neuroimage* **53**, 1181–96 (2010).

100. Fischl, Sereno, M. I., Tootell, R. B. & Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. *Hum. Brain Mapp.* **8**, 272–84 (1999).

101. Fischl, Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. *Neuroimage* **9**, 195–207 (1999).

102. Schöll, M. *et al.* PET Imaging of Tau Deposition in the Aging Human Brain. *Neuron* **89**, 971–982 (2016).

103. Franzmeier, N. *et al.* Functional brain architecture is associated with the rate of tau accumulation in Alzheimer's disease. *Nat. Commun.* **11**, 1–17 (2020).

104. Desikan, R. S. *et al.* An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *Neuroimage* **31**, 968–80 (2006).

105. Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using 'mgcv' and 'lme4'. R package version 0.2-5, available at <https://cran.r-project.org/web/packages/gamm4/gamm4.pdf>. (2017).

106. Demidenko, E. *Mixed models: theory and applications with R*. (John Wiley & Sons, 2013).

107. Delis, D. C., Kramer, J. H., Kaplan, E. & Thompkins, B. A. O. *CVLT: California verbal learning test-adult version: manual*. (Psychological Corporation, 1987).