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Abstract 

Within a cell, proteins have distinct and highly variable half-lives. As a result, the 

molecular ages of proteins can range from seconds to years. How the age of a protein 

influences its environmental interactions is a largely unexplored area of biology. To 

investigate the age-selectivity of cellular pathways, we developed a methodology termed 

“proteome birthdating” that barcodes proteins based on their time of synthesis. We 

demonstrate that this approach provides accurate measurements of protein turnover 

kinetics without the requirement for multiple kinetic time points. As a first use case of the 

birthdated proteome, we investigated the age distribution of the human ubiquitinome. Our 

results indicate that the vast majority of ubiquitinated proteins in a cell consist of newly 

synthesized proteins and that these young proteins constitute the bulk of the degradative 

flux through the proteasome. Rapidly ubiquitinated nascent proteins are enriched in 

cytosolic subunits of large protein complexes. Conversely, proteins destined for the 

secretory pathway and vesicular transport have older ubiquitinated populations. Our data 

also identified a smaller subset of very old ubiquitinated cellular proteins that do not 

appear to be targeted to the proteasome for rapid degradation. Together, our data 

provide an age census of the human ubiquitinome and establish proteome birthdating as 

a robust methodology for investigating the protein age-selectivity of diverse cellular 

pathways.  
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Significance Statement 

Cellular proteins have widely different ages - whereas some have been recently 

synthesized, others have existed in the cell for days or even years. How a protein’s age 

influences its functions and interactions is largely unknown because it is difficult to 

globally differentiate proteins based on their time of synthesis. To address this challenge, 

we developed an analytical method named “proteome birthdating” that can partition 

cellular proteins into multiple discernible age groups. As an example application, we used 

proteome birthdating to examine the protein age-selectivity of the ubiquitin proteasome 

system, a major protein degradation pathway in eukaryotes. Our results show that  

proteins destined for degradation by this pathway consist of either particularly young or 

particularly old proteins, with the former being the predominant population. Together, our 

results establish proteome birthdating as a useful approach for analyzing the turnover of 

proteins and investigating the functional consequences of their age. 
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Introduction 

Cellular proteins exist in a state of dynamic flux and are continuously synthesized and 

degraded (1). Within the proteome, turnover kinetics are highly variable and protein half-

lives can therefore range from minutes to years (2-7). Turnover rates of proteins are often 

intimately linked to their function. For example, regulatory proteins typically have short 

half-lives in order for their steady-state levels to be rapidly responsive to changes in their 

synthesis rates. Conversely, abundant house-keeping proteins tend to be longer lived to 

minimize the energy expenditure associated with their continual synthesis and 

degradation (8). Because proteins are continuously turned over, the population of protein 

molecules within a cell varies widely in age. Whereas, some proteins have been very 

recently synthesized, others have persisted in the cell for days or even years (9). 

Investigating how a protein molecule’s age influences its modifications, interactions, and 

other properties within a cell is challenging as most biochemical experiments cannot 

differentiate proteins based on their time of synthesis. 

An example of a protein modification that is likely to be age-selective is ubiquitination. It 

is known that a significant fraction of nascent proteins is ubiquitinated and targeted for 

proteasomal degradation during or shortly after translation (10-12). This process, carried 

out in part by the ribosome-associated quality control (RQC) pathway, is an important 

mechanism for clearance of translationally stalled or misfolded nascent proteins (13). 

Ubiquitin-mediated degradation of newly synthesized proteins also plays an important 

role in antigen presentation and the immune system by functioning as a source for MHC 
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class I peptides (14). It is also known that when successfully synthesized proteins 

become damaged and aggregate over time, they are selectively targeted for 

ubiquitination and directed for degradation by the proteasome or selective autophagy 

(15-17). This process provides a mechanism for clearance of old, nonfunctional, or 

otherwise unneeded proteins (18). Given that ubiquitination appears to preferentially 

mark particularly young or particularly old proteins for degradation, the cellular 

ubiquitinome may be expected to have an age profile that is distinct from the proteome 

at large. However, to date, it has not been possible to analyze the age-selectivity of 

ubiquitination on proteome-wide scales. 

A number of recently developed methods have combined time-resolved metabolic 

labeling with bottom-up proteomics to investigate protein dynamics on global scales (3, 

19-22). These approaches, often referred to as “pulsed” or “dynamic” stable isotope 

labeling by amino acids in cell culture (dSILAC), typically employ a continuous labeling 

approach wherein an isotopically labelled precursor is introduced to cultured cells or 

whole model organisms over time. Changes in relative levels of newly synthesized 

proteins harboring the labeled precursor are measured in different experimental 

timepoints to determine the kinetics of protein turnover. These approaches have 

successfully measured protein half-lives on proteome-wide scales in many in vitro and in 

vivo model systems, providing fundamental insights into the post-transcriptional 

regulation of proteins. 
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In this study, we developed an alternative proteomic approach to dSILAC, named 

proteome birthdating, that utilizes a sequential rather than continuous labeling strategy. 

In proteome birthdating, a series of different isotopically labeled precursors are 

sequentially introduced to the same cell population over time and the relative level of 

each label is analyzed at a single experimental endpoint. By taking advantage of neutron 

encoded (NeuCode) amino acids (23, 24), we were able to barcode proteins with five 

labels, exceeding the multiplexing limits of typical SILAC experiments.  

The application of proteome birthdating advances proteomic analyses in two distinct 

ways. First, it provides a methodology for analyzing protein half-lives that offers several 

advantages over dSILAC. Specifically, it allows proteome dynamics to be investigated by 

analyzing a single biological sample, rather than a series of experimental time points. 

Second, proteome birthdating provides an approach for partitioning proteins within a cell 

according to their molecular age. Thus, proteins can be distinguished in proteomic 

experiments based on their time of synthesis, and age-specific properties of proteins and 

cellular pathways can be investigated.  

To demonstrate these two applications of proteome birthdating, we first used the 

approach to measure protein half-lives in primary human fibroblasts and compared the 

results to those obtained by traditional dSILAC. We then used the age-partitioned 

proteome to quantify the age distribution of the cellular ubiquitinome and investigate the 

age-selectivity of protein ubiquitination and proteasomal flux. 
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Results 

Proteome birthdating by dynamic NeuCode labeling 

The concept of proteome birthdating is illustrated in Figure 1A. In typical dSILAC 

experiments, isotopically labeled amino acids are introduced to a set of biological 

samples, each representing a distinct kinetic time point (3). Levels of fractional labeling 

are then measured within each sample at different time points to quantify protein turnover 

kinetics (Figure S1A). In contrast, in proteome birthdating, multiple labeled amino acids 

are sequentially added to, and then removed from, the same biological sample. Hence, 

each cell within the biological sample accumulates a mixture of differentially labeled 

proteins (Figure 1A, S1). In birthdated cells, relative levels of labels within proteins are 

determined by their turnover kinetics. For example, long-lived proteins will contain higher 

levels of labels introduced earlier in the time course, whereas short-lived proteins will 

contain higher levels of labels introduced later in the time course (Figure 1B, S1B). As 

such, end-point distributions of labels in a single sample can be used to determine 

proteome half-lives. Proteome birthdating not only enables analyses of proteome 

dynamics within a single biological sample, but it also provides a strategy for partitioning 

the proteome into experimentally discernible age groups. In birthdated cells, cellular 

proteins are demarcated based on their time of synthesis, allowing variations in age 

distributions of subsets of the proteome (e.g. differentially modified proteins) to be 

investigated by mass spectrometry (Figure 1C). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2023. ; https://doi.org/10.1101/2023.10.08.561433doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.08.561433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

The proteome birthdating time course used in this study is illustrated in Figure 1A. 

Typically, the number of canonical SILAC metabolic labels that can be employed in an 

LC-MS/MS experiment is limited to three (commonly referred to as “light”, “medium” and 

“heavy”) (23, 25). This limitation is due to increased spectral complexities and reductions 

in proteome coverage that occurs upon incorporation of multiple SILAC labels. NeuCode 

amino acids circumvent this limitation by using isotopically labeled amino acids with mass 

differences in the order of milliDaltons (mDa) (23, 24). These slight differences in mass 

are generated using amino acid isotopologues that differ in distribution of neutrons within 

the molecule. Thus, NeuCode amino acids have the same nominal mass but vary slightly 

in exact mass because of mass defects caused by differences in nuclear binding 

energies. Differentially NeuCode labeled peptides behave as single spectral peaks in low 

resolution MS scans (and thus do not increase spectral complexities) yet can be resolved 

and quantified in high resolution scans. The use of NeuCode amino acids increases the 

number of labels that can be incorporated in birthdating experiments. In the experiments 

described in this study, five isotopologues of lysine, that include two pairs of NeuCode 

amino acids, are sequentially added to cells (Figure S1B). Lysine isotopologues are 

designated as KXYZ, where X, Y and Z respectively indicate numbers of 13C, 2H, or 15N 

isotopes in the molecule. The labeling time for each NeuCode label is sequentially 

decreased during the kinetic time course to capture the dynamics of proteins with a wide 

a range of half-lives. 

Measurement of protein half-lives in fibroblasts by proteome birthdating 
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We validated proteome birthdating by measuring protein half-lives in primary human 

dermal fibroblasts and comparing the results to those obtained by traditional dSILAC 

experiments. Turnover kinetics in human fibroblasts had also been analyzed by dSILAC 

in several previously published studies (8, 26-28). Here, fibroblasts were grown to 

quiescence and analyzed in parallel experiments by dSILAC over a labeling time course 

of one week, and by proteome birthdating using the labeling regime illustrated in Figure 

1A. Experiments were conducted in non-dividing quiescent cells such that the labeling 

kinetics of proteins were solely dictated by their turnover and not cytosolic dilution 

resulting from cell division (28).  

Spectra and labeling patterns for one example peptide ion are shown in Figure 2A. By 

proteome birthdating, we were able to analyze the labeling patterns of more than 50,000 

peptide spectral matches (PSMs) mapped to more than 5,500 proteins in two biological 

replicate experiments (Figure S2, Supp. Data 1). Figure 2B illustrates age distributions 

of example proteins with either long (aldehyde dehydrogenase), intermediate 

(Chaperonin 60 - CPN60) or short (thrombospondin) half-lives. Protein half-lives were 

measured by fitting age distribution data to a first order kinetic model (see Materials and 

Methods). Half-life measurements for ~3,750 proteins, determined in duplicate, passed 

designated quality control filters and were used in subsequent analyses. The range of 

half-lives for the covered human proteome spanned approximately two orders of 

magnitude (from ~2 hours to ~15 days), with a median measurement of 1.7 days (Figure 

2C, Supp. Data 1). The overall age distribution of the proteome is shown in Figure 2D. 
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Several observations confirmed the precision and accuracy of half-life measurements 

determined by proteome birthdating. First, half-life measurements were reproducible in 

the two biologically replicated experiments (Figure S2B). Second, half-life measurements 

obtained by proteome birthdating correlated well to those obtained by canonical dSILAC 

in this study and previously published studies (26) (Figure S2C, D). Third, as would be 

expected, peptides mapped to the same proteins had similar measured half-lives (Figure 

S2E). Lastly, half-life measurements for subsets of the proteome expected to be 

composed of particularly short- or long-lived proteins largely had anticipated values. For 

example, signaling proteins and transcription factors had significantly shorter half-lives 

relative to housekeeping metabolic enzymes, components of the ribosome, histones, and 

nucleoporins that were previously determined to be very long-lived proteins (5, 9) (Figure 

S2F). Together, these data validated proteome birthdating as a robust methodology for 

measurement of protein half-lives that offers a number of practical and theoretical 

advantages over current dynamic proteomic approaches (see Discussion).  

Age distribution of human fibroblast ubiquitinome 

We next sought to use proteome birthdating to investigate the age distribution of 

ubiquitinated proteins in human cells. Digestion of ubiquitinated proteins with trypsin 

generates peptides harboring characteristic di-glycine residues bound to lysine 

sidechains by isopeptide bonds (Ke-GG peptides). Ke-GG peptides can be readily 

enriched by selective antibodies and quantified by bottom-up proteomics (12, 29, 30). 

Typically, proteasome-bound polyubiquitinated proteins are transient and rapidly 

degraded after modification. To quantify the age distribution of a stabilized pool of 
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ubiquitinated proteins, we first birthdated the fibroblast proteome and subsequently 

treated the cells with the proteasome inhibitor MG132 (Figure 3A). MG132-induced 

accumulation of ubiquitinated proteins was verified by Western blots (Figure S3A). In 

comparison to the experiments discussed in Figure 2, the birthdating time course was 

extended to 9.25 days to capture the dynamics of proteins with a wider range of half-

lives. Following extraction and digestion, Ke-GG peptides were immunopurified and 

relative levels of NeuCode-labeled spectra were analyzed by LC-MS/MS as described 

above. In all, we were able to characterize the age distribution of 1,846 Ke-GG peptides 

mapped to 1,089 proteins (Figure S3B, Supp. Data 2). For comparison, unmodified 

peptides were similarly generated from both control cells and cells treated with MG132 

and used to quantify the age distribution of unmodified proteins. 

In general, age distributions of Ke-GG and unmodified peptides mapped to the same 

protein differed markedly from each other (Figure 3B). For some proteins (e.g., vimentin 

shown in Figure 3B), Ke-GG peptides were significantly older than unmodified peptides. 

However, most Ke-GG peptides were significantly younger than their unmodified 

counterparts in the same protein (e.g., DNPK1 in Figure 3B.) The global age distributions 

of Ke-GG and unmodified peptides are shown in Figure 3C. Most Ke-GG peptides 

harbored the K080 label, indicating that they were synthesized in the cell within the last 

6 hours of the experimental time course. The second most frequent label in Ke-GG 

peptides was K000, marker of the oldest group of proteins, which were synthesized more 

than 9 days prior to proteasomal inhibition.  
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Median ages of Ke-GG and unmodified peptides were measured based on the 

assumption that both are derived from proteins that display first order turnover kinetics 

(see Materials and Methods). Figure 3D compares the median age distributions of all Ke-

GG and unmodified peptides. The data indicated that globally, Ke-GG peptides tended to 

be either much younger or much older than unmodified peptides, with the younger 

modified peptides being the overall more prevalent form (arrows in Figure 3D). Unlike 

unmodified peptides, Ke-GG peptides mapped to the same protein generally had a broad 

range of ages, suggesting that modifications of different sites within the same protein had 

distinct age-selectivity (Figure 3E). For some long-lived proteins, Ke-GG peptides 

appeared to be very old, with median ages exceeding 30 days (Figure 3E, S3C, dashed 

purple box). However, most Ke-GG peptides were significantly younger than unmodified 

peptides mapped to the same protein (Figure 3E, S3C, dashed green box). Young Ke-

GG peptides were derived from both short-lived and long-lived proteins. In fact, many Ke-

GG peptides that were only a few hours old mapped to very stable proteins whose steady-

state half-lives were more than 10 days (Figure 3E, S3C, D). 

Correlation between protein age and proteasomal flux 

Ke-GG peptides can be generated by polyubiquitinated proteins targeted to the 

proteasome, as well as proteins modified by ubiquitin or ubiquitin-like proteins (e.g. 

NEDD8 and ISG15) that are not necessarily marked for proteasomal degradation (31). 

To differentiate Ke-GG-generating proteins based on their contribution to proteasomal 

flux, we measured changes in steady-state levels of Ke-GG peptides after proteasomal 

inhibition. Fibroblasts were treated with MG132 for 6 hours and changes in steady state 
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levels of Ke-GG and unmodified peptides were analyzed by LC-MS/MS (Figure 4A, S4A). 

As had been observed in previous studies (12, 29, 30), levels of some, but not all, Ke-GG 

peptides increased upon proteasomal inhibition (Figure 4B, Supp. Data 3). Conversely, 

levels of non-Ke-GG peptides were not impacted by the addition of MG132 (Figure S4B).  

Ke-GG peptides mapped to the same protein generally accumulated at variable levels 

upon proteasomal inhibition (Figure S4C). Thus, Ke-GG-generating modifications at 

different sites within the same protein targeted proteins for proteasomal degradation at 

variable efficiencies. Analysis of Ke-GG peptides mapped to ubiquitin itself indicated 

increases in K6, K11, K27, K33, and K48 ubiquitin-ubiquitin linkages in MG132 treated 

cells, with the most dramatic increase observed in K48 linkages (Figure S4D). 

Conversely, levels of K63 linkages remained constant. These results are consistent with 

previous studies indicating that K63 linked polyubiquitin linkages do not target proteins 

for proteasomal degradation (12, 29). 

We next compared age distributions of Ke-GG peptides to changes in their expression 

levels following proteasomal inhibition. Our analysis indicated that MG132-induced 

changes in levels of Ke-GG peptides were inversely correlated to their age (Figure S4E, 

F). To further analyze this trend, we compiled a list of ~9,000 Ke-GG peptides mapped to 

~2,600 proteins that increase their levels by greater than 4-fold upon MG132 treatment 

(Figure 4B purple, Supp. Data 3). This subset of Ke-GG peptides can be inferred to 

represent a subset of the ubiquitinome that is rapidly targeted to the proteasome. Figure 

4C compares the age distributions of the proteasome-targeted subset of Ke-GG peptides 

to those that did not significantly accumulate upon proteasomal inhibition. The data 
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indicate that targets of the proteasome were enriched in the youngest subset of Ke-GG 

peptides, whereas older Ke-GG peptides were relatively minor contributors to overall 

proteasomal flux. Thus, most proteasome-bound proteins that accumulated after 6 hours 

of MG132 treatment were nascent polypeptides that were modified during or within a few 

hours after their synthesis. Conversely, proteins that were modified days after synthesis 

were lesser contributors to proteasomal flux. 

Gene ontology (GO) enrichment analysis of young and old proteasomal targets  

We next searched for GO annotations that were statistically enriched in particularly young 

or particularly old proteasomal targets. For each identified proteasomal target, median 

ages of Ke-GG peptides were measured relative to unmodified peptides (Figure S3D, 

Supp Data 2.) GO annotations whose constituent proteins had median Ke-GG peptide 

ages differing significantly from the overall population median were identified (Supp Data 

2). Among the ontologies with the youngest relative Ke-GG peptides were large 

stoichiometric complexes, including the 20S proteasome, Arp2/3 complex, COP9 

signalosome, CTT chaperonin complex, the nucleopore complex and the WASH complex 

(Figure 5A). Relative to the rest of the proteome, proteins known to be subunits of protein 

complexes generated younger Ke-GG peptides targeted to the proteasome. However, 

complex subunits were not solely responsible for generating proteasome-bound young 

Ke-GG peptides. Even among proteasome targets that are known to be monomeric, Ke-

GG peptides were generally younger than their unmodified counterparts mapped to the 

same proteins.  
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GO enrichment analyses also identified significant variations in age distributions of 

proteasomal targets mapped to proteins localized to different subcellular compartments. 

Specifically, proteins localized to the cytosol, nucleus and mitochondria had younger 

proteasomal targets in comparison to those localized to plasma and organelle 

membranes, extracellular space, and lumens of the lysosome, ER, and Golgi apparatus 

(Figure 5B). The results indicate that rapid degradation following synthesis is less 

prevalent among nascent proteins that are co-translationally targeted for the secretory 

pathway or vesicular transport to organelles.   
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Discussion 

We conducted experiments in human fibroblasts to validate and demonstrate the utility 

of a dynamic proteomic approach termed proteome birthdating. In proteome birthdating, 

a single biological sample is sequentially labeled with multiple isotopically labeled amino 

acids for varying time intervals. Birthdated cells amass proteins that are differentially 

labeled in accordance with their times of synthesis (i.e. “age”). We show that proteome 

birthdating is useful in at least two types of analyses. First, it provides a methodology for 

measuring protein half-lives on a global scale. Second, it can determine the age profiles 

of specific subsets of the proteome. 

In proof-of-concept studies, we took advantage of NeuCode amino acids that are 

commercially available to partition the proteome into five distinct age groups. This level 

of multiplexing surpasses the typical limit of three metabolic labels imposed by standard 

SILAC experiments. However, the number of NeuCode labels potentially resolvable by 

modern mass spectrometers expands well beyond five. For example, tryptic peptide ions 

harboring at least 8 different NeuCode variants of the +8 lysine isotopolgue are resolvable 

at resolutions exceeding 500,000 (a capability that is available in many current mass 

analyzers), and the level of multiplexing can be further expanded by inclusion of other 

lysine and arginine isotopologues (23). Thus, with the synthesis of additional NeuCode 

amino acids, the time resolution of proteome birthdating experiments may be greatly 

expanded, allowing proteomes to be partitioned into larger numbers of age ranges. 
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As a global method for measuring protein half-lives, proteome birthdating offers several 

advantages over canonical dSILAC continuous labeling strategies. In dSILAC, each 

kinetic timepoint is represented by a distinct biological sample. In contrast, in proteome 

birthdating, a single multi-labeled sample provides sufficient temporal information to 

accurately discern protein half-lives. This feature reduces the size and cost of dynamic 

proteomic projects in cell culture and complex organisms and may facilitate analyses of 

larger sample sizes. Additionally, as complete labeling time courses are encompassed 

within a single biological sample, signal intensities of all isotopic labels are internally 

normalized and experimental errors associated with rate constant measurements based 

on multiple time points are reduced. Importantly, distributions of multiple temporal labels 

within each birthdated cell allows for accurate determination of protein half-lives within 

that individual cell. With recent advances in mass spectrometry instrumentation making 

single-cell proteomics more commonplace (32-34), proteome birthdating may open the 

door to investigations of multi-timepoint proteome-wide protein turnover kinetics within 

individual cells. 

Cellular proteomes undergo continuous cycles of synthesis and degradation at rates that 

vary by orders of magnitude. As a result, within cells, ages of individual protein molecules 

are highly variable. With a few exceptions (35, 36), the relationship between protein 

molecular age and function remains largely unexplored. Proteome birthdating provides a 

methodology for investigating age distributions of specific subsets of the proteome and 

enables analyses of protein age-selectivity of cellular pathways. As an example of this 

type of application, we investigated the age distribution of the human ubiquitinome. 
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It has been shown that the UPS is responsible for degradation of aberrant ribosome-

bound and nascent proteins, removal of old and misfolded proteins, and basal turnover 

of specific short-lived proteins (10-18, 37). However, to the best of our knowledge, 

relative contributions of each of these target sets to total proteasomal flux had remained 

unquantified. Our data indicate that the overall age distribution of the proteasome-bound 

ubiquitinome is significantly younger than the steady state population of cellular proteins. 

Based on this observation, we conclude that newly synthesized proteins are the majority 

constituents of the population of ubiquitinated proteins destined for degradation by the 

proteasome.  

Young proteins can be ubiquitinated and targeted to the proteasome even in cases where 

the steady-state population of that protein in the cell is relatively long-lived. The results 

support previous findings indicating that many proteins are rapidly culled during or soon 

after synthesis, and those that survive become part of a more stable steady-state 

proteome (35, 38). Functional enrichment analysis identified subunits of protein 

complexes as one common class of rapidly degraded proteins. This result suggests that 

newly synthesized subunits that fail to incorporate into their cognate complexes are 

targeted for rapid degradation by the UPS. However, our data indicate that degradation 

of nascent polypeptides is not a unique property of protein complex subunits and appears 

to be prevalent across much of the proteome. Interestingly, the ubiquitinome of proteins 

that are known to be initially released into the cytosol following translation (e.g. proteins 

ultimately localized to the cytosol, nucleus, or mitochondrion) were generally younger 

than those destined for the secretory or vesicular transport pathways. This result may 
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indicate that co-translational interactions of nascent proteins with the signal recognition 

particle (SRP) and their transport to the ER (39) may act as a protective mechanism or 

delay the ubiquitination and eventual degradation of misfolded newly synthesized 

proteins. However, additional experiments are needed to uncover the mechanistic basis 

of this effect.  

Our data identified a minor subset of the ubiquitinome that was composed of relatively 

old proteins. However, cellular levels of these modified proteoforms did not significantly 

increase upon proteasomal inhibition, indicating that they are relatively minor contributors 

to overall proteasomal flux. We propose three non-mutually exclusive interpretations of 

this observation. First, ubiquitin or ubiquitin-like adducts of some older proteins may 

represent non-degradative or stabilizing modifications (40). Second, although older 

ubiquitinated proteins may be targeted to the proteasome, their degradation may be 

occurring more slowly than younger ubiquitinated proteins. For example, older proteins 

may be enriched in misfolded conformers whose degradation is impaired due to 

aggregation (41). Third, older misfolded or aggregated proteins that are ubiquitinated 

may be targeted for degradation by non-proteasomal pathways. For example, ubiquitin-

dependent autophagic pathways such as selective aggrephagy may play a predominant 

role in clearance of older misfolded proteins (42).  

A model consistent with our observations is presented in Figure 6. In this model, a fraction 

of newly synthesized proteins is ubiquitinated and rapidly targeted for proteasomal 

clearance. This population of young ubiquitinated proteins is the dominant contributor to 
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overall proteasomal flux in the cell. As has been previously shown, UPS-mediated 

degradation of newly synthesized proteins represents an important quality control 

mechanism to clear proteins that fail to successfully undergo translation, fold, or 

incorporate into their cognate protein complexes, and may play an important role in MHC 

1 antigen presentation (10-15). Nascent proteins that survive immediate proteolysis 

become part of the cell’s accumulated protein population. The clearance of this steady-

state population occurs largely according to non-selective (random) first order kinetics. 

As proteins get older and accumulate structural damage, they again can become targets 

of age-selective ubiquitination and targeted for degradation by the ubiquitin-dependent 

pathways such as the UPS or selective autophagy. However, selectively targeted 

younger and older populations of proteins are generally not present at high levels relative 

to their accumulated steady-state cellular populations. This is because targeted younger 

proteins are rapidly cleared before contributing to the steady state proteome, and older 

proteins generally do not become targets of selective degradation until their age 

significantly surpasses their basal half-life, a feat accomplished by a small fraction of their 

population. Thus, at steady state, the majority of a protein’s accumulated population 

appears to be degraded randomly with a uniform first order rate constant.  

This general model addresses an apparent paradox in the field of protein turnover that 

has been recognized since the 1960s (43-45). Ostensibly, the idea of selective protein 

degradation seems to contradict the fact that protein degradation can usually be modelled 

based on first order exponential kinetics. Indeed, the notion that a protein has a single 

distinct degradation rate constant and half-life implies that its clearance is a non-selective 
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random process where every molecule in the population has the same chance of 

degradation regardless of its age. However, mechanistic studies of protein degradation 

pathways such as UPS and selective autophagy leave little doubt that a cell’s protein 

quality control mechanisms can specifically target and clear nonfunctional proteins at 

specific stages of their life cycle. The proposed model avoids this contradiction because 

the selectively targeted portions of the protein population (damaged young and old 

proteins) are not expected to constitute a significant fraction of the accumulated proteome 

at steady state. Thus, in continuous labeling experiments, turnover of cellular proteins 

may give the appearance of non-selective first order kinetics even though portions of their 

populations are selectively cleared at faster rates.  

Whether the kinetic trends uncovered here for cultured human fibroblasts are 

representative of other cell types and tissues in vivo remains to be determined. Proteome 

birthdating may prove helpful in such studies and, more generally, may allow for analyses 

of diverse post translational modifications and cellular processes that discriminate among 

proteins on the basis of age.  
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Materials and methods 

Cell Culture and Stable Isotope Labeling 

Human dermal fibroblasts (HCA2-hTert) were cultured in Eagle’s Minimum Essential 

Medium (ATCC) supplemented with 15% fetal bovine serum (Thermo Fisher) and 100 

µg/ml Primocin (Invitrogen) at 37 °C with 5% CO2 and 4% O2. Cells were adapted to 

labeling conditions by growth in this media supplemented with 15% dialyzed fetal bovine 

serum (Thermo Fisher) and 100 ug/mL Primocin (Invitrogen). Quiescent cells were 

gradually adapted to this media over a period of 4 days. Cells were then split into 

experimental plates and allowed to achieve a state of quiescence by contact inhibition as 

described previously (28).  

For dynamic SILAC experiments, a series of plates, representing each time point, were 

switched to labeling media containing MEM for SILAC (Thermo Scientific) supplemented 

with dialyzed fetal bovine serum (Thermo Scientific), Primocin, and l-arginine:HCl (13C6, 

99%; Cambridge Isotope Laboratories) and l-lysine:2HCl (13C6, 99%; Cambridge 

Isotope Laboratories) at concentrations of 0.13 g/L and 0.087 g/L, respectively. Cells 

were collected after 0, 24 h, 72 h, 120 h, 168 h, and 336 h of labeling. Cells were removed 

from plates by trypsinization, washed with PBS buffer, and flash frozen as pellets prior to 

further analysis. 

For proteome birthdating experiments, adapted fibroblasts were plated on one plate per 

replicate and allowed to become quiescent. Labeling media containing K202, K040, K602, 
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and K080 (Thermo Scientific and Cambridge Isotope Laboratories) were made as above. 

Cells were labeled according to one of the two following labeling schemes as described 

in Results: 4 d K202, 2 d K040, 1 d K602, and 6 h K080; 5 d K202, 3 d K040, 1 d K602, and 6 h 

K080. Prior to switching of labels at each timepoint, cells were washed thoroughly with 

PBS three times. At the end of the time-course. Cells were processed and stored as 

above. 

Proteasome Inhibition 

To achieve proteasomal inhibition in unlabeled cells, 5mg of MG132 (EMD Millipore) was 

resuspended in 1 mL of DMSO (Corning) and cultures were treated at 0, 5, 10 or 25 µm 

for 6 hours. To inhibit the proteasome in birthdated cells, 10 µm MG132 was added to 

cells coincident with the addition of the K080 label (6 h prior to the end of the time course). 

All cells were trypsinized, washed with PBS, and flash frozen as cell pellets prior to further 

analysis. 

Cell Lysis and Protein Digestion 

Cell pellets were lysed in RIPA buffer (EMD Millipore) supplemented with EDTA Free 

Protease and Phosphatase Inhibitors (Thermo Scientific). Following incubation with 

rotation for 30 minutes, lysates were centrifuged for 15 minutes at 19,000 xg at 4 oC. 

Protein concentrations of the cleared lysates were measured by BCA assays using a 

plate reader (Thermo Scientific). 25 µg of each lysate was brought up to 25 µl in 50 mM 

TEAB buffer (Thermo Scientific). Disulfide bonds were reduced with the addition of DTT 

(Thermo Scientific) to a final concentration of 2 mm with incubation at 55 °C for 1 h. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2023. ; https://doi.org/10.1101/2023.10.08.561433doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.08.561433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Reduced cysteines were alkylated by the addition of iodoacetamide (Thermo Scientific) 

at a final concentration of 10 mM by incubating in the dark at room temperature for 30 

minutes. Subsequently, 12% phosphoric acid was added to a final concentration of 1.2% 

and samples were diluted 6-fold in 90% methanol in 100 mM TEAB. Samples were then 

loaded onto S-TRAP columns (ProtiFi), washed with 90% methanol in 100mM TEAB 

twice. 20 µL solutions containing 1 µg trypsin (Thermo Scientific) or 1 µg Lys-C (Thermo 

Scientific) were added to the columns and incubated at 37 oC overnight. Samples were 

then eluted in 40 µL of 0.1% TFA in H2O and then 40 µL of 50/50 ACN:0.1% TFA and 

subsequently pooled together. Peptides were then dried down and brought up in 100 mM 

ammonium hydroxide for high pH fractionation. 

High pH Fractionation 

Digested samples were reconstituted in 50 μl of 100 mM ammonium hydroxide and 

fractionated using MagicC18 Stage Tips. Briefly, columns were prepared by twice adding 

50 μl of acetonitrile and centrifuging at 2000 ×g for 2 min, then twice washing with 50 μl 

10 mM ammonium hydroxide. Samples were then loaded onto the column and 

centrifuged at 2000 ×g for 2 min, then washed once with 10 mM ammonium hydroxide. 

Peptides were subsequently eluted in 16 fractions, with 2%, 3.5%, 5%, 6.5%, 8%, 9.5%, 

11%, 12.5%, 14.5%, 15.5%, 17%, 18.5%, 20%, 21.5%, 27%, and 50% acetonitrile in 10 

mM ammonium hydroxide. 8 mixed fractions were generated by combining pairs of 

fractions (2% and 12.5%, 3.5% and 14.5%, etc.) resulting in 8 total mixed fractions. 
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Fractions were dried down by speed vac, resuspended in 12.5 μl of 0.1% TFA, and 

analyzed as described below. 

Ke-GG peptide immunoprecipitation 

Ke-GG peptides were enriched using the PTMScan HS Ubiquitin/SUMO Remnant Motif 

(Ke-GG) Kit from Cell Signaling Technologies using the provided reagents and protocol. 

Briefly, cell pellets were lysed in 20 mM HEPES buffer containing 9 M urea, which also 

inhibited residual de-ubiquitinating enzyme activity. Cystines were reduced with 5mM 

DTT for 1 hour at room temperature and alkylated by 50 mM IAA for 15 minutes at room 

temperature in the dark. Subsequently, samples were diluted to <2M urea with 20 mM 

HEPES pH 8.0 and digested with trypsin at a ratio of 1mg trypsin to 37.5 mg lysate at 37 

oC overnight. Total digested peptides were recovered by Sep-Pak C18 columns (Waters). 

Digested Ke-GG peptides were then enriched using the selective monoclonal antibodies 

conjugated to magnetic beads as provided in the kit. Purified Ke-GG peptides were eluted 

in 0.15% TFA, desalted with MagicC18 Stage Tips, and then analyzed by LC-MS/MS.  

Western Blots 

Cell pellets were prepared and stored as described above and subsequently lysed in 

RIPA buffer (EMD Millipore) while being rotated for 30 min at 4 oC. Lysates were then 

cleared by centrifugation at 19,000 xg for 15 minutes at 4 oC. BCA assay was then 

performed to determine protein concentrations (Thermo Scientific). Lysates were mixed 

with sample buffer (Bio-Rad), boiled, and centrifuged at 19,000 xg for 5 min. 22.5 µg of 

each sample was then loaded onto 4-20% Bio-Rad precast gels (Bio-Rad). 
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Electrophoresis was carried out for 35 minutes at 250 V using a Powerpac HV power 

supply (Bio-Rad). Some gels were then stained with Coomassie G250 Biosafe Stain. For 

western blots, replicate gels were transferred to Trans-Blot Turbo Midi PVDF membranes 

(Bio-Rad) with the Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell (Bio-Rad). Blots 

were washed for 5 min with TBST, then blocked with LI-Cor Intercept Blocking Buffer for 

30 minutes (LI-COR Biosciences). Blots were incubated with primary anti-ubiquitin 

antibody (E4I2J Cell Signaling Technologies) in blocking buffer overnight. Blots were 

washed for 5 min 3 times at room temperature with TBST, then secondary antibody 

(Dylight 800 secondary anti-rabbit, Thermo Scientific) in blocking buffer for 1 hour at room 

temperature. Blots were washed again 3 times for 5 minutes in TBST and finally stored 

in TBS. Images were acquired with Bio-Rad ChemiDoc MP Imaging System (Bio-Rad) 

and processed using ImageJ.  

LC-MS/MS Analysis 

Peptides from each fraction were injected onto a homemade 30 cm C18 column with 1.8 

µm beads (Sepax), with an Easy nLC-1200 HPLC (Thermo Fisher), connected to a 

Fusion Lumos Tribrid mass spectrometer (Thermo Fisher). Solvent A was 0.1% formic 

acid in water while solvent B was 0.1% formic acid in 80% acetonitrile. Ions were 

introduced to the mass spectrometer using a Nanospray Flex source operating at 2 kV. 

For dSILAC experiments, the gradient began at 3% B and held for 2 minutes, increasing 

to 10% B over 7 minutes, increased to 38% over 68 minutes, ramped up to 90% over 3 

minutes and held for 3 minutes before ramping down to 0% over 2 minutes and re-
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equilibrating the column for 7 minutes for a total run time of 90 minutes. The Fusion 

Lumos was operated in data-dependent mode, with MS1 and MS2 scans acquired in the 

Orbitrap (OT) and ion trap (IT) respectively. The cycle time was set to 1.5 seconds, 

Advanced Peak Determination (ADP) was set to “TRUE” and Monoisotopic Precursor 

Selection (MIPS) was set to “Peptide.” MS1 scans were performed over a range of 375-

1400 m/z with a resolution of 120K and m/z of 200, an automatic gain control (AGC) 

target of 4e5, and a maximum injection time of 50 ms. Peptides with a charge state 

between 2-5 were chosen for fragmentation. Precursor ions were fragmented by collision-

induced dissociation (CID) using a collision energy of 30%, activation time of 25 ms and 

activation Q of 0.25 with an isolation width of 1.1 m/z. The IT scan rate was set to “Rapid” 

with a maximum injection time of 35 ms and an AGC target of 1e4. Dynamic exclusion 

was set to 20 seconds and to exclude after 1 time with both low and high mass tolerance 

set to 10 ppm with exclude isotopes set to “TRUE.” 

For the NeuCode experiments in Figures 2 and Ke-GG Ips, the gradient began at 3% B 

and held for 2 minutes, increasing to 10% B over 6 minutes, increased to 48% over 95 

minutes, ramped up to 90% over 5 minutes and held for 3 minutes before returning to 

starting conditions over 2 minutes and re-equilibrating the column for 7 minutes for a total 

run time of 120 minutes. The Fusion Lumos was operated in data-dependent mode, with 

MS1 and MS2 scans acquired in the OT and IT respectively. The cycle time was set to 2 

seconds, ADP was set to “TRUE,” and MIPS was set to “Peptide.” MS1 scans were 

performed over a range of 350-1100 m/z with a resolution of 500K at m/z of 200, an AGC 

target of 1e6, and a maximum injection time of 50 ms. Peptides with a charge state 
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between 2-6 were chosen for fragmentation. Precursor ions were fragmented by higher 

energy collision dissociation (HCD) using a collision energy of 30% with an isolation width 

of 1.1 m/z. The IT scan rate was set to “Turbo” with a maximum ion injection time of 15 

ms and an AGC target of 2e3. MS2 scans were performed over a range of 200-1200 m/z. 

The minimum intensity threshold was set to 5e3 and maximum intensity threshold was 

set to 1e20. Dynamic exclusion was set to 5 seconds and to exclude after 1 time with a 

low mass tolerance of 0.55 m/z and a high mass tolerance of 1.55 m/z with exclude 

isotopes set to “TRUE.” 

For the NeuCode experiments on the unmodified peptides in Figure 3, data the gradient 

and data acquisition were performed identically with the following exceptions. Two 

separate MS1 scans were performed, one at low resolution (30K) for precursor 

fragmentation, and the other at high resolution (500K) for NeuCode quantification. The 

30K MS1 scan was performed over a range of 350-1100 m/z while the 500K MS1 scan 

was performed over a range of 349-1099 m/z. Both 30K and 500K MS1 scans had a 

maximum injection time of 100 ms. There were no intensity thresholds set. 

For the unlabeled Ke-GG IP experiments in Figure 4, the gradient began at 3% B and 

held for 2 minutes, increasing to 10% B over 6 minutes, increased to 38% over 95 

minutes, ramped up to 90% over 5 minutes and held for 3 minutes before returning to 

starting conditions over 2 minutes and re-equilibrating the column for 7 minutes for a total 

run time of 120 minutes. The Fusion Lumos was operated in data-dependent mode, with 

MS1 and MS2 scans acquired in the OT. The cycle time was set to 2 seconds, ADP was 
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set to “TRUE”, and MIPS was set to “Peptide.” MS1 scans were performed over a range 

of 375-1400 m/z with a resolution of 120K at m/z of 200, an AGC target of 4e5, and a 

maximum injection time of 50 ms. Peptides with a charge state between 2-5 were chosen 

for fragmentation. Precursor ions were fragmented by HCD using a collision energy of 

30% with an isolation width of 1.5 m/z. MS2 scans were performed over a range of 200-

1200 m/z with a resolution of 15K at m/z of 200, an AGC target of 5e4, and a maximum 

injection time of 22 ms with maximum injection time type set to “Dynamic.” The minimum 

intensity threshold was set to 8e4 and maximum intensity threshold was set to 1e20. 

Dynamic exclusion was set to 30 seconds and to exclude after 1 time with low and high 

mass tolerances of 10 ppm and exclude isotopes set to “TRUE.” 

Database Searches 

Except for dSILAC experiments (see below), all raw files were searched using SEQUEST 

within the Proteome Discoverer software platform, version 2.4 (Thermo Scientific) against 

the Uniprot human database (11/18/2019, 20,541 sequences). For high pH fractionation 

experiments, the fractions were combined within Proteome Discoverer to create one 

report. Trypsin was selected as the enzyme, allowing up to two missed cleavages. MS1 

tolerance was set to 10 ppm, while the MS2 tolerance was set to 0.6 Da. Due to 

“Indistinguishable Channel” errors within Proteome Discoverer when trying to 

differentiate between similar isotopes, two database searches were required for each file. 

The first search included oxidized methionine, Met-loss on protein N-term, NeuCode 202 

(+4.0008 Da), and NeuCode 602 (+8.0142 Da) on lysine as variable modifications, while 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2023. ; https://doi.org/10.1101/2023.10.08.561433doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.08.561433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

carbamidomethyl on cysteine was selected as a fixed modification. The second search 

replaced NeuCode 202 and 602 with NeuCode 040 (+4.0251 Da) and NeuCode 080 

(+8.0502 Da) as variable modifications, with all other parameters remaining unchanged. 

For KGG-enriched samples, custom modifications needed to be created due to GG 

(+114.0429 Da) and NeuCode labels occurring on lysine at the same time. Once again, 

two searches per file were done, with GG + NeuCode 202 (+118.0437 Da) and GG + 

NeuCode 602 (+122.0571 Da) included in the first search, and GG + NeuCode 040 

(+118.0680 Da) and GG+ NeuCode 080 (+122.0931 Da) included in the second search. 

All other parameters listed above remained the same, except that the number of missed 

cleavages was increased to 3.  

For all analysis, Percolator was used as the FDR calculator, filtering out peptides which 

had a q-value greater than 0.01. 

For dSILAC experiments, all raw files were searched using FragPipe platform that 

includes MSFragger v20.0 against the Uniprot human database (05/03/2022, 

supplemented with false decoys and contaminants via FragPipe). As SILAC experiments 

were not fractionated prior to LC-MS/MS, we submitted 6 samples from cells that were 

differentially labeled with heavy lysine (13C6) and arginine (13C6) for either 0d, 1d, 3d, 

5d, 7d, 14d. Strict trypsin was selected as the enzyme, allowing up to two missed 

cleavages. MS1 tolerance was set to 20 ppm, while the MS2 tolerance was set to 0.6 Da. 

The search included the appropriate variable modifications of oxidized methionine, Met-

loss on protein N-term and accompanying acetylation, and heavy labeled Lysine and 
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Arginine (+6.020129 Da), while carbamidomethyl on cysteine was selected as a fixed 

modification. Global protein half-lives were then calculated by calculating the L/H+L ratio 

of Lysine and Arginine for each peptide/protein at each time point and then generating 

kinetic curves for the ratios over the 14-day period. 

Measurement of peptide and protein kdeg, half-lives and ages 

The kinetic model and method for determining first order degradation rate constants (kdeg) 

from dSILAC experiments has been described in detail previously (28). Briefly, heavy to 

light (H/L) SILAC ratios were determined at the peptide level using the software FragPipe 

(46). The H/L ratios for each peptide were converted to fraction labeled (H/(H+L)) 

measurements. To determine kdeg at the protein level, fraction labeled measurements for 

all peptides and time-points mapped to specific proteins were combined in single 

aggregated kinetic plots. Protein degradation was modeled as a first order reaction and 

as cells were quiescent, the rate of dilution due to cell division was assumed to be 

negligible. The kinetic plots were fitted to the following single exponential function using 

non-linear curve fitting and the Levenberg-Marquardt algorithm: 

 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑙𝑎𝑏𝑒𝑙𝑒𝑑	(𝑡) = 1 − 𝑒!"!"#∗$       (1) 

Where t is the continuous labelling time. Kdeg measurements were converted to protein 

half-lives using the following equation: 

ℎ𝑎𝑙𝑓-𝑙𝑖𝑓𝑒 = 𝑙𝑛2
𝑘%&'7           (2) 
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For determining kdeg from proteome birthdating data, database searches were conducted 

by Proteome Discoverer (PD) as described above and MS1 spectra were exported as 

.ms1 files using msConvert (47). Intensities of PSMs labeled with K000, K202, K040, 

K602,and K080 were quantified from .ms1 files using a Mathematica notebook written in 

house. For each PSM, intensities of the five labeled forms were converted to relative 

fractional populations. For analyses conducted at peptide and protein levels, all 

corresponding PSMs were aggregated in single kinetic plots. In accordance with a first 

order kinetic model, the fractional population of each label for each PSM is related to kdeg 

by the following equation: 

 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝐾(((	(𝑡)*+,& , 𝑡-./,&) 	= (1 − 𝑒!"!"#∗$$%&'") ∗ 𝑒!"!"#∗$()*'"   (3) 

Where tpulse and tchase are the distinct pulse and chase times for each label. For example, 

in a time course where initially unlabeled (K000) cells are sequentially labeled with K202, 

K040, K602 and K080 for 4 d, 2 d, 1 d and 0.25 d, tpulse for the five labels are ∞ d, 4 d, 2 d, 1 

d and 0.25 d, and tchase are 7.25 d, 3.25 d, 1.25 d, 0.25 d and 0 d, respectively. Kdeg values 

were determined using non-linear curve fitting of aggregated birthdating data to equation 

3 employing the Levenberg-Marquardt algorithm. Goodness-of-fit for the measured 

parameters were determined by t-statistic and R2 measurements. To pass quality control 

thresholds, kdeg measurements were required to fulfill all three of the following criteria: 1) 

at least two unique PSMs were quantified, 2) t-statistic for the nonlinear fit exceeded 3.0, 

and 3) R2 for the nonlinear fit exceeded 0.9. 
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kdeg measurements determined by proteome birthdating were converted to half-lives 

using equation 2. As proteins were assumed to obey first order decay kinetics, half-lives 

could be equated to the “median age” of the steady-state protein population. Hence, at 

steady state, half of a given protein’s population were assumed to be older than its half-

life/median age, and half were assumed to be younger than its half-life/median age. 

Gene ontology enrichment analysis 

Mappings of GO terms to UniProt accessions, and their relational hierarchies were 

obtained from the gene ontology database (downloaded June 2023). For all proteins 

mapped to a given GO term, measured parameters (e.g. half-lives in Figure S2 or Log2 

age ratio between Ke-GG and non- Ke-GG peptides) were collected. The p-values for 

differences between the distribution of these values for a given GO term in comparison 

to the entire measured dataset were determined using the Mann-Whitney U test.  
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ACN – acetonitrile 

AGC – automatic gain control 

ALDH – aldehyde dehydrogenase 

APD – advanced peak determination 

CID – collision induced dissociation 

CPN60 – chaperonin 60 

DriP – Defective Ribosomal Products 

DMSO – dimethyl sulfoxide 

DNPK1 – DNA-dependent protein kinase catalytic subunit 

dSILAC – dynamic stable isotope labelling by amino acids in cell culture 

DTT – dithiothreitol 

ER – endoplasmic reticulum 

ERAD – endoplasmic reticulum associated degradation 

FDR – false discovery rate 

GO – gene ontology 

HCD – higher energy collision dissociation 

HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPLC – high pressure liquid chromatography 

hTERT – human telomerase 

IAA – iodoacetamide 

IP – immunoprecipitation 

IT – ion trap 

LC-MS/MS – liquid chromatography-tandem mass spectrometry 

MIPS – monoisotopic precursor selection 
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MS – mass spectrometry 

MW – molecular weight 

NeuCode – neutron encoded 

nLC – nanoLiquid chromatography 

OT – Orbitrap 

PD – proteome discoverer 

PSM – peptide spectral match 

PTM – post-translational modification 

PVDF – Polyvinylidene fluoride 

RIPA – Radioimmunoprecipitation Assay 

ROS – reactive oxygen species 

RQC – ribosomal quality control 

RT – retention time 

SD – semi-dry 

SRP – signal recognition particle 

TEAB – triethylammonium bicarbonate 

TFA – trifluoroacetic acid 

UPS – ubiquitin proteasome system 
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Figure 1. Proteome birthdating as a tool for measuring proteome turnover 

dynamics and age distributions. A) Experimental design of proteome birthdating in cell 

culture. Cells are sequentially labeled with isotopic variants of lysine (KXYZ) for the 

indicated lengths of time. The notation KXYZ, designates numbers of 13C (X), 2H (Y), and 

15N (Z) isotopes. K202/ K040 and K602/ K080 are pairs of NeuCode amino acids. At the 

endpoint of the time course, protein molecules are differentially labeled with lysine 

variants in accordance with their age as listed in the table. B) The age distribution of a 

protein at the endpoint of the birthdating time course is dependent on its half-life. As 

examples, the plot shows KXYZ distributions (i.e. age distributions) of three theoretical 

proteins with differing half-lives at the end of the labeling time course shown in (A). C) 

Proteome birthdating can be used as a tool to investigate the age selectivity of post-

translational modifications (PTMs). The schematic shows a theoretical scenario where a 

PTM (star) preferentially modifies younger proteins. Also see Figure S1. 
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Figure 2. Global analysis of protein half-lives in human fibroblasts by proteome 

birthdating. A) Example spectral data and labeling kinetics of a peptide ion mapped to 

MAP4 protein (Uniprot: P27816, HVPGGGNVQIQNK+3) analyzed by dSILAC and 

proteome birthdating. In the dSILAC analysis, spectra were collected from distinct 

cultures exposed to a single isotopically labeled lysine (+6 Da) and arginine (+6 Da) for 

the indicated lengths of time. Unlabeled and labeled spectra are shown in blue and red 

colors, respectively. The half-life of the peptide was measured by fitting the time-resolved 

fractional labeling measurements to a first order kinetic model. In the proteome 

birthdating analysis, a single culture was sequentially labeled by multiple lysine variants 

as shown in Figure 1A. The spectrum and the plot show the relative intensities of each 

KXYZ-labeled form of the peptide at the end of the time course. The half-life of the peptide 

was measured by fitting the labeling pattern to a first order kinetic model (See Materials 

and methods) In the plots, dots are the measured data and blue lines indicate fit to the 

model. B) Example birthdating data for three proteins with either long (alcohol 

dehydrogenase, Uniprot: P00352), medium (CPN60, Uniprot: P10809), or short 

(thrombospondin 1, Uniprot: P07996) half-lives. Light blue lines indicate peptide-level 

data, dots indicate protein-level data (median of all measured peptides), and dark blue 

lines indicate fit to the model used to measure half-lives. The measured half-lives are 

shown above the plots. C) Distribution of protein half-lives in human fibroblasts measured 

by proteome birthdating. The dashed red line indicates the median half-life of the 

proteome (1.7 d). D) Box plots showing distributions of relative populations of each KXYZ 

within the entire measured proteome. Boxes designate the interquartile range, white lines 
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are the median, and whiskers indicate the entire distribution excluding far outliers (>2 SD 

from the mean). Also see Figure S2. 
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Figure 3. Age distribution of Ke-GG peptides in human fibroblasts. A) Experimental 

design for birthdating of Ke-GG peptides. The red arrow indicates the point of addition of 

the proteasome inhibitor MG132. In cells treated with MG132, Ke-GG peptides were 

enriched by immunopurification prior to MS analysis. B) Birthdating data for Ke-GG and 

unmodified peptides mapped to two example proteins: vimentin (Uniprot: P08670) and 

DNPK1 (Uniprot: P78527). Faint lines indicate peptide-level data and solid lines and dots 

indicate median of all measured peptides for the protein. Yellow and blue colors 

designate Ke-GG and unmodified peptides, respectively. C) Distributions of relative 

populations of KXYZ labels within all measured Ke-GG and unmodified peptides. Box plots 

were constructed as described in Figure 2D. D) Distribution of median ages of Ke-GG 

and unmodified peptides. Close and open arrows respectively highlight the 

preponderance of Ke-GG peptides that are particularly young and old relative to the age 

distribution of unmodified peptides. E) Comparison of median ages of Ke-GG and 

unmodified peptides mapped to the same proteins. Vertical columns of points represent 

data for peptides matched to specific proteins that are rank ordered based on their 

(unmodified) half-lives. Green and purple dashed boxes indicate Ke-GG peptides that 

are, respectively younger and older than their unmodified counterparts mapped to the 

same proteins. Also see Figure S3. 
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Figure 4. Relationship between age and proteasomal flux of Ke-GG peptides in 

human fibroblasts. A) Experimental design for measurement of changes in Ke-GG 

peptide levels upon proteasomal inhibition. B) Left plot shows the pairwise comparison 

of Ke-GG peptide intensities in the presence and absence of MG132. Peptides whose 

levels increased by greater or less than a factor of four are shown in purple and green 

colors, respectively, and are separated by the dashed red line. The dashed black line is 

the identity line. The histogram to the right represents the log2 intensity ratios of Ke-GG 

peptides in the presence and absence of MG132. C) Comparison of age distributions of 

Ke-GG peptides determined by proteome birthdating as measured in Figure 2. The data 

indicate that Ke-GG peptides that are rapidly targeted to the proteasome are significantly 

younger than those that are not rapidly targeted to the proteasome. The box plots were 

constructed as described in Figure 2D. 
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Figure 5. Age distributions of proteasomally targeted Ke-GG peptides mapped to 

gene ontologies (GO). A) Age distributions of Ke-GG peptides relative to unmodified 

peptides for proteins mapped to GO terms associated with specific protein complexes. 

“Within protein-containing complex” includes all proteins mapped to terms of 

GO:0032991 (“protein-containing complex”), and “outside protein-containing complex” 

includes all proteins excluded from this set. The dashed red line indicates the mean value 

for age distributions of all Ke-GG peptides relative to unmodified peptides for the entire 

proteome. B) Age distributions of Ke-GG peptides relative to unmodified peptides for 

proteins mapped to GO terms associated with major subcellular localizations. The 

complete list of GO terms with Ke-GG peptide age distributions that significantly deviate 

from the proteome mean is included in Supplementary Table S2. 

 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2023. ; https://doi.org/10.1101/2023.10.08.561433doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.08.561433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 54 

 
 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2023. ; https://doi.org/10.1101/2023.10.08.561433doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.08.561433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 55 

Figure 6. A model for age-selectivity of protein degradation. Significant fractions of 

proteins are selectively targeted for degradation either immediately after synthesis or 

after residing in the cell for extended periods of time. These two populations compose 

relatively small fractions of a protein’s steady-state population, which is largely degraded 

in a non-selective manner and follows first-order kinetics. Selective degradation of young 

proteins constitutes a greater fraction of proteasomal flux (indicated by the larger arrow). 

Older proteins are ubiquitinated and degraded at relatively slower rates and can be 

targeted to non-proteasomal, yet still selective degradation pathways such as autophagy.  
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Figure S1. Comparison of dSILAC and proteome birthdating as methods for 

measurement of global protein half-lives (Related to Figure 1) A) General 

experimental designs of dSILAC and proteome birthdating. In dSILAC, a single 

isotopically labeled amino acid is added to several distinct biological samples that 

constitute each timepoint. Protein turnover kinetics are then analyzed by measuring 

changes in fractional labeling of proteins as a function of time. In proteome birthdating, a 

number of different isotopically labeled amino acids are added and removed from the 

same biological sample. Relative levels of differentially labeled variants of proteins are 

then measured at the endpoint of the experiment. B) Structures show the five isotopic 

variants of lysine used in this paper. The red atoms indicate the sites of heavy isotope 

incorporation. DMass refers to the difference in mass between adjacent variants. The 

kinetic plots show theoretical changes in relative populations of KXYZ-labeled peptides 

over time during the labeling time course described in Figure 1A. The bottom plots show 

the relative populations of KXYZ-labeled peptides at the end of the time course. Kinetic 

and endpoint plots are shown for three theoretical peptides with different half-lives as 

described in Figure 1B. 
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Figure S2. Coverage and accuracy of protein half-life measurement determined by 

proteome birthdating (Related to Figure 2) A) Coverage statistics of dSILAC and 

proteome birthdating experiments. Details of the analyses and quality control (QC) filters 

are described in Materials and Methods. Datasets of the measured parameters are 

tabulated in Supplementary Table S1. B) Pairwise comparison of protein half-lives 

measured in two replicate proteome birthdating experiments. C) Pairwise comparison of 

protein half-lives measured in with proteome birthdating (replicate 1) and dSILAC 

performed in this study. D) Pairwise comparison of protein half-lives measured in with 

proteome birthdating (replicate 1) and by dSILAC in Zhang et al. (28). E) Rank-size 

distribution plots showing half-lives of peptides measured by proteome birthdating 

(replicate 1). Vertical columns of blue points on the plot represent data for peptides 

matched to specific proteins. The green points are the median of peptide-level half-life 

measurements for each protein. Proteins are rank ordered based on their half-lives. Note 

that the range of measured half-lives for peptides within each protein is narrow relative 

to the entire range of all measured peptides within the proteome. F) Half-lives of peptides 

measured by proteome birthdating for proteins mapped to the indicated GO terms. The 

plotted GO terms are a subset of terms whose constituent proteins have half-lives are 

significantly longer or shorter than the proteome at large. Box plots indicate the 

interquartile range of measurements and the line indicates the median. The complete list 

of GO terms with half-lives that are significantly different than the complete proteome is 

listed in Supplementary Table S1.  
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Figure S3. Analysis of the age distribution of Ke-GG peptides by proteome 

birthdating (Related to Figure 3) A) SDS-PAGE and anti-ubiquitin western blots 

showing the accumulation of ubiquitinated proteins in human fibroblasts after addition of 

MG132 at different concentrations for 6 hours. Each concentration point was analyzed in 

duplicate experiments. B) Coverage statistics of proteome birthdating experiments for 

Ke-GG and unmodified peptides. Details of the analyses are described in Materials and 

Methods. Datasets of the measured parameters are tabulated in Supplementary Table 

S2. C) Pairwise comparison of measured median ages of Ke-GG and unmodified 

peptides mapped to the same proteins. Green and purple dashed boxes highlight Ke-GG 

peptides that are, respectively, younger or older than their unmodified counterparts 

mapped to the same proteins. D) Log2 ratios of ages of Ke-GG and unmodified peptides 

mapped to the same proteins. 
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Figure S4. Correlation between proteasomal flux and protein age determined by 

proteome birthdating (Related to Figure 4) A) Coverage statistics for proteome-wide 

changes in Ke-GG peptide levels upon proteasome inhibition. Datasets of the measured 

parameters are tabulated in Supplementary Table S3. B) Intensity distributions of Ke-GG 

and unmodified peptides in the presence and absence of MG132. The plots indicate that 

Ke-GG peptides, but not unmodified peptides, increase their levels upon proteasomal 

inhibition. C) Rank-size distribution plots showing Log2 fold increases in levels of Ke-GG 

peptides upon proteasomal inhibition. Vertical columns of blue points on the plot 

represent data for peptides matched to specific proteins. The green points are median 

peptide-level measurements for each protein. Proteins are rank ordered based on 

median peptide measurements. Note that MG132-induced changes in levels of Ke-GG 

peptides mapped to the same proteins are highly variable. D) Log2 fold increases in levels 

of Ke-GG peptides mapped to ubiquitin upon proteasomal inhibition. E) Correlation 

between MG132-induced changes in levels of Ke-GG peptides and their age. F) Log2 

ratios of ages of Ke-GG and unmodified peptides mapped to the same proteins. In E and 

F, peptides whose levels increased by greater or less than a factor of four are shown in 

purple and green colors, respectively. The analysis in E and F indicate that, in general, 

younger Ke-GG peptides accumulate more in the presence of MG132 in comparison to 

older Ke-GG peptides. 
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Supplementary Tables 

Supplementary Table S1. Protein half-lives by proteome birthdating and dynamic SILAC 

(TableS1.xlsx) 

Supplementary Table S2. Birthdated Ke-GG peptide age distributions (TableS2.xlsx) 

Supplementary Table S3. Expression levels changes in KGG peptides +/- MG132 

(TableS3.xlsx) 
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