

1 **Diversity and adaptability of RNA viruses in rice planthopper,**
2 *Laodelphax striatellus*

3 Qian-Zhuo Mao^{1#}, Zhuang-Xin Ye^{1,2#}, Jing-Na Yuan¹, Chao Ning¹, Meng-Nan Chen¹,
4 Yu-Hua Qi¹, Yan Zhang¹, Ting Li¹, Yu-Juan He¹, Gang Lu¹, Hai-Jian Huang¹,
5 Chuan-Xi Zhang^{1*}, Jian-Ping Chen^{1,2*} and Jun-Min Li^{1*}

6

7 **Author Affiliations:**

8 ¹ State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and
9 Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of
10 Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo
11 University, Ningbo 315211, China

12 ² College of Forestry, Nanjing Forestry University, Nanjing 210037, China

13

14 * **Corresponding authors:** Jian-Ping Chen, jianpingchen@nbu.edu.cn;
15 Chuan-Xi Zhang, chxzhang@zju.edu.cn;
16 Jun-Min Li, lijunmin@nbu.edu.cn;

17 **Abstract**

18

19 Although a large number of insect-specific viruses (ISVs) have recently been
20 discovered from hematophagous insect, studies on ISV diversity and their association
21 with phytophagous insect hosts were still insufficient. A systematic RNA virome
22 investigation was performed for an important plant virus vector, small brown
23 planthopper (SBPH), *Laodelphax striatellus*. A total number of 22 RNA viruses
24 (including 17 novel viruses) belonging to various families were successfully identified
25 and characterized. Subsequent analysis indicated that the overall RNA virus
26 transcripts per million (TPM) in SBPH was relatively consistent throughout various
27 different developmental stages of the insects, although the titers of individual viruses
28 differ among different insect tissues, suggesting a delicate balance between ISVs and
29 insect hosts. Moreover, analysis of virus-derived small interfering RNA (siRNA)
30 demonstrated that siRNA mediated antiviral immune response of SBPH was activated
31 in response to the replication of the discovered RNA viruses. Additionally, evaluation
32 for potential cross-species ability of SBPH-ISVs showed that certain SBPH ISVs
33 could successfully infect and replicate in another two rice planthoppers, the brown
34 planthopper and the white-backed planthopper, through microinjection. In conclusion,
35 the RNA virome and their adaptability in SBPH revealed in this study will contribute
36 to a better understanding of the intimate relationship between ISVs and the host
37 insects.

38

39 **Keywords:** insect-specific viruses; RNA virome; *Laodelphax striatellus*;

40

41 **Introduction**

42 The next-generation sequencing technologies have revolutionized the
43 identification of viral sequences in the past decade, redefining our understanding of
44 viruses, especially for RNA viruses. The discovery of a large number of viral
45 sequences has led us to realize that the presence of viruses has great ecological and
46 evolutionary significance in the ecosystem (Dance, 2021; Koonin et al., 2022; Shi et
47 al., 2016). It has been demonstrated that a number of insects can act as virus vectors
48 for animals or plants, and the viruses within the insect vectors primarily consist of
49 insect specific viruses (ISVs), vector-borne pathogenic viruses, as well as viruses
50 from insect symbiotic microbes or digest materials (Bonning, 2019; Nouri et al.,
51 2018). Complex interactions exist between multiple viruses, viruses-host antiviral
52 pathways, and viruses with other microorganisms in insect vectors, which may affect
53 the physiology and vector competence of insects (Nouri et al., 2018; Olmo et al., 2023;
54 Patterson et al., 2020). Therefore, virome characterization of insect vectors is crucial
55 to gain a better understanding of the co-evolution and interaction between viruses and
56 insects.

57 The virome composition of insects is related to host species, geographic locations,
58 seasons and environmental factors (de Almeida et al., 2021; French et al., 2023;
59 Huang et al., 2021; N. Li et al., 2023; Y. Xu et al., 2022). Research on the mosquito
60 virome, an important vector of human and animal infections, revealed that viral
61 abundance and composition varied seasonally and with mosquito species (de Almeida
62 et al., 2021; Feng et al., 2022). The diversity of RNA virome in the agricultural
63 important plant virus vector whitefly was associated with host cryptic species, and
64 some viruses were capable of breaking the cryptic species barrier through
65 micro-injection (Huang et al., 2021). Furthermore, at the level of individual viruses,
66 many ISVs have been identified and demonstrated to have an effect on insect
67 physiology or pathogen transmission (Jia et al., 2021; Patterson et al., 2020; Wang et
68 al., 2017;). Previous study showed that pathogenic ISVs, such as baculoviruses, can
69 kill hosts and be used as bio-pesticides (Lacey et al., 2015). Recent years, more and
70 more ISVs are discovered and exhibit various adaptive interactions with insect host.

71 Some partiti-like viruses in armyworms can increase the host's resistance to
72 pathogenic virus despite harming the host's growth and reproduction, exhibiting
73 conditional mutualistic symbiotic relationships with hosts (P. Xu et al., 2020). In
74 mosquitoes, several ISVs influence the replication or spread of arboviruses such as
75 DENV and ZIKV in the insect body, and modulate the vector competence for dengue
76 (Baidaliuk et al., 2019; Goenaga et al., 2015; Öhlund et al., 2019; Olmo et al., 2023).
77 Insects are generally co-infested by multiple virus species, thus competition for
78 survival resources and synergistic interactions were commonly observed among
79 various viruses and between viruses and its hosts. Therefore, the virome diversity may
80 reflect the adaptability of insects to various survival factors, and contribute to the
81 research on the dynamic nature of virus incidence within its hosts.

82 The small brown planthopper (SBPH), *Laodelphax striatellus* (Delphacidae;
83 Hemiptera), is a sap-sucking pest that feeds primarily on rice, and transmits a variety
84 of important crop viruses (Cao et al., 2018; J. Li et al., 2013). In addition to
85 SBPH-borne crop viruses, several ISVs in the taxon of *Dicistroviridae*, *Iflaviridae* or
86 *Fijivirus* were recently been reported or submitted to GenBank (GuY et al., 1988; Lu
87 et al., 2022a; Wu et al., 2019). Nevertheless, the overall virome of SBPH is still not
88 available and has not been characterized. In this study, we conducted a systematic
89 identification and analysis of the entire RNA virome in SBPH, identified 22 viruses in
90 the SBPH, 17 of which were novel viruses. Moreover, we examined the infestation
91 characteristic of RNA viruses in SBPH tissues and their adaptation to SBPH
92 development and the small RNA antiviral pathway. Considering the close relationship
93 of SBPH with other two planthopper species, the brown planthopper (BPH)
94 *Nilaparvata lugens* and the white-backed planthopper (WBPH) *Sogatella furcifera*,
95 the ability of ISVs from SBPH to cross-infect other two planthopper species were also
96 investigated. This study will contribute to gain a better understanding of adaptation
97 and coevolution between viruses and hosts.

98

99 **RESULTS**

100 **Datasets used for SBPH virome analysis**

101 A total of 39 transcriptome datasets of SBPH were assembled/reassembled and
102 the N50 of each library (assembles with Trinity) was calculated. Information related
103 to these datasets was provided in Supplementary Table 1. Among them, 28 datasets
104 were obtained from the NCBI SRA repository that were submitted by seven different
105 universities or institutions in China (Supplementary Figure S1 and Supplementary
106 Table S1). Additionally, we sequenced two lab-reared samples that were maintained in
107 NBU. Moreover, we obtained six field samples of SBPH from various locations in
108 China (Hangzhou, Jurong, Xinxiang, Xinzhou, Dalian, and Shenyang) and RNA-seq
109 libraries were subsequently constructed (Supplementary Figure S1 and Supplementary
110 Table S1). All of the SBPH datasets were subsequently used for the RNA virome
111 analysis.

112

113 **Diversity of RNA viruses identified in SBPH**

114 In all of the assembled libraries, a total number of 22 RNA viruses were identified,
115 of which 17 are novel ISVs (Supplementary Table 2). The five known ISVs included
116 three iflavirus (Laodelphax striatellus iflavirus 1 (LSIV1), Laodelphax striatellus
117 picorna-like virus 2 (LSPV2), Laodelphax striatella honeydew virus 1 (LSHV1)), one
118 triatovirus (Himetobi P virus (HiPV)), and one fijivirus (Laodelphax striatellus
119 reovirus (LSRV)) (GuY et al., 1988; Lu et al., 2022). Based on the viral genome
120 organization and phylogenetical analysis, the 17 newly discovered viruses were
121 classified to 13 different viral families or orders. These include two dsRNA viruses
122 (*Fusariviridae* and *Partitiviridae*), 11 +ssRNA viruses (*Permutotetraviridae*,
123 *Flaviviridae*, *Botourmiaviridae*, *Iflaviridae*, *Solemoviridae* and *Narnaviridae*) and
124 four -ssRNA viruses (*Bunyavirales*, *Phenuiviridae* and *Aliusviridae*). The conserved
125 domains of the viral genome of these 17 newly discovered viruses, along with the
126 corresponding closely related homologous viruses, are presented in Figure 1. The
127 taxonomical status of these viruses were inferred with phylogenetic trees based on the
128 predicted viral RdRP protein sequences (Figure 2).

129 **dsRNA viruses.** Three novel dsRNA viruses were identified from the transcriptomes
130 of SBPH. Each virus belongs to a different family, including *Fusariviridae*,

131 *Partitiviridae*, and *Spinareoviridae* (Figure 1A, Supplementary Table 2).
132 Phylogenetically, the novel virus Laodelphax striatellus alphafusarivirus 1 (LSAfV1)
133 was closely related to fungal viruses (Figure 2A-I) (Gong et al., 2021). On the other
134 hand, Laodelphax striatellus partiti-like virus 1 (LSPalV1) clustered together with
135 viruses reported or found in invertebrate hosts (Figure 2A-II) (Shi et al., 2016).
136 Notably, the dsRNA viruses were predominantly found in laboratory samples, while
137 only the virus from the *Partitiviridae* was detected in field samples from Shenyang
138 and Dalian (Figure 3).

139 **+ssRNA viruses.** The +ssRNA viruses are the dominant type of SBPH RNA viruses
140 in terms of both viral diversity and abundance. A total of 15 +ssRNA viruses were
141 identified in SBPH, including 11 novel viruses and 4 reported viruses, which could be
142 assigned to 7 families (Supplementary Table 2, Figure 1B).

143 A novel iflavivirus, Laodelphax striatellus iflavivirus 2 (LSIfV2), belonging to the
144 family *Iflaviridae*, was discovered in SBPH based on its genome structure and
145 phylogenetic analysis (Figure 1B and Figure 2B). Previous studies showed that a
146 number of picorna-like viruses (mainly belonging to the families of *Iflaviridae* and
147 *Dicistroviridae*), such as HiPV, LSIV1, LSHV, and LSPV, commonly infect SBPH
148 and comprised the major part of SBPH RNA virome (Supplementary Table S2) (Gu et
149 al., 1988; Wu et al., 2019). Our work also indicated that these viruses are the
150 important core viruses prevalent in various laboratory and field samples with high
151 abundance (Figure 3).

152 Interestingly, four novel viruses were identified and assigned to the family of
153 *Solemoviridae* (Figure 1B and Figure 2C), a plant/invertebrate-associated viral family
154 (Shi et al., 2016; Sømera et al., 2021). These solemoviruses distributed in all
155 laboratories SBPH cultures and the majority of field samples (Figure 3).

156 A novel permutotetra-like virus (LSPelV1) was found in samples from seven
157 laboratories and two field-sampling locations, while another novel flavi-like virus
158 (LSFIV1) was discovered only in lab samples submitted by CNRRI (Figure 3). Both
159 of these viruses are phylogenetically related to insect-specific viruses (Figure 2D and
160 E).

161 Four novel viruses belonging to the family of *Botourmiaviridae* and *Narnaviridae*
162 were identified and phylogenetically related to fungal viruses (Figure 1B, Figure 2F
163 and G). The two botourmia-like viruses were found only in the NBU lab sample with
164 low abundance, whereas the two narna-like viruses were presented in SBPH samples
165 derived from 5 laboratories and 2 field sampling locations (Figure 3). Considering
166 that a number of narnaviruses were previously reported in arthropods along with the
167 detection of fungal sequences (Chandler et al., 2015), this viral clade may be
168 originated from fungi that colonized insects.

169 **-ssRNA viruses.** Four novel -ssRNA viruses were successfully identified from
170 various SBPH datasets. These viruses included three viruses of the order *Bunyavirales*
171 and one virus in the order *Jingchuvirales* (Figure 1C, Figure 2H, I and Supplementary
172 Table 2). The bunya-like viruses were detected in samples from five labs and one field
173 sample (Figure 3). Among them, the *Laodelphax striatellus* bunya-like virus 1
174 (LSBulV1) was phylogenetically separated from the known family while the two
175 viruses were clustered with ISVs in the family of *Phenuiviridae* (Figure 2H). The
176 *Jingchuvirales*, a new viral order established in 2022, comprised of viruses infecting
177 arthropods that were globally distributed (Di Paola et al., 2022). A novel ollusvirus,
178 *Laodelphax striatellus* ollusvirus 1 (LSOIV1), discovered in this study exhibited as the
179 most prevalent -ssRNA virus across the samples derived from six labs and all six field
180 locations (Figure 2I and Figure 3).

181 **Distribution and abundance of SBPH viruses in different tissues and genders**

182 The relative abundance of RNA viruses in the guts (Gut), salivary glands (SG),
183 fat bodies (FB), female reproductive systems (FR), male reproductive systems (MR),
184 and residues (Re) of SBPH was determined through comparative transcriptome
185 analysis. Our results demonstrated that 11 viruses were presented in our lab
186 populations, with varying abundance across tissues. SG and Re exhibited the highest
187 virus abundance, while the FR showed the lowest levels (Figure 4A). Among these
188 viruses, three iflavirus (LSIV1, LSPV2, and LSHV1) accounted for over 65% of the
189 total viral abundance in each tissue. The narna-like virus (LSNaV2) accounted for 11%
190 and 30% of the total viral abundance in SG and MR, respectively, while the

191 jingchu-like virus (LSOIV1) accounted for 11% in FR (Figure 4A). Additionally,
192 LSNaV2 was much more abundant in the Gut and MR compared to other tissues.
193 LSSoV1 was not detected in the guts or reproductive systems (FR and MR). LSBulV1
194 was nearly absent in the Gut and FB, whereas LSBulV1, LSOIV1, and LSPhIV1 were
195 much more abundant in FR compare to other tissues (Figure 4B). The abundance of
196 other viruses, including LSPelV1, LSSoV4, LSIV1, LSPV2, and LSHV1, was
197 comparable in different tissues (Figure 4B). Regarding the total viral abundance, no
198 significant differences were observed between female and male adult SBPH (Figure
199 4C). However, for the individual viruses, LSPelV1 showed higher abundance in males
200 than that of the females (Figure 4D). Nonetheless, there were no significant
201 differences in the distribution of this virus among female and male reproductive
202 systems. Conversely, two bunya-like viruses, LSBulV and LSPhIV1, exhibited
203 significantly higher abundance in females compared to males, consistent with their
204 elevated expression in FR compared to MR (Figure 4B and D). Moreover, no
205 significant differences were observed for the abundance of other viruses between
206 males and females (Figure 4D).

207

208 **Virome diversity and abundance in different developmental stages of SBPH**

209 The viral abundance dynamics of individual viruses in different development
210 stages (from egg to adult) were evaluated for the SBPH population in our laboratory.
211 The presence of 11 viruses was revealed by transcript mapping analysis. The results
212 suggested that the abundance of total RNA viruses in SBPH was relatively stable at a
213 level of 1.0×10^6 TPM throughout the different development stages (egg, nymph, and
214 adult stages) (Figure 5A).

215 For individual viruses, most of them exhibited consistent infestation levels
216 throughout the various developmental stages except for HiPV and LSOIV1 (Figure
217 5B). The abundance of each virus species maintained respective levels of viral
218 abundance throughout the life cycle of SBPH (Figure 5B). These findings imply the
219 existence of viral load thresholds for the proliferation of different viruses in SBPH,
220 enabling persistent virus infestation in the insects. Notably, two closely related

221 iflavirus, LSPV2 and LSHV1, exhibited almost identical infestation levels and
222 proliferation patterns (Figure 5B). In contrast, HiPV, a virus frequently observed in
223 various SBPH databases and characterized by consistently high levels of abundance
224 (Chen et al., 2015; J. Li et al., 2014), displayed an unstable viral expression pattern in
225 our laboratory population (Figure 5B). The reasons behind this pattern could be either
226 a low viral infection rate in this population or the regulation of persistent SBPH
227 infestation by this virus through several unknown factors. As for the narna-like virus
228 LSNaLV2, its viral load increased significantly with the development of SBPH,
229 particularly after eclosion of the adults (Figure 5B). Considering its taxonomic
230 relation to fungal viruses, the infection pattern of this virus may be associated with the
231 function of its fungal host (Hillman & Cai, 2013).

232 During the egg stage of the insects, each virus was detected at different abundant
233 levels (Figure 5B). Of these, HiPV has been consistently reported to be incapable of
234 vertical transmission in host insects (Toriyama et al., 1992). However, the
235 transcriptome analysis demonstrated its presence at low abundance, possibly due to
236 the lack of surface washing of the tested egg samples, thus allowing the detection of
237 the virus on the egg surface. Consequently, it remains unclear whether viruses with
238 lower viral loads in eggs (such as LSSoV1, LSPhLV1, and LSOIV1) are vertically
239 transmitted in the SBPH population. Contrarily, several SBPH viruses (LSBulV1,
240 LSSoV4, LSPeLV1, LSNaLV2, LSIV1, LsPV2, and LSHV1) exhibited higher viral
241 loads in eggs, implying that they might be vertically transmitted (Figure 5B).

242

243 **Analysis of virus derived siRNAs in SBPH lab populations**

244 Viral replication activates RNA interference (RNAi) pathways mediated by small
245 interfering RNA (siRNA), so vsiRNA analysis is essential for detecting RNA viruses
246 and obtaining putative viral sequences that lack detectable sequence similarity to
247 known viruses (Gammon & Mello, 2015; Webster et al., 2015). To investigate the
248 infestation of SBPH-specific viruses in insects and host siRNA-mediated immune
249 regulation, we conducted both transcript and small RNA sequencing on our SBPH
250 laboratory populations. Among 22 RNA viruses identified in SBPH, siRNAs of this

251 SBPH lab sample were mapped to eight viruses after filtering out host genome
252 sequences. These included six +ssRNA viruses (LSIV1, LSPV2, LSHV1, HiPV,
253 LSSoV4, and LSSoV1), and two -ssRNA viruses (LSBuV1 and LSOIV1) (Figure
254 6A). With the exception of HiPV and LSOIV, the virus-derived siRNAs (vsiRNAs)
255 exhibited the typical size distribution and polarity pattern: predominantly distributed
256 at 19 to 23 nucleotides, with a peak at 22 nt (Figure 6A). Furthermore, they originated
257 nearly equally from both sense and antisense strands of the viral genomic RNA
258 (Figure 6A). Both HiPV-vsiRNA and LSOIV-vsiRNA displayed a significantly
259 positive-strand bias and a broad range of sizes peaking at 22 nt (Figure 6A). These
260 findings indicate that the virus can replicate within SBPH and trigger the antiviral
261 RNAi pathway. Additionally, an analysis of the vsiRNA distribution in the
262 corresponding genomes/segments revealed widespread distribution but with
263 noticeable asymmetric hotspots on both strands, suggesting that these regions might
264 be preferentially targeted for cleavage by the host immune system (Figure 6A). We
265 then calculated and compared the number of vsiRNA reads per transcript (referred to
266 as vsiRNA ratio) (Webster et al., 2015). The results unveiled variations of the vsiRNA
267 ratios for the different viruses. Notably, the two solemo-like viruses (LSSoV4 and
268 LSSoV1) displayed above ten times higher vsiRNA ratios in comparison to the
269 iflavivirus LSIV1 (Figure 6B).

270

271 **Evaluation for cross-species ability of SBPH ISVs**

272 Given the close phylogenetic relationship among three planthopper species
273 (SBPH, BPH and WBPH) (Ammar & Nault, 2002), the potential infection and
274 replication ability of seven SBPH-ISVs in WBPH and BPH was investigated.
275 SBPH-ISV inoculum was injected separately into 3rd-instar individual nymphs of
276 WBPH and BPH (Figure 7A) and the presence of the SBPH-ISVs in the inoculum
277 was confirmed by RT-PCR (Figure 7B).

278 Among the seven SBPH-ISVs injected into BPH, LSOIV1 exhibited a significant
279 increase in viral load at 6 days post-injection (DPI), accompanied by a high
280 abundance of vsiRNA production (Figure 7C). In contrast, the viral load of LSHV1

281 decreased without vsiRNA induction (Figure 7C). The remaining viruses (LSPelV1,
282 LSIV1, LSSoV4, LSSoV1, and LSPV2) did not display difference in viral loads or
283 induce vsiRNA production (Figure 7C). For WBPH at 6 DPI post injection, LSPelV1
284 exhibited an increase in viral load along with a high abundance of vsiRNA production
285 (Figure 7C). Similar to the results observed for BPH, the viral load of LSHV1
286 decreased without vsiRNA production. The other viruses also did not exhibit changes
287 in viral loads or trigger vsiRNA production (Figure 7C). In conclusion, our findings
288 suggest that certain SBPH-ISVs are capable of infecting and replicating in closely
289 related planthopper species, such as LSOIV1 in BPH and LSPelV1 in WBPH.

290

291 **Discussion**

292 In this study, we conducted a comprehensive and systematic analysis to identify
293 and analyze RNA viruses in the planthopper SBPH. We successfully identified 22
294 RNA viruses, including 17 novel viruses from diverse families or orders
295 (Supplementary Table 2). A number of identified RNA viruses were assigned in
296 unclassified clades in the families of *Partitiviridae*, *Permutotetraviridae*, *Flaviviridae*,
297 *Botourmiaviridae*, *Narnaviridae*, and *Phenuiviridae* (Figure 3), suggesting novel
298 genera might be existed within these families. Additionally, we encountered one virus
299 that could not be classified within any of the known viral families in the *Bunyavirales*
300 order, implying that this virus might belong to a new family.

301 The SBPH viruses identified in our study included ISVs as well as viruses
302 associated with plants or symbiont fungi. Most SBPH viruses clustered with
303 invertebrate viruses from families of *Partitiviridae*, *Flaviviridae*, *Iflaviridae*,
304 *Phenuiviridae*, *Dicistroviridae*, and *Aliusviridae* (Figure 3), indicating that they might
305 be specific to SBPH. Interestingly, considering that SBPH is an important plant virus
306 vector, the four novel sobemoviruses discovered in our study (Figure 2C), as well as
307 another fijivirus reported previously, exhibited close phylogenetic relationships with
308 plant viruses (Lu et al., 2022a; Sōmera et al., 2021). This close relationship between
309 insect vector and plant viruses strongly supports the hypothesis that plant viruses
310 might be evolved from invertebrate viruses (Dolja et al., 2020). However, it remains

311 unclear whether SBPH specific sobemoviruses pose a threat to crops or if SBPH can
312 transmit viruses from the same taxon. Therefore, characterizing the SBPH virome is
313 crucial for identifying potential plant viruses that can potentially endanger agricultural
314 production. The second group of viruses identified in our study clustered with fungal
315 viruses belonging to the families such as *Fusariviridae* and *Narnaviridae* (Gong et al.,
316 2021; Hillman & Cai, 2013; Roossinck, 2019). These viruses were found abundantly
317 in different populations (Figure 2C). The narna-like virus LSNaV2, in particular,
318 exhibited high infestation rates in our laboratory populations and was distributed
319 widely within various insect tissues (Figure 4 and 5). These findings suggest that the
320 host fungi of LSNaV2 might be closely associated with SBPH. Thus, the virome, as a
321 significant component of the insect microbiome, interacts with insects and symbiotic
322 microbes in various ways.

323 Previous research has demonstrated that individual insects and insect groups can
324 act as reservoirs for numerous viruses (Bonning, 2019; Öhlund et al., 2019; Olmo et
325 al., 2019). Our experimental results revealed that while the titers of individual viruses
326 differ among different insect tissues, the overall RNA virus transcripts per million
327 (TPM) in whole insects remain relatively consistent throughout different
328 developmental stages (Figure 4 and 5). The TPM value serves as an indicator of viral
329 transcription and replication, and the consistent viral load of total RNA viruses
330 suggests the presence of a delicate balance between viruses and insects (Aguiar et al.,
331 2015, 2016; Gammon & Mello, 2015). This equilibrium implies that viruses can only
332 utilize limited resources for persistent infection. To adapt to host selection pressures
333 with limited resources, all viruses within insects establish synergistic or antagonistic
334 relationships to ensure their survival and propagation among individuals and
335 populations of insects (Bonning & Saleh, 2021).

336 In order to maintain the balance between persistent virus infection and insect
337 survival, the innate antiviral immunity pathways of the host must play essential roles.
338 In insects, RNA interference pathways detect virus infection and initiate an antiviral
339 response to limit virus replication (Bonning & Saleh, 2021; Olmo et al., 2019). The
340 production and abundance of vsiRNAs are involved in the processing of viral RNA

341 products. The sRNA patterns from both SBPH-ISVs and SBPH-borne plant viruses
342 display typical dicer-mediated degradation signatures, ranging from 18 to 25 nt in
343 length and showing peak detection at 22 nt. This consistency in vsiRNA patterns
344 between ISVs and vector-borne viruses implies that they were all regulated by
345 dicer-mediated RNAi (Aguiar et al., 2016; Gammon & Mello, 2015; J. Li et al., 2013).
346 Similar patterns of vsiRNAs have been observed in grasshoppers, thrips, and
347 whiteflies (Chiapello et al., 2021; Huang et al., 2021; Y. Xu et al., 2022). Moreover,
348 vsiRNA profiles for RNA viruses in other insects, such as mosquitoes, fruit flies, and
349 leafhoppers, primarily peak at 21 nt (Aguiar et al., 2015, 2016; Lan et al., 2016).
350 These profiles suggest that the small RNA profiles of viruses vary in different hosts,
351 possibly due to variations in dicer isoforms processing viral dsRNAs among host
352 species. Additionally, the vsiRNA ratio (the number of vsiRNA reads per virus
353 transcript) varies among viruses in SBPH (Figure 6). Low-abundance viruses
354 infecting insects can trigger robust host RNA interference responses and result in
355 high-abundance vsiRNAs (Figure 6B). This effect may be attributed to the activity of
356 viral suppressors of RNAi (VSRs), or differences in how viruses are targeted by insect
357 immune mechanisms (Aguiar et al., 2015; Gammon & Mello, 2015; Webster et al.,
358 2015). In addition to RNA interference, insects employ other mechanisms, such as
359 Toll and IMD pathways, apoptosis, and autophagy, to control viral infections (Olmo et
360 al., 2019). Therefore, studying the interactions and trade-offs between viruses and
361 insects, as well as among different viruses, can enhance our understanding of the
362 long-term adaptation of viruses to their hosts.

363 Virus transmission between host species is universal and underlies disease
364 emergence (French et al., 2023). Host switching events occur readily between closely
365 related host species, with the host genetic background considered a critical factor in
366 shaping the insect virome (Huang et al., 2021; Longdon et al., 2014; Y. Xu et al.,
367 2022). The three rice planthopper species used in this study share same habitat and
368 many ecological characteristics, facilitating the possibility of cross-species
369 transmission for these viruses. In this study, we demonstrated the ability of certain
370 SBPH ISVs to infect other planthopper species through a microinjection approach

371 (Figure 7), overcoming the pre-entry barrier. This suggests that similar virus-cell
372 interactions occur during viral replication of certain viruses within two planthopper
373 species. However, the presence of replication and assembly barriers limits the
374 expansion of host range for most SBPH ISVs, indicating a relatively conservative
375 phylosymbiosis between planthopper hosts and their viruses. Notably, for zoonotic
376 viruses, host switching and spillover events have led to significant disease outbreaks
377 in the past. Examples include the spillover of the Ebola virus from bats to humans and
378 the recent COVID-19 pandemic, believed to have originated from a spillover event
379 involving bats and an intermediate host (Ruiz-Aravena et al., 2022). Therefore, it is
380 important to evaluate the transmission ability of viruses among different
381 phytophagous insect hosts in future studies.

382

383

384 **Materials and Methods**

385 **RNA sequencing (RNA-seq) Libraries construction**

386 To investigate RNA viruses in SBPH, approximately 68 RNA-seq datasets were
387 retrieved from the NCBI SRA repository. The dataset with the largest total number of
388 bases was selected when there were several biological replicates available. As a result,
389 a total of 28 typical high-quality SRA datasets were chosen representing at least 7
390 different lab populations from different universities and institutions in China.
391 Meanwhile, lab-reared samples maintained in our phytotron in Ningbo University and
392 field samples obtained from 6 rice-growing areas in China (Hangzhou, Jurong,
393 Xinxian, Xinzhou, Dalian and Shenyang), were collected to generate RNA-seq
394 libraries. Total RNAs were extracted using 20-30 SBPHs comprised of different
395 development stages from each sample. RNA samples were then used for Illumina high
396 throughput sequencing (transcriptome). Paired-end (150 bp) sequencing of the RNA
397 library was performed on the Illumina HiSeq 4000 platform (Illumina, USA) by
398 Novogene (Tianjin, China). The transcriptome raw reads of these samples were
399 deposited in Nature Microbiology Data Center (NMDC). A total of **39** transcriptome
400 datasets were generated and the abbreviations and detail information are provided in
401 Supplementary Table 1.

402 **Dataset reassembly and RNA virome discovery**

403 Quality assessment were conducted for the sequencing reads of the 39 selected
404 transcriptome datasets using FastQC and Trimmomatic. The filtered reads were
405 reassembled/assembles de novo using the two assembler software packages Trinity
406 and metaSPAdes with default parameters. The assembled contigs were compared with
407 the NCBI viral RefSeq database using diamond Blastx. Since most of the datasets
408 were retrieved from public databases, strict criteria were used for the identification of
409 putative novel viruses in each dataset. Firstly, the diamond BlastX was set an E-value
410 cutoff of 1×10^{-20} . Secondly, the viral homology contigs had to meet a minimal
411 coverage and length criteria of $20 \times$ and 500 bp, respectively, and they had to contain
412 complete open reading frames (ORF) of predicted viral RNA-dependent RNA
413 polymerase (RdRP). Thirdly, the viral homology contigs needed to be confirmed by

414 both of the assemblers, Trinity and metaSPAdes. Fourthly, to eliminate false positives,
415 the regions of the candidate viral-like contigs matched to the reference virus were
416 further compared with the NCBI nucleotide and non-redundant protein databases.
417 Sequences of all identified novel viruses from this study have been deposited in
418 NMDC. Viral abundance was assessed using the number transcripts per million (TPM)
419 within each library after the removal of rRNA reads.

420

421 **Virus genome annotation and phylogenetic analysis**

422 The newly identified viral contigs were annotated with InterPro database
423 (Mitchell et al., 2019). Conserved RdRP regions of the discovered viruses, together
424 with RdRP protein sequences of reference viruses, were used for phylogenetic
425 analysis. The RdRP sequences were aligned with MAFFT, and ambiguously aligned
426 regions were then trimmed by Gblock. The best-fit model of amino acid substitution
427 was evaluated by ModelTest-NG. Maximum likelihood (ML) trees were constructed
428 using RAxML-NG with 1000 bootstrap replications.

429

430 **Virus names**

431 Viruses identified in this work were named following these criteria: (i) The first
432 part of the name is the latin name of host insect, *Laodelphax striatellus*; (ii) The
433 second part of the name identifies is the virus taxonomic group. If the virus is
434 assigned clearly to the level of “Genus”, the genus name is used. Additionally, if the
435 virus can be only assigned to “Family” or “Order”, then the “prefix-like virus” is used.
436 (iii) The third part of the name is a sequential number.

437

438 **Correlation for the RNA virome composition of SBPH with various development 439 stages and tissues of the host insects**

440 To investigate the relative temporal and spatial expression of ISVs in SBPH,
441 samples from different development stages and tissues of adult insects were collected
442 for RNA-seq. For viral temporal expression detection, SBPH eggs and nymphs of
443 1st-5th instar, as well as female and male adults at 0-24h, 2 day, 4 days, 6 days and 8

444 days post eclosion, were collected. Each sample comprised of 5-8 insects and two
445 replicates were conducted. For viral spatial expression detection, tissue samples from
446 intestines (Gut), salivary glands (SG), fat bodies (FB), male reproductive systems
447 (MR), female reproductive systems (FR) and residues (Re) were dissected from the
448 SBPH lab cultures. All the collected samples were conducted for RNA extraction and
449 transcriptome RNA-seq. The viral abundance was subsequently compared in various
450 tissues and development stages of SBPHs.

451

452 **Small RNA sequencing and analysis**

453 The cDNA libraries were prepared using the Illumina TruSeq Small RNA Sample
454 Preparation Kit (Illumina, CA, USA), and sRNA sequencing was performed on an
455 Illumina HiSeq 2500 by Novogene (Tianjin, China). The raw sRNA reads were firstly
456 treated to remove the adaptor, low quality, and junk sequences as described previously.
457 The clean sRNA reads of the length 18- to 30-nt were extracted using the
458 FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit) and were mapped to the
459 identified viral contigs using Bowtie software with perfect match (i.e. allowing zero
460 mathch). Downstream analyses were performed using custom perl scripts and Linux
461 shell bash scripts.

462

463 **Cross-species Ability Assessment of ISVs in the three rice planthoppers**

464 To evaluate the infectivity of SBPH-ISVs to WBPH and BPH, the SBPH-ISVs
465 inoculum were prepared from the SBPH populations as described previously (Huang
466 et al., 2021). A total of 10 adult planthopper SBPHs were surface-sterilized with 70%
467 ethanol and then rinsed with sterile distilled water. The sterilized insects were
468 homogenized in 150 μ l phosphate-buffered saline solutions and centrifuged. The
469 supernatant was conducted for ISV detection using RT-PCR and then used as the
470 inoculum microinjected into individual WBPH and BPH planthoppers. The injected
471 insects were maintained on healthy rice seedlings and were collected at 0 and 6 days
472 post-injection (DPI) for ISVs detection. Virus primers used for RT-qPCR were listed
473 in Table S2, and actin gene of SBPH was served as the control. Relative transcript

474 levels of viruses were calculated using the $2^{-\Delta\Delta CT}$ method. Additionally, the total RNA
475 from microinjected insects at 6 DPI was sent to Novogene for small RNA sequencing.

476

477 **Data availability**

478 The raw reads of RNA-seq generated in this study were deposited in NCBI SRA
479 database and the accession numbers were listed in Supplementary Table S2.

480

481 **Acknowledgments**

482 This work was supported by the National Natural Science Foundation of China (U20A2036,
483 32270146), the National Key Research and Development Plan in the 14th five-year plan
484 (2021YFD1401100: H.J.H. and C.X.Z.), and K.C.Wong Magna Fund in Ningbo University.

485 Aguiar, E. R. G. R., Olmo, R. P., & Marques, J. T. (2016). Virus-derived small RNAs: Molecular
486 footprints of host-pathogen interactions. *WIREs RNA*, 7(6), 824–837.
487 <https://doi.org/10.1002/wrna.1361>

488 Aguiar, E. R. G. R., Olmo, R. P., Paro, S., Ferreira, F. V., de Faria, I. J. da S., Todjro, Y. M. H.,
489 Lobo, F. P., Kroon, E. G., Meignin, C., Gatherer, D., Imler, J.-L., & Marques, J. T. (2015).
490 Sequence-independent characterization of viruses based on the pattern of viral small
491 RNAs produced by the host. *Nucleic Acids Research*, 43(13), 6191–6206.
492 <https://doi.org/10.1093/nar/gkv587>

493 Ammar, E.-D., & Nault, L. R. (2002). Virus transmission by leafhoppers, planthoppers and
494 treehoppers (auchenorrhyncha, homoptera). In *Advances in Botanical Research* (Vol. 36,
495 pp. 141–167). Elsevier. [https://doi.org/10.1016/S0065-2296\(02\)36062-2](https://doi.org/10.1016/S0065-2296(02)36062-2)

496 Baidaliuk, A., Miot, E. F., Lequime, S., Moltini-Conclois, I., Delaigue, F., Dabo, S., Dickson, L.
497 B., Aubry, F., Merkling, S. H., Cao-Lormeau, V.-M., & Lambrechts, L. (2019).
498 Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in *Aedes aegypti* Mosquitoes
499 *In Vivo*. *Journal of Virology*, 93(18), e00705-19. <https://doi.org/10.1128/JVI.00705-19>

500 Bonning, B. C. (2019). The Insect Virome: Opportunities and Challenges. In *Insect Molecular
501 Virology: Advances and Emerging Trends*. Caister Academic Press.
502 <https://doi.org/10.21775/9781912530083.01>

503 Bonning, B. C., & Saleh, M.-C. (2021). The Interplay Between Viruses and RNAi Pathways in
504 Insects. *Annual Review of Entomology*, 66(1), 61–79.
505 <https://doi.org/10.1146/annurev-ento-033020-090410>

506 Cao, Q., Xu, W.-Y., Gao, Q., Jiang, Z.-H., Liu, S.-Y., Fang, X.-D., Gao, D.-M., Wang, Y., & Wang,
507 X.-B. (2018). Transmission Characteristics of Barley Yellow Stripe Mosaic Virus in Its
508 Planthopper Vector *Laodelphax striatellus*. *Frontiers in Microbiology*, 9, 1419.
509 <https://doi.org/10.3389/fmicb.2018.01419>

510 Chandler, J. A., Liu, R. M., & Bennett, S. N. (2015). RNA shotgun metagenomic sequencing of
511 northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. *Frontiers in
512 Microbiology*, 6. <https://www.frontiersin.org/articles/10.3389/fmicb.2015.00185>

513 Chen, D.-S., Yang, S.-X., Ding, X.-L., Zhang, Y.-K., & Hong, X.-Y. (2015). Infection Rate Assay
514 by Nested PCR and the Phylogenetic Analysis of *Himetobi P* Virus in the Main Pests of
515 Rice-Wheat Cropping Systems. *Journal of Economic Entomology*, 108(3), 1304–1312.
516 <https://doi.org/10.1093/jee/tov001>

517 Chiapello, M., Bosco, L., Ciuffo, M., Ottati, S., Salem, N., Rosa, C., Tavella, L., & Turina, M.
518 (2021). Complexity and Local Specificity of the Virome Associated with
519 Tospovirus-Transmitting Thrips Species. *Journal of Virology*, 95(21), e00597-21.
520 <https://doi.org/10.1128/JVI.00597-21>

521 Dance, A. (2021). The incredible diversity of viruses. *Nature*, 4.

522 de Almeida, J. P., Aguiar, E. R., Armache, J. N., Olmo, R. P., & Marques, J. T. (2021). The virome
523 of vector mosquitoes. *Current Opinion in Virology*, 49, 7–12.

524 https://doi.org/10.1016/j.coviro.2021.04.002

525 Di Paola, N., Dheilly, N. M., Junglen, S., Paraskevopoulou, S., Postler, T. S., Shi, M., & Kuhn, J. H. (2022). *Jingchuvirales*: A New Taxonomical Framework for a Rapidly Expanding Order of Unusual Monjiviricete Viruses Broadly Distributed among Arthropod Subphyla. *Applied and Environmental Microbiology*, 88(6), e01954-21. <https://doi.org/10.1128/aem.01954-21>

526 527 528 529

530 Dolja, V. V., Krupovic, M., & Koonin, E. V. (2020). Deep Roots and Splendid Boughs of the Global Plant Virome. *Annual Review of Phytopathology*, 58(1), 23–53. <https://doi.org/10.1146/annurev-phyto-030320-041346>

531 532

533 Feng, Y., Gou, Q., Yang, W., Wu, W., Wang, J., Holmes, E. C., Liang, G., & Shi, M. (2022). A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. *Virus Evolution*, 8(1), veac006. <https://doi.org/10.1093/ve/veac006>

534 535

536 French, R. K., Anderson, S. H., Cain, K. E., Greene, T. C., Minor, M., Miskelly, C. M., Montoya, J. M., Wille, M., Muller, C. G., Taylor, M. W., Digby, A., Kākāpō Recovery Team, Crane, J., Davitt, G., Eason, D., Hedman, P., Jeynes, B., Latimer, S., Little, S., ... Holmes, E. C. (2023). Host phylogeny shapes viral transmission networks in an island ecosystem. *Nature Ecology & Evolution*. <https://doi.org/10.1038/s41559-023-02192-9>

537 538 539 540

541 Gammon, D. B., & Mello, C. C. (2015). RNA interference-mediated antiviral defense in insects. *Current Opinion in Insect Science*, 8, 111–120. <https://doi.org/10.1016/j.cois.2015.01.006>

542 543 544 545 546

547 Goenaga, S., Kenney, J., Duggal, N., Delorey, M., Ebel, G., Zhang, B., Levis, S., Enria, D., & Brault, A. (2015). Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. *Viruses*, 7(11), 5801–5812. <https://doi.org/10.3390/v7112911>

548 549 550

551 Gong, W., Liu, H., Zhu, X., Zhao, S., Cheng, J., Zhu, H., Zhong, J., & Zhou, Q. (2021). Molecular characterization of a novel fusarivirus infecting the plant-pathogenic fungus *Alternaria solani*. *Archives of Virology*, 166(7), 2063–2067. <https://doi.org/10.1007/s00705-021-05105-y>

552 553

554 GuY, P. L., Tofiyama, S., & Fuji, S. (1988). Occurrence of a Picorna-like Virus in Planthopper Species and Its Transmission in *Laodelphax striatellus*. *Journal of Invertebrate Pathology*, 4.

555 556

557 Hillman, B. I., & Cai, G. (2013). Chapter Six - The Family Narnaviridae: Simplest of RNA Viruses. In S. A. Ghabrial (Ed.), *Advances in Virus Research* (Vol. 86, pp. 149–176). Academic Press. <https://doi.org/10.1016/B978-0-12-394315-6.00006-4>

558 559 560 561

562 Huang, H.-J., Ye, Z.-X., Wang, X., Yan, X.-T., Zhang, Y., He, Y.-J., Qi, Y.-H., Zhang, X.-D., Zhuo, J.-C., Lu, G., Lu, J.-B., Mao, Q.-Z., Sun, Z.-T., Yan, F., Chen, J.-P., Zhang, C.-X., & Li, J.-M. (2021). Diversity and infectivity of the RNA virome among different cryptic species of an agriculturally important insect vector: Whitefly *Bemisia tabaci*. *Npj Biofilms and Microbiomes*, 7(1), 43. <https://doi.org/10.1038/s41522-021-00216-5>

563 Jia, W., Wang, F., Li, J., Chang, X., Yang, Y., Yao, H., Bao, Y., Song, Q., & Ye, G. (2021). A Novel

563 Iflavirus Was Discovered in Green Rice Leafhopper *Nephrotettix cincticeps* and Its
564 Proliferation Was Inhibited by Infection of Rice Dwarf Virus. *Frontiers in Microbiology*,
565 11, 621141. <https://doi.org/10.3389/fmicb.2020.621141>

566 Koonin, E. V., Krupovic, M., & Dolja, V. V. (2022). The global virome: How much diversity and
567 how many independent origins? *Environmental Microbiology*, 1462-2920.16207.
568 <https://doi.org/10.1111/1462-2920.16207>

569 Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S.
570 (2015). Insect pathogens as biological control agents: Back to the future. *Journal of*
571 *Invertebrate Pathology*, 132, 1–41. <https://doi.org/10.1016/j.jip.2015.07.009>

572 Lan, H., Wang, H., Chen, Q., Chen, H., Jia, D., Mao, Q., & Wei, T. (2016). Small interfering RNA
573 pathway modulates persistent infection of a plant virus in its insect vector. *Scientific*
574 *Reports*, 6(1), 20699. <https://doi.org/10.1038/srep20699>

575 Li, J., Andika, I. B., Shen, J., Lv, Y., Ji, Y., Sun, L., & Chen, J. (2013). Characterization of Rice
576 Black-Streaked Dwarf Virus- and Rice Stripe Virus-Derived siRNAs in Singly and
577 Doubly Infected Insect Vector *Laodelphax striatellus*. *PLoS ONE*, 8(6), e66007.
578 <https://doi.org/10.1371/journal.pone.0066007>

579 Li, J., Andika, I. B., Zhou, Y., Shen, J., Sun, Z., Wang, X., Sun, L., & Chen, J. (2014). Unusual
580 characteristics of dicistrovirus-derived small RNAs in the small brown planthopper,
581 *Laodelphax striatellus*. *Journal of General Virology*, 95(3), 712–718.
582 <https://doi.org/10.1099/vir.0.059626-0>

583 Li, N., Li, C., Hu, T., Li, J., Zhou, H., Ji, J., Wu, J., Kang, W., Holmes, E. C., Shi, W., & Xu, S.
584 (2023). Nationwide genomic surveillance reveals the prevalence and evolution of
585 honeybee viruses in China. *Microbiome*, 11(1), 6.
586 <https://doi.org/10.1186/s40168-022-01446-1>

587 Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J., & Jiggins, F. M. (2014). The
588 Evolution and Genetics of Virus Host Shifts. *PLoS Pathogens*, 10(11), e1004395.
589 <https://doi.org/10.1371/journal.ppat.1004395>

590 Lu, G., Zhang, X.-D., Xu, Z.-T., Ye, Z.-X., Zhang, Y., Chen, J.-P., Zhang, C.-X., & Li, J.-M.
591 (2022a). Complete sequence and genetic characterization of a novel insect-specific
592 reovirus discovered from *Laodelphax striatellus*. *Virology*, 570, 117–122.
593 <https://doi.org/10.1016/j.virol.2022.03.011>

594 Lu, G., Zhang, X.-D., Xu, Z.-T., Ye, Z.-X., Zhang, Y., Chen, J.-P., Zhang, C.-X., & Li, J.-M.
595 (2022b). Complete sequence and genetic characterization of a novel insect-specific
596 reovirus discovered from *Laodelphax striatellus*. *Virology*, 570, 117–122.
597 <https://doi.org/10.1016/j.virol.2022.03.011>

598 Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D.,
599 Chang, H.-Y., El-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I.,
600 Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., ... Finn, R. D. (2019).
601 InterPro in 2019: Improving coverage, classification and access to protein sequence

602 annotations. *Nucleic Acids Research*, 47(D1), D351–D360.
603 <https://doi.org/10.1093/nar/gky1100>

604 Nault, L. R., & Ammar, E. D. (1989). Leafhopper and Planthopper Transmission of Plant Viruses.
605 *Annual Review of Entomology*, 34:503-29.

606 Nouri, S., Matsumura, E. E., Kuo, Y.-W., & Falk, B. W. (2018). Insect-specific viruses: From
607 discovery to potential translational applications. *Current Opinion in Virology*, 33, 33–41.
608 <https://doi.org/10.1016/j.coviro.2018.07.006>

609 Öhlund, P., Lundén, H., & Blomström, A.-L. (2019). Insect-specific virus evolution and potential
610 effects on vector competence. *Virus Genes*, 55(2), 127–137.
611 <https://doi.org/10.1007/s11262-018-01629-9>

612 Olmo, R. P., Martins, N. E., Aguiar, E. R. G. R., Marques, J. T., & Imler, J.-L. (2019). The insect
613 reservoir of biodiversity for viruses and for antiviral mechanisms. *Anais Da Academia
614 Brasileira de Ciências*, 91. <https://doi.org/10.1590/0001-3765201920190122>

615 Olmo, R. P., Todjro, Y. M. H., Aguiar, E. R. G. R., de Almeida, J. P. P., Ferreira, F. V., Armache, J.
616 N., de Faria, I. J. S., Ferreira, A. G. A., Amadou, S. C. G., Silva, A. T. S., de Souza, K. P.
617 R., Vilela, A. P. P., Babarit, A., Tan, C. H., Diallo, M., Gaye, A., Paupy, C.,
618 Obame-Nkoghe, J., Visser, T. M., ... Marques, J. T. (2023). Mosquito vector competence
619 for dengue is modulated by insect-specific viruses. *Nature Microbiology*, 8(1), 135–149.
620 <https://doi.org/10.1038/s41564-022-01289-4>

621 Patterson, E. I., Villinger, J., Muthoni, J. N., Dobel-Ober, L., & Hughes, G. L. (2020). Exploiting
622 insect-specific viruses as a novel strategy to control vector-borne disease. *Current
623 Opinion in Insect Science*, 39, 50–56. <https://doi.org/10.1016/j.cois.2020.02.005>

624 Roossinck, M. J. (2019). Evolutionary and ecological links between plant and fungal viruses. *New
625 Phytologist*, 221(1), 86–92. <https://doi.org/10.1111/nph.15364>

626 Ruiz-Aravena, M., McKee, C., Gamble, A., Lunn, T., Morris, A., Snedden, C. E., Yinda, C. K.,
627 Port, J. R., Buchholz, D. W., Yeo, Y. Y., Faust, C., Jax, E., Dee, L., Jones, D. N., Kessler,
628 M. K., Falvo, C., Crowley, D., Bharti, N., Brook, C. E., ... Plowright, R. K. (2022).
629 Ecology, evolution and spillover of coronaviruses from bats. *Nature Reviews
630 Microbiology*, 20(5), 299–314. <https://doi.org/10.1038/s41579-021-00652-2>

631 Shi, M., Lin, X.-D., Tian, J.-H., Chen, L.-J., Chen, X., Li, C.-X., Qin, X.-C., Li, J., Cao, J.-P.,
632 Eden, J.-S., Buchmann, J., Wang, W., Xu, J., Holmes, E. C., & Zhang, Y.-Z. (2016).
633 Redefining the invertebrate RNA virosphere. *Nature*, 540(7634), 539–543.
634 <https://doi.org/10.1038/nature20167>

635 Sámera, M., Fargette, D., Hébrard, E., Sarmiento, C., & Ictv Report Consortium, null. (2021).
636 ICTV Virus Taxonomy Profile: Solemoviridae 2021. *The Journal of General Virology*,
637 102(12), 001707. <https://doi.org/10.1099/jgv.0.001707>

638 Wang, F., Fang, Q., Wang, B., Yan, Z., Hong, J., Bao, Y., Kuhn, J. H., Werren, J. H., Song, Q., &
639 Ye, G. (2017). A novel negative-stranded RNA virus mediates sex ratio in its parasitoid
640 host. *PLOS Pathogens*, 13(3), e1006201. <https://doi.org/10.1371/journal.ppat.1006201>

641 Webster, C. L., Waldron, F. M., Robertson, S., Crowson, D., Ferrari, G., Quintana, J. F., Brouqui,
642 J.-M., Bayne, E. H., Longdon, B., Buck, A. H., Lazzaro, B. P., Akorli, J., Haddrill, P. R.,
643 & Obbard, D. J. (2015). The Discovery, Distribution, and Evolution of Viruses Associated
644 with *Drosophila melanogaster*. *PLOS Biology*, 13(7), e1002210.
645 <https://doi.org/10.1371/journal.pbio.1002210>

646 Wu, N., Zhang, P., Liu, W., Cao, M., Massart, S., & Wang, X. (2019). Complete genome sequence
647 and characterization of a new iflavirus from the small brown planthopper (*Laodelphax*
648 *striatellus*). *Virus Research*, 272, 197651. <https://doi.org/10.1016/j.virusres.2019.197651>

649 Xu, P., Yang, L., Yang, X., Li, T., Graham, R. I., Wu, K., & Wilson, K. (2020). Novel partiti-like
650 viruses are conditional mutualistic symbionts in their normal lepidopteran host, African
651 armyworm, but parasitic in a novel host, Fall armyworm. *PLOS Pathogens*, 16(6),
652 e1008467. <https://doi.org/10.1371/journal.ppat.1008467>

653 Xu, Y., Jiang, J., Lin, X., Shi, W., & Cao, C. (2022). Identification of diverse viruses associated
654 with grasshoppers unveils the parallel relationship between host phylogeny and virome
655 composition. *Virus Evolution*, 8(2), veac057. <https://doi.org/10.1093/ve/veac057>

656

657 **Figure 1. Genomic structures of novel viruses identified in SBPH.** The viruses
658 were taxonomically classified into 3 groups, including dsRNA viruses (A), +ssRNA
659 viruses (B) and –ssRNA viruses (C). Viruses are arranged by order and family, and in
660 the group of viruses belonging to the same family, a phylogenetically close reference
661 virus is listed on the top with red font, followed by novel viruses. The Viral proteins
662 are colored according to their putative functions. GenBank accession number are
663 provided following the name of the reference viruses.

664

665 **Figure 2. Phylogenetic trees of the novel RNA viruses identified in SBPH.** Trees
666 for *Durnavirales* (A), *Iflavirus* (B), *Solemoviridae* (C), *Flaviviridae* (D),
667 *Permutotetraviridae* (E), *Botourmiaviridae* (F), *Narnaviridae* (G), *Bunyavirales* (H),
668 and *Aliusviridae* (I) are based on the maximum likelihood method and inferred from
669 conserved viral RdRP domains. Novel viruses are shown in red font. Nodes with
670 bootstrap values >50% are marked with blue circles, and the larger circles indicated
671 higher bootstrap values. In panels A, C and H, taxonomic overview of viruses at order
672 or family level are shown on the left, and a close-up view of the viruses are shown in
673 the boxes with the color of dotted frames corresponding to the interested clusters. The
674 viral sequences used in this study were extracted from GenBank, the accession
675 numbers and other related details are listed in Supplementary Table 3.

676

677 **Figure 3. RNA virome composition and abundance across different datasets.**
678 (A) RNA virome composition of different lab and field samples; (B) Virus distribution
679 across different databases. Different colors were used to indicate the abundance
680 ranges determined by transcripts per million (TPM).

681

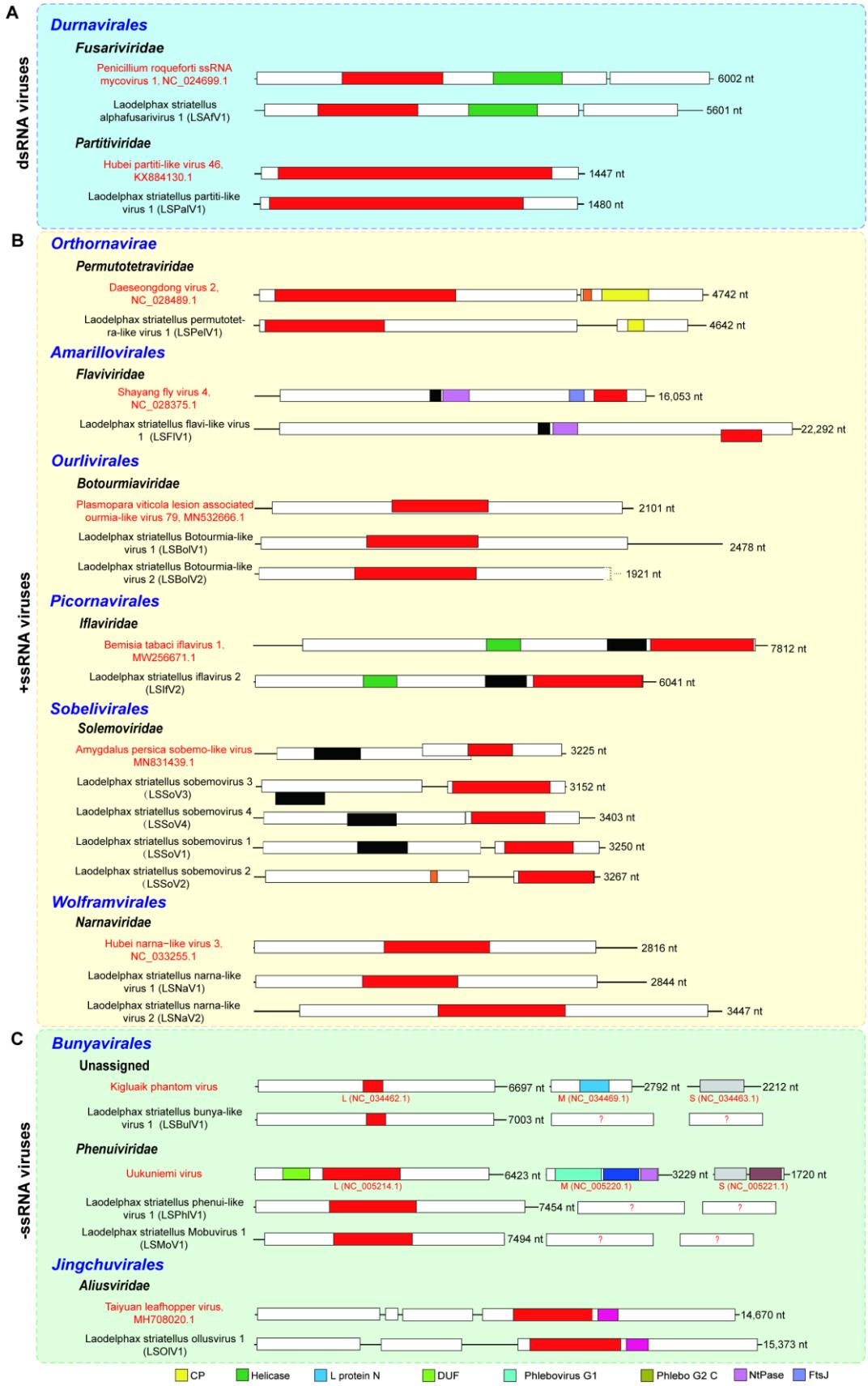
682 **Figure 4. Distribution and abundance of RNA viruses in different tissues and**
683 **genders of SBPH.** (A) Total abundance of viruses in guts (Gut), salivary glands (SG),
684 fat bodies (FB), female reproductive systems (FR), male reproductive systems (MR),
685 and residues (Re) of SBPH; (B) abundance of individual viruses in different tissues of
686 SBPH; (C, D) Comparison of virome abundance (C) and abundance of individual
687 viruses (D) between male and female adults.

688

689 **Figure 5. Abundance of RNA viruses in different development stages of SBPH**
690 **lab populations.** (A) The abundance of total RNA viruses throughout different
691 development stages of SBPH, including eggs, 1st- 5th nymphs, and adults 0-1 d, 2 d,
692 4 d, 6 d, and 8 d post eclosion; (B) abundance of individual viruses throughout
693 different development stages of SBPH.

694

695 **Figure 6. SBPH-ISV derived small interfering RNAs in SBPH lab-populations.**
696 (A) Profiles of vsiRNAs. The size distribution of vsiRNAs was shown in the upper
697 panel, while the distribution of vsiRNAs in the corresponding strands was shown in
698 the lower panel. (B) The vsiRNA ratio of different SBPH-ISVs. The total vsiRNA
699 counts the TPM of each virus were showed in the column diagram, and the counts of
700 vsiRNA reads produced per transcript of each ISV (vsiRNA ratio) were showed in the
701 upper panel.


702

703 **Figure 7. Evaluation of the ability of SBPH-ISVs to cross-infect other**
704 **planthopper species WBPH and BPH.** (A) Overall strategy to evaluate the
705 cross-infection ability of SBPH-ISVs to other planthopper species WBPH and BPH.
706 SBPH-ISV inoculum was prepared and injected separately into 3rd-instar nymphs of
707 WBPH and BPH. (B) Detection of SBPH-ISVs in the SBPH-ISV inoculum and in the
708 WBPH and BPH populations pre-injection. The presence of SBPH-ISVs in each
709 sample was determined using RT-PCR. (C) Replication assessment of SBPH-ISVs in
710 other planthopper species BPH and WBPH. Left column diagram showed the relative
711 transcript level of SBPH-ISVs in BPH and WBPH at 0 and 6 DPI. A pool of 15
712 insects were collected for viral load detection using RT-qPCR, and 3 independent
713 biological replicates were performed. Right diagram showed profiles of SBPH-ISV
714 derived siRNAs in BPH and WBPH. The microinjected insects at 6 DPI were
715 performed siRNA sequencing and analysis.

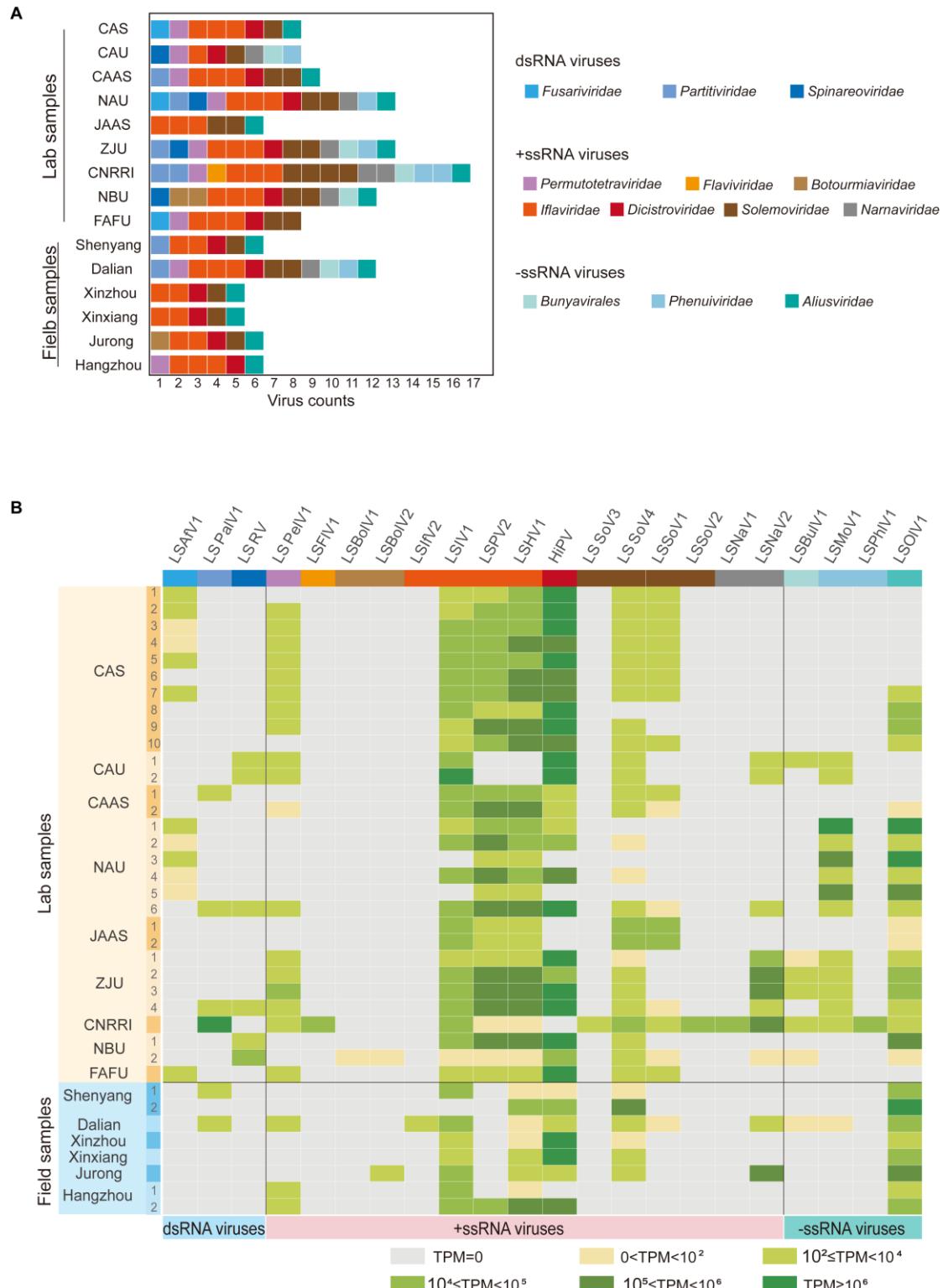
716

717 **Figure 1**

718

719

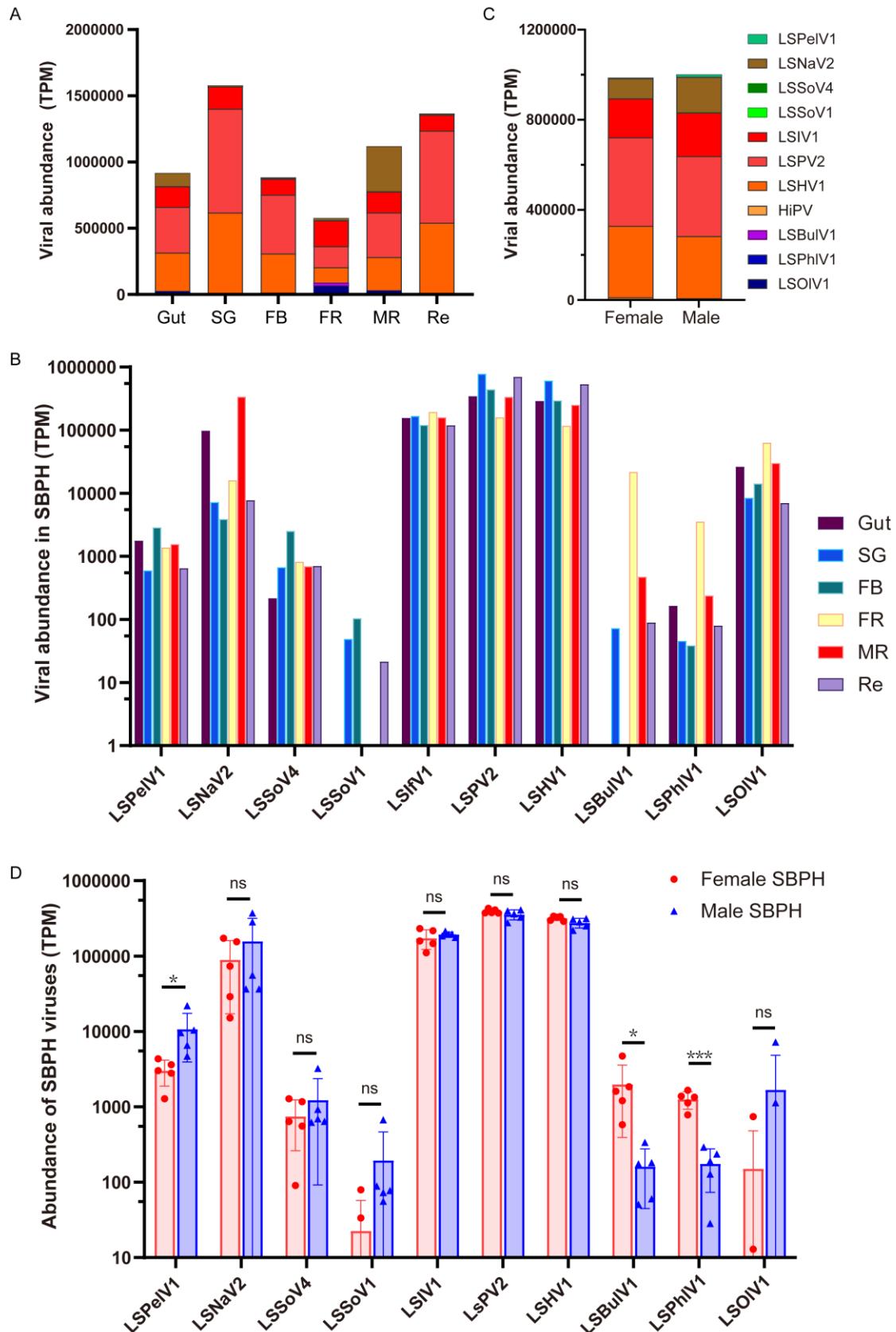
720 **Figure 2**


721

722
723

724 **Figure 3**

725

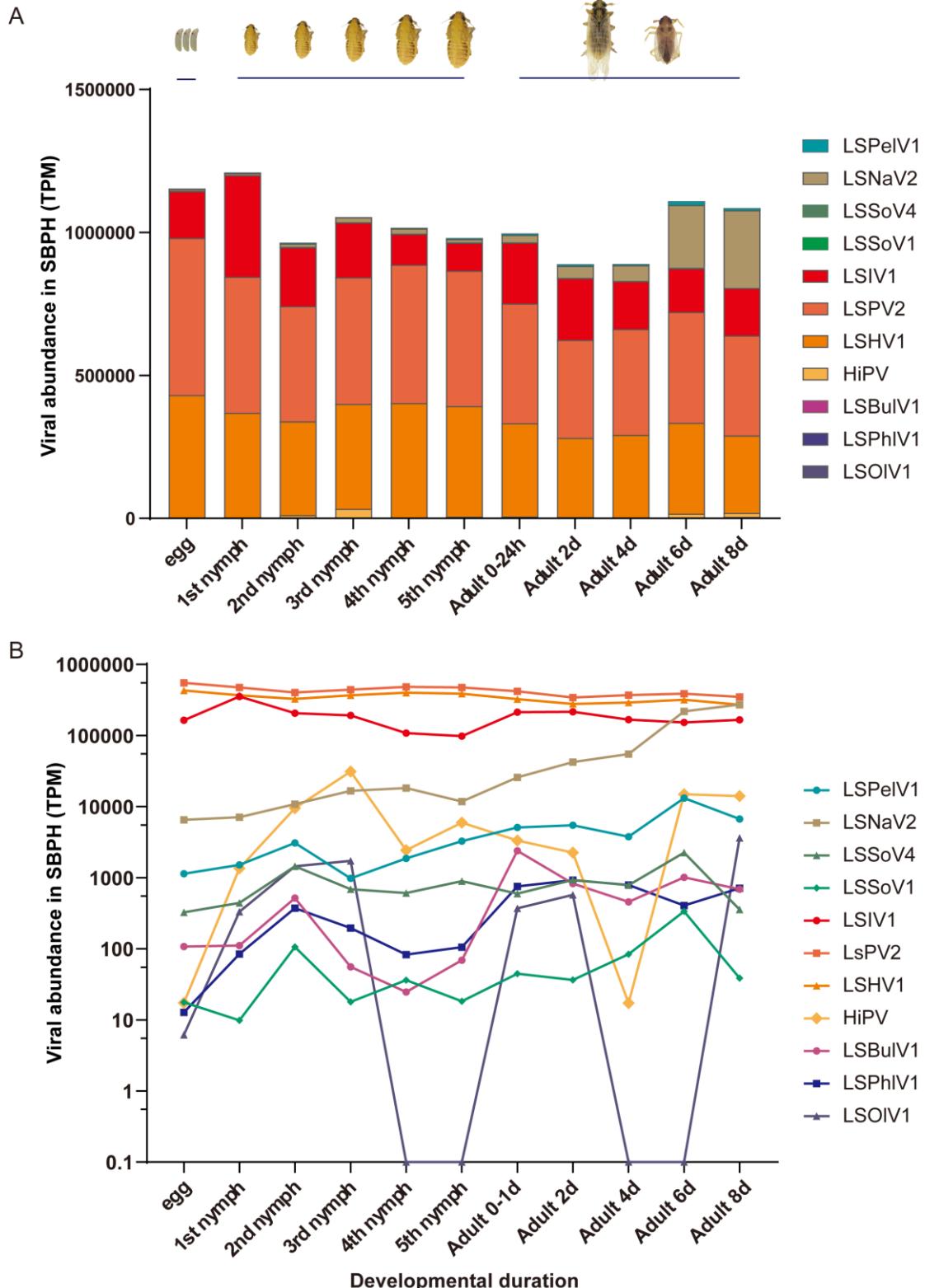


726

727

728 **Figure 4**

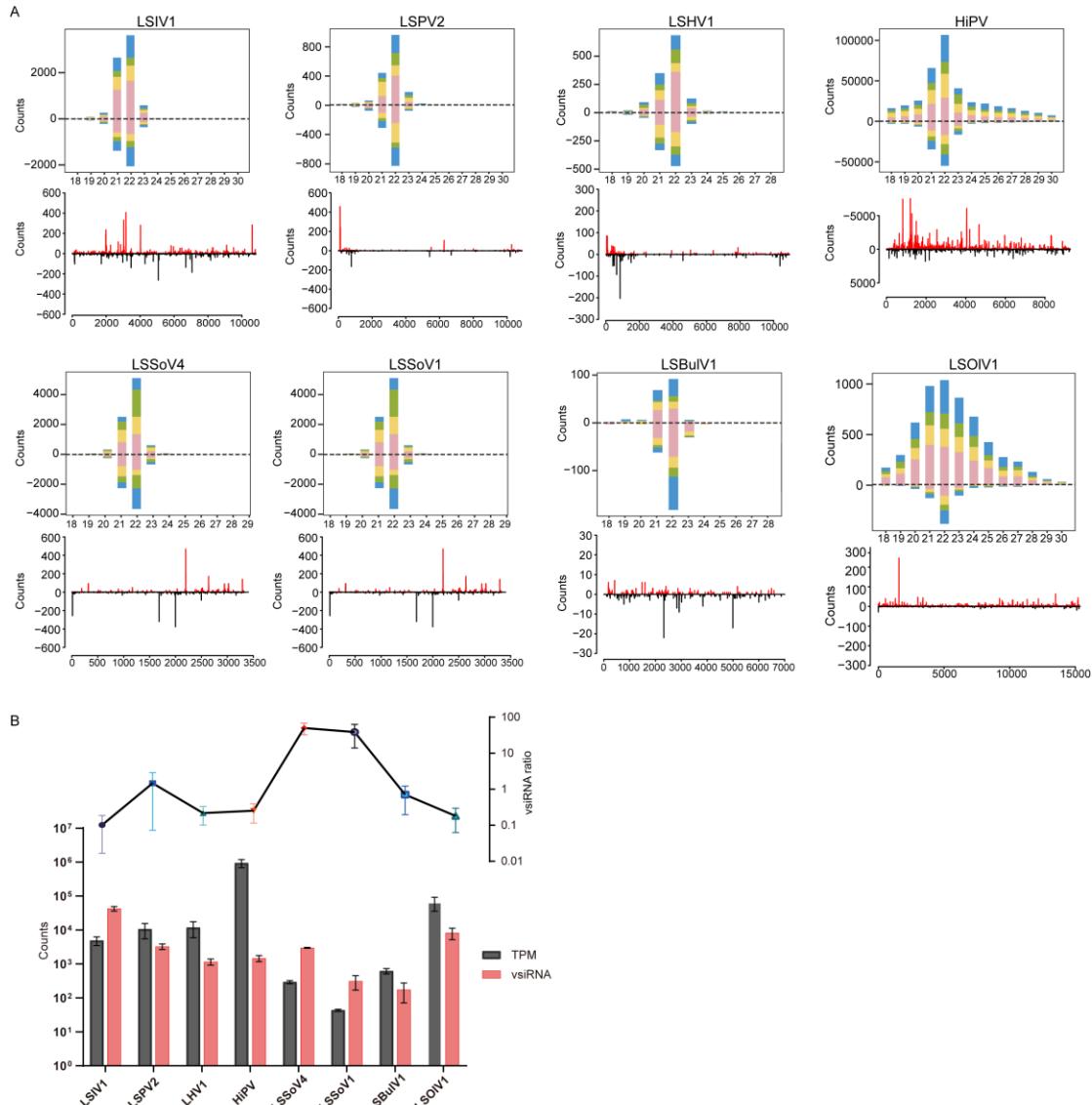
729



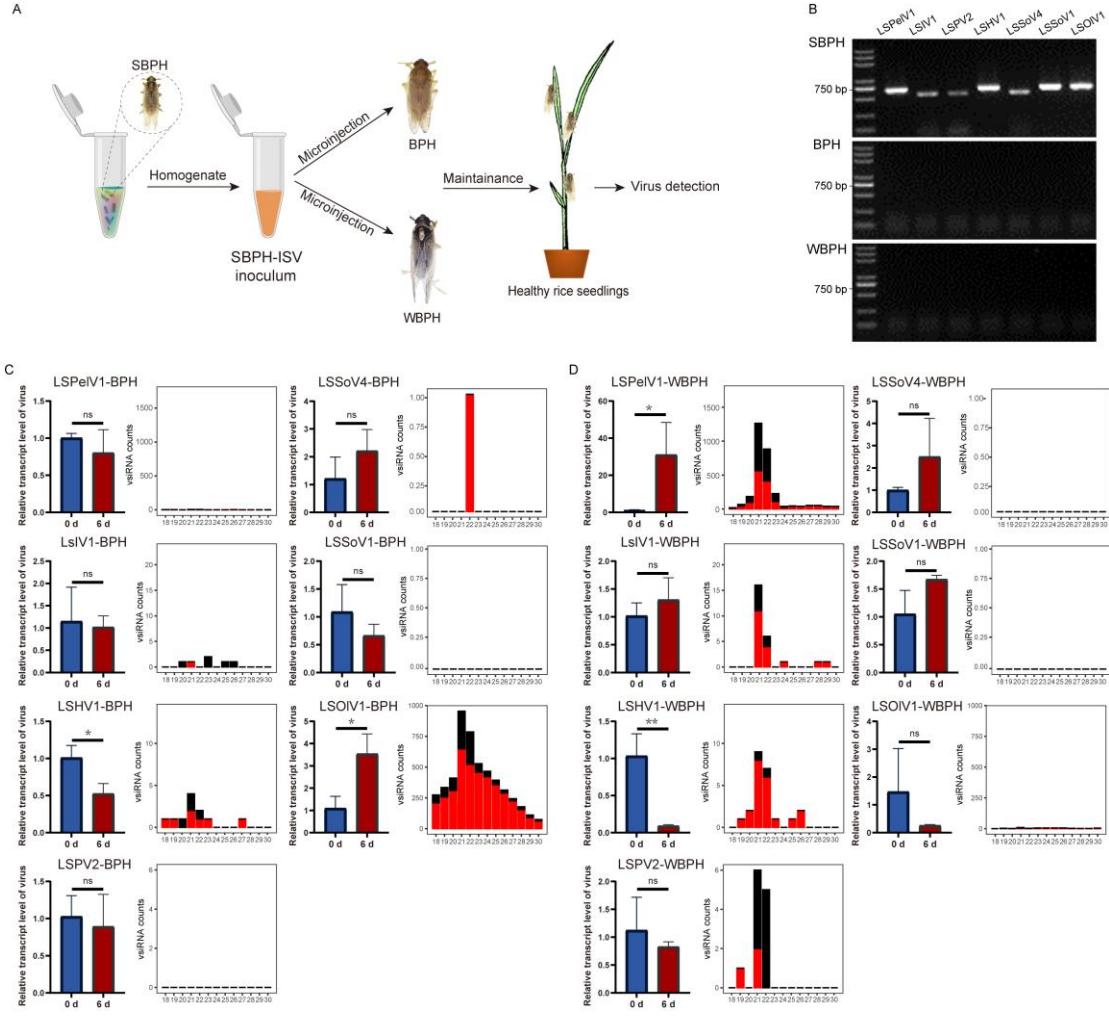
730

731

732 **Figure 5**


733

734
735


736 **Figure 6**

737

740 **Figure 7**

741

742

743