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Abstract 

Ovarian cancer is a highly heterogeneous disease consisting of at least five different 

histological subtypes with varying clinical features, cells of origin, molecular composition, 

risk factors, and treatments. While most single-cell studies have focused on High grade 

serous ovarian cancer, a comprehensive landscape of the constituent cell types and their 

interactions within the tumor microenvironment are yet to be established in the different 

ovarian cancer histotypes. Further characterization of tumor progression, metastasis, and 

various histotypes are also needed to connect molecular signatures to pathological 

grading for personalized diagnosis and tailored treatment. In this study, we leveraged 

high-resolution single-cell RNA sequencing technology to elucidate the cellular 

compositions on 21 solid tumor samples collected from 12 patients with six ovarian cancer 

histotypes and both primary (ovaries) and metastatic (omentum, rectum) sites. The 

diverse collection allowed us to deconstruct the histotypes and tumor site-specific 

expression patterns of cells in the tumor and identify key marker genes and ligand-

receptor pairs that are active in the ovarian tumor microenvironment. Our findings can be 

used in improving precision disease stratification and optimizing treatment options.  
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Introduction 

Ovarian cancer is the second most common and most malignant cancer in the female 

reproductive tract. According to the American Cancer Society, 90% of ovarian cancer 

originated from epithelial tissue and can be further divided into serous, endometrioid, 

clear cell, and mucinous histotypes1. The risk factors of epithelial ovarian cancer vary 

from each histotype but generally include age, weight, hormone therapy after menopause, 

as well as family history2. Previous genomic studies3 on ovarian cancer have investigated 

the effects of variations in genes that included TP53, NF1 and BRCA1. Mutations in TP53 

and NF1 and dysfunction of BRCA1 are related to the pathogenesis of the serous 

carcinoma in ovary4. However, the molecular mechanism for ovarian cancer remains 

unclear and targeted therapy is yet to be developed. In recent years, the development of 

single-cell technology allows researchers to zoom in on the cell-level transcriptome of the 

tumor tissue and provides a better understanding of the tumor microenvironment (TME). 

Single-cell technology has been applied to ovarian cancer previously on malignant 

abdominal fluid (ascites) associated with High grade serous ovarian carcinoma (HGSOC) 

histotype6. The stress associated chemo-resistance in solid tumors from metastatic sites 

with HGSOC was investigated together with stroma signaling to provide insight into 

chemotherapy resistance7. A recent study used scRNA-seq on primary and untreated 

peritoneal metastatic site8 to study cancer recurrence. However, comparisons across 

multiple sites and histotypes are yet to be performed. We previously reported the cellular 

composition of metastatic ovarian tumors using single-cell RNA sequencing technology9. 

We found heterogeneity in the immune responses of different ovarian cancer patients, 

among immune sub-populations identified from the metastatic samples, allowing us to 

separate tumors into two groups based on T cell infiltration. The metastatic samples can 

be grouped into high and low T infiltrated types based on both immunohistochemistry 

(IHC) and single-cell transcriptomic profiles. We established a comprehensive collection 

of immune cells from the differential expression of marker genes.  

In the current study, we characterized tumors from 12 ovarian cancer patients using Drop-

seq, a high-throughput single-cell RNA-seq technique5. We broadened our focus to 

include primary tumor sites and other histotypes besides HGSOC which allowed us to 

identify cell types that are specific to sites or histotypes. We analyzed the distribution of 
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cancer-associated cells and elucidated cell-cell communication in each histotype. We 

identified a cluster of cancer stem cells (CSCs) within the epithelial cells, based on their 

increased expression of markers IFIT1, IFIT2, IFIT3 and ISG15. This cluster is present in 

HGSOC and MMMT histotypes. Within the stromal cells, we found multiple cancer-

associated fibroblast (CAF) sub-clusters which showed high expression of IL6, CCL2, 

S100A4, PDPN, and FGF7 in both primary and metastatic samples. We also verified that 

our previous observations on the immune cell activity in metastatic samples are still valid 

across a larger sample collection that includes primary tissues and multiple histotypes. In 

addition, we identified a cluster of IL32+ plasma B cells that were found exclusively in the 

primary tumor sites. 

With the inclusion of additional histotypes and tumor sites in our collection, this study 

allows us to characterize the differences in cell compositions between sites and different 

levels of their T cell infiltration, build cell or gene signatures to characterize the different 

ovarian cancer histotypes, and further investigate the underlying molecular mechanism 

in the TME. We further explored cell-to-cell communication among different cell sub-

clusters, using inferred ligand-receptor (LR) interactions. We note that such interactions 

are enriched among epithelial cells and fibroblasts and that LR interaction signatures vary 

across different tumor sites and histotypes.  

Results 
Establishing cell lineages, TCGA subtypes and cell-cycle states across samples 

To study cell composition of ovarian cancer, tumor tissues resected from 12 ovarian 

cancer patients undergoing debulking surgery in the ovaries, omentum and rectum were 

analyzed in this study (Fig. 1A, Table 1A). Briefly, the cohort consisted of seven white, 

two Asian, two Black women and one woman of unknown racial origin and ranged 

between 39-77 yr in age (mean ~62 yr). Most patient tumors were stage IIIB or above 

according to staging by a pathologist. Solid tumor samples of different histotypes were 

collected from primary (ovaries) and metastatic (omentum, rectum) sites (Table 1B) 

which enabled us to investigate histotype- and site-specific signatures at single cell level. 

Tumor samples were obtained fresh from surgery and processed using Drop-seq5 within 

24 hr or fixed in formalin for immunohistochemistry (IHC). Immune (CD45+) and cancer 
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cells enriched from a subset of samples were also profiled by Drop-seq to obtain better 

representation of immune cells in our single cell data. 

A total of 26 gene expression matrices were generated from Drop-seq experiments on 21 

ovarian cancer tumors from 12 patients. We identified a total of 38,811 genetic features 

across 25,326 cells from tumors resected from multiple tissue sites in this study. The 

filtered gene expression matrices were integrated using the anchor-based alignment. 

Unsupervised clustering analysis yielded 11 distinct clusters of cells. The resulting 

clusters were annotated using Template-based Automated Cell type Assignment (sc-

TACA; Methods), yielding ten major cell types including epithelial, endothelial, 

mesenchymal stem (MSC), embryonic stem (ESC), fibroblast, macrophage, T, B and 

plasma B cells and a small cluster of 37 cells marked as N1 that shared markers with 

astrocytes which we saw in our previous study9 (Fig. 1B). Percentages of each cell type 

comprising each tumor sample are shown in Fig. S1A and Table 1B. Due to the small 

number of N1 cells in any given sample (< 0.1%), we excluded them in further analysis. 

For simplicity, the cell-types were classified into three compartments: epithelia, containing 

epithelial cells and ESCs, stroma containing endothelial cells, MSCs and fibroblasts, and 

immune, containing macrophages, B and plasma B cells, and T cells (Fig. 1B).  

Next, we explored the expression of the genes associated with the four molecular 

subtypes of ovarian cancer- differentiated, immunoreactive, mesenchymal and 

proliferative- identified by TCGA3 in our dataset. We were able to assign one of the four 

molecular subtypes with the highest TCGA module score to 93.7% of cells; cells with a 

negative module score were marked as not assigned (NA)9. When each cell on the UMAP 

was marked with the molecular subtype assigned to it (Fig. 1C), we noted that the major 

cell types and the cellular compartments they belong to (Fig. 1B) match the predominant 

molecular subtype of ovarian cancer identified by TCGA. The epithelial cells were 

distributed through all four cancer subtypes and comprised 80% of the cells predicted as 

differentiated subtype. 73% of cells from the predicted immunoreactive subtype were 

immune cells (B cells, T cells, and macrophages). The mesenchymal subtype, associated 

with worst survival10, consisted of the least epithelial cells and contained the highest 

percentage (82%) of stroma cells, including MSCs, fibroblasts, and endothelial cells. The 

proliferative subtype contained 56% cells from the epithelial cell category; 26.2% cells 
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from the ESC (about half of the total ESC population) that also showed unique stem cell 

features described later, were of the proliferative subtype. Sample-specific composition 

of TCGA subtypes is shown in Fig. S1B. 

To study the cell cycling effects under the TME, Cell cycle analysis was performed on the 

combined dataset to assign a cell-cycle module score to each cell for the G1S, G2M and 

MG1 phases. Cells that could not be assigned to one of these phases were marked as 

‘NA’. We noted that the cell cycling patterns were roughly similar for all cell types (Fig. 

1D), with the exception of ESCs. A large fraction of cells across all cell types were 

assigned to the MG1 phase (64.3%; Fig. S1C), as seen previously11. In contrast, most 

ESCs (>70%) were assigned to the G2M phase where they likely stalled during the cell 

cycle12.  

 
Immune cells and their expression in ovarian cancer samples 
 
We identified 5,453 cells as immune cells that could be further split into B cells, plasma 

B cells, T cells, and macrophages (Fig. S2A). We also found a few dendritic cells and 

common myeloid progenitor cells (52 and 30, respectively) that co-clustered with 

macrophages and were removed for downstream analysis due to the low cell counts. 

When identifying the subclusters within each cell type, we denote them as ‘EP’ for 

epithelial cells, ‘TC’ for T cells, ‘BC’ for B cells, ‘MA’ for macrophages, ‘ES’ for ESCs, ‘FB’ 

for fibroblasts, ‘MS’ for MSCs, and ‘EN’ for endothelial cells. We used a single digit starting 

from 0 to index the sub-clusters for each cell type, e.g., EP0 denotes cluster 0 of epithelial 

cells. 

To determine if there were any cells unique to the different tumor sites, we cross-

referenced 5,371 immune cells with our previous study9 of metastatic ovarian tumors. We 

identified five subclusters (Fig. 2A), consisting of three clusters of CD4+ T helper (Th) 

cells (TC0, TC3, TC4), and two clusters of CD8+ resident memory T (Trm) cells (TC1 and 

TC2). Among these clusters, one subcluster containing GNLY+CD8+Trm cells (TC2) that 

was not observed previously9, derived from metastatic samples, P5-1, P6-1, P7-1. Three 

PRDM1+JCHAIN+ plasma B clusters, BC0, BC2, and BC3 and one naïve B cluster, BC1 

were observed (Fig. 2B, Fig. S2B). The BC2 subcluster that consisted of CD38-SDC1-

S100A4+IL32+GAPDH+ plasma B cells, has not been identified previously9. The marker 
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IL32 was a proliferation marker for malignant plasma cells in myeloma13. Intriguingly, we 

find BC1 to be almost absent in the primary tumor site (ovary). Four macrophage 

subclusters (Fig. 2C, Fig. S2B) were annotated, including a CD14+MSR1+CD163- 

cluster (MA1) that were mainly found in samples collected from the primary tumor site 

(ovary) and thus not seen in our previous study9. 

 

Epithelial cells and their expression in ovarian cancer samples 

We detected 11,716 epithelial cells comprising the epithelia, as the most abundant cell 

type in our integrated and batch corrected dataset. Hierarchical clustering of these cells 

(resolution = 0.3) detected four epithelial sub-clusters, EP0-3 (Fig. 2D). Dot plots for some 

top differentially expressed markers, EPCAM, S100A1, KIAA1217, MAML2, MECOM, 

IFIT2/3, and LIPA are shown in Fig. S2C. The EP0 sub-cluster comprised 38% of all 

epithelial cells and showed a distinctive signature of cytokeratin genes, KRT19 (logFC = 

0.96), KRT18 (logFC = 0.747) and KRT7 (logFC = 0.633) (Table S1A). A recent study on 

the origin of ovarian cancer14 connected fallopian tube epithelial cell subtypes to intra-

tumor heterogeneity in serous ovarian cancer (SOC), and used KRT7 as a marker for 

secretory epithelial (SE) cells in the fallopian tube as the cell-of-origin for SOC. Other 

genes found upregulated in EP0 (Table S1A) were S100A6 (logFC = 0.81) and S100A11 

(logFC = 0.66) from the S100 calcium-binding protein family. The S100 protein family 

interacts with cytoskeletal proteins15 and may promote metastasis and stimulate 

angiogenesis. Specifically, S100A11 gene16 acts as a tumor promoter by regulating MMP 

activity and the epithelial-mesenchymal transition (EMT) process. Another top expressing 

marker gene, LGALS3 (logFC = 0.8) is associated with cell migration, proliferation, 

adhesion, cell-cell interaction in tumor cells, and implicated in tumor progression and 

chemo-resistance of epithelial ovarian cancer17. EP1 cluster exhibited significant 

upregulation of genes belonging to the MHC class II protein family, HLA-DPA1, HLA-

DRA, HLA-DPB1, and HLA-DRB1 (logFC > 0.96), was associated with the KRT17 sub-

cluster of secretory epithelial cells in the fallopian tube epithelia18 as well as high 

expression of ribosomal proteins such as RPLP1 (logFC = 0.84) and RPS6 (logFC = 

0.81). EP2 subcluster was enriched for chromatin pathways, growth factor signaling 

pathways, such as platelet-derived growth factor (PDGF), nerve growth factor (NGF), 
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epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor Beta 

(PDGFRB) and angiopoietin like protein 8 (ANGPTL8) regulatory pathways. Protein 

families with ankyrin-repeat proteins and zinc finger proteins associated with cancer 

progression19,20 were upregulated in EP2. EP3 showed a unique signature of interferon-

stimulated genes IFIT1-3 (logFC > 2.5), IFITM1-3 (logFC > 0.6), and ISG15 (logFC = 2.5), 

previously characterized as markers of cancer stem cells (CSC)21. Detailed marker 

information is provided in Table S1A. 

We also detected 1,925 embryonic stem cells (ESC) in our combined dataset that showed 

moderate expression of ESC markers, STAT3 and CTNNB1 (Fig. S2D). Further 

clustering of the ESCs yielded 4 sub-clusters (Fig. 2E): ES0 exhibited markers of the 

immunoreactive molecular subtype, such as RGS122 (logFC = 1.91), CD3E23 (logFC = 

0.55) and CD3G23 (logFC = 0.82); also see Table S1C. We found cancer stem cell gene, 

CD2424 and therapy resistant genes, CD46 and CD5525 expressed in ES1, ES2, and ES3 

and cancer stem cell marker, CD5926 in ES1 and ES2 (Fig. S2D). Analysis of cell cycle 

activity (Fig. 1D) assigned 73% of the ESCs to the G2M and 22.5% to the G1S phases. 

The elongated G2M phase has been previously associated with cancer cell proliferation, 

mutation of TP53 and KARS, T cell infiltration, and cancer metastasis27-29. Moreover, the 

expression of CDKN1A and senescence gene FN1 with the lack of expression of PCNA 

can trigger the G2 arrest or the stress-induced premature senescence (SIPS) found in a 

previous cancer study30 (Fig. S2D). Meanwhile the shortened G1 phase regulated by 

TP53 can lead to DNA damage, and subsequently affect the S phase with malfunctioned 

G1/S checkpoint31. Low number of cells in MG1 (< 5%) may indicate the ESCs to be post-

mitotic. Specifically, genes expressed in ES1 are enriched for cell cycle functions and 

G2/M transition (Table S1D). Increased gene expression required for G2/M transition and 

indicative expression for DNA damage response, such as CCNA2, CCNB1, CCNB2, 

CDK1, CKAP5, DCTN3 and TUBB4B can support the malfunction of P5332 (Fig. S2D).  

 

Stromal cells and their expression in ovarian cancer samples 

The second largest cellular compartment, stroma, contained three major subsets: 

fibroblasts, MSC and endothelial cells. Hierarchical clustering of 4,772 fibroblasts 

(resolution = 0.5) yielded six sub-clusters (Fig. 2F) containing markers for cancer-
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associated fibroblasts (CAF). The CAF-like clusters involved multiple molecular 

mechanisms associated with tumor progression, angiogenesis via vascular endothelial 

growth factor A (VEGFA) production, and coordination of immune function through 

chemokine and cytokine33 production. FB0 and FB1 showed comparatively high 

expression of myofibroblast markers, ACTA2 (logFC = 1.04) and MYL934 (logFC = 0.74). 

CAF associated markers, MMP11, MMP2, FAP, THY1, IFI6, IFI2735 (logFC > 0.33) were 

highly expressed in FB0 (Fig. S2E, Table S2A). In contrast, we did not find any CAF-

related expression in FB1. FB2 showed upregulation of NF-kappa B signaling pathway 

genes, NFKBIA, NFKB1 and NFKBIZ (logFC > 0.42), VEGFA-VEGFR2 signaling pathway 

gene, VEGFA (logFC = 0.33), chemokine receptor genes, IL6 (logFC = 1.7) and CCL2 

(logFC = 1.72), transmembrane glycoprotein genes, PDPN36 (logFC = 0.1), and genes 

associated with cancer metastasis, IER337 (logFC = 0.633), SGK138 (logFC = 1), and 

SERPINE239 (logFC = 0.5). Genes overexpressed in FB3 subcluster were enriched for 

angiogenesis, integrin signaling and related to extracellular matrix remodeling, including 

FGF7 (logFC = 1.18) and S100A4 (logFC = 0.89). The FB4 subcluster exhibited elevated 

expressions of growth factor binding genes, IGFBP4 (logFC = 0.83), TGFBR3 (logFC = 

0.82) and top markers APOLD1, MCAM, and PLXND1 for angiogenesis and blood vessel 

development (Tables S2A, B). FB5 showed upregulated genes highly enriched in 

immune crosstalk and cytokine/interferon signaling pathways. Particularly, interferon 

inducible genes, such as IFI6, IFI27, IFI44, IFI44L, IFIH1, IFIT1-3 (logFC > 1.53) were 

highly expressed in FB5 subcluster that might be due to the inflammatory crosstalk in the 

TME40 (Table S2A, B). Taken together, all fibroblast subclusters exhibited CAF features, 

with the exception of FB1.  

The progenitors of stroma sub-population, 951 mesenchymal stem cells (MSC) were 

detected in our data that could be clustered into 4 sub-clusters (Fig. 2G). The majority of 

the MSCs (MS0-3) expressed MSC markers, MCAM and THY1 (Fig. 2G, Fig. S2F). A 

small subset of MSCs (MS3) also expressed ENG that was not seen in the other clusters 

(Fig. S2F).  

Finally, a distinct population of 472 endothelial cells was found in the stromal 

compartment. Two sub-clusters, EN0 and EN1, both expressing endothelial markers, 

ENG, S100A6, and CD3441-43 were found (Fig. 2H). EN0 showed higher expression of 
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ACKR1 (logFC = 1.22) which is associated with ligand transcytosis44 and serves as a 

non-specific and promiscuous receptor for several inflammatory chemokines when 

expressing in endothelial cells41,45,46, carcinoma-associated genes, RACK147 (logFC = 

0.7) and CD7448 (logFC = 0.84) (Fig. S2G, Table S3A). Genes upregulated in EN1 are 

related to angiogenesis and blood vessel morphogenesis in tumor metastasis (Table 

S3B). 

 

Cellular composition by ovarian cancer histotypes and tumor sites 

We conducted further analysis on our tumor samples to examine cell types described 

above (Fig. 1B, Table S4A), cancer histotypes (Fig. 3B, Table 1A) and T cell infiltration 

into tumors (Fig. 3A, Fig. S2A, Table 1B). Based on pathology grading, the samples in 

this study belong to six ovarian cancer histotypes: serous ovarian carcinoma (SOC), high 

grade serous ovarian carcinoma (HGSOC), low grade serous ovarian carcinoma 

(LGSOC), clear cell, endometrioid with serous features, and malignant mixed Müllerian 

tumors (MMMT). Fig. 3B shows the heatmap of cell type compositions combined across 

all samples, grouped by cancer histotypes. We noted the highest fraction of epithelial cells 

in MMMT and the highest fraction of MSCs in endometrioid samples. Expression of 

previously established immunohistochemical markers49,50 WT1, NAPSA, and PGR for 

histotype classification were checked on EP and ES cell lineages. We confirmed higher 

expression of WT1 in HGSOC and NAPSA in Clear Cell histotypes, compared to other 

the remaining histotypes, and the presence of PGR expression in endometrioid with 

serous features (Fig. 3C). Additional markers50-52 VIM, CDKN2A, and ARID1A were 

applied to distinguish other histotypes. The EMT repressors, zinc finger E-Box binding 

homeobox 1 and 2, (ZEB2, ZEB1)51,52 related to endometrial carcinosarcoma, a mix of 

(epithelial) carcinoma and (mesenchymal) sarcoma, were used to distinguish 

endometrioid and MMMT histotypes. In epithelial and ES cells, we observed 

WT1+CDKN2A+ for HGSOC, and WT1+CDKN2A-VIM+ for LGSOC (Fig. 3C). Among the 

other histotypes, we find SOC to be WT1+CDKN2A+VIM+, clear cell to be WT1-NAPSA+, 

endometrioid to be WT1-NAPSA-PGR+ZEB2+ARID1A+ and MMMT to be 

WT1+VIM+ZEB1+ in our limited sample space (Fig. 3C).  
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Tumors from the ovaries were considered primary tumor sites while the tumors from the 

omentum and rectum were categorized as metastatic (Table 1B). We categorized each 

sample based on the level of T cell infiltration (TInf)9, and whether its tumor site was 

primary or metastatic, thus grouping our samples into 4 categories: Metastatic High (TInf), 

Metastatic Low, Primary High, and Primary Low. We found no significant differences in 

the composition of major cell lineages between primary and metastatic sites. However, at 

the sub-cellular level, the ratios of FB4, FB2, MA3, and MA2 were higher in metastatic 

sites, while EP2 showed an opposite pattern (Table S4B, C). T-tests performed on the 

ratios of different cell lineages showed significantly higher fractions of TC and BC in high 

TInf group and MS was lower in TInf (Table S4B). Zooming in, the TC0 and BC3 appear 

to drive these differences, while higher MS2 correlated with low T cell infiltration (Fig. 3A, 

Table S4C). Fig. S2A, bottom shows the percentages of each immune cell type in these 

four categories. We found FB sub-clusters, FB0, FB2, FB4 and FB5 expressing CAF 

markers to be enriched in samples classified as Metastatic Low (Fig. S3B), along with 

CSCs (EP3 sub-cluster, Fig. S3B).  

Overall, the cell sub-type fractions were correlated within main cell types. For example, 

all EP, ES and CAF sub types- FB0, FB2, FB3, FB4 and FB5 clustered together (Fig 3B, 

black rectangles). Interestingly, the only non-CAF subcluster of fibroblast, FB1 clustered 

with MSC (Fig. 3B, black rectangle). 

Due to the limited number of samples available for all histotypes, we were unable to 

calculate statistical significance on the cell cluster compositions. Nevertheless, several 

intriguing observations merit attention. The EP0 cluster was observed in all histotypes 

(Table S4A). The fractions of EP1, EP2 and EP3 cells were higher in MMMT compared 

to the other histotypes, while the fraction of cells in ES1, ES2 and ES3 were higher in 

HGSOC (Fig. S3A). For clear cell histotype, the percentage of cells in TC0, BC2 and BC3 

were higher. The endometrioid histotype showed a high fraction of MSCs, MA1 and FB1. 

The percentage of certain macrophage and T cell subtypes in LGSOC (MA0, MA2 and 

TC1) was higher than in other histotypes. The SOC sample of undetermined pathology 

grade appeared more similar to HGSOC from the primary site than LGSOC in terms of 

cell type composition (Fig. S3A). In the SOC sample, the human leukocyte antigen (HLA) 

genes have higher average expression compared to HGSOC samples. BC2 derived from 
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tumors with high T cell infiltration and were identified primarily in clear cell and SOC 

histotypes (Fig. S3A, B). 

Immunohistochemical staining of vimentin (VIM), CD45, and cytokeratin-7 (CK7) were 

also performed on tumor tissues from metastatic (Fig. S3C) and primary (Fig. S3D) 

tumors belonging to different ovarian cancer histotypes to investigate the fractions of the 

major cell lineages in these tumors. We correlated the percentage of each cellular subsets 

in our combined dataset from 18 samples to the IHC results; three samples from patients 

P3 and P4 that were enriched for CD45+ cells alone for Drop-seq were excluded from 

this analysis. The percentage that stained for CD45 was well correlated (Pearson 

correlation = 0.51 and a significant 0.03 P-value estimation) with the immune population 

(macrophage, T, B and plasma B cells). The correlations between area staining for CD45 

(IHC) and percentage of T cells, plasma B cells and macrophages are 0.59, 0.53 and 

0.17 (not significant), respectively. The CK7 percentage was positively correlated 

(Pearson’s correlation of 0.28) with the epithelia (epithelial cells and ESC), however not 

significantly (P-value = 0.24). Out of the 18 samples, only 3 samples had more than a 

30% difference in percentages between the stained CK7 and annotated epithelial sub-

population. The stroma population was estimated using the union of fibroblasts, MSC, 

and endothelial cells in Drop-seq data. The Pearson product-moment correlation with the 

percentage of cells that stained for vimentin was negative (-0.44) with a non-significant 

P-value and may be caused by the epithelial cells undergoing EMT (we observed a 

consistently smaller percentage of the stromal subpopulation compared to the VIM-

stained percentage). 

As seen previously9, we noted significant differences in the abundance of T cells between 

samples reported by Drop-seq. The T cell percentages in Drop-seq data showed the 

highest correlation with CD45 staining in IHC. Due to the correlation of T cells in tumors 

and cancer outcome9, we categorized a sample as having high T cell infiltration (Tinf) if 

the percentage of T cells was greater than 10%, and low Tinf if less than 10% in the sample 

from Drop-seq data (Fig. S2A, Table 1B).  
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Inferring cellular interactions in the tumor microenvironment using ligand-receptor 

analysis 

To understand the patient-specific TME, we predicted the ligand-receptor interactions 

among the cell sub-clusters, using CellPhoneDB53 and additional cancer-specific ligand-

receptor (LR) pairs that were curated from previous studies (see Methods). We found 

that FB, EP, ES and MS cells were highly activated for ligand-receptor (LR) interactions 

(Fig. 4A). The higher abundance of FB and EP cells in the TME and high numbers of 

putative LR interactions identified within and between EP, FB and immune cells in our 

data allowed us to further dissect histotype- or site-specific LR repertoires. Accordingly, 

we selected the following lineage pairs: epithelial-to-fibroblast, immune-to-epithelial, and 

immune-to-fibroblast. Clusters with less than 50 cells were excluded from the downstream 

LR analysis. 

We first examined the resulting cancer-specific LR interactions in epithelial-to-fibroblasts. 

To identify LR interactions common to each histotype, we integrated interactions from all 

samples grouped by their histotypes. Histotype-specific LR signatures across epithelial-

to-fibroblasts were identified (Fig. S4A). HGSOC displayed higher interactions of 

receptors ITGB1 in epithelial cells (to COL1A2, MDK, and VEGFA in fibroblasts), as well 

as FGFR1 in epithelial cells (to FGF12 and FGF18 in fibroblasts). LGSOC histotype had 

higher LR signatures for ITGA5_ADAM17, MET_SEMA5A, LAMB1_ITGA2, 

LAMC1_ITGB4, and VEGFA_NRP2. Receptor FGFR1 was also highly expressed in 

epithelial cells in LGSOC, though the ligand it enriched for was FGF9. Clear cell histotype 

has unique signatures of CCL2_CCR3, SILT2_SDC1, BMP2_BMPR2, and FBN1_ITGA5. 

The endometrioid histotype displayed receptor FGFR3 in fibroblast and ligands 

HSP90AA1 and FGF12 in epithelial cells. MMMT histotype showed ligand IGF2 in 

epithelial cells and receptors INSR, IGF1R, and IGF2R in fibroblasts. Histotype with SOC 

features (patient P7 only) shared some LR signatures with HGSOC and LGSOC while 

having distinct combinations of IGF1_IGF1R, SLIT2_ROBO1, and EFNA5_EPHB6 (Fig 

S4A).  

For cancer associated LR interactions from the immune-to-epithelial (Fig S4B), the 

HGSOC patients had higher ITGA4_MDK and BTLA (to VTCN1 and TNFRSF14). 

LGSOC was enriched for THBS1 (interacting with CD47, ITGA3, ITGA6), and ITGB1 
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(interacting with LAMC2, ADAM17, and TGFBR2). The SOC histotype predicted CD44 

binding to VIM and FN1. Clear cell histotype had signatures of CCL5_CCR3, 

ITGA4_VCAN, CD44_SPP1, KLRD_HLA-E and IL2RB_IL15. Endometrioid histotype had 

distinct signatures, such as C1QB_LRP1, and TNF_LTBR. The LR pairs for MMMT 

histotypes were MMP9_LRP1, LRP1 (to PSAP, SERPING1 and A2M), COL2A1_DDR1 

and ITGB1_COL2A (Fig S4B). 

The cancer-associated LR interactions in immune-to-fibroblast subset (Fig. S4C) 

identified high number of CD44 and VIM receptors interacting with COL1A1 and 

ITGB1_COL1A2 for the HGSOC histotype. LGSOC has higher AREG_EGFR, 

INSR_NAMPT, EREG and HBEGF to EGFR, TFGB1_TFGBR3 interactions, and shared 

ITGA4_THBS1 interaction signatures with HGSOC. SOC shared ITGB1 (to THBS2 and 

LAMB1) interactions with HGSOC. Signatures of ITGA6 interactions with THBS2 and 

LAMB1 were higher in SOC histotype alone. DDR2_COL1A1, IGF2R_IGF, 

VEGFB_NRP1 and PDGFA_PDFGRA were exclusively present in the MMMT histotype. 

Endometrioid histotype also had unique signatures, such as CD44_LAMC3, 

PTPRC_CD22 and FN1 (with ITGA8 and ITGA9). The KLRD1_HLA-E and 

ITGB7_VCAM1 were found in the clear cell histotype (Fig S4C). 

For samples with abundant immune subpopulations, it is feasible for us to break down 

the immune cells into those compartments with sufficient number of cells captured. The 

original CellPhoneDB database was used to capture commonly occurring LRs that may 

not be specific to cancer in immune cell subpopulations. We ranked samples by the 

number of LR interactions (Fig. 4B) and selected four samples with high LR interactions 

for comparison: P1-1 (metastatic, low TInf), P6-1, P7-1 (metastatic, high TInf), and P5-1 

(primary, high TInf). In particular, we examined LR interactions of T cells with fibroblasts 

(Fig. S5A) and ESCs (Fig. S5B). We observed common signals for TIGIT in T cells and 

NECTIN2 in fibroblasts and ESCs; TIGIT contains ITIM motifs in its cytoplasmic tail that 

binds to NECTIN2 and triggers inhibitory signals54. This ligand-receptor signal was lower 

in P5-1 (Fig. S5A, B), which came from the primary tumor site. Similarly, the IL7R_IL7 

pair was observed in all four samples for fibroblast (Fig. S5A), with the lowest signal in 

P5-1 (IL7R_IL7 was observed in P1-1 and P6-1 for ESCs, see Fig. S5B). This ligand-

receptor pair has been correlated with immune cell infiltration in the TME55. The ligand 
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FASLG in T cells to receptors FAS, TNFRSF10A, and TNFRSF1B in fibroblasts 

interaction pairs were detected in all samples (P5-1, 6-1 and 7-1) but not in P1-1 (Fig. 

S5A). Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly 

their T cell receptor (TCR) genes and activation-induced cell death responsible for the 

peripheral deletion of activated T cells56. For fibroblast interactions, the LGALS9_CD44/r 

appear enriched in both fibroblasts and ESCs in P6-1 and P7-1, which are metastatic, 

with high Tinf (Fig. S5A, B). The LGALS9_CD44 pair appeared on ESCs from all samples 

except P6-1 (Fig. S5B). Gal-9 has direct cytotoxic effects, binds to CD44 expressed on 

cancer cells to limit cancer metastasis, and enhances stability and function of adaptive 

regulatory T cells57,58. Different interactions associated with immune regulation in 

tumors59 were also found: CD74 interactions with APP or COPA were found in samples 

P5-1 and P6-1, while HLA-C_FAM3C interaction was enriched in samples P1-1 and P7-

1 (Fig. S5A, B). CD2_CD58 interactions between T cells and ESCs were noted in all four 

samples (Fig. S5B), and between T cells and fibroblasts in P6-1 and P7-1 (Fig. S5A). 

NOTCH2 interactions60,61 (with JAG2 and DLL3) were seen in fibroblasts in P1-1 (Fig. 

S5A). 

We also detected intriguing patterns of certain integrin complex-collagen binding pairs62 

on fibroblasts enriched in specific samples (Fig. S5C): integrin complex A2B1 appeared 

in P6-1 only; enhanced expression of α2β1 integrins may influence spheroid 

disaggregation and proteolysis responsible for the peritoneal dissemination of ovarian 

carcinoma63. A1B1 was intriguingly absent in P1-1; instead integrins A10B1 and A11B1, 

appear in P1-1 alone. Integrin α11β162 was previously seen overexpressed in NSCLC, 

especially in CAFs64,65. The CD40LG_A5B1 pair was seen for fibroblasts in P1-1, P6-1 

and P7-1 (Fig. S5A). Integrin α5β1 plays an important role in tumor progression66. In 

addition, strong A4B1 interactions with FN1, VCAM1 and other ligands67 are seen with 

fibroblasts in P5-1, P6-1 and P7-1 (Fig. S5A), and ESCs in P6-1 (Fig. S5B); A4B1 

receptors have been proposed to target therapy in inflammatory disorders and cancer67.  

These results suggest that different patient samples may have unique LR signatures that 

are associated with specific cell types, which may be used to target therapy. 
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Discussion 

Ovarian cancer is a collection of different carcinomas that manifest as different histotypes, 

each with different cellular compositions and pathogenic mechanisms. Analysis of the 

TME in different ovarian cancer histotypes at the single-cell resolution can potentially 

connect the different histotypes with their unique cellular and molecular signatures, 

understand disease etiology and help guide therapy. With this aim in mind, we ran Drop-

seq on 21 tumor samples from 12 patients and across 6 histotypes of ovarian cancer. We 

detected three major cell compartments: epithelia (epithelial cells and ESCs), stroma 

(fibroblast, endothelial cells, and MSCs), immune (T, B, plasma B, macrophage) by 

integrating all single-cell experiments. The four ovarian cancer subtypes using the TCGA 

gene expression signature revealed highly correlated cell types: the immunoreactive 

subtype showed higher correlation with immune cells, while the mesenchymal subtype 

correlated most with stroma cells and least with epithelial cells. The differentiated and 

proliferative subtypes both consisted of epithelia but with low and high percentage of 

ESCs, respectively. This suggests that the molecular subtypes classified by TCGA may 

be driven by the cell type compositions of the tumor samples. Because each tumor 

sample showed a unique cellular makeup that differed between primary and metastatic 

sites, it follows that the dominant molecular subtype of a tumor sample is specific to its 

site of origin, rather than being patient-specific, e.g., patients, P6 and P8, while sharing 

the HGSOC histotype, have different TCGA subtypes. 

For most cell types, we found that the cell cycle phases G1S, G2M, and MG1 were 

consistently distributed with a higher percentage of MG1 phase, with the exception of 

ESCs, where over 70% of the ESCs belonged to the G2M phase. Tumors with high G2M 

gene activity have been associated with metastasis and worse outcomes in patients with 

particular subtypes of breast and pancreatic cancers27,28. The role of p53 in G2/M related 

cell-cycle arrest in response to DNA damage has been studied extensively68-70. 

We found five different subtypes of cancer-associated fibroblasts, FB0 and FB2-5 in both 

primary and metastatic sites, based on the expression of IL6, CCL2, S100A4, PDPN, and 

FGF7. Each CAF sub-cluster supports different roles in the progression and metastasis 

of ovarian cancer. Cells in FB0 expressed genes associated with angiogenesis, Integrin 

signaling, and T cell receptor signaling pathways. These pathways were related to 
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extracellular matrix remodeling and immune crosstalk under the tumor micro-environment 

(TME). FB2 supported upregulation of NF-kappa B signaling pathway genes and 

chemokine receptors associated with cancer metastasis. FB2 and FB4 exhibited elevated 

expressions of growth factor binding genes as well as genes enriched for angiogenesis 

and blood vessel development. Top differentially expressed genes in FB3 may be 

involved with endothelial cell signaling and vascular function. FB5 showed genes 

enriched in immune crosstalk and cytokine/interferon signaling pathways. Among 

epithelial cells, we identified the EP3 sub-cluster as cancer stem cells, based on high 

expression of IFIT1 and ISG15.  

The majority of the immune sub-clusters were consistent with those identified in our 

previous study on metastatic ovarian cancer9. We identified a new cluster of IL32+ B cells 

(BC2) that are CD38-SDC1-S100A4+GAPDH+; these cells were found in both primary 

and metastatic tumor sites with high T cell infiltration, deriving primarily in clear cells and 

SOC histotypes. 

We did not observe any significant difference in the overall composition of cell lineages 

between primary vs. metastatic sites. We noted higher ratios of specific CAF (FB4 and 

FB2) and macrophage (MA2 and MA3) subsets and lower ratio of an epithelial subcluster 

(EP2) in metastatic sites, compared to primary tumors. 

Overall percentages of T and B cells were higher in high TInf samples, be it from primary 

or metastatic site, while the percentage of MS was lower overall. At the sub-cluster level, 

the TC0 and BC3 were positively correlated with TInf status, with MS2 showing negative 

correlation. The CAF sub-clusters FB0, FB2, FB4 and FB5, and the CSCs (EP3) were 

enriched in samples classified as metastatic, low TInf. 

Besides tumor site and TInf status, there were also differences in the makeup of cellular 

sub-types between histotypes. The percentages of epithelial cells from EP1-3 were higher 

in HGSOC and MMMT histotypes, while the percentages of ESCs in clusters ES1-3 were 

higher in HGSOC only. For clear cell histotype, the percentage of cells in TC0, BC2 and 

BC3 was higher. The endometrioid histotype had a higher percentage of MS and FB1 

cells. The percentages of MA0, MA2 and TC1 cells were higher in LGSOC than in other 

histotypes.  
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Lastly, we found fibroblasts and MSCs to be active players in the TME, exhibiting 

potentially distinct LR interactions with epithelial and immune subclusters in patients and 

histotypes. Imputed ligands and receptors may be leveraged to target therapy in ovarian 

cancer patients. 

Limitations of the study: The total number of patient samples collected in this study is 

limited due to the pandemic. Certain cancer subtypes such as MMMT were less 

represented in our samples because of their lower prevalence71. The cell sub-populations 

in tumors dissected from different individuals, tumor sites (primary vs. metastatic) or even 

different regions sampled from the same tumor may vary. The ligand-receptor interactions 

were inferred in silico through statistical testing, with the caveat that the same ligand or 

receptor can account for multiple inferred ligand-receptor pairs. Further validation tests 

are needed to confirm the ligand-receptor interactions. 
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Methods 

Tissue collection, sample preparation and Drop-seq 

Ovarian cancer tissue from primary and metastatic sites were collected from women 

undergoing debulking surgery at the University of Chicago. Some of the tissue collected 

from the different sites were patient-matched. The University of Chicago’s Institutional 

Review Board for human research approved the collection of human tissue after patient 

deidentification. Ovarian tumors were transported in DMEM/F12 containing 10% FBS and 

1% P/S (100% DMEMF/12) and processed as previously described9. Red blood cells and 

dead cells were removed from cell suspensions using Miltenyi Biotec, 130-094-183, 130-

090-101, respectively, used according to manufacturer’s protocols. Additionally, some 

samples were enriched for immune-only, non-immune, tumor-only and non-tumor cell 

compartments, using magnetic bead-based isolation or fluorescence activated flow 

sorting (Miltenyi Biotec, 130-118-780, 130-045-801, 130-108-339, 130-042-401, 130-

112-931, 130-118-497, 130-110-770, used according to manufacturer’s protocols).  

Drop-seq was performed as previously described9 on ovarian cancer tumor samples from 

12 patients (Table 1). A total of 21 tumor samples were present in this study, including 5 

patients with Matched primary (right and/or left ovaries) and metastatic (omentum, 

rectum) tumors (Table 2). Of these, a few randomly selected samples were enriched for 

select cellular compartments prior to running Drop-seq: CD45+ (5 samples), tumor (2 

samples) and non-tumor (1 sample); 18 samples were processed without any enrichment. 

 

Data processing, alignment and clustering analysis 

A total of 40 sequencing runs were performed on Illumina’s NextSeq 500 using the 75 

cycle v3 kit, as previously described9. Some samples were sequenced multiple times to 

achieve deeper resolution. Each run produced paired-end reads, with Read 1 

representing the 12 bp cell barcode and a six bp long unique molecular identifier (UMI) 

and Read 2 representing a 60-64 bp mRNA fragment. Paired-end reads from the same 

samples were combined to generate 26 paired-end fastq files. Read count matrices were 

generated from sequence reads from the Drop-seq experiments for both exon and intron 

regions in the human genome (gencode72 hg38 v.27) using a Snakemake pipeline73 and 

STAR version 2.5.3 aligner74. 
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To select high-quality cells, we applied a filter based on the number of genes detected 

per cell. Prior to filtering, each sequenced sample produced approximately 5,000 cells. 

Based on the median number of captured genes per cell, cells with less than 400 genes 

detected were removed from the dataset. A total of 26,421 cells were retained for the 

downstream analysis. We followed a standardized pipeline using the single-cell analysis 

tool suite, Seurat v3.0.275,76. A logarithmic normalization method75 was applied to all 

samples to transfer the gene expression counts (+1, to avoid log(0)) scaled by a factor of 

10,000 (TP10K) to log units. The normalized matrices for all samples were integrated by 

the anchor-based alignment method Canonical Correlation Analysis (CCA) using 

Seurat76. The top 1,311 highly variable genes and top 20 canonical vectors were selected 

to perform the alignment integration, where the integrated gene expression matrix had a 

lesser number of features (genes) than the original gene expression matrix. The 

integrated matrix was scaled by a linear transformation to center the mean gene 

expression for all cells. We applied PCA on the scaled integrated expression matrix to 

extract the top 50 components in the data, followed by a heuristic elbow plot on the 

standard deviation of each PC. We selected the top 16 variant PCs based on the elbow 

plot. The selected PCs were used in further exploration of the data, such as UMAP77 

dimension reduction, construction of K-nearest neighbor graphs, shared nearest neighbor 

modularity optimization-based clustering76, etc. We used dimension reduction methods, 

UMAP, to generate 2D plots to visualize different cell populations in the experiments. 

Hierarchical clustering on the shared nearest neighbor graph was applied to infer the 

clustering structure on the cells where the resolution parameter was set to 0.2. Differential 

expression analysis was performed through the FindMarkers function in Seurat using the 

Wilcoxon Rank Sum test, and statistically significant markers were extracted for sub-

populations or contrast groups based on an adjusted p-value (adj. p-val.) threshold of 

0.05.  

 

Cell cycling effects 

We inferred the cell-cycle phase for all cells based on previously curated gene markers 

reflecting three phases of the cell cycle in chemically synchronized cells (G1/S, G2/M and 

M/G1)5,78. For each cell-cycle phase, the module scores were calculated as the average 
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expression levels of binned gene markers subtracted by the aggregated expression of 

random gene sets from the same bin. The Seurat AddModuleScore function was used to 

assign all five module scores to each cell where 24 bins of aggregate expression levels 

for the marker genes were used and a hundred control genes were selected from the 

same bin per gene. The highest scored cell-cycle phase was assigned to the cell. If none 

of the module scores were positive, the cell was designated as not assigned (NA).  

 

Cancer subtype classification 

Four cancer subtypes- differentiated, immunoreactive, mesenchymal, and proliferative 

were categorized by previous bulk sequencing study in ovarian cancer3,79. The marker 

genes for each subtype were determined by the upregulated marker signatures on the 

four subtypes80. The Seurat AddModuleScore function was used to assign four module 

scores to each cell where 24 bins of aggregate expression levels for the marker genes 

were used and a hundred control genes were selected from the same bin per gene. The 

subtypes were then assigned to individual cells by the highest positive modular score. In 

the absence of positive modular scores, the subtype was considered not assigned (NA). 

 

Cancer patient survival prediction 

The cancer outcome was categorized as poor and good in the previous research on the 

TCGA ovarian cancer dataset3,79, where a list of gene signatures based on RNA-seq data 

were extracted for both outcomes. We obtained the module scores based on these lists 

of predictive gene markers using the Seurat AddModuleScore function as described in 

the cancer subtype classification. The predicted outcome was assigned to the cells 

according to the module score. 

 

Cell type classification using template-based method 

We assigned the cell type using a template-based cell annotation method, namely sc-

TACA (https://github.com/bingqing-Xie/taca)81. The sc-TACA method utilizes annotated 

single-cell dataset as a template. In this study, six HGSOC metastatic samples in the 26 

samples have been previously annotated, which was used as the template. The cell types 

annotated in this template were denoted by 𝑇 = {𝑡௜ , 𝑡 = 1. . 𝑝}, where 𝑝 is the total number 
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of unique cell types. All samples were integrated by an anchor-based alignment via 

Canonical Correlation Analysis (CCA) in Seurat75,76. Then modularity optimization-based 

hierarchical clustering FindClusters was applied on the integrated dataset with a 

resolution r = 0.2 that resulted in 11 cell clusters. For each cluster 𝑖, we obtained the 

annotated cell type vector 𝐶௜ = {𝑐ଵ, 𝑐ଶ, … , 𝑐ே೔
} where 𝑁௜ is the total number of cells from 

cluster 𝑖 and 𝑐௜  ∈  𝑇. The annotation 𝑡௜ of a given cluster 𝑖 was determined by highest 

ratio of annotated cell type within the cluster 𝑡௜ = argmax
௧

𝑟௧
௜ where 𝑟௧

௜ =
∑ ௖೔|௖೔ୀ௧

ே೔
. A threshold 

𝑟௠௜௡ = 0.7 was enforced to ensure the robust assignment. If max
௧

𝑟௧
௜ < 𝑟௠௜௡ for cluster 𝑖, it 

was labeled as undecided. 

 

Immunohistochemistry  

Ovarian cancer tissues were fixed and stained for Immunohistochemistry as previously 

described9, to evaluate the fraction of cytokeratin-7 (Thermo Scientific, MA5-11986), 

pan-vimentin (Abcam, Ab16700), CD45 (Agilent, M0701) positive cells.  

Aperio ImageScope v12.4.3 was used to analyze the fraction of cells that stained for 

CD45, vimentin and CK7 in the entire tissue section, using algorithm ‘Positive Pixel Count 

v9’.  

 

Analysis on fibroblasts, epithelial cells, and immune sub-population 

After identifying the cell types, we extracted the fibroblasts, epithelial cells, and immune 

cells (T cells, B cells, macrophages) to conduct further investigation. Each sub-population 

expression matrix was subset from the integrated matrix. The expression matrix was 

scaled and PCA analysis was performed to extract top components in the data. Top PCs 

were selected based on the elbow plot, which varied from 10 to 20 based on the sub-

population variation. Hierarchical clustering on the shared nearest neighbor graph was 

applied where the resolution parameter was set to a range between 0.2 and 0.5. The 

same UMAP was used to project the cells to a 2D space to visualize the sub-types for 

each cell type. Differential expression analysis was performed through the FindMarkers 

function in Seurat using the Wilcoxon Rank Sum test, and statistically significant markers 

were extracted for sub-populations or contrast groups based on an adjusted p-value (adj. 
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p-val.) threshold of 0.05. The differences in cell composition ratios between primary and 

metastatic sites, and between high and low Tinf groups were evaluated by two-sided T-

test with P value estimation. 

 

Ligand-receptor interaction analysis on cell type subclusters 

We constructed a customized pan-cancer ligand-receptor (LR) interaction database, 

using CellphoneDB53 and published cancer studies, including 27 immune checkpoint LR 

pairs82, 114 interaction pairs between cancer cells and T cells in lung cancer83, 1380 LR 

pairs in a pan-cancer study84, and 216 LR pairs related to ovarian cancer85. For each 

sample, we inferred LR interactions among any pair of the cell sub-clusters, 𝑆𝐶 = {𝑠𝑐௜
௝
}, 

where 𝑖 is the lineage such as EP, and 𝑗 is the subcluster index, using the pan-cancer LR 

database. We obtained a P value for the likelihood of cell-type enrichment of each ligand–

receptor complex (𝐿 = ൛𝑙௜
௝
ൟ, where 𝑖 is a ligand and 𝑗 is a corresponding receptor). We 

denote {𝑠𝑐௜ଵ
௝ଵ

, 𝑠𝑐௜ଶ
௝ଶ

} for a sub-clusters pair. P value is calculated by the proportion of means 

that are as high as (or higher) than the random permutation for all pairs, 𝑆𝐶 =

{൫𝑠𝑐௜ଵ
௝ଵ

, 𝑠𝑐௜ଶ
௝ଶ

൯}. Interactions with adjusted P value < 0.05 were considered significant. The 

‘significant means’ vector, 𝑀 = {𝑚௟
௦௖, 𝑙 ∈ 𝐿, 𝑠𝑐 ∈ 𝑆𝐶} was extracted for each sample and 

𝑚௟ was set to 0 when P value > 0.05 or sub-clusters with insufficient cell counts, (|𝑠𝑐|)  <

50. The number of absolute interactions ∑(𝑀 > 0) was used as a proxy to estimate the 

frequency of the cell-cell crosstalk among cell types. The hierarchical clustered heatmap 

was used to identify the shared patterns for the sub-clusters from different cell types. We 

then grouped the samples by histotype and site for the downstream comparative analysis. 

A linear model was built using lmfit in Limma R library for a given contrast group (e.g. one 

histotype against the rest of the histotypes) and the empirical Bayes moderated t-statistics 

test ebayes was used to estimate the significance of any LR signature, 𝑙 ∈ 𝐿86,87. 

Significant positive LR pairs were used as the signature for any given condition group. 

 

Data Availability 
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The data discussed in this publication have been deposited in NCBI's Gene Expression 

Omnibus88 and are accessible through GEO Series accession number GSE235931 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235931).  
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Figure and table legends 

 

Figure 1: Experiment design and 2D reduced representation of all cells included in the 

study, annotated by major cell lineage, predicted cancer subtype and cell cycle phase. 

A) Profiling ovarian cancer tumor samples of different using droplet single cell RNA-seq. 

B) All cell types projected on UMAP divided by Epithelia, Immune and Stroma 

subpopulations. 

C) Predicted cancer subtype projected on UMAP. 

D) Cell cycle assignment projected on UMAP. 

 

Figure 2: Cellular sub-types in the Immune, Epithelia and Stroma. 

A-C) Subclusters of major immune cell types: T cells, B cells and macrophages, 

respectively. 

D-E) Subcluster annotation for epithelial and embryonic stem cells (ESC), respectively. 

F-H) Subcluster annotation for major cell-types in the stroma: fibroblast, mesenchymal 

stem cells and endothelial cells, respectively. 

 

 

Figure 3: Cell composition by tumor site, T cell infiltration, and histotypes; fraction of 

immune, stromal and epithelial cells are explored using immunohistochemistry. 

A) Heatmap of major cell type composition (left) and sub cell type (right) for all patient 

samples. The column z-scores are calculated from cellular compositional percentages 

within each sample; the rows are split by site and T cell infiltration status. 

B) Heatmap of cell type subclusters composition percentage for all patient samples. The 

values are column z-scores normalizing the percentage and the rows are split by 

histotypes.  

C) Dot plot of histotype markers expression on EP and ES cells, The expression in the 

dot plot is the averaged scaled log normalized TP10k value. 

 

Figure 4: Ligand-receptor (LR) interactions predicted by CellPhoneDB using a 

customized cancer database. 
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A) Total number of interactions between all cell subtypes. 

B) Counts of significant Ligand-receptor pairs for all cell type subclusters stratified by 

sample, the columns are grouped by the cell lineage of the first interactor. 

 

 

Supplementary Figure S1: Stacked bar plot for cell-type annotations for samples 

together. 

A) Cell type composition per sample, grouped by patient.  

B) Composition of TCGA molecular subtype per sample, grouped by patient.  

C) Cell-cycle phase composition by major cell types. 

 

Supplementary Figure S2: Immune, epithelial, and stroma lineages shown in Fig. 2, with 

selected markers for each cluster. The cluster number and color are consistent with Fig. 

2. The expression in the dot plot is the averaged scaled log normalized TP10k value. 

A) UMAP (top) of immune cells only, and heatmap (bottom) of immune percentages 

for all samples with unsupervised dendrogram forming the T cell infiltration high/low sub-

groups. 

B) Dot plot of immune cell marker expressions for each immune subcluster. 

C) Dot plot of epithelial cell marker expressions for each epithelial subcluster. 

D) Dot plot of ESC marker expressions for each ESC subcluster. 

E) Dot plot of fibroblast marker expressions for fibroblast subclusters. 

F) Dot plot of MSC marker expressions for MSC subclusters. 

G) Dot plot of endothelial marker expressions for Endothelial subclusters. 

 

Supplementary Figure S3: Cell type composition of tumors from different histotype, 

tumor site and T cell infiltration status. 

A) Heatmap of cell type subclusters composition percentage for aggregated patient 

samples by histotype. The column z-scores are the percentages normalized by column.  

B) Heatmap of cell type subclusters composition percentage for aggregated patient 

samples by site and T cell infiltration. The column z-scores are the percentages 

normalized by column. 
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C-D) Immunohistochemical staining for CD45, vimentin and CK7 are performed on tumor 

samples of different histotypes and tumor sites. C) Ovarian cancer tumor samples 

collected from the omentum as the site of metastatis. Six histotypes are shown: malignant 

mixed Müllerian tumors (MMMT), clear cell, endometrioid with serous features, high grade 

serous ovarian carcinoma (HGSOC), serous ovarian carcinoma (SOC) and low grade 

serous ovarian carcinoma (LGSOC). D) ovarian cancer tumors collected from the ovaries 

(primary tumor site). Five histotypes are shown: malignant mixed Müllerian tumors 

(MMMT), clear cell, endometrioid with serous features, high grade serous ovarian 

carcinoma (HGSOC) and low grade serous ovarian carcinoma (LGSOC). 

 

Supplementary Figure S4: Ligand-receptor (LR) interactions imputed customized 

cancer LR database. Significant Means is defined in Methods.  

A) Between epithelial cells and fibroblasts. 

B) Between immune cells and epithelial cells. 

C) Between immune cells and fibroblasts. 

 

Supplementary Figure S5: Ligand-receptor (LR) interactions between T cells, 

fibroblasts and ESCs, imputed using default CellphoneDB database. Color bars indicating 

histotype and T cell infiltration status are the same for all panels. The significant means 

is defined in the Methods. 

A) Selected LR interactions between T cells and fibroblasts in four samples. 

B) Selected LR interactions between T cells and ESCs in four samples. 

C) Collagen-integrin LR interactions between T cells and Fibroblasts in four samples. 

D) Collagen-integrin LR interactions between T cells and ESCs in three samples. 
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Table 1: 

A) 

Patient Histotype Total/CD45/ Tumor enrich 
Pathological 

stage 
Age Race 

Neo-
adjuvant 

P1 
Malignant mixed 
Müllerian tumor 

(MMMT) 
Yes Yes No 

ypT3c, 
NX/yIIIC 66 Asian Yes 

P2 Clear cell Yes Yes Yes pT3c NX/IIIC 74 White No 

P3 
Endometrioid 
with serous 

features 
No Yes No 

pT3b, N0/ 
IIIB 

66 White No 

P4 
Endometrioid and 

serous features 
No Yes No pT1a N0/ IA 69 White No 

P5 Clear cell Yes Yes No 
pT2B, 
N0/IIB 77 White No 

P6  
High grade serous 
ovarian carcinoma 

(HGSOC) 
Yes No No 

pT3c Nx 
Mx/  IIIc 

56 White No 

P7 
Serous ovarian 

carcinoma (SOC) 
Yes Yes Yes 

ypT3a Nx 
M1/ Ivb 

62 White Yes 

P8 
High grade serous 
ovarian carcinoma 

(HGSOC) 
Yes No No pT3c N0 

/IIIC 
48 UNK No 

P9 
Low grade serous 
ovarian carcinoma 

(LGSOC) 
Yes No No 

pT3c, NX, 
M1b  /IVB 

39 White No 

P10 
High grade serous 
ovarian carcinoma 

(HGSOC) 
Yes No No ypT3c N1a / 

yIIIc 
66 Black Yes 

P11 
High grade serous 
ovarian carcinoma 

(HGSOC) 
Yes No No 

pT3c Nx / 
IIIc 

46 Asian No 

P12 
High grade serous 
ovarian carcinoma 

(HGSOC) 
Yes No No 

pT3c, N1, 
M1/ IIIc 71 Black Yes 
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B) 

Sample Drop-seq IHC 
Catego
ry 

Patient  Sample Site 
# 
cells 

Epithelial 
cell (%) 

ESC 
(%) 

Endoth
elial 
cell (%) 

Fibro
blast 
(%) 

MSC 
(%) 

Macro
phage 
(%) 

B cell 
(%) 

Plasma 
B cell 
(%) 

T 
cell 
(%) 

CK7 
(%) 

VIM 
(%) 

CD45 
(%) 

Stage 
Tinf 

1 

P1-1 
Omentu
m 

222
7 59.5 4.5 1.1 22.9 3.6 4.5 0.6 1 2.3 59.2 60 7.9 

Meta 
Low 

P1-2 
Left 
Ovary 

115
6 66.2 3.7 2.7 21.8 2.6 1.1 0 1 1 68.7 37.5 0.4 

Primar
y Low 

P1-3 
Right 
Ovary 

105
1 76.6 5.3 0.9 10.1 3.4 0.9 0 0.7 2.2 66.6 50.2 6.1 

Primar
y Low 

2 

P2-1 
Omentu
m 

100
8 54.6 8.1 1 8.7 1.7 10.6 0 2.9 12.3 66.6 79.4 58.9 

Meta 
High 

P2-2 
Right 
Ovary 330 28.2 6.1 0.6 21.8 3.9 6.4 0 10.9 22.1 89.3 70.6 34 

Primar
y High 

3 

P3-1 Rectum 345 26.6 2.4 1.7 27.1 20.4 16.4 0.1 0.3 5.1 69.8 37.9 4.4 
Meta 
Low 

P3-2 
Left 
Ovary 928 42.3 3.8 3.8 24.9 14.5 9 0 0 1.7 70.7 40.5 0.7 

Primar
y Low 

4 P4-1 
Left 
Ovary 837 37.2 9.2 1.2 9.4 2.5 35.6 0.1 0.6 4.2 76.4 55.3 0.8 

Primar
y Low 

5 P5-1 
Right 
Ovary 

255
4 45.7 11.4 0.4 18.7 2.4 5.6 0 3.7 12.1 84.6 54 17.8 

Primar
y High 

6 

P6-1 
Omentu
m 

335
7 28.3 6.5 1 22.6 2 9.1 8.8 3.8 17.4 57.5 54.6 17.3 

Meta 
High 

P6-2 
Left 
Ovary 

210
2 60.7 15.2 1.6 11.5 4.8 2.6 0 0.3 2.6 69.1 34.4 9.8 

Primar
y Low 

7 P7-1 
Omentu
m 

354
2 43.7 5.6 4 10.9 1.5 12.1 2.1 7.7 12.5 41.7 69.1 28.5 

Meta 
High 

8 

P8-1 
Right 
Ovary 359 70.2 9.6 1.9 5.8 2.1 5.4 0 0.6 4.3 83 39.2 3.3 

Primar
y Low 

P8-2 
Left 
Ovary 467 55.7 7.2 3.9 5.9 6.4 11.7 0 0.6 8.6 85.5 51.2 2.5 

Primar
y Low 

9 

P9-1 
Omentu
m 529 32.9 2.8 2.8 19.1 5.1 16.6 0.2 5.7 14.7 38.9 48 4.4 

Meta 
High 

P9-2 
Omentu
m 585 35.6 2.1 3.1 40.9 4.4 8 0 3.4 2.6 50.6 49.4 5.4 

Meta 
Low 

P9-3 
Left 
Ovary 341 38.7 1.8 0 36.1 10.3 9.4 0 1.2 2.4 84.2 34 2.5 

Primar
y Low 

P9-4 
Right 
Ovary 378 30.2 1.9 1.9 38.6 9.3 13.8 0 0 4.2 78.1 41.7 2.3 

Primar
y Low 

10 P10-1 
Omentu
m 

106
7 27.7 8.1 2.4 34.3 1.6 17.2 1 2.2 5.5 21 59.3 10.7 

Meta 
Low 

11 P11-1 
Omentu
m 

106
6 56.9 21.2 0.2 2.9 0.4 10.4 0.3 2.5 5.2 57.8 77.9 23.7 

Meta 
Low 

12 P12-1 
Omentu
m 

109
7 43.3 5.6 4.4 37.4 5.3 1.3 0.5 1 1.2 78.8 44.4 4 

Meta 
Low 

 

A) Metadata for ovarian cancer patients included in our study. 

B) Total number of cells and breakdown of cellular composition in each sample, color-

coded by tumor site (Primary, Meta) and T cell infiltration (Tinf) status. The cell types are 

abbreviated as follows: EP = Epithelial cells; TC = T cells; MA = Macrophages; EN = 

Endothelial cells; BC = B cells; FB = Fibroblasts; MS = Mesenchymal stem cells; ES = 

Embryonic stem cells. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.07.561344doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.07.561344
http://creativecommons.org/licenses/by-nd/4.0/


 

Supplementary Table S1: A) Selected cluster markers, and B) enrichment pathways for 

epithelial sub-populations. C) Selected cluster markers, and D) enrichment pathways for 

ESC sub-populations. 

 

Supplementary Table S2: A) Selected cluster markers, and B) enrichment pathways for 

fibroblast sub-populations. 

 

Supplementary Table S3: A) Selected cluster markers, and B) enrichment pathways for 

endothelial sub-populations. 
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