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Abstract

Ovarian cancer is a highly heterogeneous disease consisting of at least five different
histological subtypes with varying clinical features, cells of origin, molecular composition,
risk factors, and treatments. While most single-cell studies have focused on High grade
serous ovarian cancer, a comprehensive landscape of the constituent cell types and their
interactions within the tumor microenvironment are yet to be established in the different
ovarian cancer histotypes. Further characterization of tumor progression, metastasis, and
various histotypes are also needed to connect molecular signatures to pathological
grading for personalized diagnosis and tailored treatment. In this study, we leveraged
high-resolution single-cell RNA sequencing technology to elucidate the cellular
compositions on 21 solid tumor samples collected from 12 patients with six ovarian cancer
histotypes and both primary (ovaries) and metastatic (omentum, rectum) sites. The
diverse collection allowed us to deconstruct the histotypes and tumor site-specific
expression patterns of cells in the tumor and identify key marker genes and ligand-
receptor pairs that are active in the ovarian tumor microenvironment. Our findings can be

used in improving precision disease stratification and optimizing treatment options.


https://doi.org/10.1101/2023.10.07.561344
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.07.561344; this version posted October 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Introduction

Ovarian cancer is the second most common and most malignant cancer in the female
reproductive tract. According to the American Cancer Society, 90% of ovarian cancer
originated from epithelial tissue and can be further divided into serous, endometrioid,
clear cell, and mucinous histotypes®. The risk factors of epithelial ovarian cancer vary
from each histotype but generally include age, weight, hormone therapy after menopause,
as well as family history2. Previous genomic studies® on ovarian cancer have investigated
the effects of variations in genes that included TP53, NF1 and BRCA1. Mutations in TP53
and NF1 and dysfunction of BRCA1 are related to the pathogenesis of the serous
carcinoma in ovary*. However, the molecular mechanism for ovarian cancer remains
unclear and targeted therapy is yet to be developed. In recent years, the development of
single-cell technology allows researchers to zoom in on the cell-level transcriptome of the
tumor tissue and provides a better understanding of the tumor microenvironment (TME).
Single-cell technology has been applied to ovarian cancer previously on malignant
abdominal fluid (ascites) associated with High grade serous ovarian carcinoma (HGSOC)
histotype®. The stress associated chemo-resistance in solid tumors from metastatic sites
with HGSOC was investigated together with stroma signaling to provide insight into
chemotherapy resistance’. A recent study used scRNA-seq on primary and untreated
peritoneal metastatic site® to study cancer recurrence. However, comparisons across
multiple sites and histotypes are yet to be performed. We previously reported the cellular
composition of metastatic ovarian tumors using single-cell RNA sequencing technology®.
We found heterogeneity in the immune responses of different ovarian cancer patients,
among immune sub-populations identified from the metastatic samples, allowing us to
separate tumors into two groups based on T cell infiltration. The metastatic samples can
be grouped into high and low T infiltrated types based on both immunohistochemistry
(IHC) and single-cell transcriptomic profiles. We established a comprehensive collection
of immune cells from the differential expression of marker genes.

In the current study, we characterized tumors from 12 ovarian cancer patients using Drop-
seq, a high-throughput single-cell RNA-seq technique®. We broadened our focus to
include primary tumor sites and other histotypes besides HGSOC which allowed us to

identify cell types that are specific to sites or histotypes. We analyzed the distribution of
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cancer-associated cells and elucidated cell-cell communication in each histotype. We
identified a cluster of cancer stem cells (CSCs) within the epithelial cells, based on their
increased expression of markers IFIT1, IFIT2, IFIT3 and ISG15. This cluster is present in
HGSOC and MMMT histotypes. Within the stromal cells, we found multiple cancer-
associated fibroblast (CAF) sub-clusters which showed high expression of IL6, CCL2,
S100A4, PDPN, and FGF7 in both primary and metastatic samples. We also verified that
our previous observations on the immune cell activity in metastatic samples are still valid
across a larger sample collection that includes primary tissues and multiple histotypes. In
addition, we identified a cluster of IL32+ plasma B cells that were found exclusively in the
primary tumor sites.

With the inclusion of additional histotypes and tumor sites in our collection, this study
allows us to characterize the differences in cell compositions between sites and different
levels of their T cell infiltration, build cell or gene signatures to characterize the different
ovarian cancer histotypes, and further investigate the underlying molecular mechanism
in the TME. We further explored cell-to-cell communication among different cell sub-
clusters, using inferred ligand-receptor (LR) interactions. We note that such interactions
are enriched among epithelial cells and fibroblasts and that LR interaction signatures vary

across different tumor sites and histotypes.

Results

Establishing cell lineages, TCGA subtypes and cell-cycle states across samples

To study cell composition of ovarian cancer, tumor tissues resected from 12 ovarian
cancer patients undergoing debulking surgery in the ovaries, omentum and rectum were
analyzed in this study (Fig. 1A, Table 1A). Briefly, the cohort consisted of seven white,
two Asian, two Black women and one woman of unknown racial origin and ranged
between 39-77 yr in age (mean ~62 yr). Most patient tumors were stage IlIB or above
according to staging by a pathologist. Solid tumor samples of different histotypes were
collected from primary (ovaries) and metastatic (omentum, rectum) sites (Table 1B)
which enabled us to investigate histotype- and site-specific signatures at single cell level.
Tumor samples were obtained fresh from surgery and processed using Drop-seq® within
24 hr or fixed in formalin for immunohistochemistry (IHC). Immune (CD45+) and cancer
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cells enriched from a subset of samples were also profiled by Drop-seq to obtain better
representation of immune cells in our single cell data.

A total of 26 gene expression matrices were generated from Drop-seq experiments on 21
ovarian cancer tumors from 12 patients. We identified a total of 38,811 genetic features
across 25,326 cells from tumors resected from multiple tissue sites in this study. The
filtered gene expression matrices were integrated using the anchor-based alignment.
Unsupervised clustering analysis yielded 11 distinct clusters of cells. The resulting
clusters were annotated using Template-based Automated Cell type Assignment (sc-
TACA; Methods), yielding ten major cell types including epithelial, endothelial,
mesenchymal stem (MSC), embryonic stem (ESC), fibroblast, macrophage, T, B and
plasma B cells and a small cluster of 37 cells marked as N1 that shared markers with
astrocytes which we saw in our previous study® (Fig. 1B). Percentages of each cell type
comprising each tumor sample are shown in and Table 1B. Due to the small
number of N1 cells in any given sample (< 0.1%), we excluded them in further analysis.
For simplicity, the cell-types were classified into three compartments: epithelia, containing
epithelial cells and ESCs, stroma containing endothelial cells, MSCs and fibroblasts, and
immune, containing macrophages, B and plasma B cells, and T cells (Fig. 1B).

Next, we explored the expression of the genes associated with the four molecular
subtypes of ovarian cancer- differentiated, immunoreactive, mesenchymal and
proliferative- identified by TCGA3 in our dataset. We were able to assign one of the four
molecular subtypes with the highest TCGA module score to 93.7% of cells; cells with a
negative module score were marked as not assigned (NA)°. When each cell on the UMAP
was marked with the molecular subtype assigned to it (Fig. 1C), we noted that the major
cell types and the cellular compartments they belong to (Fig. 1B) match the predominant
molecular subtype of ovarian cancer identified by TCGA. The epithelial cells were
distributed through all four cancer subtypes and comprised 80% of the cells predicted as
differentiated subtype. 73% of cells from the predicted immunoreactive subtype were
immune cells (B cells, T cells, and macrophages). The mesenchymal subtype, associated
with worst survival'®, consisted of the least epithelial cells and contained the highest
percentage (82%) of stroma cells, including MSCs, fibroblasts, and endothelial cells. The

proliferative subtype contained 56% cells from the epithelial cell category; 26.2% cells
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from the ESC (about half of the total ESC population) that also showed unique stem cell
features described later, were of the proliferative subtype. Sample-specific composition
of TCGA subtypes is shown in

To study the cell cycling effects under the TME, Cell cycle analysis was performed on the
combined dataset to assign a cell-cycle module score to each cell for the G1S, G2M and
MG1 phases. Cells that could not be assigned to one of these phases were marked as
‘NA’. We noted that the cell cycling patterns were roughly similar for all cell types (Fig.
1D), with the exception of ESCs. A large fraction of cells across all cell types were
assigned to the MG1 phase (64.3%; ), as seen previously''. In contrast, most
ESCs (>70%) were assigned to the G2M phase where they likely stalled during the cell

cycle'?,

Immune cells and their expression in ovarian cancer samples

We identified 5,453 cells as immune cells that could be further split into B cells, plasma
B cells, T cells, and macrophages ( ). We also found a few dendritic cells and
common myeloid progenitor cells (52 and 30, respectively) that co-clustered with
macrophages and were removed for downstream analysis due to the low cell counts.
When identifying the subclusters within each cell type, we denote them as ‘EP’ for
epithelial cells, “TC’ for T cells, ‘BC’ for B cells, ‘MA’ for macrophages, ‘ES’ for ESCs, ‘FB’
for fibroblasts, ‘MS’ for MSCs, and ‘EN’ for endothelial cells. We used a single digit starting
from 0 to index the sub-clusters for each cell type, e.g., EPO denotes cluster 0 of epithelial
cells.

To determine if there were any cells unique to the different tumor sites, we cross-
referenced 5,371 immune cells with our previous study® of metastatic ovarian tumors. We
identified five subclusters (Fig. 2A), consisting of three clusters of CD4+ T helper (Th)
cells (TCO, TC3, TC4), and two clusters of CD8+ resident memory T (Trm) cells (TC1 and
TC2). Among these clusters, one subcluster containing GNLY+CD8+Tm cells (TC2) that
was not observed previously®, derived from metastatic samples, P5-1, P6-1, P7-1. Three
PRDM1+JCHAIN+ plasma B clusters, BCO, BC2, and BC3 and one naive B cluster, BC1
were observed (Fig. 2B, ). The BC2 subcluster that consisted of CD38-SDC1-
S100A4+IL32+GAPDH+ plasma B cells, has not been identified previously®. The marker
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IL32 was a proliferation marker for malignant plasma cells in myeloma'3. Intriguingly, we
find BC1 to be almost absent in the primary tumor site (ovary). Four macrophage
subclusters (Fig. 2C, ) were annotated, including a CD14+MSR1+CD163-
cluster (MA1) that were mainly found in samples collected from the primary tumor site

(ovary) and thus not seen in our previous study®.

Epithelial cells and their expression in ovarian cancer samples

We detected 11,716 epithelial cells comprising the epithelia, as the most abundant cell
type in our integrated and batch corrected dataset. Hierarchical clustering of these cells
(resolution = 0.3) detected four epithelial sub-clusters, EP0O-3 (Fig. 2D). Dot plots for some
top differentially expressed markers, EPCAM, S100A1, KIAA1217, MAML2, MECOM,
IFIT2/3, and LIPA are shown in . The EPO sub-cluster comprised 38% of all
epithelial cells and showed a distinctive signature of cytokeratin genes, KRT19 (logFC =
0.96), KRT18 (logFC =0.747) and KRT7 (logFC = 0.633) (Table S1A). A recent study on
the origin of ovarian cancer' connected fallopian tube epithelial cell subtypes to intra-
tumor heterogeneity in serous ovarian cancer (SOC), and used KRT7 as a marker for
secretory epithelial (SE) cells in the fallopian tube as the cell-of-origin for SOC. Other
genes found upregulated in EPO (Table S1A) were S7T00A6 (logFC = 0.81) and S100A11
(logFC = 0.66) from the S100 calcium-binding protein family. The S100 protein family
interacts with cytoskeletal proteins'® and may promote metastasis and stimulate
angiogenesis. Specifically, ST00A11 gene'® acts as a tumor promoter by regulating MMP
activity and the epithelial-mesenchymal transition (EMT) process. Another top expressing
marker gene, LGALS3 (logFC = 0.8) is associated with cell migration, proliferation,
adhesion, cell-cell interaction in tumor cells, and implicated in tumor progression and
chemo-resistance of epithelial ovarian cancer'”. EP1 cluster exhibited significant
upregulation of genes belonging to the MHC class Il protein family, HLA-DPA1, HLA-
DRA, HLA-DPB1, and HLA-DRB1 (logFC > 0.96), was associated with the KRT17 sub-
cluster of secretory epithelial cells in the fallopian tube epithelia’® as well as high
expression of ribosomal proteins such as RPLP1 (logFC = 0.84) and RPS6 (logFC =
0.81). EP2 subcluster was enriched for chromatin pathways, growth factor signaling

pathways, such as platelet-derived growth factor (PDGF), nerve growth factor (NGF),
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epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor Beta
(PDGFRB) and angiopoietin like protein 8 (ANGPTLS8) regulatory pathways. Protein
families with ankyrin-repeat proteins and zinc finger proteins associated with cancer
progression'®2% were upregulated in EP2. EP3 showed a unique signature of interferon-
stimulated genes IFIT1-3 (logFC > 2.5), IFITM1-3 (logFC > 0.6), and ISG15 (logFC = 2.5),
previously characterized as markers of cancer stem cells (CSC)?'. Detailed marker
information is provided in Table S1A.

We also detected 1,925 embryonic stem cells (ESC) in our combined dataset that showed
moderate expression of ESC markers, STAT3 and CTNNB1 ( ). Further
clustering of the ESCs yielded 4 sub-clusters (Fig. 2E): ESO exhibited markers of the
immunoreactive molecular subtype, such as RGS7122 (logFC = 1.91), CD3E? (logFC =
0.55) and CD3G?23 (logFC = 0.82); also see Table S1C. We found cancer stem cell gene,
CD2424 and therapy resistant genes, CD46 and CD552% expressed in ES1, ES2, and ES3
and cancer stem cell marker, CD59% in ES1 and ES2 ( ). Analysis of cell cycle
activity (Fig. 1D) assigned 73% of the ESCs to the G2M and 22.5% to the G1S phases.
The elongated G2M phase has been previously associated with cancer cell proliferation,
mutation of TP53 and KARS, T cell infiltration, and cancer metastasis?’-2°. Moreover, the
expression of CDKN1A and senescence gene FN1 with the lack of expression of PCNA
can trigger the G2 arrest or the stress-induced premature senescence (SIPS) found in a
previous cancer study3 ( ). Meanwhile the shortened G1 phase regulated by
TP53 can lead to DNA damage, and subsequently affect the S phase with malfunctioned
G1/S checkpoint®'. Low number of cells in MG1 (< 5%) may indicate the ESCs to be post-
mitotic. Specifically, genes expressed in ES1 are enriched for cell cycle functions and
G2/M transition (Table S1D). Increased gene expression required for G2/M transition and
indicative expression for DNA damage response, such as CCNA2, CCNB1, CCNB2,
CDK1, CKAP5, DCTN3 and TUBB4B can support the malfunction of P5332 ( )-

Stromal cells and their expression in ovarian cancer samples
The second largest cellular compartment, stroma, contained three major subsets:
fibroblasts, MSC and endothelial cells. Hierarchical clustering of 4,772 fibroblasts

(resolution = 0.5) yielded six sub-clusters (Fig. 2F) containing markers for cancer-


https://doi.org/10.1101/2023.10.07.561344
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.07.561344; this version posted October 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

associated fibroblasts (CAF). The CAF-like clusters involved multiple molecular
mechanisms associated with tumor progression, angiogenesis via vascular endothelial
growth factor A (VEGFA) production, and coordination of immune function through
chemokine and cytokine3® production. FBO and FB1 showed comparatively high
expression of myofibroblast markers, ACTA2 (logFC = 1.04) and MYL934 (logFC = 0.74).
CAF associated markers, MMP11, MMP2, FAP, THY1, IFI6, IFI27% (logFC > 0.33) were
highly expressed in FBO ( Table S2A). In contrast, we did not find any CAF-
related expression in FB1. FB2 showed upregulation of NF-kappa B signaling pathway
genes, NFKBIA, NFKB1 and NFKBIZ (logFC > 0.42), VEGFA-VEGFR2 signaling pathway
gene, VEGFA (logFC = 0.33), chemokine receptor genes, /L6 (logFC = 1.7) and CCL2
(logFC = 1.72), transmembrane glycoprotein genes, PDPN?3¢ (logFC = 0.1), and genes
associated with cancer metastasis, IER3%” (logFC = 0.633), SGK138 (logFC = 1), and
SERPINE2% (logFC = 0.5). Genes overexpressed in FB3 subcluster were enriched for
angiogenesis, integrin signaling and related to extracellular matrix remodeling, including
FGF7 (logFC = 1.18) and S700A4 (logFC = 0.89). The FB4 subcluster exhibited elevated
expressions of growth factor binding genes, IGFBP4 (logFC = 0.83), TGFBR3 (logFC =
0.82) and top markers APOLD1, MCAM, and PLXND1 for angiogenesis and blood vessel
development (Tables S2A, B). FB5 showed upregulated genes highly enriched in
immune crosstalk and cytokine/interferon signaling pathways. Particularly, interferon
inducible genes, such as IFI6, IFI27, IFI44, IFI44L, IFIH1, IFIT1-3 (logFC > 1.53) were
highly expressed in FB5 subcluster that might be due to the inflammatory crosstalk in the
TME*? (Table S2A, B). Taken together, all fibroblast subclusters exhibited CAF features,
with the exception of FB1.

The progenitors of stroma sub-population, 951 mesenchymal stem cells (MSC) were
detected in our data that could be clustered into 4 sub-clusters (Fig. 2G). The majority of
the MSCs (MS0-3) expressed MSC markers, MCAM and THY1 (Fig. 2G, ). A
small subset of MSCs (MS3) also expressed ENG that was not seen in the other clusters
( )-

Finally, a distinct population of 472 endothelial cells was found in the stromal
compartment. Two sub-clusters, ENO and EN1, both expressing endothelial markers,
ENG, S100A6, and CD34*'-43 were found (Fig. 2H). ENO showed higher expression of
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ACKR1 (logFC = 1.22) which is associated with ligand transcytosis** and serves as a
non-specific and promiscuous receptor for several inflammatory chemokines when
expressing in endothelial cells*'4546  carcinoma-associated genes, RACK74’ (logFC =
0.7) and CD74*8 (logFC = 0.84) ( , Table S3A). Genes upregulated in EN1 are
related to angiogenesis and blood vessel morphogenesis in tumor metastasis (Table
S3B).

Cellular composition by ovarian cancer histotypes and tumor sites

We conducted further analysis on our tumor samples to examine cell types described
above (Fig. 1B, Table S4A), cancer histotypes (Fig. 3B, Table 1A) and T cell infiltration
into tumors (Fig. 3A, , Table 1B). Based on pathology grading, the samples in
this study belong to six ovarian cancer histotypes: serous ovarian carcinoma (SOC), high
grade serous ovarian carcinoma (HGSOC), low grade serous ovarian carcinoma
(LGSOC), clear cell, endometrioid with serous features, and malignant mixed Mullerian
tumors (MMMT). Fig. 3B shows the heatmap of cell type compositions combined across
all samples, grouped by cancer histotypes. We noted the highest fraction of epithelial cells
in MMMT and the highest fraction of MSCs in endometrioid samples. Expression of
previously established immunohistochemical markers#®%° WT1, NAPSA, and PGR for
histotype classification were checked on EP and ES cell lineages. We confirmed higher
expression of WT7 in HGSOC and NAPSA in Clear Cell histotypes, compared to other
the remaining histotypes, and the presence of PGR expression in endometrioid with
serous features (Fig. 3C). Additional markers®-%2 VIM, CDKNZ2A, and ARID1A were
applied to distinguish other histotypes. The EMT repressors, zinc finger E-Box binding
homeobox 1 and 2, (ZEB2, ZEB1)°'52 related to endometrial carcinosarcoma, a mix of
(epithelial) carcinoma and (mesenchymal) sarcoma, were used to distinguish
endometrioid and MMMT histotypes. In epithelial and ES cells, we observed
WT1+CDKN2A+ for HGSOC, and WT1+CDKNZ2A-VIM+ for LGSOC (Fig. 3C). Among the
other histotypes, we find SOC to be WT1+CDKN2A+VIM+, clear cell to be WT1-NAPSA+,
endometrioid to be WT1-NAPSA-PGR+ZEB2+ARID1A+ and MMMT to be
WT1+VIM+ZEB1+ in our limited sample space (Fig. 3C).
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Tumors from the ovaries were considered primary tumor sites while the tumors from the
omentum and rectum were categorized as metastatic (Table 1B). We categorized each
sample based on the level of T cell infiltration (Tinf)°, and whether its tumor site was
primary or metastatic, thus grouping our samples into 4 categories: Metastatic High (Tnf),
Metastatic Low, Primary High, and Primary Low. We found no significant differences in
the composition of major cell lineages between primary and metastatic sites. However, at
the sub-cellular level, the ratios of FB4, FB2, MA3, and MA2 were higher in metastatic
sites, while EP2 showed an opposite pattern (Table S4B, C). T-tests performed on the
ratios of different cell lineages showed significantly higher fractions of TC and BC in high
Tinf group and MS was lower in Tinf (Table S4B). Zooming in, the TCO and BC3 appear
to drive these differences, while higher MS2 correlated with low T cell infiltration (Fig. 3A,
Table S4C). shows the percentages of each immune cell type in these
four categories. We found FB sub-clusters, FBO, FB2, FB4 and FB5 expressing CAF
markers to be enriched in samples classified as Metastatic Low ( ), along with
CSCs (EP3 sub-cluster, ).

Overall, the cell sub-type fractions were correlated within main cell types. For example,
all EP, ES and CAF sub types- FBO, FB2, FB3, FB4 and FB5 clustered together (Fig 3B,
black rectangles). Interestingly, the only non-CAF subcluster of fibroblast, FB1 clustered
with MSC (Fig. 3B, black rectangle).

Due to the limited number of samples available for all histotypes, we were unable to
calculate statistical significance on the cell cluster compositions. Nevertheless, several
intriguing observations merit attention. The EPO cluster was observed in all histotypes
(Table S4A). The fractions of EP1, EP2 and EP3 cells were higher in MMMT compared
to the other histotypes, while the fraction of cells in ES1, ES2 and ES3 were higher in
HGSOC ( )- For clear cell histotype, the percentage of cells in TCO, BC2 and BC3
were higher. The endometrioid histotype showed a high fraction of MSCs, MA1 and FB1.
The percentage of certain macrophage and T cell subtypes in LGSOC (MAO, MA2 and
TC1) was higher than in other histotypes. The SOC sample of undetermined pathology
grade appeared more similar to HGSOC from the primary site than LGSOC in terms of
cell type composition ( ). In the SOC sample, the human leukocyte antigen (HLA)

genes have higher average expression compared to HGSOC samples. BC2 derived from
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tumors with high T cell infiltration and were identified primarily in clear cell and SOC
histotypes ( )-

Immunohistochemical staining of vimentin (VIM), CD45, and cytokeratin-7 (CK7) were
also performed on tumor tissues from metastatic ( ) and primary ( )
tumors belonging to different ovarian cancer histotypes to investigate the fractions of the
major cell lineages in these tumors. We correlated the percentage of each cellular subsets
in our combined dataset from 18 samples to the IHC results; three samples from patients
P3 and P4 that were enriched for CD45+ cells alone for Drop-seq were excluded from
this analysis. The percentage that stained for CD45 was well correlated (Pearson
correlation = 0.51 and a significant 0.03 P-value estimation) with the immune population
(macrophage, T, B and plasma B cells). The correlations between area staining for CD45
(IHC) and percentage of T cells, plasma B cells and macrophages are 0.59, 0.53 and
0.17 (not significant), respectively. The CK7 percentage was positively correlated
(Pearson’s correlation of 0.28) with the epithelia (epithelial cells and ESC), however not
significantly (P-value = 0.24). Out of the 18 samples, only 3 samples had more than a
30% difference in percentages between the stained CK7 and annotated epithelial sub-
population. The stroma population was estimated using the union of fibroblasts, MSC,
and endothelial cells in Drop-seq data. The Pearson product-moment correlation with the
percentage of cells that stained for vimentin was negative (-0.44) with a non-significant
P-value and may be caused by the epithelial cells undergoing EMT (we observed a
consistently smaller percentage of the stromal subpopulation compared to the VIM-
stained percentage).

As seen previously®, we noted significant differences in the abundance of T cells between
samples reported by Drop-seq. The T cell percentages in Drop-seq data showed the
highest correlation with CD45 staining in IHC. Due to the correlation of T cells in tumors
and cancer outcome®, we categorized a sample as having high T cell infiltration (Tinr) if
the percentage of T cells was greater than 10%, and low Tinf if less than 10% in the sample

from Drop-seq data ( , Table 1B).
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Inferring cellular interactions in the tumor microenvironment using ligand-receptor
analysis
To understand the patient-specific TME, we predicted the ligand-receptor interactions
among the cell sub-clusters, using CellPhoneDB53 and additional cancer-specific ligand-
receptor (LR) pairs that were curated from previous studies (see Methods). We found
that FB, EP, ES and MS cells were highly activated for ligand-receptor (LR) interactions
(Fig. 4A). The higher abundance of FB and EP cells in the TME and high numbers of
putative LR interactions identified within and between EP, FB and immune cells in our
data allowed us to further dissect histotype- or site-specific LR repertoires. Accordingly,
we selected the following lineage pairs: epithelial-to-fibroblast, immune-to-epithelial, and
immune-to-fibroblast. Clusters with less than 50 cells were excluded from the downstream
LR analysis.
We first examined the resulting cancer-specific LR interactions in epithelial-to-fibroblasts.
To identify LR interactions common to each histotype, we integrated interactions from all
samples grouped by their histotypes. Histotype-specific LR signatures across epithelial-
to-fibroblasts were identified ( ). HGSOC displayed higher interactions of
receptors ITGB1 in epithelial cells (to COL1A2, MDK, and VEGFA in fibroblasts), as well
as FGFR1 in epithelial cells (to FGF12 and FGF18 in fibroblasts). LGSOC histotype had
higher LR signatures for ITGA5 ADAM17, MET_SEMAS5A, LAMB1_ITGAZ2,
LAMC1_ITGB4, and VEGFA_NRP2. Receptor FGFR1 was also highly expressed in
epithelial cells in LGSOC, though the ligand it enriched for was FGF9. Clear cell histotype
has unique signatures of CCL2 _CCRS3, SILT2_SDC1, BMP2_BMPR2, and FBN1_ITGAS.
The endometrioid histotype displayed receptor FGFR3 in fibroblast and ligands
HSP90AA1 and FGF12 in epithelial cells. MMMT histotype showed ligand IGF2 in
epithelial cells and receptors INSR, IGF1R, and IGF2R in fibroblasts. Histotype with SOC
features (patient P7 only) shared some LR signatures with HGSOC and LGSOC while
having distinct combinations of IGF1_IGF1R, SLIT2_ ROBO1, and EFNA5 EPHB6 (

).
For cancer associated LR interactions from the immune-to-epithelial ( ), the
HGSOC patients had higher ITGA4 MDK and BTLA (to VTCN1 and TNFRSF14).
LGSOC was enriched for THBS1 (interacting with CD47, ITGA3, ITGA6), and ITGB1
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(interacting with LAMC2, ADAM17, and TGFBRZ2). The SOC histotype predicted CD44
binding to VIM and FN1. Clear cell histotype had signatures of CCL5 CCRS3,
ITGA4_VCAN, CD44_SPP1, KLRD _HLA-E and IL2RB_IL15. Endometrioid histotype had
distinct signatures, such as C1QB_LRP1, and TNF_LTBR. The LR pairs for MMMT
histotypes were MMP9_LRP1, LRP1 (to PSAP, SERPING1 and A2M), COL2A1_DDR1
and ITGB1_COLZ2A ( ).

The cancer-associated LR interactions in immune-to-fibroblast subset ( )
identified high number of CD44 and VIM receptors interacting with COL1A7 and
ITGB1_COL1A2 for the HGSOC histotype. LGSOC has higher AREG_EGFR,
INSR_NAMPT, EREG and HBEGF to EGFR, TFGB1_TFGBR3 interactions, and shared
ITGA4_THBS1 interaction signatures with HGSOC. SOC shared ITGB1 (to THBS2 and
LAMB1) interactions with HGSOC. Signatures of /ITGA6 interactions with THBS2 and
LAMB1 were higher in SOC histotype alone. DDR2 COL1A1, IGF2R_IGF,
VEGFB_NRP1 and PDGFA_PDFGRA were exclusively present in the MMMT histotype.
Endometrioid histotype also had unique signatures, such as CD44 LAMCS,
PTPRC_CD22 and FN1 (with ITGA8 and ITGA9). The KLRD1_HLA-E and
ITGB7_VCAMT1 were found in the clear cell histotype ( )-

For samples with abundant immune subpopulations, it is feasible for us to break down
the immune cells into those compartments with sufficient number of cells captured. The
original CellPhoneDB database was used to capture commonly occurring LRs that may
not be specific to cancer in immune cell subpopulations. We ranked samples by the
number of LR interactions (Fig. 4B) and selected four samples with high LR interactions
for comparison: P1-1 (metastatic, low Tinf), P6-1, P7-1 (metastatic, high Tinf), and P5-1
(primary, high Tinf). In particular, we examined LR interactions of T cells with fibroblasts
( ) and ESCs ( )- We observed common signals for T/GIT in T cells and
NECTINZ in fibroblasts and ESCs; TIGIT contains ITIM maotifs in its cytoplasmic tail that
binds to NECTIN2 and triggers inhibitory signals®4. This ligand-receptor signal was lower
in P5-1 ( ), which came from the primary tumor site. Similarly, the IL7R_IL7
pair was observed in all four samples for fibroblast ( ), with the lowest signal in
P5-1 (IL7R_IL7 was observed in P1-1 and P6-1 for ESCs, see )- This ligand-

receptor pair has been correlated with immune cell infiltration in the TME®®. The ligand
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FASLG in T cells to receptors FAS, TNFRSF10A, and TNFRSF1B in fibroblasts
interaction pairs were detected in all samples (P5-1, 6-1 and 7-1) but not in P1-1 (

). Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly
their T cell receptor (TCR) genes and activation-induced cell death responsible for the
peripheral deletion of activated T cells%6. For fibroblast interactions, the LGALS9 CD44/r
appear enriched in both fibroblasts and ESCs in P6-1 and P7-1, which are metastatic,
with high Tinf ( ). The LGALS9 _CD44 pair appeared on ESCs from all samples
except P6-1 ( ). Gal-9 has direct cytotoxic effects, binds to CD44 expressed on
cancer cells to limit cancer metastasis, and enhances stability and function of adaptive
regulatory T cells”-%8. Different interactions associated with immune regulation in
tumors®® were also found: CD74 interactions with APP or COPA were found in samples
P5-1 and P6-1, while HLA-C_FAMS3C interaction was enriched in samples P1-1 and P7-
1( )- CD2_CD58 interactions between T cells and ESCs were noted in all four
samples ( ), and between T cells and fibroblasts in P6-1 and P7-1 ( )-
NOTCH?2 interactions®9-6! (with JAG2 and DLL3) were seen in fibroblasts in P1-1 (

)-

We also detected intriguing patterns of certain integrin complex-collagen binding pairs®?
on fibroblasts enriched in specific samples ( ): integrin complex A2B1 appeared
in P6-1 only; enhanced expression of a2B1 integrins may influence spheroid
disaggregation and proteolysis responsible for the peritoneal dissemination of ovarian
carcinoma®3. A7B1 was intriguingly absent in P1-1; instead integrins A70B7 and A11B1,
appear in P1-1 alone. Integrin a11B1%? was previously seen overexpressed in NSCLC,
especially in CAFs®455, The CD40LG_A5B1 pair was seen for fibroblasts in P1-1, P6-1

and P7-1 ( ). Integrin a5B1 plays an important role in tumor progression®. In
addition, strong A4B1 interactions with FN1, VCAM1 and other ligands®” are seen with
fibroblasts in P5-1, P6-1 and P7-1 ( ), and ESCs in P6-1 ( ); A4B1

receptors have been proposed to target therapy in inflammatory disorders and cancer®’.
These results suggest that different patient samples may have unique LR signatures that

are associated with specific cell types, which may be used to target therapy.
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Discussion

Ovarian cancer is a collection of different carcinomas that manifest as different histotypes,
each with different cellular compositions and pathogenic mechanisms. Analysis of the
TME in different ovarian cancer histotypes at the single-cell resolution can potentially
connect the different histotypes with their unique cellular and molecular signatures,
understand disease etiology and help guide therapy. With this aim in mind, we ran Drop-
seq on 21 tumor samples from 12 patients and across 6 histotypes of ovarian cancer. We
detected three major cell compartments: epithelia (epithelial cells and ESCs), stroma
(fibroblast, endothelial cells, and MSCs), immune (T, B, plasma B, macrophage) by
integrating all single-cell experiments. The four ovarian cancer subtypes using the TCGA
gene expression signature revealed highly correlated cell types: the immunoreactive
subtype showed higher correlation with immune cells, while the mesenchymal subtype
correlated most with stroma cells and least with epithelial cells. The differentiated and
proliferative subtypes both consisted of epithelia but with low and high percentage of
ESCs, respectively. This suggests that the molecular subtypes classified by TCGA may
be driven by the cell type compositions of the tumor samples. Because each tumor
sample showed a unique cellular makeup that differed between primary and metastatic
sites, it follows that the dominant molecular subtype of a tumor sample is specific to its
site of origin, rather than being patient-specific, e.g., patients, P6 and P8, while sharing
the HGSOC histotype, have different TCGA subtypes.

For most cell types, we found that the cell cycle phases G1S, G2M, and MG1 were
consistently distributed with a higher percentage of MG1 phase, with the exception of
ESCs, where over 70% of the ESCs belonged to the G2M phase. Tumors with high G2M
gene activity have been associated with metastasis and worse outcomes in patients with
particular subtypes of breast and pancreatic cancers?’2%. The role of p53 in G2/M related
cell-cycle arrest in response to DNA damage has been studied extensively®8-70.

We found five different subtypes of cancer-associated fibroblasts, FBO and FB2-5 in both
primary and metastatic sites, based on the expression of IL6, CCL2, S100A4, PDPN, and
FGF7. Each CAF sub-cluster supports different roles in the progression and metastasis
of ovarian cancer. Cells in FBO expressed genes associated with angiogenesis, Integrin
signaling, and T cell receptor signaling pathways. These pathways were related to
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extracellular matrix remodeling and immune crosstalk under the tumor micro-environment
(TME). FB2 supported upregulation of NF-kappa B signaling pathway genes and
chemokine receptors associated with cancer metastasis. FB2 and FB4 exhibited elevated
expressions of growth factor binding genes as well as genes enriched for angiogenesis
and blood vessel development. Top differentially expressed genes in FB3 may be
involved with endothelial cell signaling and vascular function. FB5S showed genes
enriched in immune crosstalk and cytokine/interferon signaling pathways. Among
epithelial cells, we identified the EP3 sub-cluster as cancer stem cells, based on high
expression of IFIT1 and ISG15.

The majority of the immune sub-clusters were consistent with those identified in our
previous study on metastatic ovarian cancer®. We identified a new cluster of IL32+ B cells
(BC2) that are CD38-SDC1-S100A4+GAPDH+; these cells were found in both primary
and metastatic tumor sites with high T cell infiltration, deriving primarily in clear cells and
SOC histotypes.

We did not observe any significant difference in the overall composition of cell lineages
between primary vs. metastatic sites. We noted higher ratios of specific CAF (FB4 and
FB2) and macrophage (MA2 and MA3) subsets and lower ratio of an epithelial subcluster
(EP2) in metastatic sites, compared to primary tumors.

Overall percentages of T and B cells were higher in high Tinf samples, be it from primary
or metastatic site, while the percentage of MS was lower overall. At the sub-cluster level,
the TCO and BC3 were positively correlated with Tinr status, with MS2 showing negative
correlation. The CAF sub-clusters FBO, FB2, FB4 and FB5, and the CSCs (EP3) were
enriched in samples classified as metastatic, low Tins.

Besides tumor site and Tinf status, there were also differences in the makeup of cellular
sub-types between histotypes. The percentages of epithelial cells from EP1-3 were higher
in HGSOC and MMMT histotypes, while the percentages of ESCs in clusters ES1-3 were
higher in HGSOC only. For clear cell histotype, the percentage of cells in TCO, BC2 and
BC3 was higher. The endometrioid histotype had a higher percentage of MS and FB1
cells. The percentages of MAO, MA2 and TC1 cells were higher in LGSOC than in other
histotypes.


https://doi.org/10.1101/2023.10.07.561344
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.07.561344; this version posted October 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Lastly, we found fibroblasts and MSCs to be active players in the TME, exhibiting
potentially distinct LR interactions with epithelial and immune subclusters in patients and
histotypes. Imputed ligands and receptors may be leveraged to target therapy in ovarian
cancer patients.

Limitations of the study: The total number of patient samples collected in this study is
limited due to the pandemic. Certain cancer subtypes such as MMMT were less
represented in our samples because of their lower prevalence’. The cell sub-populations
in tumors dissected from different individuals, tumor sites (primary vs. metastatic) or even
different regions sampled from the same tumor may vary. The ligand-receptor interactions
were inferred in silico through statistical testing, with the caveat that the same ligand or
receptor can account for multiple inferred ligand-receptor pairs. Further validation tests

are needed to confirm the ligand-receptor interactions.
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Methods

Tissue collection, sample preparation and Drop-seq

Ovarian cancer tissue from primary and metastatic sites were collected from women
undergoing debulking surgery at the University of Chicago. Some of the tissue collected
from the different sites were patient-matched. The University of Chicago’s Institutional
Review Board for human research approved the collection of human tissue after patient
deidentification. Ovarian tumors were transported in DMEM/F12 containing 10% FBS and
1% P/S (100% DMEMF/12) and processed as previously described®. Red blood cells and
dead cells were removed from cell suspensions using Miltenyi Biotec, 130-094-183, 130-
090-101, respectively, used according to manufacturer’s protocols. Additionally, some
samples were enriched for immune-only, non-immune, tumor-only and non-tumor cell
compartments, using magnetic bead-based isolation or fluorescence activated flow
sorting (Miltenyi Biotec, 130-118-780, 130-045-801, 130-108-339, 130-042-401, 130-
112-931, 130-118-497, 130-110-770, used according to manufacturer’s protocols).
Drop-seq was performed as previously described® on ovarian cancer tumor samples from
12 patients (Table 1). A total of 21 tumor samples were present in this study, including 5
patients with Matched primary (right and/or left ovaries) and metastatic (omentum,
rectum) tumors (Table 2). Of these, a few randomly selected samples were enriched for
select cellular compartments prior to running Drop-seq: CD45+ (5 samples), tumor (2

samples) and non-tumor (1 sample); 18 samples were processed without any enrichment.

Data processing, alignment and clustering analysis

A total of 40 sequencing runs were performed on lllumina’s NextSeq 500 using the 75
cycle v3 kit, as previously described®. Some samples were sequenced multiple times to
achieve deeper resolution. Each run produced paired-end reads, with Read 1
representing the 12 bp cell barcode and a six bp long unique molecular identifier (UMI)
and Read 2 representing a 60-64 bp mRNA fragment. Paired-end reads from the same
samples were combined to generate 26 paired-end fastq files. Read count matrices were
generated from sequence reads from the Drop-seq experiments for both exon and intron
regions in the human genome (gencode’? hg38 v.27) using a Snakemake pipeline’® and
STAR version 2.5.3 aligner.
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To select high-quality cells, we applied a filter based on the number of genes detected
per cell. Prior to filtering, each sequenced sample produced approximately 5,000 cells.
Based on the median number of captured genes per cell, cells with less than 400 genes
detected were removed from the dataset. A total of 26,421 cells were retained for the
downstream analysis. We followed a standardized pipeline using the single-cell analysis
tool suite, Seurat v3.0.27576. A logarithmic normalization method”® was applied to all
samples to transfer the gene expression counts (+1, to avoid log(0)) scaled by a factor of
10,000 (TP10K) to log units. The normalized matrices for all samples were integrated by
the anchor-based alignment method Canonical Correlation Analysis (CCA) using
Seurat®. The top 1,311 highly variable genes and top 20 canonical vectors were selected
to perform the alignment integration, where the integrated gene expression matrix had a
lesser number of features (genes) than the original gene expression matrix. The
integrated matrix was scaled by a linear transformation to center the mean gene
expression for all cells. We applied PCA on the scaled integrated expression matrix to
extract the top 50 components in the data, followed by a heuristic elbow plot on the
standard deviation of each PC. We selected the top 16 variant PCs based on the elbow
plot. The selected PCs were used in further exploration of the data, such as UMAP"’
dimension reduction, construction of K-nearest neighbor graphs, shared nearest neighbor
modularity optimization-based clustering’®, etc. We used dimension reduction methods,
UMAP, to generate 2D plots to visualize different cell populations in the experiments.
Hierarchical clustering on the shared nearest neighbor graph was applied to infer the
clustering structure on the cells where the resolution parameter was set to 0.2. Differential
expression analysis was performed through the FindMarkers function in Seurat using the
Wilcoxon Rank Sum test, and statistically significant markers were extracted for sub-
populations or contrast groups based on an adjusted p-value (adj. p-val.) threshold of
0.05.

Cell cycling effects
We inferred the cell-cycle phase for all cells based on previously curated gene markers
reflecting three phases of the cell cycle in chemically synchronized cells (G1/S, G2/M and

M/G1)>78. For each cell-cycle phase, the module scores were calculated as the average
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expression levels of binned gene markers subtracted by the aggregated expression of
random gene sets from the same bin. The Seurat AddModuleScore function was used to
assign all five module scores to each cell where 24 bins of aggregate expression levels
for the marker genes were used and a hundred control genes were selected from the
same bin per gene. The highest scored cell-cycle phase was assigned to the cell. If none
of the module scores were positive, the cell was designated as not assigned (NA).

Cancer subtype classification

Four cancer subtypes- differentiated, immunoreactive, mesenchymal, and proliferative
were categorized by previous bulk sequencing study in ovarian cancer®’°, The marker
genes for each subtype were determined by the upregulated marker signatures on the
four subtypes®. The Seurat AddModuleScore function was used to assign four module
scores to each cell where 24 bins of aggregate expression levels for the marker genes
were used and a hundred control genes were selected from the same bin per gene. The
subtypes were then assigned to individual cells by the highest positive modular score. In

the absence of positive modular scores, the subtype was considered not assigned (NA).

Cancer patient survival prediction

The cancer outcome was categorized as poor and good in the previous research on the
TCGA ovarian cancer dataset®°, where a list of gene signatures based on RNA-seq data
were extracted for both outcomes. We obtained the module scores based on these lists
of predictive gene markers using the Seurat AddModuleScore function as described in
the cancer subtype classification. The predicted outcome was assigned to the cells

according to the module score.

Cell type classification using template-based method
We assigned the cell type using a template-based cell annotation method, namely sc-
TACA (https://github.com/bingging-Xie/taca)®'. The sc-TACA method utilizes annotated

single-cell dataset as a template. In this study, six HGSOC metastatic samples in the 26

samples have been previously annotated, which was used as the template. The cell types

annotated in this template were denoted by T = {t;,t = 1..p}, where p is the total number
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of unique cell types. All samples were integrated by an anchor-based alignment via
Canonical Correlation Analysis (CCA) in Seurat’>76. Then modularity optimization-based
hierarchical clustering FindClusters was applied on the integrated dataset with a
resolution r = 0.2 that resulted in 11 cell clusters. For each cluster i, we obtained the

annotated cell type vector C; = {cy, ¢, ..., cy,} Where N; is the total number of cells from

cluster i and ¢; € T. The annotation t; of a given cluster i was determined by highest

4

ratio of annotated cell type within the cluster t; = argmax r{ where 1} = L6il%=t A threshold
t

rmin = 0.7 was enforced to ensure the robust assignment. If max 1} < Ty for cluster i, it

was labeled as undecided.

Immunohistochemistry

Ovarian cancer tissues were fixed and stained for Immunohistochemistry as previously
described®, to evaluate the fraction of cytokeratin-7 (Thermo Scientific, MA5-11986),
pan-vimentin (Abcam, Ab16700), CD45 (Agilent, MO701) positive cells.

Aperio ImageScope v12.4.3 was used to analyze the fraction of cells that stained for
CD45, vimentin and CK7 in the entire tissue section, using algorithm ‘Positive Pixel Count
V9’

Analysis on fibroblasts, epithelial cells, and immune sub-population

After identifying the cell types, we extracted the fibroblasts, epithelial cells, and immune
cells (T cells, B cells, macrophages) to conduct further investigation. Each sub-population
expression matrix was subset from the integrated matrix. The expression matrix was
scaled and PCA analysis was performed to extract top components in the data. Top PCs
were selected based on the elbow plot, which varied from 10 to 20 based on the sub-
population variation. Hierarchical clustering on the shared nearest neighbor graph was
applied where the resolution parameter was set to a range between 0.2 and 0.5. The
same UMAP was used to project the cells to a 2D space to visualize the sub-types for
each cell type. Differential expression analysis was performed through the FindMarkers
function in Seurat using the Wilcoxon Rank Sum test, and statistically significant markers
were extracted for sub-populations or contrast groups based on an adjusted p-value (adj.
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p-val.) threshold of 0.05. The differences in cell composition ratios between primary and
metastatic sites, and between high and low Tinf groups were evaluated by two-sided T-

test with P value estimation.

Ligand-receptor interaction analysis on cell type subclusters

We constructed a customized pan-cancer ligand-receptor (LR) interaction database,
using CellphoneDB5%? and published cancer studies, including 27 immune checkpoint LR
pairs®2, 114 interaction pairs between cancer cells and T cells in lung cancer®?, 1380 LR
pairs in a pan-cancer study®, and 216 LR pairs related to ovarian cancer®. For each
sample, we inferred LR interactions among any pair of the cell sub-clusters, SC = {scl.j},
where i is the lineage such as EP, and j is the subcluster index, using the pan-cancer LR
database. We obtained a P value for the likelihood of cell-type enrichment of each ligand—
receptor complex (L = {l{} where i is a ligand and j is a corresponding receptor). We
denote {scijll, scl.jzz} for a sub-clusters pair. P value is calculated by the proportion of means
that are as high as (or higher) than the random permutation for all pairs, SC =
{(scl}, sc)3. Interactions with adjusted P value < 0.05 were considered significant. The
‘significant means’ vector, M = {m;°,l € L,sc € SC} was extracted for each sample and
m; was set to 0 when P value > 0.05 or sub-clusters with insufficient cell counts, (|sc|) <
50. The number of absolute interactions ),(M > 0) was used as a proxy to estimate the
frequency of the cell-cell crosstalk among cell types. The hierarchical clustered heatmap
was used to identify the shared patterns for the sub-clusters from different cell types. We
then grouped the samples by histotype and site for the downstream comparative analysis.
A linear model was built using Imfitin Limma R library for a given contrast group (e.g. one
histotype against the rest of the histotypes) and the empirical Bayes moderated t-statistics
test ebayes was used to estimate the significance of any LR signature, [ € 1887,

Significant positive LR pairs were used as the signature for any given condition group.

Data Availability
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The data discussed in this publication have been deposited in NCBI's Gene Expression
Omnibus® and are accessible through GEO Series accession number GSE235931

(https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE235931).
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Figure and table legends

Figure 1: Experiment design and 2D reduced representation of all cells included in the
study, annotated by major cell lineage, predicted cancer subtype and cell cycle phase.
A) Profiling ovarian cancer tumor samples of different using droplet single cell RNA-seq.
B) All cell types projected on UMAP divided by Epithelia, Immune and Stroma
subpopulations.

C) Predicted cancer subtype projected on UMAP.

D) Cell cycle assignment projected on UMAP.

Figure 2: Cellular sub-types in the Immune, Epithelia and Stroma.

A-C) Subclusters of major immune cell types: T cells, B cells and macrophages,
respectively.

D-E) Subcluster annotation for epithelial and embryonic stem cells (ESC), respectively.
F-H) Subcluster annotation for major cell-types in the stroma: fibroblast, mesenchymal

stem cells and endothelial cells, respectively.

Figure 3: Cell composition by tumor site, T cell infiltration, and histotypes; fraction of
immune, stromal and epithelial cells are explored using immunohistochemistry.

A) Heatmap of major cell type composition (left) and sub cell type (right) for all patient
samples. The column z-scores are calculated from cellular compositional percentages
within each sample; the rows are split by site and T cell infiltration status.

B) Heatmap of cell type subclusters composition percentage for all patient samples. The
values are column z-scores normalizing the percentage and the rows are split by
histotypes.

C) Dot plot of histotype markers expression on EP and ES cells, The expression in the

dot plot is the averaged scaled log normalized TP10k value.

Figure 4: Ligand-receptor (LR) interactions predicted by CellPhoneDB using a

customized cancer database.
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A) Total number of interactions between all cell subtypes.
B) Counts of significant Ligand-receptor pairs for all cell type subclusters stratified by

sample, the columns are grouped by the cell lineage of the first interactor.

Supplementary Figure S1: Stacked bar plot for cell-type annotations for samples
together.

A) Cell type composition per sample, grouped by patient.

B) Composition of TCGA molecular subtype per sample, grouped by patient.

C) Cell-cycle phase composition by major cell types.

Supplementary Figure S2: Immune, epithelial, and stroma lineages shown in Fig. 2, with
selected markers for each cluster. The cluster number and color are consistent with Fig.
2. The expression in the dot plot is the averaged scaled log normalized TP10k value.

A) UMAP (top) of immune cells only, and heatmap (bottom) of immune percentages
for all samples with unsupervised dendrogram forming the T cell infiltration high/low sub-
groups.

B) Dot plot of immune cell marker expressions for each immune subcluster.

C) Dot plot of epithelial cell marker expressions for each epithelial subcluster.

D) Dot plot of ESC marker expressions for each ESC subcluster.

E) Dot plot of fibroblast marker expressions for fibroblast subclusters.

F) Dot plot of MSC marker expressions for MSC subclusters.

G) Dot plot of endothelial marker expressions for Endothelial subclusters.

Supplementary Figure S3: Cell type composition of tumors from different histotype,
tumor site and T cell infiltration status.

A) Heatmap of cell type subclusters composition percentage for aggregated patient
samples by histotype. The column z-scores are the percentages normalized by column.

B) Heatmap of cell type subclusters composition percentage for aggregated patient
samples by site and T cell infiltration. The column z-scores are the percentages

normalized by column.
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C-D) Immunohistochemical staining for CD45, vimentin and CK7 are performed on tumor
samples of different histotypes and tumor sites. C) Ovarian cancer tumor samples
collected from the omentum as the site of metastatis. Six histotypes are shown: malignant
mixed Mullerian tumors (MMMT), clear cell, endometrioid with serous features, high grade
serous ovarian carcinoma (HGSOC), serous ovarian carcinoma (SOC) and low grade
serous ovarian carcinoma (LGSOC). D) ovarian cancer tumors collected from the ovaries
(primary tumor site). Five histotypes are shown: malignant mixed Miullerian tumors
(MMMT), clear cell, endometrioid with serous features, high grade serous ovarian

carcinoma (HGSOC) and low grade serous ovarian carcinoma (LGSOC).

Supplementary Figure S4: Ligand-receptor (LR) interactions imputed customized
cancer LR database. Significant Means is defined in Methods.

A) Between epithelial cells and fibroblasts.

B) Between immune cells and epithelial cells.

C) Between immune cells and fibroblasts.

Supplementary Figure S5: Ligand-receptor (LR) interactions between T cells,
fibroblasts and ESCs, imputed using default CellphoneDB database. Color bars indicating
histotype and T cell infiltration status are the same for all panels. The significant means
is defined in the Methods.

A) Selected LR interactions between T cells and fibroblasts in four samples.

B) Selected LR interactions between T cells and ESCs in four samples.

C) Collagen-integrin LR interactions between T cells and Fibroblasts in four samples.

D) Collagen-integrin LR interactions between T cells and ESCs in three samples.
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Table 1:
A)
Pathological Neo-
Patient Histot Total/CD45/ T ich A R
atien istotype otal/ 5/ Tumor enric stage ge ace adjuvant
Malignant mixed
L. ypT3c, .
P1 Millerian tumor Yes Yes No NX/YIIIC 66 Asian Yes
(MMMT) y
P2 Clear cell Yes Yes Yes pT3c NX/lIC 74 White No
Endometrioid
P3 with serous No Yes No pT3|t|)I,BNO/ 66 White No
features
End trioid and
P4 naomerrioid an No Yes | No pT1aNO/IA | 69 White No
serous features
pT2B, .
P5 Clear cell Yes Yes No NO/IIB 77 White No
ngh.grade s'erous 0T3¢ Nx '
P6 ovarian carcinoma Yes No No Mx/ Tlic 56 White No
(HGSOC)
Serous ovarian ypT3a Nx .
P7 Y Y Y 62 Whit Y
carcinoma (SOC) es es es M1/ Ivb e es
High grade serous
P8 ovarian carcinoma Yes No No p'I'/?;lclé\IO 48 UNK No
(HGSOCQ)
Low grade serous
P9 ovarian carcinoma Yes No No &bec,/l;l\;(é 39 White No
(LGSOC)
High grade serous
P10 ovarian carcinoma Yes No No ypT3T”l:l:1a / 66 Black Yes
(HGSOC) y
High grade serous
P11 ovarian carcinoma Yes No No pT3IT|L\lx / 46 Asian No
(HGSOC)
ngh.grade s'erous 0T3¢, N1,
P12 ovarian carcinoma Yes No No M1/ llic 71 Black Yes
(HGSOCQ)
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B)
Catego
Sample Drop-seq IHC ry
3 Endoth Fibro Macro Plasma | T
= # Epithelial | ESC elial blast MSC | phage Bcell | Bcell cell CK7 | VIM | CD45 | Stage
2 | sample | site cells | cell (%) (%) cell (%) | (%) (%) (%) (%) (%) (%) (%) (%) (%) Tint
Omentu 222 Meta
P1-1 | m 7 59.5 4.5 1.1 22.9 3.6 4.5 0.6 1 2.3 | 59.2 60 7.9 | Low
Left 115 Primar
P1-2 | Ovary 6 66.2 3.7 2.7 21.8 2.6 1.1 0 1 1| 687 | 375 0.4 | yLow
Right 105 Primar
1 P1-3 | Ovary 1 76.6 5.3 0.9 10.1 34 0.9 0 0.7 2.2 | 66.6 | 50.2 6.1 | ylLow
Omentu 100 Meta
P2-1 | m 8 54.6 8.1 1 8.7 1.7 10.6 0 29 | 123 | 66.6 | 79.4 58.9 | High
Right Primar
2 P2-2 | Ovary 330 28.2 6.1 0.6 21.8 3.9 6.4 0 109 | 22.1 | 89.3 | 70.6 34 | yHigh
Meta
P3-1 | Rectum 345 26.6 2.4 1.7 27.1 | 20.4 16.4 0.1 0.3 5.1 | 69.8 | 37.9 4.4 | Low
Left Primar
3 P3-2 | Ovary 928 42.3 3.8 3.8 24.9 14.5 9 0 0 1.7 | 70.7 | 40.5 0.7 | yLow
Left Primar
4 P4-1 | Ovary 837 37.2 9.2 1.2 9.4 2.5 35.6 0.1 0.6 42 | 76.4 | 55.3 0.8 | yLow
Right 255 Primar
5 P5-1 | Ovary 4 45.7 | 11.4 0.4 18.7 2.4 5.6 0 3.7 | 121 | 84.6 54 17.8 | y High
Omentu 335 Meta
P6-1 | m 7 28.3 6.5 1 22.6 2 9.1 8.8 3.8 | 17.4 | 57.5 | 54.6 17.3 | High
Left 210 Primar
6 P6-2 | Ovary 2 60.7 | 15.2 1.6 11.5 4.8 2.6 0 0.3 2.6 | 69.1 | 344 9.8 | yLow
Omentu 354 Meta
7 P7-1 | m 2 43.7 5.6 4 10.9 1.5 12.1 2.1 7.7 | 125 | 41.7 | 69.1 28.5 | High
Right Primar
P8-1 | Ovary 359 70.2 9.6 1.9 5.8 2.1 5.4 0 0.6 4.3 83 | 39.2 3.3 | yLow
Left Primar
8 P8-2 | Ovary 467 55.7 7.2 3.9 5.9 6.4 11.7 0 0.6 8.6 | 8.5 | 51.2 2.5 | ylow
Omentu Meta
P9-1 | m 529 32.9 2.8 2.8 19.1 5.1 16.6 0.2 5.7 | 14.7 | 38.9 48 4.4 | High
Omentu Meta
P9-2 | m 585 35.6 2.1 3.1 40.9 4.4 8 0 3.4 2.6 | 50.6 | 494 5.4 | Low
Left Primar
P9-3 | Ovary 341 38.7 1.8 0 36.1 | 10.3 9.4 0 1.2 2.4 | 84.2 34 2.5 | yLow
Right Primar
9 P9-4 | Ovary 378 30.2 1.9 1.9 38.6 9.3 13.8 0 0 4.2 | 78.1 | 41.7 2.3 | ylow
Omentu 106 Meta
10 P10-1 | m 7 27.7 8.1 2.4 34.3 1.6 17.2 1 2.2 5.5 21 | 59.3 10.7 | Low
Omentu 106 Meta
11 P11-1 | m 6 56.9 | 21.2 0.2 2.9 0.4 10.4 0.3 2.5 52 | 578 | 77.9 23.7 | Low
Omentu 109 Meta
12 P12-1 | m 7 433 5.6 4.4 37.4 5.3 1.3 0.5 1 1.2 | 78.8 | 44.4 4 | Low

A) Metadata for ovarian cancer patients included in our study.
B) Total number of cells and breakdown of cellular composition in each sample, color-

coded by tumor site (Primary, Meta) and T cell infiltration (Tinf) status. The cell types are

abbreviated as follows: EP = Epithelial cells; TC = T cells; MA = Macrophages; EN

Endothelial cells; BC = B cells; FB = Fibroblasts; MS = Mesenchymal stem cells; ES

Embryonic stem cells.
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Supplementary Table S$1: A) Selected cluster markers, and B) enrichment pathways for
epithelial sub-populations. C) Selected cluster markers, and D) enrichment pathways for

ESC sub-populations.

Supplementary Table S2: A) Selected cluster markers, and B) enrichment pathways for

fibroblast sub-populations.

Supplementary Table S3: A) Selected cluster markers, and B) enrichment pathways for

endothelial sub-populations.
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