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Recently, we have achieved a significant milestone with the creation of the Fly Cell
Atlas. This single-nuclei atlas encompasses the entire fly, covering the entire head and
body, in addition to all major organs. This atlas catalogs many hundreds of cell types,
of which we annotated 250. Thus, a large number of clusters remain to be fully
characterized, in particular in the brain. Furthermore, by applying single-nuclei
sequencing, all information about the spatial location of the cells in the body and of
about possible subcellular localization of the mRNAs within these cells is lost. Spatial
transcriptomics promises to tackle these issues. In a proof-of-concept study, we have
here applied spatial transcriptomics using a selected gene panel to pinpoint the
locations of 150 mRNA species in the adult fly. This enabled us to map unknown
clusters identified in the Fly Cell Atlas to their spatial locations in the fly brain.
Additionally, spatial transcriptomics discovered interesting principles of mRNA
localization and transcriptional diversity within the large and crowded muscle cells that
may spark future mechanistic investigations. Furthermore, we present a set of
computational tools that will allow for easier integration of spatial transcriptomics and
single-cell datasets.
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Introduction

Single-cell technologies have revolutionized biological research, allowing researchers for the
first time to study complex tissues with unprecedented resolution (Klein et al., 2015), leading
to the creation of tissue-specific atlases (Schaum et al., 2018; The Tabula Sapiens consortium,
2022). However, upon tissue dissociation into single cells, the spatial context of the cell in the
organism and of the mRNAs within the cell is lost, since all data of the cell are compressed
into one multidimensional data point. This is a significant drawback, as the localization of a
cell type within a tissue can inform about the function of this cell (Tomancak et al., 2002).
Furthermore, many mRNAs show subcellular localization patterns that may have functional
roles (Jambor et al., 2015; Lécuyer et al., 2007).

This loss of information can be circumvented using spatially resolved transcriptomics (SRT).
In SRT, spatial information of the RNA species is determined either through the use of spatially
localized barcoded DNA arrays with or without the use of microfluidics, followed by sequencing
(Rodriques et al., 2019; Wang et al., 2022), or by imaging using multiplexed rounds of single
molecule fluorescence in situ hybridization (smFISH) methods. While barcoded sequencing
approaches allow unbiased mapping of all transcripts, their spatial resolution is, in general,
lower (Moses & Pachter, 2022). Multiplexed smFISH identifies the position of each RNA
molecule independently at a high spatial resolution, but it is limited in throughput to a few
genes. Recently, technical breakthroughs have been presented to increase the number of
genes to several hundred through the use of barcoding (Chen et al., 2015; Eng et al., 2019;
Lubeck et al., 2014; Zhang et al., 2021).

The adult fruit fly Drosophila melanogaster is a widely used model for cell biology,
neurobiology, physiology and behavior (Sokolowski, 2001; Grenier & Leulier, 2020; Benton,
2022). The recent completion of the entire adult fly cell atlas (FCA) (Li et al., 2022), and the
aging fly cell atlas (Lu et al., 2023) provided an in-depth annotation of various cell types,
however without information about the localization of these cells or their mMRNAs. In addition,
many single-cell clusters were left unannotated although marker genes were identified.

One tissue that would benefit greatly from SRT are the large polynucleated muscle cells. In
tubular head and leg muscles, the nuclei are located in a central row surrounded by contractile
myofibrils, while in fibrillar indirect flight muscles (IFMs), the nuclei are organized in multiple
rows between the myofibril bundles (Luis & Schnorrer, 2021; Schénbauer et al., 2011),
distributed along the length of the large 1 mm long fibers (Spletter et al., 2018). This
organization is thought to optimize the mRNA distribution by minimizing transport distances
(Bruusgaard et al., 2003) and misalignment of the nuclei has been linked to severe myopathies
in humans (Folker & Baylies, 2013). While single nuclear (nc)RNA-seq allows studying of
potentially different types of nuclei in the muscle, earlier studies have proposed classical FISH
to study and describe mRNA localization in muscle fibers (Denes et al., 2021; Pinheiro et al.,
2021).

Here we applied Molecular Cartography (MC, Resolve Biosciences), a multiplexed single
molecule hybridization method with submicron resolution (~136 nm), to create a spatial map
of gene expression of the entire head and body of adult Drosophila melanogaster flies. While
embryonic development had already been studied using SRT (Wang et al., 2022), we present
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the first high-throughput smFISH-based SRT dataset of the various tissues of the adult fly. We
compare the data with existing RNA atlases, using our spatial data to validate annotations in
the body and identify the location of uncharacterized cell clusters in the brain. Furthermore,
we reveal subcellular mMRNA localization patterns in the flight muscle cells and regionalized
RNA expression in the head, some of which we confirm with classical FISH methods.
Expression patterns of 100 genes in the brain and 50 genes in the body can be visualized
interactively using TissUUmaps (Solorzano et al., 2020) at www.spatialfly.aertslab.org.

Results

Creation of a comprehensive spatial dataset of the fly body and its head

In analogy to the FCA strategy (Li et al., 2022), we intended to map the spatial expression of
a selected gene panel across the entire adult fly body and, in a separate set of experiments,
across of the adult head. Based on expression data from the FCA (Li et al., 2022, Pech et al.,
2024) we selected 50 genes for the fly body samples, and 100 genes for the head samples
given the large heterogeneity of neurons. These genes were carefully chosen to label the most
important known cell types of the adult fly, and to include some unknown ones, suggested
from the atlas data. They cover a wide range of expression levels, from high to very low
expressed genes (Table S1, Table S2, Figure 1 —figure supplement 1). Adult fly samples were
frozen, sectioned, attached to slides and fixed (see Methods), after which they were profiled
using MC (Figure 1a). Using this workflow, we detected on average 190,622 mRNA molecules
for the head samples (min = 101,548, max = 260,989), ranging from 56 (Poxn) to 23,439 (trio)
mRNA molecules per gene (Figure 1 — figure supplement 2A, B) and an average of 1.5 million
mRNA molecules for the body samples (min=1,448,593, max=1,727,479), ranging from 112
(MsR1) to 510,619 (Act88F) mRNA molecules per gene (Figure 1 — figure supplement 3A, B).

For the head samples, we aimed to image as many different neuronal populations as possible.
Thus, we performed coronal sections at different depths in the head (13 sections, 12 animals,
mixed sex, Table S3), along the anterior-posterior axis (Figure 1B, Figure 1 — figure
supplement 2A, C). For the body samples, sagittal sections were performed through the
middle of the animal (5 sections from one male) (Figure 1C, Figure 1 — figure supplement 3A).
These sagittal sections show only small structural differences in the abdomen; overall they are
very similar to each other, showing the reproducibility of our data (Figure 1 —figure supplement
3C, see Methods).

Spatial transcriptomics allows the identification of cell types in the body

The genes for the body datasets were selected to cover a wide range of different cell types.
Neurons in the central and peripheral nervous system were identified using expression of elav
and Syt1 (Figure 2A). The glial marker repo shows the location of glial cells across the body
(Figure 2A). The expression of different trypsin isoforms is unique to the digestive system.
Interestingly, - and S-Trypsin show distinct patterns, with S-Trypsin localized to the inner side
of the gut, while a-Trypsin is more distal, suggesting a subcellular localization of these trypsin
isoforms coding mRNAs to apical or basal regions of the gut enterocytes (Figure 2A). Using
the fat body marker AkhR and the oenocyte marker FASN2, different populations of fat tissue
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and oenocytes were identified in the abdomen of the fly at the expected locations. The
hemocyte marker Hml shows distinct local enrichments in head, thorax and abdomen (Figure
2A). In addition, LanB1, which codes for LamininB1, an important component of the
extracellular matrix present around many tissues (Yarnitzky & Volk, 1995), is widely produced
in different cell types and not only in hemocytes. While co-expression of LanB1 with Hml in
hemocytes is detected as reported (Matsubayashi et al., 2017) (15.5%) (Figure 2a),
surprisingly most of LanB1 overlaps with epithelial cells (grh (13.4%) and pain (28.0%)) or
muscle cells (MIp84B (40.9%) and Mp20 (25.4%) (see Methods)). Next, we used esg to mark
adult stem cell populations. The expression of esg in our sections is mostly limited to the gut,
matching its reported expression in the intestinal stem cells (Jiang & Edgar, 2011) and the
somatic cyst stem cells (Sénos Demarco et al., 2022) (Figure 2a). Furthermore, Mhc and sls
were used to label all muscle cells, while TpnC4 and Act88F specifically labels the indirect
flight muscles (IFMs) (Figure 2A). Interestingly, in the IFMs we also detect expression of VGlut
and other neuronal markers, consistent with glutamatergic neuromuscular junctions (Schuster,
2006) (Figure 2 — figure supplement 1). Finally, we used grh, hth, svp and pain to identify
epithelial cells and their subtypes (Figure 2A). Together, these data show that our spatial
transcriptomics data can identify the spatial location of most known large classes of cell types
of the adult fly, while also detecting unexpected subcellular mRNA localizations in some cell
types.

Molecular Cartography is highly specific

Most marker genes used in this study were selected based on FCA data to be highly specific
for one particular cell type or present at one body location. Hence, their expression can be
used to estimate the specificity of the mRNA detection method and determine false-positive
rates of mMRNA spots. For this specificity analysis, we chose to work with marker genes linked
to muscle cells. We used the expression of Act88F and TpnC4, both of which are almost
exclusively expressed in the IFMs (and possibly in muscles around the ejaculatory bulb)
(Fyrberg et al., 1983; Agianian et al., 2004; Sarov et al., 2016). We segmented the flight
muscles (Figure 2A) and calculated the percentage of marker genes detected in the
segmented area compared to the entire imaged area. We find that 99.1% of TpnC4 and 99.7%
of Act88F mRNA spots are detected in the expected regions of all body sections (Figure 2A),
with negligible off-target signal. This highlights the specificity of the transcriptomics method
and the reliability of detected mRNA signals with MC.

Building a spatial tissue atlas of the fly body

Cell types can often only be reliably identified by a combination of several marker genes.
Therefore, we investigated co-expression signatures of known cell type marker genes in the
spatial transcriptomics data. This may also help identify more rare cell types or specific cell
states. To implement this idea on our spatial data, we computationally assigned every mRNA
molecule to a 5 um by 5 ym square in a square-grid fashion and summed the signal, creating
pseudo-bulk samples. All squares in this grid were then scored for mRNA signatures of
different cell classes and assigned to the highest scoring cell class (Figure 2B, see Methods).
This signature-based method annotated all major cell types or tissues of the adult reliably,
including muscles, neurons, glia, fat and epithelial cells, oenocytes and the male reproductive
organ (Figure 2B). In addition, cell populations with more sparse gene expression like the
heart (combination of Hand and tin) or the male reproductive tract (combination of Awh, eyg
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and svp) were newly identified. In conclusion, the major cell types of the adult fly could be
localized using combined sets of marker genes identified by their spatial proximity.

As a next step, we aimed to assign cell type locations without prior knowledge of their markers.
To do so, we used all 132,642 different squares from each of the 5 body samples and
performed clustering based on the counts of the 50 genes analyzed (see Methods). This led
to the identification of 142 clusters that we visualized as a UMAP plot, separating muscle from
neuronal and epithelial cells (Figure 2C). The spatial visualization of this unsupervised
analysis of cell types confirmed our previous supervised annotation of cell types based on
gene signatures (Figure 2D). In addition, it showed an unexpected presence of multiple
clusters in the large flight muscle cells, suggesting subcellular mRNA patterns.

Finally, we looked at the expression of genes in one particular organ to identify its different
cell types. In the FCA, we had previously identified Awh, eyg and nAChR«1 to label the male
accessory gland main cells (Figure 2E). Our SRT data confirmed this co-expression, showing
the labeling of the main gland cells in the abdomen (Figure 2F, F’).

Furthermore, we inspected whether co-expression of genes is maintained between SRT data
and FCA snRNA-seq data, by calculating the correlation between genes in both datasets (see
Methods). In general, gene-gene correlations between SRT and snRNA-seq match
significantly (r=0.69, p<1e-100), although there are some small biases between the techniques
(Figure 2 — figure supplement 2A, B). For example, Act88F is detected at higher numbers in
SRT, compared to snRNA-seq, which may be explained with differential mMRNA stability in the
cytoplasm, since snRNA-seq is largely detecting nuclear located mRNAs and thus rather
monitors the transcriptional activity of the cell. This indicates that in general SRT data
corroborate results obtained from snRNA-seq. To study gene-gene relations in more detail,
we devised an algorithm that calculates the colocalization of each gene with all other genes
(Figure 2 — figure supplement 3A, B, see Methods). This colocalization matrix was then
clustered to find groups of co-expressed genes. These co-expression signatures match with
markers of the major cell types (Figure 2 — figure supplement 3C).

In conclusion, we present the first SRT dataset of the adult fly body, with high specificity and
high reproducibility across body sections. We show how the SRT data can unambiguously
identify the major cell types in both supervised and unsupervised techniques. Finally, SRT
data can be used to describe gene-gene interactions.

Subcellular localization of mMRNA in muscle cells

Unsupervised clustering revealed the presence of multiple spatial niches in the muscles,
especially in the IFMs (Figure 2C, D). Muscle cells form polynucleated syncytia, with more
than 500 nuclei in one IFM cell (Chaturvedi et al., 2017; Kaya-Copur et al., 2021). Thus, spatial
niches could represent heterogenous nuclei or subcellular mRNA localization patterns,
resulting from directed mRNA transport or anchoring (Das et al., 2021). To investigate this in
more detail, we segmented the three main types of adult muscles (head, leg and indirect flight
muscles) to look at spatial gene expression in them.
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Amongst the 50 genes we had selected were six genes that code for sarcomere protein
components, four of which are specifically expressed in different muscle groups: Act88F and
TpnC4 in IFMs, Act79B and TpnC41C in leg muscles (Figure 3A). First, we investigated if
MRNA species have different nuclear proximities by quantifying the distance of every mRNA
molecule to its closest nucleus (see Methods, the localization precision of mMRNAs is about
0.14 um). This identified genes whose mRNAs are nucleus-enriched (s/s) or nucleus-depleted
(TpnC4) (Figure 3B, C, see also Figure 4 — figure supplement 1A). We found a similar
difference in leg and head muscles with s/s staying in proximity or within the nuclei, in contrast
to the nuclei-depleted TpnC41C (Figure 3 — figure supplement 1A, B). Previously, mRNA
distributions in cultured mammalian skeletal muscles were linked to mMRNA sizes, with large
mMRNAs spreading further from the nuclei than small mMRNAs (Pinheiro et al., 2021). This does
not seem to apply to our selected genes, as sls mRNAs are significantly longer (isoform
lengths: 15,263 to 56,489 nt) compared to TpnC4 (longest isoform: 859 nt) or TpnC41C
MRNAs (longest isoform: 1,880 nt).

Furthermore, the nuclear enrichment of sls mRNA is not homogeneous across all nuclei,
particularly in the IFMs, where s/s mRNA forms large assemblies around nuclei close to the
muscle-tendon junctions (Figure 4A-C). We confirmed these results by localizing sls mRNA
using hybridization chain reaction technology (HCR-FISH) (Choi et al., 2018) in thoraces from
three adult males (Figure 4D-F, see Methods for details). We observed some small differences
between MC and HCR, with s/s mMRNA enriched in broader regions around the muscle nuclei
close to the tendons when detected with MC. This may be due to differences in fixation timing
(pre-sectioning fixation for HCR, post-sectioning fixation for MC) or in image generation (direct
imaging of hybridization events in HCR vs detecting, localizing and combining multiplexed
hybridization events in MC). Similarly enriched localizations of mRNA in muscles were
reported in mammals close to the muscle-tendon junctions and the neuromuscular junctions
(Dix & Eisenberg, 1990; Sanes et al., 1991). In mammals, this local enrichment correlates with
an accumulation of nuclei (Bruusgaard et al., 2003), however, we do not detect a significant
correlation between the s/s enrichment at the IFM ends and the nuclear DAPI signal (Figure 4
— figure supplement 1) and thus speculate that the terminal nuclei express higher levels of sls
RNA than the central muscle nuclei.

In addition to nucleus-enriched or -depleted mRNA species, MC revealed mRNAs coding for
several sarcomere proteins to be concentrated in longitudinal stripes in the muscles. Most
prominently in the IFMs, Act88F mRNA is enriched in the inter-myofibril space, where most
nuclei, endoplasmic reticulum and Golgi are located, while TonC4 and Mhc mRNAs appear
enriched in complementary stripes at the location of the myofibrils and mitochondria (Figure
5A, B). This suggests a spatial subdivision of the flight muscles that correlates with their
intracellular architecture (Avellaneda et al., 2021; Luis & Schnorrer, 2021). A similar division
was found in leg muscles, with central stripes of Act79B mRNA close to the nuclei while Mhc
and TpnC41C mRNAs were enriched in the myofibril regions (Figure 3 — figure supplement
1B). To validate these observations, we performed HCR-FISH. This partially confirmed the
anticorrelated expression patterns between Act88F and TpnC4 in IFMs: Act88F mRNA was
found enriched in stripes along the rows of nuclei, consistent with the MC data. However,
TpnC4 mRNA was also found enriched in a few cases around nuclei (Figure 5C, D, Figure 5
— figure supplement 1). Additionally, HCR-FISH detected that Mhc mRNAs are enriched in
proximity to the nuclei and not in proximity to the myofibrils as suggested by MC (Figure 5E,
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F). Overall, these data suggest that the main observations obtained here with MC are reliable,
however, a systematic validation of SRT techniques with classical FISH is recommended.

To conclude, we found three main types of mRNA localization in the IFMs: nuclei-enriched
patterns, complementary striped bands and concentrations at the terminal nuclei, close to the
muscle attachment sites. To our knowledge, none of these patterns had been identified before.

Spatial transcriptomics allows the localization of cell types in the head and brain

To investigate the localization of cell types in the adult Drosophila head, we investigated the
13 sections of different fly heads sectioned across the longitudinal direction, covering most
regions of the fly head. The diversity between sections originating from different brain regions
is represented by lower correlations between the samples (Figure 1 — figure supplement 2C).
Using the marker genes para (neurons), alrm (astrocytes) and ninaC (photoreceptors), we
were able to annotate different classes of cells (Figure 6A). ninaE, a second photoreceptor
marker was too highly expressed, leading to optical crowding and was removed from the
analysis.

First, we made use of our annotated scRNA-seq atlas of the fly brain (Davie et al., 2018; Li et
al., 2022; Pech et al., 2024), using colocalization of marker genes to identify cell types with
known anatomical locations. We used the expression of C15, acj6, Oaz, caup and unpg,
markers for olfactory projection neurons (OPNs). OPNs relay information from the antennal
lobe to downstream processing centers, including the mushroom body and the lateral horn.
The co-expression of OPN markers is only detected in the most anterior samples, as expected
(Figure 6B). Next, we looked at repo, moody, Indy, Vmat, all of which are markers for
perineurial glia that form the blood-brain barrier (BBB), and found them expressed at the
periphery of the brain, consistent with the known location of the BBB (Figure 6C).

We compared gene-gene relationships, by calculating gene-gene correlations in MC and the
snRNA-seq brain data (Figure 6 — figure supplement 1A, B). In general, we find a strong match
(r=0.68), however, there are also several mismatches. While pros-dati co-expression is
conserved between both modalities (Figure 6 — figure supplement 1C), co-expression of
several other gene pairs is only detected in one modality (Figure 6 — figure supplement 1D,
E). For example, we only found widespread expression of Vmat in the BBB (stronger near the
optic lobe), but little or no expression in the central brain, where most dopaminergic neurons
should be located (Figure 6 — figure supplement 1E). Additionally, Vmat expression does
neither overlap with DAPI-stained nuclei nor with DAT (marker for dopaminergic neurons),
suggesting an mRNA transport mechanism to locate selected mRNAs away from the cell body
(Figure 6 — figure supplement 1E). Alternatively, glial nuclei, which are much smaller than
neuronal nuclei (Mu et al., 2021), might not all be detected with our methodology. Similarly,
the neuropeptides /lp2 and Pdf show only a weak overlap with the DAPI staining, instead
forming circular patterns (Figure 6 — figure supplement 1F). Thus, MC can recapitulate the
location of known cell types in the fly brain by using established marker genes and additionally
identify expression at novel locations for some of these.

Compared with other organs, the cell type diversity of the fly brain is extremely complex. A
key challenge in scRNA-seq is the annotation of clusters to cell types. In our scRNA-seq
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dataset, there are 188 distinct clusters, of which only 83 are annotated today. Recent efforts
to map the fly brain through EM and connectomics studies have identified 8,453 morphological
cell types (Dorkenwald et al., 2024; Schlegel et al., 2024). SRT can provide a bridge between
scRNA-seq studies and morphology-based studies. As such, it becomes possible to annotate
unknown clusters based on the spatial localization of their marker genes. To pave the way
towards such integration, we focused on unannotated clusters in our brain dataset. It is
important to note that current neuronal nomenclature is based on neuropils (axons and
dendrites) and not on the location of the neuronal nuclei. Therefore, we used the established
neuropil nomenclature to describe the location of the detected nuclei, but this does not
necessarily mean that the axons of these cells also project there.

To identify the location of uncharacterized clusters from the FCA in the brain, we started with
Fer1 expression, as it is a strong marker for cluster 120 in our snRNA dataset (Li et al., 2022).
Using our MC data, we found that these cells are located in the central brain, near the ventral
gnathal ganglion and saddle, and the superior intermediate protocerebrum (Figure 6D).
Furthermore, we show that AstC expression (cluster 122) is limited to the dorsal part of the
central brain, consistent with its expression in DN1 and DN3 neurons (Diaz et al., 2019)
(Figure 6D). Next, we investigated the expression of ofp (clusters 30 and 62), which we found
marks nuclei close to the lateral horn and the superior neuropils (Figure 6E). Finally, we
determined the expression of vg (cluster 20) to be limited to the boundary region between the
optic lobe (OL) and the central brain (CB) (Figure 6E). These results confirm that combining
snRNA-seq with SRT technologies can indeed identify defined locations of formerly
uncharacterized cell clusters in the fly brain.

Next, we wanted to find genes enriched to specific spatial locations in our brain MC data. To
do so, we assigned mRNA molecules to spots using a similar 5 um resolution grid as done
above for the body data. By performing unsupervised clustering using all mRNA localizations
from all datasets together, we identified 23 clusters (Figure 6F). Different slices display a
different cluster composition, consistent with our aim for sectioning along the brain’s A-P axis
(Figure 6 — figure supplement 1G). All neuronal clusters were selected using para expression
and annotated to either optic lobe (OL), central brain (CB) or retina (photoreceptor, PR) based
on their location. By performing differential expression between these domains, we identified
spatially relevant genes (Figure 6G). As expected, photoreceptor genes such as ninaC and Iz
were strongly enriched in the retina. While many neuronal genes show similar expression
between the OL and CB, pros (CB) and scro (OL) expression creates a strong boundary clearly
demarcating the two anatomical regions (Figure 6G, H), corroborating earlier findings (Davie
et al., 2018; Yoo et al., 2020). This shows that SRT alone can be used to identify specific
markers for the major brain cell types or regional domains, without any prior knowledge.

Previously, it was shown that some scRNA-seq clusters in the OL could be divided into ventral
Wht4 and dorsal Wnt10 positive subclusters (Han et al., 2020; Ozel et al., 2021). Using Wht4
and Wnt10 mRNA localizations we confirmed these findings and showed that, although
expression is sparse, Wnt4 and Wnt10 mRNAs are strongly enriched in the ventral and dorsal
regions of the brain, respectively (Figure 6l).

Altogether, our MC data of the fly brain allows the identification of clusters and cell types. We
also showed how SRT can be used to identify and localize unknown clusters of scRNA data,
serving as a potential link between morphology data and single-cell data. Finally, SRT can be
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used for the discovery and confirmation of regional marker genes by performing region-based
differential expression.

Automated cell type annotation of SRT using scRNA-seq data

One of the key prospects for SRT, is to be able to identify unlabeled clusters and infer their
spatial location. This requires integration of SRT data with scRNA-seq data. Multiple methods
have been developed for this purpose so far, including Tangram (Biancalani et al., 2021) and
SpaGE (Abdelaal et al., 2020).

Here we used and compared three different approaches to represent SRT data: 5 ym-spaced
grid rasterization, neighborhood embedding, and nuclei segmentation (Figure 7A). The grid
and neighborhood embedding are both spatially unaware of the cell’s location. In the grid
method, automatic segmentation takes place over the entire sample by grouping mRNA
molecules together every 5 um, while neighborhood embedding is segmentation-free and
models every mRNA molecule independently. This makes it possible to also visualize spatial
patterns at subcellular resolution, but leads to a very large dataset and heavy computational
load (Partel & Wahlby, 2021). While the grid-based approach can be run in several hours,
neighborhood embedding takes several days. Finally, we segmented the nuclei and assigned
mMRNA molecules to each nucleus. While this is the most intuitive method, several challenges
occur in the fly head. To start, different densities of nuclei require imaging with different
parameters to visualize both sparse and dense nuclei regions. In addition, the dense nuclei
regions at the edge of the OL and CB are very difficult to segment with normal imaging
techniques, with a strong overlap of cells and different cell types (Figure 7B).

To compare label transfer methods we applied lasso regression, Tangram and SpaGE. We
found that regression-based integration in the grid method and SpaGE in the neighborhood
embedding method can match the blood-brain barrier and the chiasm glia in the optic lobe
very well, together with astrocytes and ensheathing glia in the central brain (Figure 7C). In
contrast, the nuclei segmentation method performs poorly for matching glial subtypes, since
most of the glial nuclei are not detected, leading to the removal of most glial MRNAs (Figure
7C). Therefore, we also ran Tangram on the grid-quantification, leading to the detection of
different glial types (Figure 7 — figure supplement 1A-D). This shows a disadvantage of nuclei-
aware methods compared to methods that take all mRNA spots into account.

In the OL, all methods can accurately identify neurons from the different layers. In the CB,
both the grid-based and the segmentation methods are able to locate the peptidergic neurons
(insulin-producing cells, Pdf-neurons) in the correct location, while neighborhood embedding
fails to retrieve these (Figure 7D, E). However, Tangram also labels some non-peptidergic
segmented nuclei as insulin-producing unless thresholds for mapping scores are manually
adjusted to reflect the different proportions of cell types that are present in the MC data (Figure
7 — figure supplement 1E). In a more posterior CB sample, nuclei segmentation and grid
methods are able to identify the Kenyon cells of the mushroom body. These are also found in
the neighborhood embedding, but the signal is noisier (Figure 7E). Neighborhood embedding
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likely performs poorly on cell types that are determined by high expression of only 1 gene (e.g.
neuropeptides), since one gene only has a marginal effect on the neighborhood.

Finally, we investigated how the three approaches perform in linking uncharacterized scRNA-
seq clusters to spatial locations. The grid and neighborhood embedding methods spatially
localized two uncharacterized clusters, while the nuclei segmentation method spatially
localized four clusters (Figure 7F). Cluster 20, which was marked by vg expression, is found
by each technique (Figure 6E, Figure 7F), same as cluster 79. Cluster 79 locates to the outside
of the retina, fitting with high expression of Cpr72Ec, a structural protein for the eye lens, which
is expressed by interommatidial pigment cells (Stahl et al., 2017). In contrast to the other
methods, Tangram detected a ventral-dorsal division in the retina, with cluster 15 matching to
the dorsal part. This mapping is driven by the expression of mirr, a gene known to be
expressed in the dorsal half of the eye (McNeill et al., 1997) (Figure 7 — figure supplement
1F). Tangram also maps cluster 69, mostly by expression of caup. Like its Iroquouis family
member mirr, caup is also detected in the dorsal half of the eye, however it shows additional
expression in various locations in the central brain (Figure 7 — figure supplement 1G). Cluster
69 represents multiple subclusters in scRNA-seq data, and similarly it maps to multiple
locations in the MC data. A larger gene panel will help to dissect and locate the subclusters in
more detail in the future.

To conclude, we found that using a 5 um by 5 ym grid leads to similar clustering results as
performing a computationally heavy neighborhood embedding analysis. However, the
neighborhood embedding does increase the resolution to single mRNA spots, leading to a
better visualization and a higher spatial accuracy. The nuclei segmentation method is limited
in the fly brain by the inability of the DAPI signal to resolve overlapping individual nuclei in very
densely packed brain regions. While Tangram was the best method to identify unknown
clusters, it also led to false-positive labeling of multiple cell types, leading to the necessity of
accurate thresholding. We find that using a simple regression model works as well or even
better as designated methods when marker genes are used, while running much faster. The
designated methods might show improved performance when using larger gene panels.
Therefore, we suggest relying on a consensus of different methods to optimally integrate
scRNA-seq data with SRT.
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Discussion

Here we present the first SRT dataset of the adult fly brain and body using a highly multiplexed
single molecular in situ hybridization technique Molecular Cartography (MC). Most of the
published classical mRNA in situ hybridizations (Tomancak et al., 2002; Lécuyer et al., 2007;
Jambor et al., 2015) as well as a recent high throughput FISH study used the more easily
accessible fly embryos (Wang et al., 2022), We expanded SRT here to the more complex
anatomy of the adult fly, which requires sectioning and large data sampling, both at the
microscope and at the computer. Using a 50-genes panel in the body, all major cell types in
the adult male fly were identified. Furthermore, expression of key markers was sufficient to
locate rare cell populations in the adult body. For example, expression of Hm/ showed the
location of resident hemocytes, while esg was used to mark stem cells in the reproductive and
intestinal tracts. We further showed a high concordance with published snRNA-seq data using
several measures of co-expression (Li et al., 2022).

While SRT based on smFISH in mice (Yao et al., 2023) and humans (Fang et al., 2022) is
currently limited to a single tissue, in flies both the brain and the whole-body can be sliced and
imaged, allowing an unprecedented whole body view. This enabled us to investigate the
specificity of marker genes in the context of all tissues. We found that many markers are
indeed highly specific to certain cell types, as we quantified for Act88F and TpnC4 for the flight
muscles (>99% specificity), which is consistent with previous benchmarks of MC in human
and mouse cells (Groiss et al., 2021). Still, some marker genes showed additional unexpected
expression (e.g., expression of tin and TpnC4 in the ejaculatory bulb muscles), which was not
detected in snRNA-seq. Additionally, we observed widespread expression of LanB1 in various
cell types, beyond just hemocytes. As such, SRT can provide a more sensitive readout,
including the spatial localization, and may inspire which other tissues might be interesting to
investigate in the future when studying a particular gene function.

In the head, we used a 100-genes panel and showed that this selection is sufficient to identify
the major classes of cell types in the brain, including some very specific neuronal cell types
like peptidergic neurons, Kenyon cells and different OL neurons. Furthermore, by using
informative markers enriched in previously uncharacterized clusters from single-cell RNA-seq
data, we were able to pinpoint the nuclei in the fly brain that express these markers. This
allowed us to map a series of previously uncharacterized cell clusters to specific brain regions.
The next challenge lies in connecting these nuclei to the neuronal connectome using
connectomics studies (Schlegel et al., 2024), in order to unambiguously identify the individual
cell types. Indeed in Drosophila, neuronal nomenclature and cell typing focus on projections,
instead of nuclei localization. We believe that future large-scale SRT data can serve as a
bridge between different modalities, similar to the Rosetta stone, to link scRNA-seq atlases
with spatial information, including connectomics in the brain.

Performing SRT on the adult head led to two additional challenges. The first issue is technical,
since the small area of the head made it difficult to achieve homogeneous adhesion to the
slides, leading to significant deformation of the samples. Secondly, the small and dense
Drosophila brain nuclei are hard to segment (average size 5 cubic micrometers (Mu et al.,
2021)). A possible solution would be to use SRT-compatible expansion microscopy (Fan et
al., 2023; Pownall et al., 2023; Steib et al., 2022). Alternatively, imaging techniques that allow
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super-resolution like DNA-PAINT, could help to achieve higher resolution (sub 5 nm
resolution) (Agasti et al., 2017; Schueder et al., 2023). Thirdly, apart from their small size,
most Drosophila neuronal nuclei are found in dense regions, with significant overlap in 2D
images. Thus, 3D imaging could be used to improve nuclei segmentation (Pachitariu &
Stringer, 2022), but still leaves open the problem of overlapping neuronal projections.

Therefore, we explored several computational techniques to integrate SRT with single-cell
RNA-seq, including grid-rasterization, nuclei-segmentation and neighborhood embedding.
Given the dense packing of the small nuclei in the fly brain, and the likely presence of mRNA
transport away from the nucleus of origin, nuclei-segmentation leads to a loss of information
compared to the other nuclei-unaware techniques. We further found that the mapping of some
clusters is dominated by the presence of strong marker genes. Therefore, we predict strong
improvements when using larger gene panels. Currently, sequencing-based methods such as
Stereo-seq hold an advantage in number of genes that can be profiled (Wang et al., 2022),
but smFISH-based approaches are scaling rapidly and will soon allow to routinely image
1000s of genes at higher resolutions (Fang et al., 2022).

The most exciting advantage of SRT compared to single-cell techniques applied to cells or
nuclei in suspension, is the possibility to study mRNA localization within the tissue-context. It
was previously reported in the embryo that large numbers of MRNAs are non-homogeneously
distributed and thus likely transported (Jambor et al., 2015; Lécuyer et al., 2007; Tomancak et
al., 2002). In our SRT data, we found localized mRNAs in at least three different cell types.
First, we found that different trypsin isoforms locate to opposite apical-basal locations in
enterocytes of the adult gut. Such apical-basal mRNA transport processes are well described
in the embryonic epidermis (Bullock et al., 2006), however, to our knowledge not yet known in
the adult fly gut epidermis, where secretion of the enzymes at the correct side of the cell should
be critical.

Second, in the brain, we identified localized patterns of mMRNAs coding for the neuropeptides
Pdf and llp2. These mRNAs are likely transported into axons or dendrites, away from the cell
body, a process often critical for brain development and function (Holt & Bullock, 2009). As
both genes are important regulators of adult physiology, the identified localization patterns
may inspire future studies.

Third, in muscle cells, SRT revealed different patterns of mRNA distributions within muscle
fibers that suggest both mRNA transport and local synthesis in a subset of nuclei. Most
prominently, s/s mRNA remains close to the nuclei, whereas some muscle regions display
alternating striped patterns of Act88F and TpnC4 mRNAs that recapitulate the functional
specializations within the muscle fibers, with myofibrils, mitochondria and ER being present at
defined locations (Luis & Schnorrer, 2021). It has been proposed that ribosomes are
concentrated at particular locations in mammalian muscles to build translational hotspots
(Denes et al., 2021; Lewis et al., 2018; Rudolph et al., 2019). Whether such concentrations
exist in fly muscles is not known, and it will require future investigations to identify the
localization mechanisms and the functional significance of localized mRNAs concentrations.
Finally, we propose the existence of heterogenous nuclei in the IFMs, with terminal nuclei
facing the muscle-tendon attachment sites showing an enrichment of s/s MRNA and thus likely
transcribing more s/s mRNA. SlIs protein is the titin homolog, a critical component of the
sarcomeric Z-disks (Loreau et al., 2023), also located at the terminal Z-disk linking each force-
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probing myofibril to the tendon cells (Green et al., 2018). Similarly, in mammalian muscles, it
was recently found that the terminal muscle fiber nuclei, which face the tendon cells, apply a
specialized transcriptional program (Kim et al., 2020; Esteves de Lima et al., 2021).
Interestingly, the FCA data of cross-tissue muscle cells did not reveal transcriptionally
heterogenous subclusters of nuclei, showing the benefit of more sensitive spatial techniques
(Li et al., 2022).

To conclude, we have shown that medium throughput SRT on entire fly head and body
samples is methodologically possible and leads to informative new discoveries that will spark
interesting  follow-up  studies. All our data can be freely explored on
https://spatialfly.aertslab.org. This proof-of-concept study opens avenues for potential full 3D
slicing and imaging of an adult fly in its entirety at high resolution.
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Methods

Full fly sectioning for MC

To ensure full adult development, adult male Luminy flies were isolated and left for 3 days at
25°C. After this step, the flies were put on ice for 15 minutes, and their wings were clipped.
Flies were then transferred to a freezing mold alive, embedded in optimal cutting temperature
compound (OCT compound, VWR), and frozen in liquid nitrogen. Flies were sectioned with a
cryostat (Leica CM 3050 S, Leica Biosystems, Germany). 10 um sections were transferred to
coverslips coated with gelatin (porcine skin, 300g Bloom Type A, Merck) and stored at -80°C.
5 body sections from 1 male were imaged with MC.

Fly head sectioning for MC

Adult flies (male and females) were anesthetized on a fly pad using CO; gas, to cut off their
heads with a scalpel. Heads were then placed on a pre-cooled metal surface on dry ice and
covered with a drop of OCT. Frozen OCT blocks were stored at -80°C until sectioning. Head
sections of 10 ym thickness were produced with a Leica CM3050 S cryostat and placed on
uncoated coverslips, which were stored at -80°C. 13 head sections from 12 different flies were
imaged with MC

Molecular Cartography (MC)

a. Gene selection and probe design

Guided by the fly cell atlas, 150 genes were selected to be the most informative for spatial
transcriptomics, 50 genes for the whole-body samples (Table S1) and 100 genes for the head
samples (Table S2). These genes were selected based on different criteria including: marking
specific cell populations, strong single-cell co-expression, marking uncharacterized cell
populations or showing broad expression.

The probes for the selected genes were designed using Resolve Biosciences’ proprietary
design algorithm. To speed up the process, the calculation of computationally expensive parts,
especially the off-target searches, the selection of probe sequences was not performed
randomly, but limited to sequences with high success rates. To filter highly repetitive regions,
the abundance of k-mers was obtained from the background transcriptome using Jellyfish
(Marcais & Kingsford, 2011). Every target sequence was scanned once for all k-mers and
those regions with rare k-mers were preferred as seeds for full probe design. A probe
candidate was generated by extending a seed sequence until a certain target stability was
reached. A set of simple rules was applied to discard sequences that were found
experimentally to cause problems. After these fast screens, every kept probe candidate was
mapped to the background transcriptome using ThermonucleotideBLAST (Gans & Wolinsky,
2008) and probes with stable off-target hits were discarded. Specific probes were then scored
based on the number of on-target matches (isoforms), which were weighted by their
associated APPRIS level (Rodriguez et al., 2018), favoring principal isoforms over others. A
bonus was added if the binding site was inside the protein-coding region. From the pool of
accepted probes, the final set was composed by greedily picking the highest scoring probes.
Catalog numbers for the specific probes are available upon request at Resolve Biosciences.
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b. Molecular Cartography

Samples were then sent to Resolve Biosciences on dry ice for analysis. Upon arrival, tissue
sections were thawed and rehydrated with isopropanol, followed by 1 min washes in 95%
ethanol and then 70% ethanol at room temperature. The samples were used for Molecular
Cartography (100-plex combinatorial single molecule fluorescence in situ hybridization)
according to the manufacturer’s instructions (protocol v.1.3; available for registered users),
starting with the aspiration of ethanol and the addition of buffer DST1 followed by tissue
priming and hybridization. Briefly, tissues were primed for 30 min at 37 °C followed by
overnight hybridization of all probes specific for the target genes (see below for probe design
details and target list). Samples were washed the next day to remove excess probes and
fluorescently tagged in a two-step color development process. Regions of interest were
imaged as described below and fluorescent signals were removed during decolorization. Color
development, imaging and decolorization were repeated for multiple cycles to build a unique
combinatorial code for every target gene that was derived from raw images as described
below.

c. Imaging

Samples were imaged on a Zeiss Celldiscoverer 7, using the x50 Plan Apochromat water
immersion objective with an NA of 1.2 and the x0.5 magnification changer, resulting in a x25
final magnification. Standard CD7 LED excitation light source, filters and dichroic mirrors were
used together with customized emission filters optimized for detecting specific signals.
Excitation time per image was 1,000 ms for each channel (4,6-diamidino-2-phenylindole
(DAPI) was 20 ms). A z-stack was taken at each region with a distance per z-slice according
to the Nyquist—-Shannon sampling theorem. The custom CD7 CMOS camera (Zeiss Axiocam
Mono 712) was used. For each region, a z-stack per fluorescent color (two colors) was imaged
per imaging round. A total of eight imaging rounds were conducted for each position, resulting
in 16 z-stacks per region. The completely automated imaging process per round (including
water immersion generation and precise relocation of regions to image in all three dimensions)
was realized by a custom Python script using the scripting API of the Zeiss ZEN software
(open application development).

d. Spot segmentation

The algorithms for spot segmentation were written in Java and are based on the ImageJ library
functionalities. The iterative closest point algorithm is written in C++ based on the
libpointmatcher library (https://github.com/ethz-asl/libpointmatcher).

e. Preprocessing

As a first step, all images were corrected for background fluorescence. A target value for the
allowed number of maxima was determined based upon the area of the slice in um? multiplied
by the factor 0.5. This factor was empirically optimized. The brightest maxima per plane were
determined, based upon an empirically optimized threshold. The number and location of the
respective maxima was stored. This procedure was conducted for every image slice
independently. Maxima that did not have a neighboring maximum in an adjacent slice (called
a z group) were excluded. The resulting maxima list was further filtered in an iterative loop by
adjusting the allowed thresholds for (Babs - Bback) @and (Bperi - Boack) to reach a feature target
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value (Babs: absolute brightness; Brack: local background; Byeri: background of periphery within
one pixel). These feature target values were based upon the volume of the three-dimensional
(3D) image. Only maxima still in a z-group of at least two after filtering were passing the filter
step. Each z-group was counted as one hit. The members of the z-groups with the highest
absolute brightness were used as features and written to a file. They resemble a 3D point
cloud.

f. Final signal segmentation and decoding

To align the raw data images from different imaging rounds, images had to be corrected. To
do so, the extracted feature point clouds were used to find the transformation matrices. For
this purpose, an iterative closest point cloud algorithm was used to minimize the error between
two-point clouds. The point clouds of each round were aligned to the point cloud of round one
(the reference point cloud). The corresponding point clouds were stored for downstream
processes. Based upon the transformation matrices, the corresponding images were
processed by a rigid transformation using trilinear interpolation. The aligned images were used
to create a profile for each pixel consisting of 16 values (16 images from two color channels
in eight imaging rounds). The pixel profiles were filtered for variance from zero normalized by
total brightness of all pixels in the profile. Matched pixel profiles with the highest score were
assigned as an ID to the pixel. Pixels with neighbors having the same ID were grouped. The
pixel groups were filtered by group size, number of direct adjacent pixels in group and number
of dimensions with size of two pixels. The local 3D maxima of the groups were determined as
potential final transcript locations. Maxima were filtered by number of maxima in the raw data
images where a maximum was expected. Remaining maxima were further evaluated by the
fit to the corresponding code. The remaining maxima were written to the results file and
considered to resemble transcripts of the corresponding gene. The ratio of signals matching
to codes used in the experiment and signals matching to codes not used in the experiment
were used as estimation for specificity (false positives).

From Resolve Biosciences, the authors received the raw DAPI signal containing tiff image
files, with gene localization count tables.

g. Gene visualization

Genes were plotted using Python scripts. Marker sizes were scaled by gene density to
increase visibility of patterns.

Hybridization chain reaction on fly thoraces
a. Thorax preparation for HCR-FISH

5-day old Luminy males, raised at 25°C, were put on ice for 15 min before clipping their wings,
head and abdomen. Thoraces were then transferred in PAXgene fixative (Resolve
Biosciences) for 1 hour at room temperature, followed by 2 hours in stabilization buffer
(Resolve Biosciences) at room temperature and overnight in 30% sucrose in 1x PBS at 4°C.
The next day, thoraces were transferred to OCT (VWR) and immediately frozen in liquid
nitrogen. Fly thoraces were sectioned with a cryostat (Leica CM 3050 S, Leica Biosystems,
Germany). 16 pm sections were transferred to slides coated with gelatin (porcine skin, 300g
Bloom Type A, Merck)
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b. Probe design

Pairs of DNA 25-mer oligos were designed to hybridize on Act88F, TpnC4, sls and Mhc
transcripts. Except for TpnC4, for which we designed 12 pairs of oligos, 20 pairs were
designed for each mRNA, following the principles presented by (Choi et al., 2018) . Sequences
are provided in the Table S4.

c. Hybridization chain reaction protocol

We followed the plated-cells protocol presented in (Choi et al., 2018) with slight modifications
to apply it on fly sections.

Day 1: wash 2x with PBS, add ice cold 70% ethanol and incubate overnight at -20°C.

Day 2: aspirate ethanol, wash 2x with 2x SCC (Invitrogen), incubate in 300 uL of “30% probe
hybridization buffer” (Molecular Instruments) for 30 min at 37°C. Incubate with 1.2 pmol of
each probe mixture to 300 pL of “30% probe hybridization buffer” at 37°C overnight.

Day 3: wash 4x 5 min with 300 uL of “30% probe wash buffer” (Molecular Instruments) at 37°C,
wash samples 2x 5 min with 5x SSCT (0.1% Tween 20 in 5x SSC) at room temperature.
Incubate samples in 300 pL of amplification buffer (Molecular Instruments) for 30 min at room
temperature. Prepare 18 pmol of each fluorescently labeled hairpin (HCR Amplifiers B1-488
for Act88F, B3-546 for TpnC4, and B5-647 for Sls and Mhc, Molecular Instruments) by snap
cooling (heat at 95°C for 90 seconds and cool to room temperature in a dark drawer for 30
min). Prepare hairpin solution by adding all snap-cooled hairpins to 300 pyL of amplification
buffer at room temperature. Incubate samples overnight (12 - 16 h) in the dark at room
temperature.

Day 4: wash 1x with 300 pL of 5x SSCT 5 min, stain with DAPI for 30 min and wash for 5 min
with 300 pL of 5x SSCT at room temperature and mount in glycerol DABCO.

d. Imaging of fly thoraces

Thoraces were imaged with a point scanning confocal microscope (Leica SP8) using a 20x
0.75 NA glycerol immersion objective (Leica HC CS2 Plan Apo 20x 0.75 NA Imm).

Clustering analysis of mMRNA species based on proximity

Based on the observation that groups of MRNA species appeared to cluster into separated
regions of sections, we devised a simple method to automatically extract these regions based
on the proximity of different mMRNA. mRNA species that were identified as being close were
then gathered into the same cluster.
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In practice, we first computed the proximity of mMRNA species by pair (see Figure 2 — figure
supplement 3). Each localization of two mRNA species was transformed into disks of fixed
diameters, each disk being centered on a given mRNA localization; the diameter used here
was 4 um. To generate one surface for a species and avoid counting multiple times the same
area, disks of a given mRNA species were merged if they were overlapping. We then
computed their overlap surface from the surfaces obtained from two different mRNA species.
The proximity of one mRNA species (mMRNA1) versus the over one (MRNA;) was defined as
the ratio between the overlap surface and surface of the second mRNA species (MRNA?):

o Overlap mRNA; gna 2
Proximity mRNA; iy, = Surface mRlen
2
Reciprocally,
o Overlap mRNA; gna 2
Proximity mRNA; ;1 = Surface mRNZn
1

The calculation of proximity then allowed us to define a distance between two mRNA species:

Distance mRNA; gnq » = 2 — (Proximity mRNA, . , + Proximity mRNA, . )

MRNA species that show perfect overlap get a distance of 0 in this metric, whereas mRNA
species that do not show any overlap would get a distance of 2.

Finally, this metric was used in a hierarchical clustering analysis using Ward’s method.
Clusters were then extracted from this analysis.

5 ym x 5 ym grid analysis
a. Quantification

Samples were rasterized in a square grid of 36 by 36 pixels (1 pixel = 0.138 um, 36 pixels =
4.968 pm). All counts within this area were summed up. This led to a square by gene matrix,
with for every square the mean x and y spatial coordinates of the square’s dimensions.

b. SCANPY body

All body samples (5) were analyzed together in SCANPY (1.9.3) (Wolf et al., 2018). An
increment of 1000 was added to both spatial x- and y-coordinates to arrange all samples
together. Only squares with more than 3 counts were kept, leading to 132,642 squares with
information for 50 genes. The data was subsequently normalized with 10,000 as size factor
and log transformed. This matrix was then used as input for PCA, after which 40 components
were retained by evaluating variance ratio plots. Harmony was then used to correct for batch
effects between samples. 30 PCs were used to calculate neighbors, Leiden clustering
(resolutions 0.2, 0.5, 1 and 2) and UMAP embeddings.

c. SCANPY head

All head samples (13) were analyzed together in SCANPY (1.9.3) (Wolf et al., 2018). An
increment of 1000 was added to both spatial x- and y-coordinates to arrange all samples
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together. Only squares with more than 3 counts were kept, leading to 83,064 squares with
information for 99 genes (ninaE was discarded from most samples due to optical crowding).
The data was subsequently normalized with 10,000 as size factor and log transformed. This
matrix was then used as input for PCA, after which 30 components were retained by evaluating
variance ratio plots. Harmony was then used to correct for batch effects between samples. 25
PCs were used to calculate neighbors, Leiden clustering (resolutions 0.2, 0.5, 1 and 2) and
UMAP embeddings.

d. Head OL vs CB vs PR differential expression

Leiden resolution 1 was used to create average gene expression profiles for clusters. Clusters
with mean expression of para > 0.05 were selected as neuronal clusters. These were
subsequently manually assigned to either Photoreceptor (PR), Optic lobe (OL) or Central brain
(CB) regions based on location. Next, the rank_genes_groups function from SCANPY was
used to calculate differential genes for the regions based on a t-test.

e. Gene set enrichment

In the body, we selected marker genes that were assigned to several categories. We then
summed the expression of genes belonging to the same category to derive gene set
signatures. The following gene sets were used: muscle (Mhc, sls, CG32121), neurons (elav,
Syt1, Sh, acj6, ey, VAChT, Gad1, VGlut, nAChRalpha7), glia (repo, alrm), epithelia (pure: grh,
hth, gut: alphaTry, betaTry), heart (tin, Hand), fat body (AkhR, FASN2), oenocyte (FASN2),
male reproductive system (Awh, eyg, svp) and hemocytes (Hml). Spots in the grid were
assigned to a category based on Z-scores. If z-normalized expression > 1, the spot was
assigned to the category. When conflicts arose, the following hierarchy was used: muscle >
epithelia > glia > neurons > male reproductive system > fat body > oenocyte > hemocyte >
heart.

f. Lasso matching

We used lasso regression as implemented in sklearn (1.2.2). Averaged gene expression
profiles of single-cell clusters were matched with expression profiles of the grid-based
squares. The regression model was run using Lasso (alpha = 1, positive = True), forcing all
coefficients to be positive, with all genes. Higher weights for the single-cell clusters
corresponds to a higher similarity between the cluster and the square. We only used weights
> 0.2 as confident matches. Spots were then assigned to the cluster based on the highest
weight.

Nuclei segmentation

Nuclei in DAPI images were segmented with Cellprofiler (version 4.0.7) (Stirling et al., 2021).
Features of the DAPI images were enhanced (EnhanceOrSuppressFeatures, Enhance,
Speckles) using a feature size of 100 pixels. Initial nuclei were detected using a size of 10-
100 pixels, global Otsu thresholding with two classes, intensity for distinguishing clumped
objects, propagate for drawing dividing lines. Initial nuclei were extended by 25 pixels. We
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then collected all transcripts inside a segmented cell to compute counts of each gene per
segmented cell.

Tangram

Tangram (version 1.0.2) (Biancalani et al., 2021) was used to project cell type labels from
single cell data. Here we used the cell mapping mode to map single cell data to each spatial
slice separately. The mapping was computed on a NVIDIA A100-SXM4-80GB GPU. Prior to
computing the mapping, segmented cells with less than three expressed genes and genes
that were expressed in less than three cells were removed. Single cells and segmented cells
were log-normalized in SCANPY (Wolf et al., 2018) with a target-sum of 10*. All genes that
are shared between the spatial data and single cell data after filtering were used for the
mapping. Cell type labels for fly head samples were assigned separately for glia, optic lobe
(OL), central brain (CB) and unknown clusters (UNK) by considering only the subset cell types
that we grouped into the category. A cell type label was assigned to a segmented cell based
on the 95%-quantile of the mapping scores for a cell type (unless stated otherwise) if this
resulted in a unique label assignment. Cell type labels for the grid rasterized spatial data were
assigned in the same manner as we did for the segmented cells. The only exception being,
that we down-sampled the number of cells to a maximum of 5000 cells per cell type in the
single cell data to limit the amounts of required video memory.

Neighborhood embedding and SpaGE

Segmentation-free analysis of fly head and body SRT datasets have been carried out using
spage2vec (Partel & Wahlby, 2021). Briefly, spatial graphs of all MRNAs are first constructed
for each different sample. Then, a graph convolution neural network trained in a self-
supervised fashion projects each mRNA into an embedding space based on its spatial
neighborhood composition. Thus, mRNAs that share similar neighbors are mapped close
together in the embedding space. Downstream clustering or visualization of mMRNA
embeddings unveil spatial gene expression patterns described by specific combinations of
genes at subcellular resolution. Pseudo-cell counts have been generated for each mRNA by
aggregating counts of k neighboring mRNAs (i.e. k=100) in the embedding space. Finally,
integration of reference scRNA-seq datasets with spatial pseudo-cell counts have been
implemented by projecting both datasets into a common shared space using SpaGE (Abdelaal
et al., 2020). Thereafter, cell type labels have been transferred from scRNA-seq cells to spatial
pseudo-cells by kNN imputation (with k=100).

MRNA localization in muscle - distance to nuclei

For every detected mRNA molecule, the distance to the closest nucleus was calculated. First,
we calculated a mask to segment the indirect flight muscle using Act88F mRNA spots. Using
opencv2, we performed a Gaussian blur (ksize = 5x5, sigma = 1), followed by two erosion
steps (5x5 and 4x4) to remove sparse signals. Then, the spots were dilated thrice (50x50),
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followed by a final Gaussian blur (ksize = 5x5, sigma = 1). Only other mRNA species that
overlap with this mask were kept for the distance analysis.

The nucleus segmentation was loaded as a black-white image. The nonzero function from
opencv2 was used to find segmented pixels. Then for each mRNA spot, Euclidean distances
were calculated to the segmented pixels, after which they were assigned to the closest pixel.
To optimize the calculations, joblib’s Parallel function was used. This was repeated over all
body samples and results were combined. Only genes for which at least 100 mRNA spots
were detected across samples and not localized at the edges (faulty segmentation along the
muscle boundary) were kept: Act88F, Mhc, TpnC4, sls, salm and CG32121.
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Figure legends

Figure 1. Principal workflow of spatial fly transcriptomics.

(A) Overview of the spatial transcriptomics workflow: adult flies were sectioned, sections were
analyzed with Molecular Cartography and data were annotated using cell segmentation,
rasterization (i.e. grid) and neighborhood embedding (see Methods). (B, C) Three examples
of adult head sections showing various positions in the brain along the anterior-posterior axis
(B). Three examples of male whole-body sections taken from the same male (C). mRNAs from
each gene are represented in a different color. The combination of colors reveals the different
cell types. Scale bars represent 100 um. Background stain labels DAPI.

Figure 2. Adult body cell types.

(A) Major cell types of adult males identified by marker genes. Scale bars represent 100 ym.
Inset for gut shows zoome-ins of different regions (a: apical, b: basal). Inset for flight muscle,
shows the percentage of marker gene molecules detected within the outlined area in the
section shown. (B) Gene set scores for the main classes of cell types, quantified using 5 uym
x 5 um grid. Scale bar represents 100 um. The class assignment shown on the right is based
on maximum score across classes. Genes used: neurons (elav, Syt1, Sh, acj6, ey, VAChT,
Gad1, VGlut, nAChR«a7); male reproductive system (Awh, eyg, svp); epithelia (grh, aTry, STry,
hth); heart (tin, Hand); muscle (Mhc); hemocyte (Hml); glia (repo); fat cells (AkhR), oenocytes
(FASN2). (C) UMAP showing clustering of 5 ym x 5 ym grid spots. (D) Spatial location of grid
clusters. (E) tSNE from male accessory glands from FCA showing expression of marker genes
for main gland cells. (F) MC of the main gland cells marker genes highlights several defined
populations of cells. Scale bar represents 100 um. Detailed view shown in F’. Background
stain labels DAPI.

Figure 3. Molecular Cartography shows mRNA-specific nuclear enrichment.

(A) Molecular Cartography (MC) visualization of marker genes of muscle subtypes. White
boxes mark zoom-in regions shown in (B) and Figure 3 — figure supplement 1. (B) Zoom-in on
flight, leg and head muscles. Left, labels are the same as in (A); right, DAPI-labelled nuclei.
(C). Density plots show the distance of each mRNA molecule of the indicated genes to its
nearest nucleus. Red dotted lines mark the peak density, and black dotted lines the median
distance. Scale bars represent 50 um in (A) and 10 ym in (B). Background stain labels DAPI.

Figure 4. sls mRNA show nuclear enrichment with increased concentration close to
muscle-tendon junctions.

(A) Molecular Cartography visualization of s/s mRNA (yellow) as pan muscle maker (same
section as in Figure 3). White boxes mark zoom-in regions shown in (B) and (C). (B, C) Zoom-
in on indirect flight muscles showing colocalization of s/ls mMRNAs and DAPI stained nuclei in
anterior (B) or central (C) regions of the flight muscle. (D) HCR-FISH imaging of s/s mRNA in
an adult thorax. White boxes mark zoom-in regions shown in (E) and (F). (E, F) Zoom-ins on
flight muscle at anterior (E) or middle (F) regions. Note the sls mMRNA and DAPI co-localization
(tracheal cells show background stain in the DAPI channel). Scale bars represent 50 pym in
(A) and (D), and 10 um in (B), (C), (E), and (F). Background stain labels DAPI.

Figure 5 — TpnC4, Act88F, and Mhc mRNAs flight muscle patterning.

(A) Molecular Cartography visualization of TpnC4, Act88F and Mhc mRNAs on an adult fly
section (same section as in Figure 3). The white box marks the zoom-in region shown in (B).
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(B) Zoom-in on the flight muscle showing the striped patterns of TpnC4, Act88F (blue in
overlay), and Mhc mRNAs in the indirect flight muscle. (C) HCR-FISH of TpnC4 and Act88F
mRNAs in an adult thorax. The white box marks zoom-in the region shown in (D). (D) Zoom-
in on the flight muscle of HCR-FISH labelling TonC4 and Act88F mRNAs (same section as in
Figure 4D). (E) HCR-FISH of Mhc mRNAs in an adult thorax. The white box marks the zoom-
in region shown in (F). (F) Zoom-in on the flight muscle of HCR-FISH labeling Mhc mRNAs.
Scale bars represent 50 umin (A), (C), (E). and 10 um in (B), (D), (F). Background stain labels
DAPI.

Figure 6. Adult head cell types.

(A) tSNE showing expression of photoreceptor (ninaC), neuronal (para) and glial (repo)
markers (left). Molecular Cartography of the same marker genes (right). (B, C) Molecular
Cartography of marker genes for olfactory projection neurons (OPN), in an anterior head slice
(B) and of perineurial glia of the blood brain barrier (BBB) in a more central brain slice (C). (D,
E) Using Molecular Cartography to localized uncharacterized clusters found in scRNA-seq
data. (F) UMAP showing clustering of 5 ym x 5 ym grid spots (top). Spatial location of grid
clusters in the brain (bottom). (G) Differential expression of central brain (CB), optic lobe (OL)
and photoreceptor regions (PR). (H) Molecular Cartography of pros and scro in the brain. (I)
tSNE showing split in optic lobe clusters by expression of Wnt4 and Wnt10. Insert shows
Molecular Cartography of Wnt4 and Wnt10, spatially localized in ventral and dorsal brain
regions, respectively. Scale bars represent 100 um. Background stain labels DAPI.

Figure 7. Comparison of different techniques for annotating the adult head samples.
(A) Overview of different spatial analysis methods which were used to annotate Molecular
Cartography with labels from single-cell RNA-seq: grid-based, neighborhood embedding and
nuclei segmentation. Scale bar represents 100 um. (B) Zoom-in on a high-density region with
corresponding segmented nuclei. Scale bar represents 10 pym. (C-F) Comparison of
annotation of spatial data with single-cell RNA-seq for three different quantification methods.
Grid-based squares/neighborhoods/nuclei are colored based on matching single-cell clusters
for (C) glia, (D) optic lobe, (E) central brain and (F) four uncharacterized clusters. In (E) two
brain slices are shown at different depths: central (top) and posterior (bottom). NE:
neighborhood embedding.
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