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Abstract 12 

Emotion-like states in animals are commonly assessed using judgment bias tests, which 13 

measure responses to ambiguous information. A few studies have recently used these tests 14 

to argue for the presence of emotion-like states in insects. However, the results from most 15 

of these studies could have other explanations, including changes in motivation and 16 

attention. To control for these explanations, we therefore developed a novel judgment bias 17 

test, requiring bumblebees to make an active choice indicating their interpretation of 18 

ambiguous stimuli. Bumblebees were trained to associate high or low rewards, delivered 19 
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in two different reward chambers, with distinct colors. Two groups of bees were then 20 

physically stressed by shaking or trapping, while the third group served as a control. We 21 

subsequently presented the bees with ambiguous colors between the two learnt colors and 22 

noted which reward chamber they chose. When presented with ambiguous colors, stressed 23 

bees were less likely than control bees to enter the reward chamber previously associated 24 

with high reward. We modelled bee behavior using signal detection and drift diffusion 25 

models and showed that control bees and stressed bees were, respectively, more likely to 26 

respond optimistically and pessimistically to ambiguous cues. The signal detection model 27 

further showed that the behavior of stressed bees was explained by a reduction in their prior 28 

expectation of high rewards. Our findings thus provide strong evidence for emotion-like 29 

states in bees and suggest that their stress-induced pessimistic behavior is explained by a 30 

reduced expectation of higher rewards. 31 

Introduction 32 

The presence of emotions in non-human animals is much debated and can have important 33 

societal implications. While most research on animal emotions has focused on vertebrates 34 

(1,2), a handful of recent studies have explored analogous states in insects (3–8). In these 35 

studies, emotions are defined as valenced brain states triggered by both internal and 36 

external stimuli and comprising subjective, behavioral, physiological and cognitive 37 

components. Research on emotion-like states in insects has primarily relied on judgement 38 

bias tests, a method initially developed for assessing affective states in rats (9). These tests 39 

assess how animals respond to ambiguous stimuli. An animal typically is trained to 40 

associate one stimulus with a reward and another with a lack of reward or punishment. It 41 
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is then tested with an ambiguous stimulus that is in-between the two learnt stimuli. Animals 42 

that respond as if this stimulus indicates a reward are considered optimistic, while those 43 

that respond as if the stimulus indicates a lack of reward or punishment are considered 44 

pessimistic. 45 

Judgement bias tests have been used in five studies on insects, including on honeybees, 46 

bumblebees and fruit flies (3–7). Some of these studies showed that physical agitation can 47 

reduce the response of bees and flies to ambiguous odors (3–5). Others showed that bees 48 

are quicker to fly towards (6) and more likely to choose (7) ambiguous visual stimuli after 49 

encountering an unexpected reward of sucrose solution, suggesting optimistic behavior. 50 

While these results parallel results from studies of emotions in vertebrates, other 51 

explanations have also been suggested, including changes in motivation or the ability to 52 

learn training cues (10,11). 53 

One factor that complicates the interpretation of these results is that the majority of insect 54 

studies so far have utilized a go/no-go type of judgment bias task. Here, the animal is 55 

trained to respond to a positive stimulus (“go”) and suppresses the response to a negative 56 

one (“no-go”). When faced with an ambiguous stimulus, responding (“go”) or suppressing 57 

(“no-go”) a response is thought to reflect optimistic and pessimistic judgements, 58 

respectively. While this approach has been successfully used in many studies across taxa 59 

(12–14), there are concerns associated with this paradigm. Firstly, the suppression of a 60 

response could result from a general reduction in activity and motivation rather than a 61 

judgment bias (12). A reduction of responses could also indicate merely an absence of 62 

response (omission) rather than a deliberate choice (17,18). Finally, an animal may fail to 63 
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attend to or detect a stimulus, and in such cases, the lack of a response could be mistakenly 64 

attributed to a pessimistic judgment (14,19). Without a test that can address these issues, 65 

we currently do not have strong evidence of emotion-like states in insects. In addition, we 66 

lack models for the mechanisms underpinning the observed behaviors – though recent work 67 

has proposed that judgement biases in bees can arise from shifts in stimulus-response 68 

curves (7). 69 

One way of reducing the likelihood of confounds is to use an active choice judgment bias 70 

test (16,17,20). In contrast to the go/no-go task, the active choice paradigm requires the 71 

animal to make an active choice between two alternative responses. Animals might, for 72 

example, learn to move to one location in response to one stimulus and to another location 73 

when they see another stimulus. Since the animal must make a choice as a response, this 74 

type of judgment bias test eliminates the possible confounding factors of the "go/no-go" 75 

paradigm, increasing validity and ease of interpretation.  76 

We therefore used an active choice type of judgment bias test to rigorously assess 77 

judgement biases in bumblebees (Bombus terrestris). Bees had to choose between two 78 

rewarding locations depending on the stimulus displayed, clearly signaling their judgement 79 

when faced with ambiguous stimuli by moving to one of the two locations. To induce 80 

negative affective states, we used two types of manipulations simulating predatory attacks 81 

- shaking and trapping by a robotic arm. These manipulations have previously been shown 82 

to be associated with cognitive and physiological changes (4,21,22). In addition, to further 83 

understand the mechanisms underlying our behavioral results, we applied drift diffusion 84 

and signal detection modelling frameworks to the data. We used these frameworks to test 85 
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whether physical agitation affected the prior expectation of a reward in bees or their ability 86 

to distinguish between stimuli due to shifts in stimulus-response curves. 87 

Materials and Methods 88 

 89 

Animals and experimental set-up  90 

All experiments were run on female worker bumblebees (Bombus terrestris) obtained from 91 

a commercial supplier (Koppert, UK).  We transferred the bumblebees to one chamber of 92 

a bipartite plastic nest box (28.0 × 16.0 × 12.0 cm). We covered the other chamber of the 93 

nest box with cat litter to allow bees to discard refuse.  The nest box was connected via a 94 

transparent acrylic tunnel (56.0 × 5.0 × 5.0 cm) to a flight arena (110.0 × 61.0 × 40.0 cm) 95 

with a UV-transparent Plexiglas® lid and lit by a lamp (HF-P 1 14-35 TL5 ballast, Philips, 96 

The Netherlands) fitted with daylight fluorescent tubes (Osram, Germany). When not part 97 

of an experiment, bees were fed with ~ 3 g of commercial pollen daily (Koppert B. V., The 98 

Netherlands) and provided sucrose solution (20% w/w) ad libitum. Although invertebrates 99 

do not fall under the Animals (Scientific Procedures) Act, 1986 (ASPA), the experimental 100 

design and protocols were developed incorporating the 3Rs principles. Housing, 101 

maintenance, and experimental procedures were non-invasive and were kept as close as 102 

possible to the natural living conditions of the animals. 103 

Visual stimuli were solid colors covering the entire display of an LED monitor (Dell 104 

U2412M, 24", 1920 x 1200 px) and controlled by a custom-written MATLAB script 105 

(MathWorks Inc., Natick, MA, USA) using the PsychToolbox package (34). We measured 106 

the spectral reflectance of all colors used in the experiment using an Ocean Optics Flame 107 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2023. ; https://doi.org/10.1101/2023.10.06.561175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561175
http://creativecommons.org/licenses/by/4.0/


 

 

6 

 

reflectance spectrophotometer (Ocean Optics Inc., Florida, USA). The perceptual positions 108 

of the colors in the bee color hexagon space (Fig. 1B) were calculated using the spectral 109 

reflectance measurements and spectral sensitivity functions for Bombus terrestris 110 

photoreceptors (35,36). 111 

We positioned two vertical panels (40.0 × 8.0 cm) 8.5 cm in front of the right and left sides 112 

of the LED monitor, leaving the central area of the monitor open and visible. Each panel 113 

was equipped with an opening to place a reward chamber (7 ml glass vial, 10 mm inner 114 

diameter) 7 cm above the arena floor. Bees thus needed to fly from the arena entrance to 115 

the panels before entering the reward chamber. On each visit to the arena, the reward 116 

chambers were changed to ensure that pheromones and scent marks were not available 117 

during the next visit. In preparation for the next experimental day, all used chambers were 118 

washed in hot water and 70% ethanol and left to dry.  119 

 120 

Training procedure 121 

Before the onset of training, bees were familiarized with both reward locations. A plastic 122 

cup was used to gently capture each bee. The opening of the cup was positioned so that it 123 

aligned with the entrance to the reward chamber, inside which the bee found a droplet of 124 

sucrose solution (0.2 ml, 30% w/w). We repeated the procedure equally on each side (left 125 

and right) without displaying any color on the LED screen. Individual bees that learnt the 126 

location of the reward and performed repeated foraging bouts were tagged for later 127 

identification using number tags (Thorne, UK). Tagging involved trapping each bee in a 128 
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small marking cage, gently pressing it against the mesh with a sponge, and affixing the tag 129 

to the dorsal thorax with a small amount of superglue (Loctite Super Glue Power Gel). 130 

In each training trial, we presented bees (n = 48) with one of two colors on the LED screen. 131 

The two colors used were green (RGB= 0, 255, 75) and blue (RGB= 0, 75, 225).  When 132 

one of the colors was displayed, the bee was provided a high-value reward of 0.2 ml 50% 133 

(w/w) sucrose solution in one of the two chambers (e.g., on the left), and an equal amount 134 

of distilled water in the other chamber (e.g., on the right). In different trials, when the other 135 

color was displayed the bee was provided a low-value reward of 0.2 ml 30% (w/w) sucrose 136 

solution in the chamber opposite (e.g., on the right) to the one where, in the other trials, a 137 

high-reward was presented. Here again, an equal amount of distilled water would be 138 

present in the other chamber (e.g., on the left). Thus, on any given trial, the bee saw only 139 

one color and could encounter either the high or low reward (not both), with water on the 140 

unrewarding side. In addition, the locations of the high and low rewards were on opposite 141 

sides in their respective trials. 142 

Across bees, the combinations of each color (green or blue), reward location (right or left) 143 

and reward type (high or low) were counterbalanced. Each bee encountered only one 144 

possible combination of each during training (e.g., green indicating a high reward on the 145 

left on half the trials, and blue indicating a low reward on the right on the other half). Trials 146 

presenting colors associated with high and low rewards were presented an equal number 147 

of times in a pseudorandom order, ensuring that no color was repeated more than twice in 148 

a row. To ensure that the bee entered the reward chamber fully to sample its content, we 149 

placed the droplets of solutions at the very end of the reward chamber (Fig. 1A). In all 150 
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cases, the reward quantity of 0.2 ml allowed bees to fill their crop within a single reward 151 

chamber visit (37). We recorded a single choice on each trial, with a choice defined as a 152 

bee entering a chamber far enough to sample its content. Incidences of landing or partial 153 

entering (less than 1/3 of the body length) were not considered choices. Bees that reached 154 

the learning criterion (80% accuracy in the last 20 trials) continued to the test phase. 11 155 

bees did not pass the initial conditioning test due to strong side biases. The last ten training 156 

trials were video recorded using a camera on a mobile phone (Huawei Nexus 6P phone 157 

1440 × 2560 px, 120 fps) placed above the arena. 158 

Predatory attack simulation 159 

We randomly assigned individual bees (n=48) that reached the learning criterion in the 160 

training phase to one of the three treatment groups. Two groups were subjected to 161 

manipulations which simulated predatory attacks and were predicted to change their 162 

affective state (4). One of these two treatments involved shaking the bee on a Vortex shaker 163 

(Shaking, n=16), while the other involved trapping the bee with a custom-made trapping 164 

device (Trapping, n=16). A third unmanipulated group served as a control (Control, n=16). 165 

The manipulations were applied to a bee before entering the arena for each test. Bees in 166 

the Control treatment were allowed to fly out into the flight arena without hindrance as in 167 

the training phase. 168 

Each bee in the Shaking treatment was allowed to enter a custom-made cylindrical cage 169 

(40 mm diameter, 7.5 cm length). After entering, the bee was gently nudged down with a 170 

soft foam plunger until the distance between the plunger and the bottom of the cage was 171 

reduced to ~3 cm. Once the plunger was secured, the cage with the bee was placed on a 172 
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Vortex-T Genie 2 shaker (Scientific Industries, USA) and shaken at a frequency of 1200 173 

rpm for 60 s. After shaking, the bee was released into the tunnel connecting the nest box 174 

and experimental arena via an opening on the top of the tunnel. The bee was released into 175 

the flight arena for testing as soon as it was ready to initiate a foraging bout.  176 

Each bee in the Trapping treatment was trapped using a trapping device. This consisted of 177 

a soft sponge (3.5 × 3.5 × 3.5 cm) connected to a linear actuator system (rack and pinion). 178 

A micro-servo initiated the linear motion of the trapping device (Micro Servo 9g, 179 

DF9GMS), powered, and controlled by a microcontroller board (Arduino, Uno Rev 3). A 180 

custom-written script written in the Arduino Software (IDE) triggered an initial plunging 181 

movement of the trapping device, followed by release after three seconds. This permitted 182 

consistent trapping across all tested individuals. As in the Shaking treatment, the bee was 183 

released into the flight arena for testing as soon as it was ready to initiate a foraging bout. 184 

Judgement bias testing 185 

The test phase consisted of five trials, each with a cue of a different color presented on the 186 

screen. The test colors were the two conditioned colors (green and blue), and three 187 

ambiguous colors of intermediate value between the two conditioned colors (near blue 188 

(RGB=0, 140, 150); medium (RGB= 0, 170, 120); near green (RGB= 0, 200, 100) (Fig. 189 

1B). We classified the ambiguous colors as near-high, medium, and near-low cues 190 

depending on their distance to the high or low rewarding color for each bee. The color 191 

presentation order was pseudorandomized between all bees, so that the first test color was 192 

always one of the three ambiguous color cues. Within the test phase, all color cues 193 

(ambiguous and learnt) were not rewarded, i.e., both chambers contained 0.2 ml of distilled 194 
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water. We classified the entry of a bee into a reward chamber as a choice. After it made the 195 

first choice, we gently captured the bee with a plastic cup and returned it to the tunnel 196 

connecting the nest and the arena. Between presentations of each of the five test cues, bees 197 

were provided refresher trials consisting of two presentations of each conditioned color 198 

with the appropriate reward at the correct location. All trials were video recorded for later 199 

video analysis using the camera of a mobile phone (Huawei Nexus 6P, 1440 × 2560 px, 200 

120 fps). We obtained the latencies for the choices from the video analysis (see below). 201 

 Measuring foraging motivation using ingestion rate 202 

To assess if our manipulations changed feeding motivation in bees, we measured sugar 203 

reward ingestion rates. A separate group of bees (n=36) were pre-trained to forage from an 204 

elevated feeder consisting of the reward chamber used above with a 1.5 mL Eppendorf 205 

placed inside. After learning this location and completing five consecutive foraging bouts, 206 

bees were randomly allocated to one of three treatment groups as in the above experiment 207 

for the ingestion test (Control: n=12, Shaking: n=12, Trapping: n=12). The test consisted 208 

of a single foraging bout on a feeder with sucrose solution (~1 ml, 50% w/w). The feeder 209 

was weighed before and immediately after the test bout to determine the mass of ingested 210 

solution using a Kern Weighing Scale ADB100-4 (Resolution: mg±0.001, Kern & Sohn, 211 

Balingen, Germany). The feeding bouts were recorded using a mobile phone camera 212 

(Huawei Nexus 6P, 1440 × 2560 px, 120 fps). The recordings were used to determine the 213 

time taken for ingestion. Ingestion time was defined as the time from when the bee first 214 

touched the sucrose solution with its proboscis until the bee stopped drinking. For each 215 

bee, we calculated the absolute ingestion rate i (mg/s): 216 
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i=(m1-m2)/t 217 

where i is the absolute ingestion rate of a bee, m1 is the mass of the feeder before the 218 

foraging bout, m2 is the mass of the feeder after the foraging bout, and t is the ingestion 219 

time of the bee. Upon the completion of the test, the bee was sacrificed by freezing and 220 

stored in 70% ethanol at -20°C. We measured the intertegular distance (ITD) and the length 221 

of the glossa of each bee with a digital calliper (RS PRO Digital Caliper, 0.01 mm ± 0.03 222 

mm) under a dissecting microscope. We then adjusted the absolute ingestion rate i to 223 

account for individual size variability using the formula: 224 

I=iW^(1/3 ) G (4), 225 

where i is the absolute ingestion rate of a bee, G is the length of the glossa and W is the 226 

intertegular distance. This is an adaptation of the formula developed earlier (4) with 227 

intertegular distance instead of weight, as it has been shown to be precise at estimating 228 

bumblebee weights (5). 229 

To control for evaporation, we located an additional Eppendorf with 50% sugar solution 230 

on the opposite side of the test chamber and recorded its weight pre-and post-test for an 231 

individual bee. This loss of mass due to evaporation was subtracted from the mass of the 232 

test feed after the foraging bout. 233 

Video analysis 234 

Video analysis was done using BORIS© (Behavior Observation Research Interactive 235 

Software, version 7.10.2107 (6). In the judgment bias experiment, we coded two 236 

behaviours for each bee. The first behaviour, “Choice”, indicated bee entry into a reward 237 
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chamber and was classified as a point event, an event which happen at a single point in 238 

time. The second coded behaviour, “Latency to choose”, was the time of making the choice 239 

and was classified as a state event, i.e., an ongoing event with a duration. For the foraging 240 

motivation experiment, we coded a single behaviour, “Drinking duration”, which was 241 

classified as a state event that indicated ingestion time. 242 

Statistical analysis 243 

Our hypothesis and statistical analyses of the main active choice experiment were 244 

preregistered at aspredicted.com (#62198). The data were plotted and analyzed using 245 

RStudio v.3.2.2 (The R Foundation for Statistical Computing, Vienna, Austria, 246 

http://www.r-project.org) and custom-written scripts. To determine the final sample size 247 

needed, we used a Bayes Factor approach implemented with the brms package in R (1–3). 248 

Prior beliefs about the parameters were specified using a normal distribution with mean 0 249 

and standard deviation 1. Data collection was stopped when the Bayes Factor ≥ 3 250 

(indicating moderate support for HA (2)). All subsequent statistical models for the data 251 

were fit by maximum likelihood estimation and, when necessary, optimized with the 252 

iterative algorithms BOBYQA. In each analysis, several models were run and compared 253 

using the model.sel function in the MuMIn package (38) to select the most appropriate 254 

model based on the Akaike information criterion (AIC) scores. We considered the model 255 

with the lowest AIC score the best model, i.e., the model that provides a satisfactory 256 

explanation of the variation in the data (39). We used the package DHARMa (40) for 257 

residual testing of all models.  258 
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For the judgment bias analysis, we used the probability of an optimistic choice as the 259 

dependent variable, coding choices of reward chambers previously associated with high-260 

value and low -value cues as 1 and 0 respectively. We fit a generalized linear mixed-effect 261 

model (GLMM) using the glmer function of the lme4 package with binomial errors and a 262 

logit link function (41). The explanatory variables included in the model were “Treatment” 263 

(categorical: Control, Shaken, Trapped) and “Cue” (continuous: 1-5, where 1 = high and 5 264 

= low value cue) which refers to the color displayed on the screen. The identity of the bee 265 

(“ID”) was included as a random intercept variable. 266 

For the analysis of the choice latency in the judgment bias test, we fit a linear mixed-effect 267 

model (LMEM) using the lmer function of the lme4 package (41). To normalize the error 268 

distribution, latency data were natural log-transformed and latencies greater than 1.5 times 269 

the Inter Quartile Range were excluded (42). The explanatory variables included in the 270 

model were “Treatment” (categorical: Control, Shaken, Trapped) and “Cue” (continuous: 271 

1-5, where 1 = high and 5 = low value cue). In addition, since we expected that optimistic 272 

responses would be faster, we also included "Response Type" (coded as 1 for optimistic 273 

responses, and 0 for pessimistic responses) as an explanatory variable in the model 274 

selection process. Bee identity (“ID”) was included as a random intercept variable.  275 

In addition to the above models, we ran other statistical tests for some analyses. Data for 276 

these tests were first tested for normality and the appropriate tests were subsequently 277 

employed for analysis. We ran a one-way ANOVA on the adjusted body size ingestion rate 278 

data to test for differences between treatment (Control, Shaking, Trapping). We also used 279 

Kruskal-Wallis tests to compare the average number of trials to the criterion in the training 280 
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phase for different treatment groups, and to investigate the potential impact of the side and 281 

color associated with a high-value cue on learning. 282 

Signal Detection Theory model 283 

We examined whether the behavior of the bees could be modelled with standard signal 284 

detection theory, and what could then be inferred about the underlying mechanisms. We 285 

assumed that bees learn to make their foraging decisions during training based on the value 286 

of an internal signal that is affected by noise.  When this signal exceeds an internal decision 287 

boundary, the bees behave appropriately for the low reward situation and when it is less 288 

than the boundary, they behave appropriately for the high reward situation. We modelled 289 

the distribution of the noisy signal and derived the probability of an optimistic response. 290 

We fit this model to our data and obtained the decision boundary and the noise for an 291 

optimal response given the reward values we used. We compared this decision boundary 292 

to the middle value of our response variable. If the boundary was shifted to the right or left 293 

of the middle, this would indicate optimistic or pessimistic behavior respectively. 294 

We assumed that bees learn to make their foraging decision during training based on the 295 

value of an internal signal x which indicates whether they are in a high or low reward 296 

situation. We specified x as a “low reward signal” which has a high value when the cue 297 

indicates a low reward. We assumed that bees have some internal decision boundary B, 298 

such that when x>B, they behave appropriately for the low-reward situation, and 299 

conversely when x<B for the high-reward. Although on average the value of x reflects the 300 

cue, it is affected by noise, explaining why bees do not always make the same decision in 301 

the same experimental situation. 302 
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Since we have fitted our data with a logistic link function, we modelled the distribution of 303 

the noisy signal as the first derivative of a logistic function. The standard logistic is  304 

𝐹𝐹(𝑥𝑥) =
1

1 + exp(−𝑥𝑥) 305 

Equation 1 306 

and its first derivative is 307 

𝑓𝑓(𝑥𝑥) =
𝑑𝑑𝑑𝑑
dx

=
exp(𝑥𝑥)

[1 + exp(𝑥𝑥)]2 308 

Equation 2 309 

which is therefore the distribution we assume for our noise. This closely resembles a 310 

Gaussian distribution with the same standard deviation but has more weight both at the 311 

centre and at the tails. 312 

The probability density function governing the distribution of the signal x is 313 

1
𝜎𝜎
𝑓𝑓 �𝑥𝑥−𝐶𝐶

𝜎𝜎
�, where C represents the value of the cue and s is the noise. The probability of an 314 

optimistic response on any given trial is the probability that the value of x on this trial is 315 

less than the decision boundary B, given the value of the cue on this trial. This is 316 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝑑𝑑𝑑𝑑
𝐵𝐵

−∞

1
𝜎𝜎
𝑓𝑓 �
𝑥𝑥 − 𝐶𝐶
𝜎𝜎

� = 𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶
𝜎𝜎

� 317 

Equation 3 318 
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The bee’s behaviour is thus influenced by the noise σ and the decision boundary B. The 319 

noise may vary depending on factors like fatigue or attention, while the decision boundary 320 

may reflect a cognitive strategy. A common assumption is that the decision boundary is 321 

chosen so as to maximise expected reward.  322 

During training, the expected reward is  323 

< 𝑅𝑅 >  = 𝑃𝑃𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶𝐻𝐻𝐻𝐻

𝜎𝜎
� + 𝑃𝑃𝐻𝐻𝐻𝐻𝑊𝑊 �1 − 𝐹𝐹 �

𝐵𝐵 − 𝐶𝐶𝐻𝐻𝐻𝐻
𝜎𝜎

�� + 𝑃𝑃𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿 �1 − 𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶𝐿𝐿𝐿𝐿

𝜎𝜎
��324 

+ 𝑃𝑃𝐿𝐿𝐿𝐿𝑊𝑊𝑊𝑊 �
𝐵𝐵 − 𝐶𝐶𝐿𝐿𝐿𝐿

𝜎𝜎
� 325 

Equation 4 326 

where PHi and PLo represent the probabilities that a given trial offers high or low rewards, 327 

RHi and RLo represent the utility to the bee of the 50% and 30% sucrose offered on high or 328 

low trials, and W represents the utility of the water obtained when the bee makes the wrong 329 

choice.  330 

The optimal boundary Bopt, that maximises the expected reward then satisfies the equation 331 

𝑃𝑃𝐻𝐻𝐻𝐻(𝑅𝑅𝐻𝐻𝐻𝐻 −𝑊𝑊)𝑓𝑓 �
𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝐻𝐻𝐻𝐻

𝜎𝜎
� = 𝑃𝑃𝐿𝐿𝐿𝐿(𝑅𝑅𝐿𝐿𝐿𝐿 −𝑊𝑊)𝑓𝑓 �

𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝐿𝐿𝐿𝐿
𝜎𝜎

� 332 

Equation 5 333 

(found by taking the derivative of the expected reward, Equation 4, with respect to B and 334 

finding where this is equal to 0). Note that it is possible that the bee isn’t maximising 335 

expected reward itself, but some transform of the reward (e.g. reward squared). Since our 336 
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model has only two values for reward (High and Low), we can still represent any transform 337 

as two values (RHi and RLo) and the model would not be affected by non-linear transforms. 338 

Equation 5 has a simple graphical interpretation. First, the probability distributions for high 339 

and low reward are rescaled by their prior probability and by the additional utility of getting 340 

the trial right, compared to the water available with the wrong decision. Then, the optimal 341 

boundary is where these rescaled distributions cross over (Fig. 4). If the priors and reward 342 

utilities were equal, i.e. 𝑃𝑃𝐻𝐻𝐻𝐻(𝑅𝑅𝐻𝐻𝐻𝐻 −𝑊𝑊) = 𝑃𝑃𝐿𝐿𝐿𝐿(𝑅𝑅𝐿𝐿𝐿𝐿 −𝑊𝑊), then the optimal decision 343 

boundary would be exactly in the middle between the two cues values: 𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 =344 

0.5(𝐶𝐶𝐻𝐻𝐻𝐻 + 𝐶𝐶𝐿𝐿𝐿𝐿). If the boundary was shifted to the right or left of the middle, this would 345 

indicate optimistic or pessimistic behaviour. 346 

Drift Diffusion model 347 

Drift diffusion models help shed light on the cognitive processes underlying decision 348 

making in choice tasks (43). They help generate estimates of the time taken to accumulate 349 

sensory evidence for a particular response and the evidentiary threshold at which the 350 

response decision is made. By applying this framework to our experiment, we attempted 351 

to see if we could identify which of these two criteria (or both) were changed due to our 352 

stress manipulations. 353 

We fit a drift diffusion model to the choice latency data in our three treatments using the R 354 

package rtdists (44). The model assumes that the bee accumulates sensory evidence 355 

towards a decision and makes the optimistic or pessimistic choice once the evidence has 356 

passed a threshold. The thresholds for the pessimistic and optimistic choices were defined 357 
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to be at 0 and 1 respectively. The decision variable was assumed to begin from a start point 358 

z somewhere between the two boundaries. It was subject to random noise represented by 359 

the diffusion constant s but had a drift rate v towards one or the other boundary, based on 360 

the sensory evidence. In our experiment, v should be positive for Cue=1 and negative for 361 

Cue=5. In our model, we assumed that v was a linear function of Cue. 362 

Results 363 

Bumblebees were trained to associate cues of one color with a location containing a high 364 

reward of 50% sucrose solution and cues of another color with another location containing 365 

lower reward of 30% sucrose solution. The association of rewards with the cue colors and 366 

the locations were counterbalanced across all the bees. Bees then experienced one of three 367 

treatment conditions. Two groups of bees were physically stressed by shaking or trapping, 368 

while the third group served as a control. We then presented the bees with cues of 369 

ambiguous colors between the two learnt colors in tests and noted whether they chose the 370 

location previously associated with high or lower rewards. We also presented the bee with 371 

the cues of the learnt colors during the tests and noted their choices. All the tests were 372 

unrewarded and only offered distilled water in the previously rewarding locations. 373 

Training 374 

During training, a total of 48 bumblebees achieved the learning criterion (80% correct on 375 

the last 20 choices) and continued to the judgment bias test. Bees completed training within 376 

a minimum of 30 and a maximum of 60 trials. There were no significant differences in the 377 

number of trials required to reach the criterion among bees that experienced the high reward 378 

on the right or left location (Kruskal-Wallis test: χ2 = 2.94, df = 1, p = 0.09). Similarly, 379 
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there was no difference in the total number of trials to criterion for bees that experienced 380 

blue or green as the high reward color (Kruskal-Wallis test: χ2 = 0.94, df = 1, p = 0.33). 381 

The number of trials required to achieve the learning criterion also did not differ among 382 

bees used in each of the three treatment groups (Kruskal-Wallis test: χ2 = 0.88, df = 2, p = 383 

0.64).  384 

Bees took significantly longer to choose a low-reward cue in the last choices of the training 385 

phase (Table S2, LMEM, Estimate ± standard error = 0.59±0.09, t = 6.79, p < 0.001). The 386 

median latency for choosing in low reward cue trials was 32.2 s (IQR: 35.8), while that for 387 

the high reward cue trials was 17.3 s (IQR: 7.34). Thus, bees could differentiate between 388 

both the colour cues and the two rewards. 389 

Physically stressed bees are less optimistic 390 

The best model for our data included the main effects of cue color and treatment (shaking, 391 

trapping and control) but not an interaction effect (see supplementary Table S1 for model 392 

selection details). Shaking significantly reduced the probability of bees responding 393 

optimistically, i.e., choosing the location associated with a high reward (Fig. 2A, Table S2, 394 

GLMM, Estimate ± standard error = -1.49 ± 0.57, z = -2.61, p < 0.01). Trapping with a 395 

robotic arm also significantly reduced the likelihood of an optimistic response (Fig. 2A, 396 

Table S2, GLMM, Estimate ± standard error = -1.26 ± 0.56, z = -2.23, p = 0.026). Bees 397 

were also significantly less likely to respond optimistically to cues with colors further away 398 

from that of the high reward cue (Fig. 2A, Table S2, GLMM, Estimate ± standard error = 399 

-1.79 ± 0.21, z = -8.39, p < 0.001). 400 
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 401 

Feeding motivation and choice latencies 402 

We tested the ingestion rate of sucrose solution as a measure of the feeding motivation of 403 

the bees. The mean (± s.d.) ingestion rate by shaken and trapped bees was 3.42 ± 0.67 mg/s, 404 

and 3.17 ± 0.61 mg/s respectively. The mean ingestion rate observed in control bees was 405 

3.17 ± 0.55 mg/s. These rates did not differ significantly between treatment groups (Fig. 406 

2C, ANOVA: F(2, 33) = 0.642, p = 0.533). 407 

We also examined the change in the latency to make a choice in the experiments. The best-408 

fitting model included treatment, cue value and response type (optimistic or pessimistic) 409 

as fixed predictors and an interaction between cue value and response type (supplementary 410 

Table S1). Bees in the Trapping treatment were significantly faster to make a choice than 411 

control bees (Fig. 2B, Table S2, LMEM, Estimate ± standard error = -0.23 ± 0.1, t value = 412 

-2.25, p = 0.029) but were not faster than those in the Shaking treatment (Fig. 2B, Table 413 

S2, LMEM, Estimate ± standard error = - 0.12 ± 0.1, t value = -1.15, p = 0.256). Shaken 414 

bees were not significantly faster to make their choices than control bees (Fig. 2B, Table 415 

S2, LMEM, Estimate ± standard error = -0.11 ± 0.10, t value = -1.121, p = 0.27). All bees 416 

were also significantly slower to make a choice when the cue color was further away from 417 

that of the high reward cue (LMEM, Estimate ± standard error = -0.09 ± 0.03, t value = -418 

2.6, p < 0.01). Finally, bees were faster when making optimistic choices compared to 419 
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pessimistic ones (LMEM, Model Estimate ± standard error = -0.93 ± 0.16, t = -5.74, p < 420 

0.001). 421 

 422 

Signal-detection theory model 423 

According to a standard signal-detection theoretic approach, the probability that a bee 424 

makes an optimistic choice for Cue level C is (Equation 3) 425 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶
𝜎𝜎

�, 426 

where σ is the noise on the internal signal, B is the decision boundary, and F is the logistic 427 

function. This is exactly the model fitted by our generalized linear mixed model (GLMM, 428 

see above), with the fitted gradient for Cue corresponding to −1/𝜎𝜎 and the intercept 429 

corresponding to 𝐵𝐵/𝜎𝜎. Thus, the fact that we found no interaction between Cue and 430 

Treatment indicates that the effective noise level is not changed by our manipulations. The 431 

estimate of -1.79 for the gradient (Table S2) allows us to infer an effective noise level of σ 432 

= 0.56, in our units where Cue runs from 1 (high reward) to 5 (low reward).  433 

 434 

However, the significant main effect of Treatment indicates that the decision boundary was 435 

different in the two cases. The estimate of 6.05 (Table S2) for the intercept in the control 436 

condition implies that the decision boundary in this condition is 3.38. Bees in the Control 437 

treatment (Fig. 2A) are thus equally likely to make the optimistic or pessimistic response 438 

when the cue is a little closer to “near low” than medium (3). The fact that the intercept 439 

drops by -1.49 for the Shaking treatment and -1.26 for Trapping (Table S2) implies that 440 

the boundary shifts leftward to 2.55 and 2.68, respectively, in these conditions. The point 441 
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at which these bees are equally likely to make optimistic and pessimistic choices is closer 442 

to “near high” than to medium (Fig. 3B).  443 

 444 

In our fitted model, weighted probability distributions for both low and high rewards have 445 

an equal spread, reflecting the noise level inferred from the GLMM. In the Control 446 

treatment, the shift of the decision boundary reflects the greater weight given to the high 447 

reward. Quantitatively, the extent of the shift, together with the fitted noise level, implies 448 

that the high reward is given 3.6 times the weight of the low reward. This result also cannot 449 

be explained merely by the bees not perceiving the medium colour as midway between 450 

blue and green since both the high and low reward trials combine data from trials where 451 

the cue was blue and trials where it was green. Instead, this result might, for example, 452 

indicate that the bees understand that both rewards are equally likely (PHi = 50%) and find 453 

the 50% sucrose solution 3.6 times as rewarding, relative to water, as the 30% solution.  454 

 455 

The fact that the decision boundary is to the left of neutral in the Shaking and Trapping 456 

treatments indicates that here, greater weight is given to the low reward (Fig. 3B). 457 

Assuming we can discount the possibility that the reward value has inverted (i.e., that 458 

stressed bees find 30% sucrose more rewarding than 50%), this must represent a shift in 459 

the priors, such that stressed bees now consider high-reward trials less likely. To match the 460 

extent of the leftward shift, given the noise level inferred from our GLMM fit, the low 461 

reward must be weighted 4.6 times as much as the high reward. If the reward ratio were 462 

3.6, this would imply that the bees behave as if the perceived probability of the high reward 463 

was 6%. However, if stressed bees find 50% and 30% sucrose equally valuable, i.e., the 464 
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stress has removed the difference in reward utility, then the observed shift in decision 465 

boundary could be produced with a less dramatic shift in the priors, with perceived 466 

probability of the high reward being 18%.  467 

 468 

Drift diffusion model 469 

Drift diffusion models generate estimates of the time taken to accumulate sensory evidence 470 

for a particular response and the evidentiary threshold at which the response decision is 471 

made. By applying this framework to our experiment, we attempted to see if we could 472 

identify which of these two criteria (or both) were changed due to our stress manipulations. 473 

Our best model (as indicated by the Akaike Information Criterion) was obtained by 474 

allowing the time prior to making a decision and the value of the drift rate for Cue = 3 (v3) 475 

to vary between treatments, while fitting all data with the same values for the diffusion 476 

constant s, start point zr, the dependence of drift rate on cue, vGradient, and noise on the 477 

drift rate, sv. The drift diffusion model predicts not only the bees’ choices (Fig. 4A) but 478 

also the latencies for both optimistic and pessimistic choices (Fig. 4B). There are not 479 

enough trials to accurately estimate the latency distributions (just 16 trials for each 480 

Cue/Treatment combination, thus < 16 for each choice). The model for latencies is, 481 

therefore, not a good fit (Fig. 4B), and it would be unwise to draw too strong conclusions 482 

from this fitting effort. Nevertheless, the fitted model implies a few key points. 483 

 484 

Firstly, by default, bees tend to be biased towards the more rewarding choice. The start 485 

point for the decision variable is not midway between the two boundaries, 0.5, but closer 486 

to the boundary for the optimistic choice, 0.56. As noted in the signal detection theory 487 
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model, being biased towards the high-reward condition helps to maximise the expected 488 

reward. Secondly, stress did not affect sensory noise. As in the logistic regression model, 489 

we found that the best model was obtained by assuming that sensory noise, here represented 490 

by the diffusion constant s, was the same for all groups. Thirdly, stressed bees spend less 491 

time on non-decision activity: the model fitted more time on non-decision activity (e.g., 492 

flying across the arena) for the control bees than for the shaken or trapped bees. This could 493 

perhaps suggest that stressed bees might not want to spend time exploring what could 494 

potentially be a dangerous environment. Finally, this model also confirms that the stressed 495 

bees are more pessimistic. This is shown by the fitted drift rate for the medium cue, Cue = 496 

3. In the absence of bias, the drift rate should have been zero in this case, since the cue was 497 

designed to be exactly midway between the high and low reward cues (and 498 

counterbalancing ensured that it was on average). Control bees nevertheless showed a small 499 

positive drift rate for this cue, indicating that they took it as weak evidence for a high 500 

reward. As noted above, this bias towards high reward helps maximise expected reward. 501 

However, shaken and trapped bees both showed a small negative drift rate, indicating 502 

perceived weak evidence for low reward. This is what accounts for the leftward shift in the 503 

response curves for stressed bees. Note that even though, according to the model, all bees 504 

start slightly biased towards a high-reward response (z = 0.55), in stressed bees, the 505 

negative drift rate for the medium cue is enough to bias responses towards the pessimistic 506 

response.  507 

 508 

Discussion  509 
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We developed a novel task to assess emotion-like states in bees. Using an active choice 510 

judgment bias task, we demonstrated that physically stressed bees are more likely to make 511 

pessimistic choices when faced with ambiguous stimuli. A signal detection model of our 512 

data suggests that this behaviour is explained by a reduced expectation of rewards. We thus 513 

provide strong evidence for bee judgement biases and a possible explanation for bee 514 

behaviour in judgement bias tasks.  515 

 516 

Most studies of judgement bias tests have used a go/no-go paradigm. The results of these 517 

studies can be challenging to interpret due to confounds from other factors that do not 518 

involve stimulus judgements such as, for example, motivation. Our active choice design 519 

avoids these complications. Motivation alone cannot therefore explain the observed shift 520 

in responses in the manipulated bees in our experiment. This is further supported by the 521 

results of our ingestion rate experiment, where we do not find differences in feeding 522 

motivation. Only one previous study has used an active choice design to study judgement 523 

biases in insects (5). In that study, flies had to choose between two odours, one associated 524 

with a reward and another with punishment. Rather than using reward and punishment, we 525 

developed a novel paradigm for insects that uses two rewards of different quality. This 526 

allowed us to investigate the mechanisms underlying the judgement bias in further detail 527 

and test how negative states modulate expectations and perceptions of reward. Using 528 

previous paradigms involving reward and punishment as the expected outcome can make 529 

it easier to detect affect-dependent judgement bias (23). We, however, find a bias in bee 530 

behaviour when using two rewards and an active choice paradigm, providing stronger 531 

evidence for affect-dependent processing in insects. 532 
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 533 

Bees learnt the stimulus-outcome associations 534 

When performing an active choice task, it is important to ensure that the rewards used to 535 

condition the animals’ responses are not perceived as equally favourable. If so, the results 536 

of tests using ambiguous stimuli would reflect the animal's colour preferences rather than 537 

its interpretation of the outcome associated with a particular colour. Bumblebees, however, 538 

can use colour cues to discriminate between rewards of varying value and prefer higher 539 

concentrations of sugar solution, including the colours and concentrations we used in our 540 

experiments (24). In our experiments, too, the bees chose high rewards significantly faster 541 

than lower rewards at the end of the training phase. In the tests, bees in all treatment groups 542 

also made slower choices as the cue value moved further away from the one indicating a 543 

high reward. The shorter choice latency towards the high reward cue suggests that bees 544 

maintain their preference for higher rewards even after experiencing stress. This 545 

demonstrates that the bees distinguished between the high and low rewards, regardless of 546 

the associated colour. 547 

 548 

Physical stress was not detrimental to bee sensory perception 549 

Manipulations in judgement bias tasks need to change decision-making without impairing 550 

sensory perception or discrimination. In one previous test of judgement biases, shaken 551 

honeybees showed a decreased response not only to ambiguous odour mixtures but also to 552 

the conditioned negative odour (4). This decrease has been suggested to indicate an 553 

improved ability to differentiate odours rather than a negative bias in judgement (10). In 554 

our experiment, however, the bees were perfectly accurate when responding to both 555 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2023. ; https://doi.org/10.1101/2023.10.06.561175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561175
http://creativecommons.org/licenses/by/4.0/


 

 

27 

 

conditioned cues (high and low) in the tests. The drift diffusion model further indicates that 556 

the stress treatments did not change the sensory noise. Our manipulations thus did not 557 

impair the colour discrimination abilities and memory of the bees. The preservation of high 558 

colour discrimination abilities is not surprising, as previous studies on Drosophila have 559 

successfully used shaking in aversive learning paradigms (25). Similar trapping 560 

mechanisms to the ones we used have also been employed in aversive learning tasks in 561 

bees (26). 562 

 563 

Active choices are better indicators of judgments than latencies 564 

Latency is often used in go/no-go judgment bias tests to evaluate the emotional states of 565 

animals (6). When evaluating an emotional state, it is important to determine whether it is 566 

positive or negative (known as valence). However, relying solely on latency as a measure 567 

of valence is not always reliable, as it can be affected by other factors unrelated to emotions. 568 

An increase in approach latency may be associated with a general increase in reactivity and 569 

arousal, for example, due to the increased energetic demands after experiencing stressful 570 

events (27). It may also indicate a shift in the perceived value of the reward and differences 571 

in motivation (28). Relying solely on latency can therefore make it challenging to interpret 572 

the results of judgment bias tests. For instance, exposure to a positive event has been 573 

reported to cause both longer (29) and shorter (30) response times to ambiguous stimuli. 574 

 575 

Only one study has used latencies to measure emotion-like states in bees (6). This study 576 

used a go/no-go type of judgment bias test to demonstrate an optimistic bias in bumblebees 577 

after receiving an unexpected reward of sugar solution. As predicted, unexpected rewards 578 
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reduced the latency with which bees approached ambiguous stimuli. However, the 579 

treatment also caused an increase in thoracic temperature which has been linked to 580 

increased motivation for foraging in other studies (31). Further experiments did indicate 581 

that optimism was a more plausible explanation, but choice latency clearly could be 582 

influenced by motivational changes as well as judgements. Our results showed that after 583 

trapping, bees had shorter latencies than the control bees. This could, in principle, have 584 

indicated a positive state, again demonstrating the difficulty of using latencies alone to 585 

interpret judgement bias data. However, since our study was an active choice design, we 586 

could more reliably use the choices made by the bees rather than their latencies. Choices 587 

can better indicate affective valence, showing that the trapped bees were in a pessimistic 588 

state in our study. This makes a strong argument in favour of active choice judgement bias 589 

tasks such as the one we used in our study. 590 

 591 

Pessimistic choices by bees are related to a significant change in prior expectations 592 

To unravel the potential mechanisms underlying the choices made by the bees, we 593 

employed a signal detection approach, which has been previously suggested as a valuable 594 

tool for investigating affective biases (32). A recent study has suggested that judgement 595 

biases in bees may be caused by a shift in stimulus-response curves (7). However, this 596 

study did not investigate the underlying causal mechanisms of this shift. In our model, the 597 

estimation of future outcomes combines estimates of the probability of an outcome 598 

occurring and the magnitude of the payoff from an outcome. Both the signal detection and 599 

drift diffusion analyses demonstrate that control bees exhibit a higher probability of 600 

responding optimistically to ambiguous cues, indicating an expectation of high rewards. 601 
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Such a bias would not be suboptimal as it is in fact what is predicted by a rational, fully 602 

informed strategy which optimises expected reward. Even if the bees are estimating the 603 

priors correctly as 50-50, the difference in reward utility will still shift the decision 604 

boundary towards the cue indicating low reward (Fig. 4A). Our model shows that the 605 

control bees are behaving as if 50% sucrose is 3.6 times more valuable, relative to water 606 

than 30% sucrose. Thus, the data admit the possibility that the bees’ behaviour is 607 

completely rational and unbiased, and the 50% sucrose is much more rewarding. 608 

 609 

However, the decision boundary and drift rate for the stressed bees are harder to interpret. 610 

Here, the decision boundary is to the left of neutral and the drift rate is negative. Previous 611 

studies have shown that acute stress can increase an animal’s sensitivity to the reward (33). 612 

However, the observed left shift of the decision boundary in stressed bees cannot plausibly 613 

reflect such a change in reward sensitivity since a leftward shift could only be produced if 614 

the value of high and low rewards were swapped, i.e., if 50% sucrose became less 615 

rewarding than 30%. However, it could reflect a pessimistic bias in expectations, i.e., that 616 

the stressed bees behave as if high-reward priors are less likely (PHi < PLo), perhaps because 617 

in nature high rewards are indeed scarcer when conditions are stressful. This can account 618 

for a leftward shift, but the large quantitative extent of the shift is still surprising. Since the 619 

noise remains relatively small, as indicated by the perfect performance for high and low 620 

cues, we have to postulate enormous changes in the priors to produce the observed shift. 621 

To obtain the decision boundary of 2.55 inferred for shaken bees, we would have to 622 

postulate that shaken bees estimate PLo = 94%, i.e., they expect a high reward to be 623 

available on only one trial in 20. This assumes that the reward utility remains the same, 624 
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with a high reward 3.6 times as valuable as a low. If the relative utility of the high reward 625 

increased, e.g., because of an increased need for sucrose after stress (27), the priors would 626 

have to shift even further from 50%. However, one possibility is that, contrary to the 627 

assumptions of our model, the noise was not uniform for all cues, and there was more 628 

sensory noise on intermediate values of the cue. If this were so, the change in priors would 629 

not need to be as dramatic, although the basic result of changed priors would remain true. 630 

 631 

By employing an active choice judgment bias task, our results further support the 632 

possibility of emotion-like states in bees and suggest that these states could be found across 633 

very different animals. By implementing a more demanding active choice design, we 634 

provide robust evidence that neither motivational factors nor colour discrimination alone 635 

can account for the observed cognitive biases. Importantly, our modelling indicates that 636 

the pessimistic-like behaviour displayed by bees in a negative state represents a significant 637 

shift in their prior expectations of rewards. These insights offer the first analytical models 638 

of the underlying causal mechanisms of state-dependent judgment biases in insects, 639 

opening up new avenues for exploring state-dependent decision-making in insects. 640 
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 773 

Figures and Tables 774 

 775 

 776 

Figure 1. Experimental Protocol. A) Training phase. Bees were trained to associate two 777 

colors, green and blue, presented on an LED screen with different sugar rewards at different 778 

locations. The bees were presented one color at a time in pseudorandomized order. The 779 

figure depicts a training scenario with green associated with a low reward (30% sucrose 780 

solution) in the right chamber and blue with a high reward (50% sucrose solution) in the 781 

left chamber. The association between color, reward and location was counterbalanced 782 

across trials. Further details in the text. B) Cue colors plotted in bee color space (color cue: 783 

B, blue; NB, near blue; M, medium; NG, near green; G, green). The three vertices 784 
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correspond to maximum excitation of photoreceptors sensitive to blue, green and 785 

ultraviolet (UV) light. The distance from the center to any vertex is 1 and the distance 786 

between points represents hue discriminability, with 0.1 being easily distinguishable. C) 787 

Judgement bias testing. The test phase consisted of five trials with different colors 788 

presented on the screen in a pseudorandom order (cue value: H, high; NH, near high; M, 789 

medium; NL, near low; G, low). The colors included the two conditioned colors and three 790 

ambiguous colors of intermediate value. In our example here, the screen shows the medium 791 

color with blue as the high-reward color (H) and green as the low-reward color (L), but this 792 

was counterbalanced across bees. Entering a chamber associated with a high reward during 793 

training was considered an optimistic choice, while entering a chamber associated with a 794 

low reward during training was deemed a pessimistic choice.  795 

 796 

  797 
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 798 

Figure 2. Bee responses to test cues. A) Proportion of bees (N = 16 per treatment) making 799 

an optimistic choice (choosing a reward chamber associated with a high reward) in 800 

response to each of five cues. B) Latency of making the choice in response to each of five 801 
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cue values (N = 16 bees per treatment). C) Average ingestion rate of high reward (50% 802 

sugar solution) for bees in each treatment group (N = 12 bees per treatment). The treatment 803 

groups were control (blue), shaking (red), and trapping (orange). The test cues were high, 804 

near high, medium, near low, and low value cues depending on their distance to the colors 805 

of high- and low-reward cues. Points and bars represent means, and the shaded areas and 806 

error bars represent 95% bootstrapped confidence intervals. Dots represent values form 807 

individual bees. 808 

 809 

 810 

  811 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2023. ; https://doi.org/10.1101/2023.10.06.561175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561175
http://creativecommons.org/licenses/by/4.0/


 

 

42 

 

 812 

 813 

Figure 3. Bee decision-making boundaries and priors fitted by a signal-detection 814 

model. Curves depict the probability density functions for responses based on the internal 815 

signal x indicating a low reward. In each case, the original distribution has been weighted 816 
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by the product of the value of that reward and its probability of occurring (see methods, 817 

Equation 5). The two curves in each panel depict the probabilities that the cue indicates 818 

high reward (green, centred on 1) or low reward (blue, centred on 5). Solid lines depict the 819 

decision boundary B inferred from the Generalized Linear Mixed Model fit to our data. 820 

Dotted lines indicate the medium point for comparison. Regions to the right of the solid 821 

boundary line are regions where the bee makes pessimistic choices (shaded blue). Regions 822 

to the left are regions where the bee makes optimistic choices (shaded green). Arrows 823 

depict the shift in boundaries compared to the control condition. The three panels depict 824 

the conditions for the Control (top), Shaking (middle) and Trapping (bottom) treatments. 825 

Note the change in axes in the lower two panels. 826 

 827 

  828 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2023. ; https://doi.org/10.1101/2023.10.06.561175doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561175
http://creativecommons.org/licenses/by/4.0/


 

 

44 

 

 829 

Figure 4. Drift diffusion model. A) Proportion of optimistic choices made by the bees in 830 

each treatment in response to the different cues. Points show the data, dashed curves show 831 

the predictions of a fitted logistic regression model with main effects of Treatment and Cue 832 
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but no interaction. Solid curves show predictions of a fitted drift diffusion model. Colours 833 

depict the different treatments: Control (blue lines), Shaking (red lines) and Trapping 834 

(orange lines). B) Drift diffusion model fit to latencies. Filled symbols linked with lines 835 

show median latencies as a function of the percentage of responses made, for pessimistic 836 

(top) and optimistic (bottom) responses in the three treatments (columns). Empty symbols 837 

show predictions of the fitted drift diffusion model. Symbols show Cue value. There is a 838 

high percentage of optimistic responses for high (triangles) and near high (diamonds) cues 839 

and a high proportion of pessimistic responses for low (inverted triangles) and near low 840 

(squares) cues.  841 
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