

1

2 Physically stressed bees expect less reward in an active choice judgement bias test

3 Olga Procenko^{a*}, Jenny Read^a, Vivek Nityananda ^{a*}

4 ^aBiosciences Institute, Newcastle University, Henry Wellcome Building, Framlington

5 Place, Newcastle upon Tyne NE2 4HH, UK

6 *Olga Procenko, Vivek Nityananda

7 Email: o.procenko2@newcastle.ac.uk, vivek.nityananda@ncl.ac.uk

8 **Author Contributions:** OP, and VN designed research; OP performed research; OP
9 analyzed data; JR performed modeling; and OP, JR, and VN wrote the paper.

10 **Competing Interest Statement:** The authors declare no competing interest.

11 **Keywords:** bumblebee, judgment bias, emotion, signal detection theory, drift diffusion

12 **Abstract**

13 Emotion-like states in animals are commonly assessed using judgment bias tests, which
14 measure responses to ambiguous information. A few studies have recently used these tests
15 to argue for the presence of emotion-like states in insects. However, the results from most
16 of these studies could have other explanations, including changes in motivation and
17 attention. To control for these explanations, we therefore developed a novel judgment bias
18 test, requiring bumblebees to make an active choice indicating their interpretation of
19 ambiguous stimuli. Bumblebees were trained to associate high or low rewards, delivered

20 in two different reward chambers, with distinct colors. Two groups of bees were then
21 physically stressed by shaking or trapping, while the third group served as a control. We
22 subsequently presented the bees with ambiguous colors between the two learnt colors and
23 noted which reward chamber they chose. When presented with ambiguous colors, stressed
24 bees were less likely than control bees to enter the reward chamber previously associated
25 with high reward. We modelled bee behavior using signal detection and drift diffusion
26 models and showed that control bees and stressed bees were, respectively, more likely to
27 respond optimistically and pessimistically to ambiguous cues. The signal detection model
28 further showed that the behavior of stressed bees was explained by a reduction in their prior
29 expectation of high rewards. Our findings thus provide strong evidence for emotion-like
30 states in bees and suggest that their stress-induced pessimistic behavior is explained by a
31 reduced expectation of higher rewards.

32 **Introduction**

33 The presence of emotions in non-human animals is much debated and can have important
34 societal implications. While most research on animal emotions has focused on vertebrates
35 (1,2), a handful of recent studies have explored analogous states in insects (3–8). In these
36 studies, emotions are defined as valenced brain states triggered by both internal and
37 external stimuli and comprising subjective, behavioral, physiological and cognitive
38 components. Research on emotion-like states in insects has primarily relied on judgement
39 bias tests, a method initially developed for assessing affective states in rats (9). These tests
40 assess how animals respond to ambiguous stimuli. An animal typically is trained to
41 associate one stimulus with a reward and another with a lack of reward or punishment. It

42 is then tested with an ambiguous stimulus that is in-between the two learnt stimuli. Animals
43 that respond as if this stimulus indicates a reward are considered optimistic, while those
44 that respond as if the stimulus indicates a lack of reward or punishment are considered
45 pessimistic.

46 Judgement bias tests have been used in five studies on insects, including on honeybees,
47 bumblebees and fruit flies (3–7). Some of these studies showed that physical agitation can
48 reduce the response of bees and flies to ambiguous odors (3–5). Others showed that bees
49 are quicker to fly towards (6) and more likely to choose (7) ambiguous visual stimuli after
50 encountering an unexpected reward of sucrose solution, suggesting optimistic behavior.
51 While these results parallel results from studies of emotions in vertebrates, other
52 explanations have also been suggested, including changes in motivation or the ability to
53 learn training cues (10,11).

54 One factor that complicates the interpretation of these results is that the majority of insect
55 studies so far have utilized a go/no-go type of judgment bias task. Here, the animal is
56 trained to respond to a positive stimulus (“go”) and suppresses the response to a negative
57 one (“no-go”). When faced with an ambiguous stimulus, responding (“go”) or suppressing
58 (“no-go”) a response is thought to reflect optimistic and pessimistic judgements,
59 respectively. While this approach has been successfully used in many studies across taxa
60 (12–14), there are concerns associated with this paradigm. Firstly, the suppression of a
61 response could result from a general reduction in activity and motivation rather than a
62 judgment bias (12). A reduction of responses could also indicate merely an absence of
63 response (omission) rather than a deliberate choice (17,18). Finally, an animal may fail to

64 attend to or detect a stimulus, and in such cases, the lack of a response could be mistakenly
65 attributed to a pessimistic judgment (14,19). Without a test that can address these issues,
66 we currently do not have strong evidence of emotion-like states in insects. In addition, we
67 lack models for the mechanisms underpinning the observed behaviors – though recent work
68 has proposed that judgement biases in bees can arise from shifts in stimulus-response
69 curves (7).

70 One way of reducing the likelihood of confounds is to use an active choice judgment bias
71 test (16,17,20). In contrast to the go/no-go task, the active choice paradigm requires the
72 animal to make an active choice between two alternative responses. Animals might, for
73 example, learn to move to one location in response to one stimulus and to another location
74 when they see another stimulus. Since the animal must make a choice as a response, this
75 type of judgment bias test eliminates the possible confounding factors of the "go/no-go"
76 paradigm, increasing validity and ease of interpretation.

77 We therefore used an active choice type of judgment bias test to rigorously assess
78 judgement biases in bumblebees (*Bombus terrestris*). Bees had to choose between two
79 rewarding locations depending on the stimulus displayed, clearly signaling their judgement
80 when faced with ambiguous stimuli by moving to one of the two locations. To induce
81 negative affective states, we used two types of manipulations simulating predatory attacks
82 - shaking and trapping by a robotic arm. These manipulations have previously been shown
83 to be associated with cognitive and physiological changes (4,21,22). In addition, to further
84 understand the mechanisms underlying our behavioral results, we applied drift diffusion
85 and signal detection modelling frameworks to the data. We used these frameworks to test

86 whether physical agitation affected the prior expectation of a reward in bees or their ability
87 to distinguish between stimuli due to shifts in stimulus-response curves.

88 **Materials and Methods**

89

90 *Animals and experimental set-up*

91 All experiments were run on female worker bumblebees (*Bombus terrestris*) obtained from
92 a commercial supplier (Koppert, UK). We transferred the bumblebees to one chamber of
93 a bipartite plastic nest box (28.0 × 16.0 × 12.0 cm). We covered the other chamber of the
94 nest box with cat litter to allow bees to discard refuse. The nest box was connected via a
95 transparent acrylic tunnel (56.0 × 5.0 × 5.0 cm) to a flight arena (110.0 × 61.0 × 40.0 cm)
96 with a UV-transparent Plexiglas® lid and lit by a lamp (HF-P 1 14-35 TL5 ballast, Philips,
97 The Netherlands) fitted with daylight fluorescent tubes (Osram, Germany). When not part
98 of an experiment, bees were fed with ~ 3 g of commercial pollen daily (Koppert B. V., The
99 Netherlands) and provided sucrose solution (20% w/w) ad libitum. Although invertebrates
100 do not fall under the Animals (Scientific Procedures) Act, 1986 (ASPA), the experimental
101 design and protocols were developed incorporating the 3Rs principles. Housing,
102 maintenance, and experimental procedures were non-invasive and were kept as close as
103 possible to the natural living conditions of the animals.

104 Visual stimuli were solid colors covering the entire display of an LED monitor (Dell
105 U2412M, 24", 1920 x 1200 px) and controlled by a custom-written MATLAB script
106 (MathWorks Inc., Natick, MA, USA) using the PsychToolbox package (34). We measured
107 the spectral reflectance of all colors used in the experiment using an Ocean Optics Flame

108 reflectance spectrophotometer (Ocean Optics Inc., Florida, USA). The perceptual positions
109 of the colors in the bee color hexagon space (Fig. 1B) were calculated using the spectral
110 reflectance measurements and spectral sensitivity functions for *Bombus terrestris*
111 photoreceptors (35,36).

112 We positioned two vertical panels (40.0 × 8.0 cm) 8.5 cm in front of the right and left sides
113 of the LED monitor, leaving the central area of the monitor open and visible. Each panel
114 was equipped with an opening to place a reward chamber (7 ml glass vial, 10 mm inner
115 diameter) 7 cm above the arena floor. Bees thus needed to fly from the arena entrance to
116 the panels before entering the reward chamber. On each visit to the arena, the reward
117 chambers were changed to ensure that pheromones and scent marks were not available
118 during the next visit. In preparation for the next experimental day, all used chambers were
119 washed in hot water and 70% ethanol and left to dry.

120

121 *Training procedure*

122 Before the onset of training, bees were familiarized with both reward locations. A plastic
123 cup was used to gently capture each bee. The opening of the cup was positioned so that it
124 aligned with the entrance to the reward chamber, inside which the bee found a droplet of
125 sucrose solution (0.2 ml, 30% w/w). We repeated the procedure equally on each side (left
126 and right) without displaying any color on the LED screen. Individual bees that learnt the
127 location of the reward and performed repeated foraging bouts were tagged for later
128 identification using number tags (Thorne, UK). Tagging involved trapping each bee in a

129 small marking cage, gently pressing it against the mesh with a sponge, and affixing the tag
130 to the dorsal thorax with a small amount of superglue (Loctite Super Glue Power Gel).

131 In each training trial, we presented bees ($n = 48$) with one of two colors on the LED screen.
132 The two colors used were green (RGB= 0, 255, 75) and blue (RGB= 0, 75, 225). When
133 one of the colors was displayed, the bee was provided a high-value reward of 0.2 ml 50%
134 (w/w) sucrose solution in one of the two chambers (e.g., on the left), and an equal amount
135 of distilled water in the other chamber (e.g., on the right). In different trials, when the other
136 color was displayed the bee was provided a low-value reward of 0.2 ml 30% (w/w) sucrose
137 solution in the chamber opposite (e.g., on the right) to the one where, in the other trials, a
138 high-reward was presented. Here again, an equal amount of distilled water would be
139 present in the other chamber (e.g., on the left). Thus, on any given trial, the bee saw only
140 one color and could encounter either the high or low reward (not both), with water on the
141 unrewarding side. In addition, the locations of the high and low rewards were on opposite
142 sides in their respective trials.

143 Across bees, the combinations of each color (green or blue), reward location (right or left)
144 and reward type (high or low) were counterbalanced. Each bee encountered only one
145 possible combination of each during training (e.g., green indicating a high reward on the
146 left on half the trials, and blue indicating a low reward on the right on the other half). Trials
147 presenting colors associated with high and low rewards were presented an equal number
148 of times in a pseudorandom order, ensuring that no color was repeated more than twice in
149 a row. To ensure that the bee entered the reward chamber fully to sample its content, we
150 placed the droplets of solutions at the very end of the reward chamber (Fig. 1A). In all

151 cases, the reward quantity of 0.2 ml allowed bees to fill their crop within a single reward
152 chamber visit (37). We recorded a single choice on each trial, with a choice defined as a
153 bee entering a chamber far enough to sample its content. Incidences of landing or partial
154 entering (less than 1/3 of the body length) were not considered choices. Bees that reached
155 the learning criterion (80% accuracy in the last 20 trials) continued to the test phase. 11
156 bees did not pass the initial conditioning test due to strong side biases. The last ten training
157 trials were video recorded using a camera on a mobile phone (Huawei Nexus 6P phone
158 1440 × 2560 px, 120 fps) placed above the arena.

159 *Predatory attack simulation*

160 We randomly assigned individual bees (n=48) that reached the learning criterion in the
161 training phase to one of the three treatment groups. Two groups were subjected to
162 manipulations which simulated predatory attacks and were predicted to change their
163 affective state (4). One of these two treatments involved shaking the bee on a Vortex shaker
164 (*Shaking*, n=16), while the other involved trapping the bee with a custom-made trapping
165 device (*Trapping*, n=16). A third unmanipulated group served as a control (*Control*, n=16).
166 The manipulations were applied to a bee before entering the arena for each test. Bees in
167 the Control treatment were allowed to fly out into the flight arena without hindrance as in
168 the training phase.

169 Each bee in the Shaking treatment was allowed to enter a custom-made cylindrical cage
170 (40 mm diameter, 7.5 cm length). After entering, the bee was gently nudged down with a
171 soft foam plunger until the distance between the plunger and the bottom of the cage was
172 reduced to ~3 cm. Once the plunger was secured, the cage with the bee was placed on a

173 Vortex-T Genie 2 shaker (Scientific Industries, USA) and shaken at a frequency of 1200
174 rpm for 60 s. After shaking, the bee was released into the tunnel connecting the nest box
175 and experimental arena via an opening on the top of the tunnel. The bee was released into
176 the flight arena for testing as soon as it was ready to initiate a foraging bout.

177 Each bee in the Trapping treatment was trapped using a trapping device. This consisted of
178 a soft sponge (3.5 × 3.5 × 3.5 cm) connected to a linear actuator system (rack and pinion).
179 A micro-servo initiated the linear motion of the trapping device (Micro Servo 9g,
180 DF9GMS), powered, and controlled by a microcontroller board (Arduino, Uno Rev 3). A
181 custom-written script written in the Arduino Software (IDE) triggered an initial plunging
182 movement of the trapping device, followed by release after three seconds. This permitted
183 consistent trapping across all tested individuals. As in the Shaking treatment, the bee was
184 released into the flight arena for testing as soon as it was ready to initiate a foraging bout.

185 *Judgement bias testing*

186 The test phase consisted of five trials, each with a cue of a different color presented on the
187 screen. The test colors were the two conditioned colors (green and blue), and three
188 ambiguous colors of intermediate value between the two conditioned colors (near blue
189 (RGB=0, 140, 150); medium (RGB= 0, 170, 120); near green (RGB= 0, 200, 100) (Fig.
190 1B). We classified the ambiguous colors as near-high, medium, and near-low cues
191 depending on their distance to the high or low rewarding color for each bee. The color
192 presentation order was pseudorandomized between all bees, so that the first test color was
193 always one of the three ambiguous color cues. Within the test phase, all color cues
194 (ambiguous and learnt) were not rewarded, i.e., both chambers contained 0.2 ml of distilled

195 water. We classified the entry of a bee into a reward chamber as a choice. After it made the
196 first choice, we gently captured the bee with a plastic cup and returned it to the tunnel
197 connecting the nest and the arena. Between presentations of each of the five test cues, bees
198 were provided refresher trials consisting of two presentations of each conditioned color
199 with the appropriate reward at the correct location. All trials were video recorded for later
200 video analysis using the camera of a mobile phone (Huawei Nexus 6P, 1440 × 2560 px,
201 120 fps). We obtained the latencies for the choices from the video analysis (see below).

202 *Measuring foraging motivation using ingestion rate*

203 To assess if our manipulations changed feeding motivation in bees, we measured sugar
204 reward ingestion rates. A separate group of bees (n=36) were pre-trained to forage from an
205 elevated feeder consisting of the reward chamber used above with a 1.5 mL Eppendorf
206 placed inside. After learning this location and completing five consecutive foraging bouts,
207 bees were randomly allocated to one of three treatment groups as in the above experiment
208 for the ingestion test (Control: n=12, Shaking: n=12, Trapping: n=12). The test consisted
209 of a single foraging bout on a feeder with sucrose solution (~1 ml, 50% w/w). The feeder
210 was weighed before and immediately after the test bout to determine the mass of ingested
211 solution using a Kern Weighing Scale ADB100-4 (Resolution: mg±0.001, Kern & Sohn,
212 Balingen, Germany). The feeding bouts were recorded using a mobile phone camera
213 (Huawei Nexus 6P, 1440 × 2560 px, 120 fps). The recordings were used to determine the
214 time taken for ingestion. Ingestion time was defined as the time from when the bee first
215 touched the sucrose solution with its proboscis until the bee stopped drinking. For each
216 bee, we calculated the absolute ingestion rate i (mg/s):

217 $i = (m_1 - m_2)/t$

218 where i is the absolute ingestion rate of a bee, m_1 is the mass of the feeder before the
219 foraging bout, m_2 is the mass of the feeder after the foraging bout, and t is the ingestion
220 time of the bee. Upon the completion of the test, the bee was sacrificed by freezing and
221 stored in 70% ethanol at -20°C. We measured the intertegular distance (ITD) and the length
222 of the glossa of each bee with a digital calliper (RS PRO Digital Caliper, 0.01 mm \pm 0.03
223 mm) under a dissecting microscope. We then adjusted the absolute ingestion rate i to
224 account for individual size variability using the formula:

225 $I = iW^{(1/3)} G (4)$,

226 where i is the absolute ingestion rate of a bee, G is the length of the glossa and W is the
227 intertegular distance. This is an adaptation of the formula developed earlier (4) with
228 intertegular distance instead of weight, as it has been shown to be precise at estimating
229 bumblebee weights (5).

230 To control for evaporation, we located an additional Eppendorf with 50% sugar solution
231 on the opposite side of the test chamber and recorded its weight pre-and post-test for an
232 individual bee. This loss of mass due to evaporation was subtracted from the mass of the
233 test feed after the foraging bout.

234 *Video analysis*

235 Video analysis was done using BORIS© (Behavior Observation Research Interactive
236 Software, version 7.10.2107 (6). In the judgment bias experiment, we coded two
237 behaviours for each bee. The first behaviour, “Choice”, indicated bee entry into a reward

238 chamber and was classified as a point event, an event which happen at a single point in
239 time. The second coded behaviour, “Latency to choose”, was the time of making the choice
240 and was classified as a state event, i.e., an ongoing event with a duration. For the foraging
241 motivation experiment, we coded a single behaviour, “Drinking duration”, which was
242 classified as a state event that indicated ingestion time.

243 *Statistical analysis*

244 Our hypothesis and statistical analyses of the main active choice experiment were
245 preregistered at aspredicted.com (#62198). The data were plotted and analyzed using
246 RStudio v.3.2.2 (The R Foundation for Statistical Computing, Vienna, Austria,
247 <http://www.r-project.org>) and custom-written scripts. To determine the final sample size
248 needed, we used a Bayes Factor approach implemented with the brms package in R (1–3).
249 Prior beliefs about the parameters were specified using a normal distribution with mean 0
250 and standard deviation 1. Data collection was stopped when the Bayes Factor ≥ 3
251 (indicating moderate support for HA (2)). All subsequent statistical models for the data
252 were fit by maximum likelihood estimation and, when necessary, optimized with the
253 iterative algorithms BOBYQA. In each analysis, several models were run and compared
254 using the model.sel function in the MuMIn package (38) to select the most appropriate
255 model based on the Akaike information criterion (AIC) scores. We considered the model
256 with the lowest AIC score the best model, i.e., the model that provides a satisfactory
257 explanation of the variation in the data (39). We used the package DHARMA (40) for
258 residual testing of all models.

259 For the judgment bias analysis, we used the probability of an optimistic choice as the
260 dependent variable, coding choices of reward chambers previously associated with high-
261 value and low -value cues as 1 and 0 respectively. We fit a generalized linear mixed-effect
262 model (GLMM) using the *glmer* function of the *lme4* package with binomial errors and a
263 logit link function (41). The explanatory variables included in the model were “*Treatment*”
264 (categorical: *Control*, *Shaken*, *Trapped*) and “*Cue*” (continuous: 1-5, where 1 = high and 5
265 = low value cue) which refers to the color displayed on the screen. The identity of the bee
266 (“*ID*”) was included as a random intercept variable.

267 For the analysis of the choice latency in the judgment bias test, we fit a linear mixed-effect
268 model (LMM) using the *lmer* function of the *lme4* package (41). To normalize the error
269 distribution, latency data were natural log-transformed and latencies greater than 1.5 times
270 the Inter Quartile Range were excluded (42). The explanatory variables included in the
271 model were “*Treatment*” (categorical: *Control*, *Shaken*, *Trapped*) and “*Cue*” (continuous:
272 1-5, where 1 = high and 5 = low value cue). In addition, since we expected that optimistic
273 responses would be faster, we also included “*Response Type*” (coded as 1 for optimistic
274 responses, and 0 for pessimistic responses) as an explanatory variable in the model
275 selection process. Bee identity (“*ID*”) was included as a random intercept variable.

276 In addition to the above models, we ran other statistical tests for some analyses. Data for
277 these tests were first tested for normality and the appropriate tests were subsequently
278 employed for analysis. We ran a one-way ANOVA on the adjusted body size ingestion rate
279 data to test for differences between treatment (Control, Shaking, Trapping). We also used
280 Kruskal-Wallis tests to compare the average number of trials to the criterion in the training

281 phase for different treatment groups, and to investigate the potential impact of the side and
282 color associated with a high-value cue on learning.

283 *Signal Detection Theory model*

284 We examined whether the behavior of the bees could be modelled with standard signal
285 detection theory, and what could then be inferred about the underlying mechanisms. We
286 assumed that bees learn to make their foraging decisions during training based on the value
287 of an internal signal that is affected by noise. When this signal exceeds an internal decision
288 boundary, the bees behave appropriately for the low reward situation and when it is less
289 than the boundary, they behave appropriately for the high reward situation. We modelled
290 the distribution of the noisy signal and derived the probability of an optimistic response.
291 We fit this model to our data and obtained the decision boundary and the noise for an
292 optimal response given the reward values we used. We compared this decision boundary
293 to the middle value of our response variable. If the boundary was shifted to the right or left
294 of the middle, this would indicate optimistic or pessimistic behavior respectively.

295 We assumed that bees learn to make their foraging decision during training based on the
296 value of an internal signal x which indicates whether they are in a high or low reward
297 situation. We specified x as a “low reward signal” which has a high value when the cue
298 indicates a low reward. We assumed that bees have some internal decision boundary B ,
299 such that when $x > B$, they behave appropriately for the low-reward situation, and
300 conversely when $x < B$ for the high-reward. Although on average the value of x reflects the
301 cue, it is affected by noise, explaining why bees do not always make the same decision in
302 the same experimental situation.

303 Since we have fitted our data with a logistic link function, we modelled the distribution of
304 the noisy signal as the first derivative of a logistic function. The standard logistic is

305

$$F(x) = \frac{1}{1 + \exp(-x)}$$

306 Equation 1

307 and its first derivative is

308

$$f(x) = \frac{dF}{dx} = \frac{\exp(x)}{[1 + \exp(x)]^2}$$

309 Equation 2

310 which is therefore the distribution we assume for our noise. This closely resembles a
311 Gaussian distribution with the same standard deviation but has more weight both at the
312 centre and at the tails.

313 The probability density function governing the distribution of the signal x is
314 $\frac{1}{\sigma} f\left(\frac{x-C}{\sigma}\right)$, where C represents the value of the cue and s is the noise. The probability of an
315 optimistic response on any given trial is the probability that the value of x on this trial is
316 less than the decision boundary B , given the value of the cue on this trial. This is

317

$$P_{opt} = \int_{-\infty}^B dx \frac{1}{\sigma} f\left(\frac{x-C}{\sigma}\right) = F\left(\frac{B-C}{\sigma}\right)$$

318 Equation 3

319 The bee's behaviour is thus influenced by the noise σ and the decision boundary B . The
320 noise may vary depending on factors like fatigue or attention, while the decision boundary
321 may reflect a cognitive strategy. A common assumption is that the decision boundary is
322 chosen so as to maximise expected reward.

323 During training, the expected reward is

$$324 \quad \langle R \rangle = P_{Hi}R_{Hi}F\left(\frac{B - C_{Hi}}{\sigma}\right) + P_{Hi}W\left[1 - F\left(\frac{B - C_{Hi}}{\sigma}\right)\right] + P_{Lo}R_{Lo}\left[1 - F\left(\frac{B - C_{Lo}}{\sigma}\right)\right] \\ 325 \quad + P_{Lo}WF\left(\frac{B - C_{Lo}}{\sigma}\right)$$

326 Equation 4

327 where P_{Hi} and P_{Lo} represent the probabilities that a given trial offers high or low rewards,
328 R_{Hi} and R_{Lo} represent the utility to the bee of the 50% and 30% sucrose offered on high or
329 low trials, and W represents the utility of the water obtained when the bee makes the wrong
330 choice.

331 The optimal boundary B_{opt} , that maximises the expected reward then satisfies the equation

$$332 \quad P_{Hi}(R_{Hi} - W)f\left(\frac{B_{opt} - C_{Hi}}{\sigma}\right) = P_{Lo}(R_{Lo} - W)f\left(\frac{B_{opt} - C_{Lo}}{\sigma}\right)$$

333 Equation 5

334 (found by taking the derivative of the expected reward, Equation 4, with respect to B and
335 finding where this is equal to 0). Note that it is possible that the bee isn't maximising
336 expected reward itself, but some transform of the reward (e.g. reward squared). Since our

337 model has only two values for reward (High and Low), we can still represent any transform
338 as two values (R_{Hi} and R_{Lo}) and the model would not be affected by non-linear transforms.

339 Equation 5 has a simple graphical interpretation. First, the probability distributions for high
340 and low reward are rescaled by their prior probability and by the additional utility of getting
341 the trial right, compared to the water available with the wrong decision. Then, the optimal
342 boundary is where these rescaled distributions cross over (Fig. 4). If the priors and reward
343 utilities were equal, i.e. $P_{Hi}(R_{Hi} - W) = P_{Lo}(R_{Lo} - W)$, then the optimal decision
344 boundary would be exactly in the middle between the two cues values: $B_{opt} =$
345 $0.5(C_{Hi} + C_{Lo})$. If the boundary was shifted to the right or left of the middle, this would
346 indicate optimistic or pessimistic behaviour.

347 *Drift Diffusion model*

348 Drift diffusion models help shed light on the cognitive processes underlying decision
349 making in choice tasks (43). They help generate estimates of the time taken to accumulate
350 sensory evidence for a particular response and the evidentiary threshold at which the
351 response decision is made. By applying this framework to our experiment, we attempted
352 to see if we could identify which of these two criteria (or both) were changed due to our
353 stress manipulations.

354 We fit a drift diffusion model to the choice latency data in our three treatments using the R
355 package rtdists (44). The model assumes that the bee accumulates sensory evidence
356 towards a decision and makes the optimistic or pessimistic choice once the evidence has
357 passed a threshold. The thresholds for the pessimistic and optimistic choices were defined

358 to be at 0 and 1 respectively. The decision variable was assumed to begin from a start point
359 z somewhere between the two boundaries. It was subject to random noise represented by
360 the diffusion constant s but had a drift rate v towards one or the other boundary, based on
361 the sensory evidence. In our experiment, v should be positive for Cue=1 and negative for
362 Cue=5. In our model, we assumed that v was a linear function of Cue.

363 **Results**

364 Bumblebees were trained to associate cues of one color with a location containing a high
365 reward of 50% sucrose solution and cues of another color with another location containing
366 lower reward of 30% sucrose solution. The association of rewards with the cue colors and
367 the locations were counterbalanced across all the bees. Bees then experienced one of three
368 treatment conditions. Two groups of bees were physically stressed by shaking or trapping,
369 while the third group served as a control. We then presented the bees with cues of
370 ambiguous colors between the two learnt colors in tests and noted whether they chose the
371 location previously associated with high or lower rewards. We also presented the bee with
372 the cues of the learnt colors during the tests and noted their choices. All the tests were
373 unrewarded and only offered distilled water in the previously rewarding locations.

374 *Training*

375 During training, a total of 48 bumblebees achieved the learning criterion (80% correct on
376 the last 20 choices) and continued to the judgment bias test. Bees completed training within
377 a minimum of 30 and a maximum of 60 trials. There were no significant differences in the
378 number of trials required to reach the criterion among bees that experienced the high reward
379 on the right or left location (Kruskal-Wallis test: $\chi^2 = 2.94$, df = 1, p = 0.09). Similarly,

380 there was no difference in the total number of trials to criterion for bees that experienced
381 blue or green as the high reward color (Kruskal-Wallis test: $\chi^2 = 0.94$, df = 1, p = 0.33).
382 The number of trials required to achieve the learning criterion also did not differ among
383 bees used in each of the three treatment groups (Kruskal-Wallis test: $\chi^2 = 0.88$, df = 2, p =
384 0.64).

385 Bees took significantly longer to choose a low-reward cue in the last choices of the training
386 phase (Table S2, LMEM, Estimate \pm standard error = 0.59 ± 0.09 , $t = 6.79$, $p < 0.001$). The
387 median latency for choosing in low reward cue trials was 32.2 s (IQR: 35.8), while that for
388 the high reward cue trials was 17.3 s (IQR: 7.34). Thus, bees could differentiate between
389 both the colour cues and the two rewards.

390 *Physically stressed bees are less optimistic*

391 The best model for our data included the main effects of cue color and treatment (shaking,
392 trapping and control) but not an interaction effect (see supplementary Table S1 for model
393 selection details). Shaking significantly reduced the probability of bees responding
394 optimistically, i.e., choosing the location associated with a high reward (Fig. 2A, Table S2,
395 GLMM, Estimate \pm standard error = -1.49 ± 0.57 , $z = -2.61$, $p < 0.01$). Trapping with a
396 robotic arm also significantly reduced the likelihood of an optimistic response (Fig. 2A,
397 Table S2, GLMM, Estimate \pm standard error = -1.26 ± 0.56 , $z = -2.23$, $p = 0.026$). Bees
398 were also significantly less likely to respond optimistically to cues with colors further away
399 from that of the high reward cue (Fig. 2A, Table S2, GLMM, Estimate \pm standard error =
400 -1.79 ± 0.21 , $z = -8.39$, $p < 0.001$).

401

402 *Feeding motivation and choice latencies*

403 We tested the ingestion rate of sucrose solution as a measure of the feeding motivation of
404 the bees. The mean (\pm s.d.) ingestion rate by shaken and trapped bees was 3.42 ± 0.67 mg/s,
405 and 3.17 ± 0.61 mg/s respectively. The mean ingestion rate observed in control bees was
406 3.17 ± 0.55 mg/s. These rates did not differ significantly between treatment groups (Fig.
407 2C, ANOVA: $F(2, 33) = 0.642$, $p = 0.533$).

408 We also examined the change in the latency to make a choice in the experiments. The best-
409 fitting model included treatment, cue value and response type (optimistic or pessimistic)
410 as fixed predictors and an interaction between cue value and response type (supplementary
411 Table S1). Bees in the Trapping treatment were significantly faster to make a choice than
412 control bees (Fig. 2B, Table S2, LMEM, Estimate \pm standard error = -0.23 ± 0.1 , t value =
413 -2.25 , $p = 0.029$) but were not faster than those in the Shaking treatment (Fig. 2B, Table
414 S2, LMEM, Estimate \pm standard error = -0.12 ± 0.1 , t value = -1.15 , $p = 0.256$). Shaken
415 bees were not significantly faster to make their choices than control bees (Fig. 2B, Table
416 S2, LMEM, Estimate \pm standard error = -0.11 ± 0.10 , t value = -1.121 , $p = 0.27$). All bees
417 were also significantly slower to make a choice when the cue color was further away from
418 that of the high reward cue (LMEM, Estimate \pm standard error = -0.09 ± 0.03 , t value =
419 -2.6 , $p < 0.01$). Finally, bees were faster when making optimistic choices compared to

420 pessimistic ones (LMM, Model Estimate \pm standard error = -0.93 ± 0.16 , $t = -5.74$, $p <$
421 0.001).

422

423 *Signal-detection theory model*

424 According to a standard signal-detection theoretic approach, the probability that a bee
425 makes an optimistic choice for Cue level C is (Equation 3)

426

$$P_{opt} = F\left(\frac{B - C}{\sigma}\right),$$

427 where σ is the noise on the internal signal, B is the decision boundary, and F is the logistic
428 function. This is exactly the model fitted by our generalized linear mixed model (GLMM,
429 see above), with the fitted gradient for *Cue* corresponding to $-1/\sigma$ and the intercept
430 corresponding to B/σ . Thus, the fact that we found no interaction between *Cue* and
431 *Treatment* indicates that the effective noise level is not changed by our manipulations. The
432 estimate of -1.79 for the gradient (Table S2) allows us to infer an effective noise level of σ
433 = 0.56 , in our units where *Cue* runs from 1 (high reward) to 5 (low reward).

434

435 However, the significant main effect of *Treatment* indicates that the decision boundary was
436 different in the two cases. The estimate of 6.05 (Table S2) for the intercept in the control
437 condition implies that the decision boundary in this condition is 3.38 . Bees in the Control
438 treatment (Fig. 2A) are thus equally likely to make the optimistic or pessimistic response
439 when the cue is a little closer to “near low” than medium (3). The fact that the intercept
440 drops by -1.49 for the Shaking treatment and -1.26 for Trapping (Table S2) implies that
441 the boundary shifts leftward to 2.55 and 2.68 , respectively, in these conditions. The point

442 at which these bees are equally likely to make optimistic and pessimistic choices is closer
443 to “near high” than to medium (Fig. 3B).

444

445 In our fitted model, weighted probability distributions for both low and high rewards have
446 an equal spread, reflecting the noise level inferred from the GLMM. In the Control
447 treatment, the shift of the decision boundary reflects the greater weight given to the high
448 reward. Quantitatively, the extent of the shift, together with the fitted noise level, implies
449 that the high reward is given 3.6 times the weight of the low reward. This result also cannot
450 be explained merely by the bees not perceiving the medium colour as midway between
451 blue and green since both the high and low reward trials combine data from trials where
452 the cue was blue and trials where it was green. Instead, this result might, for example,
453 indicate that the bees understand that both rewards are equally likely ($P_{Hi} = 50\%$) and find
454 the 50% sucrose solution 3.6 times as rewarding, relative to water, as the 30% solution.

455

456 The fact that the decision boundary is to the left of neutral in the Shaking and Trapping
457 treatments indicates that here, greater weight is given to the low reward (Fig. 3B).
458 Assuming we can discount the possibility that the reward value has inverted (i.e., that
459 stressed bees find 30% sucrose more rewarding than 50%), this must represent a shift in
460 the priors, such that stressed bees now consider high-reward trials less likely. To match the
461 extent of the leftward shift, given the noise level inferred from our GLMM fit, the low
462 reward must be weighted 4.6 times as much as the high reward. If the reward ratio were
463 3.6, this would imply that the bees behave as if the perceived probability of the high reward
464 was 6%. However, if stressed bees find 50% and 30% sucrose equally valuable, i.e., the

465 stress has removed the difference in reward utility, then the observed shift in decision
466 boundary could be produced with a less dramatic shift in the priors, with perceived
467 probability of the high reward being 18%.

468

469 *Drift diffusion model*

470 Drift diffusion models generate estimates of the time taken to accumulate sensory evidence
471 for a particular response and the evidentiary threshold at which the response decision is
472 made. By applying this framework to our experiment, we attempted to see if we could
473 identify which of these two criteria (or both) were changed due to our stress manipulations.
474 Our best model (as indicated by the Akaike Information Criterion) was obtained by
475 allowing the time prior to making a decision and the value of the drift rate for Cue = 3 (v3)
476 to vary between treatments, while fitting all data with the same values for the diffusion
477 constant s, start point zr, the dependence of drift rate on cue, vGradient, and noise on the
478 drift rate, sv. The drift diffusion model predicts not only the bees' choices (Fig. 4A) but
479 also the latencies for both optimistic and pessimistic choices (Fig. 4B). There are not
480 enough trials to accurately estimate the latency distributions (just 16 trials for each
481 Cue/Treatment combination, thus < 16 for each choice). The model for latencies is,
482 therefore, not a good fit (Fig. 4B), and it would be unwise to draw too strong conclusions
483 from this fitting effort. Nevertheless, the fitted model implies a few key points.

484

485 Firstly, by default, bees tend to be biased towards the more rewarding choice. The start
486 point for the decision variable is not midway between the two boundaries, 0.5, but closer
487 to the boundary for the optimistic choice, 0.56. As noted in the signal detection theory

488 model, being biased towards the high-reward condition helps to maximise the expected
489 reward. Secondly, stress did not affect sensory noise. As in the logistic regression model,
490 we found that the best model was obtained by assuming that sensory noise, here represented
491 by the diffusion constant s , was the same for all groups. Thirdly, stressed bees spend less
492 time on non-decision activity: the model fitted more time on non-decision activity (e.g.,
493 flying across the arena) for the control bees than for the shaken or trapped bees. This could
494 perhaps suggest that stressed bees might not want to spend time exploring what could
495 potentially be a dangerous environment. Finally, this model also confirms that the stressed
496 bees are more pessimistic. This is shown by the fitted drift rate for the medium cue, Cue =
497 3. In the absence of bias, the drift rate should have been zero in this case, since the cue was
498 designed to be exactly midway between the high and low reward cues (and
499 counterbalancing ensured that it was on average). Control bees nevertheless showed a small
500 positive drift rate for this cue, indicating that they took it as weak evidence for a high
501 reward. As noted above, this bias towards high reward helps maximise expected reward.
502 However, shaken and trapped bees both showed a small negative drift rate, indicating
503 perceived weak evidence for low reward. This is what accounts for the leftward shift in the
504 response curves for stressed bees. Note that even though, according to the model, all bees
505 start slightly biased towards a high-reward response ($z = 0.55$), in stressed bees, the
506 negative drift rate for the medium cue is enough to bias responses towards the pessimistic
507 response.

508

509 **Discussion**

510 We developed a novel task to assess emotion-like states in bees. Using an active choice
511 judgment bias task, we demonstrated that physically stressed bees are more likely to make
512 pessimistic choices when faced with ambiguous stimuli. A signal detection model of our
513 data suggests that this behaviour is explained by a reduced expectation of rewards. We thus
514 provide strong evidence for bee judgement biases and a possible explanation for bee
515 behaviour in judgement bias tasks.

516

517 Most studies of judgement bias tests have used a go/no-go paradigm. The results of these
518 studies can be challenging to interpret due to confounds from other factors that do not
519 involve stimulus judgements such as, for example, motivation. Our active choice design
520 avoids these complications. Motivation alone cannot therefore explain the observed shift
521 in responses in the manipulated bees in our experiment. This is further supported by the
522 results of our ingestion rate experiment, where we do not find differences in feeding
523 motivation. Only one previous study has used an active choice design to study judgement
524 biases in insects (5). In that study, flies had to choose between two odours, one associated
525 with a reward and another with punishment. Rather than using reward and punishment, we
526 developed a novel paradigm for insects that uses two rewards of different quality. This
527 allowed us to investigate the mechanisms underlying the judgement bias in further detail
528 and test how negative states modulate expectations and perceptions of reward. Using
529 previous paradigms involving reward and punishment as the expected outcome can make
530 it easier to detect affect-dependent judgement bias (23). We, however, find a bias in bee
531 behaviour when using two rewards and an active choice paradigm, providing stronger
532 evidence for affect-dependent processing in insects.

533

534 *Bees learnt the stimulus-outcome associations*

535 When performing an active choice task, it is important to ensure that the rewards used to
536 condition the animals' responses are not perceived as equally favourable. If so, the results
537 of tests using ambiguous stimuli would reflect the animal's colour preferences rather than
538 its interpretation of the outcome associated with a particular colour. Bumblebees, however,
539 can use colour cues to discriminate between rewards of varying value and prefer higher
540 concentrations of sugar solution, including the colours and concentrations we used in our
541 experiments (24). In our experiments, too, the bees chose high rewards significantly faster
542 than lower rewards at the end of the training phase. In the tests, bees in all treatment groups
543 also made slower choices as the cue value moved further away from the one indicating a
544 high reward. The shorter choice latency towards the high reward cue suggests that bees
545 maintain their preference for higher rewards even after experiencing stress. This
546 demonstrates that the bees distinguished between the high and low rewards, regardless of
547 the associated colour.

548

549 *Physical stress was not detrimental to bee sensory perception*

550 Manipulations in judgement bias tasks need to change decision-making without impairing
551 sensory perception or discrimination. In one previous test of judgement biases, shaken
552 honeybees showed a decreased response not only to ambiguous odour mixtures but also to
553 the conditioned negative odour (4). This decrease has been suggested to indicate an
554 improved ability to differentiate odours rather than a negative bias in judgement (10). In
555 our experiment, however, the bees were perfectly accurate when responding to both

556 conditioned cues (high and low) in the tests. The drift diffusion model further indicates that
557 the stress treatments did not change the sensory noise. Our manipulations thus did not
558 impair the colour discrimination abilities and memory of the bees. The preservation of high
559 colour discrimination abilities is not surprising, as previous studies on *Drosophila* have
560 successfully used shaking in aversive learning paradigms (25). Similar trapping
561 mechanisms to the ones we used have also been employed in aversive learning tasks in
562 bees (26).

563

564 *Active choices are better indicators of judgments than latencies*

565 Latency is often used in go/no-go judgment bias tests to evaluate the emotional states of
566 animals (6). When evaluating an emotional state, it is important to determine whether it is
567 positive or negative (known as valence). However, relying solely on latency as a measure
568 of valence is not always reliable, as it can be affected by other factors unrelated to emotions.
569 An increase in approach latency may be associated with a general increase in reactivity and
570 arousal, for example, due to the increased energetic demands after experiencing stressful
571 events (27). It may also indicate a shift in the perceived value of the reward and differences
572 in motivation (28). Relying solely on latency can therefore make it challenging to interpret
573 the results of judgment bias tests. For instance, exposure to a positive event has been
574 reported to cause both longer (29) and shorter (30) response times to ambiguous stimuli.

575

576 Only one study has used latencies to measure emotion-like states in bees (6). This study
577 used a go/no-go type of judgment bias test to demonstrate an optimistic bias in bumblebees
578 after receiving an unexpected reward of sugar solution. As predicted, unexpected rewards

579 reduced the latency with which bees approached ambiguous stimuli. However, the
580 treatment also caused an increase in thoracic temperature which has been linked to
581 increased motivation for foraging in other studies (31). Further experiments did indicate
582 that optimism was a more plausible explanation, but choice latency clearly could be
583 influenced by motivational changes as well as judgements. Our results showed that after
584 trapping, bees had shorter latencies than the control bees. This could, in principle, have
585 indicated a positive state, again demonstrating the difficulty of using latencies alone to
586 interpret judgement bias data. However, since our study was an active choice design, we
587 could more reliably use the choices made by the bees rather than their latencies. Choices
588 can better indicate affective valence, showing that the trapped bees were in a pessimistic
589 state in our study. This makes a strong argument in favour of active choice judgement bias
590 tasks such as the one we used in our study.

591

592 *Pessimistic choices by bees are related to a significant change in prior expectations*

593 To unravel the potential mechanisms underlying the choices made by the bees, we
594 employed a signal detection approach, which has been previously suggested as a valuable
595 tool for investigating affective biases (32). A recent study has suggested that judgement
596 biases in bees may be caused by a shift in stimulus-response curves (7). However, this
597 study did not investigate the underlying causal mechanisms of this shift. In our model, the
598 estimation of future outcomes combines estimates of the probability of an outcome
599 occurring and the magnitude of the payoff from an outcome. Both the signal detection and
600 drift diffusion analyses demonstrate that control bees exhibit a higher probability of
601 responding optimistically to ambiguous cues, indicating an expectation of high rewards.

602 Such a bias would not be suboptimal as it is in fact what is predicted by a rational, fully
603 informed strategy which optimises expected reward. Even if the bees are estimating the
604 priors correctly as 50-50, the difference in reward utility will still shift the decision
605 boundary towards the cue indicating low reward (Fig. 4A). Our model shows that the
606 control bees are behaving as if 50% sucrose is 3.6 times more valuable, relative to water
607 than 30% sucrose. Thus, the data admit the possibility that the bees' behaviour is
608 completely rational and unbiased, and the 50% sucrose is much more rewarding.

609

610 However, the decision boundary and drift rate for the stressed bees are harder to interpret.
611 Here, the decision boundary is to the *left* of neutral and the drift rate is negative. Previous
612 studies have shown that acute stress can increase an animal's sensitivity to the reward (33).
613 However, the observed left shift of the decision boundary in stressed bees cannot plausibly
614 reflect such a change in reward sensitivity since a leftward shift could only be produced if
615 the value of high and low rewards were swapped, i.e., if 50% sucrose became less
616 rewarding than 30%. However, it could reflect a pessimistic bias in expectations, i.e., that
617 the stressed bees behave as if high-reward priors are less likely ($P_{Hi} < P_{Lo}$), perhaps because
618 in nature high rewards are indeed scarcer when conditions are stressful. This can account
619 for a leftward shift, but the large quantitative extent of the shift is still surprising. Since the
620 noise remains relatively small, as indicated by the perfect performance for high and low
621 cues, we have to postulate enormous changes in the priors to produce the observed shift.
622 To obtain the decision boundary of 2.55 inferred for shaken bees, we would have to
623 postulate that shaken bees estimate $P_{Lo} = 94\%$, i.e., they expect a high reward to be
624 available on only one trial in 20. This assumes that the reward utility remains the same,

625 with a high reward 3.6 times as valuable as a low. If the relative utility of the high reward
626 increased, e.g., because of an increased need for sucrose after stress (27), the priors would
627 have to shift even further from 50%. However, one possibility is that, contrary to the
628 assumptions of our model, the noise was not uniform for all cues, and there was more
629 sensory noise on intermediate values of the cue. If this were so, the change in priors would
630 not need to be as dramatic, although the basic result of changed priors would remain true.

631

632 By employing an active choice judgment bias task, our results further support the
633 possibility of emotion-like states in bees and suggest that these states could be found across
634 very different animals. By implementing a more demanding active choice design, we
635 provide robust evidence that neither motivational factors nor colour discrimination alone
636 can account for the observed cognitive biases. Importantly, our modelling indicates that
637 the pessimistic-like behaviour displayed by bees in a negative state represents a significant
638 shift in their prior expectations of rewards. These insights offer the first analytical models
639 of the underlying causal mechanisms of state-dependent judgment biases in insects,
640 opening up new avenues for exploring state-dependent decision-making in insects.

641

642 **Acknowledgments**

643

644 This work is supported by a BBSRC David Phillips fellowship BB/S009760/1 to VN. OP
645 is supported by a PhD scholarship from the Faculty of Medical Sciences, Newcastle
646 University. We are grateful to Théo Robert for insightful discussions.

647

648 **Data Availability Statement**

649 All relevant data and code used for analysis to support this paper are available as supporting
650 information.

651

652 **References**

653

- 654 1. Panksepp J. The basic emotional circuits of mammalian brains: Do animals have
655 affective lives? *Neurosci Biobehav Rev* [Internet]. 2011;35(9):1791–804.
656 Available from: <http://dx.doi.org/10.1016/j.neubiorev.2011.08.003>
- 657 2. Paul ES, Sher S, Tamietto M, Winkielman P, Mendl MT. Towards a comparative
658 science of emotion: Affect and consciousness in humans and animals. *Neurosci*
659 *Biobehav Rev*. 2020;108(May 2019):749–70.
- 660 3. Schlüns H, Welling H, Federici JR, Lewejohann L. The glass is not yet half empty:
661 agitation but not Varroa treatment causes cognitive bias in honey bees. *Anim*
662 *Cogn*. 2017;20(2):233–41.
- 663 4. Bateson M, Desire S, Gartside SE, Wright GA. Agitated honeybees exhibit
664 pessimistic cognitive biases. *Curr Biol* [Internet]. 2011;21(12):1070–3. Available
665 from: <http://dx.doi.org/10.1016/j.cub.2011.05.017>
- 666 5. Deakin A, Mendl M, Browne WJ, Paul ES, Hodge JJL. State-dependent judgement
667 bias in *Drosophila* : evidence for evolutionarily primitive affective processes. *Biol*
668 *Lett*. 2018;14.

669 6. Solvi C, Baciadonna L, Chittka L. Unexpected rewards induce dopamine-
670 dependent positive emotion-like state changes in bumblebees. *Science* (80-).
671 2016;353:1529–32.

672 7. Strang C, Muth F. Judgement bias may be explained by shifts in stimulus response
673 curves. *R Soc Open Sci.* 2023;10(4).

674 8. Gibson WT, Gonzalez CR, Fernandez C, Ramasamy L, Tabachnik T, Du RR, et al.
675 Behavioral responses to a repetitive visual threat stimulus express a persistent state
676 of defensive arousal in drosophila. *Curr Biol [Internet]*. 2015;25(11):1401–15.
677 Available from: <http://dx.doi.org/10.1016/j.cub.2015.03.058>

678 9. Harding EJ, Paul ES, Mendl M. Cognitive bias and affective state. *Nature*.
679 2004;427(6972):312.

680 10. Giurfa M. Cognition with few neurons: Higher-order learning in insects. *Trends
681 Neurosci [Internet]*. 2013;36(5):285–94. Available from:
682 <http://dx.doi.org/10.1016/j.tins.2012.12.011>

683 11. Baracchi D, Lihoreau M, Giurfa M. Do Insects Have Emotions ? Some Insights
684 from Bumble Bees. *Front Behav Neurosci.* 2017;11(August):157.

685 12. Mendl M, Burman OHP, Parker RMA, Paul ES. Cognitive bias as an indicator of
686 animal emotion and welfare: Emerging evidence and underlying mechanisms.
687 *Appl Anim Behav Sci.* 2009;118(3–4):161–81.

688 13. Mendl M, Oliver HP, Paul ES. An integrative and functional framework for the

689 study of animal emotion and mood. *Proc R Soc B Biol Sci.* 2010;277:2895–904.

690 14. Bethell EJ. A “How-To” Guide for Designing Judgment Bias Studies to Assess
691 Captive Animal Welfare. *J Appl Anim Welf Sci.* 2015;18:S18–42.

692 15. Brilot BO, Asher L, Bateson M. Stereotyping starlings are more ‘pessimistic.’
693 *Anim Cogn.* 2010;13:721–31.

694 16. Matheson SM, Asher L, Bateson M. Larger, enriched cages are associated with ‘
695 optimistic’ response biases in captive European starlings (*Sturnus vulgaris*). *Appl
696 Anim Behav Sci.* 2008;109:374–83.

697 17. Enkel T, Gholizadeh D, Bohlen O Von, Sanchis-segura C, Spanagel R, Gass P, et
698 al. Ambiguous-Cue Interpretation is Biased Under Stress- and Depression-Like
699 States in Rats. *Neuropsychopharmacology* [Internet]. 2010;35:1008–15. Available
700 from: <http://dx.doi.org/10.1038/npp.2009.204>

701 18. Baciadonna L, McElligott AG. The use of judgement bias to assess welfare in farm
702 livestock. *Anim Welf.* 2015;24(1):81–91.

703 19. Jones S, Neville V, Higgs L, Paul ES, Dayan P, Robinson ESJ, et al. Assessing
704 animal affect: an automated and self-initiated judgement bias task based on natural
705 investigative behaviour. *Sci Rep.* 2018;8(1):2–13.

706 20. Whittaker AL, Barker TH. A consideration of the role of biology and test design as
707 confounding factors in judgement bias tests. *Appl Anim Behav Sci* [Internet].
708 2020;232(May):105126. Available from:

709 https://doi.org/10.1016/j.applanim.2020.105126

710 21. Davenport AP, Evans PD. Stress-induced changes in the octopamine levels of
711 insect haemolymph. *Insect Biochem.* 1984;14(2):135–43.

712 22. Chen YL, Hung YS, Yang EC. Biogenic amine levels change in the brains of
713 stressed honeybees. *Arch Insect Biochem Physiol.* 2008;68(4):241–50.

714 23. Lagisz M, Zidar J, Nakagawa S, Neville V, Sorato E, Paul ES, et al. Optimism,
715 pessimism and judgement bias in animals: A systematic review and meta-analysis.
716 *Neurosci Biobehav Rev.* 2020;118:3–17.

717 24. Nityananda V, Chittka L. Different effects of reward value and saliency during
718 bumblebee visual search for multiple rewarding targets. *Anim Cogn* [Internet].
719 2021;24(4):803–14. Available from: <https://doi.org/10.1007/s10071-021-01479-3>

720 25. Schnaitmann C, Pagni M, Reiff DF. Color vision in insects: insights from
721 *Drosophila*. *J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol*
722 [Internet]. 2020;206(2):183–98. Available from: <https://doi.org/10.1007/s00359-019-01397-3>

724 26. Ings TC, Wang MY, Chittka L. Colour-independent shape recognition of cryptic
725 predators by bumblebees. *Behav Ecol Sociobiol.* 2012;66(3):487–96.

726 27. Even N, Devaud JM, Barron AB. General stress responses in the honey bee.
727 *Insects.* 2012;3(4):1271–98.

728 28. Karagiannis CI, Burman OHP, Mills DS. Dogs with separation-related problems
729 show a “less pessimistic” cognitive bias during treatment with fluoxetine
730 (ReconcileTM) and a behaviour modification plan. *BMC Vet Res.* 2015;11(1):1–10.

731 29. Burman O, McGowan R, Mendl M, Norling Y, Paul E, Rehn T, et al. Using
732 judgement bias to measure positive affective state in dogs. *Appl Anim Behav Sci*
733 [Internet]. 2011;132(3–4):160–8. Available from:
734 <http://dx.doi.org/10.1016/j.applanim.2011.04.001>

735 30. Verbeek E, Ferguson D, Quinquet de Monjour P, Lee C. Generating positive
736 affective states in sheep: The influence of food rewards and opioid administration.
737 *Appl Anim Behav Sci* [Internet]. 2014;154:39–47. Available from:
738 <http://dx.doi.org/10.1016/j.applanim.2014.02.011>

739 31. Sadler N, Nieh JC. Honey bee forager thoracic temperature inside the nest is tuned
740 to broad-scale differences in recruitment motivation. *J Exp Biol.* 2011;214(3):469–
741 75.

742 32. Locke SM, Robinson OJ. Affective Bias Through the Lens of Signal Detection
743 Theory. *Comput Psychiatry.* 2021;5(1):4–20.

744 33. Hernandez CE, Hinch G, Lea J, Ferguson D, Lee C. Acute stress enhances
745 sensitivity to a highly attractive food reward without affecting judgement bias in
746 laying hens. *Appl Anim Behav Sci* [Internet]. 2015;163:135–43. Available from:
747 <http://dx.doi.org/10.1016/j.applanim.2014.12.002>

748 34. Brainard DH. The Psychophysics Toolbox. *Spat Vis.* 1997;10(4):433–6.

749 35. Chittka L. The colour hexagon: a chromaticity diagram based on photoreceptor
750 excitations as a generalized representation of colour opponency. *J Comp Physiol
751 A.* 1992;170(5):533–43.

752 36. Skorupski P, Döring TF, Chittka L. Photoreceptor spectral sensitivity in island and
753 mainland populations of the bumblebee, *Bombus terrestris*. *J Comp Physiol A
754 Neuroethol Sensory, Neural, Behav Physiol.* 2007;193(5):485–94.

755 37. Pattrick JG, Symington HA, Federle W, Glover BJ. The mechanics of nectar
756 offloading in the bumblebee *Bombus terrestris* and implications for optimal
757 concentrations during nectar foraging. *J R Soc Interface.* 2020;17:1–10.

758 38. Barton K. Package ‘ MuMIn ’ Multi-Model Interface. *R Interface.* 2023;

759 39. Johnson JB, Omland KS. Model selection in ecology and evolution. *Trends Ecol
760 Evol.* 2004;19(2):101–8.

761 40. Hartig F. DHARMA: residual diagnostics for hierarchical (multi-level/mixed)
762 regression models. *R Packag version 03 3 [Internet].* 2020; Available from:
763 <https://cran.r-project.org/web/packages/DHARMA/vignettes/DHARMA.html>

764 41. Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models
765 using lme4. *J Stat Softw.* 2015;67(1).

766 42. Hubert M, Van Der Veeken S. Outlier detection for skewed data. *J Chemom A J*

767 Chemom Soc. 2008;22(3-4):235-46.

768 43. Ratcliff R, McKoon G. The Diffusion Decision Model: Theory and Data for Two-
769 Choice Decision Tasks. *Neural Comput.* 2008;20(4):873–922.

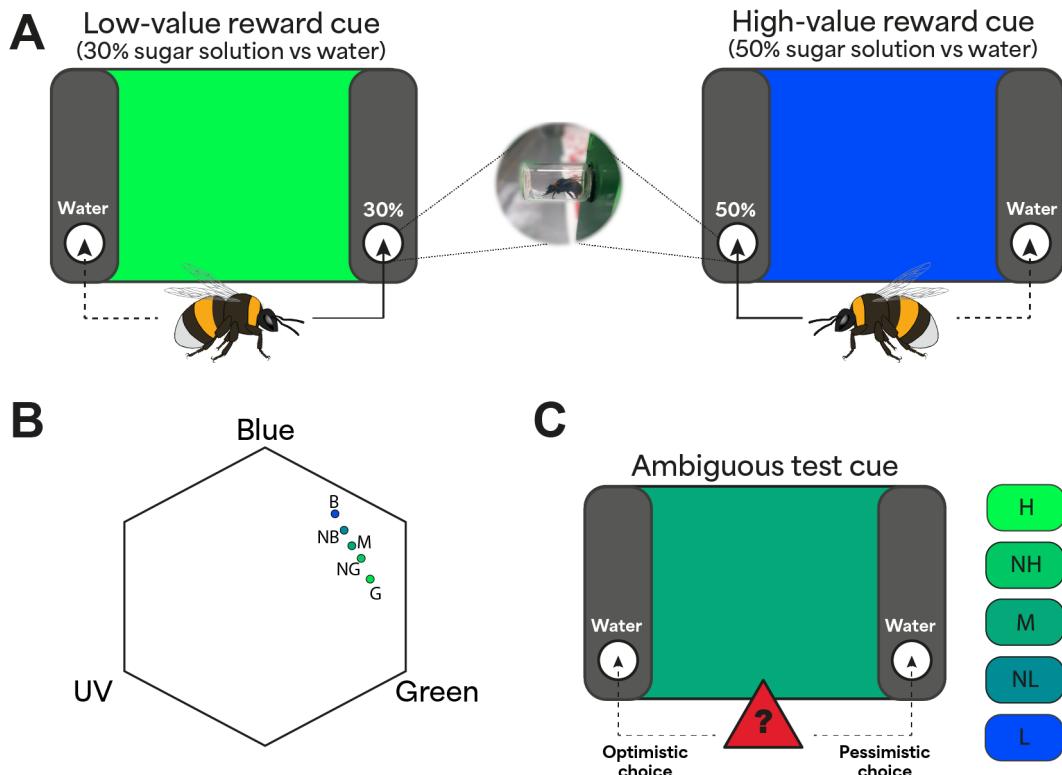
770 44. Singmann H, Brown S, Gretton M, Heathcote A, Voss A, Voss J, et al. Package
771 'rtdists.' 2018;

772

773

774 **Figures and Tables**

775



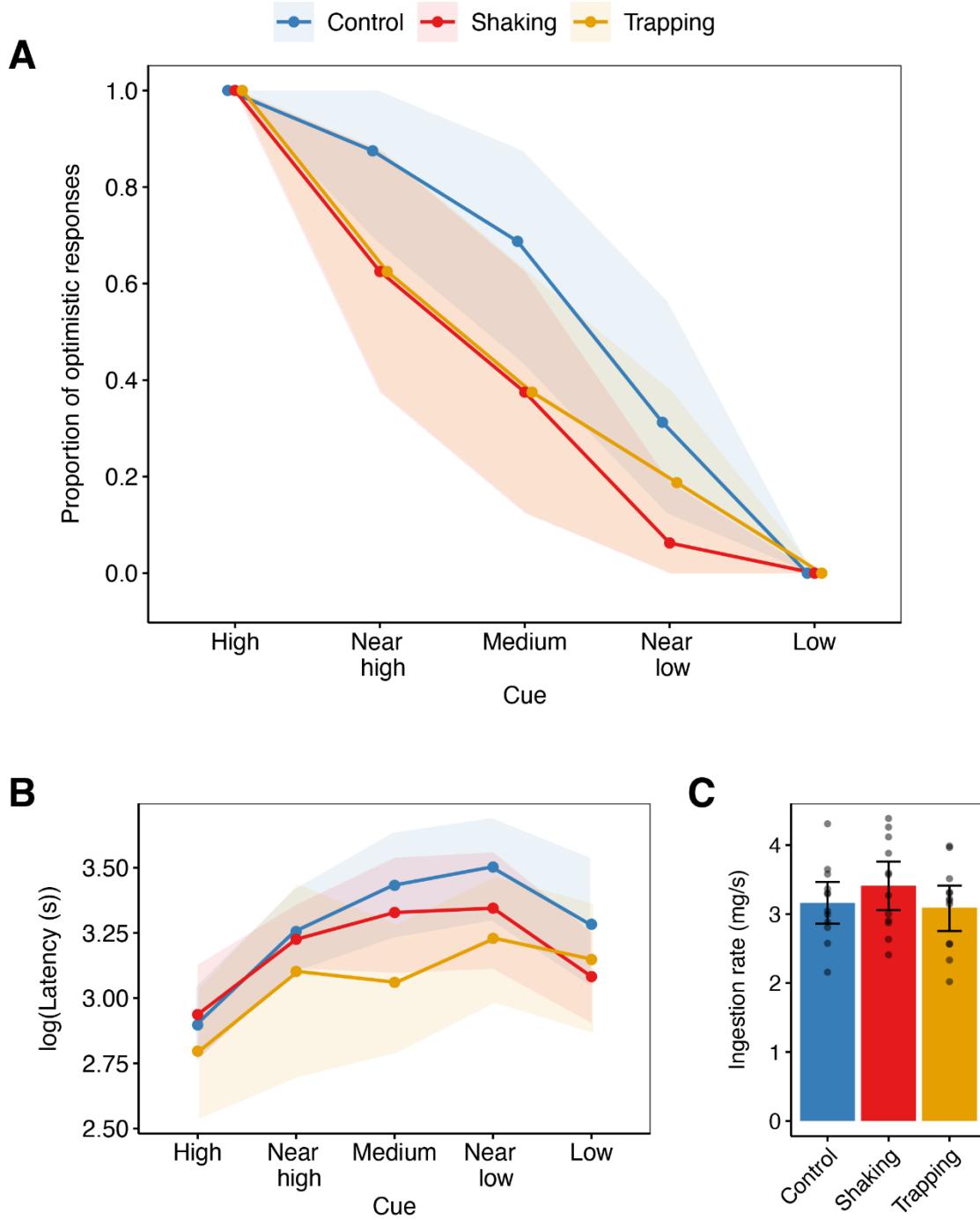
776

777 **Figure 1. Experimental Protocol. A)** Training phase. Bees were trained to associate two
778 colors, green and blue, presented on an LED screen with different sugar rewards at different
779 locations. The bees were presented one color at a time in pseudorandomized order. The
780 figure depicts a training scenario with green associated with a low reward (30% sucrose
781 solution) in the right chamber and blue with a high reward (50% sucrose solution) in the
782 left chamber. The association between color, reward and location was counterbalanced
783 across trials. Further details in the text. **B)** Cue colors plotted in bee color space (color cue:
784 B, blue; NB, near blue; M, medium; NG, near green; G, green). The three vertices

785 correspond to maximum excitation of photoreceptors sensitive to blue, green and
786 ultraviolet (UV) light. The distance from the center to any vertex is 1 and the distance
787 between points represents hue discriminability, with 0.1 being easily distinguishable. **C)**
788 Judgement bias testing. The test phase consisted of five trials with different colors
789 presented on the screen in a pseudorandom order (cue value: H, high; NH, near high; M,
790 medium; NL, near low; G, low). The colors included the two conditioned colors and three
791 ambiguous colors of intermediate value. In our example here, the screen shows the medium
792 color with blue as the high-reward color (H) and green as the low-reward color (L), but this
793 was counterbalanced across bees. Entering a chamber associated with a high reward during
794 training was considered an optimistic choice, while entering a chamber associated with a
795 low reward during training was deemed a pessimistic choice.

796

797



798

799 **Figure 2. Bee responses to test cues. A)** Proportion of bees (N = 16 per treatment) making
800 an optimistic choice (choosing a reward chamber associated with a high reward) in
801 response to each of five cues. **B)** Latency of making the choice in response to each of five

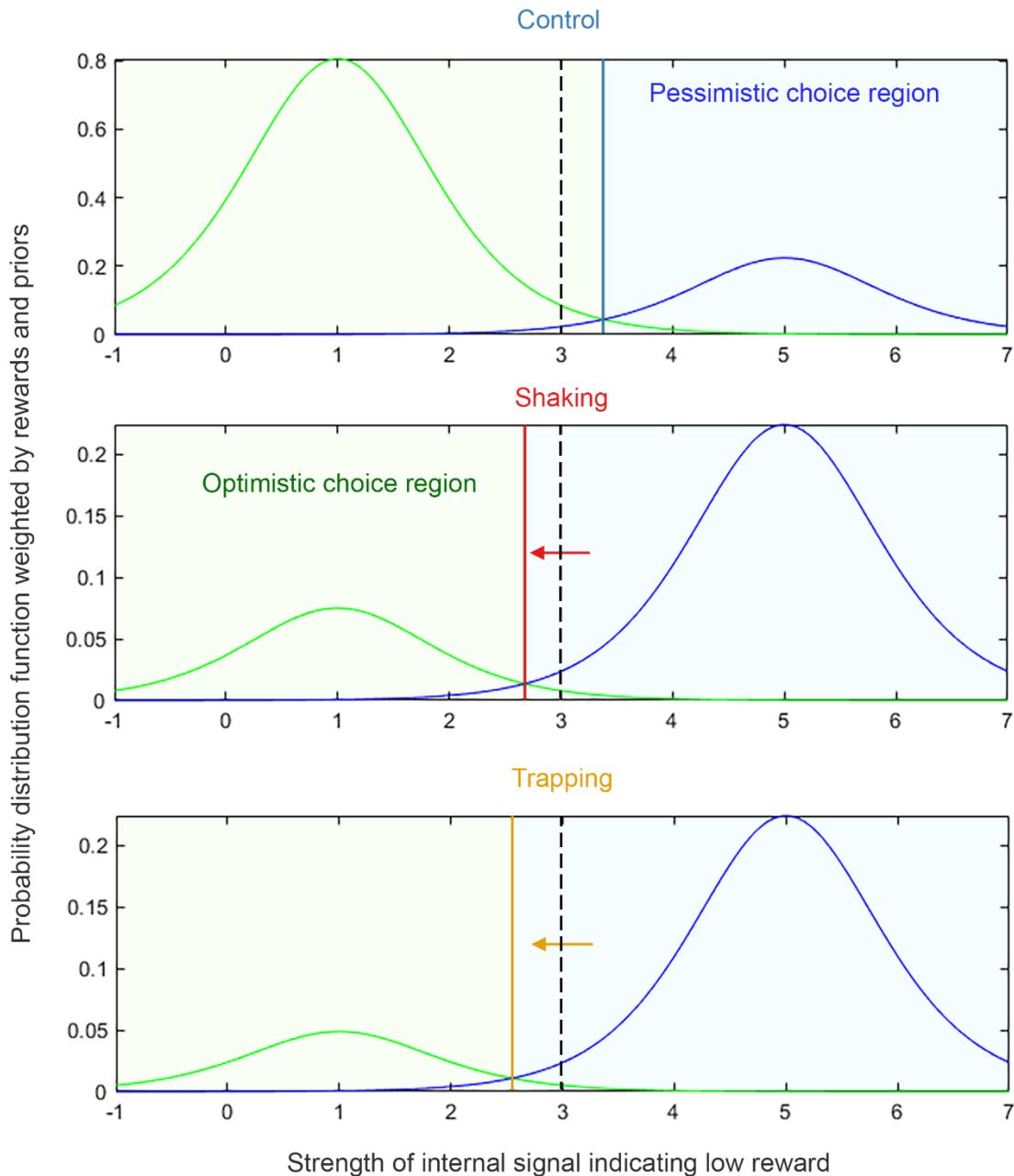
802 cue values (N = 16 bees per treatment). **C)** Average ingestion rate of high reward (50%
803 sugar solution) for bees in each treatment group (N = 12 bees per treatment). The treatment
804 groups were control (blue), shaking (red), and trapping (orange). The test cues were high,
805 near high, medium, near low, and low value cues depending on their distance to the colors
806 of high- and low-reward cues. Points and bars represent means, and the shaded areas and
807 error bars represent 95% bootstrapped confidence intervals. Dots represent values from
808 individual bees.

809

810

811

812



813

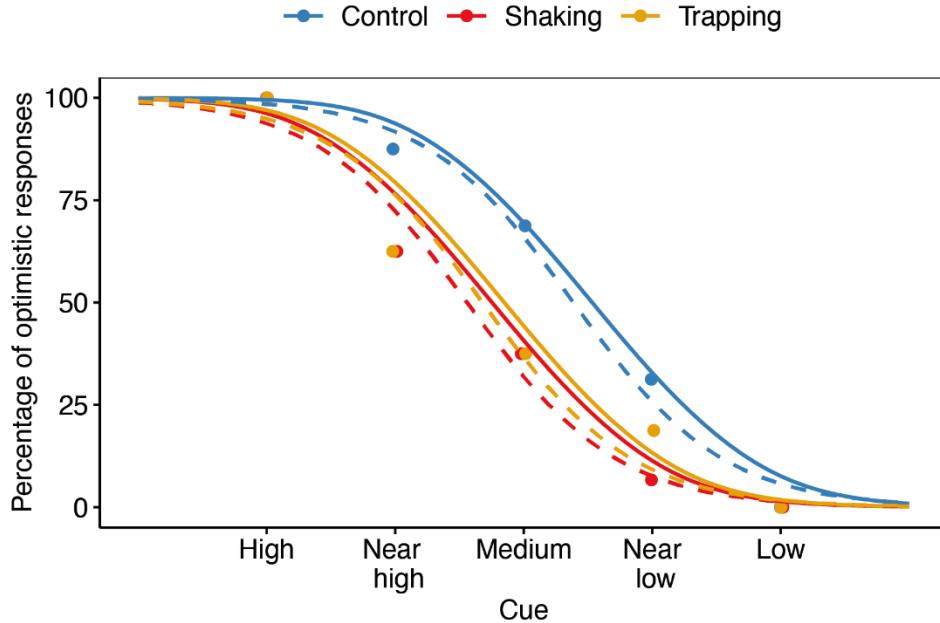
814 **Figure 3. Bee decision-making boundaries and priors fitted by a signal-detection**
815 **model.** Curves depict the probability density functions for responses based on the internal
816 signal x indicating a low reward. In each case, the original distribution has been weighted

817 by the product of the value of that reward and its probability of occurring (see methods,
818 Equation 5). The two curves in each panel depict the probabilities that the cue indicates
819 high reward (green, centred on 1) or low reward (blue, centred on 5). Solid lines depict the
820 decision boundary B inferred from the Generalized Linear Mixed Model fit to our data.
821 Dotted lines indicate the medium point for comparison. Regions to the right of the solid
822 boundary line are regions where the bee makes pessimistic choices (shaded blue). Regions
823 to the left are regions where the bee makes optimistic choices (shaded green). Arrows
824 depict the shift in boundaries compared to the control condition. The three panels depict
825 the conditions for the Control (top), Shaking (middle) and Trapping (bottom) treatments.
826 Note the change in axes in the lower two panels.

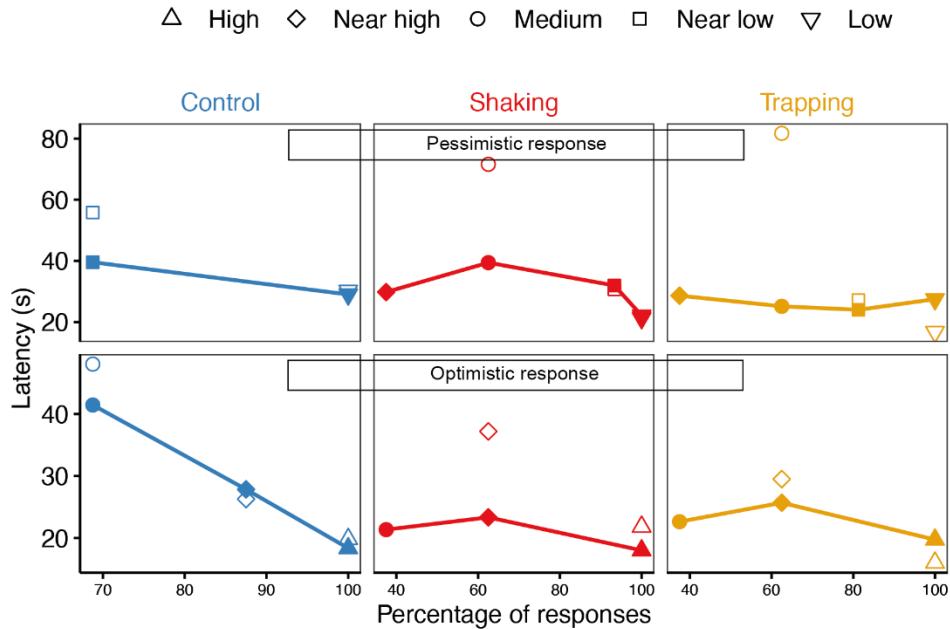
827

828

A



B



829

830 **Figure 4. Drift diffusion model. A)** Proportion of optimistic choices made by the bees in
831 each treatment in response to the different cues. Points show the data, dashed curves show
832 the predictions of a fitted logistic regression model with main effects of Treatment and Cue

833 but no interaction. Solid curves show predictions of a fitted drift diffusion model. Colours
834 depict the different treatments: Control (blue lines), Shaking (red lines) and Trapping
835 (orange lines). **B**) Drift diffusion model fit to latencies. Filled symbols linked with lines
836 show median latencies as a function of the percentage of responses made, for pessimistic
837 (top) and optimistic (bottom) responses in the three treatments (columns). Empty symbols
838 show predictions of the fitted drift diffusion model. Symbols show Cue value. There is a
839 high percentage of optimistic responses for high (triangles) and near high (diamonds) cues
840 and a high proportion of pessimistic responses for low (inverted triangles) and near low
841 (squares) cues.

842

843