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Abstract

Emotion-like states in animals are commonly assessed using judgment bias tests, which
measure responses to ambiguous information. A few studies have recently used these tests
to argue for the presence of emotion-like states in insects. However, the results from most
of these studies could have other explanations, including changes in motivation and
attention. To control for these explanations, we therefore developed a novel judgment bias
test, requiring bumblebees to make an active choice indicating their interpretation of

ambiguous stimuli. Bumblebees were trained to associate high or low rewards, delivered
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20 in two different reward chambers, with distinct colors. Two groups of bees were then
21  physically stressed by shaking or trapping, while the third group served as a control. We
22 subsequently presented the bees with ambiguous colors between the two learnt colors and
23 noted which reward chamber they chose. When presented with ambiguous colors, stressed
24 bees were less likely than control bees to enter the reward chamber previously associated
25  with high reward. We modelled bee behavior using signal detection and drift diffusion
26 models and showed that control bees and stressed bees were, respectively, more likely to
27  respond optimistically and pessimistically to ambiguous cues. The signal detection model
28  further showed that the behavior of stressed bees was explained by a reduction in their prior
29  expectation of high rewards. Our findings thus provide strong evidence for emotion-like
30 states in bees and suggest that their stress-induced pessimistic behavior is explained by a

31  reduced expectation of higher rewards.

32 Introduction

33 The presence of emotions in non-human animals is much debated and can have important
34  societal implications. While most research on animal emotions has focused on vertebrates
35 (1,2), a handful of recent studies have explored analogous states in insects (3—8). In these
36  studies, emotions are defined as valenced brain states triggered by both internal and
37 external stimuli and comprising subjective, behavioral, physiological and cognitive
38 components. Research on emotion-like states in insects has primarily relied on judgement
39  bias tests, a method initially developed for assessing affective states in rats (9). These tests
40  assess how animals respond to ambiguous stimuli. An animal typically is trained to

41  associate one stimulus with a reward and another with a lack of reward or punishment. It
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42  isthen tested with an ambiguous stimulus that is in-between the two learnt stimuli. Animals
43  that respond as if this stimulus indicates a reward are considered optimistic, while those
44  that respond as if the stimulus indicates a lack of reward or punishment are considered

45  pessimistic.

46  Judgement bias tests have been used in five studies on insects, including on honeybees,
47  bumblebees and fruit flies (3—7). Some of these studies showed that physical agitation can
48  reduce the response of bees and flies to ambiguous odors (3-5). Others showed that bees
49  are quicker to fly towards (6) and more likely to choose (7) ambiguous visual stimuli after
50 encountering an unexpected reward of sucrose solution, suggesting optimistic behavior.
51  While these results parallel results from studies of emotions in vertebrates, other
52  explanations have also been suggested, including changes in motivation or the ability to

53  learn training cues (10,11).

54  One factor that complicates the interpretation of these results is that the majority of insect
55  studies so far have utilized a go/no-go type of judgment bias task. Here, the animal is
56 trained to respond to a positive stimulus (“go”) and suppresses the response to a negative
57  one (“no-go”). When faced with an ambiguous stimulus, responding (“go”) or suppressing
58 (“no-go”) a response is thought to reflect optimistic and pessimistic judgements,
59  respectively. While this approach has been successfully used in many studies across taxa
60 (12-14), there are concerns associated with this paradigm. Firstly, the suppression of a
61  response could result from a general reduction in activity and motivation rather than a
62  judgment bias (12). A reduction of responses could also indicate merely an absence of
63  response (omission) rather than a deliberate choice (17,18). Finally, an animal may fail to
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64  attend to or detect a stimulus, and in such cases, the lack of a response could be mistakenly
65  attributed to a pessimistic judgment (14,19). Without a test that can address these issues,
66  we currently do not have strong evidence of emotion-like states in insects. In addition, we
67  lack models for the mechanisms underpinning the observed behaviors — though recent work
68  has proposed that judgement biases in bees can arise from shifts in stimulus-response

69  curves (7).

70  One way of reducing the likelihood of confounds is to use an active choice judgment bias
71 test (16,17,20). In contrast to the go/no-go task, the active choice paradigm requires the
72 animal to make an active choice between two alternative responses. Animals might, for
73 example, learn to move to one location in response to one stimulus and to another location
74 when they see another stimulus. Since the animal must make a choice as a response, this
75  type of judgment bias test eliminates the possible confounding factors of the "go/no-go"

76  paradigm, increasing validity and ease of interpretation.

77  We therefore used an active choice type of judgment bias test to rigorously assess
78  judgement biases in bumblebees (Bombus terrestris). Bees had to choose between two
79  rewarding locations depending on the stimulus displayed, clearly signaling their judgement
80  when faced with ambiguous stimuli by moving to one of the two locations. To induce
81  negative affective states, we used two types of manipulations simulating predatory attacks
82 - shaking and trapping by a robotic arm. These manipulations have previously been shown
83  to be associated with cognitive and physiological changes (4,21,22). In addition, to further
84  understand the mechanisms underlying our behavioral results, we applied drift diffusion
85  and signal detection modelling frameworks to the data. We used these frameworks to test
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86  whether physical agitation affected the prior expectation of a reward in bees or their ability

87  to distinguish between stimuli due to shifts in stimulus-response curves.

88  Materials and Methods
89

90  Animals and experimental set-up

91  All experiments were run on female worker bumblebees (Bombus terrestris) obtained from
92  a commercial supplier (Koppert, UK). We transferred the bumblebees to one chamber of
93  a bipartite plastic nest box (28.0 x 16.0 x 12.0 cm). We covered the other chamber of the
94  nest box with cat litter to allow bees to discard refuse. The nest box was connected via a
95 transparent acrylic tunnel (56.0 X 5.0 x 5.0 cm) to a flight arena (110.0 x 61.0 x 40.0 cm)
96  with a UV-transparent Plexiglas® lid and lit by a lamp (HF-P 1 14-35 TLS5 ballast, Philips,
97  The Netherlands) fitted with daylight fluorescent tubes (Osram, Germany). When not part
98  ofan experiment, bees were fed with ~ 3 g of commercial pollen daily (Koppert B. V., The
99  Netherlands) and provided sucrose solution (20% w/w) ad libitum. Although invertebrates
100  do not fall under the Animals (Scientific Procedures) Act, 1986 (ASPA), the experimental
101  design and protocols were developed incorporating the 3Rs principles. Housing,
102  maintenance, and experimental procedures were non-invasive and were kept as close as

103 possible to the natural living conditions of the animals.

104  Visual stimuli were solid colors covering the entire display of an LED monitor (Dell
105  U2412M, 24", 1920 x 1200 px) and controlled by a custom-written MATLAB script
106  (MathWorks Inc., Natick, MA, USA) using the PsychToolbox package (34). We measured

107  the spectral reflectance of all colors used in the experiment using an Ocean Optics Flame
5
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108 reflectance spectrophotometer (Ocean Optics Inc., Florida, USA). The perceptual positions
109  of the colors in the bee color hexagon space (Fig. 1B) were calculated using the spectral
110 reflectance measurements and spectral sensitivity functions for Bombus terrestris

111  photoreceptors (35,36).

112 We positioned two vertical panels (40.0 x 8.0 cm) 8.5 cm in front of the right and left sides
113 of the LED monitor, leaving the central area of the monitor open and visible. Each panel
114  was equipped with an opening to place a reward chamber (7 ml glass vial, 10 mm inner
115  diameter) 7 cm above the arena floor. Bees thus needed to fly from the arena entrance to
116  the panels before entering the reward chamber. On each visit to the arena, the reward
117  chambers were changed to ensure that pheromones and scent marks were not available
118  during the next visit. In preparation for the next experimental day, all used chambers were

119  washed in hot water and 70% ethanol and left to dry.

120

121 Training procedure

122 Before the onset of training, bees were familiarized with both reward locations. A plastic
123 cup was used to gently capture each bee. The opening of the cup was positioned so that it
124  aligned with the entrance to the reward chamber, inside which the bee found a droplet of
125  sucrose solution (0.2 ml, 30% w/w). We repeated the procedure equally on each side (left
126  and right) without displaying any color on the LED screen. Individual bees that learnt the
127  location of the reward and performed repeated foraging bouts were tagged for later

128  identification using number tags (Thorne, UK). Tagging involved trapping each bee in a
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129  small marking cage, gently pressing it against the mesh with a sponge, and affixing the tag

130  to the dorsal thorax with a small amount of superglue (Loctite Super Glue Power Gel).

131  In each training trial, we presented bees (n = 48) with one of two colors on the LED screen.
132 The two colors used were green (RGB= 0, 255, 75) and blue (RGB= 0, 75, 225). When
133 one of the colors was displayed, the bee was provided a high-value reward of 0.2 ml 50%
134  (w/w) sucrose solution in one of the two chambers (e.g., on the left), and an equal amount
135  of distilled water in the other chamber (e.g., on the right). In different trials, when the other
136  color was displayed the bee was provided a low-value reward of 0.2 ml 30% (w/w) sucrose
137  solution in the chamber opposite (e.g., on the right) to the one where, in the other trials, a
138  high-reward was presented. Here again, an equal amount of distilled water would be
139  present in the other chamber (e.g., on the left). Thus, on any given trial, the bee saw only
140  one color and could encounter either the high or low reward (not both), with water on the
141  unrewarding side. In addition, the locations of the high and low rewards were on opposite

142 sides in their respective trials.

143 Across bees, the combinations of each color (green or blue), reward location (right or left)
144  and reward type (high or low) were counterbalanced. Each bee encountered only one
145  possible combination of each during training (e.g., green indicating a high reward on the
146  left on half the trials, and blue indicating a low reward on the right on the other half). Trials
147  presenting colors associated with high and low rewards were presented an equal number
148  of times in a pseudorandom order, ensuring that no color was repeated more than twice in
149  arow. To ensure that the bee entered the reward chamber fully to sample its content, we
150  placed the droplets of solutions at the very end of the reward chamber (Fig. 1A). In all
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151  cases, the reward quantity of 0.2 ml allowed bees to fill their crop within a single reward
152  chamber visit (37). We recorded a single choice on each trial, with a choice defined as a
153  bee entering a chamber far enough to sample its content. Incidences of landing or partial
154  entering (less than 1/3 of the body length) were not considered choices. Bees that reached
155  the learning criterion (80% accuracy in the last 20 trials) continued to the test phase. 11
156  bees did not pass the initial conditioning test due to strong side biases. The last ten training
157  trials were video recorded using a camera on a mobile phone (Huawei Nexus 6P phone

158 1440 x 2560 px, 120 fps) placed above the arena.

159  Predatory attack simulation

160 We randomly assigned individual bees (n=48) that reached the learning criterion in the
161  training phase to one of the three treatment groups. Two groups were subjected to
162  manipulations which simulated predatory attacks and were predicted to change their
163  affective state (4). One of these two treatments involved shaking the bee on a Vortex shaker
164  (Shaking, n=16), while the other involved trapping the bee with a custom-made trapping
165  device (Trapping, n=16). A third unmanipulated group served as a control (Control, n=16).
166  The manipulations were applied to a bee before entering the arena for each test. Bees in
167  the Control treatment were allowed to fly out into the flight arena without hindrance as in

168 the training phase.

169  Each bee in the Shaking treatment was allowed to enter a custom-made cylindrical cage
170 (40 mm diameter, 7.5 cm length). After entering, the bee was gently nudged down with a
171  soft foam plunger until the distance between the plunger and the bottom of the cage was

172 reduced to ~3 cm. Once the plunger was secured, the cage with the bee was placed on a
8
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173 Vortex-T Genie 2 shaker (Scientific Industries, USA) and shaken at a frequency of 1200
174  rpm for 60 s. After shaking, the bee was released into the tunnel connecting the nest box
175 and experimental arena via an opening on the top of the tunnel. The bee was released into

176  the flight arena for testing as soon as it was ready to initiate a foraging bout.

177  Each bee in the Trapping treatment was trapped using a trapping device. This consisted of
178  asoft sponge (3.5 x 3.5 x 3.5 cm) connected to a linear actuator system (rack and pinion).
179 A micro-servo initiated the linear motion of the trapping device (Micro Servo 9g,
180 DFI9GMS), powered, and controlled by a microcontroller board (Arduino, Uno Rev 3). A
181  custom-written script written in the Arduino Software (IDE) triggered an initial plunging
182  movement of the trapping device, followed by release after three seconds. This permitted
183  consistent trapping across all tested individuals. As in the Shaking treatment, the bee was

184  released into the flight arena for testing as soon as it was ready to initiate a foraging bout.

185  Judgement bias testing

186  The test phase consisted of five trials, each with a cue of a different color presented on the
187  screen. The test colors were the two conditioned colors (green and blue), and three
188  ambiguous colors of intermediate value between the two conditioned colors (near blue
189  (RGB=0, 140, 150); medium (RGB= 0, 170, 120); near green (RGB= 0, 200, 100) (Fig.
190 1B). We classified the ambiguous colors as near-high, medium, and near-low cues
191  depending on their distance to the high or low rewarding color for each bee. The color
192  presentation order was pseudorandomized between all bees, so that the first test color was
193  always one of the three ambiguous color cues. Within the test phase, all color cues

194  (ambiguous and learnt) were not rewarded, i.e., both chambers contained 0.2 ml of distilled
9
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195  water. We classified the entry of a bee into a reward chamber as a choice. After it made the
196  first choice, we gently captured the bee with a plastic cup and returned it to the tunnel
197  connecting the nest and the arena. Between presentations of each of the five test cues, bees
198  were provided refresher trials consisting of two presentations of each conditioned color
199  with the appropriate reward at the correct location. All trials were video recorded for later
200  video analysis using the camera of a mobile phone (Huawei Nexus 6P, 1440 x 2560 px,

201 120 fps). We obtained the latencies for the choices from the video analysis (see below).

202 Measuring foraging motivation using ingestion rate

203  To assess if our manipulations changed feeding motivation in bees, we measured sugar
204  reward ingestion rates. A separate group of bees (n=36) were pre-trained to forage from an
205 elevated feeder consisting of the reward chamber used above with a 1.5 mL Eppendorf
206  placed inside. After learning this location and completing five consecutive foraging bouts,
207  bees were randomly allocated to one of three treatment groups as in the above experiment
208  for the ingestion test (Control: n=12, Shaking: n=12, Trapping: n=12). The test consisted
209  of a single foraging bout on a feeder with sucrose solution (~1 ml, 50% w/w). The feeder
210  was weighed before and immediately after the test bout to determine the mass of ingested
211 solution using a Kern Weighing Scale ADB100-4 (Resolution: mg+0.001, Kern & Sohn,
212 Balingen, Germany). The feeding bouts were recorded using a mobile phone camera
213 (Huawei Nexus 6P, 1440 x 2560 px, 120 fps). The recordings were used to determine the
214  time taken for ingestion. Ingestion time was defined as the time from when the bee first
215  touched the sucrose solution with its proboscis until the bee stopped drinking. For each
216  bee, we calculated the absolute ingestion rate i (mg/s):

10
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217 i=(ml-m2)/t

218  where 1 is the absolute ingestion rate of a bee, m1 is the mass of the feeder before the
219  foraging bout, m2 is the mass of the feeder after the foraging bout, and t is the ingestion
220  time of the bee. Upon the completion of the test, the bee was sacrificed by freezing and
221 stored in 70% ethanol at -20°C. We measured the intertegular distance (ITD) and the length
222 of the glossa of each bee with a digital calliper (RS PRO Digital Caliper, 0.01 mm =+ 0.03
223  mm) under a dissecting microscope. We then adjusted the absolute ingestion rate i to

224 account for individual size variability using the formula:

225 [=iWA(1/3) G (4),

226 where i is the absolute ingestion rate of a bee, G is the length of the glossa and W is the
227  intertegular distance. This is an adaptation of the formula developed earlier (4) with
228  intertegular distance instead of weight, as it has been shown to be precise at estimating

229  bumblebee weights (5).

230  To control for evaporation, we located an additional Eppendorf with 50% sugar solution
231 on the opposite side of the test chamber and recorded its weight pre-and post-test for an
232 individual bee. This loss of mass due to evaporation was subtracted from the mass of the

233 test feed after the foraging bout.

234 Video analysis

235  Video analysis was done using BORIS© (Behavior Observation Research Interactive
236 Software, version 7.10.2107 (6). In the judgment bias experiment, we coded two

237  behaviours for each bee. The first behaviour, “Choice”, indicated bee entry into a reward
11
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238  chamber and was classified as a point event, an event which happen at a single point in
239  time. The second coded behaviour, “Latency to choose”, was the time of making the choice
240  and was classified as a state event, i.e., an ongoing event with a duration. For the foraging
241  motivation experiment, we coded a single behaviour, “Drinking duration”, which was

242  classified as a state event that indicated ingestion time.

243 Statistical analysis

244 Our hypothesis and statistical analyses of the main active choice experiment were
245  preregistered at aspredicted.com (#62198). The data were plotted and analyzed using

246 RStudio v.3.2.2 (The R Foundation for Statistical Computing, Vienna, Austria,

247  http://www.r-project.org) and custom-written scripts. To determine the final sample size
248  needed, we used a Bayes Factor approach implemented with the brms package in R (1-3).
249  Prior beliefs about the parameters were specified using a normal distribution with mean 0
250 and standard deviation 1. Data collection was stopped when the Bayes Factor > 3
251  (indicating moderate support for HA (2)). All subsequent statistical models for the data
252  were fit by maximum likelihood estimation and, when necessary, optimized with the
253 iterative algorithms BOBYQA. In each analysis, several models were run and compared
254  using the model.sel function in the MuMIn package (38) to select the most appropriate
255  model based on the Akaike information criterion (AIC) scores. We considered the model
256  with the lowest AIC score the best model, i.e., the model that provides a satisfactory
257  explanation of the variation in the data (39). We used the package DHARMa (40) for

258  residual testing of all models.

12
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259  For the judgment bias analysis, we used the probability of an optimistic choice as the
260  dependent variable, coding choices of reward chambers previously associated with high-
261  value and low -value cues as 1 and 0 respectively. We fit a generalized linear mixed-effect
262  model (GLMM) using the glmer function of the Ime4 package with binomial errors and a
263  logit link function (41). The explanatory variables included in the model were “Treatment”
264  (categorical: Control, Shaken, Trapped) and “Cue” (continuous: 1-5, where 1 = high and 5
265 = low value cue) which refers to the color displayed on the screen. The identity of the bee

266  (“ID”) was included as a random intercept variable.

267  For the analysis of the choice latency in the judgment bias test, we fit a linear mixed-effect
268  model (LMEM) using the /mer function of the /me4 package (41). To normalize the error
269  distribution, latency data were natural log-transformed and latencies greater than 1.5 times
270  the Inter Quartile Range were excluded (42). The explanatory variables included in the
271 model were “Treatment” (categorical: Control, Shaken, Trapped) and “Cue” (continuous:
272 1-5, where 1 = high and 5 = low value cue). In addition, since we expected that optimistic
273 responses would be faster, we also included "Response Type" (coded as 1 for optimistic
274  responses, and 0 for pessimistic responses) as an explanatory variable in the model

275  selection process. Bee identity (“/D”) was included as a random intercept variable.

276  In addition to the above models, we ran other statistical tests for some analyses. Data for
277  these tests were first tested for normality and the appropriate tests were subsequently
278  employed for analysis. We ran a one-way ANOVA on the adjusted body size ingestion rate
279  data to test for differences between treatment (Control, Shaking, Trapping). We also used
280  Kruskal-Wallis tests to compare the average number of trials to the criterion in the training

13
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281  phase for different treatment groups, and to investigate the potential impact of the side and

282  color associated with a high-value cue on learning.

283 Signal Detection Theory model

284  We examined whether the behavior of the bees could be modelled with standard signal
285  detection theory, and what could then be inferred about the underlying mechanisms. We
286  assumed that bees learn to make their foraging decisions during training based on the value
287  of an internal signal that is affected by noise. When this signal exceeds an internal decision
288  boundary, the bees behave appropriately for the low reward situation and when it is less
289  than the boundary, they behave appropriately for the high reward situation. We modelled
290 the distribution of the noisy signal and derived the probability of an optimistic response.
291  We fit this model to our data and obtained the decision boundary and the noise for an
292 optimal response given the reward values we used. We compared this decision boundary
293  to the middle value of our response variable. If the boundary was shifted to the right or left

294  of the middle, this would indicate optimistic or pessimistic behavior respectively.

295  We assumed that bees learn to make their foraging decision during training based on the
296  value of an internal signal x which indicates whether they are in a high or low reward
297  situation. We specified x as a “low reward signal” which has a high value when the cue
298 indicates a low reward. We assumed that bees have some internal decision boundary B,
299  such that when x>B, they behave appropriately for the low-reward situation, and
300 conversely when x<B for the high-reward. Although on average the value of x reflects the
301 cue, it is affected by noise, explaining why bees do not always make the same decision in

302 the same experimental situation.
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303  Since we have fitted our data with a logistic link function, we modelled the distribution of

304 the noisy signal as the first derivative of a logistic function. The standard logistic is

305 F(x) = m
306  Equation 1
307 and its first derivative is

dF exp(x)

308 fO) = & = T rexp?

309 Equation 2

310  which is therefore the distribution we assume for our noise. This closely resembles a
311  Gaussian distribution with the same standard deviation but has more weight both at the

312  centre and at the tails.

313 The probability density function governing the distribution of the signal x is

x—C
o

314 % f ( ), where C represents the value of the cue and s is the noise. The probability of an

315  optimistic response on any given trial is the probability that the value of x on this trial is

316 less than the decision boundary B, given the value of the cue on this trial. This is

B 1 mx—C B—-C
P = [ ax2r (55) = p (B25)

g g

318  Equation 3
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319  The bee’s behaviour is thus influenced by the noise ¢ and the decision boundary B. The
320 noise may vary depending on factors like fatigue or attention, while the decision boundary
321  may reflect a cognitive strategy. A common assumption is that the decision boundary is

322 chosen so as to maximise expected reward.

323  During training, the expected reward is

B —Cy; B —Cy B—-C,
324 <R> =PyRyF <T) + Py W [1 —F (T)] + P, R, [1 —F (T)]

B—C,
325 + P, ,WF (T)

326  Equation 4

327  where Py and PL, represent the probabilities that a given trial offers high or low rewards,
328  Rui and Ry, represent the utility to the bee of the 50% and 30% sucrose offered on high or
329  low trials, and W represents the utility of the water obtained when the bee makes the wrong

330 choice.
331  The optimal boundary Bopt, that maximises the expected reward then satisfies the equation

Bopt — Chi Bope — Cy,
332 Pyi(Ry; — W)f (%) = Po(Rpo —W)f (%)

333  Equation 5

334  (found by taking the derivative of the expected reward, Equation 4, with respect to B and
335 finding where this is equal to 0). Note that it is possible that the bee isn’t maximising

336  expected reward itself, but some transform of the reward (e.g. reward squared). Since our
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337  model has only two values for reward (High and Low), we can still represent any transform

338 astwo values (Rui and Rio) and the model would not be affected by non-linear transforms.

339  Equation 5 has a simple graphical interpretation. First, the probability distributions for high
340 and low reward are rescaled by their prior probability and by the additional utility of getting
341 the trial right, compared to the water available with the wrong decision. Then, the optimal
342  boundary is where these rescaled distributions cross over (Fig. 4). If the priors and reward
343  utilities were equal, i.e. Py;(Ry; — W) = P,,(R,, — W), then the optimal decision

344  boundary would be exactly in the middle between the two cues values: B, =

345  0.5(Cy; + Cpp). If the boundary was shifted to the right or left of the middle, this would

346  indicate optimistic or pessimistic behaviour.

347  Drift Diffusion model

348  Drift diffusion models help shed light on the cognitive processes underlying decision
349  making in choice tasks (43). They help generate estimates of the time taken to accumulate
350 sensory evidence for a particular response and the evidentiary threshold at which the
351  response decision is made. By applying this framework to our experiment, we attempted
352  to see if we could identify which of these two criteria (or both) were changed due to our

353  stress manipulations.

354  We fit a drift diffusion model to the choice latency data in our three treatments using the R
355  package rtdists (44). The model assumes that the bee accumulates sensory evidence
356  towards a decision and makes the optimistic or pessimistic choice once the evidence has

357  passed a threshold. The thresholds for the pessimistic and optimistic choices were defined
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358 tobeat0and 1 respectively. The decision variable was assumed to begin from a start point
359  z somewhere between the two boundaries. It was subject to random noise represented by
360 the diffusion constant s but had a drift rate v towards one or the other boundary, based on
361 the sensory evidence. In our experiment, v should be positive for Cue=1 and negative for

362  Cue=5. In our model, we assumed that v was a linear function of Cue.

363  Results

364  Bumblebees were trained to associate cues of one color with a location containing a high
365 reward of 50% sucrose solution and cues of another color with another location containing
366  lower reward of 30% sucrose solution. The association of rewards with the cue colors and
367 the locations were counterbalanced across all the bees. Bees then experienced one of three
368  treatment conditions. Two groups of bees were physically stressed by shaking or trapping,
369  while the third group served as a control. We then presented the bees with cues of
370  ambiguous colors between the two learnt colors in tests and noted whether they chose the
371  location previously associated with high or lower rewards. We also presented the bee with
372 the cues of the learnt colors during the tests and noted their choices. All the tests were

373  unrewarded and only offered distilled water in the previously rewarding locations.

374  Training

375  During training, a total of 48 bumblebees achieved the learning criterion (80% correct on
376  thelast 20 choices) and continued to the judgment bias test. Bees completed training within
377 aminimum of 30 and a maximum of 60 trials. There were no significant differences in the
378  number of trials required to reach the criterion among bees that experienced the high reward

379  on the right or left location (Kruskal-Wallis test: x~ = 2.94, df = 1, p = 0.09). Similarly,
18
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380 there was no difference in the total number of trials to criterion for bees that experienced
381  blue or green as the high reward color (Kruskal-Wallis test: ¥* = 0.94, df = 1, p = 0.33).
382  The number of trials required to achieve the learning criterion also did not differ among
383  bees used in each of the three treatment groups (Kruskal-Wallis test: x“=0.88, df =2, p =

384 0.64).

385  Bees took significantly longer to choose a low-reward cue in the last choices of the training
386  phase (Table S2, LMEM, Estimate + standard error = 0.59+0.09, t = 6.79, p <0.001). The
387  median latency for choosing in low reward cue trials was 32.2 s (IQR: 35.8), while that for
388 the high reward cue trials was 17.3 s (IQR: 7.34). Thus, bees could differentiate between

389  both the colour cues and the two rewards.

390  Physically stressed bees are less optimistic

391  The best model for our data included the main effects of cue color and treatment (shaking,
392  trapping and control) but not an interaction effect (see supplementary Table S1 for model
393  selection details). Shaking significantly reduced the probability of bees responding
394  optimistically, i.e., choosing the location associated with a high reward (Fig. 2A, Table S2,
395 GLMM, Estimate + standard error = -1.49 + 0.57, z = -2.61, p < 0.01). Trapping with a
396  robotic arm also significantly reduced the likelihood of an optimistic response (Fig. 2A,
397 Table S2, GLMM, Estimate + standard error = -1.26 + 0.56, z = -2.23, p = 0.026). Bees
398  were also significantly less likely to respond optimistically to cues with colors further away
399  from that of the high reward cue (Fig. 2A, Table S2, GLMM, Estimate + standard error =

400 -1.79+0.21,z=-8.39, p <0.001).
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401

402  Feeding motivation and choice latencies

403  We tested the ingestion rate of sucrose solution as a measure of the feeding motivation of
404  the bees. The mean (+ s.d.) ingestion rate by shaken and trapped bees was 3.42 £ 0.67 mg/s,
405 and 3.17 £ 0.61 mg/s respectively. The mean ingestion rate observed in control bees was
406  3.17 = 0.55 mg/s. These rates did not differ significantly between treatment groups (Fig.

407  2C, ANOVA:F(2,33)=0.642, p=0.533).

408  We also examined the change in the latency to make a choice in the experiments. The best-
409  fitting model included treatment, cue value and response type (optimistic or pessimistic)
410 as fixed predictors and an interaction between cue value and response type (supplementary
411  Table S1). Bees in the Trapping treatment were significantly faster to make a choice than
412  control bees (Fig. 2B, Table S2, LMEM, Estimate + standard error =-0.23 &+ 0.1, t value =
413  -2.25, p = 0.029) but were not faster than those in the Shaking treatment (Fig. 2B, Table
414  S2, LMEM, Estimate + standard error = - 0.12 = 0.1, t value = -1.15, p = 0.256). Shaken
415  bees were not significantly faster to make their choices than control bees (Fig. 2B, Table
416  S2, LMEM, Estimate + standard error =-0.11 £ 0.10, t value =-1.121, p = 0.27). All bees
417  were also significantly slower to make a choice when the cue color was further away from
418  that of the high reward cue (LMEM, Estimate + standard error = -0.09 = 0.03, t value = -

419 2.6, p < 0.01). Finally, bees were faster when making optimistic choices compared to
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420  pessimistic ones (LMEM, Model Estimate + standard error = -0.93 + 0.16, t =-5.74, p <
421 0.001).

422

423 Signal-detection theory model

424  According to a standard signal-detection theoretic approach, the probability that a bee

425  makes an optimistic choice for Cue level C is (Equation 3)

B-C
426 Popt:F< o )I

427  where o is the noise on the internal signal, B is the decision boundary, and F is the logistic
428  function. This is exactly the model fitted by our generalized linear mixed model (GLMM,
429  see above), with the fitted gradient for Cue corresponding to —1/0 and the intercept
430  corresponding to B/o. Thus, the fact that we found no interaction between Cue and
431  Treatment indicates that the effective noise level is not changed by our manipulations. The
432  estimate of -1.79 for the gradient (Table S2) allows us to infer an effective noise level of ¢
433  =0.56, in our units where Cue runs from 1 (high reward) to 5 (low reward).

434

435  However, the significant main effect of Treatment indicates that the decision boundary was
436  different in the two cases. The estimate of 6.05 (Table S2) for the intercept in the control
437  condition implies that the decision boundary in this condition is 3.38. Bees in the Control
438  treatment (Fig. 2A) are thus equally likely to make the optimistic or pessimistic response
439  when the cue is a little closer to “near low” than medium (3). The fact that the intercept
440  drops by -1.49 for the Shaking treatment and -1.26 for Trapping (Table S2) implies that

441  the boundary shifts leftward to 2.55 and 2.68, respectively, in these conditions. The point
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442  at which these bees are equally likely to make optimistic and pessimistic choices is closer
443  to “near high” than to medium (Fig. 3B).

444

445  In our fitted model, weighted probability distributions for both low and high rewards have
446  an equal spread, reflecting the noise level inferred from the GLMM. In the Control
447  treatment, the shift of the decision boundary reflects the greater weight given to the high
448  reward. Quantitatively, the extent of the shift, together with the fitted noise level, implies
449  that the high reward is given 3.6 times the weight of the low reward. This result also cannot
450  be explained merely by the bees not perceiving the medium colour as midway between
451  blue and green since both the high and low reward trials combine data from trials where
452  the cue was blue and trials where it was green. Instead, this result might, for example,
453  indicate that the bees understand that both rewards are equally likely (Pui = 50%) and find
454  the 50% sucrose solution 3.6 times as rewarding, relative to water, as the 30% solution.
455

456  The fact that the decision boundary is to the left of neutral in the Shaking and Trapping
457  treatments indicates that here, greater weight is given to the low reward (Fig. 3B).
458  Assuming we can discount the possibility that the reward value has inverted (i.e., that
459  stressed bees find 30% sucrose more rewarding than 50%), this must represent a shift in
460  the priors, such that stressed bees now consider high-reward trials less likely. To match the
461  extent of the leftward shift, given the noise level inferred from our GLMM fit, the low
462  reward must be weighted 4.6 times as much as the high reward. If the reward ratio were
463 3.6, this would imply that the bees behave as if the perceived probability of the high reward

464  was 6%. However, if stressed bees find 50% and 30% sucrose equally valuable, i.e., the
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465  stress has removed the difference in reward utility, then the observed shift in decision
466  boundary could be produced with a less dramatic shift in the priors, with perceived
467  probability of the high reward being 18%.

468

469  Drift diffusion model

470  Drift diffusion models generate estimates of the time taken to accumulate sensory evidence
471  for a particular response and the evidentiary threshold at which the response decision is
472  made. By applying this framework to our experiment, we attempted to see if we could
473  identify which of these two criteria (or both) were changed due to our stress manipulations.
474  Our best model (as indicated by the Akaike Information Criterion) was obtained by
475  allowing the time prior to making a decision and the value of the drift rate for Cue =3 (v3)
476  to vary between treatments, while fitting all data with the same values for the diffusion
477  constant s, start point zr, the dependence of drift rate on cue, vGradient, and noise on the
478  drift rate, sv. The drift diffusion model predicts not only the bees’ choices (Fig. 4A) but
479  also the latencies for both optimistic and pessimistic choices (Fig. 4B). There are not
480  enough trials to accurately estimate the latency distributions (just 16 trials for each
481  Cue/Treatment combination, thus < 16 for each choice). The model for latencies is,
482  therefore, not a good fit (Fig. 4B), and it would be unwise to draw too strong conclusions
483  from this fitting effort. Nevertheless, the fitted model implies a few key points.

484

485  Firstly, by default, bees tend to be biased towards the more rewarding choice. The start
486  point for the decision variable is not midway between the two boundaries, 0.5, but closer

487  to the boundary for the optimistic choice, 0.56. As noted in the signal detection theory
23
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488  model, being biased towards the high-reward condition helps to maximise the expected
489  reward. Secondly, stress did not affect sensory noise. As in the logistic regression model,
490  we found that the best model was obtained by assuming that sensory noise, here represented
491 by the diffusion constant s, was the same for all groups. Thirdly, stressed bees spend less
492  time on non-decision activity: the model fitted more time on non-decision activity (e.g.,
493  flying across the arena) for the control bees than for the shaken or trapped bees. This could
494  perhaps suggest that stressed bees might not want to spend time exploring what could
495  potentially be a dangerous environment. Finally, this model also confirms that the stressed
496  bees are more pessimistic. This is shown by the fitted drift rate for the medium cue, Cue =
497 3. In the absence of bias, the drift rate should have been zero in this case, since the cue was
498  designed to be exactly midway between the high and low reward cues (and
499  counterbalancing ensured that it was on average). Control bees nevertheless showed a small
500 positive drift rate for this cue, indicating that they took it as weak evidence for a high
501 reward. As noted above, this bias towards high reward helps maximise expected reward.
502 However, shaken and trapped bees both showed a small negative drift rate, indicating
503 perceived weak evidence for low reward. This is what accounts for the leftward shift in the
504 response curves for stressed bees. Note that even though, according to the model, all bees
505  start slightly biased towards a high-reward response (z = 0.55), in stressed bees, the
506  negative drift rate for the medium cue is enough to bias responses towards the pessimistic
507  response.

508

509 Discussion
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510 We developed a novel task to assess emotion-like states in bees. Using an active choice
511  judgment bias task, we demonstrated that physically stressed bees are more likely to make
512  pessimistic choices when faced with ambiguous stimuli. A signal detection model of our
513  data suggests that this behaviour is explained by a reduced expectation of rewards. We thus
514  provide strong evidence for bee judgement biases and a possible explanation for bee
515  behaviour in judgement bias tasks.

516

517  Most studies of judgement bias tests have used a go/no-go paradigm. The results of these
518 studies can be challenging to interpret due to confounds from other factors that do not
519 involve stimulus judgements such as, for example, motivation. Our active choice design
520 avoids these complications. Motivation alone cannot therefore explain the observed shift
521  in responses in the manipulated bees in our experiment. This is further supported by the
522  results of our ingestion rate experiment, where we do not find differences in feeding
523  motivation. Only one previous study has used an active choice design to study judgement
524  biases in insects (5). In that study, flies had to choose between two odours, one associated
525  with a reward and another with punishment. Rather than using reward and punishment, we
526  developed a novel paradigm for insects that uses two rewards of different quality. This
527 allowed us to investigate the mechanisms underlying the judgement bias in further detail
528 and test how negative states modulate expectations and perceptions of reward. Using
529  previous paradigms involving reward and punishment as the expected outcome can make
530 it easier to detect affect-dependent judgement bias (23). We, however, find a bias in bee
531  behaviour when using two rewards and an active choice paradigm, providing stronger

532  evidence for affect-dependent processing in insects.
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533

534  Bees learnt the stimulus-outcome associations

535  When performing an active choice task, it is important to ensure that the rewards used to
536  condition the animals’ responses are not perceived as equally favourable. If so, the results
537  of tests using ambiguous stimuli would reflect the animal's colour preferences rather than
538 its interpretation of the outcome associated with a particular colour. Bumblebees, however,
539  can use colour cues to discriminate between rewards of varying value and prefer higher
540  concentrations of sugar solution, including the colours and concentrations we used in our
541  experiments (24). In our experiments, too, the bees chose high rewards significantly faster
542  than lower rewards at the end of the training phase. In the tests, bees in all treatment groups
543  also made slower choices as the cue value moved further away from the one indicating a
544  high reward. The shorter choice latency towards the high reward cue suggests that bees
545 maintain their preference for higher rewards even after experiencing stress. This
546  demonstrates that the bees distinguished between the high and low rewards, regardless of
547  the associated colour.

548

549  Physical stress was not detrimental to bee sensory perception

550  Manipulations in judgement bias tasks need to change decision-making without impairing
551  sensory perception or discrimination. In one previous test of judgement biases, shaken
552 honeybees showed a decreased response not only to ambiguous odour mixtures but also to
553  the conditioned negative odour (4). This decrease has been suggested to indicate an
554  improved ability to differentiate odours rather than a negative bias in judgement (10). In

555  our experiment, however, the bees were perfectly accurate when responding to both

26


https://doi.org/10.1101/2023.10.06.561175
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.06.561175; this version posted October 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

556  conditioned cues (high and low) in the tests. The drift diffusion model further indicates that
557  the stress treatments did not change the sensory noise. Our manipulations thus did not
558  impair the colour discrimination abilities and memory of the bees. The preservation of high
559  colour discrimination abilities is not surprising, as previous studies on Drosophila have
560  successfully used shaking in aversive learning paradigms (25). Similar trapping
561 mechanisms to the ones we used have also been employed in aversive learning tasks in
562  bees (26).

563

564  Active choices are better indicators of judgments than latencies

565 Latency is often used in go/no-go judgment bias tests to evaluate the emotional states of
566  animals (6). When evaluating an emotional state, it is important to determine whether it is
567  positive or negative (known as valence). However, relying solely on latency as a measure
568  ofvalence is not always reliable, as it can be affected by other factors unrelated to emotions.
569  Anincrease in approach latency may be associated with a general increase in reactivity and
570 arousal, for example, due to the increased energetic demands after experiencing stressful
571  events (27). It may also indicate a shift in the perceived value of the reward and differences
572  in motivation (28). Relying solely on latency can therefore make it challenging to interpret
573  the results of judgment bias tests. For instance, exposure to a positive event has been
574  reported to cause both longer (29) and shorter (30) response times to ambiguous stimuli.
575

576  Only one study has used latencies to measure emotion-like states in bees (6). This study
577  used a go/no-go type of judgment bias test to demonstrate an optimistic bias in bumblebees

578 after receiving an unexpected reward of sugar solution. As predicted, unexpected rewards
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579 reduced the latency with which bees approached ambiguous stimuli. However, the
580 treatment also caused an increase in thoracic temperature which has been linked to
581 increased motivation for foraging in other studies (31). Further experiments did indicate
582  that optimism was a more plausible explanation, but choice latency clearly could be
583 influenced by motivational changes as well as judgements. Our results showed that after
584  trapping, bees had shorter latencies than the control bees. This could, in principle, have
585 indicated a positive state, again demonstrating the difficulty of using latencies alone to
586 interpret judgement bias data. However, since our study was an active choice design, we
587  could more reliably use the choices made by the bees rather than their latencies. Choices
588 can better indicate affective valence, showing that the trapped bees were in a pessimistic
589 state in our study. This makes a strong argument in favour of active choice judgement bias
590 tasks such as the one we used in our study.

591

592  Pessimistic choices by bees are related to a significant change in prior expectations

593  To unravel the potential mechanisms underlying the choices made by the bees, we
594  employed a signal detection approach, which has been previously suggested as a valuable
595 tool for investigating affective biases (32). A recent study has suggested that judgement
596  biases in bees may be caused by a shift in stimulus-response curves (7). However, this
597  study did not investigate the underlying causal mechanisms of this shift. In our model, the
598 estimation of future outcomes combines estimates of the probability of an outcome
599  occurring and the magnitude of the payoff from an outcome. Both the signal detection and
600  drift diffusion analyses demonstrate that control bees exhibit a higher probability of

601  responding optimistically to ambiguous cues, indicating an expectation of high rewards.

28


https://doi.org/10.1101/2023.10.06.561175
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.06.561175; this version posted October 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

602  Such a bias would not be suboptimal as it is in fact what is predicted by a rational, fully
603 informed strategy which optimises expected reward. Even if the bees are estimating the
604  priors correctly as 50-50, the difference in reward utility will still shift the decision
605  boundary towards the cue indicating low reward (Fig. 4A). Our model shows that the
606  control bees are behaving as if 50% sucrose is 3.6 times more valuable, relative to water
607  than 30% sucrose. Thus, the data admit the possibility that the bees’ behaviour is
608  completely rational and unbiased, and the 50% sucrose is much more rewarding.

609

610  However, the decision boundary and drift rate for the stressed bees are harder to interpret.
611  Here, the decision boundary is to the /eft of neutral and the drift rate is negative. Previous
612  studies have shown that acute stress can increase an animal’s sensitivity to the reward (33).
613  However, the observed left shift of the decision boundary in stressed bees cannot plausibly
614  reflect such a change in reward sensitivity since a leftward shift could only be produced if
615 the value of high and low rewards were swapped, i.e., if 50% sucrose became less
616  rewarding than 30%. However, it could reflect a pessimistic bias in expectations, i.e., that
617  the stressed bees behave as if high-reward priors are less likely (Pui < PLo), perhaps because
618  in nature high rewards are indeed scarcer when conditions are stressful. This can account
619  for a leftward shift, but the large quantitative extent of the shift is still surprising. Since the
620  noise remains relatively small, as indicated by the perfect performance for high and low
621  cues, we have to postulate enormous changes in the priors to produce the observed shift.
622  To obtain the decision boundary of 2.55 inferred for shaken bees, we would have to
623  postulate that shaken bees estimate Pr, = 94%, i.e., they expect a high reward to be

624  available on only one trial in 20. This assumes that the reward utility remains the same,
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625  with a high reward 3.6 times as valuable as a low. If the relative utility of the high reward
626  increased, e.g., because of an increased need for sucrose after stress (27), the priors would
627  have to shift even further from 50%. However, one possibility is that, contrary to the
628  assumptions of our model, the noise was not uniform for all cues, and there was more
629  sensory noise on intermediate values of the cue. If this were so, the change in priors would
630  not need to be as dramatic, although the basic result of changed priors would remain true.
631

632 By employing an active choice judgment bias task, our results further support the
633  possibility of emotion-like states in bees and suggest that these states could be found across
634  very different animals. By implementing a more demanding active choice design, we
635  provide robust evidence that neither motivational factors nor colour discrimination alone
636  can account for the observed cognitive biases. Importantly, our modelling indicates that
637  the pessimistic-like behaviour displayed by bees in a negative state represents a significant
638  shift in their prior expectations of rewards. These insights offer the first analytical models
639  of the underlying causal mechanisms of state-dependent judgment biases in insects,
640  opening up new avenues for exploring state-dependent decision-making in insects.
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774  Figures and Tables

775
A Low-value reward cue High-value reward cue
(30% sugar solution vs water) (50% sugar solution vs water)
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Ambiguous test cue
Optimistic A " Pessimistic
choice choice
776

777  Figure 1. Experimental Protocol. A) Training phase. Bees were trained to associate two
778  colors, green and blue, presented on an LED screen with different sugar rewards at different
779  locations. The bees were presented one color at a time in pseudorandomized order. The
780  figure depicts a training scenario with green associated with a low reward (30% sucrose
781  solution) in the right chamber and blue with a high reward (50% sucrose solution) in the
782  left chamber. The association between color, reward and location was counterbalanced
783  across trials. Further details in the text. B) Cue colors plotted in bee color space (color cue:

784 B, blue; NB, near blue; M, medium; NG, near green; G, green). The three vertices
38
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785  correspond to maximum excitation of photoreceptors sensitive to blue, green and
786  ultraviolet (UV) light. The distance from the center to any vertex is 1 and the distance
787  between points represents hue discriminability, with 0.1 being easily distinguishable. C)
788  Judgement bias testing. The test phase consisted of five trials with different colors
789  presented on the screen in a pseudorandom order (cue value: H, high; NH, near high; M,
790  medium; NL, near low; G, low). The colors included the two conditioned colors and three
791  ambiguous colors of intermediate value. In our example here, the screen shows the medium
792  color with blue as the high-reward color (H) and green as the low-reward color (L), but this
793  was counterbalanced across bees. Entering a chamber associated with a high reward during
794  training was considered an optimistic choice, while entering a chamber associated with a

795  low reward during training was deemed a pessimistic choice.

796

797
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799  Figure 2. Bee responses to test cues. A) Proportion of bees (N = 16 per treatment) making
800 an optimistic choice (choosing a reward chamber associated with a high reward) in

801 response to each of five cues. B) Latency of making the choice in response to each of five
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802  cue values (N = 16 bees per treatment). C) Average ingestion rate of high reward (50%
803  sugar solution) for bees in each treatment group (N = 12 bees per treatment). The treatment
804  groups were control (blue), shaking (red), and trapping (orange). The test cues were high,
805  near high, medium, near low, and low value cues depending on their distance to the colors
806  of high- and low-reward cues. Points and bars represent means, and the shaded areas and
807  error bars represent 95% bootstrapped confidence intervals. Dots represent values form

808 individual bees.
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814  Figure 3. Bee decision-making boundaries and priors fitted by a signal-detection
815  model. Curves depict the probability density functions for responses based on the internal

816  signal x indicating a low reward. In each case, the original distribution has been weighted
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817 by the product of the value of that reward and its probability of occurring (see methods,
818  Equation 5). The two curves in each panel depict the probabilities that the cue indicates
819  high reward (green, centred on 1) or low reward (blue, centred on 5). Solid lines depict the
820  decision boundary B inferred from the Generalized Linear Mixed Model fit to our data.
821  Dotted lines indicate the medium point for comparison. Regions to the right of the solid
822  boundary line are regions where the bee makes pessimistic choices (shaded blue). Regions
823  to the left are regions where the bee makes optimistic choices (shaded green). Arrows
824  depict the shift in boundaries compared to the control condition. The three panels depict
825  the conditions for the Control (top), Shaking (middle) and Trapping (bottom) treatments.
826  Note the change in axes in the lower two panels.

827

828
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830  Figure 4. Drift diffusion model. A) Proportion of optimistic choices made by the bees in
831 each treatment in response to the different cues. Points show the data, dashed curves show

832  the predictions of a fitted logistic regression model with main effects of Treatment and Cue
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833  but no interaction. Solid curves show predictions of a fitted drift diffusion model. Colours
834  depict the different treatments: Control (blue lines), Shaking (red lines) and Trapping
835  (orange lines). B) Drift diffusion model fit to latencies. Filled symbols linked with lines
836  show median latencies as a function of the percentage of responses made, for pessimistic
837  (top) and optimistic (bottom) responses in the three treatments (columns). Empty symbols
838  show predictions of the fitted drift diffusion model. Symbols show Cue value. There is a
839  high percentage of optimistic responses for high (triangles) and near high (diamonds) cues
840 and a high proportion of pessimistic responses for low (inverted triangles) and near low
841  (squares) cues.
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