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Abstract 
Background 

Visualization is an indispensable facet of genomic data analysis. Despite the abundance of 

specialized visualization tools, there remains a distinct need for tailored solutions. However, their 

implementation typically requires extensive programming expertise from bioinformaticians and 

software developers, especially when building interactive applications. Toolkits based on 

visualization grammars offer a more accessible, declarative way to author new visualizations. 

Nevertheless, current grammar-based solutions fall short in adequately supporting the interactive 

analysis of large data sets with extensive sample collections, a pivotal task often encountered in 

cancer research. 

Results 

We present GenomeSpy, a grammar-based toolkit for authoring tailored, interactive visualizations 

for genomic data analysis. Users can implement new visualization designs with little effort by using 

combinatorial building blocks that are put together with a declarative language. These fully 

customizable visualizations can be embedded in web pages or end-user-oriented applications. The 

toolkit also includes a fully customizable but user-friendly application for analyzing sample 

collections, which may comprise genomic and clinical data. Findings can be bookmarked and 

shared as links that incorporate provenance information. A distinctive element of GenomeSpy’s 

architecture is its effective use of the graphics processing unit (GPU) in all rendering. GPU usage 

enables a high frame rate and smoothly animated interactions, such as navigation within a genome. 

We demonstrate the utility of GenomeSpy by characterizing the genomic landscape of 753 ovarian 

cancer samples from patients in the DECIDER clinical trial. Our results expand the understanding 

of the genomic architecture in ovarian cancer, particularly the diversity of chromosomal instability. 

We also show how GenomeSpy enabled the discovery of clinically actionable genomic aberrations. 

Conclusions 

GenomeSpy is a visualization toolkit applicable to a wide range of tasks pertinent to genome 

analysis. It offers high flexibility and exceptional performance in interactive analysis. The toolkit is 

open source with an MIT license, implemented in JavaScript, and available at 

https://genomespy.app/.  
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Background 
Effective visualization facilitates hypothesis generation and the assessment of automatic analyses, 

making it an indispensable facet of genomic data analysis [1]. However, interpreting complex 

genomic data sets calls for visualization methods tailored to the analyzed data [2], a need 

underscored by the availability of numerous special-purpose tools [3, 4]. Implementing tailored 

visualizations, particularly those that offer interactivity, typically necessitates developing new 

software packages from scratch or writing plugins for existing ones, such as the modular JBrowse 2 

[5] genome browser. This laborious process demands considerable programming expertise that is 

beyond the scope of most bioinformaticians. 

Visualization grammars like ggplot2 [6], Vega-Lite [7], and the genomic-data-focused Gosling [8] 

and ggbio [9], which all build upon the concept initially presented in the Grammar of Graphics [10], 

support tailored visualizations with a more accessible approach: instead of using an imperative 

programming language, they are specified using combinatorial building blocks such as graphical 

marks, scales, transformations, and view compositions, which are put together using a declarative 

language. However, none of these grammar-based solutions sufficiently cater to the typical analysis 

task in cancer research: the exploration and analysis of large sample collections to find patterns and 

outliers in cohorts. They either lack support for genomic data, fail to visualize numerous concurrent 

samples, disallow interactive filtering and grouping, or underperform with large data sets. 

Herein, we present GenomeSpy, a toolkit designed to simplify the crafting of interactive 

visualizations and empower end users to effectively explore and analyze large data sets, particularly 

in cancer research. The toolkit features a grammar that enables effortless implementation of 

different visualization strategies (Figure 1). This characteristic makes GenomeSpy fundamentally 

distinct from genome browsers, such as IGV [11], igv.js [12],  JBrowse 2, and UCSC Genome 

Browser [13], which comprise pre-defined track types designed for specific data formats that are 

displayed using rigid visual encodings. In addition, we incorporated the grammar into an analysis 

application for sample collections, with a pronounced focus on fluid interaction. This design 

principle aims to make interaction with visualizations more rewarding, ultimately enhancing users’ 

performance [14]. Fluid interaction changes browsing and exploration, which are considered a rate-

limiting step in data analysis [2], into an endeavor that fosters insights. 

We demonstrate the utility and key features of GenomeSpy by exploring and analyzing 753 whole-

genome-sequenced (WGS) samples from 215 patients who belong to prospective, longitudinal, 
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multi-region observational study DECIDER (Multi-layer Data to Improve Diagnosis, Predict 

Therapy Resistance and Suggest Targeted Therapies in HGSOC; ClinicalTrials.gov identifier: 

NCT04846933) that started recruitment in 2012. The DECIDER trial focuses on characterizing and 

overcoming therapy resistance in ovarian high-grade serous carcinoma (HGSC), the most common 

and aggressive epithelial ovarian cancer subtype. The standard-of-care (SOC) for HGSC consists of 

debulking surgery and platinum-taxane chemotherapy, often combined with maintenance therapy 

with ADP ribose polymerase (PARP) or VEGF pathway inhibitors [15]. While ~80% of HGSC 

patients respond well to the SOC, most of the patients suffer from recurrence and rapid disease 

progression leading to five-year survival rate of only <40% [16]. Except for nearly 100% prevalent 

TP53 mutations, HGSC lacks recurrent mutations but is characterized by complex genomes with 

large-scale copy-number alterations, hindering a deeper mechanistic understanding of the disease 

[17, 18]. Furthermore, diagnosis is often complicated by rare morphologic and molecular traits [19, 

20]. Herein, our hypothesis is that interpreting large genomics data sets from genomically complex 

cancers, such as HGSC, requires tailored visualization methods, such as one built with GenomeSpy. 
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Figure 1: Overview of GenomeSpy. A GenomeSpy enables tailored visualizations through its JSON-based 
visualization grammar, which defines how the building blocks, such as marks and scales, can be combined 

into a visualization specification. Instead of relying on pre-defined templates or track types, the user can 

freely compose visualizations from various graphical marks and map data attributes to different visual 

channels, such as color and position. B GenomeSpy core library parses the specification and renders it 

using GPU-accelerated graphics to ensure smooth interactions such as zooming and panning. Interactive 

versions of the above examples are available at https://genomespy.app/. C GenomeSpy App builds upon the 

core and enables the analysis of sample collections. The above visualization with 753 samples is available 
for exploration at https://csbi.ltdk.helsinki.fi/p/genomespy-preprint/ 
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Results 
GenomeSpy is a JavaScript-based toolkit that allows developers and bioinformaticians to build 

interactive visualizations for genome analysis. To construct such a visualization, a user writes a 

visualization specification in JavaScript Object Notation (JSON) format, adhering to the rules of the 

visualization grammar (Figure 1A). GenomeSpy’s grammar draws inspiration from the design 

principles of Vega-Lite, a high-level grammar of interactive graphics [7], enhancing it for robust 

support of genomic data (Supplementary Note). Figure 2 demonstrates GenomeSpy’s grammar-

based approach with a typical use case: a nucleotide sequence of a reference genome. 

 
Figure 2: Specifying a visualization of a reference nucleotide sequence using the grammar. A The example 

visualization comprises letters that are superimposed on colored rectangles. The genomic axis is generated 

automatically. B The GenomeSpy core library provides no predefined track types. Instead, the visualization 

author supplies a JSON-based specification that defines how the building blocks are put together. (1) The 

data property specifies a data source. In this example, data are loaded lazily from an indexed FASTA file as 
the user navigates the genome. (2) Optional transformations modify the data stream. Here, the sequence 

strings provided by the data source are split into data objects representing individual nucleotides with their 

coordinates. (3) The encoding property allows mapping data fields to visual channels. The x axis is treated 

as genomic coordinates, as it has a “locus” data type. (4) The layer property composes multiple child views 

by layering them. (5) The mark property specifies the graphical mark to be used in a view. Here, “rect” is 

used for the background rectangles and “text” for the bases. N.B. The specification has been simplified for 

clarity by omitting non-critical properties. A complete example is available in GenomeSpy’s documentation. 

A

B {
"genome": { "name": "hg38" },

"data": {
"lazy": {

"type": "indexedFasta",
"url": "https://data.genomespy.app/genomes/hg38/hg38.fa"

}
},

"transform": [
{ "type": "flattenSequence", "field": "sequence", "as": ["rawPos", "base"] },
{ "type": "formula", "expr": "datum.rawPos + datum.start", "as": "pos" }

],

"encoding": {
"x": { "chrom": "chrom", "pos": "pos", "type": "locus" },
"color": { "field": "base", "type": "nominal" }

},

"layer": [
{ "mark": "rect" },
{

"mark": "text",
"encoding": {

"color": { "value": "black" },
"text": { "field": "base" }

}
}

]
}

1

2

3

4
5
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The core library constitutes the toolkit’s main component. It implements the grammar and renders 

the visualization according to the provided specification (Figure 1B). The library can serve as a 

component in JavaScript web applications, or it can be embedded on web pages such as Observable 

notebooks (https://observablehq.com/collection/@tuner/genomespy). An example of a special-

purpose application built using the core library is SegmentModel Spy (Figure 3, Supplementary 

Note), which allows a comprehensive assessment of copy-number segmentation output from the 

Genome Analysis Toolkit (GATK) [21]. A crucial element in the core library’s architecture is its 

use of GPU acceleration through the WebGL 2 API for all graphics and scale transformations 

(Supplementary Note). GPU acceleration enables efficient rendering with a high frame rate and 

minimal latency, which facilitates insight generation [22]. It also allows fluid, smoothly animated 

interactions, such as continuous zooming and panning in large data sets. While smooth transition 

animations make the user experience attractive, they have also been shown to improve users’ 

perception of causality during interactions [23]. 

The app is a general-purpose analytics application for large sample collections, built upon the core 

library (Figure 1C). It permits interactive analysis of genomic data and metadata, such as clinical 

variables. Using the grammar, users can adapt the app for different data types and analysis tasks. 

The app allows storing its state in the form of bookmarks or shareable links. The state comprises 

current scale domains, i.e., shown genomic regions and the visibility of configurable visualization 

elements. The state also captures the filtering, grouping, and sorting actions performed on the 

samples, serving as provenance information that allows the recipient of a shared bookmark link to 

understand which steps led to a finding or insight [24, 25]. Finally, bookmarks also support optional 

Markdown-formatted notes, which allow communicating background information or implications 

related to the findings. 

The playground web application (https://genomespy.app/playground/) integrates a code editor and a 

visualization, providing a convenient way to sketch new visualization designs. It is also the easiest 

method for new users to get started with GenomeSpy. 

In addition to a specification, GenomeSpy visualizations need data, which can be provided as inline 

JavaScript objects in the specification or loaded from external files. CSV, TSV, and JSON files 

provide the highest flexibility. However, large data sets are better loaded lazily and only partially in 

response to user interactions, which is supported through compressed and indexed formats, such as 

BigBed, BigWig, FASTA, and GFF3 files. Additionally, the JavaScript API provides methods to 
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dynamically update the data sets, enabling advanced use cases, such as integrations with and within 

other applications. 

 

 
Figure 3: SegmentModel Spy demonstrates GenomeSpy’s utility as a visualization library in JavaScript web 

applications. It is a simple, end-user-oriented application for analyzing GATK’s copy-number segmentation 

results, allowing users to open data files effortlessly for swift navigation and inspection. The application 

generates a visualization specification and passes it with the parsed data files to the embedded GenomeSpy 

core library for visualization. Notably, all data processing occurs in the user’s web browser without the 

involvement of a remote server, enabling the analysis of sensitive data. SegmentModel Spy is available at 
https://genomespy.app/segmentmodel/. 
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Characterizing the genomic landscape of HGSC 

We demonstrate the utility of the toolkit and highlight GenomeSpy App’s key features by showing 

how they enable the interpretation of WGS data from 753 samples of 215 patients belonging to the 

DECIDER clinical trial. Using GenomeSpy’s visualization grammar, we adapted the app for our 

data by specifying a visualization comprising segmented copy number alterations (CNA), loss of 

heterozygosity (LOH), somatic short variants (SSVs), and clinical data as shown in Figure 1C. We 

also specified several tracks exhibiting auxiliary information, such as ENCODE Blacklist [26], 

RefSeq Gene annotations [27], COSMIC Cancer Gene Census [28] and genes associated with 

platinum resistance [29]. Some of these tracks are hidden by default and can be activated from the 

toolbar. The visualization is available for exploration at https://csbi.ltdk.helsinki.fi/p/genomespy-

preprint/. 

Rapid transitions between the bird’s eye view and a closeup facilitates exploration 

To streamline the exploration of large sample collections, we developed an interaction that rapidly 

transits the visualization from the bird’s eye view, which fits the whole collection into the available 

vertical space, to a close-up view, where the samples under the mouse cursor are shown in a larger 

size (Supplementary Video). This interaction allows for pinpointing interesting outliers among 

hundreds of samples and rapidly revealing them in sufficient detail for visual analysis, streamlining 

the exploration process. GenomeSpy’s GPU-accelerated rendering is pivotal in this feature, as it 

guarantees smooth transition between the views. 

We used the bird’s eye view to gain an overview of the cohort. While recurrent TP53 mutations and 

LOH on chromosome 17 (chr17) are known genomic aberrations in HGSC and contribute to tumor 

evolution [18, 30, 31], the concurrent display of both copy-number values and LOH revealed a 

striking pattern in the bird’s eye view: regardless of copy-number gains and losses in chr17, all but 

five patients presented a complete LOH in the whole chromosome (Figure 4). The whole-

chromosome LOH suggests an early mitotic nondisjunction affecting the entire chromosome, with 

subsequent alterations, such as 17q amplifications, arising at a later stage.  

We then looked more closely at the outliers that had retained chr17 heterozygosity by opening the 

close-up view (Supplementary video). Three of these outliers lacked a TP53 mutation, which is 

atypical in HGSC. Thus, a gynecological pathologist re-evaluated these cases, and the diagnoses of 

the patients EOC466 and EOC545 were changed to low-grade serous carcinoma (LGSC) and 

EOC571 to endometrioid carcinoma. One of the outliers had lost heterozygosity only on 17p and 
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was subsequently found to present endometroid carcinoma. The only HGSC tumor without chr17 

LOH (patient EOC1106) stood out with a massive number of somatic mutations, indicating a 

possible mismatch-repair deficiency, which is a hallmark of Lynch syndrome. As Lynch syndrome 

results from germline mutations in DNA mismatch repair genes, we examined them and found a 

germline mutation in MSH6, which accounts for 10-20% of Lynch syndromes in colorectal cancer 

[32]. Since Lynch syndrome is dominantly inherited, these results were reported to a clinical 

geneticist to be discussed with the patient’s family.   

 

Figure 4: A bird’s eye view of all patients reveals a column of TP53 mutations (dark dots) together with 

extensive LOH (gray overlay) on chr17. Only the sample with the highest purity (at least 15%) is included 

from each patient. One of the samples presents a very high number of SSVs and retained chr17 

heterozygosity. The remaining four samples without full-chromosome LOH were from non-HGSC tumors. 

Link: https://csbi.ltdk.helsinki.fi/p/genomespy-preprint/#bookmark:TP53-and-LOH-in-chr17   

Incremental, reversible actions enable rapid manipulation of the sample collection 

Data exploration often involves the removal of irrelevant data items or organizing the data to 

uncover patterns. To facilitate this process, we developed a direct manipulation interface [33] that 

allows for incremental actions on abstract attributes such as clinical metadata or measurements at 

genomic loci. These actions can be accessed through a context menu (Figure 5), permitting the user 

to easily perform common tasks such as retaining samples belonging to a particular categorical class 

or stratifying samples based on a quantitative value at a specific genomic coordinate. Additionally, 

the actions are reversible, allowing for backtracking and further exploration of related questions. 
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The actions also form a provenance record of the steps taken in the data exploration process, 

ensuring transparency and reproducibility. 

HGSC is characterized by extensive copy-number aberrations [18]. However, we observed 

considerable variation in the number of copy-number breakpoints between the patients. To better 

understand this variation, we applied a series of incremental actions to shape and stratify our sample 

set. First, we selected samples having purity at least 15%. We then sorted the samples into 

descending order by the number of breakpoints and retained the first, representative sample from 

each patient, which corresponded to the most fragmented one. Finally, we split the samples into 

groups based on the number of breakpoints and analyzed the patients with the most and least 

fragmented tumor genomes (Figure 5).  

 
Figure 5: Top and bottom five samples by the number of copy-number breakpoints. Only the sample with the 

highest number of breakpoints was chosen from each patient. A nested, second-level grouping emphasizes 

the diagnosis attribute. The upper group exhibits a striking pattern of short amplifications associated with 

CDK12 inactivation. The bottom group contains three samples from non-HGSC tumors and a peculiar HGSC 

tumor sample (EOC754_pPer1) with very few CNAs. The view was constructed using the incremental 
actions available through the attribute context menu (shown in the screenshot). Link: 

https://csbi.ltdk.helsinki.fi/p/genomespy-preprint/#bookmark:High-and-low-number-of-breakpoints  

The five most highly fragmented samples showed a striking pattern of numerous focal 

amplifications evenly distributed throughout the genome. These amplifications ranged in size from 

~100kb to ~10Mb. The zoomed-out whole-genome view also revealed deleterious (stop-gain or 

frameshift) CDK12 SSVs (visible in chr17 in the figure) in four out of the five samples. The allele 
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frequencies of the variants matched the tumor purity, suggesting homozygous mutations and thus, 

biallelic inactivation. Of note, four of these five samples presented copy-neutral LOH in the CDK12 

locus, suggesting subsequent amplification after the initial chr17 loss. Previous research has linked 

CDK12 inactivation to a specific type of chromosomal instability characterized by tandem 

duplications with a bimodal size distribution, which is in line with our observation [34]. 

Interestingly, when visualizing all samples from these patients (Figure 6), the amplification pattern 

is nearly identical among the samples of each patient, implying subsequent stabilization of the 

genomes. 

 
Figure 6: The amplified segments associated with the tandem-duplication phenotype and CDK12 inactivation 

are largely identical within the samples of each patient, suggesting subsequent genome stabilization. 

Samples with a very low tumor purity, which are indicated by light green color in the metadata heatmap, 

suffer from low segmentation sensitivity and lack some of the segments that were detected in high-purity 

samples. Link: https://csbi.ltdk.helsinki.fi/p/genomespy-preprint/#bookmark:Top-5-fragmented-patients 

Next, we focused on the five patients with the fewest breakpoints. Two of them (EOC466 and 

EOC545) were previously found to have LGSC based on the lack of a TP53 mutation. Additionally, 

patient EOC530, who also lacked a TP53 mutation but still exhibited chr17 LOH, had a non-serous 

neoplasm diagnosis. The two remaining patients had an HGSC diagnosis, but EOC754’s tumor 

presented a peculiar copy-number profile with aberrations only in three chromosomes. Although the 

mutated TP53 and chr17 LOH in this tumor were consistent with the histological diagnosis of 

HGSC, the copy-number profile was surprising since it had even fewer arm-level aberrations than 

the two samples from LGSC patients. 

We further analyzed the cohort for MAPK-pathway genes commonly altered in LGSC [35] and 

found NRAS:c.182A>G:p.Q61R in the samples from EOC530, EOC545, and EOC754, and another 
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oncogenic aberration BRAF:c.1862A>G:p.N621S in samples from EOC466. Otherwise, oncogenic 

NRAS mutations were not detected in the entire cohort, and BRAF mutations were present in only 

two additional patients, EOC182 and EOC438, with characteristically simple copy number profiles. 

Generally, NRAS mutations are rarely seen in HGSC carcinomas but more commonly in borderline 

or low-grade serous neoplasms [36], as seen in patient EOC545. 

As patient EOC754 exhibited an NRAS mutation and an atypical copy-number profile resembling 

the low-grade serous carcinomas of patients EOC545 and EOC466, a gynecological pathologist 

performed a retrospective histological review of her archival tumor samples. The tumor had a 

serous phenotype, but in terms of histological architecture, cytological atypia, and mitotic rate, the 

tumor, especially in ovarian samples, showed areas with unequivocally low-grade morphology in 

addition to areas with more pronounced pleiomorphism and mitotic activity. Yet, all four samples 

with sequencing data from this patient showed LOH on the whole chromosome 17 and a clonal 

TP53 mutation in addition to NRAS. Cases with such genomic and morphological features from 

both high and low-grade serous carcinomas have previously been reported as rare variants of serous 

ovarian neoplasms [20, 37]. A further study on the potential origin and genomic and histological 

evolution of this and the two BRAF-mutated HGSC cases discovered through exploration in 

GenomeSpy is ongoing. 

Score-based semantic zoom emphasizes important data items and mitigates overplotting 

While somatic mutations are one of the driving forces behind tumorigenesis, most of the detected 

SSVs are passengers without contribution to disease. However, they clutter the view, making 

prompt identification of the pathogenic driver SSVs challenging. On the other hand, displaying all 

SSVs at once may be advantageous when an analyst studies a small genomic region that may 

accommodate SSVs with still uncertain pathogenicity. To address these conflicting needs, we 

developed score-based semantic zoom, a technique that couples a filter on an arbitrarily distributed 

quantitative attribute (i.e., a score) with the zoom level (Supplementary Note, Supplementary 

Video). In the zoomed-out view, only the most important, i.e., the highest scored data points, are 

shown, allowing the user to locate potentially important data items for a closer examination. As the 

user zooms in, items with lower scores become visible automatically, without the need to adjust 

separate filter settings. This behavior resembles online map applications where only the largest and 

most well-known place names are initially visible, with more names appearing gradually as the map 

is zoomed in. This technique also helps to avoid overplotting by controlling the number of 

concurrently visible data items. 
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To facilitate analysis and control overplotting, we applied the semantic zoom technique to all SSVs 

in the data set. For scoring, we used the Combined Annotation-Dependent Depletion (CADD) score 

[38], a single measure that integrates a diverse set of annotations. Thus, only the most likely 

pathogenic variants are shown at each zoom level. For instance, the recurrent TP53 mutations and 

the CDK12 mutations linked to chromosomal instability are visible already in the fully zoomed-out 

view (Figure 5), while the lower-scored variants remain out of sight until the user zooms in closer. 

This feature allowed us to instantly discover the pathogenic CDK12 SSVs in the highly fragmented 

samples. 

Data summarization allows easier comparison of stratified data 

Although a CNA heatmap presents all details in data, a summary, such as the GISTIC G score [39], 

enables an easier perception of potential cancer driver regions and facilitates comparison of groups. 

Accordingly, we used GenomeSpy’s visualization grammar to specify a summary track that 

computes G scores over the segmented copy-number data. The summary incorporates a pipeline of 

transformations that inputs the copy-number values from the currently visible samples and 

computes a weighted coverage separately for amplifications and deletions (see Methods). A 

summary of the highest purity samples from all HGSC patients revealed a typical HGSC CNA 

landscape with prominent peaks around common HGSC driver genes [18], such as MECOM, MYC, 

KRAS, and CCNE1 (Figure 7). 

Next, we asked whether the recurrent amplification and deletion peaks in HGSC could be explained 

by clinical attributes or correlation of potential driver regions. Because the G-score summary track 

reflects the currently visible samples, and is computed separately for each group, we could easily 

analyze stratified data by visually comparing the G scores. However, stratifications failed to reveal 

distinguishable differences with attributes other than tumor ploidy. When we stratified the tumors 

into two groups approximately representing whole genome duplicated (WGD) and non-WGD 

tumors, an evident focal amplification peak around CCNE1 in chr19 was present only in the WGD 

group, as shown in Figure 8. Previous research has associated such CCNE1 amplifications with 

polyploidy and poor clinical outcome [40]. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.06.561159doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561159
http://creativecommons.org/licenses/by-nd/4.0/


 15 

 
Figure 7: Using G score to summarize the copy-number landscape of the cohort. It is shown as an area chart 

above the copy-number heatmap. We used building blocks such as sample summarization, various 

transformations, and view compositions in the visualization specification to calculate and display the G score. 

Link: https://csbi.ltdk.helsinki.fi/p/genomespy-preprint/#bookmark:Copy-number-landscape 

 

Figure 8: HGSC samples stratified by ploidy revealed higher CCNE1 amplifications (shown in red) in the 

upper group that represents whole-genome-duplicated samples. Each group has a separately computed G-

score summary to allow comparison. The opened drop-down menu reveals the provenance information 
comprising actions performed on the samples. Since most patients have samples from multiple tissues and 

time points, we kept only the highest-purity sample of each patient. Subsequently, we used the ploidy 

threshold of 2.2 to split the samples into two groups approximately representing non-WGD and WGD. 

Finally, we sorted the samples by the copy number of CCNE1 to better illustrate the distributions of the copy-

number log2(R) values in both groups. Link: https://csbi.ltdk.helsinki.fi/p/genomespy-

preprint/#bookmark:WGD-and-CCNE1  
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Data visualization helps in finding clinically actionable alterations  

With the increased efforts to guide treatment decisions based on genomics findings, there is a need 

to rapidly visualize genomes to verify findings and detect aberrations that were not caught with 

automatic data analysis pipelines. For example, BRCA1 is a tumor suppressor gene that contributes 

to DNA repair, and its mutation is an indication for targeted therapy with PARP inhibitors in HGSC 

[15].  

As the PARP inhibitors are currently the only genomic-guided targeted therapy in HGSC, we used 

GenomeSpy to visually inspect the loci of BRCA1 and other homologous recombination deficiency-

related genes in our samples and identified a suspicious BRCA1 region for the patient EOC763. A 

copy number pipeline, which employs GRIDSS [41] for joint structural-variation calling, confirmed 

a multi-exon in-frame deletion of BRCA1 (chr17:43096222-43108182del, p.(K45_S198delinsN)) in 

all sequenced tumor samples from patient EOC763 (Figure 9). The deletion comprised exons 4-8, 

covering half of the RING domain. With supporting information from mutation signature analysis 

and the known consequences of similar medium-long deletions of BRCA1 in ClinVar [42], we 

interpreted this BRCA1 allele as pathogenic. Accordingly, the finding enabled the use of a PARP 

inhibitor to treat the patient in a recurrent setting. This example highlights the potential of 

visualization methods, such as GenomeSpy, in searching for genomically-based treatments for 

cancer patients.  

 

Figure 9: Results from an experimental copy-number pipeline revealed a homozygous BRCA1 deletion in all 

tumor samples of patient EOC763. Because the pipeline could not directly output log2(R) and BAF values, 
we used the total copy number instead of log2(R) on the color channel of this visualization. Link: 

https://csbi.ltdk.helsinki.fi/p/genomespy-preprint/GRIDSS/ 
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Discussion 
Visual exploration is a necessary step in oncogenomic data analysis and knowledge extraction [43]. 

To facilitate the exploration, we developed GenomeSpy, a visualization toolkit for genomic data. 

Two main objectives steered the process: designing a generic toolkit that enables effortless 

authoring of tailored visualizations for different use cases and implementing a fully customizable 

application to analyze large cancer sample collections. We achieved the genericity by implementing 

a grammar optimized for genomic data and demonstrated its expressivity, i.e., its applicability to 

complex data, using the DECIDER cohort visualization. To support the swift analysis of sample 

collections, we applied the paradigm of fluid interaction [14], which manifested as several key 

features and influenced the overall architecture of the toolkit. For instance, we designed a GPU-

accelerated rendering engine to allow rapidly updating graphics with an extensive number of data 

points. In addition to supporting continuous zooming and panning, it enabled the interaction that 

transits between the bird’s eye view and a closeup view, allowing quick examination of outliers in 

data sets. Importantly, its smooth animation helps the user stay focused without losing track of data 

not currently on the screen. Similarly, the score-based semantic zoom controls overplotting during 

navigation, allowing the user to focus on the most important data items at each zoom level. Finally, 

the direct-manipulation interface [33] based on incremental actions enables quick and versatile 

stratification and exploration with support for backtracking, bookmarks, and provenance 

information. All these features aim to expedite the exploration and thus foster insights. 

GenomeSpy allowed us to characterize the genomic landscape of the DECIDER cohort, uncovering 

several interesting patterns. Among our findings, the extent and completeness of the chr17 LOH 

was one of the most surprising. Although such LOH has been previously found to occur in some 

ovarian carcinoma tumors [31], our data set shows that out of the 200 representative HGSC tumor 

samples having a purity of at least 15%, all but one, which had multiple TP53 mutations, presented 

whole-chromosome LOH on chr17. While the whole-chromosome LOH allows a nascent tumor to 

expunge the remaining wild-type TP53, the same mechanism may also contribute to the biallelic 

inactivation or reduced dosage of other tumor-suppressor genes in the same chromosome, such as 

CDK12, BRCA1, BRIP1, and NF1 [19, 44]. This hypothesis is supported by the pathogenic CDK12 

mutations associated with the tandem-duplicator phenotype. Homozygosity coupled with the copy-

neutral LOH in these mutations indicates early occurrence, before or soon after the whole-

chromosome loss. In addition to cohort characterization, GenomeSpy also enabled the discovery of 

exciting outliers, such as the tumor of patient EOC754 with traits from both HGSC and LGSC. 

Overall, the effective use of visual encodings and the high usability provided by fluid interaction 
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have established GenomeSpy as an indispensable analysis tool among our geneticists, especially 

with copy number data, whose interpretation requires a view of the larger genomic context. 

Moreover, an example of using GenomeSpy to facilitate the identification of genomic-based 

personalized treatment is the discovery of an actionable BRCA1 deletion, which was not detected 

with a commercial panel, most likely due to the small size of the deletion. 

GenomeSpy visualizations allow end users, such as geneticists, clinicians, and bioinformaticians, to 

analyze data sets effortlessly. To make GenomeSpy accessible to a broader audience and to directly 

support use cases where established visualization designs already exist, we plan to furnish pre-

defined visualization templates analogous to the common track types seen in genome browsers. 

Such templates will reduce the learning curve for new GenomeSpy users. Moreover, as the 

SegmentModel Spy example demonstrated (Figure 3), the toolkit can be used to build easy-to-use 

applications for specific analysis tasks. Expanding on this, we envision GenomeSpy as a foundation 

for a next-generation general-purpose genome browser that provides a comprehensive collection of 

data sets and pre-defined track types powered by extensive customizability and high-performance 

interactive graphics. Finally, although GenomeSpy’s grammar is already very expressive, our plans 

involve introducing additional building blocks. Examples of these include line and area marks, 

circular layouts, and parametrizable transformations, which all broaden the toolkit’s utility. 

Conclusions 
In conclusion, we have demonstrated GenomeSpy’s flexibility and utility with the visualization of a 

cohort from the DECIDER clinical trial, and we envision the toolkit as a foundation for many future 

applications. The grammar-based approach allows its capabilities to be mixed and matched 

creatively, enabling tailored visualization in new research challenges. GenomeSpy is open-source 

software and is available together with documentation at https://genomespy.app/. 
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Materials and Methods 
GenomeSpy Core 

The core library is written in JavaScript. It uses the WebGL API and the TWGL library 

(https://twgljs.org/) for GPU-accelerated graphics. In addition, D3 [45] and Vega [46] libraries are 

used for CPU-side scale transformations, data loading, and expression handling. Genomic file 

formats, such as indexed FASTA, BigWig, BigBed, and GFF3 are loaded using GMOD JavaScript 

libraries [5]. The core library is available as an NPM package, which can be imported into web 

applications, web pages, and Observable notebooks. A more detailed description of the architecture 

and visualization grammar is available in the Supplementary Note and the GenomeSpy website 

(https://genomespy.app/). 

GenomeSpy App 

The app builds upon the core library. It uses the Redux Toolkit (https://redux-toolkit.js.org/) for 

state management and provenance tracking and Lit (https://lit.dev/) for user-interface components. 

The application is available as an NPM package, which can be embedded on web pages together 

with a visualization specification and data. 

DECIDER Cohort 

“Multi-layer Data to Improve Diagnosis, Predict Therapy Resistance and Suggest Targeted 

Therapies in HGSOC” (DECIDER; ClinicalTrials.gov identifier: NCT04846933) is a prospective, 

longitudinal, multiregion observational study that began recruitment in 2012. Herein, we included 

215 patients treated at Turku University Hospital, Finland. The treatment was either primary 

debulking surgery (PDS), followed by a median of six cycles of platinum-taxane chemotherapy, or 

neoadjuvant chemotherapy (NACT), where primary laparoscopic operation with diagnostic tumor 

sampling was followed by three cycles of carboplatin and paclitaxel.  

Altogether we included all 753 tumor samples that had been whole-genome-sequenced when the 

cohort was formed. The samples comprise tumor tissue (tubo-ovarian, intra-abdominal, and other 

metastatic sites such as lymph nodes) and ascites from several phases of the disease.  

All patients participating in the study gave their informed consent. The study and the use of all 

clinical materials have been approved by the Ethics Committee of the Hospital District of 

Southwest Finland (ETMK) under decision number ETMK: 145/1801/2015. 
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Whole-Genome Sequencing 

Genomic DNA was extracted from tumor tissue or ascites cells and whole blood or buffy coats 

isolated from whole blood. After assessing DNA quality, the samples were whole-genome 

sequenced with either DNBSEQ (BGISEQ-500 or MGISEQ-2000, MGI Tech Co., Ltd., China), 

NovaSeq 6000 (Illumina, USA), or HiSeq X Ten (Illumina, USA) as 150bp paired end sequencing. 

Median coverage was ~47x (range 23–158x). Raw read data were processed with Trimmomatic 

[47], FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) in the Anduril 2 

workflow platform [48]. The reads were then aligned to the human genome GRCh38.d1.vd1 using 

BWA-MEM, followed by a duplicate removal with Picard Tools 

(http://broadinstitute.github.io/picard/) and base quality score [49] recalibration with the Genome 

Analysis Toolkit (GATK) [50]. 

Mutation Calling 

We called somatic mutations using GATK Mutect2 [51] with joint calling [52]. A panel of normals 

generated from 181 DECIDER and 99 TCGA blood-derived normal samples was used. Mutations 

were annotated using ANNOVAR [53], ClinVar [42], and CADD estimates for deleteriousness 

[38].  Germline mutations were jointly called using GATK [52] from 217 DECIDER normal 

samples with allele-specific variant quality score recalibration. Variant quality score recalibration 

was allele specific. Mutational signatures were fitted using COSMIC v3.2 signatures [54, 55], 

adjusted for GRCh38 nucleotide frequencies.  

Copy-Number Calling and Estimation of Ploidy and Tumor Purity 

We used GATK to perform the copy-number segmentation. The analysis pipeline follows the 

GATK best-practices documentation and builds upon the Anduril 2 platform. 

To collect the minor allele counts (b-allele frequency, BAF), we used all filtered biallelic germline 

SNPs with heterozygous calls (VAF between 40% and 60%) from each patient. Both read and 

allelic count collection excluded regions listed in the ENCODE blacklist [26] and our internal 

DECIDER blacklist, which is available as a track in the DECIDER visualization. The DECIDER 

blacklist includes regions having abs(log2(R)) > 0.2 in at least three of the 114 normal samples used 

as input data. The 136 regions in the DECIDER blacklist represent poorly aligned regions and 

population-level copy-number variance. We used platform-specific (HiSeq, DNBSEQ, and 

NovaSeq) panels of normals built from the normal samples to denoise the read counts. 
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Since the result of the actual segmentation affects downstream analyses such as ploidy and purity 

estimation, we visually evaluated the effect of the various parameters of GATK’s ModelSegments 

tool. In practice, we ran the segmentation for select samples using 729 different combination of 

values for the parameters and studied their effect using the SegmentModel Spy tool (Figure 3, 

Supplementary Note). Finally, we chose parameters that resulted in the subjectively best breakpoint 

inference results. For instance, short segments should be included, but false breakpoints related to 

GC-wave artifacts need to be avoided. The final parameters were as follows: number-of-

changepoints-penalty-factor: 1, kernel-variance-allele-fraction: 0, kernel-variance-copy-ratio: 0.2, 

kernel-scaling-allele-fraction: 0.1, smoothing-credible-interval-threshold-allele-fraction: 2, 

smoothing-credible-interval-threshold-copy-ratio: 10.  

After the segmentation, we used a reimplemented ASCAT algorithm [56] to estimate purity, ploidy, 

and allele-specific copy numbers. The original ASCAT R package was not directly applicable 

because it fails to accept data segmented using external tools. Our implementation also uses the 

variant-allele frequency (VAF) of truncal pathogenic TP53 mutation as additional evidence in 

selection of the optimal ploidy/purity solution. As nearly all patients have a homozygous TP53 

mutation in their cancer cells, we can use the VAF and the estimated total copy number (CN) of 

TP53 to approximate the purity: 

purityTP53 = 2 / ((CNTP53 / VAFTP53) − (CNTP53 − 2)). 

Patients having discordant ploidy estimates between their samples went through manual curation. 

Since the contribution of non-aberrant cells on the log2(R) and BAF values encumber visualization 

and further analyses, we calculated “purified” values, i.e., what the log2(R) would be in the absence 

of normal cells. 

Purified R, based on discussion in https://github.com/lima1/PureCN/issues/40: 

purifiedR = (purity × ploidy × R + 2 × (1 − purity) × (R − 1)) / (purity × ploidy) 

Purified BAF, derived from S2, S7, and S8 of (van Loo et al., 2010): 

f (af) = purity − 1 + R × af × (2 × (1 − purity) + purity × ploidy) 

purifiedBaf = f(baf) / (f(1 − baf) + f(baf)) 
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Experimental Copy-Number Pipeline for BRCA1/2 Analysis 

We called structural variants in a callset of 139 DECIDER patients using GRIDSS [41] with joint 

calling and performed the somatic filtering using GRIPSS 

(https://github.com/hartwigmedical/hmftools/tree/master/gripss) with a panel of normals from 

Dutch population [57] and the ENCODE blacklist [26]. The BAF was calculated using AMBER 

(https://github.com/hartwigmedical/hmftools/tree/master/amber) with the heterozygous SNP loci 

from the mutation calling. Read depth was extracted using COBALT 

(https://github.com/hartwigmedical/hmftools/tree/master/cobalt), which also performed GC 

normalization. Finally, we employed PURPLE [57] to combine BAF, read depth ratios, and 

structural variants to estimate purity, ploidy, and the copy-number profile of the samples. 

Pathogenic BRCA1/2 Mutations 

We curated somatic and germline short variants in BRCA1/2 genes. We considered a variant 

pathogenic, if it causes premature truncation in the canonical transcript or if it is annotated as 

pathogenic or likely pathogenic in the ClinVar [42] database. For patient homozygosity assessment, 

we compared allelic read counts against allele-specific copy numbers in the locus and purities in 

tumor samples with a minimum purity of 5%. A variant was considered homozygous, if it was the 

most likely explanation for the allelic read counts across a patient’s tumor samples. 

DECIDER Cohort Visualization 

We used the GenomeSpy app for the DECIDER visualization. Annotation tracks such as RefSeq 

genes are specified in separate JSON files, allowing easy reuse. The main JSON file specifies the 

visualization of metadata, SSVs, CNV, BAF, and the copy-number summary. GenomeSpy inputs 

all genomic and metadata from tab-separated values (TSV) files. 

Only SSVs with the CADD score of at least 10.0 or that were pathogenic according to ClinVar 

(Landrum et al., 2018) were included to reduce loading time and memory consumption. We used 

the purified log2(R) and BAF values for CNV and LOH, allowing more meaningful comparison, 

sorting, and grouping. To enable easier perception of aberrant BAF, we converted it into LOH using 

the formula: 

LOH = abs(BAF – 0.5) × 2. 

Here, zero indicates full heterozygosity, one indicates a total loss of heterozygosity. 
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The dynamically updating copy-number summary track replicates the G-score of GISTIC 1.0. 

Briefly, the dataflow processes amplifications and deletions separately. Only segments with 

abs(purifiedLogR) > 0.1 are included and abs(purifiedLogR) is clamped to 1.5. Finally, the 

dataflow computes a purifiedLogR-weighted coverage for the segments and divides it by the 

number of samples involved. Coverages of amplifications and deletions have separate layers in the 

visualization and are shown as red and blue, respectively. 

The RefSeq gene annotation track uses a popularity-based prioritization for the gene symbols [58], 

a method originally introduced in HiGlass [59]. Thus, at each zoom level, the symbols are handled 

in priority order and shown if there is still room on the track. 

Abbreviations 
BAF: B-allele frequency 

CNV: Copy number variance 

DECIDER: Multi-layer Data to Improve Diagnosis, Predict Therapy Resistance and Suggest 

Targeted Therapies in HGSOC 

GPU: Graphics processing unit 

JSON: JavaScript Object Notation 

LOH: Loss of heterozygosity 

PARP: ADP ribose polymerase 

SSV: Somatic short variant 

VAF: Variant allele frequency 

WGS: Whole-genome sequencing 
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