

1 **Epigenetic and physiological alterations in zebrafish subjected to hypergravity**

2

3

4 Marcela Salazar¹, Silvia Joly¹, Guillem Anglada-Escudé^{2,3}, Laia Ribas^{1*}

5

6 ¹ Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-
7 CSIC). Department of Renewable Marine Resources, 08003, Barcelona, Spain

8

9 ² Institut de Ciències de l'Espai - Consejo Superior de Investigaciones Científicas (ICE-
10 CSIC). Department of Astrophysics, 08193, UAB campus at Cerdanyola del Vallès,
11 Barcelona

12

13 ³ Institut d'Estudis Espacials de Catalunya – IEEC/CERCA, Gran Capità, 2-4, Edifici
14 Nexus, despatx 201, 08034 Barcelona

15

16 *Corresponding author

17 lribas@icm.csic.es

18

19

20

21

22

23

24

25

26

27

28

29

30

31 **Abstract**

32 Gravity is one of the most constant environmental factors across Earth's evolution and
33 all organisms are adapted to it. Consequently, spatial exploration has captured the
34 interest in studying the biological changes that physiological alterations are caused by
35 gravity. In the last two decades, epigenetics has explained how the environmental cues
36 are able to altered gene functions in the organisms. Although many studies addressed
37 gravity, the underlying biological and molecular mechanisms that are occurred in
38 altered gravity for those epigenetics-related mechanisms, are mostly inexistent. The
39 present study addressed the effects of hypergravity on development, behavior, gene
40 expression, and most importantly, on the epigenetic changes in a world-wide animal
41 model, the zebrafish (*Danio rerio*). To perform hypergravity experiments, a custom-
42 centrifuge simulating the large diameter centrifuge (100 rpm ~ 3 g) were designed and
43 zebrafish embryos were exposed during 5 days post fertilization (dpf). Results showed
44 a significant decrease of survival at 2 dpf but not significance in the hatching rate.
45 Physiological and morphological alterations including fish position, movement
46 frequency and swimming behavior showed significant changes due to hypergravity.
47 Epigenetic studies showed a significant hypermethylation of the genome of the
48 zebrafish larvae subjected to 5 days of hypergravity. A downregulation of the gene
49 expression of three epigenetic-related genes (*dnmt1*, *dnmt3*, and *tet1*), although not
50 significant, were further observed. Taken altogether, gravity alterations affected
51 biological responses including epigenetics in fish, providing a valuable roadmap of the
52 putative hazards of living beyond Earth.

53

54

55

56

57

58

59

60 **Keywords:** space, epigenetic, gravity, genes, aquaculture, fish, methylation

61

62 **Introduction**

63 Gravity is a fundamental physical component in the Earth's environment, and it plays a
64 crucial role, shaping the evolution of all life forms (Volkmann & Baluska, 2007). The
65 comprehension of the effects of this critical environmental factor is required for
66 astronauts and future settlements beyond Earth. Thus, since the beginning of the spatial
67 exploration, numerous studies in altered gravity have been performed in both
68 microgravity and hypergravity conditions (reviewed in (Hariom et al., 2021)). While
69 microgravity experiments are complex as they require the presence of samples in the
70 space —or in some cases by using microgravity simulator on Earth as clinostats with
71 their technical limitations— (Herranz et al., 2013), hypergravity experiments can be
72 easily simulated on Earth and, consequently, more convenient and considered as
73 ground-based studies.

74

75 For many years, hypergravity has been used as a model for understanding the gravity
76 alteration in the space. Hypergravity refers to the conditions where the gravity exceeds
77 that on the Earth's surface (Wade, 2005). These hypergravity studies usually use a
78 centrifuge machine with a large enough radius that shear forces in the sample (van Loon
79 et al., 2004; van Loon, J.J.W.A. et al., 2005). Hypergravity has the capacity to induce
80 significant alterations in various physiological systems within the body, and large
81 literature is found related to physiological alterations. For instance, it has been observed
82 that hypergravity can impact the immune systems of various species throughout
83 evolution, ranging from humans and mammals (Boonyaratnakornkit et al., 2005;
84 Rykova et al., 2008; Q. Li et al., 2013), to amphibians (Boxio et al., 2005; Frippiat,
85 2013), fish (Ohnishi et al., 1998), and insects (Marcu et al., 2011; Taylor et al., 2014).
86 Vestibular system is one of the most studied systems due to its role in maintaining body
87 equilibrium within Earth's gravitational field. This sensory apparatus which
88 coordinates balance and movement is altered under gravitational variations resulting
89 orientation problems to astronauts (Anken & Rahmann, 1999; Lawson et al., 2016).

90

91 Gravity alteration experiments have been conducted using a wide range of animal
92 models, including *Drosophila* (Bae et al., 2016), *Caenorhabditis elegans* (Honda et al.,
93 2014), mice and rats (Ross, 1994; Jamon, 2014), and fish (Aceto et al., 2016). Among
94 these, zebrafish (*Danio rerio*), a tropical freshwater fish, belonging to the teleost family,
95 has become an unprecedented tool for research in a variety of fields, such as genetics

96 (Norton & Bally-Cuif, 2010), development (Yalcin et al 2017), toxicology (Dai et al
97 2014), physiology (Briggs, 2002), aquaculture (Ribas & Piferrer, 2014; Piferrer &
98 Ribas, 2020), among others. Its short generation time, the large amount of fertilized
99 eggs, its transparency during early development, the high similarity with human
100 orthologous genes (~70%) and, the availability of genomic resources, make zebrafish an
101 excellent animal research model. Besides the above-mentioned features, zebrafish have
102 an additional advantage due to its physical nature, as it is born and bred in a neutral
103 gravitationally environment, i.e., aquatic, which make an absence of body weight
104 related to proprio-perceptions, reduce influence of gravity on supporting tissues and
105 muscle and, higher sensitivity due to relative larger otoliths with differently positioned
106 sacculus-otolith membranes (Rahmann & Anken, 2000). These characteristics make
107 zebrafish an excellent model for microgravity and hypergravity studies and so a
108 valuable tool in the current space exploration era. In fact, a variety of studies has been
109 evaluated the effects of gravity in zebrafish. One of the most studied system in zebrafish
110 is the vestibular system (Moorman et al., 2002; X. Li et al., 2011, 2017), where it has
111 been found that microgravity affects the otolith development. Alterations in genes
112 involved in lens development were described (Shimada & Moorman, 2006), together
113 with hematopoiesis- and cardiovascular-related genes showing that short-term
114 hypergravity induced physiological changes in the zebrafish embryos (Hariom &
115 Nelson, 2022).

116
117 Epigenetic mechanisms are responsible for the alteration of the final phenotype under
118 environmental pressure, and it is defined as permanent changes in gene expression that
119 occur without modifying the nucleotide sequence of the genome (Qiu, 2006; Deans &
120 Maggert, 2015). One of the most studied epigenetic mechanisms is DNA methylation
121 which plays a key role in regulating cellular processes in living organisms (Laird,
122 2010). This type of modifications implies the addition of a methyl group to the 5'
123 position of cytosine (5mC) cytosine-phosphateguanine (CpG) dinucleotides, named as
124 CpG sites (Bird, 1986). DNA methylation is performed by enzymes known as DNA
125 methyltransferases (dnmts) that catalyze the methylation reactions (Miranda & Jones,
126 2007; Esteller, 2008). In mammals, the main dnmts include DNA methylation
127 transferase 1 (dnmt1) responsible to maintain DNA methylation levels in the cells, and
128 another two, dnmt3a and dnmt3b, for *de novo* DNA methylation (Pradhan et al., 1999;
129 Okano et al., 1999). To maintain the genomic methylation homeostasis, cells rely on

130 these DNA methyltransferases but also to demethylase enzymes. DNA demethylation is
131 a complex process, not fully understood, in which 5mC are converted to 5-
132 hydroxymethylcytosine (5hmC) by the ten-eleven translocation (Tet) family of
133 dioxygenases (Tahiliani et al., 2009). Among different tet members, tet1 is the most
134 studied because plays a key role in the demethylation process preventing DNA from
135 methylation maintenance (Zhao & Chen, 2013).

136

137 For the epigenetic mechanism being stable, three basic components are required:
138 epigenator, epigenetic initiator and epigenetic maintainer (Piferrer, 2018;
139 Balasubramanian et al., 2019). An epigenator is a crucial signal responsible for
140 initiating the intracellular pathway in response to environmental stimuli. It can be any
141 factor or event that triggers the activity of the initiator molecule (Berger et al., 2009).
142 Remarkably, any environmental change, regardless of its nature, has the potential to act
143 as an epigenator and producing a signal that persists long enough to exert a significant
144 impact on the epigenetic phenotype (Herceg & Vaissière, 2011; Schübeler, 2015). Thus,
145 gravity alteration is an epigenator. Although epigenetics has been extensively studied in
146 various research areas over the last two decades, research specifically involving
147 epigenetic modifications in altered gravity conditions remains limited. In *Arabidopsis* *in*
148 *vitro* cultures, both microgravity and hypergravity experiments resulted in increased
149 DNA methylation (Kamal et al., 2018). Transcriptomic studies in rats revealed that
150 genes related to the DNA methylation machinery were altered (Casey et al., 2015).
151 Similarly, in cultured human cells, microgravity altered the methylome together with
152 transcriptome harboring the understanding of molecular events (Chowdhury et al.,
153 2016). In 2019, a National Aeronautics and Space Administration (NASA) experiment
154 on twins deciphered multidimensional data after a one-year-long human spaceflight,
155 revealed DNA methylation changes in immune and oxidative stress-related pathways,
156 along with other alterations at various cellular levels (e.g., microbiota, metabolism,
157 transcriptome, or body mass) (Garrett-Bakelman et al., 2019). Although current data
158 proposed that the adaptation to gravity alterations may proceed through epigenetic
159 changes, more research in this flourishing field needs to be explored before the space
160 environment being a safe place to be. To date, no altered-gravity studies involving
161 zebrafish and epigenetics have been reported yet. Thus, in order to tackle space-incurred
162 epigenetic disturbances, here it is examined, for the first time, the epigenetics changes
163 by analyzing the global DNA methylation patterns and the gene expression of three

164 epigenetic-related genes (*dnmt1*, *dnmt3* and *tet1*). To shed light on the side effect of
165 hypergravity during zebrafish development, fish survival, hatching rate and
166 physiological traits, were also addressed.

167

168 **Materials and methods**

169

170 ***Zebrafish husbandry***

171 Zebrafish (TUE strain) were housed in the animal facilities of the experimental
172 aquaria zones (ZAE) at the Institute of Marine Sciences (ICM-CSIC, Barcelona,
173 Spain). Fish were held in 9 liters (L) tanks on a recirculating system (Aquaneering, San
174 Diego, CA) in a chamber with a photoperiod of 12 h of light and 12 h of darkness, an air
175 temperature of 26 ± 1 °C and a humidity of $60 \pm 3\%$. Physicochemical parameters were
176 monitored daily, staying at appropriate conditions (Ribas & Piferrer, 2014; Piferrer &
177 Ribas, 2020): water was maintained at (28 ± 0.2 °C), pH (7.2 ± 0.5), conductivity (750–
178 900 µS) and dissolved oxygen (6.5–7.0 mg/l) with a water pump of 3,000 L/h and a UV
179 light system to eliminate any possible bacteria in the water. Sulfite, sulfate, nitrate and
180 ammonia quality parameters were checked weekly using commercial kits. Adult fish
181 were fed twice daily, receiving dried food and live *Artemia nauplii* (AF48, INVE
182 Aquaculture, Dendermonde, Belgium).

183

184 ***Hypergravity device***

185 A custom-made hypergravity centrifuge was performed by using a regular laboratory
186 rotary mixer with a maximum speed of 100 rpm (model: ANR100DE, OVAN
187 laboratory equipment) by adding two perpendicular arms of R=25 cm ending in two
188 opposite gondolas to support an experimental plate (Figure 1A, B). This setup allowed
189 achieving a gravity-like acceleration in up to ~3 g (where g refers to 9.81 m/s^2). To
190 maintain the required environmental conditions for the larvae (27–28°C and 60–65%
191 humidity) during the hypergravity experiments a methacrylate box was adapted with a
192 heating system using ProClima v8.1.6.1 software (Schneider Electric 2020). These
193 parameters were checked daily. The hypergravity device was set up to 100 rpm
194 (revolutions per minute, or 10.47 rad/s) spin delivering a centripetal acceleration (a_c) of
195 27.4 m/s^2 that vectorially added to the existing Earth acceleration (g) of 9.81 m/s^2 ,
196 resulting in total acceleration $a_T = 29.1 \text{ m/s}^2$, which corresponds to 2.96 g (or

197 approximately 3 g). The geometry and the justification for these calculations are
198 illustrated in Figure 1C.

199

200 ***Experimental design***

201 Zebrafish pairs (one female and one male) were bred by transferring to breeding tanks
202 with a transparent separator overnight. The following day, the separator was removed
203 and fertilized eggs were collected and maintained in Embryo Medium Solution (EMS,
204 Ph= 7,2; NaCl 0.8 g/L, KCl 0.04 g/L, NaH₂PO₄ 0.0036 g/L, H₂KO₄P 0.006 g/L, CaCl₂
205 0.144 g/L, MgSO₄ 0.12 g/L, NaHCO₃ 0.35 g/L, and 20 µl/L Trypan blue as antifungal).
206 The total number of fertilized eggs was counted to guarantee fertility according to the
207 reference values for this species and fish post-hatch survival agreed with OECD's
208 guidelines for the Fish Sexual Development Test (OECD, 2011).

209

210 Fertilized eggs were collected and placed individually into 96 wells plates with 250 µl
211 of EMS and were covered with adhesive sealer to avoid fluid loss. For each biological
212 pair, embryos were distributed in three different plates: control group placed inside the
213 methacrylate box, hypergravity group placed into the gondolas, and mock group (MG)
214 placed in the zebrafish embryonic incubator (28°C) outside the methacrylate box. The
215 MG was used as an internal control of the standardized embryonic development in this
216 fish species (Kimmel et al., 1995). The experiment was conducted six times, with each
217 replication using different single pairs to ensure biological replication. In total, there
218 were 440 individuals analyzed, with 220 individuals in the control group and 220 in the
219 hypergravity group.

220

221 To evaluate the survival and hatching rate, the hypergravity device was stopped during
222 6-10 minutes every 6 hours until 100% of the larvae were hatched (i.e., 3 dpf). After
223 that, the device was stopped every 24h. Embryonic and larvae development for each of
224 the six groups three groups were observed by a Leica EZ4 Stereo Microscope (Leica
225 Microsystem Ltd.). After maximum of 10 minutes, the embryos were placed on their
226 respective experimental conditions until the end of the experiment.

227

228 ***Ethogram activity***

229 At 5 days of experiment, the larvae were observed and recorded to assess their ethogram
230 activity. This analysis consisted on identifying three locomotor aspects: position,

231 movement frequency and swimming behavior. Table 1 described each of the observed
232 characteristics for each larva. Larvae were observed and recorded individually for each
233 of the experimental groups with a total of 180 observations (N= 6 biological groups, N= 234 15 larvae hypergravity, N= 15 larvae control group). Teratologies resulting from the
235 treatment were carefully observed and recorded using the Stereo Microscope (Leica
236 Microsystem Ltd.). To minimize inter-observer error bias, all analyses were performed
237 by the same researcher.

238

239 ***DNA extraction***

240 A total of 10 larvae for each control and hypergravity groups (N=20) for one biological
241 replicate were digested overnight at 56°C with buffer containing 1 µg of proteinase K
242 (Sigma-Aldrich, St. Louis, Missouri) to eliminate proteins. Then, the standard phenol-
243 chloroform-isoamyl alcohol protocol (PCI 25:24:1) with 0.5 µg ribonuclease A
244 (PureLink RNase A, Life Technologies, Carlsbad, California) was performed to isolate
245 DNA and
246 eliminate RNAs. The quality and quantity of DNA was measured by Qubit (Thermo
247 Fisher Scientific, Waltham, Massachusetts). Isolated DNA samples were stored at
248 –20°C until further analysis.

249

250 ***Global DNA methylation analysis***

251 Global DNA methylation was performed in genomic DNA using 5-mC DNA ELISA kit
252 (Zymo Research, USA) following manufacturer's protocol and that described in
253 (Valdivieso et al., 2020). Briefly, 100 nanograms (ng) of each DNA sample was used
254 for analysis. The standard curve was prepared by mixing negative and positive controls
255 at different proportions. The final methylation concentrations of standards were 0%,
256 5%, 10% 25%, 50%, 75%, and 100%, respectively. The absorbance was measured at
257 405 nm using an ELISA plate reader (Infinite® 200 PRO, Tecan™). All samples were
258 analyzed in duplicates. The percentage of 5-mC for unknown DNA samples was
259 calculated using the equation: $\% 5-mC = e\{(Absorbance - y - intercept)/Slope\}$. Percent 5m-C values were corrected with the zebrafish CpG density according
260 to the manufacturer instructions. The percentage of CpG was calculated according with
261 the formula presented by Valdivieso et al., 2020 (Valdivieso et al., 2020), where the
262 latest zebrafish genome from Ensembl was downloaded (www.ensembl.org). Then, the
263 length of the genome (L) = 1,674,207,132 bp was extracted, and the total number of
264

265 cytosines (C) and the number of CpG dinucleotides (CG) were calculated. Once the
266 total number of C = 306,412,859 and CG = 29,220,867 were obtained from the
267 zebrafish genome, the fold difference of CpG density (total CG genome/L) between the
268 genomes of (*E. coli*/*D. rerio*) = (0.07472/0.0175) = 4.2811 was calculated. Finally, to
269 obtain the global methylation values, the % 5m-C/CpG density values were multiplied
270 by the value obtained from the total number of C/L zebrafish = 0.1830.

271

272 ***Gene expression analysis***

273 RNA was individually extracted from 10 larvae each group (control and hypergravity)
274 for one biological replicate (N = 20 total) with TRIzol (T9424, Sigma-Aldrich, St.
275 Louis, Missouri) according to manufactured procedures. RNA pellets were suspended in
276 25 µl DEPC–water and kept at -80°C. RNA concentration was determined by ND-1000
277 spectrophotometer (NanoDrop Technologies) and RNA quality was checked on a 1%
278 agarose/formaldehyde gel. Following supplier protocols, 100 ng of total RNA for each
279 sample were treated with DNase I, Amplification Grade (Thermo Fisher Scientific Inc.,
280 Wilmington, DE, USA) and retrotranscribed to cDNA with SuperScript III RNase
281 Transcriptase (Invitrogen, Spain) with Random hexamer (Invitrogen, Spain).

282

283 Quantitative Polymerase Chain Reaction (qPCR) was performed using synthetized
284 cDNA, previously diluted 1:10 with DNase free water, 5 µl of 2X qPCR BIO SYBR
285 Green Mix Lo-ROX (PCR Biosystems), 0.5 µL of each forward and reverse primers,
286 and 2 µL of DNase free water. qPCR was carried out in technical triplicates for each
287 sample. The conditions in the thermocycler were as follows: initial denaturation for 3
288 min at 95°C, 39 cycles of 10 s at 95°C, 30 s at annealing temperature; followed by melt
289 curve analysis (65°C–95°C at 0.5°C/5 s) to verify amplification of a single product.
290 Dissociation step, primers efficiency curves and PCR product sequencing confirmed the
291 specificity for each primer pair. All primers efficiencies ranged between (95-104%).
292 Primer sequences were designed using Primer3web v4.1.0 (Koressaar & Remm, 2007)
293 and further information is found in Table 2.

294

295 ***Statistical analysis***

296 All statistical analyses were conducted using R (v. 1.1.456). The *homogeneity of*
297 *variances* was assessed using *Levene's* test, followed by a *Shapiro-Wilk* test to check for

298 normality of the data. For normally distributed data, we performed an ANOVA, and for
299 non-normal data, we utilized non-parametric tests such as *Kruskal-Wallis*.

300 To assess differences between groups and categories in the ethology, we employed the
301 Chi-square test. Statistical significance for all evaluated parameters was considered at
302 P<0.05. Graphs were created using the *ggplot2* package (v.3.1.0) by Wickham (2016)

303

304 **Ethics statement**

305 The procedure for using zebrafish in this study was conducted following approved
306 guidelines by the Bioethical Committee of the Generalitat de Catalunya (reference code
307 9977) and the Spanish National Research Council (CSIC) Ethics Committee (reference
308 code 1166/2021). In the present study, the fish rearing and maintenance were following
309 the European regulations of animal welfare (ETS N8 123, 01/01/91 and 2010/63/EU).
310 Fish facilities in the ICM were validated for animal experimentation by the Ministry of
311 Agriculture and Fisheries (REGA number ES080190036532).

312

313 **Results**

314 ***Survival and hatching***

315 The survival of zebrafish embryos and larvae exposed to hypergravity was determined
316 every dpf during the experiment. As shown in Figure 2, the survival was significantly
317 affected at 2 dpf decreasing embryonic survival. In contrast, no differences were found
318 during larva development until the end of experiment between treatment groups.
319 Hatching rate was not significantly affected by the hypergravity condition, occurring
320 between the second and third day both in control and in hypergravity, as it normally
321 occurs in zebrafish (Figure 3). Most of the hatching occurred at 58 hpf in both groups
322 and at 72 hpf the hatched was completed for all the experimental individuals in both
323 groups. However, at 52 and 64 hours post fertilization (hpf), the hatching rate was
324 decreased in hypergravity when compared to control, from 15 to 10% and 90 to 80% in
325 control and hypergravity, respectively.

326

327 ***Ethogram analysis***

328 The locomotor activities of exposed larvae were evaluated after 5 days of hypergravity.
329 The observation of the fish position, movement frequency and swimming behavior
330 showed high significance in almost all the studied characteristics (Figure 4 and 5). For
331 control, 75.40% of the larvae were found in horizontal (normal position) whereas only

332 18.26% of the larvae in hypergravity showed this same position (Figure 4A). The most
333 observed position for hypergravity exposed larvae was the vertical ascendant position
334 with a 47.10% while in control only a 11.50% of the individuals presented this position.
335 Vertical descendent position was present in 13.50% of larvae subjected to hypergravity
336 while none of the control was observed.

337

338 More than 90% of the larvae in the hypergravity had no movement frequency (59.6%)
339 or low movement frequency (30.8%) and only 3.8% and 5.8% had high or medium
340 movement frequency. In contrast, ~51% of the larvae in control showed high or medium
341 movement frequency and the other half presented low (16.4%) or static (32.80%)
342 movement frequency (Figure 4B).

343

344 Hypergravity was able to altered significantly the swimming behavior by increasing
345 jerky movements (32.70%) and wrong swimming (7.70%) and, decreasing larvae with
346 normal swimming when compared to control conditions (Figure 4C). No significance
347 was found for Erratic swimming individuals between groups.

348

349 Some zebrafish larvae showed teratologies after the hypergravity treatment. These
350 teratologies consisted four major types based on their position: body curvature, tail
351 curvature, abnormal eyes size, and overall body deformation (Figure 5).

352

353 ***Methylation alterations***

354 Hypergravity exposure was able to alter significantly the global DNA methylation
355 levels between the control and the hypergravity group (*t*-test, $P < 0.007$, Figure 6).
356 Larvae in hypergravity presented hypermethylation levels of the global DNA when
357 compared with the control group (percent CpG mean was 21.04% and 26.53%, in
358 control and hypergravity groups, respectively).

359

360 ***Gene expression response***

361 Hypergravity exposure of the zebrafish larvae caused downregulation of the three
362 studied epigenetic markers. The fold change was -1.6, -1.5, and -1.6 for *dnmt1*, *dnmt3b*
363 and *tet1*, respectively, although without significance (Figure 7).

364

365 ***Discussion***

366 ***Hypergravity influenced larvae survival but not altered hatching rate***

367 Very limited information exists on the impact of altered gravity on fish survival and
368 hatching success. In the present study, hypergravity was able to decrease embryonic
369 survival at 2 dpf just before larvae started to hatch. In contrast, hatching rate was not
370 significantly affected by hypergravity, although slight decreased the hatching rate at 52
371 and 68 hpf. Almost 40 years ago, the first fish on the space base station Skylab 3, mud
372 minnow (*Fundulus heteroclitus*) eggs were able to hatched successfully with a rate of
373 96% indicating that gravity alteration did not affect the hatching rate (Scheld et al.,
374 1976; Johnson, 2016). Gravity alteration did not affect medaka (*Oryzias latipes*) as
375 embryos hatched after being fertilized on space but also those space-fertilized eggs after
376 being sent back to Earth after 3 days of landing (Ijiri, 1994; Ijiri, 1995; Ijiri, 1998).
377 Similarly, analogous space-related experiments in European sea bass (*Dicentrarchus*
378 *labrax*) and meagre (*Argyrosomus regius*) showed no significant difference after
379 exposing eggs in a simulating spacecraft launcher vibration (Przybyla et al., 2020).
380 Thus, overall current available data indicate that hatching might be not sensible to the
381 environmental stress caused by gravity alterations, probably due to the natural
382 protection of the chorion to external stimulus.

383

384 ***Hypergravity affected the morphology and behavior***

385 In the zebrafish model, larvae exhibit mature swimming between 4-5 dpf and respond to
386 visual and stress stimulus increasing the movement (Basnet et al., 2019). Zebrafish are
387 sensitive at a range of external stimuli such as olfactory, sensitive, vestibular inputs,
388 heat and vision and many studies in zebrafish showed that swimming is altered under
389 gravity modification (Anken & Rahmann, 1999; Ibsch et al., 2000; Colantonio et al.,
390 2009). In the present study, after hypergravity exposure, fish position, movement
391 frequency and swimming behavior showed drastic significant changes. Swimming
392 behavior was affected by the increase of the gravity and larvae showed atypical
393 displacements such as jerky movements and wrong swimming. Most of the tested
394 individuals subjected to hypergravity-treated were positioned in vertical ascendant and a
395 static or with low movement, indicating the environmental stress impact by the
396 hypergravity environment. On space, mummichog fish swam in elongated loops, named
397 as looping response, during the first three days, as they were disoriented because the
398 vestibular system was affected (Von Baumgarten et al., 1975). Looping appeared to be
399 the fish's equivalent of space sickness, although it gradually disappeared as the fish

400 learned how to orient themselves (R. W. Hilbig & Anken, 2017). Thereafter, fish living
401 on space swam in regular patterns, oriented by artificial light, and even were able to
402 mate naturally (Ijiri, 2003).

403

404 Thigmotaxis is a valid index of anxiety in which animal prefers to be closed to the walls
405 in vertical position and its evolutionarily conserved across different species, such as
406 fish, rodents, and humans (Lamprea et al., 2008; X. Liu et al., 2016; Basnet et al.,
407 2019). In fact, vestibular system is responsible of the fish orientation and it is directly
408 affected by gravitational changes (Rahmann & Slenzka, 1994; Rahmann & Anken,
409 2000). A complete map of the gravity-sensing system straddling from the inner ear to
410 the brainstem was described (Z. Liu et al., 2021). In fish, otoliths, the inner ear heavy
411 stones, are responsible for fish orientation and their growth were targeted in space-
412 related research (Kondrachuk & Boyle, 2006; X. Li et al., 2011). Hypergravity
413 experiments in zebrafish and Cichlid fish embryos (*Oreochromis mossambicus*) showed
414 an increase of the otolith's growth (Anken et al., 1998, 2001, 2002; Wiederhold et al.,
415 2003) while microgravity on space flight or by clinostats yielded an opposite growing
416 effect in swordtail (*Xiphophorus helleri*), in cichlid fish larvae (Anken et al., 2010;
417 Wiederhold et al., 2000) and in zebrafish embryos (X. Li et al., 2011). Generation of a
418 mutant medaka strain ha (genotype ha/ha) with an absence of otoliths, decreased the
419 sensitivity to gravity after microgravity and parabolic flights (Ijiri et al., 2003).

420

421 Three weeks of hypergravity experiment with cichlid fish (*Oreochromis mossambicus*)
422 larvae, the morphogenetic development and the swimming was not affected. However,
423 when the centrifuge treatment stopped, looping and spinning movements appeared
424 (Rahmann et al., 1996). However, within hours, this kinototic behavior disappeared.
425 Similar results were observed in the present study because after some days of
426 hypergravity treatment the abnormal movement disappeared and fish developed
427 normally (Salazar-Moscoso, personal comments). Similarly, medaka fish had looping
428 response during three days after landing on Earth, after that, they swam properly (Ijiri,
429 2003). Overall results may indicate that zebrafish is able to adapt to the novel
430 environments thanks of vestibular neuronal system plasticity (Straka et al., 2005;
431 Almeida & Lyons, 2017).

432

433 Some teratologies were observed due to hypergravity, such as body curvature or body
434 deformation. The data presented here aligns with previous findings in zebrafish
435 subjected to similar hypergravity conditions (3 g, from 0 to 5 dpf). These zebrafish
436 exhibited morphometric changes, including an enlarged head and increased cranial bone
437 formation. These findings supported that hypergravity can induce consistent effects on
438 the developmental processes in zebrafish (Aceto et al., 2015).

439

440 ***Genome-wide DNA methylation levels were altered***

441 One of the most important finding of this study was that hypergravity exposure of
442 zebrafish during 5 days, regulated the epigenetic events by hypermethylating genome-
443 wide DNA levels. Few studies addressed the epigenetic changes in the genome due to
444 gravity alterations, in particular to hypergravity. To date, and based on our knowledge,
445 this is the first time reported in fish.

446

447 DNA methylation levels were altered in response to long-term isolation experiments,
448 for example in mice in the SpaceX-4 mission increasing the total genome methylation
449 (Ogneva et al., 2018). DNA methylation dynamics were analyzed in a long-term
450 isolation of simulated space travel in the blood of the crew of the Mars-500 mission,
451 identifying six significant epigenomic patterns at post-isolation recovery (Hou et al.,
452 2022). The functions of these DNA methylation patterns were mostly related with the
453 immune-system and tumors but also epigenetic genes related to glucose and mood-state
454 disturbance were observed (Liang et al., 2019). As expected, by analyzing epimarkers
455 for aging, the simulated space travel was associated with significant decreases in
456 epigenetic aging meaning that the stressed produced by the travel decreased the
457 biological age of the crew (Nwanaji-Enwerem et al., 2020). In mice, epigenetic memory
458 was analyzed by the retinal profiles of animals exposed to microgravity and irradiation
459 four months after the exposition (Kothiyal et al., 2022). Their results revealed a
460 crosstalk between the epigenome and the transcriptome as 23 potential biomarkers
461 genes related to retinal function and inflammatory response showed significant changes
462 (Kothiyal et al., 2022). In this sense, in cultured human lymphoblastoid cells revealed
463 that microgravity induced a ~60% hypomethylation and ~92% hyperhydroxymethylated
464 regions of the methylome together with 370 transcripts associated with crucial
465 biological processes (Chowdhury et al., 2016)

466

467 In fish, it is known that the environment-epigenetic interactions are responsible to
468 determine the phenotype in those animals growing in artificial and cultured
469 environments (Skinner et al., 2010; Feil & Fraga, 2012). In the last decade, many
470 studies in fish recalled on the importance of epigenetics, both during early development
471 and adulthood in cultured conditions. For example, high temperature—the most studied
472 environmental factor in fish—, suffered during larvae stages in the hatcheries, was
473 responsible to masculinize populations through epigenetic events (Ospina-Álvarez &
474 Piferrer, 2008; Ribas, Liew, et al., 2017). These epigenetic events occurred by high
475 temperature were inherited to the following generation (F1) (Valdivieso et al., 2020)
476 evidencing the importance of epigenetics, not only for the current generation but for the
477 futures. Another environmental factors, the density—the number of fishes in a tank—,
478 caused masculinization in zebrafish (Ribas, Valdivieso, et al., 2017) revealing some
479 epigenetic alterations in the fish gonads (Caballero, unpublished results). Additionally,
480 environmental-epigenetics interactions after immune stimulation during sex
481 differentiation in zebrafish showed and alteration of the methylation of some immune-
482 related genes (Caballero-Huertas et al., 2020; Moraleda-Prados et al., 2021). The
483 present data indicated that the epigenetic machinery was reprogrammed by gravity
484 alterations, and although many data needs to be performed, in particularly whether
485 zebrafish would be used as a space-related animal model, the underlying epigenetic
486 alterations need to be considered to fully comprehend the gravity-epigenome
487 interactions. In this sense, higher genome coverage techniques, such as whole-genome
488 bisulfite sequencing (WGBS) or by a single-nucleotide resolution Nanopore sequencer,
489 would bring better comprehension of the epigenetic dynamics under gravity alterations.
490

491 ***Expressions of dnmt1, dnmt3 and tet1 downregulated without significance***

492 Epigenetics are dynamic through the life of an organism and are implicated in many
493 developmental process, cell differentiation, genomic imprinting, and modulating gene
494 expression (Hermann et al., 2004; Smith et al., 2011). Epigenetic mechanisms are
495 responsible for permanent heritable alterations in the cellular gene expression. To gain
496 insight into the molecular events underlying hypergravity's effects, we performed an
497 analysis of three genes related to epigenetic regulation. After 5 days of treatment, there
498 was an inhibition of *dnmt1*, *dnmt3* and *tet1* expression although no significant. The
499 inverse correlation between the hypermethylation of the DNA levels found in the same
500 experiment with the lower expression of these epigenetic-related genes, were in

501 accordance with the classical dogma; higher DNA methylation is associated with the
502 inhibition of the gene transcription machinery (Jones & Takai, 2001; Deaton & Bird,
503 2011). Nevertheless, it is currently accepted that DNA methylation are dynamic and
504 complex processes in which many genomic elements contribute to transcriptional
505 regulation: exons (Brenet et al., 2011), gene body (Blattler et al., 2014), introns
506 (Anastasiadi et al., 2018) and, post transcription modifications (Shilatifard, 2006).

507

508 Quite extensive bibliography refers to gene regulation in space exploration related
509 studies. In a recent review, almost 200 articles were included and the alteration of genes
510 in many organisms and biological system were described (Corydon et al., 2023). Thus,
511 reflecting the importance of the knowledge of the consequence of gene expression to
512 tackle the risk health for the astronauts and alive organisms. In zebrafish larvae, the
513 gene expression in hypergravity (24 h, 3g) revealed differential expression of genes
514 involved in the development and function of the skeletal, muscular, nervous, endocrine
515 and cardiovascular systems (Aceto et al., 2015). Simulated microgravity affected the
516 expression of some genes related to fish musculoskeletal, cardiovascular, and nuclear
517 receptor systems (Aceto et al., 2016) and the immune system in response to a viral
518 response (Zhu et al., 2021). In contrast, the number of articles addressing the expression
519 of epigenetic related genes are much less extent, not only in fish, but also in other
520 animals and humans, and some time contradictory. Likewise to the data obtained in this
521 study, did not change the expression of TET1 and TET3 in cardiac and lung of mice 37
522 days onboard of the American International Space Station (ISS) of SpaceX-4 mission
523 (Ogneva et al., 2018). DNMT1, DNMT3a, and DNMT3b decreased at 7 days in human
524 T-lymphocytes microgravity exposed (Singh et al., 2010) and a transcriptomic study of
525 pregnant rats subjected to spaceflight showed that DNMT1 was downregulated while
526 DNMT3a was upregulated (Casey et al., 2015). In addition, mutation in the blood
527 samples of space shuttle astronauts were identified in the DNMT3A and TP53 genes
528 (Brojakowska et al., 2022). Overall data indicate that epigenetic-related genes are
529 altered due to gravitational changes, but more research needs to be performed to fully
530 understand the crosstalk between the epigenome and the transcriptome.

531

532 **Conclusions**

533 This study presents the first evidence of epigenetic impacts on the DNA methylation
534 levels in zebrafish subjected to hypergravity during early development. Although not

535 statistically significant, there was a noticeable downregulation tendency observed in
536 three epigenetic-related genes' expression. Furthermore, the survival rate decreased two
537 days after the treatment, while the hatching rate remained unaffected by hypergravity. In
538 contrast, physiological traits (position, movement frequency and, swimming behavior)
539 of the larvae were drastically affected, accompanied by the observation of some
540 teratologies.

541 The presented data and experiments explore the new domain of how altered gravity
542 impacts development in living models by, for the first time, looking into epigenetic
543 effects in fish. Future experiments in space (this time under microgravity but following
544 similar protocols) shall shed some light on whether development of adult and fertile
545 animals (and eventually humans) could develop in space or other planetary bodies.

546

547 **Acknowledgments**

548 This study was supported by the Spanish Ministry of Science and Innovation grant
549 2PID2020-113781RB-I00 “MicroMet” and by the Consejo Superior de Investigaciones
550 Científicas (CSIC) grant 02030E004 “Interomics” to LR. GA-E's work is supported by a
551 Ramón y Cajal 2018 fellowship RYC-2017-22489 from Agencia Estatal de
552 Investigación (AEI), resources from Unidad de Excelencia María de Maeztu CEX2020-
553 001058-M and the Generalitat de Catalunya/CERCA programme. In addition, this study
554 was supported by the Spanish government through the ‘Severo Ochoa Centre of
555 Excellence’ accreditation (CEX2019-000928-S) and JAEICU2021-ICE-CSIC to MS.
556 We thank the lab technician Gemma Fusté for her essential assistance in fish facilities.

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572 **Table 1.** Ethogram description of zebrafish observed in the experiments

573

Activity	Characteristic	Description
Position	Horizontal	Normal dorsal position
	Horizontal lateral	Lateral up position
	Vertical ascendant	Fish's body in vertical position and head up
	Vertical descendent	Fish's body in vertical position and tail up
Movement frequency	High	5 or more movements in 30 seconds
	Medium	2 to 4 movements in 30 seconds
	Low	1 movement in 30 seconds
	Static	No movement
Swimming behavior	Normal swimming	Normal Swimming
	Erratic flotation	Swimming in circles, up and down
	Jerky movements	Fast and repetitive movements without displacement
	Wrong swimming	Swimming upside down or on their side

574

575

576

577

578

579 **Table 2.** Gene specific primers used for quantitative PCR

Gene name	Abbreviation	Primer sequence (5'- 3')	Acc. No (GenBank)
Elongation factor 1 alpha	<i>ef1a</i>	F: CTGGAGGCCAGCTCAAACAT R: ATCAAGAAGAGTAGTACCGCTAGCATTAC	NM_131263
Ribosomal Protein L13a	<i>rpl13a</i>	F: TCTGGAGGACTGTAAGAGGTATGC R: AGACGCACAATCTTGAGAGCAG	NM_212784
DNA (cytosine-5-)-methyltransferase 1	<i>dnmt1</i>	F: TCTTCAGCACTACAGTTACCAATCCT R:CGTGCACATTCCCTGACACT	NM_131189
DNA (cytosine-5-)-methyltransferase 3			
beta	<i>dnmt3b</i>	F: AAGATTAGGCGTCGGTTTCG R: GTGTCACCCCTTCAATTAACTG	NM_131386
Ten-eleven-translocation 1	<i>tet1</i>	F: TGACTCACCAGCACTTGAAAAC R: TTGGTGTCCACATCAGCAGT	KC689999.1

580

581

582

583

584 **Figures**

585 **Figure 1.** **A)** A custom-made hypergravity centrifuge used to perform the experiments.
586 **B)** Gondola with the 96 well plate where the larvae were placed during the 5 days of
587 treatment. **C)** Graphical representation of the centrifuge and gondola showing the
588 variables and vectors used to calculate the value of the acceleration (artificial
589 hypergravity) at the center of the gondola. The centrifuge radius, R , is defined as the
590 distance of the center of rotation to the outer edge of the platter. The gondola arm length
591 l was measured from the outer edge of the platter of centrifuge to the end of the
592 gondola. Both of them (R and l) were measured with a tape measure. The angle, θ , was
593 calculated using taking an image and analyzing it using a program called *angulus* (DPP
594 v1 2020). r is the gondola radius, v is the tangential velocity due to rotation, ac is the
595 centripetal acceleration, and ω is the angular velocity.

596

597 **Figure 2.** Survival rates of control and hypergravity zebrafish larvae during 5 days of
598 treatment. Each data point shows the mean \pm SE of six independent groups with a total
599 number of 220 individuals per condition (control and hypergravity). The cumulative
600 survival with different letters indicates a significant difference ($P < 0.005$) according to
601 the Least significant difference (LSD) test.

602

603 **Figure 3.** Hatching rate of larvae at 2 and 3 days post fertilization treated with
604 hypergravity compared with the control group. Six biological replicates were made,
605 with a total number of larvae of 220 and 220 in control and hypergravity, respectively.
606 Data are presented as percentage \pm standard error of the mean (SEM). Normality was
607 evaluated with a Kolmogorov–Smirnov test, and Levene's test was used to assess
608 homoscedasticity of variances. No differences between groups were found according to
609 Least significant difference (LSD) test.

610

611 **Figure 4.** Ethogram analysis consisted on identifying three locomotor aspects: position
612 (**A**), movement frequency (**B**) and swimming behavior (**C**) of larvae of zebrafish at 5
613 days post fertilization (dpf). Bar graphs representing the percentage of individuals in
614 control and hypergravity conditions. Six biological replicates were observed with a total
615 number of 90 individuals in the hypergravity group and 90 in the control. The different
616 colors represent the assessed features in each parameter. The data are presented as

617 percentages of individuals. To evaluate significant differences, we performed a Chi-
618 square test.* = $P < 0.05$; ** = $P < 0.01$; *** = $P < 0.001$.

619

620 **Figure 5.** Teratology observed at 5 days post fertilization (dpf) in zebrafish larvae
621 exposed to ~ 3 g hypergravity from 0 to 5 dpf. Positions of the larvae are showed in the
622 figure: horizontal (A), vertical ascendant (B); horizontal lateral (C); vertical descendent
623 (D). Teratologies included four major types: body curvature (B), abnormal eyes size
624 (B), overall body deformation (C) and tail curvature (D).

625

626 **Figure 6.** Global DNA methylation in zebrafish larvae after 5 days of ~ 3 g
627 hypergravity. N=10 larvae per group (control and hypergravity). Means were compared
628 with the Student's t-test. In the boxplot the thick line represents the median and the
629 datapoint outside corresponds to atypical values.

630

631 **Figure 7.** Expression of three epigenetic-related genes in zebrafish larvae after 5 days of
632 ~ 3 g hypergravity. Data are shown as mean \pm SEM of fold change using control values
633 set at 1. N=10 larvae per group (control and hypergravity). No significant differences
634 were found.

635

636 **Bibliography**

637

638 Aceto, J., Nourizadeh-Lillabadi, R., Bradamante, S., Maier, J. A., Alestrom, P., van
639 Loon, J. J., & Muller, M. (2016). Effects of microgravity simulation on zebrafish
640 transcriptomes and bone physiology—Exposure starting at 5 days post
641 fertilization. *Npj Microgravity*, 2(1), 1-8.
642 <https://doi.org/10.1038/npjmgrav.2016.10>

643 Aceto, J., Nourizadeh-Lillabadi, R., Marée, R., Dardenne, N., Jeanray, N., Wehenkel,
644 L., Aleström, P., Loon, J. J. W. A. van, & Muller, M. (2015). Zebrafish Bone
645 and General Physiology Are Differently Affected by Hormones or Changes in
646 Gravity. *PLOS ONE*, 10(6), e0126928.
647 <https://doi.org/10.1371/journal.pone.0126928>

648 Almeida, R. G., & Lyons, D. A. (2017). On Myelinated Axon Plasticity and Neuronal
649 Circuit Formation and Function. *The Journal of Neuroscience: The Official
650 Journal of the Society for Neuroscience*, 37(42), 10023-10034.
651 <https://doi.org/10.1523/JNEUROSCI.3185-16.2017>

652 Anastasiadi, D., Esteve-Codina, A., & Piferrer, F. (2018). Consistent inverse correlation
653 between DNA methylation of the first intron and gene expression across tissues
654 and species. *Epigenetics & Chromatin*, 11(1), 37.
655 <https://doi.org/10.1186/s13072-018-0205-1>

656 Anken, R. H., Baur, U., & Hilbig, R. (2010). Clinorotation Increases the Growth of
657 Utricular Otoliths of Developing Cichlid Fish. *Microgravity Science and
658 Technology*, 22(2), 151-154. <https://doi.org/10.1007/s12217-009-9168-y>

659 Anken, R. H., Beier, M., & Rahmann, H. (2002). Influence of hypergravity on fish inner
660 ear otoliths: I. Developmental growth profile. *Advances in Space Research: The
661 Official Journal of the Committee on Space Research (COSPAR)*, 30(4), 721-
662 725. [https://doi.org/10.1016/s0273-1177\(02\)00389-7](https://doi.org/10.1016/s0273-1177(02)00389-7)

663 Anken, R. H., Ibsch, M., Breuer, J., & Rahmann, H. (2001). Effect of hypergravity on
664 the Ca/Sr composition of developing otoliths of larval cichlid fish (*Oreochromis
665 mossambicus*). *Comparative Biochemistry and Physiology. Part A, Molecular &
666 Integrative Physiology*, 128(2), 369-377. [https://doi.org/10.1016/s1095-6433\(00\)00316-0](https://doi.org/10.1016/s1095-6433(00)00316-0)

668 Anken, R. H., Kappel, T., & Rahmann, H. (1998). Morphometry of fish inner ear
669 otoliths after development at 3g hypergravity. *Acta Oto-Laryngologica*, 118(4),
670 534-539. <https://doi.org/10.1080/00016489850154685>

671 Anken, R. H., & Rahmann, H. (1999). Effect of altered gravity on the neurobiology of
672 fish. *Die Naturwissenschaften*, 86(4), 155-167.
673 <https://doi.org/10.1007/s001140050591>

674 Bae, J.-E., Bang, S., Min, S., Lee, S.-H., Kwon, S.-H., Lee, Y., Lee, Y.-H., Chung, J., &
675 Chae, K.-S. (2016). Positive geotactic behaviors induced by geomagnetic field
676 in *Drosophila*. *Molecular Brain*, 9(1), 55. <https://doi.org/10.1186/s13041-016-0235-1>

677 Balasubramanian, S., Raghunath, A., & Perumal, E. (2019). Role of epigenetics in
678 zebrafish development. *Gene*, 718, 144049.
679 <https://doi.org/10.1016/j.gene.2019.144049>

680 Basnet, R. M., Zizioli, D., Taweedet, S., Finazzi, D., & Memo, M. (2019). Zebrafish
681 Larvae as a Behavioral Model in Neuropharmacology. *Biomedicines*, 7(1), 23.
682 <https://doi.org/10.3390/biomedicines7010023>

683 Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational
684 definition of epigenetics. *Genes & Development*, 23(7), 781-783.
685 <https://doi.org/10.1101/gad.1787609>

686 Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. *Nature*,
687 321(6067), 209-213. <https://doi.org/10.1038/321209a0>

688 Blattler, A., Yao, L., Witt, H., Guo, Y., Nicolet, C. M., Berman, B. P., & Farnham, P. J.
689 (2014). Global loss of DNA methylation uncovers intronic enhancers in genes
690 showing expression changes. *Genome Biology*, 15(9), 469.
691 <https://doi.org/10.1186/s13059-014-0469-0>

692 Boonyaratanaornkit, J. B., Cogoli, A., Li, C.-F., Schopper, T., Pippia, P., Galleri, G.,
693 Meloni, M. A., & Hughes-Fulford, M. (2005). Key gravity-sensitive signaling
694 pathways drive T-cell activation. *The FASEB Journal*, 19(14), 2020-2022.
695 <https://doi.org/10.1096/fj.05-3778fje>

696 Boxio, R., Dournon, C., & Frippiat, J.-P. (2005). Effects of a long-term spaceflight on
697 immunoglobulin heavy chains of the urodele amphibian *Pleurodeles waltl*.
698 *Journal of Applied Physiology*, 98(3), 905-910.
699 <https://doi.org/10.1152/japplphysiol.00957.2004>

701 Brenet, F., Moh, M., Funk, P., Feierstein, E., Viale, A. J., Soccia, N. D., & Scandura, J.
702 M. (2011). DNA methylation of the first exon is tightly linked to transcriptional
703 silencing. *PloS One*, 6(1), e14524. <https://doi.org/10.1371/journal.pone.0014524>

704 Briggs, J. P. (2002). The zebrafish: A new model organism for integrative physiology.
705 *American Journal of Physiology-Regulatory, Integrative and Comparative*
706 *Physiology*, 282(1), R3-R9. <https://doi.org/10.1152/ajpregu.00589.2001>

707 Brojakowska, A., Kour, A., Thel, M. C., Park, E., Bisserier, M., Garikipati, V. N. S.,
708 Hadri, L., Mills, P. J., Walsh, K., & Goukassian, D. A. (2022). Retrospective
709 analysis of somatic mutations and clonal hematopoiesis in astronauts.
710 *Communications Biology*, 5(1), Article 1. <https://doi.org/10.1038/s42003-022-03777-z>

711 Caballero-Huertas, M., Moraleda-Prados, J., Joly, S., & Ribas, L. (2020). Immune
712 genes, IL1 β and Casp9, show sexual dimorphic methylation patterns in zebrafish
713 gonads. *Fish & Shellfish Immunology*, 97, 648-655.
714 <https://doi.org/10.1016/j.fsi.2019.12.013>

715 Casey, T., Patel, O., & Plaut, K. (2015). Transcriptomes reveal alterations in gravity
716 impact circadian clocks and activate mechanotransduction pathways with
717 adaptation through epigenetic change. *Physiological genomics*, 47,
718 physiolgenomics.00117.2014.
719 <https://doi.org/10.1152/physiolgenomics.00117.2014>

720 Chowdhury, B., Seetharam, A., Wang, Z., Liu, Y., Lossie, A. C., Thimmapuram, J., &
721 Irudayaraj, J. (2016). A Study of Alterations in DNA Epigenetic Modifications
722 (5mC and 5hmC) and Gene Expression Influenced by Simulated Microgravity in
723 Human Lymphoblastoid Cells. *PLOS ONE*, 11(1), e0147514.
724 <https://doi.org/10.1371/journal.pone.0147514>

725 Colantonio, J. R., Vermot, J., Wu, D., Langenbacher, A. D., Fraser, S., Chen, J.-N., &
726 Hill, K. L. (2009). The dynein regulatory complex is required for ciliary motility
727 and otolith biogenesis in the inner ear. *Nature*, 457(7226), 205-209.
728 <https://doi.org/10.1038/nature07520>

729 Corydon, T. J., Schulz, H., Richter, P., Strauch, S. M., Böhmer, M., Ricciardi, D. A.,
730 Wehland, M., Krüger, M., Erzinger, G. S., Lebert, M., Infanger, M., Wise, P.
731 M., & Grimm, D. (2023). Current Knowledge about the Impact of Microgravity
732 on Gene Regulation. *Cells*, 12(7), Article 7.
733 <https://doi.org/10.3390/cells12071043>

734

735 Deans, C., & Maggert, K. A. (2015). What do you mean, «epigenetic»? *Genetics*,
736 199(4), 887-896. <https://doi.org/10.1534/genetics.114.173492>

737 Deaton, A. M., & Bird, A. (2011). CpG islands and the regulation of transcription.
738 *Genes & Development*, 25(10), 1010-1022. <https://doi.org/10.1101/gad.2037511>

739 Esteller, M. (2008). Epigenetics in evolution and disease. *The Lancet*, 372, S90-S96.
740 [https://doi.org/10.1016/S0140-6736\(08\)61887-5](https://doi.org/10.1016/S0140-6736(08)61887-5)

741 Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: Emerging patterns
742 and implications. *Nature Reviews Genetics*, 13(2), Article 2.
743 <https://doi.org/10.1038/nrg3142>

744 Frippiat, J.-P. (2013). Contribution of the urodele amphibian *Pleurodeles waltl* to the
745 analysis of spaceflight-associated immune system deregulation. *Molecular
746 Immunology*, 56(4), 434-441. <https://doi.org/10.1016/j.molimm.2013.06.011>

747 Garrett-Bakelman, F. E., Darshi, M., Green, S. J., Gur, R. C., Lin, L., Macias, B. R.,
748 McKenna, M. J., Meydan, C., Mishra, T., Nasrini, J., Piening, B. D., Rizzardi, L.
749 F., Sharma, K., Siamwala, J. H., Taylor, L., Vitaterna, M. H., Afkarian, M.,
750 Afshinnekoo, E., Ahadi, S., ... Turek, F. W. (2019). The NASA Twins Study: A
751 multidimensional analysis of a year-long human spaceflight. *Science*, 364(6436).
752 <https://doi.org/10.1126/science.aau8650>

753 Hariom, S. K., & Nelson, E. J. R. (2022). Effects of short-term hypergravity on
754 hematopoiesis and vasculogenesis in embryonic zebrafish. *Life Sciences in
755 Space Research*, 34, 21-29. <https://doi.org/10.1016/j.lssr.2022.05.005>

756 Hariom, S. K., Ravi, A., Mohan, G. R., Pochiraju, H. D., Chattopadhyay, S., & Nelson,
757 E. J. R. (2021). Animal physiology across the gravity continuum. *Acta
758 Astronautica*, 178, 522-535. <https://doi.org/10.1016/j.actaastro.2020.09.044>

759 Herceg, Z., & Vaissière, T. (2011). Epigenetic mechanisms and cancer: An interface
760 between the environment and the genome. *Epigenetics*, 6(7), 804-819.
761 <https://doi.org/10.4161/epi.6.7.16262>

762 Hermann, A., Gowher, H., & Jeltsch, A. (2004). Biochemistry and biology of
763 mammalian DNA methyltransferases. *Cellular and Molecular Life Sciences
764 CMSL*, 61(19), 2571-2587. <https://doi.org/10.1007/s00018-004-4201-1>

765 Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C. M., de Geest, M.,
766 Hauslage, J., Hilbig, R., Hill, R. J. A., Lebert, M., Medina, F. J., Vagt, N.,
767 Ullrich, O., van Loon, J. J. W. A., & Hemmersbach, R. (2013). Ground-Based
768 Facilities for Simulation of Microgravity: Organism-Specific Recommendations

769 for Their Use, and Recommended Terminology. *Astrobiology*, 13(1), 1-17.
770 <https://doi.org/10.1089/ast.2012.0876>

771 Hilbig, R. W., & Anken, R. H. (2017). Impact of Micro- and Hypergravity on
772 Neurovestibular Issues of Fish. In R. Hilbig, A. Gollhofer, O. Bock, & D.
773 Manzey (Eds.), *Sensory Motor and Behavioral Research in Space* (pp. 59-86).
774 Springer International Publishing. https://doi.org/10.1007/978-3-319-68201-3_4

775 Honda, Y., Honda, S., Narici, M., & Szewczyk, N. J. (2014). Spaceflight and Ageing:
776 Reflecting on *Caenorhabditis elegans* in Space. *Gerontology*, 60(2), 138-142.
777 <https://doi.org/10.1159/000354772>

778 Hou, F., Zhou, X., Zhou, S., Liu, H., Huang, Y., Yuan, M., Zhu, J., Cao, X., & Jiang,
779 W. (2022). DNA methylation dynamics associated with long-term isolation of
780 simulated space travel. *IScience*, 25(6).
781 <https://doi.org/10.1016/j.isci.2022.104493>

782 Ibsch, M., Anken, R. H., & Rahmann, H. (2000). Weightlessness during spaceflight
783 results in enhanced synapse formation in a fish brain vestibular nucleus.
784 *Neuroscience Letters*, 296(1), 13-16. [https://doi.org/10.1016/S0304-3940\(00\)01594-9](https://doi.org/10.1016/S0304-3940(00)01594-9)

785 Ijiri, K. (1994). A Preliminary Report on IML-2 Medaka Experiment. *Biological
786 Sciences in Space*, 8(4), 231-233. <https://doi.org/10.2187/bss.8.231>

787 Ijiri, K. (1995). Medaka fish had the honor to perform the first successful vertebrate
788 mating in space. *The Fish Biology Journal Medaka*, 7, 1-10.
789 <https://doi.org/10.18999/fisbjm.7.1>

790 Ijiri, K. (1998). Development of space-fertilized eggs and formation of primordial germ
791 cells in the embryos of medaka fish. *Advances in Space Research*, 21(8), 1155-
792 1158. [https://doi.org/10.1016/S0273-1177\(97\)00205-6](https://doi.org/10.1016/S0273-1177(97)00205-6)

793 Ijiri, K. (2003). Life-cycle experiments of medaka fish aboard the international space
794 station. *Advances in Space Biology and Medicine*, 9, 201-216.
795 [https://doi.org/10.1016/s1569-2574\(03\)09008-7](https://doi.org/10.1016/s1569-2574(03)09008-7)

796 Ijiri, K., Mizuno, R., & Eguchi, H. (2003). Use of an otolith-deficient mutant in studies
797 of fish behavior in microgravity. *Advances in Space Research: The Official
798 Journal of the Committee on Space Research (COSPAR)*, 32(8), 1501-1512.
799 [https://doi.org/10.1016/S0273-1177\(03\)90388-7](https://doi.org/10.1016/S0273-1177(03)90388-7)

800

801 Jamon, M. (2014). The development of vestibular system and related functions in
802 mammals: Impact of gravity. *Frontiers in Integrative Neuroscience*, 0.
803 <https://doi.org/10.3389/fnint.2014.00011>

804 Johnson, D. S. (2016, diciembre 22). *The First Fish in Orbit*. Scientific American Blog
805 Network. <https://blogs.scientificamerican.com/guest-blog/the-first-fish-in-orbit/>

806 Jones, P. A., & Takai, D. (2001). The role of DNA methylation in mammalian
807 epigenetics. *Science (New York, N.Y.)*, 293(5532), 1068-1070.
808 <https://doi.org/10.1126/science.1063852>

809 Kamal, K. Y., Herranz, R., van Loon, J. J. W. A., & Medina, F. J. (2018). Simulated
810 microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation,
811 ribosome biogenesis, and epigenetics in *Arabidopsis* cell cultures. *Scientific
812 Reports*, 8(1), Article 1. <https://doi.org/10.1038/s41598-018-24942-7>

813 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995).
814 Stages of embryonic development of the zebrafish. *Developmental Dynamics*,
815 203(3), 253-310. <https://doi.org/10.1002/aja.1002030302>

816 Kondrachuk, A. V., & Boyle, R. D. (2006). Feedback hypothesis and the effects of
817 altered gravity on formation and function of gravireceptors of mollusks and fish.
818 *Archives Italiennes De Biologie*, 144(2), 75-87.

819 Koressaar, T., & Remm, M. (2007). Enhancements and modifications of primer design
820 program Primer3. *Bioinformatics*, 23(10), 1289-1291.
821 <https://doi.org/10.1093/bioinformatics/btm091>

822 Kothiyal, P., Eley, G., Ilangoan, H., Hoadley, K. A., Elgart, S. R., Mao, X. W., &
823 Eslami, P. (2022). A multi-omics longitudinal study of the murine retinal
824 response to chronic low-dose irradiation and simulated microgravity. *Scientific
825 Reports*, 12(1), Article 1. <https://doi.org/10.1038/s41598-022-19360-9>

826 Laird, P. W. (2010). Principles and challenges of genome-wide DNA methylation
827 analysis. *Nature Reviews Genetics*, 11(3), Article 3.
828 <https://doi.org/10.1038/nrg2732>

829 Lamprea, M. R., Cardenas, F. P., Setem, J., & Morato, S. (2008). Thigmotactic
830 responses in an open-field. *Brazilian Journal of Medical and Biological
831 Research = Revista Brasileira De Pesquisas Medicas E Biologicas*, 41(2), 135-
832 140. <https://doi.org/10.1590/s0100-879x2008000200010>

833 Lawson, B. D., Rupert, A. H., & McGrath, B. J. (2016). The Neurovestibular
834 Challenges of Astronauts and Balance Patients: Some Past Countermeasures and

835 Two Alternative Approaches to Elicitation, Assessment and Mitigation.

836 *Frontiers in Systems Neuroscience*, 0. <https://doi.org/10.3389/fnsys.2016.00096>

837 Li, Q., Mei, Q., Huyan, T., Xie, L., Che, S., Yang, H., Zhang, M., & Huang, Q. (2013).

838 Effects of Simulated Microgravity on Primary Human NK Cells. *Astrobiology*,

839 13(8), 703-714. <https://doi.org/10.1089/ast.2013.0981>

840 Li, X., Anken, R. H., Wang, G., Hilbig, R., & Liu, Y. (2011). Effects of Wall Vessel

841 Rotation on the Growth of Larval Zebrafish Inner Ear Otoliths. *Microgravity*

842 *Science and Technology*, 23(1), 13-18. <https://doi.org/10.1007/s12217-010-9215-8>

843

844 Li, X., Anken, R., Liu, L., Wang, G., & Liu, Y. (2017). Effects of Simulated

845 Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall

846 Vessel: Appropriate Rotation Speed and Fish Developmental Stage.

847 *Microgravity Science and Technology*, 29(1-2), 1-8.

848 <https://doi.org/10.1007/s12217-016-9518-5>

849 Liang, F., Lv, K., Wang, Y., Yuan, Y., Lu, L., Feng, Q., Jing, X., Wang, H., Liu, C.,

850 Rayner, S., Ling, S., Chen, H., Wan, Y., Zhou, W., He, L., Wu, B., Qu, L.,

851 Chen, S., Xiong, J., & Li, Y. (2019). Personalized Epigenome Remodeling

852 Under Biochemical and Psychological Changes During Long-Term Isolation

853 Environment. *Frontiers in Physiology*, 10.

854 <https://www.frontiersin.org/articles/10.3389/fphys.2019.00932>

855 Liu, X., Lin, J., Zhang, Y., Peng, X., Guo, N., & Li, Q. (2016). Effects of

856 diphenylhydantoin on locomotion and thigmotaxis of larval zebrafish.

857 *Neurotoxicology and Teratology*, 53, 41-47.

858 <https://doi.org/10.1016/j.ntt.2015.11.008>

859 Liu, Z., Hildebrand, D. G. C., Morgan, J. L., Slimmon, N., & Bagnall, M. W. (2021).

860 The organization of the gravity-sensing system in zebrafish. *BioRxiv*,

861 2021.07.09.451839. <https://doi.org/10.1101/2021.07.09.451839>

862 Marcu, O., Lera, M. P., Sanchez, M. E., Levic, E., Higgins, L. A., Shmygelska, A.,

863 Fahlen, T. F., Nichol, H., & Bhattacharya, S. (2011). Innate Immune Responses

864 of *Drosophila melanogaster* Are Altered by Spaceflight. *PLOS ONE*, 6(1),

865 e15361. <https://doi.org/10.1371/journal.pone.0015361>

866 Miranda, T. B., & Jones, P. A. (2007). DNA methylation: The nuts and bolts of

867 repression. *Journal of Cellular Physiology*, 213(2), 384-390.

868 <https://doi.org/10.1002/jcp.21224>

869 Moorman, S. J., Cordova, R., & Davies, S. A. (2002). A critical period for functional
870 vestibular development in zebrafish. *Developmental Dynamics*, 223(2), 285-291.
871 <https://doi.org/10.1002/dvdy.10052>

872 Moraleda-Prados, J., Caballero-Huertas, M., Valdivieso, A., Joly, S., Ji, J., Roher, N., &
873 Ribas, L. (2021). Epigenetic differences in the innate response after immune
874 stimulation during zebrafish sex differentiation. *Developmental & Comparative
875 Immunology*, 114, 103848. <https://doi.org/10.1016/j.dci.2020.103848>

876 Norton, W., & Bally-Cuif, L. (2010). Adult zebrafish as a model organism for
877 behavioural genetics. *BMC Neuroscience*, 11(1), 90.
878 <https://doi.org/10.1186/1471-2202-11-90>

879 Nwanaji-Enwerem, J. C., Nwanaji-Enwerem, U., Van Der Laan, L., Galazka, J. M.,
880 Redeker, N. S., & Cardenas, A. (2020). A Longitudinal Epigenetic Aging and
881 Leukocyte Analysis of Simulated Space Travel: The Mars-500 Mission. *Cell
882 Reports*, 33(10), 108406. <https://doi.org/10.1016/j.celrep.2020.108406>

883 OECD. (2011). *Test No. 234: Fish Sexual Development Test*. Organisation for
884 Economic Co-operation and Development. https://www.oecd-ilibrary.org/environment/test-no-234-fish-sexual-development-test_9789264122369-en

885 Ogneva, I. V., Loktev, S. S., & Sychev, V. N. (2018). Cytoskeleton structure and total
886 methylation of mouse cardiac and lung tissue during space flight. *PLOS ONE*,
887 13(5), e0192643. <https://doi.org/10.1371/journal.pone.0192643>

888 Ohnishi, T., Tsuji, K., Ohmura, T., Matsumoto, H., Wang, X., Takahahsi, A., Nagaoka,
889 S., & Takabayashi, A. (1998). Accumulation of stress protein 72 (hsp72) in
890 muscle and spleen of goldfish taken into space. *Advances in Space Research*,
891 21(8), 1077-1080. [https://doi.org/10.1016/S0273-1177\(98\)00030-1](https://doi.org/10.1016/S0273-1177(98)00030-1)

892 Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyltransferases
893 Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian
894 development. *Cell*, 99(3), 247-257. [https://doi.org/10.1016/s0092-8674\(00\)81656-6](https://doi.org/10.1016/s0092-8674(00)81656-6)

895 Ospina-Álvarez, N., & Piferrer, F. (2008). Temperature-Dependent Sex Determination
896 in Fish Revisited: Prevalence, a Single Sex Ratio Response Pattern, and Possible
897 Effects of Climate Change. *PLOS ONE*, 3(7), e2837.
898 <https://doi.org/10.1371/journal.pone.0002837>

899

900

901

902 Piferrer, F. (2018). Epigenetics of Sex Determination and Differentiation in Fish. In
903 *Sex Control in Aquaculture* (pp. 65-83). John Wiley & Sons, Ltd.
904 <https://doi.org/10.1002/9781119127291.ch3>

905 Piferrer, F., & Ribas, L. (2020). *The use of the zebrafish as a model in fish aquaculture*
906 *research*. Elsevier. <https://doi.org/10.13039/501100003329>

907 Pradhan, S., Bacolla, A., Wells, R. D., & Roberts, R. J. (1999). Recombinant human
908 DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison
909 of de novo and maintenance methylation. *The Journal of Biological Chemistry*,
910 274(46), 33002-33010. <https://doi.org/10.1074/jbc.274.46.33002>

911 Przybyla, C., Dutto, G., Bernard, M., Rollin, B., Laurand, X., Averseng, J., Gasset, E.,
912 Tadadjeu, I., & Dusseau, L. (2020). European sea bass (*Dicentrarchus labrax*)
913 and meagre (*Argyrosomus regius*) fertilized egg resistance to a spacecraft
914 launcher vibration qualifying test. *Aquaculture International*, 28(6), 2465-2479.
915 <https://doi.org/10.1007/s10499-020-00601-5>

916 Qiu, J. (2006). Epigenetics: Unfinished symphony. *Nature*, 441(7090), 143-145.
917 <https://doi.org/10.1038/441143a>

918 Rahmann, H., & Anken, R. H. (2000). Gravitational neurobiology of fish. *Advances in*
919 *Space Research: The Official Journal of the Committee on Space Research*
920 (*COSPAR*), 25(10), 1985-1995. [https://doi.org/10.1016/s0273-1177\(99\)01007-8](https://doi.org/10.1016/s0273-1177(99)01007-8)

921 Rahmann, H., Hilbig, R., Flemming, J., & Slenzka, K. (1996). Influence of long-term
922 altered gravity on the swimming performance of developing cichlid fish:
923 Including results from the 2nd German Spacelab Mission D-2. *Advances in*
924 *Space Research*, 17(6), 121-124. [https://doi.org/10.1016/0273-1177\(95\)00623-m](https://doi.org/10.1016/0273-1177(95)00623-m)

926 Rahmann, H., & Slenzka, K. (1994). *Influence of gravity on early development of lower*
927 *aquatic vertebrates*. 366, 147.

928 Ribas, L., Liew, W. C., Díaz, N., Sreenivasan, R., Orbán, L., & Piferrer, F. (2017).
929 Heat-induced masculinization in domesticated zebrafish is family-specific and
930 yields a set of different gonadal transcriptomes. *Proceedings of the National*
931 *Academy of Sciences of the United States of America*, 114(6), E941-E950.
932 <https://doi.org/10.1073/pnas.1609411114>

933 Ribas, L., & Piferrer, F. (2014). *The zebrafish (*Danio rerio*) as a model organism, with*
934 *emphasis on applications for finfish aquaculture research*.
935 <https://doi.org/10.1111/raq.12041>

936 Ribas, L., Valdivieso, A., Díaz, N., & Piferrer, F. (2017). Appropriate rearing density in
937 domesticated zebrafish to avoid masculinization: Links with the stress response.
938 *Journal of Experimental Biology*, 220(6), 1056-1064.
939 <https://doi.org/10.1242/jeb.144980>

940 Ross, M. D. (1994). A Spaceflight Study of Synaptic Plasticity in Adult Rat Vestibular
941 Maculas. *Acta Oto-Laryngologica*, 114(sup516), 3-14.
942 <https://doi.org/10.3109/00016489409124327>

943 Rykova, M. P., Antropova, E. N., Larina, I. M., & Morukov, B. V. (2008). Humoral and
944 cellular immunity in cosmonauts after the ISS missions. *Acta Astronautica*,
945 63(7), 697-705. <https://doi.org/10.1016/j.actaastro.2008.03.016>

946 Scheld, H. W., Boyd, J. F., Bozarth, G. A., Conner, J. A., Eichler, V. B., Fuller, P. M.,
947 Hoffman, R. B., Keefe, J. R., Kuchnow, K. P., & Oppenheimer, J. M. (1976).
948 *Killifish Hatching and Orientation experiment MA-161*.
949 <https://ntrs.nasa.gov/citations/19760016005>

950 Schübeler, D. (2015). Function and information content of DNA methylation. *Nature*,
951 517(7534), 321-326. <https://doi.org/10.1038/nature14192>

952 Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination:
953 Implications in the regulation of gene expression. *Annual Review of
954 Biochemistry*, 75, 243-269.
955 <https://doi.org/10.1146/annurev.biochem.75.103004.142422>

956 Shimada, N., & Moorman, S. J. (2006). Changes in gravitational force cause changes in
957 gene expression in the lens of developing zebrafish. *Developmental Dynamics*,
958 235(10), 2686-2694. <https://doi.org/10.1002/dvdy.20901>

959 Singh, K., Kumari, R., & Dumond, J. (2010). Simulated Microgravity-Induced
960 Epigenetic Changes in Human Lymphocytes. *Journal of cellular biochemistry*,
961 111, 123-129. <https://doi.org/10.1002/jcb.22674>

962 Skinner, M. K., Manikkam, M., & Guerrero-Bosagna, C. (2010). Epigenetic
963 transgenerational actions of environmental factors in disease etiology. *Trends in
964 Endocrinology and Metabolism: TEM*, 21(4), 214-222.
965 <https://doi.org/10.1016/j.tem.2009.12.007>

966 Smith, T. H. L., Collins, T. M., & McGowan, R. A. (2011). Expression of the dnmt3
967 genes in zebrafish development: Similarity to Dnmt3a and Dnmt3b.
968 *Development Genes and Evolution*, 220(11), 347-353.
969 <https://doi.org/10.1007/s00427-010-0347-z>

970 Straka, H., Vibert, N., Vidal, P. P., Moore, L. E., & Dutia, M. B. (2005). Intrinsic
971 membrane properties of vertebrate vestibular neurons: Function, development
972 and plasticity. *Progress in Neurobiology*, 76(6), 349-392.
973 <https://doi.org/10.1016/j.pneurobio.2005.10.002>

974 Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y.,
975 Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., & Rao, A. (2009). Conversion
976 of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL
977 Partner TET1. *Science*, 324(5929), 930-935.
978 <https://doi.org/10.1126/science.1170116>

979 Taylor, K., Kleinhesselink, K., George, M. D., Morgan, R., Smallwood, T., Hammonds,
980 A. S., Fuller, P. M., Saelao, P., Alley, J., Gibbs, A. G., Hoshizaki, D. K., Kalm,
981 L. von, Fuller, C. A., Beckingham, K. M., & Kimbrell, D. A. (2014). Toll
982 Mediated Infection Response Is Altered by Gravity and Spaceflight in
983 *Drosophila*. *PLOS ONE*, 9(1), e86485.
984 <https://doi.org/10.1371/journal.pone.0086485>

985 Valdivieso, A., Ribas, L., Monleón-Getino, A., Orbán, L., & Piferrer, F. (2020).
986 Exposure of zebrafish to elevated temperature induces sex ratio shifts and
987 alterations in the testicular epigenome of unexposed offspring. *Environmental
988 Research*, 186, 109601. <https://doi.org/10.1016/j.envres.2020.109601>

989 van Loon, J. J. W. A., Folgering, E. H. T. E., Bouter, C. V. C., & Smit, T. H. (2004).
990 Centrifuges and inertial shear forces. *Journal of Gravitational Physiology: A
991 Journal of the International Society for Gravitational Physiology*, 11(1), 29-38.

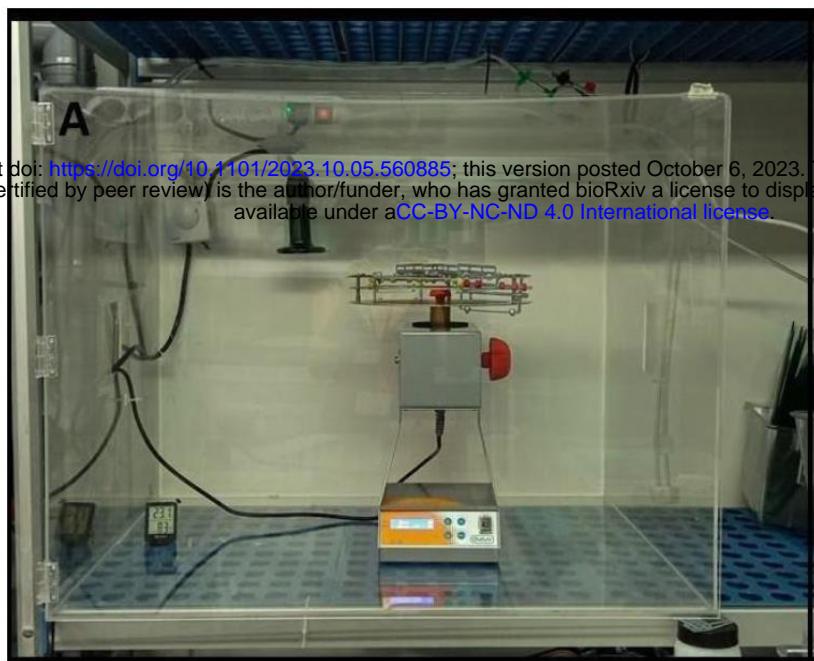
992 van Loon, J.J.W.A., Tanck, E., van Nieuwenhoven, F.A., Snoeckx, L.H.E.H., de Jong,
993 H.A.A., Wubbels, R.J., & Orale Celbiologie (OUD, ACTA). (2005). A brief
994 overview of animal hypergravity studies. *Journal of gravitational physiology*,
995 12, 5-10.

996 Volkmann, D., & Baluska, F. (2007). Gravity: One of the driving forces for evolution.
997 *Protoplasma*, 229, 143-148. <https://doi.org/10.1007/s00709-006-0200-4>

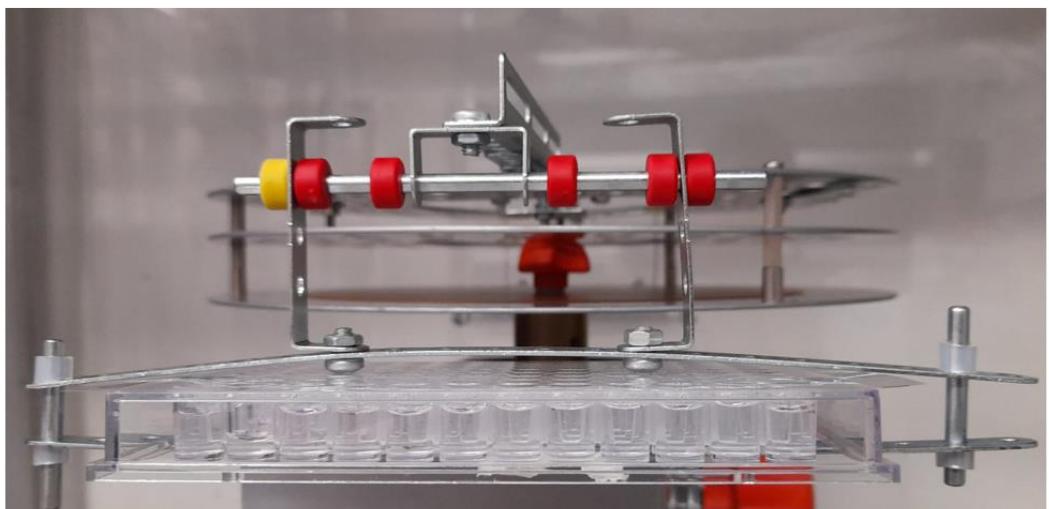
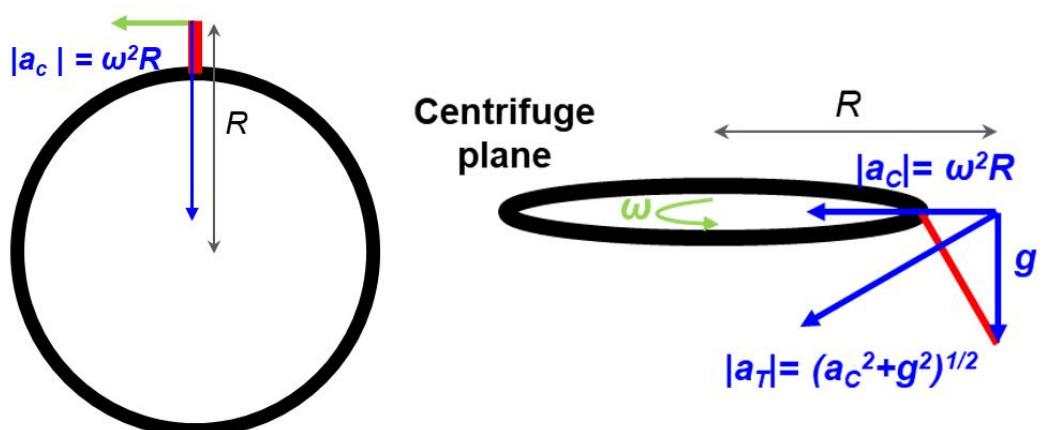
998 Von Baumgarten, R. J., Simmonds, R. C., Boyd, J. F., & Garriott, O. K. (1975). *Effects
999 of prolonged weightlessness on the swimming pattern of fish aboard Skylab 3*.
1000 <https://ntrs.nasa.gov/citations/19750054341>

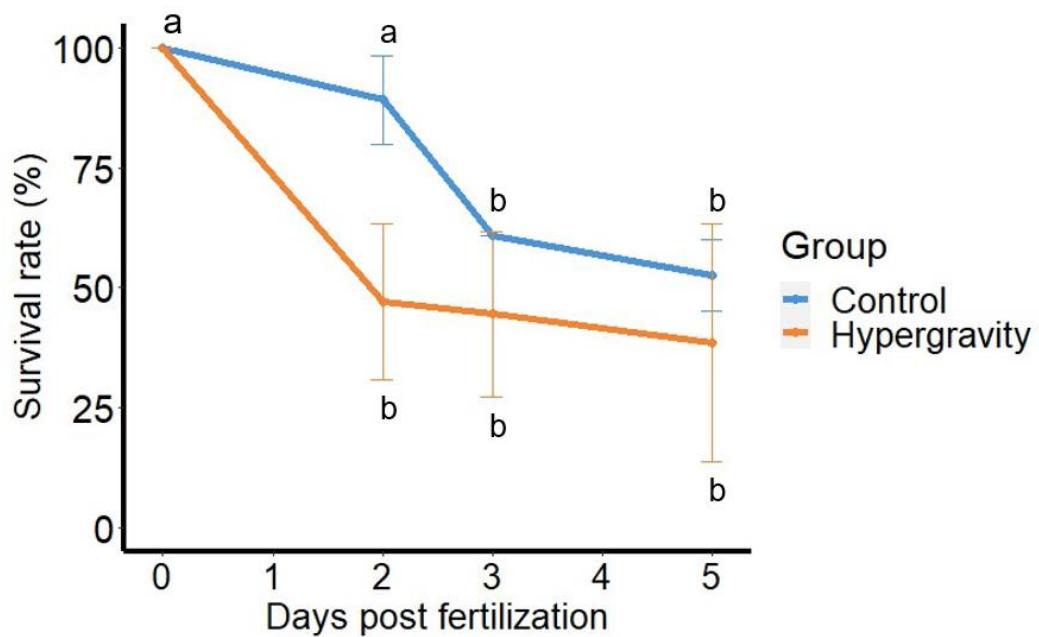
1001 Wade, C. E. (2005). Responses across the Gravity Continuum: Hypergravity to
1002 Microgravity. En *Advances in Space Biology and Medicine* (Vol. 10, pp. 225-
1003 245). Elsevier. [https://doi.org/10.1016/S1569-2574\(05\)10009-4](https://doi.org/10.1016/S1569-2574(05)10009-4)

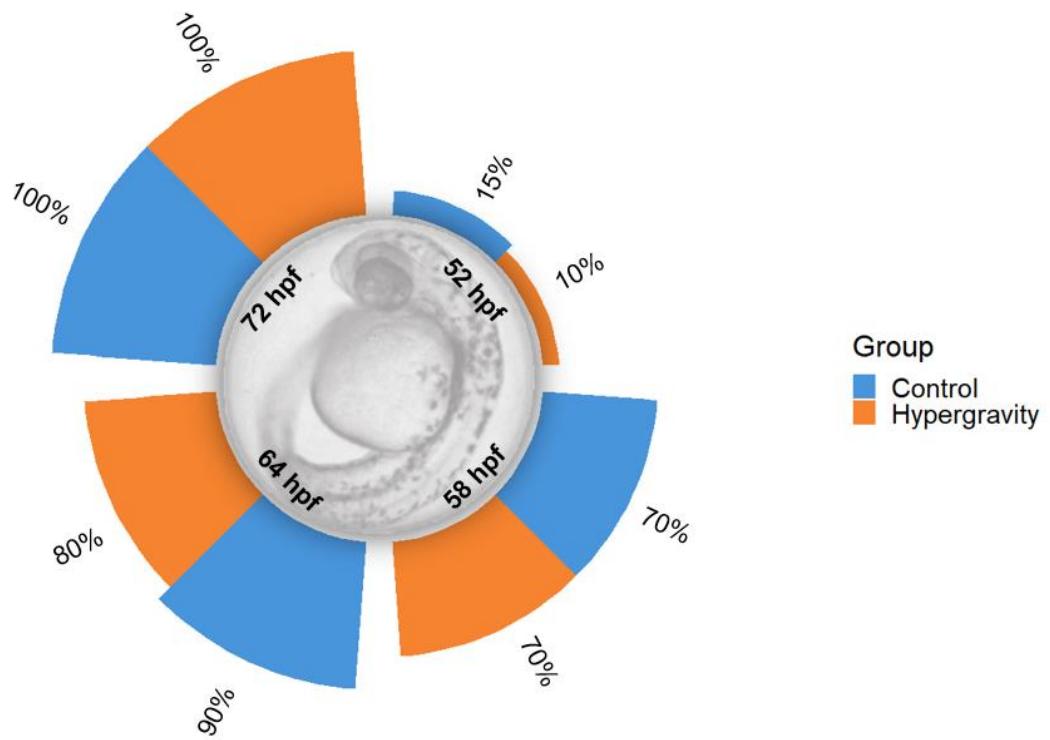
1004 Wickham, H. (2016). Build a Plot Layer by Layer. En H. Wickham (Ed.), *Ggplot2: Elegance in Statistical Data Representation* (pp. 89-107). Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4_5

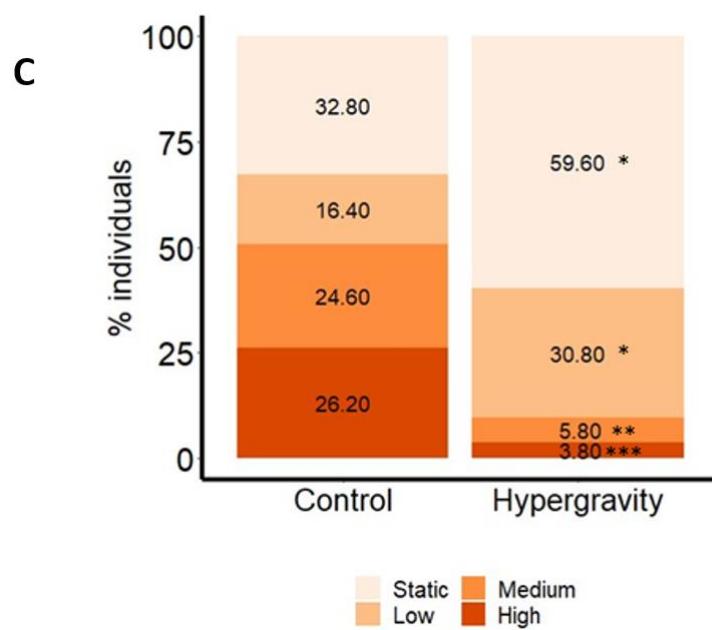
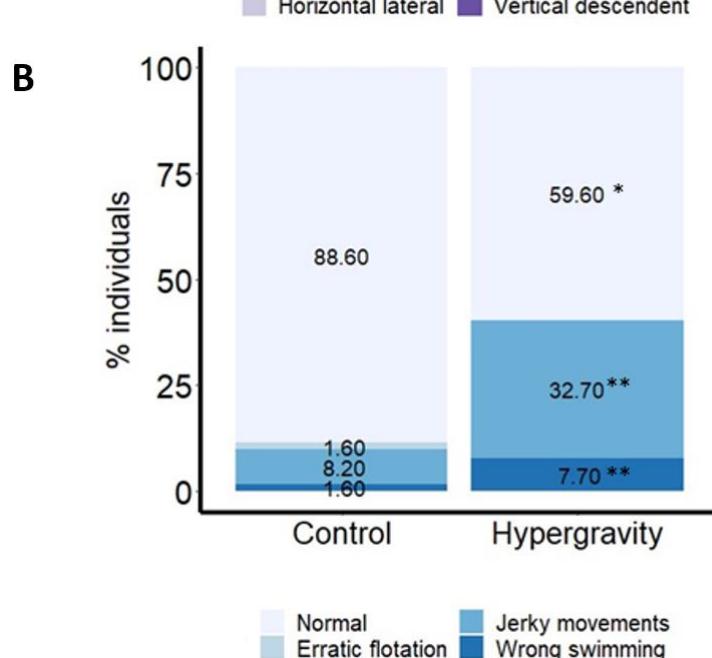
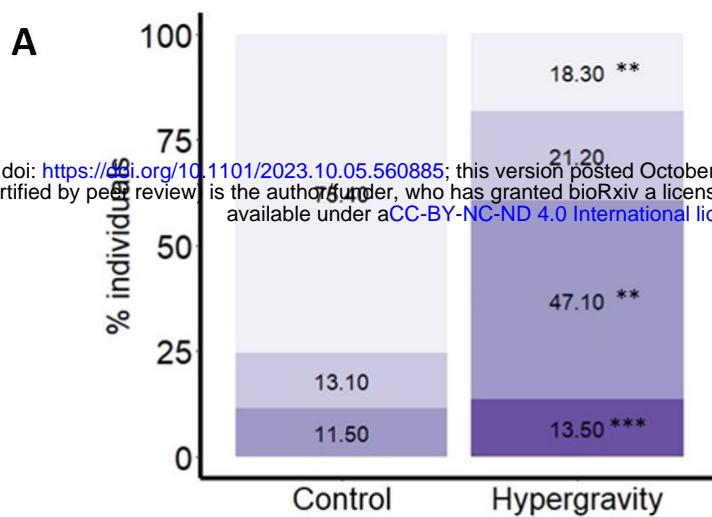

1007 Wiederhold, M. L., Harrison, J. L., & Gao, W. (2003). A critical period for gravitational effects on otolith formation. *Journal of Vestibular Research: Equilibrium & Orientation*, 13(4-6), 205-214.

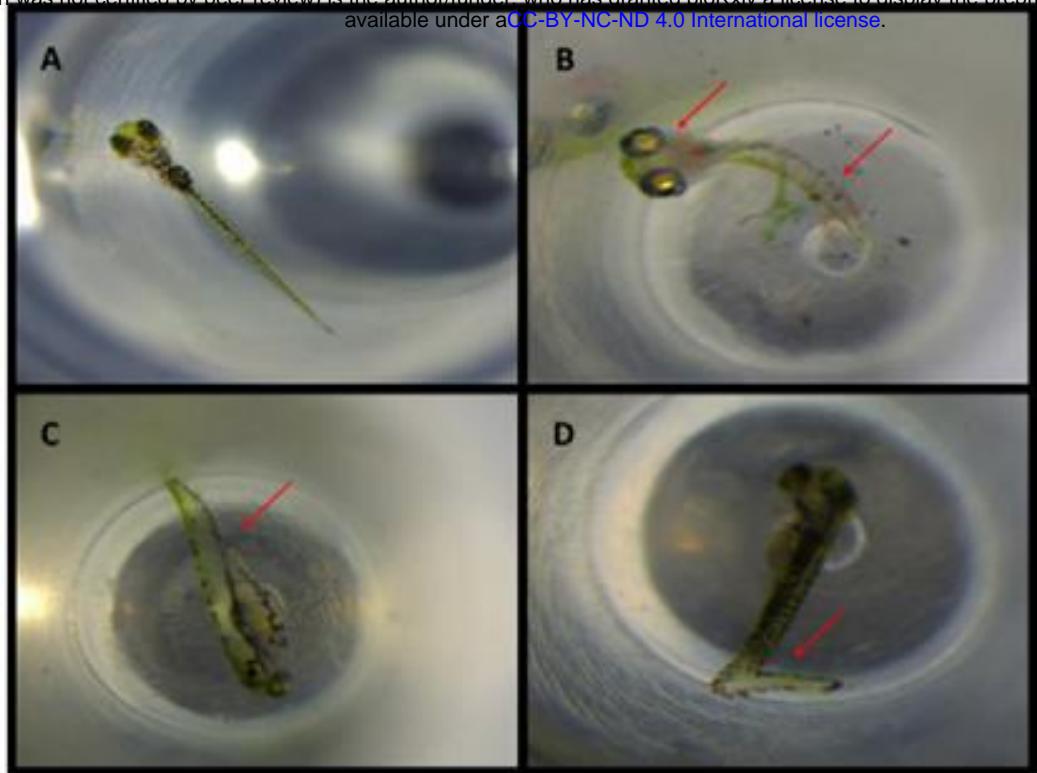
1010 Wiederhold, M. L., Harrison, J. L., Parker, K., & Nomura, H. (2000). Otoliths developed in microgravity. *Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology*, 7(2), P39-42.

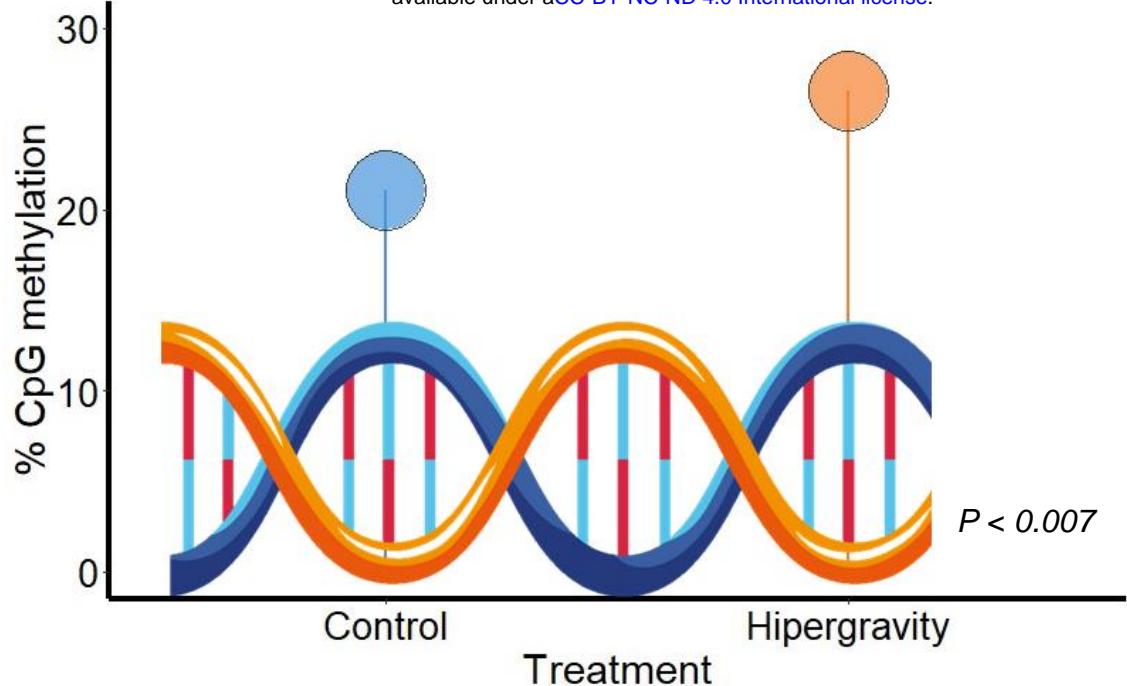


1013 Zhao, H., & Chen, T. (2013). Tet family of 5-methylcytosine dioxygenases in mammalian development. *Journal of Human Genetics*, 58(7), Article 7. <https://doi.org/10.1038/jhg.2013.63>

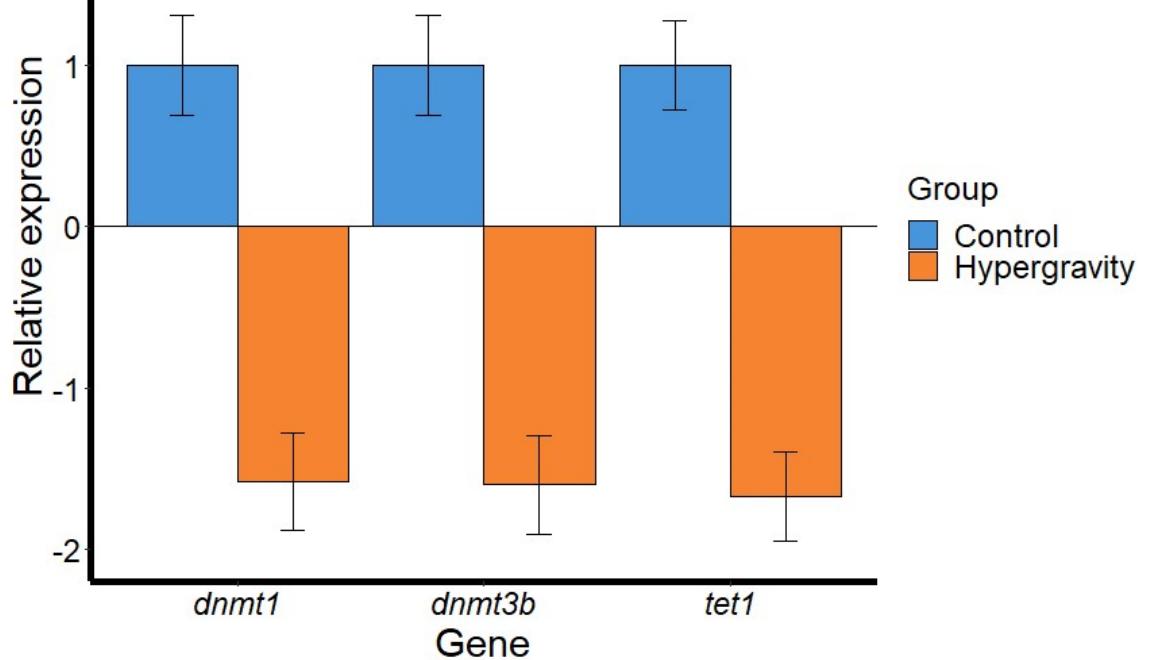

1016 Zhu, L., Nie, L., Xie, S., Li, M., Zhu, C., Qiu, X., Kuang, J., Liu, C., Lu, C., Li, W., Meng, E., Zhang, D., & Zhu, L. (2021). Attenuation of Antiviral Immune Response Caused by Perturbation of TRIM25-Mediated RIG-I Activation under Simulated Microgravity. *Cell Reports*, 34(1), 108600. <https://doi.org/10.1016/j.celrep.2020.108600>


1021




A


bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.05.560885>; this version posted October 6, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


B**C**



bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.05.560885>; this version posted October 6, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

