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Abstract: scRNA-seq profiling of disease activity in RA 

 

Objective: Single cell profiling of synovial tissue has previously identified gene signatures 

associated with rheumatoid arthritis (RA) pathophysiology, but synovial tissue is difficult to 

obtain. This study leverages single cell sequencing of peripheral blood mononuclear cells 

(PBMCs) from patients with RA and matched healthy controls to identify disease relevant cell 

subsets and cell type specific signatures of disease. 

Methods: Single-cell RNA sequencing (scRNAseq) was performed on peripheral blood 

mononuclear cells (PBMCs) from 18 RA patients and 18 matched controls, accounting for age, 

gender, race, and ethnicity). Samples were processed using standard CellRanger and Scanpy 

pipelines, pseudobulk differential gene expression analysis was performed using DESeq2, and 

cell-cell communication analysis using CellChat. 

Results: We identified 18 distinct PBMC subsets, including a novel IFITM3+ monocyte subset. 

CD4+ T effector memory cells were increased in patients with moderate to high disease activity 

(DAS28-CRP ≥ 3.2), while non-classical monocytes were decreased in patients with low disease 

activity or remission (DAS28-CRP < 3.2). Differential gene expression analysis identified RA-

associated genes in IFITM3+ and non-classical monocyte subsets, and downregulation of pro-

inflammatory genes in the Vδ subset. Additionally, we identified gene signatures associated with 

disease activity, characterized by upregulation of pro-inflammatory genes TNF, JUN, EGR1, 

IFIT2, MAFB, G0S2, and downregulation of HLA-DQB1, HLA-DRB5, TNFSF13B. Notably, cell-

cell communication analysis revealed upregulation of immune-associated signaling pathways, 

including VISTA, in patients with RA. 

Conclusions: We provide a novel single-cell transcriptomics dataset of PBMCs from patients with 

RA, and identify insights into the systemic cellular and molecular mechanisms underlying RA 

disease activity. 
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INTRODUCTION 

 

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic 

inflammation and joint destruction (1). While the prevalence and disease burden vary considerably 

between geographic regions and populations (2), RA impacts approximately 1.3 million adults in 

the United States, representing 0.6 to 1% of the country's population (3,4). RA is a debilitating 

condition and a major socio-economic burden with a prevalence of work disability around 35% 

(5). Effective RA management necessitates early diagnosis, a treat-to-target approach, and the 

attainment of remission or low disease activity (6). Achieving optimal therapeutic success remains 

the main challenge in RA as only 16 % of patients reach sustained remission or low disease activity 

(7,8). This has been particularly underscored by the recent recommendations from the European 

Alliance of Associations for Rheumatology (EULAR), particularly concerning the management of 

difficult-to-treat RA patients (9).  

 

The understanding of cellular and molecular mechanisms underlying disease activity has garnered 

significant attention. Notably, specific cell subsets, such as synovial tissue macrophages, have 

been associated with both remission and disease activity (10). Additionally, several synovial 

molecular and pathobiological markers have shown promise in predicting treatment response (11–

13). The emergence of bulk transcriptomic data has further revealed that alterations in synovial 

and blood transcriptomic profiles were closely associated with disease activity and flares (14–16). 

In the pursuit of comprehensive insights, single-cell RNA sequencing (scRNA-seq) emerges as a 

powerful tool to simultaneously profile cell subset compositions and cell type-specific 

transcriptional states, enabling a deeper understanding of mechanisms associated with non-

remission. Several studies have utilized single-cell resolution to investigate RA, although the 

majority of research has focused on synovial tissue and none specifically studied disease activity 

(17–19). 

 

Recent cross-tissue meta-analyses of transcriptome data, encompassing samples from both human 

and murine models, have uncovered genes associated with disease activity, and underscored a 

divergence between synovium and peripheral blood profiles (20,21). Consequently, it is crucial to 

recognize that markers identified in the synovium cannot be directly extrapolated to those found 

in peripheral blood. The accessibility of peripheral blood, compared to the more invasive nature 

of synovial sampling, emphasizes its practical advantage for both research and potential clinical 

applications. An additional challenge in studying RA disease activity is the inherent heterogeneity 

of the condition and the potential influence of demographic factors, such as gender, age, ethnicity 

and race, on disease activity(22–25). A critical aspect of addressing this challenge involves 

promoting the establishment of more standardized and diverse cohorts, enabling a better 

exploration of specific cell subsets and biomarkers that contribute to disease activity. 

 

In this study, we describe a comprehensive analysis of disease activity using scRNA-seq of 

peripheral blood mononuclear cells (PBMC) in a diverse cohort of RA patients, matched with 

controls based on age, gender, race, and ethnicity. Our primary objective was to identify specific 

cell subsets and biomarkers associated with disease activity. Additionally, we aimed to assess the 

specific RA cell subsets and gene signatures in a diverse population, providing valuable insights 

into the multifaceted nature of RA pathogenesis.  
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METHODS 

 

Study Design  

RA Patients meeting the American College of Rheumatology (ACR) classification criteria  (26) 

were recruited from the University of California San Francisco (UCSF) rheumatology clinic 

between 2016 and 2020 (27). Healthy controls were recruited through local advertising and 

through the database ResearchMatch(28). Controls were matched to RA patients by age, gender, 

race, and ethnicity. The study was conducted in accordance with the principles outlined in the 

Declaration of Helsinki and was granted ethical approval by the Human Research Protection 

Program and the Institutional Review Board of UCSF (IRB Project No. 15-17175). All participants 

provided written informed consent. Blood samples and participant level data were collected at time 

of enrollment. Clinical data including demographics, medication status, laboratory values, such as 

erythrocyte sedimentation rate, C-reactive protein (CRP), RF, ACPA antibodies, and clinical 

measurements of disease activity with the Disease Activity Score in 28 joints using CRP (DAS28-

CRP). Patients were stratified in remission or low disease activity (DAS28-CRP <3.2) and 

moderate and high disease activity, (DAS28-CRP ≥ 3.2) according to the 2019 updated ACR 

recommendation on disease activity measures (29).  

 

Sample processing and 10X single cell RNA-sequencing 

Peripheral Blood Mononuclear cells (PBMCs) were isolated from peripheral blood samples by 

UCSF Bay Area Center for AIDS Research Specimen Processing and Banking Subcore 

(previously AIDS specimen bank). Blood samples were collected in EDTA tubes, processed per 

manufacturer’s guidelines, and cryopreserved in liquid nitrogen. Single cell sequencing was 

performed using the 10X Chromium microfluidics system (10X Genomic). PBMCS from 18 RA 

patients and 18 healthy controls were thawed, counted, and pooled and profiled in three batches 

and 12 lanes, using 10x Genomics Chromium Single Cell 3’V3. Barcoded cDNA libraries were 

prepared using the single cell 3’mRNA kit. Cell Ranger v3 (3.1.0) was used to demultiplex cellular 

barcodes and map reads to the human (GRCh38-3.0.0) genome (30). Sample deconvolution and 

doublet identification was performed using demuxlet (31). RA and matched control samples were 

evenly split within each batch to limit technical and biological bias in our analysis. The first batch 

consisted of 14 individuals (seven RA and seven controls), the second batch included eight 

individuals (three RA and five controls, and the third batch included 16 individuals (eight RA and 

eight controls). One control was sequenced across three batches as a technical replicate to control 

for batch effect  

 

Preprocessing 

Preprocessing was performed using Scanpy (1.9.1) (32) following previously published single cell 

workflows (33). Additional details on these methods can be found in our supplemental materials 

and published code. Genes found in less than three cells were filtered out, as well as cells 

containing fewer than 100 genes or more than 1000 genes. Cells with platelet or megakaryocyte 

gene markers (PF4, GNG11, PPBP, SDPR) were also removed. Additionally, cells containing 

greater than 20% mitochondrial genes, or less than 3% ribosomal genes were removed. Following 

filtering, the data were normalized to counts per million and log transformed. Technical variation 

from sequencing depth, mitochondrial percentage, ribosomal percentage were regressed out during 

scaling. Cell cycle scoring was performed using Scanpy using standard genes (34) and also 

regressed out. Batch correction was then performed using HarmonyPy (35), and samples were 
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clustered in an unsupervised manner using leiden clustering with a resolution of 3.0. Each cluster 

was assigned as CD4+ T cells, CD8+ T cells, Monocytes, NK cells, or B cells using manual 

annotation with predefined marker genes according to the human protein atlas. Clusters of 

platelets, erythrocytes and suspected doublets were removed from further analysis. Sub-clustering 

was repeated for each cell type to allow for fine annotations of cell subsets, again based on 

referenced marker genes and leiden clustering. Highly expressed genes within each subset were 

identified using Wilcoxon rank testing implemented in Scanpy. 

 

Compositional analysis 

Cell densities in each subset were calculated and plotted for RA samples versus controls using 

Scanpy embedding density functions. The proportion of each cell type within a sample relative to 

the total number of annotated cells for that sample was also calculated. Cells proportions were 

compared using Wilcoxon signed rank tests between RA and their matched controls. Additionally, 

Mann-Whitney U tests were used for cell proportions comparison among controls, RA patients 

with remission-low disease activity, and moderate-high disease activity. Correlation between cell-

type proportion and DAS28-CRP was also performed by calculating Spearman rank-order 

coefficient. Two-sided p-value <0.05 was the threshold for statistical significance.  

 

Differential gene expression analysis 

Differential gene expression analysis was performed between RA and matched controls using a 

pseudobulk approach using the bulk RNAseq tool DESeq2 (1.38.3) (36). Pseudobulk methods 

outperforms mixed models and limits pseudoreplication bias (37,38). For each cell subtype, read 

counts were summed across each sample to create a pseudobulk count matrix. DESeq2 was 

applied, using a Likelihood ratio test corrected on batch effect with an additional fit of a Gamma-

Poisson Generalized Linear Model (GLM)(39). P-values were adjusted using Benjamini-Hochberg 

method and genes with a false discovery rate (FDR) ≤ 0.05 were selected. Additional filtering was 

applied with an absolute log2Fold change ≥ log2(1.6) and a base mean expression between 0.08 

and 4.  

 

Over-representation analysis 

Functional and over-representation analysis was performed on differentially expressed genes for 

each cell subtype using clusterprofiler (4.6.2) (40) and Gene Ontology (GO) database (41). We 

selected up and down regulated pathways related to biological processes, with a Gene Ratio ≥ 0.15, 

count ≥ 5 and (FDR) ≤ 0.01.  

 

Cell-cell communication analysis using CellChat 

Cell-cell communication inference and visualization was performed using the CellChat R package 

(version 1.6.0) (42). CellChat uses the log-normalized expression matrix as input and predicts cell-

cell communication based on ligand-receptor pairs in a curated database. For each pair of ligands 

and receptors, the communication probability is calculated based on the average expression of the 

ligand in one cell type and the average expression of the receptor in another cell type, considering 

the law of mass action. CellChat also considers other important signaling factors such as 

heteromeric complexes and cell type proportion in the estimation of the strength of interactions. 

We followed the standardized CellChat workflow, including the ‘projectData’-function, which 

allows for projecting the gene expression onto a validated protein-protein interaction network to 

impute the data. Cell-cell pairwise communication was visualized as the relative number of 
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communications between groups of interest (RA v. control, low disease activity v. controls and 

high disease activity v. controls). Statistical significance (FDR adjusted p ≤ 0.05) of cell type 

sender and receivers was assessed by performing 50 permutations and comparing the results using 

a student’s t-test. Only pathways that were statistically significant (p ≤ 0.05) and with a relative 

contribution in the RankNet-function of either more than 0.65 or less than 0.35 were considered.  

 

 

RESULTS   

     

Experimental study design 

We performed a single cell analysis on PBMC samples from 36 participants (18 RA and 18 

controls matched on age, gender, ethnicity and race). Study design and population characteristics 

are described in Fig. 1a, and Table 1. The mean age was 53.75 ± 15.9 (mean ± standard deviation 

(SD)), the study was composed of 66.7% (N=24) of women, 11.1 % of Asian Americans, 83.3% 

of Caucasian, 5.6% of Latinx population. There was non-significant difference in population 

characteristics between RA patients and matched controls (Table S1). Clinical data regarding 

disease activity, antibody status, erosions and treatment were available for 16 RA patients. RA 

patients. Among the RA patients, 62.5% (N=10) presented a positive Rheumatoid Factor (RF), 

87.5% (N=14) presented positive anti-citrullinated antibodies (ACPA). RA disease activity was 

evaluated using the Disease Activity Score on 28 joints using C-reactive protein (CRP) (DAS28-

CRP) (29). The mean DAS28-CRP was 3.3 ± 1.0. Patients were stratified in remission - low disease 

activity (DAS28-CRP<3.2) (N=9) and moderate-high disease activity (DAS28-CRP ≥ 3.2) (N=7) 

. Erosive disease was present in 62.5% of patients (N=10). The mean time since diagnosis was 

4.13 ± 4.41 years. Seven patients were treated by conventional Disease-modifying antirheumatic 

drugs (DMARDs) (62.5%) and only one patient was treated by a biological DMARDs (TNF-

inhibitor: etanercept).  
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Figure 1 | Identification of 18 PBMCs cell subsets including IFITM3+ Monocytes. A. Graphical Abstract 

: scRNA sequencing was performed on PBMCs from 36 individuals (18 RA and 18 matched controls on 

age, gender and race/ethnicity. Results identified cell subsets,  differentially expressed genes using 

pseudobulk analysis, and cell-cell communication pathways enriched in RA versus controls, and in patients 

with high versus low disease activity .B. UMAP embeddings and subset annotations of single cell RNAseq 

dataset from patients with rheumatoid arthritis (n=18) and healthy controls (n=18) matched on age, sex, 

and ethnicity. C. Normalized expression of the top 40 ranked genes in different cell subsets (Wilcoxon rank 

test, FDR≤0.05). D. Correlation heatmap of genes expression across cells subsets (Spearman correlation).  

CD, Cluster differentiation; DCs, Dendritic cells;  IFIT, Interferon Induced proteins with Tetratricopeptide 

repeats; IFITM, interferon-induced transmembrane; Tem, T effector memory, TEMRA, Terminally 

differentiated effector memory; RA, Rheumatoid Arthritis 
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Table 1 | Clinical characteristics of RA patients and patients with remission-low and 

moderate-high disease activity. Disease activity information was available for 16 patients. p-

value threshold for significance was set at <0.05. Student's t-test was conducted to analyze 

continuous variables. For categorical variables, a Chi-square test was performed. ACPA, anti-

citrullinated body mass index; bDMARDs: biological disease modifying antirheumatic drugs; 

cDMARDS, conventional disease modifying antirheumatic drugs; DAS: Disease activity score; 

RA, Rheumatoid Arthritis; RF, Rheumatoid Factor 

  

  

Rheumatoid 

arthritis 

(N = 18) 

RA remission and low 

disease activity 

 (DAS28-CRP < 3.2) 

 (N = 9) 

RA moderate and 

high disease activity 

 (DAS28-CRP ≥ 3.2)  

(N = 7) 

 p-

value  

Missing 

values 

(%) 

Gender (%) Female  12 ( 66.7 %)  7 ( 77.8 %)  4 ( 57.1 %)  ns 0 

 Male 6 ( 33.33)  2 ( 22.2 %)  3 ( 42.9 %)     

Age (years) (mean (SD)) 51.7 (15.3) 46.3 (15.4) 59.2 (14.3) ns 0 

Race (%) Asian 2 ( 11.1 %)  1 ( 11.1 %)  1 ( 14.3 %)  ns 0 

 

Caucasia

n  15 ( 83.3 %)  8 ( 88.9 %)  6 ( 85.7 %)     

 Other 1 ( 5.6 %)  0 ( 0.0 %)  0 ( 0.0 %)     

Ethnicity (%) Hispanic 1 ( 5.6 %)  0 ( 0.0 %)  0 ( 0.0 %)  ns 0 

 

Not 

Hispanic  17 (94.4 %)  9 ( 100.0 %)  7 ( 100.0 %)     

BMI kg/m2 (mean (SD)   26.7 (10.3)   24.41 (4.5 %)   24.1 (5.4 %)  5.6 

DAS4 28 CRP (mean 

(SD))  3.3 (1.0)  2.6 (0.5)  4.2 (0.6) <0.001  11.1 

RF (%)  10 ( 62.5)  4 ( 44.4 %)  5 ( 71.4 %)  ns 11.1 

ACPA (%)  14 ( 87.50)  7 (77.8 %) 6 (85.8 %) ns 11.1 

Erosive status (%)  10 ( 62.5)  3 (33.3 %) 5 (71.4 %) ns 11.1 

cDMARDs (%) 7 (38.9 %)  5 ( 55.56)  2 ( 33.33)  ns 5.6 

bDMARD (%) 1 (5.6 %) 0 (0 %) 1 ( 14.3 %) ns 11.1 

Disease duration 

(years)  4.13 (4.41) 3.61 (4.31)  4.80 (5.22) ns 5.3 
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Identification of 18 PBMC cell subtypes uncovering IFITM3+ monocytes.  

PBMCs collected on peripheral blood were pooled, profiled, and barcoded in three batches with 

12 lanes using the 10x Genomics Chromium Single Cell technology. RA and matched controls 

were evenly split within each batch and lanes. Cell Ranger v3 was used for demultiplexing and 

read mapping to the human genome. Following 10X sequencing and preprocessing with Scanpy, 

our dataset consisted of 125,698 cells and 22,159 genes (Fig. S1). Leiden community detection 

was used to group cells into clusters, and annotation using established cell markers showed the 

presence of all major PBMC cell types (Fig. S2). All major cell types, annotated using established 

cell markers, were present in our dataset. Further clustering and annotation were used to identify 

cell subsets, including five CD4+ T cell subsets (CD4+ T central memory, CD4+ T effector 

memory, CD4+ IFIT+ T cells, CD4+ Naive T cells, gamma-delta (Vδ) T cells), three CD8+ T cell 

subsets (CD8+ Early T effector memory, CD8+ Naive T cells, Terminally differentiated effector 

memory (TEMRA)), two Natural Killer (NK) cell subsets (CD56bright NK cells , CD56 low NK 

cells), three B cell subsets (Naive B cells, Memory B cells and Plasmabasts), and five monocyte 

subsets (Classical Monocytes, IFITM3+, IL1-b, Myeloid dendritic cells, non-classical monocytes) 

(Fig. 1b). For the control sample that was replicated across batches, we found no statistically 

significant differences in cell proportions. Each of the cell subsets presented a distinct expression 

profile (Fig. 1c, Fig. S2). CD4+, CD8+ T cells and NK cells subtypes showed higher similarity 

profiles, and the expression profiles of Vδ T cells exhibited a stronger correlation within the CD8+ 

T cells (Fig. 1d). Cell subsets and top genes of each cell-subset identified through Wilcoxon-rank 

sum analysis are included in Fig. 2a-b. We identified two cell subtypes (CD4+ IFIT+ cells and 

IFITM3+ monocytes) associated with genes related to Interferon (IFN)-pathway activation in RA. 

The pro-inflammatory CD4+ IFIT+ cell subtype presented significant expression of several genes 

associated with inflammatory response and immune regulation, including IFIT2, PMAIP1, 

NFKBIZ, TNFAIP3 and ZC3HAV1. IFITM3+ monocytes had elevated levels of IFITM3, ISG15, 

FTL, TYMP, and FTH1. In addition, IFITM3 expression was specific to this monocyte subset (Fig. 

S4) 
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Figure 2 | Cell subsets and top marker genes identified by Wilcoxon rank sum test.  A. UMAP 

embedding for cell subsets in B cells, Monocytes CD4 T cells, CD8 T cells, NK cells. B. Dot plot of 

top ranking genes in each cell subset. CD, Cluster differentiation; DCs, Dendritic cells;  IFIT, Interferon 

Induced proteins with Tetratricopeptide repeats; IFITM, interferon-induced transmembrane; Tem: T effector 

memory; TEMRA, Terminally differentiated effector memory; RA, Rheumatoid Arthritis 

 

Pseudobulk differential expression analysis revealed a specific down-regualtion of pro-

inflammatory genes related to Vδ Tcells in RA patients in comparison to healthy controls 

Non-classical monocytes cell proportions were significantly lower in RA patients compared to 

controls (Wilcoxon-signed rank analysis p=0.024) (Fig. S3, Fig. S5). By performing pseudobulk 

differential expression analysis on 18 cell subtypes, we identified a total of 168 genes that exhibited 

differential expression between individuals with RA and the control group (FDR ≤ 0.05, |log2FC| 

≥ log2(1.6)). The majority of those genes were expressed in monocytes (n = 94) and CD8+ T cells 

(n = 39), 26 genes were expressed in CD4+ T cells, 6 in B cells, and 3 in NK cells (Fig. 3a, 3b, 

Fig. 3c, table S2, table S3, Fig. S6). 121 genes were unique, and 47 genes were expressed across 

multiple cell types. Patients with RA had higher expression of genes associated with inflammation 

and cardiovascular risk in IL-1b and classical monocytes, including IFITM2, TXNIP, EAF1, RIT1, 

EGR1, TLE3, and SLA. In addition, they showed over-expression of cytotoxic genes KLRD1, 

GZMH, and EBP in CD8+ T cells. RA patients also displayed significant downregulation of 

proinflammatory genes such as IFNG, IFIT2, TNF, GZMA, ISG15, and S100A4 exclusively in the 

Vδ T cells. Non-classical monocytes showed a specific transcriptomic profile of 19 differential 

expressed genes not shared with other cell-subsets (Fig. 3b,c), including a downregulation of 

ETNK1, TNFSF13B, DUSP7, IGSF6 and an upregulation of CXCR4 in RA. Interestingly, the 
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IFITM3+ subset also presented a cell-type specific downregulation of HLA-DQB1, LRRK2, 

MS4A7, and G0S2 in RA.  

 
Figure 3 | Pseudobulk analysis comparing RA patients and matched controls in each cell subset. A. 

Single cell UMAP projection of patients with rheumatoid arthritis and matched controls. B. Heatmap of 

differentially expressed genes between patients with RA and matched controls. C.  Upset plot of 

upregulated and downregulated genes intersections across cell subsets.CD, Cluster differentiation; DCs, 

Dendritics cells;  IFIT, Interferon Induced proteins with Tetratricopeptide repeats; IFITM, interferon-induced 
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transmembrane; Tem, T effector memory; TEMRA, Terminally differentiated effector memory; RA, 

Rheumatoid Arthritis 

 

 

Over representation analysis found significant upregulation of B cell activation in RA 

patients  

Functional analysis derived from pseudobulk differential expression analysis (FRD ≤ 0.05), 

identified 25 significantly up-regulated pathways across cell subsets in patients with RA compared 

to the control group. Among these pathways, 11 were up-regulated in B cells, 10 in Monocytes, 

and 4 in CD4+ T cells. Additionally, 21 pathways were significantly down-regulated, with 16 in 

Monocytes, 13 in CD4+ T cells, one in CD8+ T cells, and one in B cells (FDR ≤ 0.01, Gene ratio 

≥ 15, counts ≥ 5) (Fig. 4, Table S4). We observed a noteworthy abundance of up-regulated 

pathways specifically in B cells of patients with RA as compared to the control group. These 

pathways primarily encompassed immune response, B cell activation, B cell receptor pathways, 

antigen-receptor mediated signaling pathways and immune response regulating cell surface 

receptor signaling pathways. Furthermore, within the Vδ T cell population, we observed a 

significant downregulation of pathways involved in positive regulation of myeloid and leukocyte 

differentiation as well as cytokine production regulation, in RA patients. Finally, in non-classical 

monocytes, we observed an up-regulation of cytokine-mediated signaling pathway and a 

downregulation of pathways involved in T cell activation, lymphocytes regulation and 

mononuclear cell proliferation, and leukocyte cell-cell adhesion in RA patients.  
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Figure 4 | Functional analysis comparing RA and matched controls. Significant pathways from over-

representation analysis, across 18 cells subtype (Gene ratio > 0.15, FDR ≤ 0.05, 0.08 < base mean < 4). 

CD, Cluster differentiation; DCs, Dendritic cells;  IFIT, Interferon Induced proteins with Tetratricopeptide 

repeats; IFITM, interferon-induced transmembrane; Tem, T effector memory; TEMRA, Terminally 

differentiated effector memory; RA, Rheumatoid Arthritis 
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CD4+ central memory cell and Non-classical monocytes proportions were associated with 

disease activity in RA patients  

We performed a stratified analysis based on disease activity comparing individuals with active vs. 

inactive disease. Information regarding DAS4-28-CRP was available in 16 out of 18 RA patients 

included in the study. RA patients were divided into two groups: one consisting of individuals in 

remission or with low disease activity, characterized by a DAS28-CRP <3.2 (N=9), and the other 

group comprising patients with moderate and high disease activity, indicated by DAS28-CRP ≥3.2 

(N=7). There was no significant statistical difference between the two groups in terms of age, 

gender or sex, race, ethnicity, BMI, proportions of ACPA and RF, erosive disease, treatment 

strategy, and disease duration (Table 1). We compared differences in cell density and cell subset 

proportions between those two groups and the control group (Fig. 5a-c). Additionally, we 

conducted a non-parametric Spearman correlation analysis to evaluate the association between cell 

proportions and DAS28-CRP as a continuous score (Fig. S7). Although there was no statistical 

significance in B cell proportion across groups, we observed a clear density shift between patients 

with remission low disease activity vs moderate and high activity from Naive to activated Memory 

B cells (Fig. 5b). RA patients with moderate to high disease activity showed a significantly 

increased proportion of CD4+ central memory cells (p=0.034) (Fig. 5c). Conversely, Non-classical 

monocytes were significantly lower in patients in the remission-low disease activity group 

compared to both control and the group with moderate-high disease activity (p=0.022).  
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Figure 5 | Cell proportion and cell density between patients with low and high disease activity and 

matched controls A. UMAP representation of cell subsets. B. Compositional and density plots 

comparing control patients with low disease and high activity. C. Cell proportion analysis between controls 

and RA patients with low disease and high activity. (Mann-Whitney - Wilcoxon p≤ 0.05). CD, Cluster 

differentiation; DCs, Dendritic cells;  IFIT, Interferon Induced proteins with Tetratricopeptide repeats; IFITM, 

interferon-induced transmembrane; Tem, T effector memory; TEMRA, Terminally differentiated effector 

memory; RA, Rheumatoid Arthritis 

 

 

Identification of a gene signature specific to moderate and high disease activity in RA 

Using a gene list consisting of 121 unique genes that exhibited differential expression between 

individuals with RA and matched controls in our pseudobulk analysis, we conducted a subanalysis 

focusing on patients with different disease activity levels: those in remission or with low disease 

activity, and those with moderate to high disease activity. Among the 121 genes, 75 were 

significantly associated with low disease activity, and 89 associated with high disease activity 

(FDR ≤ 0.05, |log2(FC)| ≥ log2(1.6), 0.08 ≤ base, mean < 4). Interestingly, 52 genes were 

significantly upregulated in patients within the moderate to high disease activity group. These 

genes included G0S2, THBS1, DUSP7, IFIT2, IGSF6, MAFB, RIT1, TNF, JUN, CXCR4, and TLE3 

(Fig. 6, Fig. S8). Furthermore, we observed a separate set of 37 genes that exhibited a significant 

downregulation in patients with moderate to high disease activity compared to the control group. 

These downregulated genes included TRBC1, KLRB1, IL32, HLA-DQB1, HLA-DRB5, 

TNFSF13B, CCL3, LRRK2, and TMA7. Additionally, we identified a set of 12 genes that were 

significantly overexpressed only in patients with remission or low disease activity, which included 

TXNIP, LGALS2, and AREG. 
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Figure 6 | Gene signatures associated with disease activity across cell subsets. Gene expression 

heatmap comparing controls and RA low and high disease activity adjacent to a dot plot showing 

average expression across cell subtypes. CD, Cluster differentiation; DCs, Dendritics cells;  IFIT, 

Interferon Induced proteins with Tetratricopeptide repeats; IFITM, interferon-induced transmembrane; Tem, 

T effector memory; TEMRA, Terminally differentiated effector memory; RA, Rheumatoid Arthritis 

 

 

CD4+ T cells and B cell subsets were associated with the highest levels of cell-cell 

communication in RA patients  

To gain a comprehensive understanding of immune cell communications, we conducted a cell-cell 

communication inference analysis using CellChat, which uses a repeated permutation to identify 

significant cell-cell interactions. We found a statistically significant increase in cell-cell 

communication in RA patients as compared to healthy controls in 35 pairs of cell types. The largest 

increase in communication was found in CD4+ naive T and CD4+ T central memory cells along 

with Naive and Memory B cells both as senders and receivers. In addition, there was an increase 

between Classical, Non-classical and IL-1β Monocytes as senders and Naive CD4+ T cells as 

receivers. One cell-cell pair showed no difference, and 255 cell-pairs presented less 

communication in RA (Fig 7a) When stratifying patients based on disease activity, we found 

similar patterns. In patients with remission-low disease activity, 28 pairs were significantly 

increased, and 286 pairs were decreased in communication as compared to controls (Fig S9). In 

patients with moderate and high disease activity, 37 pairs had statistically significant increases in 

communication and 259 pairs presented with significant decreases in communication, while one 
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pair had a similar amount of communication as compared to controls. For the high activity states, 

decrease as both sender and receiver were observed in particular for CD8+ T naive and early TEM 

and CD4+ T effector memory as well as CD56 bright NK cells and IFITM3 monocytes, whereas 

the remission-low disease activity state presented a decrease of both sending and receiving 

communication of IFIT+ CD4+ T cells, myeloid dendritic cells as well as IFITM3 monocytes. On 

the other hand, Myeloid dendritic cells appeared to be more involved in communication in high 

disease activity as both a sender and receiver, while NK cells and CD4+ naive T cells were more 

involved in sending and receiving communication in low disease activity. 
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Figure 7 | Cell-cell communication patterns between patients with low and high disease activity and 
matched controls. A. Heatmap representing the relative number of interactions between RA and matched 
controls. B. Barplot of statistically significant communication pathways based on strength of interactions 
between RA patients and controls. C. Dot plot of the relative contributions of communication pathways 
based on strength of interactions between high and low disease activity compared to controls. D. Heatmaps 
of the relative importance of cells as senders and receivers for the IFN-II, VEGF and NT signaling pathways 
in high and low disease activity. E. Circle plots representing the relative importance of cells as senders and 
receivers for the VISTA signaling pathway network in high and low disease activity and overall. CD, Cluster 
differentiation; DA: disease activity; DCs, Dendritics cells;  IFIT, Interferon Induced proteins with 
Tetratricopeptide repeats; IFITM, interferon-induced transmembrane; Tem, T effector memory; TEMRA, 
Terminally differentiated effector memory; RA, Rheumatoid Arthritis  

 

 

Cell-cell communication revealed an upregulation of VISTA and Interferon II pathways in 

RA patients with moderate and high disease activity. 

CellChat utilizes a curated database of ligand-receptor pairs, grouped into communication 

pathways which may contain multiple ligand-receptor pairs. The change in communication 

pathways between disease states is then calculated as the relative contribution per disease state to 

the total communication amount for a specific communication pathway. We used a threshold for 

significant contribution at less than 35% or more than 65% of the total communication and a p-

value < 0.05. We found several distinct communication pathways to be up- or downregulated in 

RA, with 7 pathways showing more communication and 14 showing less communication as 

compared to controls (Fig 7b, Fig S10). Upregulated pathways included NT, HGF, VISTA, IFN-

II and WNT. When comparing moderate-high disease activity to low disease activity, we found 

the highest number of changed pathways to be in moderate-high (36 vs 22) (Fig 7c, Fig S11a-c). 

Many pathways from the initial comparison remained significantly and solely expressed in RA, 

including NT, HGF, VISTA and IFN-II, although PECAM-1 also became significant. For each 

pathway, specific ligand-receptor pairs were considered main contributors (Fig S12). 

 

For most pathways, the direction of dysregulation was similar in both high and low disease activity 

(n = 12). However, the THBS (thrombospondin), CD99 and GH pathways were upregulated in 

high disease activity but downregulated in low disease activity. On the other hand, there was more 

communication in TGFb, activin, GRN and IL-2 pathways in low disease activity as compared to 

high disease activity. Although the direction of dysregulation was alike for high and low disease 

activity, the cells contributing to communication pathways differed. For IFN-II, naïve CD4+ T 

cells and CD56 bright NK cells sent signals to primarily IL1b and nonclassical monocytes in high 

disease activity (Fig 7d). In low disease activity, most signaling came from classical and IL-1b 

monocytes and was received by IFITM3 monocytes (Fig 7d). In other pathways, such as VEGF 

and NT, the involved cells remained unchanged across disease states; however, small changes in 

importance were observed (Fig 7c-d, Fig S13). For IL2, most communication was between CD4+ 

cells, although myeloid dendritic cells also played a large role in high disease activity (Fig S13) 

Another upregulated pathway across disease states was the VISTA pathway, for which we found 

discrepancies in the involved cells, as non-classical and IFITM3 monocytes were the primary 

senders in high disease activity as opposed to low disease activity where non-classical monocytes 

were outshadowed by classical and IL1B-monocytes (Fig 7e). For both disease states; however, 

the main receivers were within the CD4+ and myeloid subsets, although CD4+ Naive T cells were 
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more prominent receivers in low disease activity, and CD4+ Memory T cells were more prominent 

in high disease activity. 

 

 

DISCUSSION 

 

Here we describe a dataset of scRNA-Seq of PBMCs from a diverse population of 36 patients with 

18 RA and 18 matched controls on age, gender, race and ethnicity.  

 

In our study we identified a monocyte subset specifically expressing IFITM3+. IFITM3, also 

known as IFN induced trans-membrane 3, is associated with type 1 IFN response and viral 

restriction (43). Associations between IFITM3 haplotypes and rheumatoid arthritis have been 

reported in the literature, particularly in the context of a Korean population (44). IFITM3 

polymorphism has also been associated with other auto-immune diseases such as ulcerative colitis 

(45). By identifying a IFITM3+ monocyte subset in the blood our results reinforce the potential 

role of IFITM3 in RA pathophysiology and especially in monocytes. Our results also reinforce 

previous findings by Zhang et al. who identified through the integration of mass cytometry and 

bulk RNA and upregulation of IFITM3 genes associated with monocytes subsets in synovial 

tissue(17). Interestingly several genes associated with RA genetic predisposition were also 

differentially expressed in the IFITM3+ monocytes subsets such as HLA-DQB1, LRRK2, TLE3. 

LRRK2 mutations have been associated with several auto-immune diseases and especially 

rheumatoid arthritis predisposition (46,47). In addition, a meta-analysis demonstrated that HLA-

DQB1 polymorphisms were associated with RA with a protective role of DQB1*02 and DQB1*06 

and conversely a susceptibility role of DQB1*04 (48). In addition, a variant in TLE3 has been 

associated with ACPA-positive rheumatoid arthritis in several European populations(49).  

 

In our pseudobulk differential expression analysis, we observed a specific down regulation of pro-

inflammatory genes in the Vδ T cells subsets including, IFNG, IFIT2, TNF, GZMA, ISG15, 

S100A4. Interestingly Mo et al. described that peripheral Vδ2T cells were significantly lower in 

patients with RA and were negatively correlated with disease activity. In addition, they described 

that Vδ2 T cells from RA accumulated in the synovium and produced high levels of pro-

inflammatory cytokines including IFN-γ and IL-17 and also showed elevated chemotaxis potential 

(50). Our results could reinforce the potential chemotaxis role of Vδ2 T cells in the synovium. 

However, it is essential to acknowledge that this remains a hypothesis as we lacked matched tissue 

data in our study to confirm this hypothesis conclusively. Similarly, we observed a lower 

proportion of non-classical monocytes in PBMCs from patients with remission-low disease 

activity groups compared to both controls and moderate-high disease activity. Guła et al have 

reported that the absolute number of circulating non-classical monocytes negatively correlates with 

DAS28 and swollen joint count in peripheral spondyloarthritis patients (51). Non-classical 

monocytes have also been associated as key mediators of tissue destruction in osteoclasts in murine 

models of rheumatoid arthritis(52). In addition we found a specific downregulation in the non-

classical monocytes subsets of several genes such as IGFS6, ETNK1, DUSP7, and TNFSF13B. 

IGFS6 expression has been significantly associated with RA fibroblast cells in humans(53) Etnk1 

has been associated as a candidate gene in collagen induced arthritis(54). DUSP7 is involved in 

MAPK signaling and low levels of mRNA of DUSP7 have been associated with RF ACPA positive 
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RA patients(55). TNFSF13B variants have been associated in several studies with RA and also 

with other auto-immune diseases such as systemic erythematous lupus(56,57) 

 

We also identified a gene signature of 89 genes specific to disease activity including an 

upregulation of proinflammatory genes such as TNF, JUN, EGR1, IFIT2, IGSF6, TMX1, and 

MAFB, but also potential genes associated as therapeutic targets or in treatment response such as 

G0S2, PTGS2, and THBS1. Mafb has been associated with monocytes and macrophage 

differentiation but also involved in the activation of myeloid cells associated with joint destruction 

such as RANK+ TLR2- cells in murine models of RA (58,59). G0S2 has been associated with anti-

TNF response prediction in a meta-analysis of 11 studies(60). Thrombospondin-1 expression has 

been associated with NR4A2 activity and is modulated by TNF inhibitors (61). We also observed 

several genes downregulated in patients with high disease activity such as HLA-DQB1, HLA-

DRB5, and TNFSF13B. Similarly, Klimenta et al. also found a protective role of HLA-DRB5 in 

RA (62). In an independent single cell study, Wu et al. showed that HLA-DRB5+ expression was 

lower in the synovial tissues of ACPA- RA patients(18). 

  

Cell-cell communication allowed us to confirm several well-known signaling pathways from the 

RA literature, including type II IFN (IFN-ɣ), TGFb and VEGF(63–65). Additionally, our findings 

revealed an upregulation of the IL-2 signaling pathway in patients with remission and low disease 

activity, whereas a downregulation was observed in patients with moderate and high disease 

activity compared to controls. Those paradoxical findings align with previous research by Tebib 

et al., who also reported lower IL-2 levels in patients with active disease compared to those in a 

non-active state, although the difference did not reach statistical significance (66). IL-2 has been 

correlated with disease activity and severity in several studies (66,67). The IL-2 pathway plays a 

pivotal role in Regulatory T cell response and holds significance in rheumatic diseases (68). 

Furthermore, the concept of utilizing low-dose IL-2 as a potential therapeutic target in RA has 

been proposed (69–71). Consequently, gaining a deeper understanding of the role of IL-2 is 

imperative. However, it should be acknowledged that our study lacked sufficient power to identify 

specific regulatory T cell subsets and did not identify IL-2 in our differential expression gene list. 

Thus, further research is warranted to refine and enhance this hypothesis. 

 

We also found an up-regulation of the VISTA signaling pathway in RA patients. VISTA is a 

negative checkpoint regulator, playing a key role in suppressing T cell-mediated immune 

responses, and its disruption has been linked to pro-inflammatory phenotypes and a susceptibility 

to autoimmune diseases (72). In a recent groundbreaking study, ElTanbouly et al. investigated the 

role of VISTA expression in T cells and found that VISTA expressed on naive T cells was playing 

a critical role in quiescence and peripheral tolerance (73). In our signaling network analysis of 

VISTA, CD4+ T cells subsets were the main receivers. CD4+ naive T cells were the primary 

receiver population in the remission-low disease activity group, while CD4+ T central memory 

was the predominant group in moderate-high disease activity. Interestingly, the monocytes cells 

population were associated as the main sender in the VISTA signaling network, in particular IL-

1β Monocytes and classical monocytes in remission-low disease activity and Non-classical and 

IFITM3 monocytes in moderate and high disease activity groups. A study conducted on human 

PBMCs revealed that VISTA expression predominates in monocytes, and was associated with 

CD11b cells in murine models(74). Furthermore, previous results from Ceeraz et al have found a 

significant reduction of arthritis score in VISTA deficient mice and mice treated with monoclonal 
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anti-VISTA antibodies in a collagen antibody-induced arthritis model independent of T- and B-

cells, supporting our finding of the importance of innate, myeloid-derived VISTA in arthritis(72). 

Targeting VISTA shows promising potential as an innovative immunoregulatory therapy (75). Our 

findings further support the involvement of VISTA in RA and its potential impact on the 

communication between monocytes and CD4+ T cells. However, additional research is necessary 

to gain a comprehensive understanding of VISTA's role in RA. 

 

Several limitations should be acknowledged in our study. First, it is challenging to use scRNA-seq 

of unsorted PBMCs to study very small cell subsets, such as regulatory T cells, which may have 

led to their role in disease activity being underestimated and not extensively explored. 

Additionally, the relatively small sample size of our study may have limited the statistical power 

to detect subtle differences. This limitation also restricted our ability to thoroughly explore 

potential differences associated with gender, race, and ethnicity, emphasizing the need for more 

inclusive representation in future investigations to ensure a comprehensive understanding of RA 

across diverse populations. 

 

Another limitation is the absence of matched disease synovial tissue, which could have provided 

more comprehensive insights into how patterns in PBMCs relate to cellular and molecular 

mechanisms involved in RA synovium. 

 

Nonetheless, our study provides valuable insights into the cellular and molecular mechanisms 

associated with disease activity in RA. We carefully considered matched controls on age, gender, 

race, and ethnicity, and our work has identified key cell subsets and genes that may be associated 

with disease activity. These findings have the potential to serve as new biomarkers and therapeutic 

targets. We are optimistic that our research will contribute to advancing our understanding of RA 

pathogenesis and lead to the development of more effective treatments for this complex 

autoimmune disease. 
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Key messages:  

1. What is already known on this topic - Previous transcriptomic studies have identified 

genes associated with rheumatoid arthritis (RA) in synovial tissue and peripheral blood, 

but the molecular and cellular signatures associated with heterogenous RA disease 

activity remain poorly understood. 

2. What this study adds – Here, we characterize the single cell transcriptomic profiles of 

peripheral blood mononuclear cells in patients with RA and healthy controls, and provide 

insights into differentially expressed genes and cells associated with disease and disease 

activity 

3. How this study might affect research, practice or policy – The identification of cellular 

and molecular signatures in patients with RA, particularly markers associated with 

disease activity, can provide valuable insights into novel targets for drug discovery or 

effective management of RA disease. 

 

Data and materials availability: Upon manuscript acceptance, the data and code will be made 

publicly accessible on GO, dbGap, and GitHub 

 

Supplementary Materials: 

Fig. S1 to S13 

Table S1 to S2 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.05.560352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.05.560352
http://creativecommons.org/licenses/by-nc-nd/4.0/

