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Abstract: scRNA-seq profiling of disease activity in RA

Objective: Single cell profiling of synovial tissue has previously identified gene signatures
associated with rheumatoid arthritis (RA) pathophysiology, but synovial tissue is difficult to
obtain. This study leverages single cell sequencing of peripheral blood mononuclear cells
(PBMCs) from patients with RA and matched healthy controls to identify disease relevant cell
subsets and cell type specific signatures of disease.

Methods: Single-cell RNA sequencing (scRNAseq) was performed on peripheral blood
mononuclear cells (PBMCs) from 18 RA patients and 18 matched controls, accounting for age,
gender, race, and ethnicity). Samples were processed using standard CellRanger and Scanpy
pipelines, pseudobulk differential gene expression analysis was performed using DESeq2, and
cell-cell communication analysis using CellChat.

Results: We identified 18 distinct PBMC subsets, including a novel IFITM3+ monocyte subset.
CD4+ T effector memory cells were increased in patients with moderate to high disease activity
(DAS28-CRP > 3.2), while non-classical monocytes were decreased in patients with low disease
activity or remission (DAS28-CRP < 3.2). Differential gene expression analysis identified RA-
associated genes in IFITM3+ and non-classical monocyte subsets, and downregulation of pro-
inflammatory genes in the Vo subset. Additionally, we identified gene signatures associated with
disease activity, characterized by upregulation of pro-inflammatory genes TNF, JUN, EGRL,
IFIT2, MAFB, G0S2, and downregulation of HLA-DQB1, HLA-DRB5, TNFSF13B. Notably, cell-
cell communication analysis revealed upregulation of immune-associated signaling pathways,
including VISTA, in patients with RA.

Conclusions: We provide a novel single-cell transcriptomics dataset of PBMCs from patients with
RA, and identify insights into the systemic cellular and molecular mechanisms underlying RA
disease activity.
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INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic
inflammation and joint destruction (1). While the prevalence and disease burden vary considerably
between geographic regions and populations (2), RA impacts approximately 1.3 million adults in
the United States, representing 0.6 to 1% of the country's population (3,4). RA is a debilitating
condition and a major socio-economic burden with a prevalence of work disability around 35%
(5). Effective RA management necessitates early diagnosis, a treat-to-target approach, and the
attainment of remission or low disease activity (6). Achieving optimal therapeutic success remains
the main challenge in RA as only 16 % of patients reach sustained remission or low disease activity
(7,8). This has been particularly underscored by the recent recommendations from the European
Alliance of Associations for Rheumatology (EULAR), particularly concerning the management of
difficult-to-treat RA patients (9).

The understanding of cellular and molecular mechanisms underlying disease activity has garnered
significant attention. Notably, specific cell subsets, such as synovial tissue macrophages, have
been associated with both remission and disease activity (10). Additionally, several synovial
molecular and pathobiological markers have shown promise in predicting treatment response (11-
13). The emergence of bulk transcriptomic data has further revealed that alterations in synovial
and blood transcriptomic profiles were closely associated with disease activity and flares (14-16).
In the pursuit of comprehensive insights, single-cell RNA sequencing (SCRNA-seq) emerges as a
powerful tool to simultaneously profile cell subset compositions and cell type-specific
transcriptional states, enabling a deeper understanding of mechanisms associated with non-
remission. Several studies have utilized single-cell resolution to investigate RA, although the
majority of research has focused on synovial tissue and none specifically studied disease activity
(17-19).

Recent cross-tissue meta-analyses of transcriptome data, encompassing samples from both human
and murine models, have uncovered genes associated with disease activity, and underscored a
divergence between synovium and peripheral blood profiles (20,21). Consequently, it is crucial to
recognize that markers identified in the synovium cannot be directly extrapolated to those found
in peripheral blood. The accessibility of peripheral blood, compared to the more invasive nature
of synovial sampling, emphasizes its practical advantage for both research and potential clinical
applications. An additional challenge in studying RA disease activity is the inherent heterogeneity
of the condition and the potential influence of demographic factors, such as gender, age, ethnicity
and race, on disease activity(22-25). A critical aspect of addressing this challenge involves
promoting the establishment of more standardized and diverse cohorts, enabling a better
exploration of specific cell subsets and biomarkers that contribute to disease activity.

In this study, we describe a comprehensive analysis of disease activity using sScCRNA-seq of
peripheral blood mononuclear cells (PBMC) in a diverse cohort of RA patients, matched with
controls based on age, gender, race, and ethnicity. Our primary objective was to identify specific
cell subsets and biomarkers associated with disease activity. Additionally, we aimed to assess the
specific RA cell subsets and gene signatures in a diverse population, providing valuable insights
into the multifaceted nature of RA pathogenesis.
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METHODS

Study Design

RA Patients meeting the American College of Rheumatology (ACR) classification criteria (26)
were recruited from the University of California San Francisco (UCSF) rheumatology clinic
between 2016 and 2020 (27). Healthy controls were recruited through local advertising and
through the database ResearchMatch(28). Controls were matched to RA patients by age, gender,
race, and ethnicity. The study was conducted in accordance with the principles outlined in the
Declaration of Helsinki and was granted ethical approval by the Human Research Protection
Program and the Institutional Review Board of UCSF (IRB Project No. 15-17175). All participants
provided written informed consent. Blood samples and participant level data were collected at time
of enrollment. Clinical data including demographics, medication status, laboratory values, such as
erythrocyte sedimentation rate, C-reactive protein (CRP), RF, ACPA antibodies, and clinical
measurements of disease activity with the Disease Activity Score in 28 joints using CRP (DAS28-
CRP). Patients were stratified in remission or low disease activity (DAS28-CRP <3.2) and
moderate and high disease activity, (DAS28-CRP > 3.2) according to the 2019 updated ACR
recommendation on disease activity measures (29).

Sample processing and 10X single cell RNA-sequencing

Peripheral Blood Mononuclear cells (PBMCs) were isolated from peripheral blood samples by
UCSF Bay Area Center for AIDS Research Specimen Processing and Banking Subcore
(previously AIDS specimen bank). Blood samples were collected in EDTA tubes, processed per
manufacturer’s guidelines, and cryopreserved in liquid nitrogen. Single cell sequencing was
performed using the 10X Chromium microfluidics system (10X Genomic). PBMCS from 18 RA
patients and 18 healthy controls were thawed, counted, and pooled and profiled in three batches
and 12 lanes, using 10x Genomics Chromium Single Cell 3°V3. Barcoded cDNA libraries were
prepared using the single cell 3’'mRNA kit. Cell Ranger v3 (3.1.0) was used to demultiplex cellular
barcodes and map reads to the human (GRCh38-3.0.0) genome (30). Sample deconvolution and
doublet identification was performed using demuxlet (31). RA and matched control samples were
evenly split within each batch to limit technical and biological bias in our analysis. The first batch
consisted of 14 individuals (seven RA and seven controls), the second batch included eight
individuals (three RA and five controls, and the third batch included 16 individuals (eight RA and
eight controls). One control was sequenced across three batches as a technical replicate to control
for batch effect

Preprocessing

Preprocessing was performed using Scanpy (1.9.1) (32) following previously published single cell
workflows (33). Additional details on these methods can be found in our supplemental materials
and published code. Genes found in less than three cells were filtered out, as well as cells
containing fewer than 100 genes or more than 1000 genes. Cells with platelet or megakaryocyte
gene markers (PF4, GNG11, PPBP, SDPR) were also removed. Additionally, cells containing
greater than 20% mitochondrial genes, or less than 3% ribosomal genes were removed. Following
filtering, the data were normalized to counts per million and log transformed. Technical variation
from sequencing depth, mitochondrial percentage, ribosomal percentage were regressed out during
scaling. Cell cycle scoring was performed using Scanpy using standard genes (34) and also
regressed out. Batch correction was then performed using HarmonyPy (35), and samples were
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clustered in an unsupervised manner using leiden clustering with a resolution of 3.0. Each cluster
was assigned as CD4+ T cells, CD8+ T cells, Monocytes, NK cells, or B cells using manual
annotation with predefined marker genes according to the human protein atlas. Clusters of
platelets, erythrocytes and suspected doublets were removed from further analysis. Sub-clustering
was repeated for each cell type to allow for fine annotations of cell subsets, again based on
referenced marker genes and leiden clustering. Highly expressed genes within each subset were
identified using Wilcoxon rank testing implemented in Scanpy.

Compositional analysis

Cell densities in each subset were calculated and plotted for RA samples versus controls using
Scanpy embedding density functions. The proportion of each cell type within a sample relative to
the total number of annotated cells for that sample was also calculated. Cells proportions were
compared using Wilcoxon signed rank tests between RA and their matched controls. Additionally,
Mann-Whitney U tests were used for cell proportions comparison among controls, RA patients
with remission-low disease activity, and moderate-high disease activity. Correlation between cell-
type proportion and DAS28-CRP was also performed by calculating Spearman rank-order
coefficient. Two-sided p-value <0.05 was the threshold for statistical significance.

Differential gene expression analysis

Differential gene expression analysis was performed between RA and matched controls using a
pseudobulk approach using the bulk RNAseq tool DESeq2 (1.38.3) (36). Pseudobulk methods
outperforms mixed models and limits pseudoreplication bias (37,38). For each cell subtype, read
counts were summed across each sample to create a pseudobulk count matrix. DESeg2 was
applied, using a Likelihood ratio test corrected on batch effect with an additional fit of a Gamma-
Poisson Generalized Linear Model (GLM)(39). P-values were adjusted using Benjamini-Hochberg
method and genes with a false discovery rate (FDR) < 0.05 were selected. Additional filtering was
applied with an absolute log2Fold change > log2(1.6) and a base mean expression between 0.08
and 4.

Over-representation analysis

Functional and over-representation analysis was performed on differentially expressed genes for
each cell subtype using clusterprofiler (4.6.2) (40) and Gene Ontology (GO) database (41). We
selected up and down regulated pathways related to biological processes, with a Gene Ratio > 0.15,
count > 5 and (FDR) <0.01.

Cell-cell communication analysis using CellChat

Cell-cell communication inference and visualization was performed using the CellChat R package
(version 1.6.0) (42). CellChat uses the log-normalized expression matrix as input and predicts cell-
cell communication based on ligand-receptor pairs in a curated database. For each pair of ligands
and receptors, the communication probability is calculated based on the average expression of the
ligand in one cell type and the average expression of the receptor in another cell type, considering
the law of mass action. CellChat also considers other important signaling factors such as
heteromeric complexes and cell type proportion in the estimation of the strength of interactions.
We followed the standardized CellChat workflow, including the ‘projectData’-function, which
allows for projecting the gene expression onto a validated protein-protein interaction network to
impute the data. Cell-cell pairwise communication was visualized as the relative number of
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communications between groups of interest (RA v. control, low disease activity v. controls and
high disease activity v. controls). Statistical significance (FDR adjusted p < 0.05) of cell type
sender and receivers was assessed by performing 50 permutations and comparing the results using
a student’s t-test. Only pathways that were statistically significant (p < 0.05) and with a relative
contribution in the RankNet-function of either more than 0.65 or less than 0.35 were considered.

RESULTS

Experimental study design

We performed a single cell analysis on PBMC samples from 36 participants (18 RA and 18
controls matched on age, gender, ethnicity and race). Study design and population characteristics
are described in Fig. 1a, and Table 1. The mean age was 53.75 + 15.9 (mean + standard deviation
(SD)), the study was composed of 66.7% (N=24) of women, 11.1 % of Asian Americans, 83.3%
of Caucasian, 5.6% of Latinx population. There was non-significant difference in population
characteristics between RA patients and matched controls (Table S1). Clinical data regarding
disease activity, antibody status, erosions and treatment were available for 16 RA patients. RA
patients. Among the RA patients, 62.5% (N=10) presented a positive Rheumatoid Factor (RF),
87.5% (N=14) presented positive anti-citrullinated antibodies (ACPA). RA disease activity was
evaluated using the Disease Activity Score on 28 joints using C-reactive protein (CRP) (DAS28-
CRP) (29). The mean DAS28-CRP was 3.3 + 1.0. Patients were stratified in remission - low disease
activity (DAS28-CRP<3.2) (N=9) and moderate-high disease activity (DAS28-CRP >3.2) (N=7)
. Erosive disease was present in 62.5% of patients (N=10). The mean time since diagnosis was
4.13 + 4.41 years. Seven patients were treated by conventional Disease-modifying antirheumatic
drugs (DMARDs) (62.5%) and only one patient was treated by a biological DMARDs (TNF-
inhibitor: etanercept).
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Figure 1| Identification of 18 PBMCs cell subsets including IFITM3+ Monocytes. A. Graphical Abstract
: ScRNA sequencing was performed on PBMCs from 36 individuals (18 RA and 18 matched controls on
age, gender and race/ethnicity. Results identified cell subsets, differentially expressed genes using
pseudobulk analysis, and cell-cell communication pathways enriched in RA versus controls, and in patients
with high versus low disease activity .B. UMAP embeddings and subset annotations of single cell RNAseq
dataset from patients with rheumatoid arthritis (h=18) and healthy controls (n=18) matched on age, sex,

and ethnicity. C. Normalized expression of the top 40 ranked genes in different cell subsets (Wilcoxon rank

test, FDR<0.05). D. Correlation heatmap of genes expression across cells subsets (Spearman correlation).

CD, Cluster differentiation; DCs, Dendritic cells; IFIT, Interferon Induced proteins with Tetratricopeptide
repeats; IFITM, interferon-induced transmembrane; Tem, T effector memory, TEMRA, Terminally
differentiated effector memory; RA, Rheumatoid Arthritis
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Table 1 | Clinical characteristics of RA patients and patients with remission-low and
moderate-high disease activity. Disease activity information was available for 16 patients. p-
value threshold for significance was set at <0.05. Student's t-test was conducted to analyze
continuous variables. For categorical variables, a Chi-square test was performed. ACPA, anti-
citrullinated body mass index; bDMARDSs: biological disease modifying antirheumatic drugs;
cDMARDS, conventional disease modifying antirheumatic drugs; DAS: Disease activity score;
RA, Rheumatoid Arthritis; RF, Rheumatoid Factor

RA remission and low RA moderate and

Rheumatoid disease activity high disease activity Missing
arthritis (DAS28-CRP <3.2) (DAS28-CRP>3.2) p- values
(N =18) (N=9) (N=7) value (%)
Gender (%) Female 12 (66.7 %) 7(77.8%) 4 (57.1 %) ns 0
Male 6 (33.33) 2 (22.2 %) 3 (42.9 %)
Age (years) (mean (SD)) 51.7 (15.3) 46.3 (15.4) 59.2 (14.3) ns 0
Race (%) Asian 2 (11.1%) 1(11.1%) 1(14.3 %) ns 0
Caucasia
n 15(83.3 %) 8 (188.9 %) 6 (85.7 %)
Other  1(5.6 %) 0 (0.0 %) 0 (0.0 %)
Ethnicity (%) Hispanic 1 (5.6 %) 0 (0.0 %) 0 (0.0 %) ns 0
Not
Hispanic 17 (94.4 %) 9 (1100.0 %) 7 (1100.0 %)
BMI kg/m2 (mean (SD)  26.7 (10.3) 24.41 (4.5 %) 24.1 (5.4 %) 5.6
DAS4 28 CRP (mean
(SD)) 3.3(1.0) 2.6 (0.5) 4.2 (0.6) <0.001 111
RF (%) 10 (62.5) 4 (44.4 %) 5(71.4 %) ns 111
ACPA (%) 14 (87.50) 7 (77.8 %) 6 (85.8 %) ns 111
Erosive status (%) 10 ( 62.5) 3 (33.3 %) 5 (71.4 %) ns 111
cDMARDs (%) 7 (38.9 %) 5 (55.56) 2(33.33) ns 5.6
bDMARD (%) 1 (5.6 %) 0 (0 %) 1(14.3%) ns 111
Disease duration
(years) 4.13 (4.41) 3.61 (4.31) 4.80 (5.22) ns 5.3
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Identification of 18 PBMC cell subtypes uncovering IFITM3+ monocytes.

PBMCs collected on peripheral blood were pooled, profiled, and barcoded in three batches with
12 lanes using the 10x Genomics Chromium Single Cell technology. RA and matched controls
were evenly split within each batch and lanes. Cell Ranger v3 was used for demultiplexing and
read mapping to the human genome. Following 10X sequencing and preprocessing with Scanpy,
our dataset consisted of 125,698 cells and 22,159 genes (Fig. S1). Leiden community detection
was used to group cells into clusters, and annotation using established cell markers showed the
presence of all major PBMC cell types (Fig. S2). All major cell types, annotated using established
cell markers, were present in our dataset. Further clustering and annotation were used to identify
cell subsets, including five CD4+ T cell subsets (CD4+ T central memory, CD4+ T effector
memory, CD4+ IFIT+ T cells, CD4+ Naive T cells, gamma-delta (V3) T cells), three CD8+ T cell
subsets (CD8+ Early T effector memory, CD8+ Naive T cells, Terminally differentiated effector
memory (TEMRA)), two Natural Killer (NK) cell subsets (CD56bright NK cells , CD56 low NK
cells), three B cell subsets (Naive B cells, Memory B cells and Plasmabasts), and five monocyte
subsets (Classical Monocytes, IFITM3+, IL1-b, Myeloid dendritic cells, non-classical monocytes)
(Fig. 1b). For the control sample that was replicated across batches, we found no statistically
significant differences in cell proportions. Each of the cell subsets presented a distinct expression
profile (Fig. 1c, Fig. S2). CD4+, CD8+ T cells and NK cells subtypes showed higher similarity
profiles, and the expression profiles of Vo T cells exhibited a stronger correlation within the CD8+
T cells (Fig. 1d). Cell subsets and top genes of each cell-subset identified through Wilcoxon-rank
sum analysis are included in Fig. 2a-b. We identified two cell subtypes (CD4+ IFIT+ cells and
IFITM3+ monocytes) associated with genes related to Interferon (IFN)-pathway activation in RA.
The pro-inflammatory CD4+ IFIT+ cell subtype presented significant expression of several genes
associated with inflammatory response and immune regulation, including IFIT2, PMAIP1,
NFKBIZ, TNFAIP3 and ZC3HAV1. IFITM3+ monocytes had elevated levels of IFITM3, 1ISG15,
FTL, TYMP, and FTHL. In addition, IFITM3 expression was specific to this monocyte subset (Fig.
S4)
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Figure 2 | Cell subsets and top marker genes identified by Wilcoxon rank sum test. A. UMAP
embedding for cell subsets in B cells, Monocytes CD4 T cells, CD8 T cells, NK cells. B. Dot plot of
top ranking genes in each cell subset. CD, Cluster differentiation; DCs, Dendritic cells; IFIT, Interferon
Induced proteins with Tetratricopeptide repeats; IFITM, interferon-induced transmembrane; Tem: T effector
memory; TEMRA, Terminally differentiated effector memory; RA, Rheumatoid Arthritis

Pseudobulk differential expression analysis revealed a specific down-regualtion of pro-
inflammatory genes related to Vo Tcells in RA patients in comparison to healthy controls

Non-classical monocytes cell proportions were significantly lower in RA patients compared to
controls (Wilcoxon-signed rank analysis p=0.024) (Fig. S3, Fig. S5). By performing pseudobulk
differential expression analysis on 18 cell subtypes, we identified a total of 168 genes that exhibited
differential expression between individuals with RA and the control group (FDR <0.05, [log2FC|
>1og2(1.6)). The majority of those genes were expressed in monocytes (n = 94) and CD8+ T cells
(n = 39), 26 genes were expressed in CD4+ T cells, 6 in B cells, and 3 in NK cells (Fig. 3a, 3b,
Fig. 3c, table S2, table S3, Fig. S6). 121 genes were unique, and 47 genes were expressed across
multiple cell types. Patients with RA had higher expression of genes associated with inflammation
and cardiovascular risk in IL-1b and classical monocytes, including IFITM2, TXNIP, EAF1, RIT1,
EGR1, TLE3, and SLA. In addition, they showed over-expression of cytotoxic genes KLRD1,
GZMH, and EBP in CD8+ T cells. RA patients also displayed significant downregulation of
proinflammatory genes such as IFNG, IFIT2, TNF, GZMA, 1SG15, and S100A4 exclusively in the
V& T cells. Non-classical monocytes showed a specific transcriptomic profile of 19 differential
expressed genes not shared with other cell-subsets (Fig. 3b,c), including a downregulation of
ETNK1, TNFSF13B, DUSP7, IGSF6 and an upregulation of CXCR4 in RA. Interestingly, the

10
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IFITM3+ subset also presented a cell-type specific downregulation of HLA-DQB1, LRRK2,
MS4A7, and GOS2 in RA.
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transmembrane; Tem, T effector memory; TEMRA, Terminally differentiated effector memory; RA,
Rheumatoid Arthritis

Over representation analysis found significant upregulation of B cell activation in RA
patients

Functional analysis derived from pseudobulk differential expression analysis (FRD < 0.05),
identified 25 significantly up-regulated pathways across cell subsets in patients with RA compared
to the control group. Among these pathways, 11 were up-regulated in B cells, 10 in Monocytes,
and 4 in CD4+ T cells. Additionally, 21 pathways were significantly down-regulated, with 16 in
Monocytes, 13 in CD4+ T cells, one in CD8+ T cells, and one in B cells (FDR < 0.01, Gene ratio
> 15, counts > 5) (Fig. 4, Table S4). We observed a noteworthy abundance of up-regulated
pathways specifically in B cells of patients with RA as compared to the control group. These
pathways primarily encompassed immune response, B cell activation, B cell receptor pathways,
antigen-receptor mediated signaling pathways and immune response regulating cell surface
receptor signaling pathways. Furthermore, within the Vo T cell population, we observed a
significant downregulation of pathways involved in positive regulation of myeloid and leukocyte
differentiation as well as cytokine production regulation, in RA patients. Finally, in non-classical
monocytes, we observed an up-regulation of cytokine-mediated signaling pathway and a
downregulation of pathways involved in T cell activation, lymphocytes regulation and
mononuclear cell proliferation, and leukocyte cell-cell adhesion in RA patients.

12


https://doi.org/10.1101/2023.10.05.560352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.05.560352; this version posted October 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B cells CD4 T cells CD8 T cells Monocytes

positive regulation of myeloid cell differentiation -
positive regulation of small molecule metabolic process 4
positive regulation of leukocyte differentiation

positive regulation of hemopoiesis 4

regulation of myeloid cell differentiation -

alpha-beta T cell activation - £

RNA splicing ®

NA splicing, via transesterification r i with bulged adenosine as
plicing nucleophile 1

mRNA splicing, via spliceosome -
RNA splicing, via transesterification reactions +

gative regulation of leukocy ion
negative regulation of cell activation -
regulation of lymphocyte proliferation -
regulation of mononuclear cell proliferation -
lymphocyte proliferation -

lymphocyte differentiation <

regulation of hemopoiesis -
cytokine-mediated signaling pathway -
leukocyte proliferation +

T cell differentiation - ®

regulation of leukocyte proliferation -
regulation of cell-cell adhesion -

regulation of T cell activation 4

leukocyte cell-cell adhesion @

regulation of leukocyte cell-cell adhesion
positive regulation of cytokine production - @
response to virus -

maintenance of location - L ]

regulation of translation 4 @

mononuclear cell differentiation ® o

regulation of mRNA metabolic process -
response to mechanical stimulus 4 o
activation of immune response
- i signaling pathway

® o 0o 00

(X X Z N BN X

immune resp ivating cell surface receptor signaling pathway -

ing signal transduction 4

resp
immune response-regulating cell surface receptor signaling pathway
B cell activation -

negative regulation of immune system process ] [ ] L2

lymphocyte mediated immunity +

immRE TECepIOrS Bullt THom Tmmunogiobulin Superfamily donains 1

B cell receptor signaling pathway -+

CDA4 T Naive -
yd T cells 4
CD8 T Naive

Legend

Memory B cells -
Naive B cells - ¢
Myeloid DCs -

FDR <0.01

Gene ratio
O 0.20
Oo0.25
0.30
Regulation
® Down regulated pathway
@ Up regulated pathway

CD4 T central memory -
CD4 T effector memory -
Classical Monocytes -
Non-classical Monocytes -

Figure 4 | Functional analysis comparing RA and matched controls. Significant pathways from over-
representation analysis, across 18 cells subtype (Gene ratio > 0.15, FDR < 0.05, 0.08 < base mean < 4).

CD, Cluster differentiation; DCs, Dendritic cells; IFIT, Interferon Induced proteins with Tetratricopeptide
repeats; IFITM, interferon-induced transmembrane; Tem, T effector memory; TEMRA, Terminally

differentiated effector memory; RA, Rheumatoid Arthritis

13


https://doi.org/10.1101/2023.10.05.560352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.05.560352; this version posted October 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CD4+ central memory cell and Non-classical monocytes proportions were associated with
disease activity in RA patients

We performed a stratified analysis based on disease activity comparing individuals with active vs.
inactive disease. Information regarding DAS4-28-CRP was available in 16 out of 18 RA patients
included in the study. RA patients were divided into two groups: one consisting of individuals in
remission or with low disease activity, characterized by a DAS28-CRP <3.2 (N=9), and the other
group comprising patients with moderate and high disease activity, indicated by DAS28-CRP >3.2
(N=7). There was no significant statistical difference between the two groups in terms of age,
gender or sex, race, ethnicity, BMI, proportions of ACPA and RF, erosive disease, treatment
strategy, and disease duration (Table 1). We compared differences in cell density and cell subset
proportions between those two groups and the control group (Fig. 5a-c). Additionally, we
conducted a non-parametric Spearman correlation analysis to evaluate the association between cell
proportions and DAS28-CRP as a continuous score (Fig. S7). Although there was no statistical
significance in B cell proportion across groups, we observed a clear density shift between patients
with remission low disease activity vs moderate and high activity from Naive to activated Memory
B cells (Fig. 5b). RA patients with moderate to high disease activity showed a significantly
increased proportion of CD4+ central memory cells (p=0.034) (Fig. 5¢). Conversely, Non-classical
monocytes were significantly lower in patients in the remission-low disease activity group
compared to both control and the group with moderate-high disease activity (p=0.022).
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Figure 5 | Cell proportion and cell density between patients with low and high disease activity and
matched controls A. UMAP representation of cell subsets. B. Compositional and density plots

comparing control patients with low disease and high activity. C. Cell proportion analysis between controls

and RA patients with low disease and high activity. (Mann-Whitney - Wilcoxon p< 0.05). CD, Cluster

differentiation; DCs, Dendritic cells; IFIT, Interferon Induced proteins with Tetratricopeptide repeats; IFITM,
interferon-induced transmembrane; Tem, T effector memory; TEMRA, Terminally differentiated effector
memory; RA, Rheumatoid Arthritis

Identification of a gene signature specific to moderate and high disease activity in RA

Using a gene list consisting of 121 unique genes that exhibited differential expression between
individuals with RA and matched controls in our pseudobulk analysis, we conducted a subanalysis
focusing on patients with different disease activity levels: those in remission or with low disease
activity, and those with moderate to high disease activity. Among the 121 genes, 75 were
significantly associated with low disease activity, and 89 associated with high disease activity
(FDR < 0.05, |log2(FC)| > log2(1.6), 0.08 < base, mean < 4). Interestingly, 52 genes were
significantly upregulated in patients within the moderate to high disease activity group. These
genes included G0S2, THBS1, DUSP7, IFIT2, IGSF6, MAFB, RIT1, TNF, JUN, CXCR4, and TLE3
(Fig. 6, Fig. S8). Furthermore, we observed a separate set of 37 genes that exhibited a significant
downregulation in patients with moderate to high disease activity compared to the control group.
These downregulated genes included TRBC1, KLRB1, IL32, HLA-DQB1, HLA-DRBS5,
TNFSF13B, CCL3, LRRK2, and TMA7. Additionally, we identified a set of 12 genes that were
significantly overexpressed only in patients with remission or low disease activity, which included
TXNIP, LGALS2, and AREG.
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Figure 6 | Gene signatures associated with disease activity across cell subsets. Gene expression
heatmap comparing controls and RA low and high disease activity adjacent to a dot plot showing
average expression across cell subtypes. CD, Cluster differentiation; DCs, Dendritics cells; IFIT,
Interferon Induced proteins with Tetratricopeptide repeats; IFITM, interferon-induced transmembrane; Tem,
T effector memory; TEMRA, Terminally differentiated effector memory; RA, Rheumatoid Arthritis

CD4+ T cells and B cell subsets were associated with the highest levels of cell-cell
communication in RA patients

To gain a comprehensive understanding of immune cell communications, we conducted a cell-cell
communication inference analysis using CellChat, which uses a repeated permutation to identify
significant cell-cell interactions. We found a statistically significant increase in cell-cell
communication in RA patients as compared to healthy controls in 35 pairs of cell types. The largest
increase in communication was found in CD4+ naive T and CD4+ T central memory cells along
with Naive and Memory B cells both as senders and receivers. In addition, there was an increase
between Classical, Non-classical and IL-1 Monocytes as senders and Naive CD4+ T cells as
receivers. One cell-cell pair showed no difference, and 255 cell-pairs presented less
communication in RA (Fig 7a) When stratifying patients based on disease activity, we found
similar patterns. In patients with remission-low disease activity, 28 pairs were significantly
increased, and 286 pairs were decreased in communication as compared to controls (Fig S9). In
patients with moderate and high disease activity, 37 pairs had statistically significant increases in
communication and 259 pairs presented with significant decreases in communication, while one
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pair had a similar amount of communication as compared to controls. For the high activity states,
decrease as both sender and receiver were observed in particular for CD8+ T naive and early TEM
and CD4+ T effector memory as well as CD56 bright NK cells and IFITM3 monocytes, whereas
the remission-low disease activity state presented a decrease of both sending and receiving
communication of IFIT+ CD4+ T cells, myeloid dendritic cells as well as IFITM3 monocytes. On
the other hand, Myeloid dendritic cells appeared to be more involved in communication in high
disease activity as both a sender and receiver, while NK cells and CD4+ naive T cells were more
involved in sending and receiving communication in low disease activity.

Cell -cell communication RA vs controls Signaling pathways RA vs controls
A ncavc B
vora] -
l_[;-?‘i??.ﬁ—rk_‘_.ﬁ‘—\ ]
- ] T,
cosromreney | 77T ] - wr]
s S |
o L
— CR e | ———
~-m-~| ] ) o]
o - oo S
B [[ip et P—
H e ou{ - |
¢ " aoones| N | .
& o0 acvo|
pay—————
o]
o |
owe]
-_—y—————————
aveon |
o -

C

Contribution

RAhighDAvscontol | @ @ @S O0009® ©000000000000000090C0C0COSERGGIGOS
RAlowDAvscontrol | @ @ @ ® 00 O X oO®0O0O®O0O®

(o} ® oo ®

& N SEL DK PO LI ER
S \\&, 4@0@0«00‘2@ @*ﬂ,&% S BRI Q‘»(\eo
< S

D

v

BS

[}
£

Figure Legend

R & & & Ve R NP EASVER] RS
& LS S ¥ F P F T S
R

S &
O &

Presence Q) woongoes O Oownra O OnyinContro

Pmommn.nncOostns)Onm.)w‘

IFNHI VEGF VISTA
High Sender o Sender | | Sender i
DA Receiver . . Receiver Receuvev- i . .
Low Sender | | Sender Sender
DA Receiver Receiver receiver [l | B |
o — —
rrEgEesg882322884% TP PESESS 88823222883 Sk e ]
TR L E %%Eg;éégggéégiﬁéé eI HHEE
EEzrgrbesErfel8 EE EExCE 898 EEgrgE ge23 5k
L L L L TR b R S LR PR ] L
23 8 gE= g 2: 8 3E= i 84 '3 3£5: = ]
33 C 1 38 s ! 53 * 2
S s 5 oo g
[ importance
E 0 —
VISTA signaling network RA high DA VISTA signaling network RA low DA
&
O
oébo F &
Non-classical Monocytes 7 IL1b-Monocytes ¢§Q\'o\o°°6°(\%
Ry e s
W: SO g0t &
3"”% o N@O‘ﬁ .ca\wﬁoc‘i‘
oc-"’es / % 4 0“,(;\355‘
| %a?_mablasts [N A \N‘ smablasts
GOS8l Golly T P "’iCDTceMs
N or ‘& 4T centr,
N\«Og3§a% Tcent, \ 7 A '& ¢ @l memory
W ¢ " ) T &m0, Ryl
W 855R T e & 8%%, 2 0,
0,\“ s §~oo 0‘;\",\/\ A 0% R g EN A 45/ ry
& £72%5 > 7 & SN
$23%%7 %, £ %%
5):5 s 2 % . 2 °© 7
g 3
@

17


https://doi.org/10.1101/2023.10.05.560352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.05.560352; this version posted October 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 7| Cell-cell communication patterns between patients with low and high disease activity and
matched controls. A. Heatmap representing the relative number of interactions between RA and matched
controls. B. Barplot of statistically significant communication pathways based on strength of interactions
between RA patients and controls. C. Dot plot of the relative contributions of communication pathways
based on strength of interactions between high and low disease activity compared to controls. D. Heatmaps
of the relative importance of cells as senders and receivers for the IFN-II, VEGF and NT signaling pathways
in high and low disease activity. E. Circle plots representing the relative importance of cells as senders and
receivers for the VISTA signaling pathway network in high and low disease activity and overall. CD, Cluster
differentiation; DA: disease activity; DCs, Dendritics cells; IFIT, Interferon Induced proteins with
Tetratricopeptide repeats; IFITM, interferon-induced transmembrane; Tem, T effector memory; TEMRA,
Terminally differentiated effector memory; RA, Rheumatoid Arthritis

Cell-cell communication revealed an upregulation of VISTA and Interferon Il pathways in
RA patients with moderate and high disease activity.

CellChat utilizes a curated database of ligand-receptor pairs, grouped into communication
pathways which may contain multiple ligand-receptor pairs. The change in communication
pathways between disease states is then calculated as the relative contribution per disease state to
the total communication amount for a specific communication pathway. We used a threshold for
significant contribution at less than 35% or more than 65% of the total communication and a p-
value < 0.05. We found several distinct communication pathways to be up- or downregulated in
RA, with 7 pathways showing more communication and 14 showing less communication as
compared to controls (Fig 7b, Fig S10). Upregulated pathways included NT, HGF, VISTA, IFN-
Il and WNT. When comparing moderate-high disease activity to low disease activity, we found
the highest number of changed pathways to be in moderate-high (36 vs 22) (Fig 7c, Fig S11a-c).
Many pathways from the initial comparison remained significantly and solely expressed in RA,
including NT, HGF, VISTA and IFN-I1I, although PECAM-1 also became significant. For each
pathway, specific ligand-receptor pairs were considered main contributors (Fig S12).

For most pathways, the direction of dysregulation was similar in both high and low disease activity
(n = 12). However, the THBS (thrombospondin), CD99 and GH pathways were upregulated in
high disease activity but downregulated in low disease activity. On the other hand, there was more
communication in TGFb, activin, GRN and IL-2 pathways in low disease activity as compared to
high disease activity. Although the direction of dysregulation was alike for high and low disease
activity, the cells contributing to communication pathways differed. For IFN-1I, naive CD4+ T
cells and CD56 bright NK cells sent signals to primarily IL1b and nonclassical monocytes in high
disease activity (Fig 7d). In low disease activity, most signaling came from classical and IL-1b
monocytes and was received by IFITM3 monocytes (Fig 7d). In other pathways, such as VEGF
and NT, the involved cells remained unchanged across disease states; however, small changes in
importance were observed (Fig 7c-d, Fig S13). For IL2, most communication was between CD4+
cells, although myeloid dendritic cells also played a large role in high disease activity (Fig S13)
Another upregulated pathway across disease states was the VISTA pathway, for which we found
discrepancies in the involved cells, as non-classical and IFITM3 monocytes were the primary
senders in high disease activity as opposed to low disease activity where non-classical monocytes
were outshadowed by classical and IL1B-monocytes (Fig 7e). For both disease states; however,
the main receivers were within the CD4+ and myeloid subsets, although CD4+ Naive T cells were
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more prominent receivers in low disease activity, and CD4+ Memory T cells were more prominent
in high disease activity.

DISCUSSION

Here we describe a dataset of SCRNA-Seq of PBMCs from a diverse population of 36 patients with
18 RA and 18 matched controls on age, gender, race and ethnicity.

In our study we identified a monocyte subset specifically expressing IFITM3+. IFITM3, also
known as IFN induced trans-membrane 3, is associated with type 1 IFN response and viral
restriction (43). Associations between IFITM3 haplotypes and rheumatoid arthritis have been
reported in the literature, particularly in the context of a Korean population (44). IFITM3
polymorphism has also been associated with other auto-immune diseases such as ulcerative colitis
(45). By identifying a IFITM3+ monocyte subset in the blood our results reinforce the potential
role of IFITM3 in RA pathophysiology and especially in monocytes. Our results also reinforce
previous findings by Zhang et al. who identified through the integration of mass cytometry and
bulk RNA and upregulation of IFITM3 genes associated with monocytes subsets in synovial
tissue(17). Interestingly several genes associated with RA genetic predisposition were also
differentially expressed in the IFITM3+ monocytes subsets such as HLA-DQB1, LRRK2, TLES.
LRRK2 mutations have been associated with several auto-immune diseases and especially
rheumatoid arthritis predisposition (46,47). In addition, a meta-analysis demonstrated that HLA-
DQB1 polymorphisms were associated with RA with a protective role of DQB1*02 and DQB1*06
and conversely a susceptibility role of DQB1*04 (48). In addition, a variant in TLE3 has been
associated with ACPA-positive rheumatoid arthritis in several European populations(49).

In our pseudobulk differential expression analysis, we observed a specific down regulation of pro-
inflammatory genes in the V& T cells subsets including, IFNG, IFIT2, TNF, GZMA, 1SG15,
S100A4. Interestingly Mo et al. described that peripheral V52T cells were significantly lower in
patients with RA and were negatively correlated with disease activity. In addition, they described
that V62 T cells from RA accumulated in the synovium and produced high levels of pro-
inflammatory cytokines including IFN-y and IL-17 and also showed elevated chemotaxis potential
(50). Our results could reinforce the potential chemotaxis role of V62 T cells in the synovium.
However, it is essential to acknowledge that this remains a hypothesis as we lacked matched tissue
data in our study to confirm this hypothesis conclusively. Similarly, we observed a lower
proportion of non-classical monocytes in PBMCs from patients with remission-low disease
activity groups compared to both controls and moderate-high disease activity. Guta et al have
reported that the absolute number of circulating non-classical monocytes negatively correlates with
DAS28 and swollen joint count in peripheral spondyloarthritis patients (51). Non-classical
monocytes have also been associated as key mediators of tissue destruction in osteoclasts in murine
models of rheumatoid arthritis(52). In addition we found a specific downregulation in the non-
classical monocytes subsets of several genes such as IGFS6, ETNK1, DUSP7, and TNFSF13B.
IGFS6 expression has been significantly associated with RA fibroblast cells in humans(53) Etnkl
has been associated as a candidate gene in collagen induced arthritis(54). DUSP7 is involved in
MAPK signaling and low levels of MRNA of DUSP7 have been associated with RF ACPA positive
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RA patients(55). TNFSF13B variants have been associated in several studies with RA and also
with other auto-immune diseases such as systemic erythematous lupus(56,57)

We also identified a gene signature of 89 genes specific to disease activity including an
upregulation of proinflammatory genes such as TNF, JUN, EGR1, IFIT2, IGSF6, TMX1, and
MAFB, but also potential genes associated as therapeutic targets or in treatment response such as
G0S2, PTGS2, and THBS1. Mafb has been associated with monocytes and macrophage
differentiation but also involved in the activation of myeloid cells associated with joint destruction
such as RANK+ TLR2- cells in murine models of RA (58,59). GOS2 has been associated with anti-
TNF response prediction in a meta-analysis of 11 studies(60). Thrombospondin-1 expression has
been associated with NR4A2 activity and is modulated by TNF inhibitors (61). We also observed
several genes downregulated in patients with high disease activity such as HLA-DQB1, HLA-
DRB5, and TNFSF13B. Similarly, Klimenta et al. also found a protective role of HLA-DRBS5 in
RA (62). In an independent single cell study, Wu et al. showed that HLA-DRB5+ expression was
lower in the synovial tissues of ACPA- RA patients(18).

Cell-cell communication allowed us to confirm several well-known signaling pathways from the
RA literature, including type Il IFN (IFN-y), TGFb and VEGF(63-65). Additionally, our findings
revealed an upregulation of the IL-2 signaling pathway in patients with remission and low disease
activity, whereas a downregulation was observed in patients with moderate and high disease
activity compared to controls. Those paradoxical findings align with previous research by Tebib
et al., who also reported lower IL-2 levels in patients with active disease compared to those in a
non-active state, although the difference did not reach statistical significance (66). IL-2 has been
correlated with disease activity and severity in several studies (66,67). The IL-2 pathway plays a
pivotal role in Regulatory T cell response and holds significance in rheumatic diseases (68).
Furthermore, the concept of utilizing low-dose IL-2 as a potential therapeutic target in RA has
been proposed (69-71). Consequently, gaining a deeper understanding of the role of IL-2 is
imperative. However, it should be acknowledged that our study lacked sufficient power to identify
specific regulatory T cell subsets and did not identify IL-2 in our differential expression gene list.
Thus, further research is warranted to refine and enhance this hypothesis.

We also found an up-regulation of the VISTA signaling pathway in RA patients. VISTA is a
negative checkpoint regulator, playing a key role in suppressing T cell-mediated immune
responses, and its disruption has been linked to pro-inflammatory phenotypes and a susceptibility
to autoimmune diseases (72). In a recent groundbreaking study, EITanbouly et al. investigated the
role of VISTA expression in T cells and found that VISTA expressed on naive T cells was playing
a critical role in quiescence and peripheral tolerance (73). In our signaling network analysis of
VISTA, CD4+ T cells subsets were the main receivers. CD4+ naive T cells were the primary
receiver population in the remission-low disease activity group, while CD4+ T central memory
was the predominant group in moderate-high disease activity. Interestingly, the monocytes cells
population were associated as the main sender in the VISTA signaling network, in particular IL-
1B Monocytes and classical monocytes in remission-low disease activity and Non-classical and
IFITM3 monocytes in moderate and high disease activity groups. A study conducted on human
PBMCs revealed that VISTA expression predominates in monocytes, and was associated with
CD11b cells in murine models(74). Furthermore, previous results from Ceeraz et al have found a
significant reduction of arthritis score in VISTA deficient mice and mice treated with monoclonal
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anti-VISTA antibodies in a collagen antibody-induced arthritis model independent of T- and B-
cells, supporting our finding of the importance of innate, myeloid-derived VISTA in arthritis(72).
Targeting VISTA shows promising potential as an innovative immunoregulatory therapy (75). Our
findings further support the involvement of VISTA in RA and its potential impact on the
communication between monocytes and CD4+ T cells. However, additional research is necessary
to gain a comprehensive understanding of VISTA's role in RA.

Several limitations should be acknowledged in our study. First, it is challenging to use SCRNA-seq
of unsorted PBMCs to study very small cell subsets, such as regulatory T cells, which may have
led to their role in disease activity being underestimated and not extensively explored.
Additionally, the relatively small sample size of our study may have limited the statistical power
to detect subtle differences. This limitation also restricted our ability to thoroughly explore
potential differences associated with gender, race, and ethnicity, emphasizing the need for more
inclusive representation in future investigations to ensure a comprehensive understanding of RA
across diverse populations.

Another limitation is the absence of matched disease synovial tissue, which could have provided
more comprehensive insights into how patterns in PBMCs relate to cellular and molecular
mechanisms involved in RA synovium.

Nonetheless, our study provides valuable insights into the cellular and molecular mechanisms
associated with disease activity in RA. We carefully considered matched controls on age, gender,
race, and ethnicity, and our work has identified key cell subsets and genes that may be associated
with disease activity. These findings have the potential to serve as new biomarkers and therapeutic
targets. We are optimistic that our research will contribute to advancing our understanding of RA
pathogenesis and lead to the development of more effective treatments for this complex
autoimmune disease.
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Key messages:

1. What is already known on this topic - Previous transcriptomic studies have identified
genes associated with rheumatoid arthritis (RA) in synovial tissue and peripheral blood,
but the molecular and cellular signatures associated with heterogenous RA disease
activity remain poorly understood.

2. What this study adds — Here, we characterize the single cell transcriptomic profiles of
peripheral blood mononuclear cells in patients with RA and healthy controls, and provide
insights into differentially expressed genes and cells associated with disease and disease
activity

3. How this study might affect research, practice or policy — The identification of cellular
and molecular signatures in patients with RA, particularly markers associated with
disease activity, can provide valuable insights into novel targets for drug discovery or
effective management of RA disease.

Data and materials availability: Upon manuscript acceptance, the data and code will be made
publicly accessible on GO, dbGap, and GitHub

Supplementary Materials:

Fig. S1to S13
Table S1to S2
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