

Running head: Novel *in vivo* biomineralization system

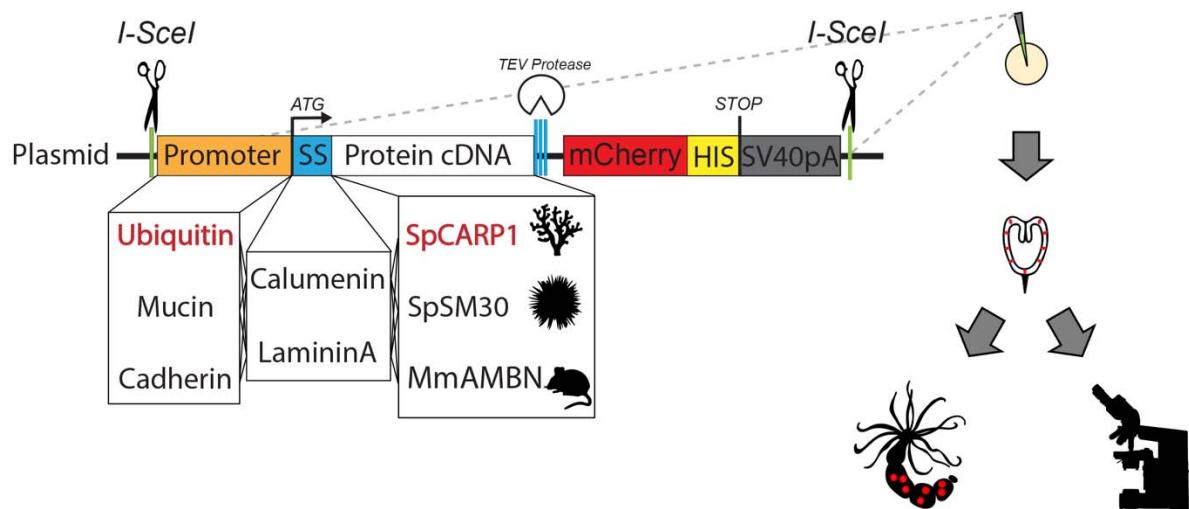
1 **A novel *in vivo* system to study coral biomineralization in the starlet sea anemone (*Nematostella***
2 ***vectensis*)**

3

4 Brent Foster¹, Fredrik Hugosson¹, Federica Scucchia¹, Camille Enjolras¹, Leslie Babonis¹⁻² Will Hoaen³,
5 Mark Q. Martindale¹

6

7 1. The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, USA
8 2. Department of Ecology and Evolutionary Biology, Cornell University
9 3. School of Biosciences, Cardiff University, UK


Novel *in vivo* biomineralization system

10 **Abstract**

11 Coral reefs are important for maintaining healthy marine ecosystems and are declining rapidly due to
12 increasing environmental stresses. Coral conservation efforts require a mechanistic understanding of how
13 these stresses may disrupt biomineralization, but progress in this area has been slow primarily because
14 corals are not easily amenable to laboratory research. Some cellular characteristics of biomineralization
15 are well characterized, such as the role of carbonic anhydrases, the polarized secretion of ions, and the
16 secretion of “intrinsically disordered proteins” (IDPs) into extracellular microenvironments. We highlight
17 how the starlet sea anemone (*Nematostella vectensis*) can serve as a tractable model to interrogate the
18 cellular mechanisms of coral biomimetic mineralization. We have developed transgenic constructs using genes
19 involved in biomimetic mineralization from several animal phyla that can be injected into *Nematostella* zygotes.
20 These constructs are designed so translated proteins may be purified using TEV protease or Histidine tags
21 to study their physicochemical properties. Using a fluorescent tag, we confirm ectopic expression of the
22 coral biomimetic mineralizing protein SpCARP1 in live *Nematostella* embryos and adults and demonstrate via
23 calcein staining that calcium ions co-localize with SpCARP1 in carbonate and calcium enriched seawater.
24 Our findings suggest that SpCARP1 can induce the formation of amorphous calcium carbonate precursors
25 in *N. vectensis*, consistent with its suspected role in the early stages of coral biomimetic mineralization. These
26 results lay a fundamental groundwork for establishing *N. vectensis* as a novel *in vivo* system to explore
27 the evolutionary and cellular mechanisms of biomimetic mineralization, improve coral conservation efforts, and
28 even develop novel biomaterials.

Novel *in vivo* biominerization system

29 **Graphical Abstract**

30

31 **Keywords:** biominerization, transgenesis, coral, *Nematostella vectensis*

Novel *in vivo* biomineralization system

32 **1 Introduction**

33 Coral reefs represent some of the most biodiverse ecosystems on Earth¹⁻³ and are necessary for
34 maintaining healthy coastlines^{4,5}. The backbone of these marine ecosystems are stony corals that, due to
35 increased environmental stresses, are rapidly in decline⁶. Conservation efforts have been hampered, at
36 least in part, by our limited understanding of the basic biology of corals and their ability to biominerlize
37 and generate a diverse array of calcium carbonate skeletons that are susceptible to demineralization from
38 changing ocean temperatures and acidification. Any meaningful effort to reverse the decline of corals
39 requires a mechanistic understanding of 1) the molecular and biochemical processes of coral
40 biominerlization and 2) how biominerlization is disrupted by environmental stresses. Unfortunately,
41 efforts to probe the molecular basis of biominerlization in corals have proven difficult because of a
42 general lack of genetic tools and difficulties culturing corals in laboratory settings.

43 Biominerlization is the production of inorganic minerals through biological mechanisms. This ability
44 has evolved independently many times, resulting in unique structures such as bivalve shells⁷⁻¹⁰, sea urchin
45 spicules¹⁰⁻¹³, and coral skeletons¹⁴⁻¹⁶. In marine organisms, the most studied mineralization pathways
46 involve the absorption of Ca²⁺^{17,18} into cells expressing membrane-associated alpha carbonic anhydrases
47 that convert CO₂ to bicarbonate¹⁹⁻²². This results in the production of amorphous calcium carbonate
48 (ACC) precursors that are stabilized to form crystal structures secreted into extracellular
49 microenvironment²³⁻²⁶.

50 Energetically favorable conditions for biominerlization can arise spontaneously and rapidly,
51 suggestive of a mechanism by which ACC biominerlization could have evolved independently through
52 the use of non-homologous proteins with similar physicochemical characteristics that result in similar
53 mineralized materials^{23,26,27}. Secreted proteins within mineralizing cells have been shown to catalyze
54 nucleation^{28,29} and/or interact with ACC precursors to provide stability as mineralizing tissue becomes
55 more structured and complex^{13,26,30-32}. These proteins are considered to be “intrinsically disordered” (IDP)
56 because they have no set tertiary structures³³⁻³⁶. Although biominerlizing species may not share

Novel *in vivo* biomineralization system

57 homologous IDPs, many of these proteins contain similar properties such as highly acidic residues^{8,37-40}
58 and post-translational modifications that modify their folding and biomineralizing activity^{32,40,41}.

59 Existing biomineralization models have distinct advantages and disadvantages. Bacterial expression
60 systems help clarify the role of carbonic anhydrases in biomineralization⁴²⁻⁴⁴, yet they are unable to
61 modify proteins endogenously after translation and therefore cannot be used for elucidating the role of
62 post-translational modifications in biomineralization. Marine invertebrates offer several advantages to *in*
63 *vivo* assays of biomineralization. Sea urchins are useful as developmental models to understand the
64 dynamics of spicule growth during embryonic skeleton formation^{32,45} and syncytial mineralization⁴⁶.
65 Mollusks can be used to test the effects of novel, taxon-specific proteins on shell formation^{35,38}. Corals are
66 useful for characterizing how matrix proteins stabilize biominerals in extracellular
67 microenvironments^{14,26}. In each of these *in vivo* systems, mechanistic studies of the dynamic processes of
68 biomineralization can be difficult to interpret due to the complexity of interacting biomineralizing
69 processes⁴⁷.

70 Here, we present the starlet sea anemone (*Nematostella vectensis*) as a model for studying the
71 dynamic processes of biomineralization. Despite being in the same class (Anthozoa) as scleractinian
72 corals, *N. vectensis* does not naturally mineralize, eliminating potential confounding factors of interacting
73 mineralization reactions⁴⁷. Comparative genomics reveals that *N. vectensis* retains much of the molecular
74 machinery believed to be necessary for biomineralization, including carbonic anhydrases⁴⁸. *N. vectensis*
75 is a powerful developmental model that can easily produce thousands of embryos on demand with simple
76 light and temperature cues. Embryos are easy to microinject, and many techniques for manipulating gene
77 expression are already well established in *N. vectensis*⁴⁹, making this organism well-suited for
78 investigating gene function during biomineralization.

79 In this article, we show that *N. vectensis* can express transgenic proteins involved in biomineralization
80 in other taxa and present a novel *in vivo* system to evaluate the ability of IDPs to sequester calcium ions,
81 enabling future studies to assess the role of these proteins in biomineral deposition.

Novel *in vivo* biomineralization system

82 2 Materials and Methods

83 2.1 Animal Culture

84 Adult *Nematostella vectensis* were maintained in 1/3X filtered seawater (FSW) diluted in deionized water
85 and spawned following protocols as described previously⁵⁰⁻⁵².

86

87 2.2 Molecular cloning and *In vitro* mRNA Transcription

88 As a proof-of-principle, we focused on a Coral Acid-Rich Protein (CARP) from a stony coral (*Stylophora*
89 *pistillata*). SpCARP1 is a membrane-associated IDP that binds Ca²⁺ ions to induce CaCO₃ precipitation
90 and is believed to initiate biomineralization in *S. pistillata*²⁹. To highlight the potential and versatility of
91 our system for studying other forms of biomineralization, we also developed transgenic constructs for
92 expressing proteins involved in the formation of sea urchin spicules (*Strongylocentrotus purpuratus*:
93 SpSM30) and mice teeth (*Mus musculus*: Ameloblastin, MmAMBN).

94 SpCARP1 (KC148537) cDNA was synthesized by IDTDNA Inc. (idtdna.com). SpSM30
95 (NP_999766.1) cDNA was first codon optimized using Codon Optimization OnLine (COOL)⁵³ and
96 synthesized by IDTDNA Inc. (idtdna.com). MmAMBN cDNA (NM_001303431.1) was ordered from
97 Genscript (New Jersey, USA; clone ID: OMu67099). Primers for SpSM30 and MmAMBN
98 (**Supplementary Table 1**) were designed with Primer3⁵⁴. All cDNA was cloned in frame into the
99 pCS2+8CmCherry vector (Addgene Plasmid #34935) using AscI (NEB #R0558) and ClaI (NEB #R0197)
100 cut sites. The SpCARP1 insert was synthesized as a gene fragment by Twistbioscience
101 (Twistbioscience.com) and consisted of flanking restriction sites, a Kozak sequence optimized for
102 invertebrates (AAAAAA)⁵⁵, putative signal sequences native to *N. vectensis* (Calumenin: v1g117044 or
103 Laminin A: v1g248148) replacing the predicted signal sequence in the SpCARP1 cDNA. A linker
104 sequence (GGATCCGCTGGCTCCGCTGCTGGTTCTGGCGAATTC)⁵⁶ and TEV protease recognition
105 site were included in SpCARP1 and SpSM30 inserts. *Nematostella* signal sequences were predicted using
106 SignalP⁵⁷. mRNA was *in vitro* transcribed from linearized plasmids following the protocols for the

Novel *in vivo* biomineratization system

107 Invitrogen mMessage mMachine SP6 Transcription Kit (Invitrogen AM1340) and purified using the
108 MEGAclear Transcription Clean-Up Kit (AM1908). See also **Supplementary Table 1**.

109

110 *2.3 Isolation of Promoter DNA Sequences*

111 In order to express engineered proteins at distinct times and in specific cell types, we cloned putative
112 promoter sequences upstream of the transcriptional start sites for *Nematostella Ubiquitin* (v1g217964)
113 and *Mucin* (v1g203270) genes (see **Supplementary Table 2** for coordinates and primers used for cloning
114 promoter sequences). Sequences were identified using the *Nematostella vectensis* genome 1.0⁵⁸ and
115 amplified from gDNA extracted from whole embryos or adult tentacle clips using standard PCR
116 procedures. To initially test for promoter activity, DNA fragments were cloned into the pNvT-
117 MHC::mCherry vector (Addgene #67943) using PacI (NEB #R0547) and AscI (NEB #R0558) sites,
118 thereby replacing the myosin heavy chain (MHC) promoter. Confirmed plasmids were prepared following
119 the protocol for the GeneJET Miniprep kit (ThermoFisher cat. #K0503). Sequences were confirmed via
120 standard Sanger sequencing (Psomagen.com). When later cloned into pCS2+8CmCherry vector (see next
121 section), the promoter sequences were cut out using SpeI (NEB #R3133) and AscI (NEB #R0558) sites
122 (see **Supplementary Figure 1**).

123

124 *2.4 Generation of expression constructs for Transgenesis.*

125 The software programs Serial Cloner V2.6 and Geneious Prime 2021.2.2 (<https://www.geneious.com>)
126 were used to design transgenic constructs. The inserts were first cloned in frame into a pCS2+8CmCherry
127 vector (Addgene Plasmid #34935) using AscI (NEB #R0558) and ClaI (NEB #R0197) sites. Promoter
128 sequences were then inserted upstream using SpeI (NEB #R3133) and AscI (NEB #R0558) sites. Finally,
129 fragments containing promoter and fusion protein segments were digested and cloned into the pKHR4
130 vector (Addgene #74592) using SpeI (NEB #R3133) and NotI (NEB #R0189) sites. The pKHR4 vector
131 contains I-SceI endonuclease recognition sites flanking the multiple cloning site that was replaced with
132 our inserts.

Novel *in vivo* biomineralization system

133

134 2.5 Microinjection

135 Fertilized eggs were prepared for microinjection as described previously⁵⁰. Plasmids were incubated with
136 10X Cutsmart buffer and yeast I-SceI endonuclease (NEB #R0694) at 37°C for approximately 30 minutes
137 prior to injection and then mixed with either Rodamine Green or Alexa488 conjugated Dextran (0.2
138 mg/ml final concentration). Plasmids were injected in a final concentration of approximately 25 ng/μl.
139 mRNA was diluted in nuclease-free water and mixed with nuclease-free Rodamine Green Dextran (0.2
140 mg/ml) and injected in final concentrations between 100 – 300 ng/μl.

141

142 2.6 Fixation and Confocal Microscopy

143 Animals were either live-imaged or fixed 24 hours post fertilization (hpf), 96 hpf, or 1-week post-
144 injection as previously described^{59,60}. Live animals were mounted in 1/3X FSW. Fixed animals were then
145 washed in PBS-Tween, stained for DAPI and Alexa488 Phalloidin, and mounted on glass slides in either
146 80% glycerol or PBS. All animals were imaged on a Zeiss Imager. Z2 or a Zeiss 710 laser scanning
147 confocal microscope. Confocal images were Z-stacked with max intensity in FIJI⁶¹ to show fluorescent
148 signal.

149

150 2.7 Water Enrichment and Calcein Incubation

151 For both the non-enriched and enriched 1/3X FSW, temperature and pH (NBS scale) were measured
152 using a pH/ATC electrode (Thermo Fisher Scientific, Waltham, USA), calibrated using pH 4, pH 7, and
153 pH 10 buffer solutions (Thermo Fisher Scientific, Waltham, USA). Salinity was measured using a digital
154 refractometer (Milwaukee Instruments, Rocky Mount, USA). Measurements of total alkalinity (TA) were
155 performed using an alkalinity test kit based on drop count titration (sulfuric acid) (Hach, Loveland, USA).
156 Parameters of seawater carbonate system were calculated from pH, TA, temperature, and salinity using
157 the CO2SYS package⁶² with constants from⁶³ as refit by⁶⁴ (see **Supplemental Table 3**).

Novel *in vivo* biomineratization system

158 The concentration of calcium and carbonate ions regulate the thermodynamic driving force that
159 determines the precipitation of calcium carbonate in biomineratizing animals^{47,65}. To replicate
160 biomineratization-favorable conditions, we incubated 1-month-old *N. vectensis* injected with transgenic
161 SpCARP1 constructs in either 10mM CaCl₂, 10 mM NaHCO₃, or 10mM CaCl₂ + 10mM NaHCO₃ in
162 1/3X FSW for 1 hour in a cell culture petri dish (5 mL). Polyps were then transferred to a new dish and
163 incubated for another hour in a Calcein Blue solution (2.6 μ M; Sigma 54375-42-2). Polyps were rinsed
164 for 30 minutes in 1/3X FSW, then immobilized by adding 7.14% MgCl₂ before imaging with a Zeiss 710
165 confocal microscope. Samples were observed with the mCherry red fluorescent filter (range 415–735nm)
166 and the DAPI blue fluorescence filter (range 410–495nm) using 40X magnification. All imaging settings
167 were kept constant between the samples. Images were acquired with the ZEN 2011 software (v14.0.0.0;
168 Zeiss, United States) and processed in FIJI⁶¹.

169

170 2.8 Single Cell Dissociations

171 Injected embryos were dissociated 24 hours post injection in 1/3X Ca²⁺/Mg²⁺-free and EDTA-free
172 artificial seawater as previously described⁶⁶. Dissociated cells were incubated for 1 hour in 1:5000
173 CellMask (Fisher Scientific C37608), then washed two times in the dissociation media. Cells were water-
174 immersed and imaged on a Zeiss Imager.Z2 at 40X magnification.

175

176 3 Results

177 3.1 Plasmid constructs are adaptable for targeted and stable transgenesis

178 *N. vectensis* embryos grow into swimming planulae within 48 hours post fertilization (hpf), settle, then
179 develop into small polyps in about a week when kept at room temperature (25°C) (**Figure 1A**). We also
180 injected zygotes with a putative ubiquitin promoter driving mCherry fluorescent signal and show broad
181 expression in planulae (**Figure 1B–B'**) and small polyps (**Figure 1C–C'**). We also designed plasmid
182 vectors to incorporate other putative promoters endogenous to *N. vectensis*, as well as native signal
183 sequences, driving expression of IDPs involved in biomineratization (**Figure 1D**). We could not detect

Novel *in vivo* biomineratization system

184 any visible difference with plasmid constructs containing signal sequences (SS) native to *N. vectensis* or
185 those present in non-native cloned constructs. As such, the remainder of our data makes no distinction of
186 whether constructs contain SS endogenous to *N. vectensis* or cloned sequences.

187 Animals injected with the constructs containing the ubiquitin promoter driving expression of
188 SpCARP1 exhibit transient expression as early as 24 hpf. By the planula stage, mCherry signal is broadly
189 detected in both endoderm and ectoderm (**Figure 2A**). Expression expands into the body column and
190 tentacles of developing small polyps (**Figure 2B**), with the strongest signal in scattered ectodermal cells
191 (see arrows in **Figure 2A** and **2B**). SpCARP1::mCherry signal persists when cells are dissociated
192 (**Supplementary Figure 3A–B**). Within 24 hours of dissociation, cells form aggregate clumps and
193 maintain fluorescent signal (**Supplementary Figure 3C–D**). The mucin promoter drives expression of
194 SpCARP1 within 48 hpf in aboral ectoderm of developing planulae in characteristic scattered secretory
195 gland cells (**Figure 2C**). Strong mosaic signal expands into the body column and tentacles of small
196 polyps in what appears to be glandular cells (**Figure 2D**; see arrows).

197

198 3.2 *SpCARP1* preferentially co-localizes with calcein in the tentacles of polyps

199 We imaged live transgenic polyps to observe the pattern of expression of SpCARP1 and the potential co-
200 localization of the protein with calcium ions, suggestive of biomineratization-related activity. Limited
201 calcein signal is also present in WT controls (**Figure 3A–F'**'), indicating that the fluorescent dye binds to
202 calcium ions naturally present in the organism. In transgenic polyps, noticeable mCherry fluorescence is
203 localized primarily at the tip of the tentacles and sparse regions along the tentacle cavity (**Figure 3G–I'**;
204 see white arrows). The mCherry signal is also present around the oral pole. Co-localization of calcein and
205 mCherry fluorescence in the tentacles is evident in the endoderm of the tentacle cavity (**Figure 3G–I'**)
206 and in sparse regions surrounding the mouth (**Figure H**). Along the body and in the aboral end, the
207 mCherry fluorescence is prevalent in the endoderm and the gastrovascular cavity, whereas the calcein
208 signal is mostly localized to the ectoderm (**Figure 3J–L'**). This pattern suggests that the calcium-binding
209 activity of SpCARP1 is mostly concentrated in the tentacles of *N. vectensis* polyps.

Novel *in vivo* biomineralization system

210

211 3.3 Artificially enriching seawater with carbonate enhances *SpCARP1* sequestration of calcium ions

212 We artificially enriched our seawater with carbonate and/or calcium ions to mimic the concentrated ionic
213 conditions created by coral calcifying cells as they prepare for skeleton deposition. Incubation in
214 carbonate-enriched seawater appears to increase expression in polyp tentacles, as indicated by the
215 expanded expression of mCherry fluorescence in both the endoderm and ectoderm (**Figure 4A–C'**). Such
216 higher expression seems to be accompanied by a significant sequestration of calcium ions (pink reflects
217 the overlap between mCherry and calcein signals in **Figure 4A–C'**; see arrowheads). The body and
218 aboral ends show a similar expression pattern to non-enriched conditions (see **Figure 3J–L'**), with higher
219 mCherry fluorescence in the endoderm and gastrovascular cavity and higher calcein signal in the
220 ectoderm (**Figure 4D–F'**), although some regions of overlapping mCherry-calcein fluorescence are
221 present (see arrowhead in **Figure 4E–E'**). A similar pattern can be observed in polyps with calcium-
222 enriched seawater (**Figure 5A–F'**), although the mCherry signal appears to be dimmer in these conditions
223 compared to carbonate-only-enriched sea water (particularly in the tentacles; see **Figure 5A–C'**). When
224 calcium ions are enriched, mCherry fluorescence is also observable in the ectoderm of the aboral region
225 (**Figures 5D–F'**) compared to just the endoderm of animals in non-enriched solutions (see **Figure 3K–**
226 **K'**). In addition, compared to the non-enriched conditions (**Figure 3H–I'**), the mCherry signal along the
227 endoderm of the tentacle is less sparse and more homogenous when calcium ions are enriched (**Figure**
228 **5B–C'**). Enriching seawater with both calcium and carbonate did not appear to affect the ability of
229 *SpCARP1* to sequester and concentrate calcium (**Supplementary Figure 4**).

230

231 4 Discussion

232 We have demonstrated how *N. vectensis*, a soft-bodied anthozoan, may be utilized to study
233 biomineralization *in vivo*.

234 The putative promoters presented here were selected for optimizing quantity and secretion of target
235 biomineralization IDPs. Ubiquitin, as a regulatory protein that is highly conserved across eukaryotes,

Novel *in vivo* biomineralization system

236 should be found in virtually every animal cell. Indeed, the *cis*-regulatory sequence we identified as a
237 ubiquitin promoter appears to drive broad expression of mCherry in a variety of cell types by 24 hpf
238 (**Figure 2A–B**). Such selective expression could be due to an incomplete regulatory sequence or selective
239 protein degradation. Our data shows the putative mucin promoter drives expression of
240 SpCARP1::mCherry within 48 hpf in secretory cells of the aboral ectoderm, with strong mosaic
241 expression throughout the body column and into the tentacles of unfed polyps (**Figure 2C–D**), consistent
242 with the expression of mucin⁶⁷. Mucin-secreting cells are extremely abundant in the aboral ectoderm, and
243 because these animals are excellent regenerators a stable transgenic line with the mucin promoter driving
244 expression of SpCARP1::mCherry should provide abundant material for future analyses of the
245 interactions between SpCARP1 and putative IDPs.

246 Biomineralizing marine organisms, like corals, have specialized cells that control the chemistry of
247 seawater in a confined space where skeleton deposition occurs, otherwise defined as the “calcifying
248 space.” Corals concentrate calcium and carbonate ions in this calcifying space, and IDPs like SpCARP
249 proteins control the nucleation of aragonite²⁹. *N. vectensis*, as a non-calcifying organism, does not possess
250 such specialized calcifying cells. By simulating the biomineralization-favorable conditions of high
251 calcium and high carbonate concentrations, we were able to assess the responsiveness of SpCARP1 and
252 detect regions within *N. vectensis* polyps where biomineralization may be most likely to occur. By
253 supplementing our 1/3X FSW with calcium- and/or carbonate-rich solutions and evaluating calcium
254 sequestration with calcein staining (**Figures 3–5**; see also **Supplementary Figure 4**), we show that the
255 calcium-binding activity of SpCARP1 is primarily concentrated in the tentacles of *N. vectensis* polyps and
256 seems to be enhanced with increased concentrations of carbonate ions in seawater (**Figure 4**), a critical
257 requirement for biomineral nucleation. Our results are consistent with what we would expect from the
258 initial deposition of amorphous calcium carbonate as a precursor to crystalline calcium carbonate. Future
259 studies can further assess the presence of mineral structures in *N. vectensis* tentacles using scanning
260 electron microscopy or polarized light optical microscopy.

Novel *in vivo* biomineralization system

261 We demonstrate that our experimental system is versatile and may be adapted to other forms of
262 biomineralization. We show that *N. vectensis* can express IDPs involved in CaCO₃ biomineralization of
263 sea urchin spicules and CaPO₄ precipitation in vertebrate tooth enamel (**Supplementary Figure 2**). The
264 persistence of fluorescent signal in dissociated cells (**Supplementary Figure 3**) suggests it should be
265 possible to isolate and purify proteins for novel uses such as 3D printing of biomineralized material.
266 These results hint at the possibility to expand the use of the *N. vectensis* system to other forms of
267 biomineralization and perhaps even develop novel biomineralized materials for biomedical research.

268 The primary focus of this study was to show how *N. vectensis* may be utilized to understand the
269 molecular mechanisms that drive coral biomineralization to assist future conservation efforts. This study
270 is the first to attempt to induce biological mineralization in a novel *in vivo* system. We chose the coral
271 acidic protein SpCARP1 because it has been shown to induce rapid mineralization *in vitro*²⁹, and to
272 concentrate calcium ions leading to the formation of aragonite crystals in coral proto-polyps derived from
273 cell cultures⁶⁸. However, the calcium ion-concentration activity of such a protein has never been reported
274 in live adult organisms, like we show here in *Nematostella* small polyps.

275 A single transgenic IDP is likely insufficient to lead to the formation of a mature skeleton.
276 Nevertheless, this study lays the groundwork to establish *N. vectensis* as a tool to interrogate other coral
277 IDPs, transporters, ion pumps, etc. that are implicated in coral biomineralization and that can be co-
278 expressed in the same or adjacent cell types. For example, another coral acid-rich protein, SpCARP4, is of
279 particular interest because it is one of the most abundant proteins in the coral skeleton and has been
280 suggested to guide the formation of calcium carbonate crystals to specific orientations⁶⁹. We predict that
281 *N. vectensis* will be able to tolerate SpCARP4 transgenesis and, if expressed together with SpCARP1,
282 reveal new insights into the interaction between different IDPs and their respective functions in
283 biomineralization. Future studies may help delineate the mechanisms that led calcifying cells to evolve
284 independently in many organisms from a patchwork of nonhomologous proteins and cellular pathways.
285 Such mechanistic studies are necessary to understand how biomineralizing organisms have responded to

Novel *in vivo* biomineralization system

286 environmental changes in the past and how they may respond in the future, thereby elucidating how
287 CaCO_3 biomineralization shapes Earth's surface environment^{47,65,70–72}.

288

289 **5 Conclusion**

290 We demonstrate that *N. vectensis* can both tolerate transgenic expression of intrinsically disordered
291 proteins involved in biomineralization from a range of taxa that can sequester and concentrate calcium
292 ions in a carbonate-enriched seawater solution, providing compelling evidence for the initiation of the
293 biomineralizing process in a non-mineralizing organism. These results highlight the potential of *N.*
294 *vectensis* in examining the capacity of various cell types to secrete biominerals, opening up opportunities
295 to understand the capacity of cells to acquire novel functions. Our model system may be used as a proxy
296 to coral systems in the lab to test the molecular components of biomineralization that may improve stress
297 tolerance and resilience to native coral populations, thereby filling a much-needed gap in coral research
298 and aiding restoration efforts.

299

300 **Acknowledgements**

301 **Competing interests**

302 The authors declare no competing interests.

303 **Funding**

304 This research was funded by NSF grant # IOS 2314456.

Novel *in vivo* biomineralization system

305 References

- 306 1. Reaka-Kudla, M. L. *Biodiversity II: Understanding and Protecting Our Biological Resources*.
307 (Joseph Henry Press, 1997).
- 308 2. Small, A. M., Adey, W. H. & Spoon, D. Are Current Estimates of Coral Reef Biodiversity Too Low?
309 the View through the Window of a Microcosm. *Atoll Res. Bull.* 1–20 (1998)
310 doi:10.5479/SI.00775630.458.1.
- 311 3. Wagner, D. *et al.* Coral Reefs of the High Seas: Hidden Biodiversity Hotspots in Need of Protection.
312 *Front. Mar. Sci.* **7**, 567428 (2020).
- 313 4. Arkema, K. K. *et al.* Coastal habitats shield people and property from sea-level rise and storms. *Nat.*
314 *Clim. Change* **3**, 913–918 (2013).
- 315 5. Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. *Ecol. Econ.* **29**, 215–
316 233 (1999).
- 317 6. Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: An ecological
318 assessment of long-term impacts, recovery trends and future outlook. *Estuar. Coast. Shelf Sci.* **80**,
319 435–471 (2008).
- 320 7. Addadi, L., Joester, D., Nudelman, F. & Weiner, S. Mollusk Shell Formation: A Source of New
321 Concepts for Understanding Biomimetic Processes. *Chem Eur J* **12**, 980–987 (2006).
- 322 8. Gotliv, B. A., Addadi, L. & Weiner, S. Mollusk Shell Acidic Proteins: In Search of Individual
323 Functions. *ChemBioChem* **4**, 522–529 (2003).
- 324 9. Marie, B. *et al.* Different secretory repertoires control the biomimetic processes of prism and
325 nacre deposition of the pearl oyster shell. (2012) doi:10.1073/pnas.1210552109.
- 326 10. Weiner, S. Biomimetic: A structural perspective. *J. Struct. Biol.* **163**, 229–234 (2008).
- 327 11. Decker, G. L., Morrill, J. B. & Lennarz, W. J. Characterization of sea urchin primary mesenchyme
328 cells and spicules during biomimetic in vitro. *Development* **101**, 297–312 (1987).
- 329 12. Gildor, T., Winter, M. R., Layous, M., Hijaze, E. & Ben-Tabou de-Leon, S. The biological regulation
330 of sea urchin larval skeletogenesis – From genes to biomimeticized tissue. *J. Struct. Biol.* **213**, (2021).

Novel *in vivo* biomineralization system

331 13. Politi, Y., Arad, T., Klein, E., Weiner, S. & Addadi, L. Sea Urchin Spine Calcite Forms via a
332 Transient Amorphous Calcium Carbonate Phase. *New Ser.* **306**, 1161–1164 (2004).

333 14. Mor Khalifa, G., Levy, S. & Mass, T. The calcifying interface in a stony coral primary polyp: An
334 interplay between seawater and an extracellular calcifying space. *J. Struct. Biol.* **213**, 107803 (2021).

335 15. Neder, M. *et al.* Mineral formation in the primary polyps of pocilloporoid corals. *Acta Biomater.* **96**,
336 631–645 (2019).

337 16. Von Euw, S. *et al.* Biological control of aragonite formation in stony corals. *Science* **356**, 933–938
338 (2017).

339 17. Kahil, K. *et al.* Cellular pathways of calcium transport and concentration toward mineral formation in
340 sea urchin larvae. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 30957–30965 (2020).

341 18. Kahil, K., Weiner, S., Addadi, L. & Gal, A. Ion Pathways in Biomineralization: Perspectives on
342 Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate. *Cite This J Am Chem Soc*
343 **143**, (2021).

344 19. Bose, H. & Satyanarayana, T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration
345 for Mitigating Global Warming: Prospects and Perspectives. *Front. Microbiol.* **0**, 1615 (2017).

346 20. Le Roy, N., Jackson, D. J., Marie, B., Ramos-Silva, P. & Marin, F. The evolution of metazoan α -
347 carbonic anhydrases and their roles in calcium carbonate biomineralization. *Front. Zool.* **11**, 1–16
348 (2014).

349 21. Moya, A. *et al.* Carbonic Anhydrase in the Scleractinian Coral *Stylophora pistillata*:
350 CHARACTERIZATION, LOCALIZATION, AND ROLE IN BIOMINERALIZATION *. *J. Biol.*
351 *Chem.* **283**, 25475–25484 (2008).

352 22. Voigt, O., Adamski, M., Sluzek, K. & Adamska, M. Calcareous sponge genomes reveal complex
353 evolution of α -carbonic anhydrases and two key biomineralization enzymes. *BMC Evol. Biol.* **14**, 1–
354 19 (2014).

355 23. Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and
356 its roles in biomineralization. *Adv. Mater.* **15**, 959–970 (2003).

Novel *in vivo* biomineralization system

357 24. Nebel, H., Neumann, M., Mayer, C. & Epple, M. On the Structure of Amorphous Calcium
358 Carbonate—A Detailed Study by Solid-State NMR Spectroscopy. *Inorg. Chem.* **47**, 7874–7879
359 (2008).

360 25. Whiticar, M. J., Suess, E., Wefer, G. & Müller, P. J. Calcium Carbonate Hexahydrate (Ikaite):
361 History of Mineral Formation as Recorded by Stable Isotopes. *Minerals* **12**, 1627 (2022).

362 26. Mass, T. *et al.* Amorphous calcium carbonate particles form coral skeletons. *Proc. Natl. Acad. Sci. U.*
363 *S. A.* **114**, E7670–E7678 (2017).

364 27. Gower, L. B. & Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-
365 precursor (PILP) process. *J. Cryst. Growth* **210**, 719–734 (2000).

366 28. George, A., Sabsay, B., Simonian, P. A. L. & Veiss, A. THE JOURNAL OF BIOLOGICAL
367 CHEMISTRY Characterization of a Novel Dentin Matrix Acidic Phosphoprotein IMPLICATIONS
368 FOR INDUCTION OF BIOMINERALIZATION*. *J. Biol. Chem.* **268**, 12624–12630 (1993).

369 29. Mass, T. *et al.* Cloning and characterization of four novel coral acid-rich proteins that precipitate
370 carbonates in vitro. *Curr. Biol.* **23**, 1126–1131 (2013).

371 30. Helman, Y. *et al.* Extracellular matrix production and calcium carbonate precipitation by coral cells
372 in vitro. *Proc. Natl. Acad. Sci.* **105**, 54–58 (2008).

373 31. Veis, A. & Dorvee, J. R. Biominerization mechanisms: A new paradigm for crystal nucleation in
374 organic matrices. *Calcif. Tissue Int.* **93**, 307–315 (2013).

375 32. Wilt, F. H., Killian, C. E., Hamilton, P. & Croker, L. The dynamics of secretion during sea urchin
376 embryonic skeleton formation. *Exp. Cell Res.* **314**, 1744–1752 (2008).

377 33. Kalmar, L., Homola, D., Varga, G. & Tompa, P. Structural disorder in proteins brings order to crystal
378 growth in biominerization. *Bone* **51**, 528–534 (2012).

379 34. Moradian-Oldak, J. & George, A. Biominerization of Enamel and Dentin Mediated by Matrix
380 Proteins. *J. Dent. Res.* **100**, 1020–1029 (2021).

381 35. Ndao, M. *et al.* Intrinsically disordered mollusk shell prismatic protein that modulates calcium
382 carbonate crystal growth. *Biomacromolecules* **11**, 2539–2544 (2010).

Novel *in vivo* biomineralization system

383 36. Rose-Martel, M., Smiley, S. & Hincke, M. T. Novel identification of matrix proteins involved in
384 calcitic biomineralization. *J. Proteomics* **116**, 81–96 (2015).

385 37. Gorski, J. P. Calcified Tissue International Acidic Phosphoproteins from Bone Matrix: A Structural
386 Rationalization of Their Role in Biomineralization. *Calcif Tissue Int* **50**, 391–396 (1992).

387 38. Gotliv, B. A. *et al.* Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix
388 of the bivalve *Atrina rigida*. *Chembiochem Eur. J. Chem. Biol.* **6**, 304–314 (2005).

389 39. Moradian-Oldak, J., Frolow, F., Addadi, L. & Weiner, S. Interactions between acidic matrix
390 macromolecules and calcium phosphate ester crystals: relevance to carbonate apatite formation in
391 biomineralization. *Proc. R. Soc. Lond. B Biol. Sci.* **247**, 47–55 (1992).

392 40. Suzuki, M. *et al.* An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation.
393 (2009) doi:10.1126/science.1173793.

394 41. Kabakoff, B., Hwang, S. P. L. & Lennarz, W. J. Characterization of post-translational modifications
395 common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic
396 skeleton formation. *Dev. Biol.* **150**, 294–305 (1992).

397 42. Dhami, N. K., Reddy, M. S. & Mukherjee, A. Synergistic role of bacterial urease and carbonic
398 anhydrase in carbonate mineralization. *Appl. Biochem. Biotechnol.* **172**, 2552–2561 (2014).

399 43. Li, W. *et al.* Calcium carbonate precipitation and crystal morphology induced by microbial carbonic
400 anhydrase and other biological factors. *Process Biochem.* **45**, 1017–1021 (2010).

401 44. Smith, K. S. & Ferry, J. G. Prokaryotic carbonic anhydrases. *FEMS Microbiol. Rev.* **24**, 335–366
402 (2000).

403 45. Ettensohn, C. A. & Malinda, K. M. Size regulation and morphogenesis: A cellular analysis of
404 skeletogenesis in the sea urchin embryo. *Development* **119**, 155–167 (1993).

405 46. Beniash, E., Addadi, L. & Weiner, S. Cellular Control Over Spicule Formation in Sea Urchin
406 Embryos: A Structural Approach. *J. Struct. Biol.* **125**, 50–62 (1999).

407 47. Clark, M. S. Molecular mechanisms of biomineralization in marine invertebrates. *J. Exp. Biol.* **223**,
408 (2020).

Novel *in vivo* biominerization system

409 48. Wang, X. *et al.* The Evolution of Calcification in Reef-Building Corals. *Mol. Biol. Evol.* **38**, 3543–
410 3555 (2021).

411 49. Renfer, E. & Technau, U. Meganuclease-assisted generation of stable transgenics in the sea anemone
412 *Nematostella vectensis*. *Nat. Protoc.* **12**, 1844–1854 (2017).

413 50. Layden, M. J., Röttinger, E., Wolenski, F. S., Gilmore, T. D. & Martindale, M. Q. Microinjection of
414 mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, *Nematostella*
415 *vectensis*. *Nat. Protoc.* **8**, 924–934 (2013).

416 51. Hand, C. & Uhlinger, K. R. The Culture, Sexual and Asexual Reproduction, and Growth of the Sea
417 Anemone *Nematostella vectensis*. *Biol. Bull.* **182**, 169–176 (1992).

418 52. Fritzenwanker, J. H. & Technau, U. Induction of gametogenesis in the basal cnidarian *Nematostella*
419 *vectensis*(Anthozoa). *Dev. Genes Evol.* **212**, 99–103 (2002).

420 53. Chin, J. X., Chung, B. K. S. & Lee, D. Y. Codon Optimization OnLine (COOL): A web-based multi-
421 objective optimization platform for synthetic gene design. *Bioinformatics* **30**, 2210–2212 (2014).

422 54. Koressaar, T. *et al.* Primer3_masker: integrating masking of template sequence with primer design
423 software. *Bioinforma. Oxf. Engl.* **34**, 1937–1938 (2018).

424 55. Hernández, G., Osnaya, V. G. & Pérez-Martínez, X. Conservation and Variability of the AUG
425 Initiation Codon Context in Eukaryotes. *Trends Biochem. Sci.* **44**, 1009–1021 (2019).

426 56. Waldo, G. S., Standish, B. M., Berendzen, J. & Terwilliger, T. C. Rapid protein-folding assay using
427 green fluorescent protein. *Nat. Biotechnol.* **17**, 691–695 (1999).

428 57. Almagro Armenteros, J. J. *et al.* SignalP 5.0 improves signal peptide predictions using deep neural
429 networks. *Nat. Biotechnol. 2019* **37**, 420–423 (2019).

430 58. Putnam, N. H. *et al.* Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic
431 organization. *Science* **317**, 86–94 (2007).

432 59. Marlow, H. Q., Srivastava, M., Matus, D. Q., Rokhsar, D. & Martindale, M. Q. Anatomy and
433 development of the nervous system of *Nematostella vectensis*, an anthozoan cnidarian. *Dev.*
434 *Neurobiol.* **69**, 235–254 (2009).

Novel *in vivo* biomineralization system

435 60. Marlow, H., Roettinger, E., Boekhout, M. & Martindale, M. Q. Functional roles of Notch signaling in
436 the cnidarian *Nematostella vectensis*. *Dev. Biol.* **362**, 295–308 (2012).

437 61. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat. Methods* **2012**
438 **97** **9**, 676–682 (2012).

439 62. Pierrot, D., Lewis, E. & Wallace, D. MS Excel Program Developed for CO₂ System Calculations.
440 <https://marine.gov.scot/sma/content/ms-excel-program-developed-co2-system-calculations> (2006).

441 63. Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. MEASUREMENT OF THE
442 APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT
443 ATMOSPHERIC PRESSURE1. *Limnol. Oceanogr.* **18**, 897–907 (1973).

444 64. Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of
445 carbonic acid in seawater media. *Deep Sea Res. Part Oceanogr. Res. Pap.* **34**, 1733–1743 (1987).

446 65. Gilbert, P. U. P. A. *et al.* Biomineralization: Integrating mechanism and evolutionary history. *Sci.*
447 *Adv.* **8**, (2022).

448 66. Seb   -Pedr  , A., Saudemont, B., Spitz, O., Tanay, A. & Marlow, H. Cnidarian Cell Type Diversity
449 and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq In Brief. (2018)
450 doi:10.1016/j.cell.2018.05.019.

451 67. Steinmetz, P. R. H., Aman, A., Kraus, J. E. M. & Technau, U. Gut-like ectodermal tissue in a sea
452 anemone challenges germ layer homology. *Nat. Ecol. Evol.* **1**, 1535–1542 (2017).

453 68. Mass, T., Drake, J. L., Heddleston, J. M. & Falkowski, P. G. Nanoscale Visualization of Biomimetic
454 Formation in Coral Proto-Polyps. (2017) doi:10.1016/j.cub.2017.09.012.

455 69. Mass, T., Drake, J. L., Peters, E. C., Jiang, W. & Falkowski, P. G. Immunolocalization of skeletal
456 matrix proteins in tissue and mineral of the coral *Stylophora pistillata*. *Proc. Natl. Acad. Sci. U. S. A.*
457 **111**, 12728–12733 (2014).

458 70. Drake, J. L. *et al.* How corals made rocks through the ages. *Glob. Change Biol.* **26**, 31–53 (2020).

459 71. H  nisch, B. *et al.* The geological record of ocean acidification. *Science* **335**, 1058–1063 (2012).

Novel *in vivo* biomineralization system

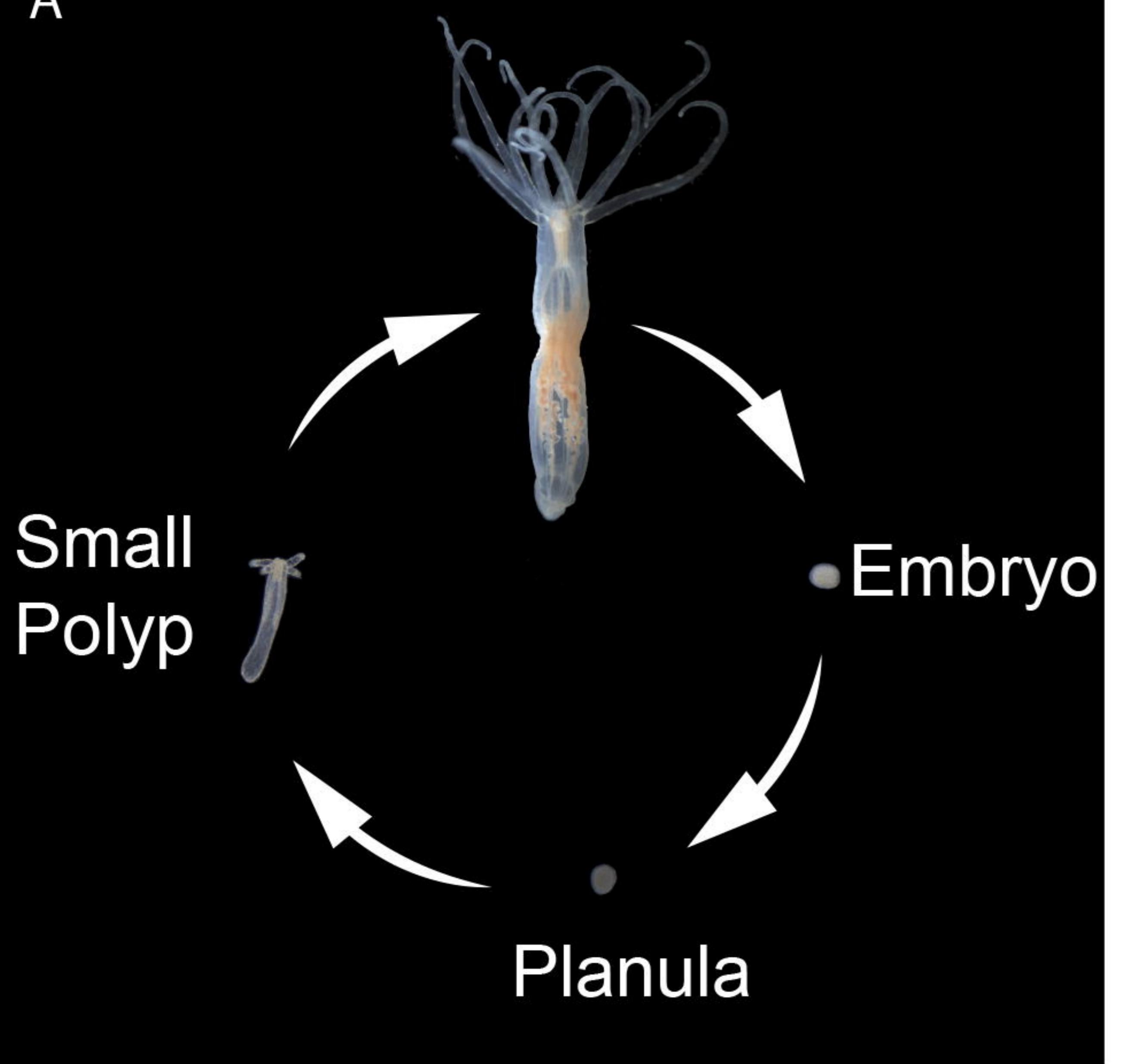
460 72. Kawahata, H. *et al.* Perspective on the response of marine calcifiers to global warming and ocean
461 acidification—Behavior of corals and foraminifera in a high CO₂ world “hot house”. *Prog. Earth*
462 *Planet. Sci.* 2019 **61** 6, 1–37 (2019).

463

464

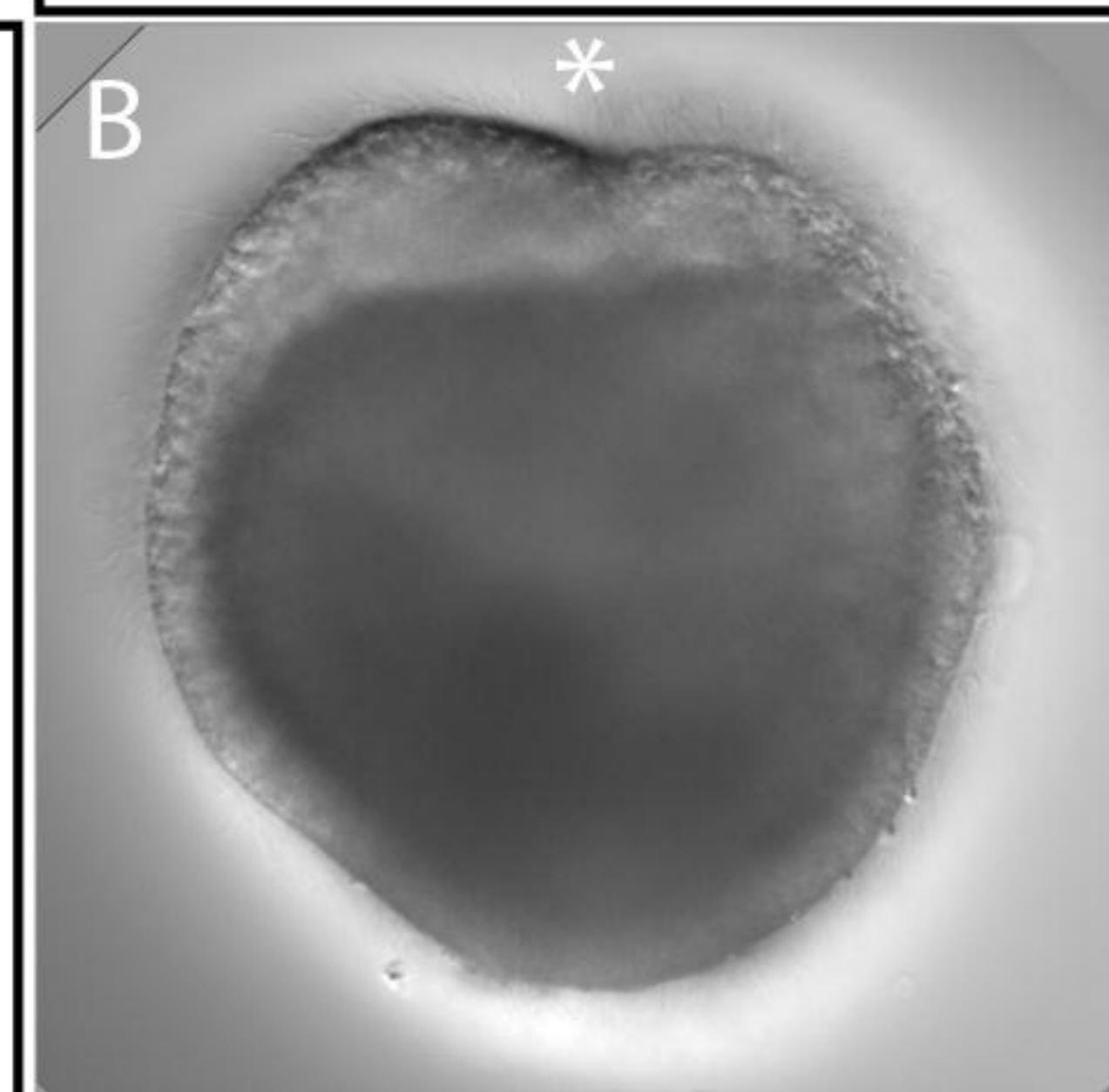
465 **Figure 1** Putative promoters are sufficient to drive stable expression of mCherry. Life cycle of *N. vectensis* (A).
466 Brightfield and Max projections showing the ubiquitin promoter driving expression of mCherry in live planula (B–
467 B') and small polyps (C–C'). Plasmid construct containing native promoters, signal sequences (SS), and proteins
468 involved in biomineralization of coral (SpCARP1), sea urchin spicule (SpSM30), and mouse tooth enamel
469 (MmAMBN), as well as the general workflow including microinjections, rearing of animals with incorporated
470 transgene and evaluation of fluorescent mCherry signal with confocal microscopy (D). Asterisk = oral pole

471 **Figure 2** *CARPI::mCherry* expression can be driven by endogenous *Nv* promoters. Ubiquitin promoter drives broad
472 expression in ectoderm in live planulae (A) and small polyps (B), with the strongest signal in scattered ectodermal
473 cells (see white arrowheads). Mucin promoter drives expression in secretory cells in fixed planula aboral ectoderm
474 (C) and throughout the body column and tentacles of small polyps (D). Asterisk = oral pole. All scale bars = 100μm.

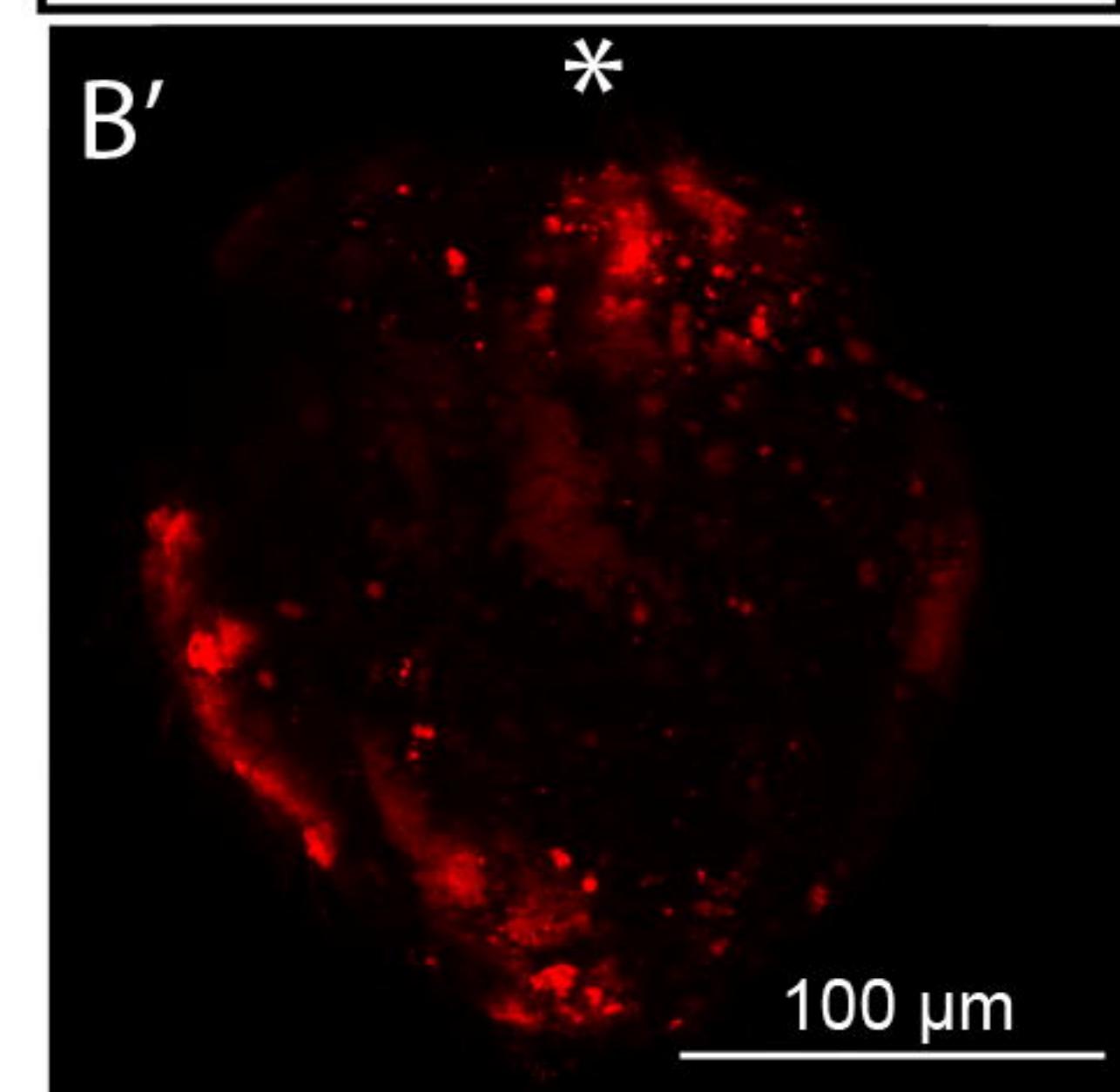

475 **Figure 3** Calcein co-localizes with *SpCARP1* in live polyp tentacles (unenriched seawater). Live uninjected polyps
476 show limited calcein signal in tentacular (A–C') and aboral (D–F') regions. Live polyps injected with Ubi-
477 CARP1::mCherry plasmid show co-localization of calcein and mCherry signal in tentacular (G–I') but not aboral (J–
478 L') regions. Arrowheads indicate co-localization of SpCARP1 with calcein stain. All scale bars = 50μm.

479 **Figure 4** Carbonate-enriched seawater enhances calcium sequestration of *SpCARP1* in live polyps. Tentacular (A–
480 C') and aboral (D–F') views of live polyps following incubation of carbonate-enriched seawater. White arrowheads
481 indicate co-localization of SpCARP1 with calcein stain. All scale bars = 50μm.

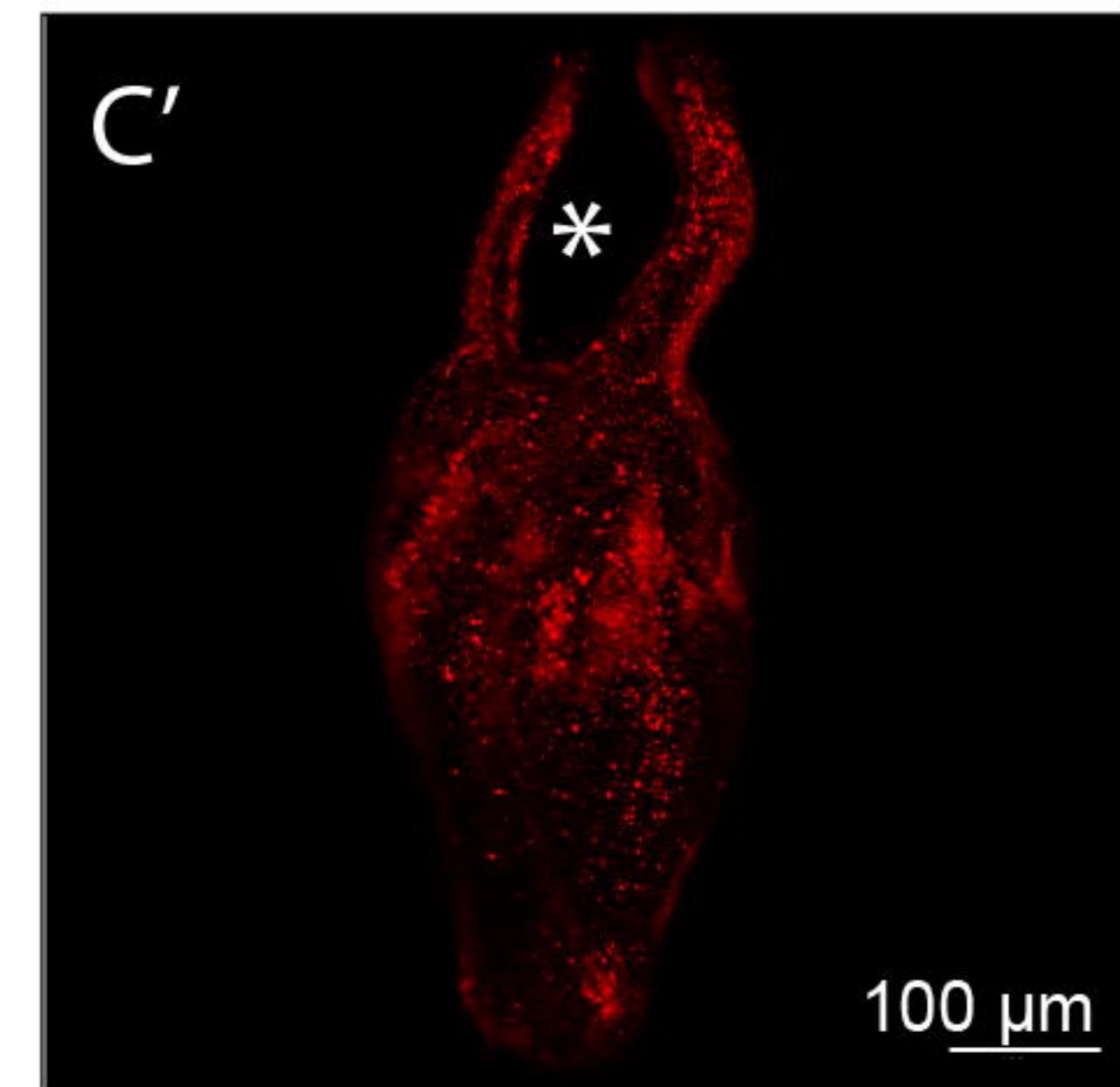
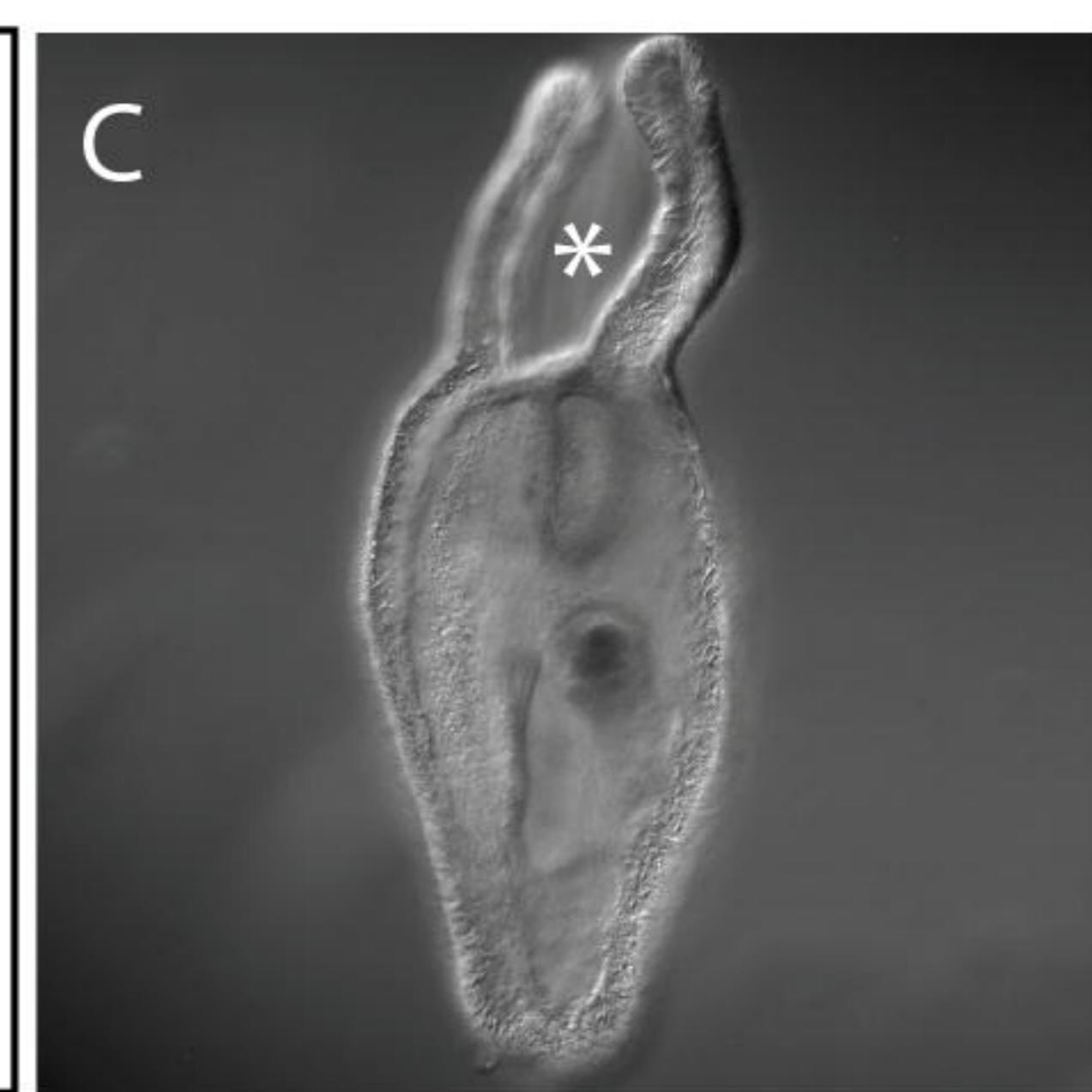
482 **Figure 5** Calcium-enriched seawater does not improve calcium-sequestration of SpCARP1 in live polyps.
483 Tentacular (A–C') and aboral (D–F') views of live transgenic polyps following incubation of calcium-enriched
484 seawater. White arrowheads show co-localization of SpCARP1 with calcein stain. All scale bars = 50μm.


N. vectensis

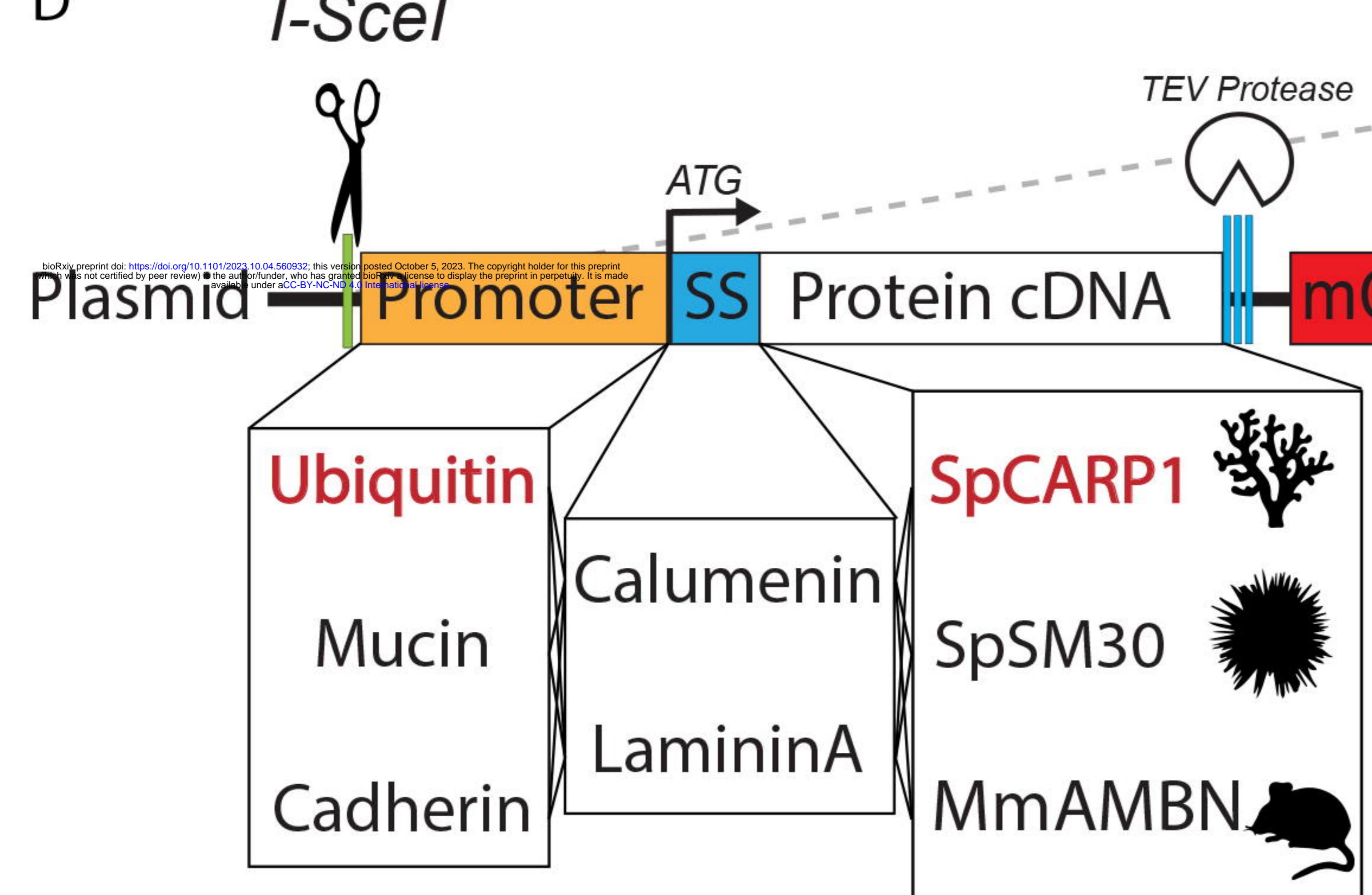
A


Brightfield

Planula

Ubi > mCherry


Small Polyp

Small Polyp

D

I-SceI

Ubi > SpCARP1 ::

mCherry

Planula

A

*

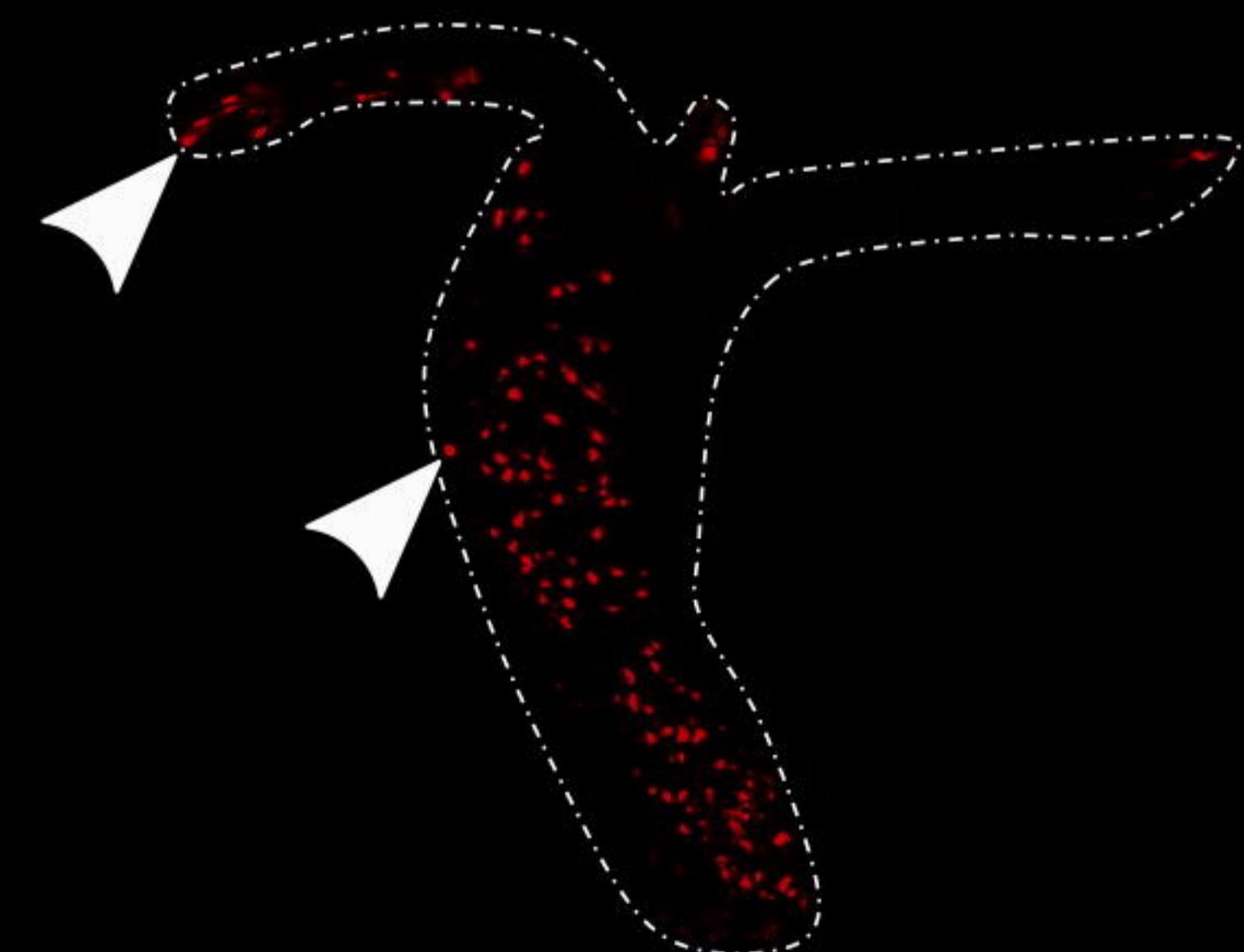
100 μ m

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.04.550622>; this version posted October 4, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

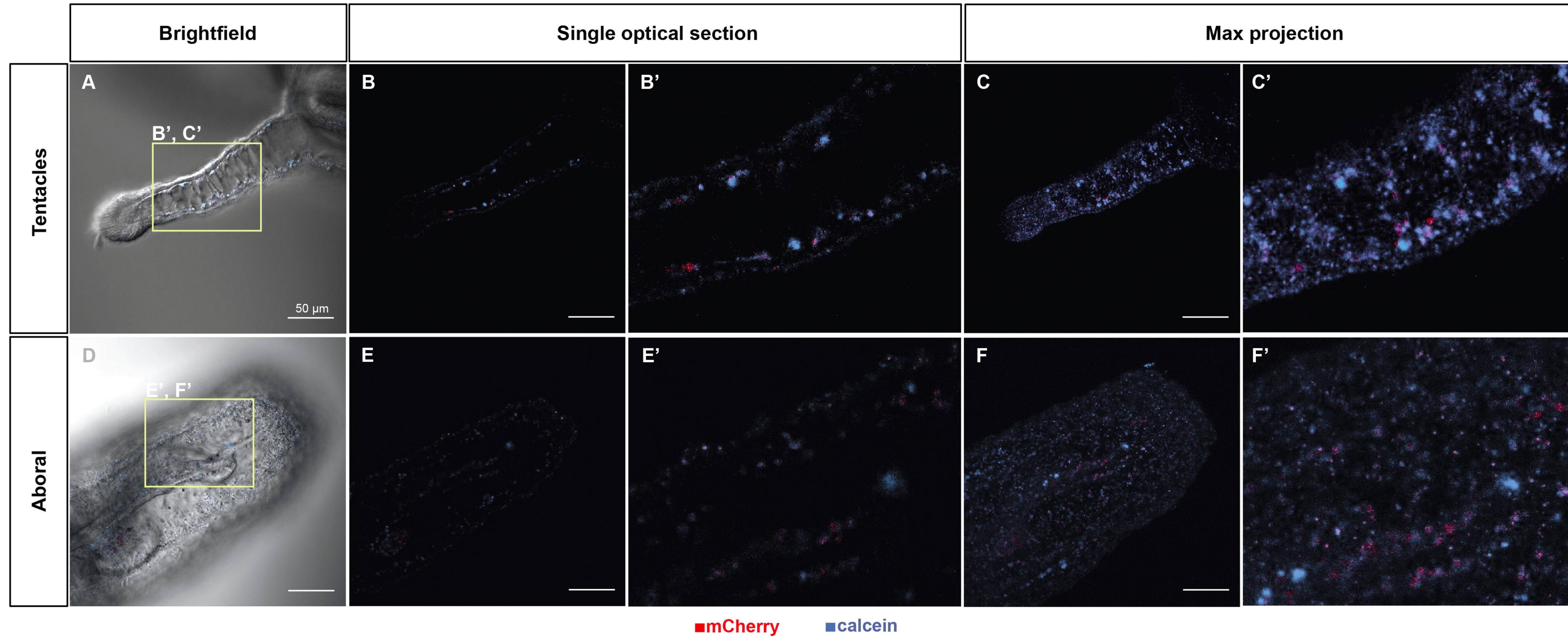
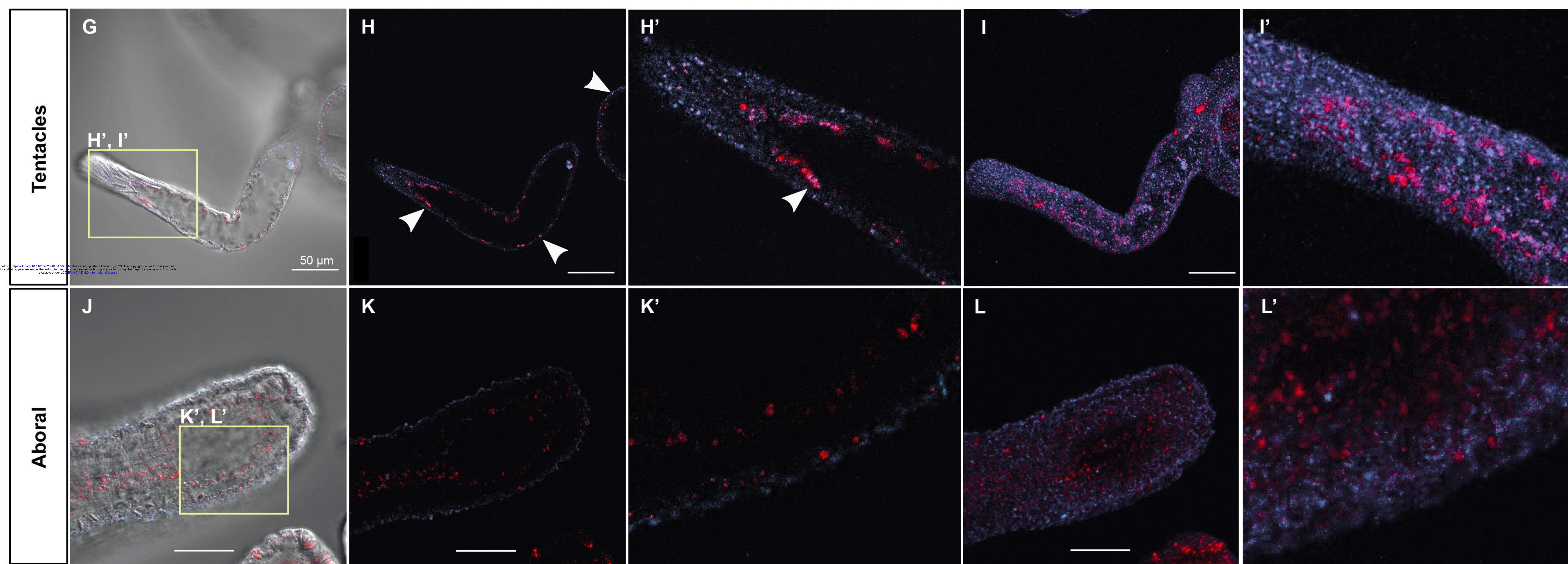
Mucin > SpCARP1 ::

mCherry

Small Polyp

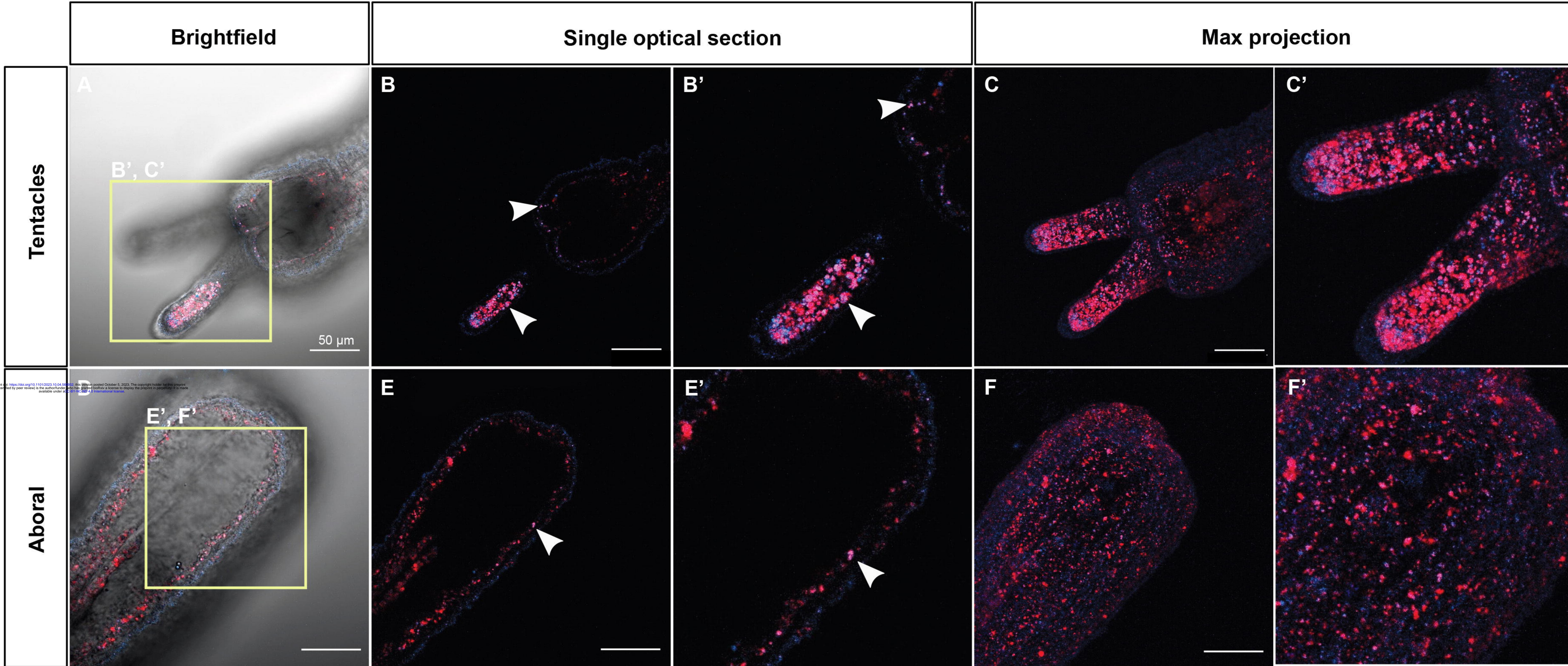

B

*

D

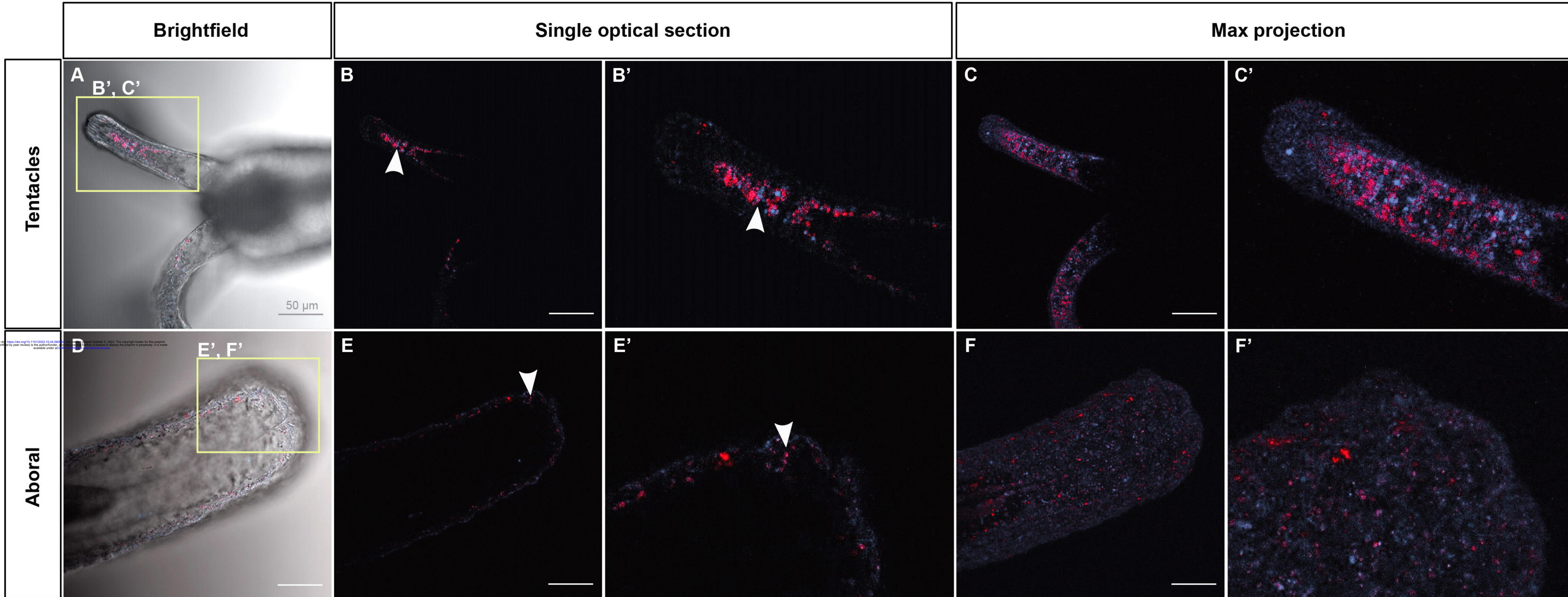
*



■mCherry

Wild type**Ubi > SpCARRP1 :: mCherry**

Carbonate enriched


Ubi > CARP1 :: mCherry

■ mCherry

■ calcein

Calcium enriched

■mCherry

■calcein