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Abstract 

Differential gene expression in response to perturbations is mediated at least in part by changes 

in binding of transcription factors (TFs) and other proteins at specific genomic regions. 

Association of these cis-regulatory elements (CREs) with their target genes is a challenging task 

that is essential to address many biological and mechanistic questions. Many current 

approaches rely on chromatin conformation capture techniques that identify spatial proximity 

between genomic sites to establish CRE-to-gene associations. These methods can be effective 

but have limitations, including resolution, minimal detectable interaction distance, and cost. As 

an alternative, we have developed DegCre, a non-parametric method that evaluates correlations 

between measurements of perturbation-induced differential gene expression and differential 

regulatory signal at CREs to score possible CRE-to-gene associations. It has several unique 

features, including the ability to: use any type of CRE activity measurement; yield probabilistic 

scores for CRE-to-gene pairs; and assess CRE-to-gene pairings across a wide range of 

sequence distances. We apply DegCre to three data sets, each employing different 

perturbations and containing a variety of regulatory signal measurements, including chromatin 

openness, histone modifications, and TF occupancy. To test their efficacy, we compare DegCre 

associations to HiC loop calls and to CRISPR validated interactions, with both yielding good 

agreement. We demonstrate the identification of perturbation direct target genes with DegCre 

confirm the results with previous reports. DegCre is a novel approach to the association of CREs 

to genes from a perturbation-differential perspective, with strengths that are complementary to 

existing approaches and allow for new insights into gene regulation. 

 

Introduction 

The regulation of gene expression occurs through the interaction of transcription factors (TFs) 

and other proteins with genomic regions, or cis-regulatory elements (CREs) (The ENCODE 

Project Consortium et al. 2020). Because CREs can act at considerable distances away from 

any given target gene, in some cases skipping over intervening genes, matching CREs to their 

target genes is challenging (Rao et al. 2014; Song et al. 2019; Dixon et al. 2012; Javierre et al. 

2016; Schoenfelder and Fraser 2019). Such knowledge, however, is of high value for both basic 

and applied biology. Examples include better interpretation of how genetic variation in a CRE 
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leads to molecular and phenotypic effect (Ulirsch et al. 2016; van Arensbergen et al. 2019; Song 

et al. 2019; Nasser et al. 2021) and better prediction of the effects of perturbations, such as drug 

treatment, on gene expression levels in a cell or tissue (Thormann et al. 2018; Carleton et al. 

2020; Cholico et al. 2022).  

Promoters are CREs very near to the transcription start site (TSS) of a gene and are readily 

associated with that gene’s expression by the basic principles of transcription initiation (Haberle 

and Stark 2018). As sequence distance from the TSS increases, the association of CREs, such 

as enhancers, with a given gene’s regulation becomes increasingly uncertain. Analysts often 

place a threshold on TSS to CRE distances under which there is putatively high confidence for 

the association. These thresholds range from ~1 kilobase (kb) to 100s of kb, with little justification 

provided for any given choice (Kamal et al. 2023; You et al. 2021; McDaniel et al. 2016; Wang 

et al. 2015). It is unlikely that any single TSS to gene distance threshold is appropriate in all 

contexts, and categorical thresholds generally result in limitations that impact all downstream 

analyses. 

The maturation of chromatin conformation capture technology such as HiC has enabled the 

association of genomically distal CREs to genes through their spatial proximity in nuclei to target-

gene promoters (Rao et al. 2014; Javierre et al. 2016; Kloetgen et al. 2020; Xu et al. 2022; Meng 

et al. 2023). The high resource usage is one of the key limitations of these approaches. 

Moreover, the majority of HiC associations, or “loops”, span distances greater than ~50 kb, 

limiting their utility to identify CRE-to-gene associations spanning shorter distances. 

Undoubtedly, CREs closer to TSSs harbor considerable regulatory activity; yet it is also unlikely 

that all CREs in this distance range are in fact relevant to the regulation of that gene, especially 

in response to a targeted perturbation. 

Previous work by others has demonstrated approaches to CRE-to-gene association that do not 

require chromatin conformation data. Many of these approaches are based on the observation 

that gene transcription levels and measurements of CRE regulatory activity are correlated (Ernst 

et al. 2011; Sheffield et al. 2013; He et al. 2014; Cao et al. 2017; Li et al. 2019). Generally, these 

methods generate models of CRE activity and gene expression within a given cell type across 

the genome, yielding predictions of associations. Validation of these methods by comparison to 

chromatin capture data yields good agreement in most cases. One possible limitation of these 
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methods is that many require supervised training which could lead to underperformance when 

applied to untrained contexts. Also, these methods are tailored to specific data types, lacking 

flexibility in inputs. Nevertheless, this work has established the ability of correlational analysis to 

identify CRE-to-gene associations.  

Studies that enable the association of CREs to genes, whether through HiC approaches, 

correlational methods, or other techniques, often focus on static conditions, generating data of 

CRE activity and gene expression in a single context, with notable exceptions (Adamson et al. 

2016; Reed et al. 2022; Xu et al. 2022). In contrast, a differential system in which two or more 

conditions are compared may allow for a new conceptual approach to CRE-to-gene association. 

This approach correlates gene expression and CRE activity not across genes and CREs in a 

single context, but between the same gene and same CRE across two or more conditions. 

Correlations in CRE activity between conditions that are concordant with gene expression 

changes may provide evidence of their association. Such associations would be dependent on 

the variable factor between the input conditions, perhaps limiting their generality, but also would 

be more informative of the variable effects and potentially lead to insights into the gene 

regulatory mechanisms at work. 

We present a method, DegCre, that probabilistically associates CREs to target gene TSSs over 

a wide range of genomic distances. The premise of DegCre is that true CRE to differentially 

expressed gene (DEG) pairs should change in concert with one another as a result of a 

perturbation, such as a drug treatment or differentiation protocol. DegCre is a non-parametric 

method that estimates an association probability for each possible pair of differential CRE and 

DEG. It considers CRE-DEG distance but avoids arbitrary thresholds. Because DegCre uses 

rank-order statistics, it can use various types of CRE-associated data, including DNase 

hypersensitivity, ATAC-seq, and ChIP-seq against either histone marks or TFs. It produces 

significant associations with a wide range of TSS to CRE distances, up to an upper limit subject 

only to computational burden, with 1 Mb being quite feasible.  

We apply DegCre to three distinct collections of data, including cells subject to drug treatment 

and differentiation protocols. We compare DegCre associations to HiC loops, CRISPR validated 

links, and Activity By Contact (ABC) scores (Nasser et al. 2021) that employ both HiC and 

regulatory signal data. While DegCre makes CRE-to-gene predictions well below the limit of 
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genomic distance detection of HiC data, we find excellent agreement among areas of predictive 

overlap. We also show the complementary value of DegCre’s scoring metric, which provides, for 

example, the ability to sum probabilities for all candidate CREs for a given gene to infer the total 

number of CREs regulating that gene. We use this approach to identify direct targets of a 

perturbation by identifying genes regulated by numerous CREs. 

 

Results 

DegCre operation and algorithm 

The name “DegCre” was chosen to reflect that, instead of binary associations, DegCre produces 

association probabilities, or the “degree” to which the DEG to CRE association is likely to be 

true. For the purposes of this discussion, we define a differentially expressed gene (DEG) as a 

gene whose expression is potentially different between two contexts, such as before and after 

drug treatment or differentiation. The term “significant DEG” will mean DEGs for whom the 

significance of a statistical measure of expression change surpasses a defined threshold (a). 

The term “CRE” (cis-regulatory element) will be used to denote a genomic region with regulatory 

signal above background at a chosen level. Such regulatory signals can include chromatin 

openness, transcription factor (TF) occupancy, and histone post-translational modifications, 

amongst others. We understand that robustly establishing that any given genomic region is truly 

a CRE requires additional lines of evidence, such as targeted inhibition and activation, but will 

use CRE in this study to refer to any region exhibiting condition-differential signal for the selected 

type of CRE-measurement. 

We intend for users to apply DegCre to experimental designs which consider multiple states, 

such as response to a perturbation, and include measurements of gene expression and 

regulatory signal at CREs (Figure 1A). DegCre takes in differential gene expression 

measurements, defined as the p-value from comparing expression levels between conditions, 

along with the transcription start sites (TSSs) of those genes. DegCre also requires p-values of 

differential signal at CRE regions from the same conditions, such as can be generated by 

methods like csaw (Lun and Smyth 2016). Optimally, DegCre also uses the fold-changes of both 

DEG and CRE signal to measure effect direction concordance on the assumption that CRE 
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activity should correlate with increased expression and vice versa, although this is not required 

and for some experimental designs may not be desired. 

The DegCre algorithm begins by defining all pairwise associations between DEGs and CREs 

and calculating the genomic distance between each CRE and the TSSs of each DEG (Figure 

1A and B, Methods). A DegCre association is thus based on three measurements: a DEG p-

value, a CRE p-value, and a genomic distance. DegCre considers only possible associations 

within a given maximum distance, which is by default set to be 1 Mb. Specification of large 

maximum distances is possible but increases the number of considered associations and 

computational burden. 

 

Figure 1. Graphical overview of the DegCre algorithm. A. DegCre requires as inputs differential p-values for 
CRE signal and differential gene expression (pCRE and pDEG). DegCre also needs genomic distances between 
CREs and TSSs (d) as input. The lightning bolt indicates a perturbation has occurred to the lower depiction. B. 
DegCre creates also possible associations between each CRE and TSS within a specified maximum distance. 
C. DegCre bins associations by their distance, d, according to a heuristic that balances resolution versus 
maintaining the pCRE distribution (Methods). D. DegCre calculates a raw association probability, araw,i,j, for a given 
pCRE,j by finding the fraction of expected true DEGs in the set of associations in the same distance bin and with a 
pCRE equal to or less than (more significant) as pCRE,i. Plot shows actual data from ATAC-seq at 120 minutes from 
Reed et al. E. DegCre corrects the raw association probability if the association does not involve a true DEG. F. 
For CREs with multiple associations (nearly all CREs) associations across larger genomic distances are 
penalized by the probabilities that the CRE is associated to nearer DEGs. G. The false discovery rate (FDR) of 
the association is calculated based on a binomial distribution that uses the bin null association probability, abin, 
as the success probability. Created with BioRender.com. 

DegCre next bins associations by distance (Figure 1C, Methods). The bin sizes are defined for 

each experiment such that they contain an equal number of associations, (Methods). The goal 

of this step is to define bins such that each CRE can be compared against other CREs at similar 

distances to yield scores for individual CRE-DEG associations that can be compared to the 

average distance-normalized association; true CRE-DEG pairs should have higher signal than 
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randomly selected CRE-DEG pairs with similar distances. To select the number of associations 

per bin, DegCre employs a heuristic that attempts to balance resolution (smaller bins with fewer 

associations) against the robustness of each bin, which is a function of the similarity of the CRE 

p-value distribution in each bin compared to the global CRE p-value distribution (Methods). It is 

important to maintain uniformity of the bin-wise CRE p-value distribution because subsequent 

calculations compare the CRE p-value for any given association to the distribution of all CRE p-

values of its distance bin. Thus, if bins are too small, and harbor only highly significant or only 

insignificant p-values, then true pairs cannot be distinguished from the background. In contrast, 

if bins are too large, the distance normalization becomes irrelevant as distances with biologically 

very different priors (in terms of likelihood for a random association to represent a real 

association) are conflated.  

For each bin, DegCre calculates raw association probabilities, represented by “a” in figures and 

formulas to avoid confusion with significance probabilities (Figure 1D). For a given association 

with a given CRE p-value, DegCre finds all associations within the same bin that have a CRE p-

value (in the same effect direction if available) with equal or greater significance (Methods). 

DegCre then calculates the expected number of true DEGs within that set of associations and 

divides it by the set size to obtain a true DEG fraction (Figure 1D, Methods). We call this value 

the raw association probability, araw, an estimation of the probability the association connects a 

CRE to the change in expression of a target gene. This calculation araw is determined by 

association distance, CRE p-value, and DEG p-value, and makes no assumptions of underlying 

distributions of those inputs. 

Although there is a unique araw value for each unique CRE p-value, araw values essentially 

represent a set-level probability, as it reflects the cumulative probability of all associations with 

that degree of CRE significance or greater. DegCre therefore corrects araw by the probability that 

an association involves a significant DEG to generate acorr (Figure 1E). DegCre applies this 

correction to associations with adjusted DEG p-values passing a selected a (Methods). The 

choice of alpha can be guided by an included optimization function. A given CRE will generally 

have associations to multiple significant DEGs. All else being equal, we assume that the 

association most likely to be real is to the nearest DEG. DegCre thus considers all significant 

DEG associations for a given CRE and reduces a given acorr weighted by the acorr values of 
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associations containing that CRE that have shorter association distances (Methods), producing 

the final reported association probability (Figure 1F). 

For FDR estimation of the association probability, DegCre considers the raw association 

probability of each bin without regard to CRE p-value, abin (Figure 1D). The abin value depends 

on distance-based binning only (i.e., it reflects the scores derived from all possible CREs within 

a given distance range) and we consider it to be a suitable null hypothesis for the effect of CRE 

p-values on association probabilities. Accordingly, DegCre calculates an association probability 

FDR based on the binomial cumulative distribution function using abin as the trial success 

probability (Figure 1G; Methods). 

DegCre is implemented as an open-source R package (Methods). It operates within the 

convenience of GenomicRanges (Lawrence et al. 2013) framework. The generated outputs 

enable manipulation with existing operations. It includes functions for secondary calculations, 

visualization of results, and conversion of the results into other formats. 

 

Data sets for the demonstration of DegCre analysis 

DegCre operates on measurements of gene expression and signal at CREs in response to a 

perturbation to generate association probabilities between genes and CREs. We therefore 

sought to test DegCre using datasets from perturbation experiments such as those done using 

drug treatment and differentiation protocols.  

First, we analyzed data published by McDowell et al. derived from the treatment of A549 cells 

by dexamethasone (McDowell et al. 2018). Dexamethasone is a specific and potent agonist of 

the glucocorticoid receptor (NR3C1), a well-studied nuclear receptor (Vettorazzi et al. 2022) that 

is known to change expression of many target genes upon stimulation. This data set includes 

an extensive time course as well as measurements of RNA, DNase hypersensitivity, chromatin 

immunoprecipitation sequencing (ChIP-seq) of mono- and trimethylation of histone H3 at lysine 

4 (H3K4me1 and H3K4me3) and acetylation of histone H3 at lysine 27 (H3K27ac), and ChIP-

seq of several transcription factors and co-activators including NR3C1 itself. 

We used a second data set generated in our lab involving the activation of a different nuclear 

receptor (Savic et al. 2015). Specifically, Savic et al treated HT-29 cells with rosiglitazone, an 
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antidiabetic drug acting through activation of peroxisome proliferator-activated receptor gamma 

(PPARG). PPARG is a nuclear receptor that upon activation forms heterodimers with retinoid X 

receptors (RXRs) and translocates to the nucleus, modulating gene expression changes (Han 

et al. 2017). This study includes RNA-seq, H3K27ac ChIP-seq, and RNA Polymerase II (RNA 

Pol 2) ChIP-seq at 24 and 48 hours after treatment. 

A third dataset we used involved another perturbation with direct effects on gene regulation: the 

stimulation of immune cells with chemokines. Interferon gamma (IFNg) is a powerful chemokine 

resulting in the phosphorylation and consequent activation of the transcription factor STAT1 

(Schneider et al. 2014). Reed et al stimulated THP-1 monocytes with IFNg and 

lipopolysaccharide and collected samples at eight timepoints (Reed et al. 2022). Measurements 

included in this data set are RNA-seq, H3K27ac ChIP-seq, and ATAC-seq data. This study also 

generated genome-wide HiC measurements of chromatin conformation. Because evidence of 

spatial proximity between promoters and distal CREs provides an experimental inference of 

CRE-DEG pairs, these data allow for comparisons of DegCre associations to an orthogonal 

assay. 

These data sets are publicly available and complete accession details are provided in 

Supplemental File 1. For ChIP-seq, ATAC-seq, and DNAse hypersensitivity data we aligned raw 

reads when necessary or used author-supplied BAM files. We then applied the R package csaw 

(Lun and Smyth 2016) to generate regions of differential signal as GRanges objects (Methods). 

For RNA-seq, we used author-provided counts and determined differential expression between 

treatments and timepoints using DESeq2 (Methods). We associated the differential expression 

results with gene TSSs as defined in the EPDnew database (Meylan et al. 2020; Dreos et al. 

2015) and created GRanges objects (Methods). 

 

Characteristics of DegCre associations 

We applied DegCre analysis to each of the three datasets described above, which take at 

most a few minutes on a regular desktop computer using default settings, including measuring 

CRE-to-promoter pairings up to 1 Mb of distance (Methods). We provide the outputs as text 

files in Supplemental File 2. The total number of associations passing an FDR threshold (by 
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default set to 0.05) varies across each dataset from hundreds to tens of thousands 

(Supplemental Figure 1A). The total number of significant DEGs largely determines the 

number of significant DegCre associations (Supplemental Table 1, Methods); that is, 

experiments with more DEGs yield more DEG-CRE pairs (Supplemental Figure 1B), because 

only associations involving a significant DEG can potentially pass reasonable FDR thresholds 

(Methods). The total number of CREs with nominally significant differential signal p-values has 

less effect on the total number of significant DegCre associations (Supplemental Figure 1C).  

 

Figure 2. Characteristics of DegCre associations. A-C. The black line in the upper plot half displays the 
number of DegCre associations per bin that pass the indicated FDR. The bottom half displays the per bin DegCre 
association probability. The common x-axis shows for each bin the association distance from TSS to CRE. Each 
bin comprises a range of distances with the upper bound of that range plotted here. The black line indicates the 
median value for each bin and the blue region indicates the interquartile range (IQR). The red line shows the per 
bin probability considering only the bin distance, used as the null in the DegCre FDR calculation (Methods). 
DegCre associations are shown from: A.) DNase hypersensitivity data at eight hours from McDowell et al., B.) 
ATAC-seq data at two hours from Reed et al., C.) RNA Pol2 ChIP-seq data at 24 hours from Savic et al. D-H. 
Bars show the counts or fraction of differential regions with a significant (FDR less than 0.05) DegCRE association 
overlap ENCODE cCRE annotations. Plots are based on: D.) DNase hypersensitivity data from McDowell et al., 
E.) ATAC-seq data from Reed et al., F.) RNA Pol2 ChIP-seq data hours from Savic et al. (same data as A-C). G. 
Fractions are shown for H3K27ac ChIP-seq data from McDowell et al. at eight hours, Reed et al. at 2 hours, and 
Savic et al. at 24 hours. H. Fractions are from McDowell et al. at eight hours for the indicated data types. 
Abbreviations for ENCODE cCREs are: PLS, promoter like sequence; pELS, proximal enhancer-like sequence; 
dELS, distal enhancer like sequence. 

The number of significant associations generally decreases with increasing genomic distance 

between DEG TSSs and CREs (Figure 2A-C, Supplemental Figures 2-6). While this likely 
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reflects real biology, this distance dependence also reflects the fact that DegCre weights 

equivalently significant associations for a given single CRE in favor of the ones spanning 

shorter genomic distance (Methods). Thus, longer associations are likely to pass FDR 

correction only if there are no other shorter associations of equal or greater strength involving 

that CRE. Associations from some data types from McDowell et al. display a slower decrease 

versus distance compared to others (Supplemental Figure 3). For example, associations from 

ChIP-seq from H3K4me3 show a much steeper decrease compared to those from H3K4me1 

or EP300. This observation is consistent with the known binding profiles of these factors, as 

H3K4me3 is primarily associated with promoters and promoter-proximal CREs, while 

H3K4me1 and EP300 are primarily associated with enhancers and other distal CREs (The 

ENCODE Project Consortium et al. 2020; Visel et al. 2009). 

The values of the association probabilities passing the FDR threshold vary from just above the 

null probability for a given bin (red lines in bottom halves of Figures 2A-C, Supplemental Figures 

2-6) to higher values closer to 100% (interquartile ranges shown in bottom halves of Figures 2A-

C, Supplemental Figures 2-6). These ranges illustrate a key characteristic of DegCre 

associations. The DegCre FDR estimates whether the association probability exceeds the null, 

bin-wide probability due to the input of the differential CRE signal. However, those associations 

that pass a chosen FDR threshold can still be further stratified by the association probability 

itself. For example, we infer, to a reasonable approximation, that a DegCre association with a 

probability of 0.9 will be three times more likely to confirm in an orthogonal assay to one with 

0.3, with both passing a chosen FDR threshold. 

The DegCre algorithm uses differential CRE signal in a non-parametric, rank-based analysis 

without thresholding (Methods). DegCre is agnostic to the methods of assigning differential CRE 

significance p-values to genomic regions. We used csaw with defined windows (20 bp for TFs, 

200 bp for histone marks and open chromatin signals) spanning hg38 to assess the level of 

differential signal between conditions for each type of CRE measurement. We then calculated 

csaw p-values for the windows passing signal thresholds prior to DegCre analysis (Methods). 

We did not use peak calling for any CRE dataset. A possible concern with this processing 

strategy is that it could lead to DegCre associations involving CREs of dubious regulatory 

potential. Accordingly, for all datasets we intersected ENCODE-defined cCRE annotations (The 

ENCODE Project Consortium et al. 2020) with all CREs predicted by DegCre to target a DEG 
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with an FDR less than 0.05 (Figure 2A-H, Supplemental Figure 7). More than 80% of these 

DegCre associations overlapped an ENCODE cCRE annotation, with many data sets having 

higher overlap rates (Supplemental Figure 7). Most CREs annotate as proximal or distal 

enhancer-like sequences (pELS and dELS), consistent with these being the most prevalent 

annotations in the ENCODE cCRE set. We looked at H3K27ac ChIP-seq across all three data 

sets because it was the only CRE signal that was present in all three. We found that CREs in 

significant DegCre associations from Reed et al. and Savic et al. overlapped promoter-like 

signature (PLS) more frequently than did those from McDowell et al. (Figure 2H). Given that the 

perturbation in McDowell et al was targeted to NR3C1, this observation is expected given 

NR3C1’s known bias towards distal CREs in response to activation (Thormann et al. 2018; 

Vettorazzi et al. 2022).  

We also note that the total number of significant DegCre associations either consistently 

increases or increases and plateaus with time after perturbation for all three datasets. However, 

the relative fraction of ENCODE annotations tended to remain stable over time (Figure 2D-H, 

Supplemental Figures 1 and 7). This time dependence may arise from the accumulation of 

secondary gene regulation that occurs post-perturbation. Regardless, the time elapsed from the 

perturbation does not appear to affect the types of ENCODE cCREs involved in DegCre 

associations. 

We next examined the frequency of ENCODE cCRE annotations for the nine CRE-associated 

data types in the McDowell et al. study (Figure 2H). For H3K4me3 ChIP-seq, we observed an 

enrichment for PLS annotations, consistent with the known prevalence of this mark at active 

promoters, and we also saw promoter enrichment for JUN and BCL3, again as expected. In 

contrast, we saw enhancer enrichment for NR3C1 and EP300 ChIP-seq CREs, as expected for 

the CREs associated with these marks. Thus, DegCre’s inferences are reflective of the nature 

of the input data, yielding differing associations from differing input data types. 

 

Comparison of DegCre associations to HiC loops 

We sought to compare DegCre associations to HiC-derived loop calls from Reed et al., who 

generated HiC loop calls using Sip (Rowley et al. 2020) at an FDR < 0.05 (Reed et al. 2022). 

We used liftover (Lawrence et al. 2009) to convert these loops to hg38 coordinates (Methods).  
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Figure 3. Comparison of DegCre associations to HiC loops. A. For ATAC-seq data from Reed et al at the 
120-minute timepoint, DegCre associations with an FDR less than 0.05 and an association distance greater than 
20 kb are shown in black. HiC loops with an FDR less than 0.05 and a loop distance less than 1 Mb are shown 
in light red. Gene names in black indicate significant differential expression. Black arrows indicate distal CREs 
that both DegCre and HiC link to the VCAM1 TSS. The signal track (yellow) shows the -log10 of the differential 
ATAC signal multiplied by the sign of the log fold-change. B. Same plotting conventions as A but the black arrow 
indicates a group of CREs for for which DegCre and HiC assign to the TSSs of different, significant DEGs. C. 
For ATAC-seq data, the blue bars indicate the number of HiC loops that have one anchor in a CRE with a 
significant (FDR less than 0.05) DegCre association that link to the TSS of the same DEG as the DegCre 
association. Red bars indicate the number of HiC loops that have one anchor in a CRE with a significant DegCre 
association that link to the TSS of the different DEG as the DegCre association. D. Same plotting conventions 
as C but for H3K27Ac ChIP-seq data. 

We excluded 18 hg38 loops with loop sizes (defined as genomic distance from anchor-to-anchor 

midpoints) smaller than 30 kb after liftover because all loop sizes were 30 kb or greater prior to 

liftover. The remaining loops spanned up to 28,617,181 bp with a median size of 390,000 bp 

(Supplemental Figure 8A). Significant (FDR <=0.05) DegCre association distances (from CRE 

to gene TSS) derived from both ATAC-seq and H3K27Ac ChIP-seq data from Reed et al. are 

mostly shorter than HiC loops, especially at time points past 30 minutes (Supplemental Figure 

8B-D), occurring at distances down to zero (i.e., at the TSS itself). Also, we set the maximum 

DegCre association distance to 1 Mb due to the increased computational burden at higher 

maximum distances. Accordingly, to evaluate the overlap of these two measures of distal CRE 
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associations to DEGs, we considered only DegCre associations and HiC loops in the distance 

range of 30 kb to 1 Mb. 

By design, significant DegCre associations can occur only between significantly expressed 

DEGs and CREs, as marked by the input assay (here ATAC-seq and H3K27Ac ChIP-seq, see 

Methods); that is, if a gene is not differentially expressed between conditions, or if a CRE does 

not show differential activity, there will be no DegCre association prediction. To compare DegCre 

associations to HiC loops, we thus considered only HiC loops with one anchor overlapping a 

CRE with a significant DegCre association. For both ATAC-seq and H3K27Ac ChIP-seq, 

approximately one-third of the HiC loops met this criterion (Supplemental Figure 9, compare A 

and B). For HiC loops that do overlap a DegCre association CRE, we placed each HiC loop into 

one of four categories: (1) it overlaps the TSS of the same gene that the DegCre association 

does (Figure 3A), (2) it overlaps the TSS of a different gene than the DegCre association and 

that different gene is also significantly differentially expressed (Figure 3B), (3) it overlaps the 

TSS of a different gene than the DegCre association and that different gene is not significantly 

differentially expressed, (4) it does not overlap the TSS of a gene. We found that most HiC loops 

fall into the last two categories (Supplemental Figure 9, compare C and D). These loops are 

difficult to interpret in comparison to DegCre associations. They associate CREs to regions that 

DegCre does not consider, including sites that are not TSSs (such as distal CREs) or to TSSs 

of non-differentially expressed genes. Either category cannot be compared to DegCre 

associations. Accordingly, we considered only the first two categories further.  

Comparing the partitioning of the HiC loops into these first two categories across all timepoints 

and both CRE-defining data types, ATAC-seq and H3K27Ac ChIP-seq, we found that more 

DegCre associations and HiC loops associate with the same significant DEG than with different 

significant DEGs (Figure 3C and D). This effect is greater at earlier time points, likely indicating 

the higher ability of DegCre to properly assign distal CREs to DEGs when considering data 

temporally closer to the driving perturbation. 

 

DegCre performance on CRISPR validated associations 

A powerful technique for evaluating genomic regions’ potential to regulate genes is through 

editing or repressing the activity of these regions with CRISPR-Cas9 sequence alteration or 
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CRISPR interference (CRISPRi) (Gasperini et al. 2019; Nuñez et al. 2021). To that end, we 

obtained a compilation of CRISPR and CRISPRi perturbations of genomic loci and 

corresponding gene expression measurements from Nasser et al. (Nasser et al. 2021). After 

liftover to hg38 coordinates, there were 5,685 gene to distal CRE (greater than 500 bp) 

associations, involving 1,913 unique regions. 

Again, DegCre aims to find associations between genomic regions and DEGs with significant 

changes in response to a perturbation. Accordingly, we filtered the DegCre associations from 

McDowell et al., Reed et al., and Savic et al. to those containing a significant DEG. However, 

much of the Nasser et al. data set includes associations that do not validate by CRISPR. While 

we expect that high probability, low FDR DegCre associations will be CRISPR-validated, we also 

expect low probability, high FDR DegCre associations to be enriched in the associations lacking 

CRISPR confirmation. Thus, for these comparisons we retained all DegCre predictions, at any 

FDR level. 

Nasser et al. classified each CRE-to-gene association as “Regulated” or “not” based upon the 

CRISPR data. We used this binary value in our subsequent analyses. We overlapped the filtered 

DegCre associations to the CRISPR association data, finding various degrees of overlap for 

each data set and type (Supplemental File 3). Associations derived from the McDowell et al. 

data set had generally low levels of overlap with the CRISPR data, making a rigorous 

comparison impossible. The genes regulated by dexamethasone in this experiment appear to 

differ greatly from those measured in the Nasser et al. data. 

DegCre associations from Reed et al. and Savic et al. had higher overlap rates with the CRISPR 

data than those from McDowell et al. (Supplemental File 3). We examined the distribution of 

DegCre association probabilities between those associations designated as “Regulated” versus 

“not” and found extremely significant differences in several of the distributions by Wilcoxon rank-

sum test (p-values from 1.3 x 10-6 to < 2.2 x 10-16, Figure 4, Supplemental File 3). These results 

demonstrate agreement between DegCre and CRISPR-based validation. Within the subsets of 

DegCre associations that overlap the CRISPR validated regions, those from Reed et al. had 

much broader dynamic range of association probabilities compared to Savic et al. associations 

(Supplemental Figure 10). 
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Figure 4. DegCre and ABC association values compared to CRISPR validated enhancer-gene pairs. The 
blue data points represent DegCre association probabilities based on data at 24 hours from Reed et al. The red 
circles are ABC scores for the same associations. The data are grouped by whether the association showed 
regulation of the target gene (“Yes”) or not (“No”) upon CRISPR targeting as given by Nasser et al. The black 
lines represent the median value. The jitter width of the points is proportional to the local density. The DegCre 
values are based on A). ATAC-seq data at 1,539 regions and B). H3K27ac ChIP-seq data at 875 regions. The 
ABC distributions appear very similar between A and B and do share many points but are distinct. 

The Nasser et al. data also includes ABC scores for each experimentally tested association. 

These scores are based on HiC and regulatory signal data. We compared the ABC scores for 

the subset of CRISPR associations overlapping each DegCre set (Figure 4, Supplemental File 

3). The distributions of ABC scores between “Regulated” or “not” associations in these subsets 

are significantly different in all cases (Figure 4, Supplemental File 3). Many of the ABC Wilcoxon 

p-values are more significant than the corresponding DegCre p-values. However, many of the 

Reed et al. DegCre associations compare well to ABC, likely due to the broader dynamic range 

of DegCre association probabilities present in this set for these regions (Figure 4, Supplemental 

Figure 10, Supplemental File 3). 

 

Prioritization of perturbation target genes with DegCre 

A key goal of perturbation studies is often to identify the direct target genes among a set of 

significant DEGs. For perturbations that involve the activation of transcription factors, such as 
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the introduction of ligands to nuclear receptors, “direct targets” means those genes with 

expression changes that are mechanistically attributable to a change in the genomic occupancy 

of the nuclear receptor at a CRE that regulates that gene. Identification of direct target genes is 

desirable because it can lead to insight into the perturbation’s mechanism of action, and it may 

increase the extensibility of the observed experimental results to other systems. 

 

Figure 5. Identification of dexamethasone target genes with DegCre.  A. The boxplot shows the distribution 
of expected DegCre associations per significant DEG (FDR less than or equal to 0.05) based on NRC31 ChIP-
seq data from McDowell et al. The black line shows the median expected DegCre associations per DEG. The 
cyan points show values for ERRFI1. B. The volcano plot shows the -log10 of the adjusted (Bonferroni) differential 
expression p-value versus the log2 fold-change. Blue dots indicate genes whose expected number of associations 
is in the top 100 of all significant DEGs. C. The browser view shows DegCre associations (top panel) and NR3C1 
ChIP-seq signal at four hours for an established glucocorticoid pathway target gene, ERRFI1. The NR3C1 signal 
is plotted as –log10 of the differential p-value multiplied by the sign of the log fold change. Regions of NR3C1 
signal have been merged in some cases for better visibility at browser scale. 

As DegCre outputs probabilistic scores, it can calculate the expected number of truly associated 

CREs for each DEG. For a given gene, this is simply the sum of its association probabilities 

passing a specified FDR cutoff, resulting in an estimation of the number of associated differential 

CREs that would pass definitive validation (e.g., for a DEG with 10 FDR-passing associations 

averaging 20% association probability, it would be expected that there are two true CRE-DEG 

pairs). Thus, genes with many expected associations are more likely to be confidently linked to 

a driving regulatory signal. We calculated the expected associations per significant DEG for all 

the tested data sets (Figure 5A, Supplemental Figure 11). The distributions of expected 

associations per DEG generally showed a slight increase with time followed by a plateau or 

decrease. 

We further considered the DegCre results derived from NR3C1 (glucocorticoid receptor) ChIP-

seq in McDowell et al. In these experiments, cells were treated with dexamethasone, a potent 

agonist of NR3C1. We looked at the subset of DEGs at four hours post treatment that had the 
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top 100 highest expected associations with NR3C1 CREs (Figure 5B). This subset differs from 

what one would obtain by ranking DEGs by differential expression significance or fold-change 

magnitude alone, indicating that the DegCre-derived expected CRE associations per DEG adds 

additional, complementary information. ERRFI1, a well-established and ubiquitous target of 

NR3C1 (Juszczak and Stankiewicz 2018), exhibits significant but comparatively moderate fold-

change (3.4-fold) in expression after NR3C1 stimulation (Figure 5B). However, ERRFI1 ranks 

highly across all time points by expected associations per DEG (Figure 5A) due to the numerous 

regions of concordant differential NR3C1 occupancy associated to its expression by DegCre 

(Figure 5C). 

 

Discussion 

DegCre represents a valuable advancement towards the fundamental goal of associating 

regulatory regions with gene expression. DegCre uses differential effects between conditions to 

identify regulatory regions specific to the causative perturbation. The probabilistic associations 

produced by DegCre span a wide range of interaction distances and enable the implementation 

of new analyses. 

DegCre makes no parametric assumptions about the distribution of the input CRE and DEG p-

values and thus has flexibility to accommodate a wide variety of data types. We noticed that the 

CRE p-values we produced from csaw analysis deviated somewhat from a uniform distribution, 

with high degree of “one” inflation (i.e., regions that show no differential signal). Because DegCre 

essentially uses the rank of these values, such unexpected distributions are not problematic. 

DegCre does not threshold by association distance or CRE p-value, avoiding issues that may 

arise from such practice. 

We evaluated the validity of the DegCre associations by comparison with two orthogonal data 

types. First, we compared DegCre associations to HiC loops derived from the same cells (Figure 

3). We initially conceived DegCre to primarily perform well for CREs proximal to DEG TSSs (e.g. 

within tens of kb). However, our comparison to the HiC loop calls indicated that DegCre can 

produce high-quality associations at distances at least up to 1Mb, particularly at early time points 

which are likely enriched for primary, direct CRE-DEG effects (Figure 3C and D). However, in 

cases where a CRE is near the TSSs of two significant DEGs, DegCre will generally assign it to 
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the most proximal TSS, at times in conflict with HiC loops (Figure 3B). However, because HiC 

loops spanning short distances are rarer (Supplemental Figure 8A), the shorter DegCre 

association in Figure 3B may still be valid even if the failure to call the longer HiC-inferred 

association is likely a false negative (i.e., false negative loop calls, especially at shorter 

distances, are a possible explanation for such discrepancies). As such, we believe DegCre 

provides valuable, complementary information to HiC and related assays. 

We also compared DegCre to CRISPR validated associations from Nasser et al. The authors 

compiled and generated this resource to benchmark various enhancer-to-promoter association 

methods, including their own, ABC (Nasser et al. 2021). As such, they were not specifically 

selected to be relevant to the perturbations and cell types used in our demonstration of DegCre. 

Very few of these CRISPR-tested associations overlapped with DegCre associations derived 

from the McDowell et al. data set (Supplemental File 3). DegCre associations from Savic et al. 

had a greater overlap but yielded moderate association probabilities for the overlapping regions 

(Supplemental Figure 10) but still showed clear separation of DegCre scores between validated 

and not validated CREs. DegCre generated many high-probability associations for other 

associations in both of these datasets, suggesting that the perturbations in these experiments 

altered gene expression primarily through CREs not tested by CRISPR in the Nasser et al. data 

set. However, the DegCre associations generated from Reed et al. had many overlaps with the 

CRISPR tested regions and yielded a large dynamic range of DegCre association probabilities, 

showing excellent agreement with CRISPR results (Figure 4, Supplemental Figure 10). 

Furthermore, the Reed et al. DegCre associations show comparable agreement with CRISPR 

validation as ABC scores (Figure 4, Supplemental Figure 10). The creators of ABC have 

demonstrated its superior performance to most other approaches for connecting enhancers to 

promoters in static (i.e., non-perturbation) experimental contexts (Nasser et al. 2021). The 

similar performance of DegCre to ABC in areas of predictive overlap thus strengthens the validity 

of DegCre associations. 

Methods that rely on HiC or related techniques, such as ABC, lack the ability to identify shorter 

TSS to CRE associations due to the inherent difficulty in distinguishing such loops from 

background. DegCre operates well in this distance range. Additionally, implementation of HiC 

remains resource intensive, prohibiting its use in a variety of cell types and conditions. The 

resolution of HiC loop calls (size of the anchor regions) also depends on the sequencing depth 
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(Rowley et al. 2020), such that high-resolution loop calls require even further resource 

expenditure. DegCre accepts data from less resource-intensive techniques, such as RNA-seq, 

ChIP-seq, and ATAC-seq, and returns at a resolution derived from those assays, generally at 

100s of bp. We implemented csaw on relatively small bins to allow for subsequent merging to 

arrive at these feature sizes. Methods such as ABC seek to catalog all potential CRE to gene 

interactions in a single cell type and set of conditions, creating a valuable resource. We designed 

DegCre to place probabilities on subsets of those associations that depend on a given 

perturbation, viewing the system in a differential context. 

We employ a penalty to CREs with multiple associations that favors the most proximal 

(Methods). This choice is supported by observations by Nasser et al. showing that a null model 

in which CREs are simply assigned to the closest TSS performs reasonably well (Nasser et al. 

2021). Also, we believe this high performance is likely increased at the relatively short CRE to 

TSS distances observed for many high confidence DegCre associations (Figure 2A-C). 

However, there are clearly examples of a single CRE regulating several distal genes, such as 

the b-globin LCR (Grosveld et al. 1987). DegCre will likely underpredict associations for such 

regions, a limitation of this approach. 

With default settings, DegCre requires concordance between CRE and DEG effect directions 

(both up or both down), although this requirement can be removed. For repressors, a more 

suitable requirement might be requiring opposite directions. Further, for CRE signals that are 

thought to lead to both directions within a given experiment (i.e., measurement of a TF that 

represses some targets and activates others), this assumption may best be ignored. We have 

not analyzed datasets under these alternative scenarios. 

In its current implementation, DegCre accepts only one type of CRE signal as an input; 

consideration of multiple CRE inputs requires multiple independent runs of DegCre. We 

ultimately envision an implementation which accepts multiple CRE signals simultaneously and 

produces a composite association probability. Different CRE inputs are likely to have varying 

degrees of correlation, making their integration more challenging. Also, different CRE inputs will 

likely occur at non-overlapping genomic regions in some cases, further complicating the 

amalgamation of the signal. We are currently working on ways to overcome these challenges 

and create a multivariate version of DegCre.  
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To facilitate a clear presentation, we chose to use p-values derived from differential expression 

or differential CRE signal analyses using simple models. For example, we compared time zero 

separately to each successive time point. However, both csaw and DESeq2, and other similar 

methods, can use more complex regression models involving continuous variables and several 

covariates. We anticipate the application of DegCre to experimental designs warranting more 

complex regression analyses, such as drug treatment of a panel of patient-derived cell lines in 

which numerous covariates would require consideration. 

We have presented DegCre, an algorithm for the probabilistic association of CREs with DEGs 

in response to perturbations. A freely available R package, DegCre produces convenient data 

structures and runs efficiently on large data inputs. We demonstrated its application to three 

distinct data sets, each involving different perturbations, cell contexts, and regulatory signal 

measurements. From these, DegCre produced associations involving established regulatory 

regions that confirm by two orthogonal methods, yielding associations that identify direct target 

genes of the perturbations. DegCre complements existing approaches by providing probabilistic 

scores for CRE-to-gene associations at a wide range of biologically relevant distances, using 

less-resource intensive and thus more broadly obtainable input data. We believe that DegCre is 

an important tool for the systematic and quantitative characterization of differential gene 

regulation. 

 

Methods 

DegCre package and algorithm 

DegCre is an R package that is freely available on GitHub 

(https://github.com/brianSroberts/DegCre).  (We are preparing to submit to Bioconductor). 

Documentation of the included functions is provided in the package manual. It operates within 

the GenomicRanges (Lawrence et al. 2013) framework, accepting GRanges objects as inputs 

and returning a Hits object with results as metadata. It includes functions for secondary 

calculations, visualization of results, and conversion to other formats. We ran DegCre using R 

version 4.2.1. 
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DegCre uses functionality within the GenomicRanges package to create overlaps and the 

associated distances between supplied TSS and CRE GRanges inputs. Next, DegCre bins the 

associations by TSS to CRE distance. The bin containing the longest associations is larger than 

the other bins to accommodate the remainder that occurs when the total number of associations 

is not an integer multiple of the number of bins. DegCre next attempts to balance high resolution 

(many bins with fewer associations) versus the minimization of the per bin CRE p-value 

distribution deviation from the global (un-binned) distribution. For an array of potential bin sizes 

(number of associations per bin), DegCre calculates the median Kolmogorov-Smirnov (KS) test 

statistic across all binned CRE p-value distributions versus the global distribution. DegCre picks 

the smallest bin size (containing the fewest associations per bin) that is less than a user specified 

fraction (defaults to 0.2) of the range from the lowest to highest median KS test statistic 

(Supplemental Figure 12). We chose this fraction threshold because it often occurred near an 

inflection point in the curve (Supplemental Figure 12). 

To calculate the raw association probability for a given association between DEG i and CRE j, 

araw,i,j, DegCre considers Ai,j, the set of associations within the same distance bin that have CRE 

p-values as or more significant than pCRE,j (Figure 1A,D). For this set, using Bonferroni corrected 

p-values, the expected number of true DEGs, EDEG, is equal to: 

𝐸!"# = 𝑛(1 − 𝛼) 

where a equals the chosen significance threshold of the adjusted DEG p-values, and n equals 

the number passing the threshold (Finner and Roters 2002). To generate araw,i,j, one divides EDEG 

by the size of set Ai,j: 

𝑎$%&,(,) =	
𝐸!"#
+𝐴(,)+

 

This probability is the average probability of association with a true DEG across the Ai,j. For the 

considered association itself, we obtain a corrected probability acorr,ij, by setting the probability at 

zero if the adjusted DEG p-value is greater than a, since it cannot be an association between a 

CRE and a “true DEG” (Figure 1E). If the adjusted DEG p-value is less than or equal to a, no 

correction is made. 
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A given CRE will often have associations to multiple genes (Figure 1F). We favor the more 

proximal associations by down-weighting more distal associations in proportion to the sum of 

the more proximal. The final association probability a, is derived by: 

𝑎(,) =	𝑎*+$$,(,)
𝑎*+$$,(,)

𝑎*+$$,(,) + ∑ 𝑎*+$$,,,), , 0𝑥	+	𝐷,,) 	< 𝐷(,)4
 

where D is the maximum association distance of the bin to which a given association belongs. 

Associations from the same CRE to different DEGs in the same distance bin will not penalize 

each other. Associations in the first (shortest) distance bin will never be altered by this process. 

The process moves in order of increasing distance bins, such that association probabilities are 

down-weighted by more proximal association probabilities that have been down-weighted 

already. 

DegCre calculates a type of false discovery rate (FDR) for association probabilities. As a null 

hypothesis, abin, we consider the true DEG association probability of a given distance bin without 

regard to the ordering of association CRE p-values (Figure 1D). If all associations in the bin had 

the same CRE p-value their association probabilities would be abin. As described above, the 

process of calculating ai,j involves considering the distance bin subset Ai,j and calculating EDEG, 

the expected number of true DEGs. This process can be modeled as a set of Bernoulli trials in 

which the number of trials is the size of Ai,j, or |Ai,j |, the number of successes is EDEG, and the 

probability of success is abin. The FDR of the association in this case is the probability that a 

given association probability exceeds the value derived its association distance alone, and is 

given by: 

𝐹𝐷𝑅(,) = 1 − 𝑐𝑑𝑓-(.+/(%0(:𝐴(,);, 𝐸!"# , 𝑎-(.) 

 

Data processing and visualizations 

We downloaded the presented data sets from public repositories. All accession numbers are 

provided in Supplemental File 1. For ChIP-seq and ATAC-seq data from Reed et al. and Savic 

et al. we aligned the FASTQ files to hg38 using bowtie2 version 2.3.5.1 (Langmead and Salzberg 

2012) and processed with samtools version 1.16.1 (Danecek et al. 2021) to bam files. We 

obtained bam files directly for McDowell et al. data. We derived log-fold changes and p-values 
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associated with GRanges from the bam files using the R package csaw version 1.32.0 (Lun and 

Smyth 2016) in R version 4.2.1. For csaw analysis of TF ChIP-seq data, we used 20 bp windows 

and kept the top 0.5% with highest signal for differential analysis. For open chromatin assays, 

histone ChIP-seq, and RNA Pol2 ChIP-seq, we used 200 bp windows and kept the top 2% with 

highest signal. We selected these values by finding those that produced the best clustering of 

samples by treatment and time point within experiment sets. Within csaw, we made comparisons 

to the zero time or control conditions for each time point. We obtained gene count tables for all 

RNA-seq data. We calculated log-fold changes and p-values for each time point relative to the 

zero time point or control using the R package DESeq2 version 1.38.3 (Love et al. 2014). We 

associated these values with all TSSs for each gene using annotations from EPDNew (Dreos et 

al. 2015; Meylan et al. 2020), yielding GRanges. We lifted over HiC loop calls from Reed et al. 

to hg38 using the R package rtracklayer version 1.58.0 (Lawrence et al. 2009). We obtained 

CRISPR experimental data and associated ABC calls from Supplemental Table 5 from Nasser 

et al. (Nasser et al. 2021). We lifted over this data to hg38 using rtracklayer version 1.58.0. We 

made all data visualizations using R version 4.2.1, in some cases using DegCre built-in 

functions. We made the browser plots using functions that use the R package plotgardener 

(Kramer et al. 2022). 
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