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Abstract

Differential gene expression in response to perturbations is mediated at least in part by changes
in binding of transcription factors (TFs) and other proteins at specific genomic regions.
Association of these cis-regulatory elements (CREs) with their target genes is a challenging task
that is essential to address many biological and mechanistic questions. Many current
approaches rely on chromatin conformation capture techniques that identify spatial proximity
between genomic sites to establish CRE-to-gene associations. These methods can be effective
but have limitations, including resolution, minimal detectable interaction distance, and cost. As
an alternative, we have developed DegCre, a non-parametric method that evaluates correlations
between measurements of perturbation-induced differential gene expression and differential
regulatory signal at CREs to score possible CRE-to-gene associations. It has several unique
features, including the ability to: use any type of CRE activity measurement; yield probabilistic
scores for CRE-to-gene pairs; and assess CRE-to-gene pairings across a wide range of
sequence distances. We apply DegCre to three data sets, each employing different
perturbations and containing a variety of regulatory signal measurements, including chromatin
openness, histone modifications, and TF occupancy. To test their efficacy, we compare DegCre
associations to HiC loop calls and to CRISPR validated interactions, with both yielding good
agreement. We demonstrate the identification of perturbation direct target genes with DegCre
confirm the results with previous reports. DegCre is a novel approach to the association of CREs
to genes from a perturbation-differential perspective, with strengths that are complementary to
existing approaches and allow for new insights into gene regulation.

Introduction

The regulation of gene expression occurs through the interaction of transcription factors (TFs)
and other proteins with genomic regions, or cis-regulatory elements (CREs) (The ENCODE
Project Consortium et al. 2020). Because CREs can act at considerable distances away from
any given target gene, in some cases skipping over intervening genes, matching CREs to their
target genes is challenging (Rao et al. 2014; Song et al. 2019; Dixon et al. 2012; Javierre et al.
2016; Schoenfelder and Fraser 2019). Such knowledge, however, is of high value for both basic

and applied biology. Examples include better interpretation of how genetic variation in a CRE
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leads to molecular and phenotypic effect (Ulirsch et al. 2016; van Arensbergen et al. 2019; Song
et al. 2019; Nasser et al. 2021) and better prediction of the effects of perturbations, such as drug
treatment, on gene expression levels in a cell or tissue (Thormann et al. 2018; Carleton et al.
2020; Cholico et al. 2022).

Promoters are CREs very near to the transcription start site (TSS) of a gene and are readily
associated with that gene’s expression by the basic principles of transcription initiation (Haberle
and Stark 2018). As sequence distance from the TSS increases, the association of CREs, such
as enhancers, with a given gene’s regulation becomes increasingly uncertain. Analysts often
place a threshold on TSS to CRE distances under which there is putatively high confidence for
the association. These thresholds range from ~1 kilobase (kb) to 100s of kb, with little justification
provided for any given choice (Kamal et al. 2023; You et al. 2021; McDaniel et al. 2016; Wang
et al. 2015). It is unlikely that any single TSS to gene distance threshold is appropriate in all
contexts, and categorical thresholds generally result in limitations that impact all downstream
analyses.

The maturation of chromatin conformation capture technology such as HiC has enabled the
association of genomically distal CREs to genes through their spatial proximity in nuclei to target-
gene promoters (Rao et al. 2014; Javierre et al. 2016; Kloetgen et al. 2020; Xu et al. 2022; Meng
et al. 2023). The high resource usage is one of the key limitations of these approaches.
Moreover, the majority of HiC associations, or “loops”, span distances greater than ~50 kb,
limiting their utility to identify CRE-to-gene associations spanning shorter distances.
Undoubtedly, CREs closer to TSSs harbor considerable regulatory activity; yet it is also unlikely
that all CREs in this distance range are in fact relevant to the regulation of that gene, especially
in response to a targeted perturbation.

Previous work by others has demonstrated approaches to CRE-to-gene association that do not
require chromatin conformation data. Many of these approaches are based on the observation
that gene transcription levels and measurements of CRE regulatory activity are correlated (Ernst
et al. 2011; Sheffield et al. 2013; He et al. 2014; Cao et al. 2017; Li et al. 2019). Generally, these
methods generate models of CRE activity and gene expression within a given cell type across
the genome, yielding predictions of associations. Validation of these methods by comparison to
chromatin capture data yields good agreement in most cases. One possible limitation of these
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methods is that many require supervised training which could lead to underperformance when
applied to untrained contexts. Also, these methods are tailored to specific data types, lacking
flexibility in inputs. Nevertheless, this work has established the ability of correlational analysis to

identify CRE-to-gene associations.

Studies that enable the association of CREs to genes, whether through HiC approaches,
correlational methods, or other techniques, often focus on static conditions, generating data of
CRE activity and gene expression in a single context, with notable exceptions (Adamson et al.
2016; Reed et al. 2022; Xu et al. 2022). In contrast, a differential system in which two or more
conditions are compared may allow for a new conceptual approach to CRE-to-gene association.
This approach correlates gene expression and CRE activity not across genes and CREs in a
single context, but between the same gene and same CRE across two or more conditions.
Correlations in CRE activity between conditions that are concordant with gene expression
changes may provide evidence of their association. Such associations would be dependent on
the variable factor between the input conditions, perhaps limiting their generality, but also would
be more informative of the variable effects and potentially lead to insights into the gene

regulatory mechanisms at work.

We present a method, DegCre, that probabilistically associates CREs to target gene TSSs over
a wide range of genomic distances. The premise of DegCre is that true CRE to differentially
expressed gene (DEG) pairs should change in concert with one another as a result of a
perturbation, such as a drug treatment or differentiation protocol. DegCre is a non-parametric
method that estimates an association probability for each possible pair of differential CRE and
DEG. It considers CRE-DEG distance but avoids arbitrary thresholds. Because DegCre uses
rank-order statistics, it can use various types of CRE-associated data, including DNase
hypersensitivity, ATAC-seq, and ChlP-seq against either histone marks or TFs. It produces
significant associations with a wide range of TSS to CRE distances, up to an upper limit subject
only to computational burden, with 1 Mb being quite feasible.

We apply DegCre to three distinct collections of data, including cells subject to drug treatment
and differentiation protocols. We compare DegCre associations to HiC loops, CRISPR validated
links, and Activity By Contact (ABC) scores (Nasser et al. 2021) that employ both HiC and
regulatory signal data. While DegCre makes CRE-to-gene predictions well below the limit of
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genomic distance detection of HiC data, we find excellent agreement among areas of predictive
overlap. We also show the complementary value of DegCre’s scoring metric, which provides, for
example, the ability to sum probabilities for all candidate CREs for a given gene to infer the total
number of CREs regulating that gene. We use this approach to identify direct targets of a
perturbation by identifying genes regulated by numerous CREs.

Results

DegCre operation and algorithm

The name “DegCre” was chosen to reflect that, instead of binary associations, DegCre produces
association probabilities, or the “degree” to which the DEG to CRE association is likely to be
true. For the purposes of this discussion, we define a differentially expressed gene (DEG) as a
gene whose expression is potentially different between two contexts, such as before and after
drug treatment or differentiation. The term “significant DEG” will mean DEGs for whom the
significance of a statistical measure of expression change surpasses a defined threshold (o).
The term “CRE?” (cis-regulatory element) will be used to denote a genomic region with regulatory
signal above background at a chosen level. Such regulatory signals can include chromatin
openness, transcription factor (TF) occupancy, and histone post-translational modifications,
amongst others. We understand that robustly establishing that any given genomic region is truly
a CRE requires additional lines of evidence, such as targeted inhibition and activation, but will
use CRE in this study to refer to any region exhibiting condition-differential signal for the selected
type of CRE-measurement.

We intend for users to apply DegCre to experimental designs which consider multiple states,
such as response to a perturbation, and include measurements of gene expression and
regulatory signal at CREs (Figure 1A). DegCre takes in differential gene expression
measurements, defined as the p-value from comparing expression levels between conditions,
along with the transcription start sites (TSSs) of those genes. DegCre also requires p-values of
differential signal at CRE regions from the same conditions, such as can be generated by
methods like csaw (Lun and Smyth 2016). Optimally, DegCre also uses the fold-changes of both
DEG and CRE signal to measure effect direction concordance on the assumption that CRE
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activity should correlate with increased expression and vice versa, although this is not required

and for some experimental designs may not be desired.

The DegCre algorithm begins by defining all pairwise associations between DEGs and CREs
and calculating the genomic distance between each CRE and the TSSs of each DEG (Figure
1A and B, Methods). A DegCre association is thus based on three measurements: a DEG p-
value, a CRE p-value, and a genomic distance. DegCre considers only possible associations
within a given maximum distance, which is by default set to be 1 Mb. Specification of large
maximum distances is possible but increases the number of considered associations and

computational burden.
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Figure 1. Graphical overview of the DegCre algorithm. A. DegCre requires as inputs differential p-values for
CRE signal and differential gene expression (pcre and poec). DegCre also needs genomic distances between
CREs and TSSs (d) as input. The lightning bolt indicates a perturbation has occurred to the lower depiction. B.
DegCre creates also possible associations between each CRE and TSS within a specified maximum distance.
C. DegCre bins associations by their distance, d, according to a heuristic that balances resolution versus
maintaining the pcre distribution (Methods). D. DegCre calculates a raw association probability, araw,ij, for a given
pcre,; by finding the fraction of expected true DEGs in the set of associations in the same distance bin and with a
pcre equal to or less than (more significant) as pcre,i. Plot shows actual data from ATAC-seq at 120 minutes from
Reed et al. E. DegCre corrects the raw association probability if the association does not involve a true DEG. F.
For CREs with multiple associations (nearly all CREs) associations across larger genomic distances are
penalized by the probabilities that the CRE is associated to nearer DEGs. G. The false discovery rate (FDR) of
the association is calculated based on a binomial distribution that uses the bin null association probability, avin,
as the success probability. Created with BioRender.com.

DegCre next bins associations by distance (Figure 1C, Methods). The bin sizes are defined for
each experiment such that they contain an equal number of associations, (Methods). The goal
of this step is to define bins such that each CRE can be compared against other CREs at similar
distances to yield scores for individual CRE-DEG associations that can be compared to the
average distance-normalized association; true CRE-DEG pairs should have higher signal than
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randomly selected CRE-DEG pairs with similar distances. To select the number of associations
per bin, DegCre employs a heuristic that attempts to balance resolution (smaller bins with fewer
associations) against the robustness of each bin, which is a function of the similarity of the CRE
p-value distribution in each bin compared to the global CRE p-value distribution (Methods). It is
important to maintain uniformity of the bin-wise CRE p-value distribution because subsequent
calculations compare the CRE p-value for any given association to the distribution of all CRE p-
values of its distance bin. Thus, if bins are too small, and harbor only highly significant or only
insignificant p-values, then true pairs cannot be distinguished from the background. In contrast,
if bins are too large, the distance normalization becomes irrelevant as distances with biologically
very different priors (in terms of likelihood for a random association to represent a real
association) are conflated.

For each bin, DegCre calculates raw association probabilities, represented by “a” in figures and
formulas to avoid confusion with significance probabilities (Figure 1D). For a given association
with a given CRE p-value, DegCre finds all associations within the same bin that have a CRE p-
value (in the same effect direction if available) with equal or greater significance (Methods).
DegCre then calculates the expected number of true DEGs within that set of associations and
divides it by the set size to obtain a true DEG fraction (Figure 1D, Methods). We call this value
the raw association probability, araw, an estimation of the probability the association connects a
CRE to the change in expression of a target gene. This calculation araw is determined by
association distance, CRE p-value, and DEG p-value, and makes no assumptions of underlying
distributions of those inputs.

Although there is a unique araw value for each unique CRE p-value, araw values essentially
represent a set-level probability, as it reflects the cumulative probability of all associations with
that degree of CRE significance or greater. DegCre therefore corrects araw by the probability that
an association involves a significant DEG to generate acor (Figure 1E). DegCre applies this
correction to associations with adjusted DEG p-values passing a selected o (Methods). The
choice of alpha can be guided by an included optimization function. A given CRE will generally
have associations to multiple significant DEGs. All else being equal, we assume that the
association most likely to be real is to the nearest DEG. DegCre thus considers all significant

DEG associations for a given CRE and reduces a given acor Weighted by the acorr values of
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associations containing that CRE that have shorter association distances (Methods), producing
the final reported association probability (Figure 1F).

For FDR estimation of the association probability, DegCre considers the raw association
probability of each bin without regard to CRE p-value, avin (Figure 1D). The apin value depends
on distance-based binning only (i.e., it reflects the scores derived from all possible CREs within
a given distance range) and we consider it to be a suitable null hypothesis for the effect of CRE
p-values on association probabilities. Accordingly, DegCre calculates an association probability
FDR based on the binomial cumulative distribution function using avin as the trial success
probability (Figure 1G; Methods).

DegCre is implemented as an open-source R package (Methods). It operates within the
convenience of GenomicRanges (Lawrence et al. 2013) framework. The generated outputs
enable manipulation with existing operations. It includes functions for secondary calculations,

visualization of results, and conversion of the results into other formats.

Data sets for the demonstration of DegCre analysis

DegCre operates on measurements of gene expression and signal at CREs in response to a
perturbation to generate association probabilities between genes and CREs. We therefore
sought to test DegCre using datasets from perturbation experiments such as those done using

drug treatment and differentiation protocols.

First, we analyzed data published by McDowell et al. derived from the treatment of A549 cells
by dexamethasone (McDowell et al. 2018). Dexamethasone is a specific and potent agonist of
the glucocorticoid receptor (NR3C1), a well-studied nuclear receptor (Vettorazzi et al. 2022) that
is known to change expression of many target genes upon stimulation. This data set includes
an extensive time course as well as measurements of RNA, DNase hypersensitivity, chromatin
immunoprecipitation sequencing (ChlP-seq) of mono- and trimethylation of histone H3 at lysine
4 (H3K4me1 and H3K4me3) and acetylation of histone H3 at lysine 27 (H3K27ac), and ChIP-
seq of several transcription factors and co-activators including NR3C1 itself.

We used a second data set generated in our lab involving the activation of a different nuclear
receptor (Savic et al. 2015). Specifically, Savic et al treated HT-29 cells with rosiglitazone, an
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antidiabetic drug acting through activation of peroxisome proliferator-activated receptor gamma
(PPARG). PPARG is a nuclear receptor that upon activation forms heterodimers with retinoid X
receptors (RXRs) and translocates to the nucleus, modulating gene expression changes (Han
et al. 2017). This study includes RNA-seq, H3K27ac ChIP-seq, and RNA Polymerase Il (RNA
Pol 2) ChlP-seq at 24 and 48 hours after treatment.

A third dataset we used involved another perturbation with direct effects on gene regulation: the
stimulation of immune cells with chemokines. Interferon gamma (IFNy) is a powerful chemokine
resulting in the phosphorylation and consequent activation of the transcription factor STAT1
(Schneider et al. 2014). Reed et al stimulated THP-1 monocytes with IFNy and
lipopolysaccharide and collected samples at eight timepoints (Reed et al. 2022). Measurements
included in this data set are RNA-seq, H3K27ac ChIP-seq, and ATAC-seq data. This study also
generated genome-wide HiC measurements of chromatin conformation. Because evidence of
spatial proximity between promoters and distal CREs provides an experimental inference of
CRE-DEG pairs, these data allow for comparisons of DegCre associations to an orthogonal

assay.

These data sets are publicly available and complete accession details are provided in
Supplemental File 1. For ChlP-seq, ATAC-seq, and DNAse hypersensitivity data we aligned raw
reads when necessary or used author-supplied BAM files. We then applied the R package csaw
(Lun and Smyth 2016) to generate regions of differential signal as GRanges objects (Methods).
For RNA-seq, we used author-provided counts and determined differential expression between
treatments and timepoints using DESeq2 (Methods). We associated the differential expression
results with gene TSSs as defined in the EPDnew database (Meylan et al. 2020; Dreos et al.
2015) and created GRanges objects (Methods).

Characteristics of DegCre associations

We applied DegCre analysis to each of the three datasets described above, which take at
most a few minutes on a regular desktop computer using default settings, including measuring
CRE-to-promoter pairings up to 1 Mb of distance (Methods). We provide the outputs as text
files in Supplemental File 2. The total number of associations passing an FDR threshold (by
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default set to 0.05) varies across each dataset from hundreds to tens of thousands
(Supplemental Figure 1A). The total number of significant DEGs largely determines the
number of significant DegCre associations (Supplemental Table 1, Methods); that is,
experiments with more DEGs yield more DEG-CRE pairs (Supplemental Figure 1B), because
only associations involving a significant DEG can potentially pass reasonable FDR thresholds
(Methods). The total number of CREs with nominally significant differential signal p-values has
less effect on the total number of significant DegCre associations (Supplemental Figure 1C).
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Figure 2. Characteristics of DegCre associations. A-C. The black line in the upper plot half displays the
number of DegCre associations per bin that pass the indicated FDR. The bottom half displays the per bin DegCre
association probability. The common x-axis shows for each bin the association distance from TSS to CRE. Each
bin comprises a range of distances with the upper bound of that range plotted here. The black line indicates the
median value for each bin and the blue region indicates the interquartile range (IQR). The red line shows the per
bin probability considering only the bin distance, used as the null in the DegCre FDR calculation (Methods).
DegCre associations are shown from: A.) DNase hypersensitivity data at eight hours from McDowell et al., B.)
ATAC-seq data at two hours from Reed et al., C.) RNA Pol2 ChIP-seq data at 24 hours from Savic et al. D-H.
Bars show the counts or fraction of differential regions with a significant (FDR less than 0.05) DegCRE association
overlap ENCODE cCRE annotations. Plots are based on: D.) DNase hypersensitivity data from McDowell et al.,
E.) ATAC-seq data from Reed et al., F.) RNA Pol2 ChlP-seq data hours from Savic et al. (same data as A-C). G.
Fractions are shown for H3K27ac ChlP-seq data from McDowell et al. at eight hours, Reed et al. at 2 hours, and
Savic et al. at 24 hours. H. Fractions are from McDowell et al. at eight hours for the indicated data types.
Abbreviations for ENCODE cCREs are: PLS, promoter like sequence; pELS, proximal enhancer-like sequence;
dELS, distal enhancer like sequence.

The number of significant associations generally decreases with increasing genomic distance
between DEG TSSs and CREs (Figure 2A-C, Supplemental Figures 2-6). While this likely
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reflects real biology, this distance dependence also reflects the fact that DegCre weights
equivalently significant associations for a given single CRE in favor of the ones spanning
shorter genomic distance (Methods). Thus, longer associations are likely to pass FDR
correction only if there are no other shorter associations of equal or greater strength involving
that CRE. Associations from some data types from McDowell et al. display a slower decrease
versus distance compared to others (Supplemental Figure 3). For example, associations from
ChlP-seq from H3K4me3 show a much steeper decrease compared to those from H3K4me1
or EP300. This observation is consistent with the known binding profiles of these factors, as
H3K4me3 is primarily associated with promoters and promoter-proximal CREs, while
H3K4me1 and EP300 are primarily associated with enhancers and other distal CREs (The
ENCODE Project Consortium et al. 2020; Visel et al. 2009).

The values of the association probabilities passing the FDR threshold vary from just above the
null probability for a given bin (red lines in bottom halves of Figures 2A-C, Supplemental Figures
2-6) to higher values closer to 100% (interquartile ranges shown in bottom halves of Figures 2A-
C, Supplemental Figures 2-6). These ranges illustrate a key characteristic of DegCre
associations. The DegCre FDR estimates whether the association probability exceeds the null,
bin-wide probability due to the input of the differential CRE signal. However, those associations
that pass a chosen FDR threshold can still be further stratified by the association probability
itself. For example, we infer, to a reasonable approximation, that a DegCre association with a
probability of 0.9 will be three times more likely to confirm in an orthogonal assay to one with
0.3, with both passing a chosen FDR threshold.

The DegCre algorithm uses differential CRE signal in a non-parametric, rank-based analysis
without thresholding (Methods). DegCre is agnostic to the methods of assigning differential CRE
significance p-values to genomic regions. We used csaw with defined windows (20 bp for TFs,
200 bp for histone marks and open chromatin signals) spanning hg38 to assess the level of
differential signal between conditions for each type of CRE measurement. We then calculated
csaw p-values for the windows passing signal thresholds prior to DegCre analysis (Methods).
We did not use peak calling for any CRE dataset. A possible concern with this processing
strategy is that it could lead to DegCre associations involving CREs of dubious regulatory
potential. Accordingly, for all datasets we intersected ENCODE-defined cCRE annotations (The
ENCODE Project Consortium et al. 2020) with all CREs predicted by DegCre to target a DEG
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with an FDR less than 0.05 (Figure 2A-H, Supplemental Figure 7). More than 80% of these
DegCre associations overlapped an ENCODE cCRE annotation, with many data sets having
higher overlap rates (Supplemental Figure 7). Most CREs annotate as proximal or distal
enhancer-like sequences (pELS and dELS), consistent with these being the most prevalent
annotations in the ENCODE cCRE set. We looked at H3K27ac ChIP-seq across all three data
sets because it was the only CRE signal that was present in all three. We found that CREs in
significant DegCre associations from Reed et al. and Savic et al. overlapped promoter-like
signature (PLS) more frequently than did those from McDowell et al. (Figure 2H). Given that the
perturbation in McDowell et al was targeted to NR3C1, this observation is expected given
NR3C1’s known bias towards distal CREs in response to activation (Thormann et al. 2018;
Vettorazzi et al. 2022).

We also note that the total number of significant DegCre associations either consistently
increases or increases and plateaus with time after perturbation for all three datasets. However,
the relative fraction of ENCODE annotations tended to remain stable over time (Figure 2D-H,
Supplemental Figures 1 and 7). This time dependence may arise from the accumulation of
secondary gene regulation that occurs post-perturbation. Regardless, the time elapsed from the
perturbation does not appear to affect the types of ENCODE cCREs involved in DegCre

associations.

We next examined the frequency of ENCODE cCRE annotations for the nine CRE-associated
data types in the McDowell et al. study (Figure 2H). For H3K4me3 ChlP-seq, we observed an
enrichment for PLS annotations, consistent with the known prevalence of this mark at active
promoters, and we also saw promoter enrichment for JUN and BCL3, again as expected. In
contrast, we saw enhancer enrichment for NR3C1 and EP300 ChIP-seq CREs, as expected for
the CREs associated with these marks. Thus, DegCre’s inferences are reflective of the nature

of the input data, yielding differing associations from differing input data types.

Comparison of DegCre associations to HiC loops

We sought to compare DegCre associations to HiC-derived loop calls from Reed et al., who
generated HiC loop calls using Sip (Rowley et al. 2020) at an FDR < 0.05 (Reed et al. 2022).
We used liftover (Lawrence et al. 2009) to convert these loops to hg38 coordinates (Methods).
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Figure 3. Comparison of DegCre associations to HiC loops. A. For ATAC-seq data from Reed et al at the
120-minute timepoint, DegCre associations with an FDR less than 0.05 and an association distance greater than
20 kb are shown in black. HiC loops with an FDR less than 0.05 and a loop distance less than 1 Mb are shown
in light red. Gene names in black indicate significant differential expression. Black arrows indicate distal CREs
that both DegCre and HiC link to the VCAM1 TSS. The signal track (yellow) shows the -log1o of the differential
ATAC signal multiplied by the sign of the log fold-change. B. Same plotting conventions as A but the black arrow
indicates a group of CREs for for which DegCre and HiC assign to the TSSs of different, significant DEGs. C.
For ATAC-seq data, the blue bars indicate the number of HiC loops that have one anchor in a CRE with a
significant (FDR less than 0.05) DegCre association that link to the TSS of the same DEG as the DegCre
association. Red bars indicate the number of HiC loops that have one anchor in a CRE with a significant DegCre
association that link to the TSS of the different DEG as the DegCre association. D. Same plotting conventions
as C but for H3K27Ac ChlP-seq data.

We excluded 18 hg38 loops with loop sizes (defined as genomic distance from anchor-to-anchor
midpoints) smaller than 30 kb after liftover because all loop sizes were 30 kb or greater prior to
liftover. The remaining loops spanned up to 28,617,181 bp with a median size of 390,000 bp
(Supplemental Figure 8A). Significant (FDR <=0.05) DegCre association distances (from CRE
to gene TSS) derived from both ATAC-seq and H3K27Ac ChIP-seq data from Reed et al. are
mostly shorter than HiC loops, especially at time points past 30 minutes (Supplemental Figure
8B-D), occurring at distances down to zero (i.e., at the TSS itself). Also, we set the maximum
DegCre association distance to 1 Mb due to the increased computational burden at higher

maximum distances. Accordingly, to evaluate the overlap of these two measures of distal CRE
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associations to DEGs, we considered only DegCre associations and HiC loops in the distance
range of 30 kb to 1 Mb.

By design, significant DegCre associations can occur only between significantly expressed
DEGs and CREs, as marked by the input assay (here ATAC-seq and H3K27Ac ChlP-seq, see
Methods); that is, if a gene is not differentially expressed between conditions, or if a CRE does
not show differential activity, there will be no DegCre association prediction. To compare DegCre
associations to HiC loops, we thus considered only HiC loops with one anchor overlapping a
CRE with a significant DegCre association. For both ATAC-seq and H3K27Ac ChlP-seq,
approximately one-third of the HiC loops met this criterion (Supplemental Figure 9, compare A
and B). For HiC loops that do overlap a DegCre association CRE, we placed each HiC loop into
one of four categories: (1) it overlaps the TSS of the same gene that the DegCre association
does (Figure 3A), (2) it overlaps the TSS of a different gene than the DegCre association and
that different gene is also significantly differentially expressed (Figure 3B), (3) it overlaps the
TSS of a different gene than the DegCre association and that different gene is not significantly
differentially expressed, (4) it does not overlap the TSS of a gene. We found that most HiC loops
fall into the last two categories (Supplemental Figure 9, compare C and D). These loops are
difficult to interpret in comparison to DegCre associations. They associate CREs to regions that
DegCre does not consider, including sites that are not TSSs (such as distal CREs) or to TSSs
of non-differentially expressed genes. Either category cannot be compared to DegCre

associations. Accordingly, we considered only the first two categories further.

Comparing the partitioning of the HiC loops into these first two categories across all timepoints
and both CRE-defining data types, ATAC-seq and H3K27Ac ChlP-seq, we found that more
DegCre associations and HiC loops associate with the same significant DEG than with different
significant DEGs (Figure 3C and D). This effect is greater at earlier time points, likely indicating
the higher ability of DegCre to properly assign distal CREs to DEGs when considering data
temporally closer to the driving perturbation.

DegCre performance on CRISPR validated associations

A powerful technique for evaluating genomic regions’ potential to regulate genes is through
editing or repressing the activity of these regions with CRISPR-Cas9 sequence alteration or
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CRISPR interference (CRISPRI) (Gasperini et al. 2019; Nufiez et al. 2021). To that end, we
obtained a compilation of CRISPR and CRISPRi perturbations of genomic loci and
corresponding gene expression measurements from Nasser et al. (Nasser et al. 2021). After
liftover to hg38 coordinates, there were 5,685 gene to distal CRE (greater than 500 bp)

associations, involving 1,913 unique regions.

Again, DegCre aims to find associations between genomic regions and DEGs with significant
changes in response to a perturbation. Accordingly, we filtered the DegCre associations from
McDowell et al., Reed et al., and Savic et al. to those containing a significant DEG. However,
much of the Nasser et al. data set includes associations that do not validate by CRISPR. While
we expect that high probability, low FDR DegCre associations will be CRISPR-validated, we also
expect low probability, high FDR DegCre associations to be enriched in the associations lacking
CRISPR confirmation. Thus, for these comparisons we retained all DegCre predictions, at any
FDR level.

Nasser et al. classified each CRE-to-gene association as “Regulated” or “not” based upon the
CRISPR data. We used this binary value in our subsequent analyses. We overlapped the filtered
DegCre associations to the CRISPR association data, finding various degrees of overlap for
each data set and type (Supplemental File 3). Associations derived from the McDowell et al.
data set had generally low levels of overlap with the CRISPR data, making a rigorous
comparison impossible. The genes regulated by dexamethasone in this experiment appear to
differ greatly from those measured in the Nasser et al. data.

DegCre associations from Reed et al. and Savic et al. had higher overlap rates with the CRISPR
data than those from McDowell et al. (Supplemental File 3). We examined the distribution of
DegCre association probabilities between those associations designated as “Regulated” versus
“not” and found extremely significant differences in several of the distributions by Wilcoxon rank-
sum test (p-values from 1.3 x 106 to < 2.2 x 10°"®, Figure 4, Supplemental File 3). These results
demonstrate agreement between DegCre and CRISPR-based validation. Within the subsets of
DegCre associations that overlap the CRISPR validated regions, those from Reed et al. had
much broader dynamic range of association probabilities compared to Savic et al. associations
(Supplemental Figure 10).

15


https://doi.org/10.1101/2023.10.04.560923
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.04.560923; this version posted October 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A p<2.2x1071 p<2.2x1071
-g 0.4—] o
a %] ® 03 Y
o 5 @
3 0.4 e R o e
%) @O 0.2 o
: : :
_ o &
5 02 < 01— X
g i
QO 0.0— 0.0— \ >
No Yes No Yes
B p<22x10716 p<22x1078
G 1.00— 8
o 0.32—
(@]
0 75— o °
8 8 0.24 — o &
0 (o]
@ 0.50— <omve O - o
o m S0
G 0257 < 0.08—
(@]
s} T
Q 0.00— 0.00— ‘
No Yes No Yes

Figure 4. DegCre and ABC association values compared to CRISPR validated enhancer-gene pairs. The
blue data points represent DegCre association probabilities based on data at 24 hours from Reed et al. The red
circles are ABC scores for the same associations. The data are grouped by whether the association showed
regulation of the target gene (“Yes”) or not (“No”) upon CRISPR targeting as given by Nasser et al. The black
lines represent the median value. The jitter width of the points is proportional to the local density. The DegCre
values are based on A). ATAC-seq data at 1,539 regions and B). H3K27ac ChlP-seq data at 875 regions. The
ABC distributions appear very similar between A and B and do share many points but are distinct.

The Nasser et al. data also includes ABC scores for each experimentally tested association.
These scores are based on HiC and regulatory signal data. We compared the ABC scores for
the subset of CRISPR associations overlapping each DegCre set (Figure 4, Supplemental File
3). The distributions of ABC scores between “Regulated” or “not” associations in these subsets
are significantly different in all cases (Figure 4, Supplemental File 3). Many of the ABC Wilcoxon
p-values are more significant than the corresponding DegCre p-values. However, many of the
Reed et al. DegCre associations compare well to ABC, likely due to the broader dynamic range
of DegCre association probabilities present in this set for these regions (Figure 4, Supplemental

Figure 10, Supplemental File 3).

Prioritization of perturbation target genes with DegCre

A key goal of perturbation studies is often to identify the direct target genes among a set of
significant DEGs. For perturbations that involve the activation of transcription factors, such as
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the introduction of ligands to nuclear receptors, “direct targets” means those genes with
expression changes that are mechanistically attributable to a change in the genomic occupancy
of the nuclear receptor at a CRE that regulates that gene. Identification of direct target genes is
desirable because it can lead to insight into the perturbation’s mechanism of action, and it may
increase the extensibility of the observed experimental results to other systems.
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Figure 5. Identification of dexamethasone target genes with DegCre. A. The boxplot shows the distribution
of expected DegCre associations per significant DEG (FDR less than or equal to 0.05) based on NRC31 ChlP-
seq data from McDowell et al. The black line shows the median expected DegCre associations per DEG. The
cyan points show values for ERRFI1. B. The volcano plot shows the -log1o of the adjusted (Bonferroni) differential
expression p-value versus the logz fold-change. Blue dots indicate genes whose expected number of associations
is in the top 100 of all significant DEGs. C. The browser view shows DegCre associations (top panel) and NR3C1
ChlP-seq signal at four hours for an established glucocorticoid pathway target gene, ERRFI1. The NR3C1 signal
is plotted as —log1o of the differential p-value multiplied by the sign of the log fold change. Regions of NR3C1
signal have been merged in some cases for better visibility at browser scale.

As DegCre outputs probabilistic scores, it can calculate the expected number of truly associated
CREs for each DEG. For a given gene, this is simply the sum of its association probabilities
passing a specified FDR cutoff, resulting in an estimation of the number of associated differential
CREs that would pass definitive validation (e.g., for a DEG with 10 FDR-passing associations
averaging 20% association probability, it would be expected that there are two true CRE-DEG
pairs). Thus, genes with many expected associations are more likely to be confidently linked to
a driving regulatory signal. We calculated the expected associations per significant DEG for all
the tested data sets (Figure 5A, Supplemental Figure 11). The distributions of expected
associations per DEG generally showed a slight increase with time followed by a plateau or
decrease.

We further considered the DegCre results derived from NR3C1 (glucocorticoid receptor) ChlIP-
seq in McDowell et al. In these experiments, cells were treated with dexamethasone, a potent
agonist of NR3C1. We looked at the subset of DEGs at four hours post treatment that had the
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top 100 highest expected associations with NR3C1 CREs (Figure 5B). This subset differs from
what one would obtain by ranking DEGs by differential expression significance or fold-change
magnitude alone, indicating that the DegCre-derived expected CRE associations per DEG adds
additional, complementary information. ERRFI1, a well-established and ubiquitous target of
NR3C1 (Juszczak and Stankiewicz 2018), exhibits significant but comparatively moderate fold-
change (3.4-fold) in expression after NR3C1 stimulation (Figure 5B). However, ERRFI1 ranks
highly across all time points by expected associations per DEG (Figure 5A) due to the numerous
regions of concordant differential NR3C1 occupancy associated to its expression by DegCre
(Figure 5C).

Discussion

DegCre represents a valuable advancement towards the fundamental goal of associating
regulatory regions with gene expression. DegCre uses differential effects between conditions to
identify regulatory regions specific to the causative perturbation. The probabilistic associations
produced by DegCre span a wide range of interaction distances and enable the implementation

of new analyses.

DegCre makes no parametric assumptions about the distribution of the input CRE and DEG p-
values and thus has flexibility to accommodate a wide variety of data types. We noticed that the
CRE p-values we produced from csaw analysis deviated somewhat from a uniform distribution,
with high degree of “one” inflation (i.e., regions that show no differential signal). Because DegCre
essentially uses the rank of these values, such unexpected distributions are not problematic.
DegCre does not threshold by association distance or CRE p-value, avoiding issues that may

arise from such practice.

We evaluated the validity of the DegCre associations by comparison with two orthogonal data
types. First, we compared DegCre associations to HiC loops derived from the same cells (Figure
3). We initially conceived DegCre to primarily perform well for CREs proximal to DEG TSSs (e.g.
within tens of kb). However, our comparison to the HiC loop calls indicated that DegCre can
produce high-quality associations at distances at least up to 1Mb, particularly at early time points
which are likely enriched for primary, direct CRE-DEG effects (Figure 3C and D). However, in
cases where a CRE is near the TSSs of two significant DEGs, DegCre will generally assign it to
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the most proximal TSS, at times in conflict with HiC loops (Figure 3B). However, because HiC
loops spanning short distances are rarer (Supplemental Figure 8A), the shorter DegCre
association in Figure 3B may still be valid even if the failure to call the longer HiC-inferred
association is likely a false negative (i.e., false negative loop calls, especially at shorter
distances, are a possible explanation for such discrepancies). As such, we believe DegCre
provides valuable, complementary information to HiC and related assays.

We also compared DegCre to CRISPR validated associations from Nasser et al. The authors
compiled and generated this resource to benchmark various enhancer-to-promoter association
methods, including their own, ABC (Nasser et al. 2021). As such, they were not specifically
selected to be relevant to the perturbations and cell types used in our demonstration of DegCre.
Very few of these CRISPR-tested associations overlapped with DegCre associations derived
from the McDowell et al. data set (Supplemental File 3). DegCre associations from Savic et al.
had a greater overlap but yielded moderate association probabilities for the overlapping regions
(Supplemental Figure 10) but still showed clear separation of DegCre scores between validated
and not validated CREs. DegCre generated many high-probability associations for other
associations in both of these datasets, suggesting that the perturbations in these experiments
altered gene expression primarily through CREs not tested by CRISPR in the Nasser et al. data
set. However, the DegCre associations generated from Reed et al. had many overlaps with the
CRISPR tested regions and yielded a large dynamic range of DegCre association probabilities,
showing excellent agreement with CRISPR results (Figure 4, Supplemental Figure 10).
Furthermore, the Reed et al. DegCre associations show comparable agreement with CRISPR
validation as ABC scores (Figure 4, Supplemental Figure 10). The creators of ABC have
demonstrated its superior performance to most other approaches for connecting enhancers to
promoters in static (i.e., non-perturbation) experimental contexts (Nasser et al. 2021). The
similar performance of DegCre to ABC in areas of predictive overlap thus strengthens the validity
of DegCre associations.

Methods that rely on HiC or related techniques, such as ABC, lack the ability to identify shorter
TSS to CRE associations due to the inherent difficulty in distinguishing such loops from
background. DegCre operates well in this distance range. Additionally, implementation of HiC
remains resource intensive, prohibiting its use in a variety of cell types and conditions. The
resolution of HiC loop calls (size of the anchor regions) also depends on the sequencing depth
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(Rowley et al. 2020), such that high-resolution loop calls require even further resource
expenditure. DegCre accepts data from less resource-intensive techniques, such as RNA-seq,
ChiIP-seq, and ATAC-seq, and returns at a resolution derived from those assays, generally at
100s of bp. We implemented csaw on relatively small bins to allow for subsequent merging to
arrive at these feature sizes. Methods such as ABC seek to catalog all potential CRE to gene
interactions in a single cell type and set of conditions, creating a valuable resource. We designed
DegCre to place probabilities on subsets of those associations that depend on a given

perturbation, viewing the system in a differential context.

We employ a penalty to CREs with multiple associations that favors the most proximal
(Methods). This choice is supported by observations by Nasser et al. showing that a null model
in which CREs are simply assigned to the closest TSS performs reasonably well (Nasser et al.
2021). Also, we believe this high performance is likely increased at the relatively short CRE to
TSS distances observed for many high confidence DegCre associations (Figure 2A-C).
However, there are clearly examples of a single CRE regulating several distal genes, such as
the B-globin LCR (Grosveld et al. 1987). DegCre will likely underpredict associations for such

regions, a limitation of this approach.

With default settings, DegCre requires concordance between CRE and DEG effect directions
(both up or both down), although this requirement can be removed. For repressors, a more
suitable requirement might be requiring opposite directions. Further, for CRE signals that are
thought to lead to both directions within a given experiment (i.e., measurement of a TF that
represses some targets and activates others), this assumption may best be ignored. We have

not analyzed datasets under these alternative scenarios.

In its current implementation, DegCre accepts only one type of CRE signal as an input;
consideration of multiple CRE inputs requires multiple independent runs of DegCre. We
ultimately envision an implementation which accepts multiple CRE signals simultaneously and
produces a composite association probability. Different CRE inputs are likely to have varying
degrees of correlation, making their integration more challenging. Also, different CRE inputs will
likely occur at non-overlapping genomic regions in some cases, further complicating the
amalgamation of the signal. We are currently working on ways to overcome these challenges

and create a multivariate version of DegCre.
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To facilitate a clear presentation, we chose to use p-values derived from differential expression
or differential CRE signal analyses using simple models. For example, we compared time zero
separately to each successive time point. However, both csaw and DESeq2, and other similar
methods, can use more complex regression models involving continuous variables and several
covariates. We anticipate the application of DegCre to experimental designs warranting more
complex regression analyses, such as drug treatment of a panel of patient-derived cell lines in

which numerous covariates would require consideration.

We have presented DegCre, an algorithm for the probabilistic association of CREs with DEGs
in response to perturbations. A freely available R package, DegCre produces convenient data
structures and runs efficiently on large data inputs. We demonstrated its application to three
distinct data sets, each involving different perturbations, cell contexts, and regulatory signal
measurements. From these, DegCre produced associations involving established regulatory
regions that confirm by two orthogonal methods, yielding associations that identify direct target
genes of the perturbations. DegCre complements existing approaches by providing probabilistic
scores for CRE-to-gene associations at a wide range of biologically relevant distances, using
less-resource intensive and thus more broadly obtainable input data. We believe that DegCre is
an important tool for the systematic and quantitative characterization of differential gene

regulation.

Methods
DegCre package and algorithm

DegCre is an R package that is freely available on GitHub
(https://github.com/brianSroberts/DegCre). (We are preparing to submit to Bioconductor).
Documentation of the included functions is provided in the package manual. It operates within
the GenomicRanges (Lawrence et al. 2013) framework, accepting GRanges objects as inputs
and returning a Hits object with results as metadata. It includes functions for secondary
calculations, visualization of results, and conversion to other formats. We ran DegCre using R

version 4.2.1.
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DegCre uses functionality within the GenomicRanges package to create overlaps and the
associated distances between supplied TSS and CRE GRanges inputs. Next, DegCre bins the
associations by TSS to CRE distance. The bin containing the longest associations is larger than
the other bins to accommodate the remainder that occurs when the total number of associations
is not an integer multiple of the number of bins. DegCre next attempts to balance high resolution
(many bins with fewer associations) versus the minimization of the per bin CRE p-value
distribution deviation from the global (un-binned) distribution. For an array of potential bin sizes
(number of associations per bin), DegCre calculates the median Kolmogorov-Smirnov (KS) test
statistic across all binned CRE p-value distributions versus the global distribution. DegCre picks
the smallest bin size (containing the fewest associations per bin) that is less than a user specified
fraction (defaults to 0.2) of the range from the lowest to highest median KS test statistic
(Supplemental Figure 12). We chose this fraction threshold because it often occurred near an
inflection point in the curve (Supplemental Figure 12).

To calculate the raw association probability for a given association between DEG i and CRE j,
araw,ij, DegCre considers Aij, the set of associations within the same distance bin that have CRE
p-values as or more significant than pcrg, (Figure 1A,D). For this set, using Bonferroni corrected
p-values, the expected number of true DEGs, Epeg, is equal to:

Eppg =n(1 —a)

where a equals the chosen significance threshold of the adjusted DEG p-values, and n equals
the number passing the threshold (Finner and Roters 2002). To generate araw,ij, one divides Epec
by the size of set Ajj:

EDEG

araw,i,j = |Ai,j|

This probability is the average probability of association with a true DEG across the Ai;. For the
considered association itself, we obtain a corrected probability acor,ij, by setting the probability at
zero if the adjusted DEG p-value is greater than «, since it cannot be an association between a
CRE and a “true DEG” (Figure 1E). If the adjusted DEG p-value is less than or equal to a, no

correction is made.

22


https://doi.org/10.1101/2023.10.04.560923
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.04.560923; this version posted October 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A given CRE will often have associations to multiple genes (Figure 1F). We favor the more
proximal associations by down-weighting more distal associations in proportion to the sum of
the more proximal. The final association probability a, is derived by:

acorr,i, j

acorr,i,j + Zx acorr,x,j ) {x | Dx,j < Di,j}

ai,j = acorr,i,j

where D is the maximum association distance of the bin to which a given association belongs.
Associations from the same CRE to different DEGs in the same distance bin will not penalize
each other. Associations in the first (shortest) distance bin will never be altered by this process.
The process moves in order of increasing distance bins, such that association probabilities are
down-weighted by more proximal association probabilities that have been down-weighted
already.

DegCre calculates a type of false discovery rate (FDR) for association probabilities. As a null
hypothesis, avin, we consider the true DEG association probability of a given distance bin without
regard to the ordering of association CRE p-values (Figure 1D). If all associations in the bin had
the same CRE p-value their association probabilities would be anin. As described above, the
process of calculating ai; involves considering the distance bin subset Aijand calculating Epeg,
the expected number of true DEGs. This process can be modeled as a set of Bernoulli trials in
which the number of trials is the size of Aij, or |Aij|, the number of successes is Epeg, and the
probability of success is avin. The FDR of the association in this case is the probability that a
given association probability exceeds the value derived its association distance alone, and is
given by:

FDR;; =1— Cdfbinomial(lAi,ijEDEG'abin)

Data processing and visualizations

We downloaded the presented data sets from public repositories. All accession numbers are
provided in Supplemental File 1. For ChlP-seq and ATAC-seq data from Reed et al. and Savic
et al. we aligned the FASTQ files to hg38 using bowtie2 version 2.3.5.1 (Langmead and Salzberg
2012) and processed with samtools version 1.16.1 (Danecek et al. 2021) to bam files. We

obtained bam files directly for McDowell et al. data. We derived log-fold changes and p-values
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associated with GRanges from the bam files using the R package csaw version 1.32.0 (Lun and
Smyth 2016) in R version 4.2.1. For csaw analysis of TF ChlP-seq data, we used 20 bp windows
and kept the top 0.5% with highest signal for differential analysis. For open chromatin assays,
histone ChlIP-seq, and RNA Pol2 ChlIP-seq, we used 200 bp windows and kept the top 2% with
highest signal. We selected these values by finding those that produced the best clustering of
samples by treatment and time point within experiment sets. Within csaw, we made comparisons
to the zero time or control conditions for each time point. We obtained gene count tables for all
RNA-seq data. We calculated log-fold changes and p-values for each time point relative to the
zero time point or control using the R package DESeq2 version 1.38.3 (Love et al. 2014). We
associated these values with all TSSs for each gene using annotations from EPDNew (Dreos et
al. 2015; Meylan et al. 2020), yielding GRanges. We lifted over HiC loop calls from Reed et al.
to hg38 using the R package rtracklayer version 1.58.0 (Lawrence et al. 2009). We obtained
CRISPR experimental data and associated ABC calls from Supplemental Table 5 from Nasser
et al. (Nasser et al. 2021). We lifted over this data to hg38 using rtracklayer version 1.58.0. We
made all data visualizations using R version 4.2.1, in some cases using DegCre built-in
functions. We made the browser plots using functions that use the R package plotgardener
(Kramer et al. 2022).
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