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Abstract:  

Single nuclei analysis is allowing robust classification of cell types in an organ that helps 

to establish relationships between cell-type specific gene expression and chromatin accessibility 

status of gene regulatory regions. Using breast tissues of 92 healthy donors of various genetic 

ancestry, we have developed a comprehensive chromatin accessibility and gene expression atlas 

of human breast tissues. Integrated analysis revealed 10 distinct cell types in the healthy breast, 

which included three major epithelial cell subtypes (luminal hormone sensing, luminal adaptive 

secretory precursor, and basal-myoepithelial cells), two endothelial subtypes, two adipocyte 

subtypes, fibroblasts, T-cells, and macrophages. By integrating gene expression signatures 

derived from epithelial cell subtypes with spatial transcriptomics, we identify specific gene 

expression differences between lobular and ductal epithelial cells and age-associated changes in 

epithelial cell gene expression patterns and signaling networks. Among various cell types, 

luminal adaptive secretory cells and fibroblasts showed genetic ancestry dependent variability. A 

subpopulation of luminal adaptive secretory cells with alveolar progenitor (AP)  cell state were 

enriched in Indigenous American (IA) ancestry and fibroblast populations were distinct in 

African ancestry. ESR1 expression pattern was distinctly different in cells from IA compared to 

the rest, with a high level of ESR1 expression extending to AP cells and crosstalk between 

growth factors and Estrogen Receptor signaling being evident in these AP cells. In general, cell 

subtype-specific gene expression did not uniformly correlate with cell-specific chromatin 

accessibility, suggesting that transcriptional regulation independent of chromatin accessibility 

governs cell type-specific gene expression in the breast.  
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Introduction 

 Breast cancer shows genetic ancestry dependent variability in incidence and outcome 1. 

For example, while breast cancer incidence is lower in women of African ancestry, age at 

diagnosis and outcome are distinctly different compared to women of European ancestry. Breast 

cancer is diagnosed at an earlier age and is more likely to be triple negative breast cancer subtype 

in women of African ancestry compared to women of European ancestry 2,3. Even after 

controlling for socioeconomic stress and healthcare access, breast cancer outcome tends to be 

worse in women of African ancestry 3. Indigenous Americans (IA) also experience a lower 

incidence of breast cancer compared to non-Hispanic White women (74.2 per 100,000 versus 

126.1 per 100,000) 4. A subpopulation of IA women carries a breast cancer protective allele, 

particularly against Estrogen Receptor-negative (ER-) breast cancer, on chromosome 6q25 close 

to estrogen receptor 1 (ESR1) gene 5. IA women experience a disproportionately higher level of 

HER2+ breast cancers 4. There is evidence in the literature for genetic ancestry dependent 

differences in mutational spectrum suggesting the influence of genetic ancestry on genome 

organization and accessibility to undergo genomic changes 6. 

 As a first step in understanding the complex biology of  breast cancers, several groups 

have utilized single cell technologies to develop single cell atlas of the breast 7-11. We reported a 

single cell atlas of the breast utilizing breast tissues donated for research purpose by women with 

no clinical history of breast cancer 11. We described 23 epithelial cell states; 8 basal-

myoepithelial, 3 intermediate basal/luminal progenitor, 8 luminal progenitor (recently renamed 

as luminal adaptive secretory precursor, LASP cells) and 4 mature luminal (recently renamed as 

luminal hormone sensing, LHS cells) cell states. Gene expression signatures corresponding to 

three cell states within LHS cells and one within LASP cells are enriched in the majority of 
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breast cancers, suggesting that these cell states are putative cells-of-origin of breast cancer 11. 

Other studies cited above utilized tissues from reduction mammoplasty or tumor adjacent normal 

tissues to derive single cell atlas of the breast. For example, Kumar et al described 12 major cell 

types in the breast with epithelial cells under 11 different states (one basal-myoepithelial, seven 

LASP, and three LHS  cell states) 7. Gray et al described six epithelial cell states (hormone 

sensing-alpha, hormone sensing-beta, alveolar progenitor, basal-luminal hybrid, basal-alpha and 

basal-beta) and suggested these states are influenced by age, parity and BRCA2 mutation status 

8. They also suggested that age impacts the accumulation of alveolar cells with poor 

transcriptional lineage fidelity. Murrow et al characterized premenopausal breast tissue at the 

single cell level to determine coordinated transcriptional programs that alter in response to 

changing hormonal levels 9. Two other single cell studies using reduction mammoplasty samples 

identified three major epithelial cell types in the breast 10,12. However, there remains a lack of 

information in differences in cell state based on genetic ancestry and relationship between cell 

state as defined by transcriptome and chromatin accessibility status. 

 In this study, we utilized breast tissues donated by women with ancestries as follows: 22 

Ashkenazi-European ancestry, 10 Asian with a mix of East and central South Asia ancestry, 20 

European-non-Ashkenazi, 10 Hispanic-White with predominant European ancestry and 10 

Indigenous American ancestry. We performed integrated single nuclei ATAC-seq (snATAC-seq) 

and RNA-seq (snRNA-seq) analysis. Due to technical difficulties, we were able to perform only 

single nuclei RNA-seq of 10 African ancestry donors. Additional tissues from European ancestry 

donors were subjected to only snRNA-seq to allow comparison between African and European 

ancestry. Gene expression signatures derived from our previous single cell RNA sequencing data 

11 was applied on to spatial transcriptomics data obtained from tissues of three women who 
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donated breast tissues twice, 10 years apart, to identify genes enriched in lobular epithelial cells 

compared to ductal epithelial cells and to identify individual level gene expression change with 

age. Our studies suggest that genetic ancestry impacts the epithelial cell state with Indigenous 

Americans being enriched for cells with alveolar progenitor state. Further genetic ancestry 

dependent differences in fibroblasts were noted with fibroblasts from African ancestry clustering 

differently with distinct cell state and gene expression. These results suggest that a 

comprehensive analysis of every cell type, not just the epithelial cell type, in an organ is needed 

to study the impact of genetic ancestry on disease incidence, subtypes and progression.  
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Results:  

Single nuclei chromatin accessibility and transcriptome mapping of breast tissues from 

women of diverse genetic ancestry. Figure S1 provides a brief overview of the experimental 

design and Figure 1a provides genetic ancestry estimates of the donor samples used in the study. 

Details of genetic ancestry estimation analysis are described in our recent publication 13. Table 

S1 provides details of donors including menopausal status, age, BMI, self-reported race, days 

since ovulation etc. Average age, BMI and number of childbirths in each subgroup are also 

provided in this table. The majority of self-reported White donors are enriched for European 

ancestry, whereas the majority of self-reported Black donors are enriched for African ancestry. 

Sixty percent of self-reported Hispanic women are enriched for European ancestry. Fifty percent 

of Asians are enriched for East Asian while other 50% are enriched for Southeast Asian ancestry 

markers.  Indigenous Americans are enriched for “Americana” ancestry markers and Americana 

ancestry proportion in these donors is similar to Indigenous American ancestry proportions 

described in Indigenous American breast cancer patients in Peru 4. Note that this is the only 

group to carry significant “Americana” ancestry markers. Ashkenazi Jewish Americans are a 

mixture of European, Middle Eastern, and African ancestry. We also included six samples from 

BRCA1 mutation donors and five BRCA2 donors and information on these donors are provided 

in another study that utilized these samples for single cell RNA-seq 14. Table S2 provides details 

of number of nuclei sequenced in each group and number of genes per nuclei per group. 

Although multiome assay that combined snATAC-seq and snRNA-seq was attempted with 

tissues from donors of all genetic ancestry, for unknown reasons, combined multiome assay did 

not work with tissues from donors of African ancestry. Therefore, only snRNA-seq was 

performed with the tissues of donors of African ancestry. For better comparison of data from 
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breast tissues of African ancestry, a set of samples from parous and nulliparous women of 

European ancestry was similarly processed to obtain snRNA-seq. 

 Integrated analysis of snATAC-seq and snRNA-seq data from all ancestries  except 

African ancestry revealed 10 distinct clusters: three of them are epithelial cell types, two are 

endothelial cell types, two adipocyte subtypes, fibroblasts, T cells and macrophages (Figure 1b). 

Epithelial cell types were annotated using CD49f/EpCAM markers as done previously into 

mature luminal (ML), luminal progenitors (LP) and basal cells 11. These cell clusters have been 

described with various names in the literature 7,8,12. In a recent breast cell annotation event 

organized by Chan-Zuckerberg Initiative that included several research groups involved in 

developing single cell atlas of the breast, the following terminologies were suggested: luminal 

hormone sensing (LHS), luminal adaptive secretory precursor cells (LASP) and basal-

myoepithelial (BM) cells for mature luminal, luminal progenitor, and basal cells, respectively. 

Another recent study that combined single cell RNA-seq with single cell proteome assay has 

subclassified hormone sensing cells into HS-alpha (HSα) and HS-beta (HSβ), LASP cell into 

alveolar progenitors (AP) and basal-luminal alveolar (BL) cells and BM cells into Basal-alpha 

(BAα) and Basal-beta (BAβ) cells 8. We used the markers described in that study to subcluster 

the epithelial cells and found the presence of all six epithelial cell states (Figure 1c). Further 

examination of these data revealed LASP cells to be in four cell states, fibroblasts in two states, 

endothelial cells in four states and macrophages in two states (Figure 1d). Genes expressed in 

each of the cell types are listed in Table S3. Genes differentially expressed in HSα compared to 

HSβ cells, AP versus BL cells and BAα versus BAβ cells are listed in supplementary Tables S4, 

S5, and S6, respectively. Genes differentially expressed in different cell states of endothelial 

cells, fibroblasts and adipocytes are listed in Tables S7, S8, and S9, respectively. The top ten 
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transcription regulators of each of the major cell types are listed in Table S10. Average 

expression of genes in each cluster is listed in Tables S11. 

AP cells are enriched in breast tissues of women of Indigenous American ancestry. We next 

analyzed data based on self-reported racial/ethnicity groups. Samples from BRCA1 and BRCA2 

mutation carriers were also included. Cell types in each group are shown in Figure 2a and cell 

proportions are listed in Table S12. Data from women of African ancestry are only from snRNA-

seq and additional details for this group are described in subsequent sections. AP cells were 

disproportionately higher in breast tissues of women of Indigenous American ancestry. While 

19% of cells in Indigenous Americans are AP cells, the percentage of AP cells in the other 

groups ranged from 5 to 9%. Using the previously described markers of alveolar cells (EHF and 

ELF5) and luminal progenitor cells (KIT) 15,16, we confirmed that AP cells express alveolar 

markers and KIT (Figure 2b-d). None of these differences between the groups is due to 

differences in age, BMI or number of childbirths as the average age of European, Indigenous 

American, Asian, and Hispanic-White donors were 38, 41, 42, and 41, respectively (Table S1). 

Average age of Ashkenazi-Jewish-European and African ancestry donors was higher (average 53 

and 54, respectively). None of these differences can be attributed to differences in proliferation 

rate of cells in the breast during tissue collection as MKI67, a marker of cell proliferation, is 

expressed in very few cells across samples (Figure 2e). 

AP cells enriched in Indigenous Americans express ESR1 and are enriched for transcripts 

downstream of ER-growth factor signaling: To determine whether AP cells enriched in 

Indigenous Americans express a unique set of genes compared to other cell clusters within LASP 

cells, we compared gene expression between cluster 9 (Indigenous American enriched cluster) 

and clusters 1, 12 and 18 (Table S5).  ESR1 is among the top genes highly expressed (~230 fold 
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higher) in this cluster compared to other clusters. ESR1 expression pattern in various clusters, as 

shown in Figure 3a, further confirmed these results. A set of pioneer factors control ERα genome 

wide binding including FOXA1 and GATA3 and ERα-FOXA1-GATA3 constitute a cell type 

specific transcription factor network of hormone responsive cells 17,18. FOXA1 expression was 

mostly restricted to LHS cells, even in Indigenous Americans, whereas GATA3 expression was 

higher in LHS cells with lower level expression in LASP and BM cells (Figure 3b and Figure 

3c).  

 Lack of FOXA1 expression but the presence of ESR1 transcripts in AP cells of 

Indigenous Americans suggested that ERα activity in these cells is regulated by a mechanism 

distinct from that in LHS cells. To evaluate this possibility, we subjected genes differentially 

expressed in cluster 9 to Ingenuity Pathway Analysis. Among the various pathways enriched in 

this cluster, intersection of EGF signaling with ER signaling emerged as one of the top signaling 

networks (Figure 3d). EGF has previously been shown to alter the ER cistrome and induce gene 

expression patterns found in antiestrogen resistant cells 19. Thus, in cluster 9, ER and EGF 

signaling cross talk may be dominant. To further confirm this possibility, we next determined 

how many of the genes differentially expressed in cluster 9 are known ER-regulated genes in the 

breast cancer cell line MCF-7 20. We determined overlap between cluster 9 enriched genes and 

our previously described ERα:E2 regulated genes in MCF-7 cells 20. Among 671 genes enriched 

in Cluster 9, 264 genes are ERα:E2 regulated genes (Table S13). Therefore, it is possible that E2 

and growth factors control ERα activity in LHS and LASP cells, respectively. 

Chromatin accessibility of ESR1 gene extends to LASP cells: To determine whether cell type 

specific expression of ESR1 correlates with chromatin accessibility, we mapped chromatin 

accessible regions of ESR1 in various epithelial cell types and among donors of different genetic 
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ancestry. Accessibility map included 10 KB regions upstream of transcription start site to cover 

promoter regions and 10 KB downstream of transcription end site to cover potential 3’ enhancer 

regions. Although ESR1 expression was limited to LHS cells among most donors except 

Indigenous Americans, the ESR1 gene displayed similar chromatin accessible regions in both 

LHS and LASP cells (Figure 4a) except for one peak (peak 1) being more prominent in LHS 

cells. Since ESR1 is transcribed from multiple promoters 21, it is difficult to assign which among 

the open chromatin peaks correspond to promoter and enhancers.  Since coding region of one of 

the ESR1 isoforms (NM_000125) starts at chr. 6:151,807,682, peaks 2 and 3 can be considered 

open chromatin regions of enhancer-promoters. Peak 4 may correspond to promoter region for 

isoforms such as ERαΔ36, which is transcribed from an intronic promoter 22.  There was genetic 

ancestry and BRCA2 mutation dependent variability in chromatin accessible peaks 1 and 4 

(Figure 4b). For example, peak 4 is more prominent in BRCA2 mutation carrier but close to 

being absent in Indigenous Americans. ESR1 binding sites are present in chromatin accessible 

regions of LHS and LASP cells but at lower levels in BM cells, although differences are less 

dramatic (Figure 4c). With respect to FOXA1, promoter region was more accessible in LHS cells 

compared to other cell types (Figure 4d). Furthermore, chromatin accessible regions of LHS cells 

were enriched for binding sites for FOXA1 compared to other cell types (Figure 4e).   

 We also examined the chromatin accessibility status of LASP/alveolar markers EHF, 

ELF5, and KIT. Distinct chromatin accessibility patterns for EHF and ELF5 were observed in 

three major epithelial cell types of the breast with prominent chromatin accessible promoter 

region in LASP cells followed by LHS cells (Figure 4f). However, promoter regions of KIT was 

similarly accessible in all three cell types. BM cells had least open chromatin regions for these 

two genes. Therefore, EHF and ELF5 are more reliable markers of LASP cells. Chromatin 
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accessibility map of BM cell markers TP63 and KRT14 showed cell type-dependent variability 

with BM cells showing distinct chromatin accessible promoter region (Figure 4g). Multiple 

isoforms of TP63 are expressed using different promoters 23 and it is difficult to ascertain which 

among the chromatin accessible regions contain cell-type specific active promoter/enhancer 

regions of TP63. Nonetheless, these results clearly show that TP63 and KRT14 are bona fide 

markers of BM cells and changes in their expression in disease conditions require chromatin 

reorganization. 

Expression patterns and binding site enrichment analysis showed that binding sites for 

EHF and ELF5 are enriched in the AP subpopulation of LASP cells (Figure 4h). TP63 

expression and binding site enrichment were restricted to BM cells, whereas GATA3 expression 

and binding site enrichment did not show cell type specificity (Figure 4h). Collectively, only 

select genes expressed in epithelial cell types of the breast show cell type-specific chromatin 

accessibility patterns and their cell type-specific expression is influenced likely by extracellular 

signals rather than at the level of cell type specific chromatin accessibility. 

Incompatibility in gene expression and chromatin accessibility extends to other genes 

associated with cell identity. Several in vitro studies have shown that the transcription regulator 

ZEB1 mediates epithelial to mesenchymal transition of breast epithelial and breast cancer cells 

and that its promoter region remains in poised state to confer plasticity to breast cancer cells 24-26. 

However, our previous two studies examining ZEB1 protein levels in normal breast tissues  

demonstrated the presence of ZEB1+ cells in stroma that surrounds duct with no expression in 

epithelial cells 13,27. We examined our multiome dataset for ZEB1 expression and chromatin 

accessibility. Interestingly, ZEB1 mRNA expression was observed in fibroblast-like cells, 

endothelial cells, adipocytes, and T cells but not in epithelial cells (Figure 5a). However, ZEB1 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560911
http://creativecommons.org/licenses/by-nd/4.0/


 13

regulatory regions showed similar patterns of chromatin accessibility in fibroblasts and all three 

epithelial cell types (Figure 5b). 

 We extended the above observations to other genes that are used as markers to define 

various endothelial and T cell subtypes. For example, CD4+ T cell enriched IL7R and CD8+ T 

cell enriched IFNγ showed T cell-specific expression and chromatin accessibility (Figure 5c). 

Similarly, expression and chromatin accessibility of CD8+ T cell enriched GZMK were 

restricted to T cells (Figure 5d). Chromatin accessibility of macrophage enriched FCGR3A was 

restricted to macrophages (Figure 5e).  

 Among the endothelial cells, lymphatic endothelial cell marker LYVE1 is expressed in 

Endo-2 subcluster and a macrophage subpopulation but the chromatin accessibility patterns in 

these two cell types were not similar (Figure 5f). Similarly, Endothelial Stalk-like subtype 

marker ACKR1 is expressed in a subset of Endo-1 subcluster but the chromatin in the regulatory 

regions of this gene is accessible in all cell types (Figure 5g). CXCL12, which is expressed in 

Endo-1 and in fibroblasts, showed similar chromatin accessible patterns in all cell types except T 

cells (Figure 5h). These results collectively demonstrate lack of compatibility in chromatin 

accessibility and expression of corresponding genes in the majority of cases. 

Breast tissues of women of African ancestry show fibroblast and epithelial cell states 

distinct from breast tissues of women of European ancestry: As noted above, our multiple 

attempts to perform integrated snRNA-seq and snATAC-seq of breast tissues of women of 

African ancestry were not successful. Since breast cancer outcome disparity is known among 

African American women and our prior studies have suggested a biologic basis of disparity, 

particularly related to composition of stromal cells 3,13,27, we made multiple attempts through 

different protocols but were finally successful in obtaining reliable data only when nuclei were 
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subjected to snRNA-seq alone. To allow appropriate comparison, we subjected new breast 

tissues of women of European ancestry to a similar protocol and performed snRNA-seq. Cell 

clustering showed similarity to clustering patterns obtained with integrated snATAC-seq and 

snRNA-seq (Figure 6a). However, there were major differences in epithelial and fibroblast cell 

states between breast tissues of women of African and European ancestry. For example, LASP 

cell clusters in African ancestry are dominantly populated by BL cell state, whereas in case of 

European ancestry, there were similar numbers of BL and AP cells. Similar to data presented in 

Figure 3a, ESR1 and FOXA1 expression were restricted to LSH cells in both groups (Figure 6b). 

Unlike in the breast tissues of Indigenous Americans, AP cells did not express higher levels of 

ESR1 compared to other LASP cells. Average age of donors of African ancestry and European 

ancestry in this snRNA-seq was 54 and 34, respectively. Therefore, we compared cell type status 

of women of African ancestry with that of the Ashkenazi-Jewish European group with similar 

age (average 53). Differences between African and European ancestry persisted when cell state 

of African Ancestry was compared to cell state of Ashkenazi-Jewish European group as shown 

in Figure 2a. The differences between cell clusters of women of African and European ancestry 

are not due to differences in proliferation rate as there was only a minor difference in MKI67+ 

cells between two groups (Figure 6c) and MKI67 positivity was similar between African and 

Ashkenazi Jewish-European groups. 

 We have recently reported a unique type of stromal cells with multi-potent activity 

enriched in breast tissues of women of African ancestry 13. These cells are 

PROCR+/ZEB1+/PDGFRα+ (hence called PZP cells) and display mesenchymal stem and 

fibroblast-like features. Breast epithelial cells co-cultured with PZP cells transdifferentiated into 

BL state 13, which may explain the elevation of BL-like LASP cells in the breast tissues of 
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women of African ancestry. Because fibroblasts in breast tissues of women of African ancestry 

clustered differently from that of European ancestry, we analyzed the expression patterns of 

PROCR, ZEB1 and PDGFRα. A subpopulation of cells in the fibroblast clusters were positive 

for all three markers and, number of PROCR+/ZEB1+/PDGFRα+ cells were higher in fibroblast 

cluster of women of African ancestry compared to women of European ancestry (Figure 6d, 

indicated by a circle in Figure 6a), consistent with our prior study showing protein level 

differences 13.  

 Fibroblasts in breast have recently been shown to exist in four different states based on 

expression pattern of specific genes- Fibro-prematrix, Fibro-SFRP4, Fibro-major and Fibro-

matrix 7. Using the gene expression signatures that specify these cell states, we analyzed 

fibroblasts of breast tissues from different genetic ancestry donors. As shown in Figure 6e, there 

were genetic ancestry-dependent variabilities in fibroblast state with women of African ancestry 

showing specific enrichment of genes that specify Fibro-prematrix state at the expense of Fibro-

matrix state (Figure 6e and 6f). Figure S2 provides additional differences in fibroblasts between 

African and European ancestry and gene expression differences between fibroblasts of African 

ancestry and European ancestry are shown in Table S14. It is interesting that the expression of 

several of the ATP binding cassette subfamily members is elevated in fibroblasts of African 

ancestry compared to European ancestry (Figure S2). We also note that none of the markers 

corresponding to other fibroblast clusters are expressed at high levels. (Figure S2). When 

fibroblast populations of other ancestry groups and BRCA1/2 mutation carriers were compared, 

there was considerable variation in fibroblast cell state across genetic ancestry and BRCA1/2 

mutation status suggesting important contribution of fibroblast diversity in human health (Figure 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560911
http://creativecommons.org/licenses/by-nd/4.0/


 16

6g). For example, consistent with the recent report on the effects of BRCA1 mutation on stromal 

cells 28, fibroblasts in BRCA1/2 mutation carriers are enriched in cluster 6.  

 Previous studies have demonstrated that breast tumors in African Americans are enriched 

for exhausted T cells 29. To determine whether healthy breast tissues of women of African 

ancestry intrinsically contain higher levels of exhausted T cells, we determined the expression 

patterns of CD274 (PD-L1), CTLA-4, LAG3, and PDCD1, all markers of exhausted T cells, in 

breast tissues from women of African and European ancestry 29. No significant differences were 

noted (Figure S3) between tissues of African and European ancestry. Therefore, accumulation of 

exhausted T cells in tumors of African American women is likely induced by the tumor 

microenvironment.  

 Murrow et al recently reported hormone-regulated cell-cell interaction network in the 

human breast at single cell resolution and identified various markers that can distinguish 

hormone responsive cells into two states; LRRC26 marks cells with both ER and progesterone 

receptor activity (HR+ State 1), whereas P4HA1+ cells to represent hormone responsive cells 

with elevated hypoxia/Pro-angiogenic activity (HR+ State 2) 9. Although LRRC26 expression 

was seen in a subpopulation of LHS cells, a subset of LASP cells also expressed this gene 

(Figure S4). Every cell type of the breast expressed P4HA1, suggesting lack of specificity of this 

gene as a marker of hormone responsive cells. We extended this analysis to include other genes 

suggested to be enriched in HR+ State 1 (PNMT, CXCL13, MYBPC1, CADP52, WNT4, 

PPP1R1B, and IL20RA) and HR+ State 2 (NDRG1, HILPDA, ANGPTL4, EGLN3, ERO1A, 

PLOD2, and ENO2). Only a few of these genes (CXCL13, MYBPC1, PNMT and WNT4) are 

expressed at higher levels in ESR1-positive cells (Figure S4). Additional studies are needed to 

further characterize distinct hormone responsive cell states. 
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Individual level characterization of age-dependent changes in breast epithelial cell gene 

expression. Several donors to our tissue bank have donated breast tissues twice, 10 years apart 

(described as timepoint 1 and timepoint 2) allowing us to determine gene expression differences 

with age. Prior studies focused on identifying age-dependent differences in gene expression 

utilized tissues from independent donors of different ages 8. Because of limited tissue samples, 

we performed spatial transcriptomics with samples from five donors who donated breast tissues 

twice. However, consistent results covering all regions of interest (ROI) were obtained with three 

pairs of samples. Age and BMI status of three donors at both times of tissue collection, UMAP 

of transcriptome data, and immunostaining of breast tissues to differentiate epithelial cells and 

adipocytes are shown in Figure S5a and b). Micro-dissected ducts and lobules as well as 

adipocytes are shown in Figure 7a. We first evaluated resulting spatial transcriptomics data for 

adipocyte, endothelial and epithelial cell subtype gene signatures derived from multiome data 

(Tables S4-S9). These initial analyses showed that data from timepoint 2 cluster into two groups, 

but are generally more abundant in adipocyte-2 (Adi-2), macrophages and Endo-2 cell types 

compared to timepoint 1 (Figure S5c). Adi-1 and Adi-2 differ with respect to adiponectin 

expression with Adi-1 expressing 30-fold higher adiponectin than Adi-2 (Table S9). Endo-2 is 

enriched for lymphatic endothelial cell markers. Spatial transcriptomics allowed us to extend the 

studies to find gene expression differences between lobular and ductal epithelial cells. Volcano 

plot in Figure 7b shows differences in gene expression between ductal and lobular epithelial 

cells. Pathway analysis of genes differentially expressed in ductal and lobular epithelial cells and 

at two different time points are shown in Figure S6. While metabolic pathways are enriched in 

epithelial cells of the lobules, ductal epithelial cells showed enrichment of extracellular signal 

activated signaling networks such as cytokine and cancer-associated signaling networks. Age-
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dependent changes were also restricted to metabolic pathways in lobular epithelial cells, whereas 

changes in splicing machinery were observed in ductal epithelial cells. Genes differentially 

expressed in lobular epithelial cells compared to ductal epithelial cells (Table S15), differences at 

timepoint 1 (Table S16), at timepoint 2 (Table S17); within ducts between timepoint 1 versus 2 

(Table S18), within lobules between timepoint 1 versus 2 (Table S19) are provided as 

supplementary information. Volcano plots shown in Figure 7c-7f further highlight key genes 

differentially expressed in ductal and lobular epithelial cells under different conditions. Four-

hundred twenty six genes are differentially expressed in ductal versus lobular epithelial cells. A 

recent study using a different spatial transcriptomic technique listed 30 genes that are expressed 

differentially in ductal and lobular epithelial cells 7. Among those 30 genes, 10 genes showed 

similar expression patterns (MGP, ANXA1, TACSTD2, KRT14, KRT17, WFDC2, STAC2 and 

ALDH1A3 are elevated in ductal epithelial cells whereas APOD and SNORC are elevated in 

lobular epithelial cells). Expression pattern of these genes assessed through multiome data is 

shown in Figure S7. Since 10 genes showed similar expression patterns in lobular and ductal 

epithelial cells in two independent studies, these genes can be considered as markers of ductal 

and lobular epithelial subtypes. However, expression of only few of these genes is enriched in 

epithelial cells. We observed upregulation of KRT14 and KRT17, BM cell enriched genes, in 

ductal compared to lobular epithelial cells, consistent with the previous report 7. Immunoglobulin 

heavy constant alpha 1 (IGHA1) and Immunoglobulin Kappa Constant (IGKC) gene, both of 

which are expressed in the breast as per GTEx database, are expressed at higher levels in lobular 

compared to ductal epithelial cells. Several genes showed differences in expression in two 

different timepoints but only PTBP1 showed consistent decline (~six folds) in expression in 

timepoint 2 compared to timepoint 1 in both ductal and lobular epithelial cells. PTBP1 is 
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associated with mRNA processing and alternative splicing 30 and, based on UALCAN database 

31, PTPB1 is overexpressed in all subtypes of breast cancer (Figure S8). We determined genes 

commonly upregulated or down-regulated at timepoint-2 compared to timepoint-1 in both 

lobular and ductal epithelial cells. IPA analyses of the genes showed downregulation of genes 

associated with PKA signaling pathway but upregulation of EIF2 and oxidative phosphorylation 

pathways in timepoint 2 compared to timepoint 1 (Figure 8 and Table S20).   
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Discussion 

 The biomedical research community has recognized the importance of including tissues 

from people of different genetic ancestry to make research representative of all people 32. This 

recognition came from several clinical observations highlighting genetic ancestry-dependent 

variability in utility of commonly used disease biomarkers, mutation patterns in cancer, response 

to treatment, and ultimately disease outcome 6,33,34. For example, a recent study showed that 

genetic ancestry but not the amount of UV exposure dictates clonal architecture and skin cancer 

susceptibility 35. To aid disease specific research, global efforts such as Human Cell Atlas and 

Chan-Zuckerberg initiatives are focused on developing a single cell atlas of the body. It is 

recognized by these organizations that reference a single cell atlas of the body should also 

include tissues from people of diverse genetic ancestry. This study was undertaken to meet this 

goal for the breast tissue atlas. By sequencing 88,005 nuclei from breast tissues collected using 

the same standard operating procedure (details are in Komen Tissue Bank website) from women 

of diverse genetic ancestry and with no clinical history of breast cancer, we have developed a 

global breast single cell atlas. Unlike other efforts in this direction, which used reduction 

mammoplasty or normal tissues adjacent to tumors, which we and other have shown to be 

histologically abnormal 27,36,37, our study utilized tissues from healthy donors. Because we 

subdivided the samples for the analyses based on self-reported race/ethnicity and verified further 

with genetic ancestry analysis, we were able to present a single cell atlas of different groups 

based on genetic ancestry and to identify two major differences based on ancestry- alveolar 

progenitor cells in Indigenous Americans and stromal fibroblasts in women of African ancestry. 

There have been many attempts to understand the biologic basis of breast cancer disparity based 

on genetic ancestry. Most of these studies focused on identifying differences in genomic 
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aberrations in cancer cells and immune cells that infiltrate the tumors 6,29,38. However, genetic 

ancestry-dependent differences in stromal cells such as fibroblasts could be another source of 

disparity as we demonstrated recently 13 and need further attention. 

 A distinct difference in ESR1 expression in breast epithelial cells of Indigenous 

Americans compared to others is interesting and alveolar progenitor cells that express ESR1 in 

Indigenous Americans have a gene expression program that is influenced by crosstalk between 

estrogen receptor and growth factor signaling. Recent studies have suggested that Indigenous 

Americans are more susceptible to ERBB2+ breast cancers 4. It is unknown whether distinct 

gene expression program in alveolar cells that involves ER-growth factor crosstalk increases 

susceptibility to ERBB2+ breast cancers. ESR1 upregulation in alveolar progenitor cells of 

Indigenous Americans is not due to distinct chromatin organization but rather appears to be at 

the level of transcriptional output. In this respect, a breast cancer protective allele found mostly 

in Indigenous Americans has been suggested to affect ESR1 expression 5. However, that 

protective allele is less likely to be responsible for our observation as only two out 10 donors 

carried this protective allele. Several other variants of ESR1 linked to various conditions have 

been described in the literature 39-41 and it is possible that a few of these variants affecting ESR1 

expression or transcript stability are more prevalent in Indigenous Americans. 

 Our studies revealed that FOXA1 but not ESR1 is a reliable marker of LHS cells as its 

expression was much more restricted to LHS cells than any other genes we examined.  

Furthermore, FOXA1 but not ESR1 showed unique chromatin accessibility patterns in LHS 

cells. In our previous studies, we had observed FOXA1 expression in 300 out of 404 breast 

tumors and three cell states among LHS cells are putative cells-of-origin of breast cancer 11,42. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560911
http://creativecommons.org/licenses/by-nd/4.0/


 22

Thus, it is likely that the majority of breast cancers, particularly ER+ breast cancers, originate 

from LHS cells instead of LASP cells. 

   Breast cancer outcomes in women of African ancestry is generally poor even after 

adjusting for socioeconomic factors and healthcare access 3. The biologic basis for this disparity 

is just beginning to be elucidated. Genetic ancestry-dependent variability in the tumor 

microenvironment, particularly immune cells, and inflammatory cytokines has been reported 

29,43. We reported enrichment of stromal cells with mesenchymal stem-like and fibroadipogenic 

properties in the breast tissues of women of African ancestry and the ability of these cells to alter 

cytokine/chemokine profiles 13. Fibroblast subcluster described in this study also show distinct 

cell state in women of African Ancestry compared to others. Fibroblast cell state in women of 

African ancestry is predominantly prematrix state compared to others and this cell state is 

associated with vasculogenesis 7. How this fibroblast state impacts the normal biology as well as 

breast tumor biology remains to be investigated. Considering genetic ancestry-dependent 

diversity fibroblast state observed in this study, understanding fibroblast biology will likely 

provide new insight into biologic basis of health disparity. 

 Integrated snATAC-seq and snRNA-seq revealed that chromatin accessibility is not the 

primary determinant of cell type-specific expression of most of the genes in the breast. As breast 

tissue undergoes frequent remodeling in response to hormonal cues during puberty, menstrual 

cycle, pregnancy, lactation, involution, and menopause, ability of cells to respond to extracellular 

signals rapidly and plasticity are very much essential during remodeling. Gene expression 

changes that are not dependent on changes in chromatin accessibility are required in these 

situations. In this context, it is interesting that while ESR1 expression is restricted to LHS cells 

of the breast of women of all but Indigenous American ancestry, chromatin accessibility 
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allowing gene expression is maintained in both LHS and LASP cells with minor differences. 

Genomic aberration in any transcription factor that controls ESR1 expression could lead to ESR1 

expression in LASP cells and make these cells responsive to estrogen and potentially promote 

carcinogenesis. Several transcription regulators such as GATA3, FOXA1, EP300, TCF7L2, 

TFAP2C, BRCA1, TP53 and BARX2 control the expression of ESR1 21 and cBioportal analyses 

revealed in at least 50% of breast cancers one or more of these transcription regulators show 

genomic aberrations. ESR1 gene appears to be organized differently in BRCA2 mutation carriers 

than others. BRCA2 mutation carriers typically develop ER+ breast cancers 44 and whether 

distinct organization of ESR1 gene in these carriers leads to altered ESR1 isoform expression 

remains to be determined. Once a human single cell atlas of multiple organs is developed, it will 

be interesting to determine cells in how many organs have cells that maintain such a relationship 

between gene expression and chromatin accessibility, and whether cancer susceptibility of an 

organ is linked to a relationship between gene expression and chromatin accessibility.   

 Breast cancers originating from epithelial cells of the duct and lobules show distinct 

biology, clinical features, and response to treatment 45. Therefore, there has been considerable 

interest in deciphering biologic differences in epithelial cells of the duct and lobules. Results of 

our transcriptomics study identified few major differences between these two epithelial cell 

types. Predominant expression of ALDH1A3 in ductal epithelial cells is interesting in the context 

of stem-progenitor-mature cell hierarchy of the breast 46. ALDH1A3 is expressed predominantly 

in LASP cells from which most breast cancer in BRCA1 mutation carriers is suggested to 

originate 47,48.  Ductal epithelial cells also expressed higher levels of KRT14 and KRT17, which 

are expressed mostly in BM cells. It is possible that ducts are enriched for BM and LASP cells, 

whereas lobules are enriched for LHS cells and most lobular carcinomas are ER+.  
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 Identifying age-dependent changes in breast epithelial cell gene expression has been of 

interest to several groups because any deviation in this process may predispose breast epithelial 

cells for breast tumorigenesis. Prior studies, however, utilized breast tissues from different 

individuals for such studies 8,49. Because of inter-individual differences in gene expression, 

results of those studies are less generalizable. Our study utilizing breast tissues from the same 

donor has enabled mapping of gene expression changes in ductal and lobular epithelial cells with 

age. PTBP1 expression is reduced at timepoint 2 compared to timepoint 1 in both cell types. 

PTBP1 is involved in mRNA biosynthesis and alternative splicing and its downregulation can 

have a major impact on cellular proteome 30. Similar to a previous report, basal cell marker 

KRT17 increased with age in ductal epithelial cells 7. Pathway analysis of genes commonly 

differentially expressed in lobular and ductal epithelial cells revealed downregulation of PKA 

pathway but upregulation of EIF2 pathway with aging. Studies in yeast models have shown 

attenuating PKA pathway extends life span and translational inhibition through phosphorylation 

of eIF2 increases lifespan 50,51. Since PKA and EIF2 pathways are also involved in breast 

tumorigenesis 52,53, whether deregulation of natural aging-dependent changes in these pathways 

contribute to breast tumorigenesis is an unanswered question. Collectively, data presented in this 

study provide an important resource generated from healthy breast tissues to derive cell type-

specific chromatin accessibility and age-dependent gene expression signatures to study various 

diseases of the breast.  
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Materials and Methods: 

Normal breast tissues and genetic ancestry mapping of donors: All breast tissues from 

clinically breast cancer free healthy women were collected by the Komen Normal Tissue Bank 

(KTB) with informed consent. The study has received the approval from the institutional review 

board. International Ethical Guidelines for Biomedical Research Involving Human subjects were 

followed. KTB website describes standard operating procedure and breast biopsies were always 

collected from the upper outer quadrant of the breasts. Collected breast tissues were 

cryopreserved till use as described previously 54. DNA from blood of tissue donors were used for 

genetic ancestry mapping. Procedures for genetic ancestry mapping are described in our recent 

publication 13. 

Single cell multiome assay:  Tissues from two cores of five donors were rapidly thawed and 

multiome assay reactions and sequencing were done in multiple batches. Nuclei were isolated 

from these tissues using the protocol suggested for use with the 10X Genomics chromium Next 

GEM Single Cell Multiome ATAC+Gene Expression protocol (CG000338). Thawed tissues 

were washed in PBS, minced using scalpel, and transferred to 1.5 ml microcentrifuge tubes. 300 

µl of NP40 Lysis buffer was added and tissues were homogenized 15x using a Pellet Pestle 

(Fisher Scientific: 749625-0010). After homogenization, 1 ml of NP40 lysis buffer was added 

and incubated on ice for three mins. Wide bore pipet was used to mix tissues in between few 

times to allow better disintegration. Lysed tissue suspension was first filtered through a 70 µM 

strainer followed by 40 µM strainer into a 50 ml conical tube. After centrifugation for 5 mins at 

500 rcf at 4 degrees, most of the supernatant was removed leaving behind 50 µl. One ml of PBS 

+ 1% BSA + 1U/µl of RNAse inhibitor was added and kept on ice for 5 mins. After resuspension 

through pipet, nuclei were centrifuged at 500 rcf for 5 min at 4 degrees. After removing 
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supernatant, nuclei were resuspend in 500 µl of PBS +1% BSA + RNase inhibitor. 5 µl of 7AAD 

ready-made solution (Sigma Aldrich: SML1633-1ML) was added to the above nuclei 

suspension. 7AAD+ nuclei were separated based on size and granularity using BD FACSMelody 

(or equivalent). After estimating nuclei concentration through manual counting under a 

microscope, next step was performed immediately as per 10X Genomics Chromium Next GEM 

Single Cell Multiome ATAC + Gene Expression User Guide (CG000338). ATAC and cDNA 

libraries were prepared using the 10X Genomics protocol (CG000338. The final ATAC and gene 

expression libraries were sequenced on an Illumina Novaseq 6000 sequencer, with index reads of 

10 bp + 24 bp, and 100 bp paired-end reads.  

Single-cell multiome data analysis; Cell Ranger ARC v2.0 (http://support.10xgenomics.com/) 

was utilized to process the raw sequence data derived from the single-cell multiome libraries. 

Both the ATAC and gene expression FASTQ files were processed with the cellranger-arc count 

algorithm. The paired information of the gene expression UMIs and the count of transposition 

events in peaks for each barcode was used to identify the cells from the non-cell populations. 

The final filtered gene-cell barcode matrices and fragment files were used for further analysis 

with Signac 55 and Seurat v4 56-58. Since each sample was a pool of cells from multiple subjects, 

souporcell 59 was used for genotype-free demultiplexing and the cells were assigned to their 

origins. Analysis with Signac and Seurat started with quality check of the cells identified. From 

the gene expression data, low quality cells and/or cells with extremely high or low number of 

detected genes/UMIs were excluded. For the ATAC-seq data, cells with low signal enrichment 

around transcriptional start sites, extremely high or low number of reads fallen in peaks detected 

were discarded. The gene expression data was normalized using SCTransform 60. The chromatin 

accessibility data was normalized applying the frequency-inversed document frequency (TF-
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IDF) procedure. After finishing the pre-processing and dimensionality reduction independently 

on the gene expression and chromatin accessibility data, the closest neighbors of each cell in the 

data were calculated based on a weighted combination of gene expression and chromatin 

accessibility similarities. The weighted nearest neighbor graph (WNN) calculated were used for 

cell clustering and visualization. 

To annotate each cell population from the analysis, automatic annotation using SingleR 

together with manual annotation with known marker genes were employed. CoveragePlot 

function from Signac was used to plot chromatin accessibility for specific genomic regions. 

Single-nuclei data analysis: snRNA-seq data was first processed using CellRanger 7.0.1 

(http://support.10xgenomics.com/).  The feature-cell barcode matrices generated from 

CellRanger was used for further analysis with the R package Seurat v4 56-58. The integrated 

single-cell multiome data was used as a reference to annotate the snRNA-seq data. 

FeaturePlot_scCustom function in scCustomize 61 was used to generate the gene expression 

plots. 

Spatial Transcriptomics analyses: FFPE sections from donors with two time tissue donations 

were selected for the study. Each slide contained two 5 micrometer sections from FFPE blocks. 

Each slide represented one donor with 2 barcodes representing 2-time donations. Each donor had 

three repeats (3 slides per donor). The sections were cut with Leica DB80 LS blades (Leica 

#14035843488) on a rotary microtome instrument (Leica RM2125 RTS) and placed on the 

center of a Superfrost Plus Microscope slide (Fisher scientific #1255015). Tissue sections were 

placed in the center of the slide and be no larger than 35.3 mm x 14.1 mm.  

Regions of interest (ROIs) were selected after staining the slides with pan-keratin, alpha-

SMA and FABP4 antibodies. All ROIs passed a sequencing quality control assessment. Next, 
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negative control probes were used to estimate background and downstream gene detection and to 

remove outliers. The limit of quantification (LOQ) of each ROI was calculated using the 

geometric mean and geometric standard deviation of the negative control probes to identify 

genes detected above background in the experiment. All ROIs passed LOQ-based filtering with 

more than 1% of genes detected. Gene filtering was also performed, resulting in 10,270 

remaining targets that were detected above the LOQ in 10% or more ROIs. 10,270 genes 

remained for data analysis from 48 ROIs. Upper quartile (Q3) normalization was performed for 

genes in each segment. Quality control and normalization was performed using GeoMxTools 

v3.0.1.  

Statistical analyses of Spatial transcriptomics data: Dimension reduction analysis was 

performed in R v4.2.1 using the following packages: ‘FactoMineR’ v2.6, ‘Rtsne’ v0.16, and 

‘UMAP’ v0.2.9.0. Differential gene expression analysis was performed on a per-gene basis, 

modeling log-transformed, normalized gene expression using either a linear mixed-effect model 

(LMM) for study-wide comparisons or a linear model for donor-specific comparisons with 

GeoMxTools. LMMs are used to account for the sampling of multiple ROI/AOI segments per 

tissue and non-independence of the data. For the study-wide pairwise comparisons between the 

ducts vs lobules, the following LMM was used: gene ~ ROIType + (1|Tissue). For comparing 

ducts vs lobules within the same donor tissues, the following linear model was used: gene ~ 

ROIType. A false discovery rate (FDR) correction was applied to p-values. To avoid inter-

sample variability impacting data interpretation, the following seven analyses were performed 

with the first four analyses restricted to sample number 3. Question 1: What are the differences 

between the duct and gland at the first timepoint?; Question 2: What are the differences between 

the duct and gland at the second timepoint?; Question 3: What are the differences in the duct 
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between timepoints 1 and 2?; Question 4: What are the differences in the gland between 

timepoints 1 and 2?; Question 5: What are the differences between ducts and glands across all 

donors?; Question 6: What are the differences between ducts and glands at timepoint 1?; 

Question 7: What are the differences between ducts and glands at timepoint 2? 

Spatial deconvolution was performed using the SpatialDecon package in R, v1.6.0. 

Spatial deconvolution requires the use of a cell profile matrix derived from scRNA-seq. For this 

analysis, we used gene signatures derived from multiome data Tables S4-S9. Differential 

abundance analysis was performed on the results of spatial deconvolution using the same 

approach as differential gene expression.  

 Pathway analysis was performed using the GSVA v1.44.5 R package with the KEGG 

Brite database. 796 gene sets were scored, where each gene set contained between 5 and 500 

genes. Differential gene set enrichment analysis was performed on the results using the same 

approach as differential gene expression. Ingenuity pathway analyses was used to determine 

pathways altered due to aging.  
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Figure Legends: 

Figure 1: Integrated snATAC-seq and snRNA-seq analyses of breast issues of healthy women. 

a) Genetic ancestry marker distribution pattern among donors of self-identified race/ethnicity 

groups. b) Integrated cell clusters generated using snATAC-seq and snRNA-seq data 

representing all donors except African American donors. c) Breast epithelial cells could be 

further subclassified into six different cell types. d) Cell clustering analysis reveal further 

refinement of cell state of LASP cells, fibroblasts, endothelial cells.  

Figure 2: Genetic ancestry-dependent variability in cell state. a) Cell clustering in each group 

based on integrated snATAC-seq and snRNA-seq analyses. b) Expression pattern of alveolar 

cells marker EHF. c) Expression pattern of alveolar cells marker ELF5. d) Expression pattern of 

luminal progenitor cells marker KIT. e) Expression pattern of the cell proliferation marker 

MKI67. 

Figure 3: Genetic ancestry-dependent variability of ESR1, FOXA1, and GATA3, which 

constitute a hormone responsive cell lineage enriched transcription factor network. a) Expression 

pattern of ESR1. b) Expression pattern of FOXA1. c) Expression pattern of GATA3. d) AP cells 

enriched in Indigenous Americans show elevated ER-growth factor signaling crosstalk. Genes 

differentially expressed in AP cells compared to other cell state among LASP cells were 

subjected to IPA and the top signaling network is presented.  

Figure 4: Relationship between chromatin accessibility and gene expression. a) ESR1 chromatin 

accessibility patterns in LSH, LASP, and BM cells. Horizontal red arrow marks the direction of 

the indicated gene transcription. Vertical arrow denotes cell type-specific chromatin accessible 

regions. b) Chromatin accessibility map of ESR1 gene in LHS and LASP cells of breast tissues 

of women of different genetic ancestry. The chromatin accessible peaks are numbered 1-4 and 
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few of these peaks showed genetic ancestry and BRCA2 mutation status dependent variabilities.  

c) Binding sites for ER are present in the chromatin accessible regions of multiple cell types, 

including cell types in which ESR1 is not expressed. d) Chromatin accessibility map of FOXA1 

in various epithelial cell types of the breast. e) Binding sites for FOXA1 in chromatin accessible 

regions of various cell types. f) Chromatin accessibility map of LASP markers EHF, ELF5, and 

KIT in various cell types of the breast. g) Chromatin accessibility map of BM cell markers TP63 

and KRT14 in various epithelial cell types of the breast. h) EHF, ELF5, GATA3, and TP63 

expression patterns and binding site enrichment analysis. 

Figure 5: Limited relationship between cell-type specific gene expression and chromatin 

accessibility. a) Epithelial cells do not express ZEB1. b) Despite fibroblast-restricted expression, 

chromatin accessibility of ZEB1 is similar between fibroblasts and epithelial cells. c) IL7R and 

IFNγ expression and chromatin accessibility are restricted to T cells. d) GZMK expression and 

chromatin accessibility are restricted to T cells. e) FCGR3A expression and chromatin 

accessibility are restricted to macrophages. f) Lymphatic endothelial marker LYVE1 is expressed 

in Endo-2 and a fraction of macrophages but the chromatin accessibility patterns were not unique 

to these two cell types. g) Although ACKR1 expression is restricted to a subpopulation of 

endothelial cells, ACKR1 gene showed limited variation in chromatin accessibility between 

various cell types. h) CXCL12 expression and chromatin accessibility showed limited 

correlation. 

Figure 6: Comparative analyses of breast tissues of women of African ancestry with European 

ancestry using snRNA-seq. a) Fibroblasts and epithelial cells of the breast tissue cluster 

differently in African ancestry compared to European ancestry. b) ESR1 and FOXA1 expression 

patterns in epithelial cell clusters of African and European ancestry. c) MKI67 expression 
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patterns in breast tissues of African and European ancestry. d) PROCR, ZEB1 and PDGFRα 

expression patterns in breast tissues of African and European ancestry. d) Fibroblasts in African 

and European ancestry show distinct cell states. e and f) Fibro-prematrix state dominate in 

African ancestry, whereas Fibro-matrix state dominate in European ancestry. g) Genetic 

ancestry- and germline mutation-dependent variability in clustering of fibroblasts. 

Figure 7: Spatial transcriptomics reveal gene expression differences between ductal and lobular 

epithelial cells. To avoid inter-individual variation, few of the plots are from donor #3. a) Images 

of micro-dissected ducts, lobules and adipocytes. b) Volcano plot showing gene expression 

differences between lobular and ductal epithelial cells. c) Gene expression differences between 

ductal and lobular epithelial cells at timepoint 1. d) Gene expression differences in ductal and 

lobular epithelial cells at timepoint 2. e) Gene expression differences in ductal epithelial cells 

between timepoints 1 and 2. f) Gene expression differences in lobular epithelial cells between 

timepoints 1 and 2.  

Figure 8: EIF2 and oxidative phosphorylation pathways are upregulated but PKA pathway is 

downregulated at timepoint 2 compared to timepoint 1 in breast epithelial cells.  
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Inventory of Supplementary Figures and Tables: 

Figure S1: Experimental design to generate snATAC-seq and snRNA-seq data. 

Figure S2: Differences in expression of fibroblast-enriched genes in breast tissue fibroblasts of 

African ancestry compared to European ancestry. Expression levels of genes that classify 

fibroblasts into four subtypes are also shown. 

Figure S3: Expression pattern of exhausted T cell markers in breast tissues of women of African 

and European ancestry 

Figure S4: Expression pattern of markers suggested to classify hormone responsive (HR) cells 

into ER/PR-dependent HR State-1 (a) and hypoxia/pro-angiogenic HR State-2 (b). 

Figure S5: a) UMAP showing differences in gene expression patterns between timepoint 1 and 

timepoint 2. Age and BMI of donors at two timepoints of tissues collected for spatial 

transcriptomics are also indicated. b) Staining pattern of breast tissues with antibodies against 

pan-keratin, FABP4 and smooth muscle actin. c) Deconvolution of spatial transcriptomics data 

show elevated Adi-2, macrophages and Endo-2 at timepoint 2 compared to timepoint 1 in most 

samples. 

Figure S6: Differences in signaling pathways in ductal and lobular epithelial cells.  

Figure S7: Expression pattern of 10 genes that showed differential expression in ductal 

epithelial cells compared to lobular epithelial cells assessed using multiome data. 

Figure S8: PTBP1 whose expression in normal breast epithelial cells was reduced in timepoint 2 

compared to timepoint 1, is overexpressed in all breast cancer subtypes compared to normal 

breast. 
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Table S1: Detailed information on donors whose breast tissues were used for multiome study. 

This table provides information on age, BMI, parity, menopausal status, self-reported 

race/ethnicity etc. 

Table S2: Details of number of donor tissues, nuclei and transcripts per nuclei in each group. 

Table S3: Average RNA expression in indicated genes in each cell type. 

Table S4: Gene expression differences between HSα (C19) and HSβ (C3) cell states of LHS 

cells.  

Table S5: Gene expression differences among different cell states of LASP cells. 

Table S6: Gene expression differences between different cell states of BM cells.  

Table S7: Gene expression differences between major endothelial cell types and between 

different cell states within the cell type. 

Table S8: Gene expression differences between cell states among fibroblasts. 

Table S9: Gene expression differences between two types of adipocytes. 

Table S10: Top 10 transcription regulators in each cell type. 

Table S11: Average levels of specific mRNA in each cell cluster. 

Table S12: Cell proportions in each genetic ancestry group. 

Table S13: ERα:E2 regulated genes that are expressed at higher level in cluster 9 (Indigenous 

American enriched cluster). 

Table S14: Gene expression differences between fibroblasts of African ancestry and European 

ancestry. 

Table S15: Gene expression differences between ductal and lobular epithelial cells 

Table S16: Gene expression differences in ductal and lobular epithelial cells at timepoint 1 

Table S17: Gene expression differences in ductal and lobular epithelial cells at timepoint 2 
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Table S18: Gene expression differences in ductal epithelial cells between timepoints 1 and 2 

Table S19: Gene expression differences in lobular epithelial cells between timepoints 1 and 2 

Table S20: Upregulated and downregulated signaling pathways in epithelial cells at timepoint 2 

compared to timepoint 1. 
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