bioRxiv preprint doi: https://doi.org/10.1101/2023.10.04.560911; this version posted October 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Single nuclei chromatin accessibility and transcriptomic map of breast tissues of women of

diver se genetic ancestry

Poornima Bhat-Nakshatri', Hongyu Gao?, Aditi S. Khatpe*, Patrick C. McGuire?, Cihat
Erdogan?, Dugjiao Chen?, Guanglong Jiang?, Felicia New*, Rana German®, AnnaMaria

Storniolo >°, Yunlong Liu*®, and Harikrishna Nakshatri**>®”

!Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
“Department of Medical and Molecular Genetics, Indiana University School of Medicine,
Indianapolis, IN 46202, USA

*Department of Biochemistry and Molecular Biology, Indiana University School of Medicine,
Indianapolis, IN 46202, USA

*NanoString Technology, Inc. Seattle, WA, USA

°|U Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis,
IN 46202, USA

®Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA

VA Roudebush Medical Center, Indianapolis, IN 46202

Running title: Breast single nuclel chromatin and transcriptome atlas

Keywords: Breast, multiome, chromatin accessibility, genetic ancestry

"Corresponding author: Harikrishna Nakshatri, BV Sc., PhD

C218C, 980 West Walnut St


https://doi.org/10.1101/2023.10.04.560911
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.04.560911; this version posted October 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Indianapolis, IN 46202, USA

hnakshat@iupui.edu



https://doi.org/10.1101/2023.10.04.560911
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.04.560911; this version posted October 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Abstract:

Single nuclei analysisis allowing robust classification of cell typesin an organ that helps
to establish relationships between cell-type specific gene expression and chromatin accessibility
status of gene regulatory regions. Using breast tissues of 92 healthy donors of various genetic
ancestry, we have developed a comprehensive chromatin accessibility and gene expression atlas
of human breast tissues. Integrated analysis revealed 10 distinct cell typesin the healthy breast,
which included three major epithelial cell subtypes (lumina hormone sensing, luminal adaptive
secretory precursor, and basal-myoepithelial cells), two endothelial subtypes, two adipocyte
subtypes, fibroblasts, T-cells, and macrophages. By integrating gene expression signatures
derived from epithelial cell subtypes with spatial transcriptomics, we identify specific gene
expression differences between lobular and ductal epithelial cells and age-associated changesin
epithelial cell gene expression patterns and signaling networks. Among various cell types,
luminal adaptive secretory cells and fibroblasts showed genetic ancestry dependent variability. A
subpopulation of luminal adaptive secretory cells with alveolar progenitor (AP) cell state were
enriched in Indigenous American (1A) ancestry and fibroblast populations were distinct in
African ancestry. ESR1 expression pattern was distinctly different in cells from |A compared to
the rest, with ahigh level of ESR1 expression extending to AP cells and crosstalk between
growth factors and Estrogen Receptor signaling being evident in these AP cells. In general, cdll
subtype-specific gene expression did not uniformly correlate with cell-specific chromatin
accessibility, suggesting that transcriptional regulation independent of chromatin accessibility

governs cdll type-specific gene expression in the breast.
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Introduction

Breast cancer shows genetic ancestry dependent variability in incidence and outcome *.
For example, while breast cancer incidence islower in women of African ancestry, age at
diagnosis and outcome are distinctly different compared to women of European ancestry. Breast
cancer isdiagnosed at an earlier age and ismore likely to be triple negative breast cancer subtype
in women of African ancestry compared to women of European ancestry %, Even after
controlling for socioeconomic stress and healthcare access, breast cancer outcome tends to be
worse in women of African ancestry 3. Indigenous Americans (IA) also experience alower
incidence of breast cancer compared to non-Hispanic White women (74.2 per 100,000 versus
126.1 per 100,000) *. A subpopulation of A women carries a breast cancer protective allele,
particularly against Estrogen Receptor-negative (ER-) breast cancer, on chromosome 6925 close
to estrogen receptor 1 (ESR1) gene °. IA women experience a disproportionately higher level of
HER2+ breast cancers *. Thereis evidence in the literature for genetic ancestry dependent
differences in mutational spectrum suggesting the influence of genetic ancestry on genome
organization and accessihility to undergo genomic changes °.

As afirst step in understanding the complex biology of breast cancers, severa groups
have utilized single cell technologies to develop single cell atlas of the breast “*. We reported a
single cell atlas of the breast utilizing breast tissues donated for research purpose by women with
no clinical history of breast cancer ™. We described 23 epithelia cell states; 8 basal-
myoepithdial, 3 intermediate basal/luminal progenitor, 8 luminal progenitor (recently renamed
as luminal adaptive secretory precursor, LASP cells) and 4 mature luminal (recently renamed as
luminal hormone sensing, LHS cells) cell states. Gene expression signatures corresponding to

three cell states within LHS cells and one within LASP cells are enriched in the mgjority of
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breast cancers, suggesting that these cell states are putative cells-of-origin of breast cancer *.
Other studies cited above utilized tissues from reduction mammoplasty or tumor adjacent normal
tissues to derive single cell atlas of the breast. For example, Kumar et a described 12 mgjor cell
typesin the breast with epithelial cells under 11 different states (one basal-myoepithelial, seven
LASP, and three LHS cell states) ’. Gray et al described six epithelial cell states (hormone
sensing-al pha, hormone sensing-beta, alveolar progenitor, basal-luminal hybrid, basal-alpha and
basal-beta) and suggested these states are influenced by age, parity and BRCA2 mutation status
8 They also suggested that age impacts the accumulation of alveolar cells with poor
transcriptional lineage fidelity. Murrow et a characterized premenopausal breast tissue at the
single cell level to determine coordinated transcriptional programs that alter in response to
changing hormonal levels °. Two other single cell studies using reduction mammoplasty samples
identified three major epithelial cell typesin the breast ***2. However, there remains alack of
information in differencesin cell state based on genetic ancestry and relationship between cell
state as defined by transcriptome and chromatin accessibility status.

In this study, we utilized breast tissues donated by women with ancestries as follows: 22
Ashkenazi-European ancestry, 10 Asian with amix of East and central South Asia ancestry, 20
European-non-Ashkenazi, 10 Hispanic-White with predominant European ancestry and 10
Indigenous American ancestry. We performed integrated single nuclei ATAC-seq (SNnATAC-seq)
and RNA-seg (snRNA-seq) analysis. Due to technical difficulties, we were able to perform only
single nuclel RNA-seq of 10 African ancestry donors. Additional tissues from European ancestry
donors were subjected to only snRNA-seq to allow comparison between African and European
ancestry. Gene expression signatures derived from our previous single cell RNA sequencing data

" \was applied on to spatial transcriptomics data obtained from tissues of three women who
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donated breast tissuestwice, 10 years apart, to identify genes enriched in lobular epithelial cells
compared to ductal epithelial cells and to identify individual level gene expression change with
age. Our studies suggest that genetic ancestry impacts the epithelial cell state with Indigenous
Americans being enriched for cells with alveolar progenitor state. Further genetic ancestry
dependent differences in fibroblasts were noted with fibroblasts from African ancestry clustering
differently with distinct cell state and gene expression. These results suggest that a
comprehensive analysis of every cdl type, not just the epithelial cell type, in an organ is needed

to study the impact of genetic ancestry on disease incidence, subtypes and progression.
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Results:

Single nuclel chromatin accessbility and transcriptome mapping of breast tissuesfrom
women of diver se genetic ancestry. Figure S1 provides a brief overview of the experimental
design and Figure 1a provides genetic ancestry estimates of the donor samples used in the study.
Details of genetic ancestry estimation analysis are described in our recent publication 3, Table
S1 provides details of donors including menopausal status, age, BMI, self-reported race, days
since ovulation etc. Average age, BMI and number of childbirthsin each subgroup are also
provided in this table. The majority of self-reported White donors are enriched for European
ancestry, whereas the mgority of self-reported Black donors are enriched for African ancestry.
Sixty percent of self-reported Hispanic women are enriched for European ancestry. Fifty percent
of Asians are enriched for East Asian while other 50% are enriched for Southeast Asian ancestry
markers. Indigenous Americans are enriched for “Americana’ ancestry markers and Americana
ancestry proportion in these donorsissimilar to Indigenous American ancestry proportions
described in Indigenous American breast cancer patientsin Peru *. Note that thisis the only
group to carry significant “Americana’ ancestry markers. Ashkenazi Jewish Americans are a
mixture of European, Middle Eastern, and African ancestry. We also included six samples from
BRCA1 mutation donors and five BRCA2 donors and information on these donors are provided
in another study that utilized these samples for single cell RNA-seq . Table S2 provides details
of number of nuclei sequenced in each group and number of genes per nuclel per group.
Although multiome assay that combined snATAC-seq and snRNA-seq was attempted with
tissues from donors of all genetic ancestry, for unknown reasons, combined multiome assay did
not work with tissues from donors of African ancestry. Therefore, only snRNA-seq was

performed with the tissues of donors of African ancestry. For better comparison of data from
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breast tissues of African ancestry, a set of samples from parous and nulliparous women of
European ancestry was similarly processed to obtain sShRNA-seq.

Integrated analysis of sSnATAC-seq and snRNA-seq data from all ancestries except
African ancestry revealed 10 distinct clusters: three of them are epithelial cell types, two are
endothelial cdl types, two adipocyte subtypes, fibroblasts, T cells and macrophages (Figure 1b).
Epithelial cell types were annotated using CD49f/EpCAM markers as done previously into
mature luminal (ML), luminal progenitors (LP) and basal cells*'. These cell clusters have been
described with various names in the literature "®*2, In arecent breast cell annotation event
organized by Chan-Zuckerberg Initiative that included several research groupsinvolved in
developing single cell atlas of the breast, the following terminologies were suggested: luminal
hormone sensing (LHS), luminal adaptive secretory precursor cells (LASP) and basal-
myoepithelial (BM) cells for mature luminal, luminal progenitor, and basal cells, respectively.
Another recent study that combined single cell RNA-seq with single cell proteome assay has
subclassified hormone sensing cells into HS-alpha (HSo) and HS-beta (HS), LASP cell into
alveolar progenitors (AP) and basal-luminal alveolar (BL) cellsand BM cells into Basal-alpha
(BA0)) and Basal-beta (BAP) cells ®. We used the markers described in that study to subcluster
the epithelial cells and found the presence of all six epithelial cell states (Figure 1c). Further
examination of these data revealed LASP cellsto bein four cell states, fibroblastsin two states,
endothelia cellsin four states and macrophages in two states (Figure 1d). Genes expressed in
each of the cell types arelisted in Table S3. Genes differentially expressed in HSo. compared to
HSB cells, AP versus BL cells and BAa versus BAP cells are listed in supplementary Tables $4,
S5, and S6, respectively. Genes differentially expressed in different cell states of endothelial

cells, fibroblasts and adipocytes are listed in Tables S7, S8, and S9, respectively. The top ten
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transcription regulators of each of the mgjor cell types arelisted in Table S10. Average
expression of genesin each cluster islisted in Tables S11.

AP cdlsareenriched in breast tissues of women of Indigenous American ancestry. We next
analyzed data based on self-reported racial/ethnicity groups. Samples from BRCA1 and BRCA2
mutation carriers were also included. Cell typesin each group are shown in Figure 2a and cell
proportions are listed in Table S12. Data from women of African ancestry are only from snRNA-
seq and additional details for this group are described in subsequent sections. AP cells were
disproportionately higher in breast tissues of women of Indigenous American ancestry. While
19% of cdlsin Indigenous Americans are AP cells, the percentage of AP cellsin the other
groups ranged from 5 to 9%. Using the previously described markers of alveolar cells (EHF and
ELF5) and luminal progenitor cells (KIT) **°, we confirmed that AP cells express alveolar
markers and KIT (Figure 2b-d). None of these differences between the groupsisdueto
differencesin age, BMI or number of childbirths as the average age of European, Indigenous
American, Asian, and Hispanic-White donors were 38, 41, 42, and 41, respectively (Table S1).
Average age of Ashkenazi-Jewish-European and African ancestry donors was higher (average 53
and 54, respectively). None of these differences can be attributed to differencesin proliferation
rate of cellsin the breast during tissue collection as MKI167, amarker of cell proliferation, is
expressed in very few cells across samples (Figure 2¢).

AP cédllsenriched in Indigenous Americans express ESR1 and are enriched for transcripts
downstream of ER-growth factor signaling: To determine whether AP cells enriched in
Indigenous Americans express a unique set of genes compared to other cell clusters within LASP
cells, we compared gene expression between cluster 9 (Indigenous American enriched cluster)

and clusters 1, 12 and 18 (Table S5). ESR1 isamong the top genes highly expressed (~230 fold
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higher) in this cluster compared to other clusters. ESR1 expression pattern in various clusters, as
shown in Figure 3a, further confirmed these results. A set of pioneer factors control ERo. genome
wide binding including FOXA1 and GATA3 and ERo-FOXA1-GATAS3 constitute a cell type
specific transcription factor network of hormone responsive cells "8, FOX A1 expression was
mostly restricted to LHS cells, even in Indigenous Americans, whereas GATA3 expression was
higher in LHS cells with lower level expression in LASP and BM cells (Figure 3b and Figure
3c).

Lack of FOXA1 expression but the presence of ESR1 transcriptsin AP cells of
Indigenous Americans suggested that ERo. activity in these cells is regulated by a mechanism
distinct from that in LHS cells. To evaluate this possibility, we subjected genes differentially
expressed in cluster 9 to Ingenuity Pathway Analysis. Among the various pathways enriched in
this cluster, intersection of EGF signaling with ER signaling emerged as one of the top signaling
networks (Figure 3d). EGF has previously been shown to alter the ER cistrome and induce gene
expression patterns found in antiestrogen resistant cells °. Thus, in cluster 9, ER and EGF
signaling cross talk may be dominant. To further confirm this possibility, we next determined
how many of the genes differentially expressed in cluster 9 are known ER-regulated genes in the
breast cancer cell line MCF-7 °. We determined overlap between cluster 9 enriched genes and
our previously described ERo.:E2 regulated genesin MCF-7 cells ®. Among 671 genes enriched
in Cluster 9, 264 genes are ERoi:E2 regulated genes (Table S13). Therefore, it is possible that E2
and growth factors control ERa. activity in LHS and LASP cells, respectively.

Chromatin accessibility of ESR1 gene extendsto L ASP cells. To determine whether cell type
specific expression of ESR1 correlates with chromatin accessibility, we mapped chromatin

accessible regions of ESRL1 in various epithelial cell types and among donors of different genetic
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ancestry. Accessibility map included 10 KB regions upstream of transcription start Site to cover
promoter regions and 10 KB downstream of transcription end site to cover potential 3 enhancer
regions. Although ESR1 expression was limited to LHS cells among most donors except
Indigenous Americans, the ESR1 gene displayed ssimilar chromatin accessible regions in both
LHS and LASP cells (Figure 4a) except for one peak (peak 1) being more prominent in LHS
cells. Since ESR1 is transcribed from multiple promoters 2, it is difficult to assign which among
the open chromatin peaks correspond to promoter and enhancers. Since coding region of one of
the ESR1 isoforms (NM_000125) starts at chr. 6:151,807,682, peaks 2 and 3 can be considered
open chromatin regions of enhancer-promoters. Peak 4 may correspond to promoter region for
isoforms such as ER0A36, which is transcribed from an intronic promoter %. There was genetic
ancestry and BRCA2 mutation dependent variability in chromatin accessible peaks 1 and 4
(Figure 4b). For example, peak 4 is more prominent in BRCA2 mutation carrier but closeto
being absent in Indigenous Americans. ESR1 binding sites are present in chromatin accessible
regions of LHS and LASP cdlls but at lower levelsin BM cells, although differences are less
dramatic (Figure 4c). With respect to FOXAL, promoter region was more accessiblein LHS cells
compared to other cell types (Figure 4d). Furthermore, chromatin accessible regions of LHS cells
were enriched for binding sites for FOXA1 compared to other cell types (Figure 4e).

We also examined the chromatin accessibility status of LASP/alveolar markers EHF,
ELF5, and KIT. Distinct chromatin accessibility patterns for EHF and ELF5 were observed in
three major epithelial cell types of the breast with prominent chromatin accessible promoter
region in LASP cells followed by LHS cells (Figure 4f). However, promoter regions of KIT was
similarly accessiblein all three cell types. BM cells had least open chromatin regions for these

two genes. Therefore, EHF and ELF5 are more reliable markers of LASP cells. Chromatin
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accessibility map of BM cell markers TP63 and KRT14 showed cell type-dependent variability
with BM cells showing distinct chromatin accessible promoter region (Figure 4g). Multiple
isoforms of TP63 are expressed using different promoters ? and it is difficult to ascertain which
among the chromatin accessible regions contain cell-type specific active promoter/enhancer
regions of TP63. Nonetheless, these results clearly show that TP63 and KRT14 are bonafide
markers of BM cells and changes in their expression in disease conditions require chromatin
reorganization.

Expression patterns and binding site enrichment analysis showed that binding sites for
EHF and ELF5 are enriched in the AP subpopulation of LASP cells (Figure 4h). TP63
expression and binding site enrichment were restricted to BM cells, whereas GATA3 expression
and binding site enrichment did not show cell type specificity (Figure 4h). Collectively, only
select genes expressed in epithelial cell types of the breast show cell type-specific chromatin
accessibility patterns and their cell type-specific expression is influenced likely by extracellular
signals rather than at the level of cell type specific chromatin accessibility.
I ncompatibility in gene expresson and chromatin accessibility extendsto other genes
associated with cell identity. Several in vitro studies have shown that the transcription regulator
ZEB1 mediates epithelial to mesenchymal transition of breast epithelial and breast cancer cells
and that its promoter region remains in poised state to confer plasticity to breast cancer cells .
However, our previous two studies examining ZEB1 protein levels in normal breast tissues
demonstrated the presence of ZEB1" cellsin stromathat surrounds duct with no expression in
epithelial cells %', We examined our multiome dataset for ZEB1 expression and chromatin
accessibility. Interestingly, ZEB1 mRNA expression was observed in fibroblast-like céells,

endothelial cdls, adipocytes, and T cells but not in epithelial cells (Figure 5a). However, ZEB1
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regulatory regions showed similar patterns of chromatin accessibility in fibroblasts and all three
epithelial cell types (Figure 5b).

We extended the above observations to other genes that are used as markers to define
various endothelial and T cell subtypes. For example, CD4" T cell enriched IL7R and CD8" T
cell enriched IFNY showed T cell-specific expression and chromatin accessibility (Figure 5c).
Similarly, expression and chromatin accessibility of CD8+ T cell enriched GZMK were
restricted to T cells (Figure 5d). Chromatin accessibility of macrophage enriched FCGR3A was
restricted to macrophages (Figure 5e).

Among the endothelia cdls, lymphatic endothelial cell marker LYVEL is expressed in
Endo-2 subcluster and a macrophage subpopulation but the chromatin accessibility patternsin
these two cell types were not similar (Figure 5f). Similarly, Endothelial Stalk-like subtype
marker ACKRL1 is expressed in a subset of Endo-1 subcluster but the chromatin in the regulatory
regions of thisgeneisaccessiblein al cell types (Figure 5g). CXCL12, which isexpressed in
Endo-1 and in fibroblasts, showed similar chromatin accessible patternsin all cell types except T
cells (Figure 5h). These results collectively demonstrate lack of compatibility in chromatin
accessibility and expression of corresponding genes in the majority of cases.

Breast tissues of women of African ancestry show fibroblast and epithelial cell states
distinct from breast tissues of women of European ancestry: As noted above, our multiple
attemptsto perform integrated shnRNA-seq and snATAC-seq of breast tissues of women of
African ancestry were not successful. Since breast cancer outcome disparity is known among
African American women and our prior studies have suggested a biologic basis of disparity,

3,13,27

particularly related to composition of stromal cells , we made multiple attempts through

different protocols but were finally successful in obtaining reliable data only when nuclel were
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subjected to snRNA-seq alone. To alow appropriate comparison, we subjected new breast
tissues of women of European ancestry to a similar protocol and performed snRNA-seg. Cell
clustering showed similarity to clustering patterns obtained with integrated snATAC-seq and
snRNA-seq (Figure 6a). However, there were major differencesin epithelial and fibroblast cell
states between breast tissues of women of African and European ancestry. For example, LASP
cell clustersin African ancestry are dominantly populated by BL cell state, whereas in case of
European ancestry, there were similar numbers of BL and AP cells. Similar to data presented in
Figure 3a, ESR1 and FOXA1 expression were restricted to LSH cellsin both groups (Figure 6b).
Unlike in the breast tissues of Indigenous Americans, AP cells did not express higher levels of
ESR1 compared to other LASP cells. Average age of donors of African ancestry and European
ancestry in this snRNA-seq was 54 and 34, respectively. Therefore, we compared cdll type status
of women of African ancestry with that of the Ashkenazi-Jewish European group with similar
age (average 53). Differences between African and European ancestry persisted when cell state
of African Ancestry was compared to cell state of Ashkenazi-Jewish European group as shown
in Figure 2a. The differences between cell clusters of women of African and European ancestry
are not due to differencesin proliferation rate as there was only a minor differencein MKI167+
cells between two groups (Figure 6¢) and MKI167 positivity was similar between African and
Ashkenazi Jewish-European groups.

We have recently reported a unique type of stromal cells with multi-potent activity
enriched in breast tissues of women of African ancestry **. These cells are
PROCR'/ZEB1'/PDGFRa" (hence called PZP cells) and display mesenchymal stem and
fibroblast-like features. Breast epithelial cells co-cultured with PZP cells transdifferentiated into

BL state **, which may explain the elevation of BL-like LASP cellsin the breast tissues of
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women of African ancestry. Because fibroblasts in breast tissues of women of African ancestry
clustered differently from that of European ancestry, we analyzed the expression patterns of
PROCR, ZEB1 and PDGFRa.. A subpopulation of cellsin the fibroblast clusters were positive
for al three markers and, number of PROCR+/ZEB1+/PDGFRo+ cells were higher in fibroblast
cluster of women of African ancestry compared to women of European ancestry (Figure 6d,
indicated by acirclein Figure 6a), consistent with our prior study showing protein level
differences *°.

Fibroblasts in breast have recently been shown to exist in four different states based on
expression pattern of specific genes- Fibro-prematrix, Fibro-SFRP4, Fibro-major and Fibro-
matrix ’. Using the gene expression signatures that specify these cell states, we analyzed
fibroblasts of breast tissues from different genetic ancestry donors. As shown in Figure 6e, there
were genetic ancestry-dependent variabilities in fibroblast state with women of African ancestry
showing specific enrichment of genes that specify Fibro-prematrix state at the expense of Fibro-
matrix state (Figure 6e and 6f). Figure S2 provides additional differencesin fibroblasts between
African and European ancestry and gene expression differences between fibroblasts of African
ancestry and European ancestry are shown in Table S14. It isinteresting that the expression of
several of the ATP binding cassette subfamily membersis elevated in fibroblasts of African
ancestry compared to European ancestry (Figure S2). We also note that none of the markers
corresponding to other fibroblast clusters are expressed at high levels. (Figure S2). When
fibroblast populations of other ancestry groups and BRCA1/2 mutation carriers were compared,
there was considerable variation in fibroblast cell state across genetic ancestry and BRCA1/2

mutation status suggesting important contribution of fibroblast diversity in human health (Figure
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6g). For example, consistent with the recent report on the effects of BRCA1 mutation on stromal
cells %, fibroblastsin BRCA1/2 mutation carriers are enriched in cluster 6.

Previous studies have demonstrated that breast tumorsin African Americans are enriched
for exhausted T cells ?°. To determine whether healthy breast tissues of women of African
ancestry intrinsically contain higher levels of exhausted T cells, we determined the expression
patterns of CD274 (PD-L1), CTLA-4, LAGS, and PDCD1, all markers of exhausted T cells, in
breast tissues from women of African and European ancestry %°. No significant differences were
noted (Figure S3) between tissues of African and European ancestry. Therefore, accumulation of
exhausted T cellsin tumors of African American women is likely induced by the tumor
microenvironment.

Murrow et al recently reported hormone-regulated cell-cell interaction network in the
human breast at single cell resolution and identified various markers that can distinguish
hormone responsive cellsinto two states, LRRC26 marks cells with both ER and progesterone
receptor activity (HR+ State 1), whereas PAHA 1" cells to represent hormone responsive cells
with elevated hypoxia/Pro-angiogenic activity (HR+ State 2) °. Although LRRC26 expression
was seen in a subpopulation of LHS cells, a subset of LASP cells also expressed this gene
(Figure $4). Every cedll type of the breast expressed PAHA 1, suggesting lack of specificity of this
gene as a marker of hormone responsive cells. We extended this analysis to include other genes
suggested to be enriched in HR+ State 1 (PNMT, CXCL13, MYBPC1, CADP52, WNT4,
PPP1R1B, and IL20RA) and HR+ State 2 (NDRGL, HILPDA, ANGPTL4, EGLN3, ERO1A,
PLOD2, and ENO2). Only afew of these genes (CXCL13, MYBPC1, PNMT and WNT4) are
expressed at higher levelsin ESR1-positive cells (Figure $4). Additional studies are needed to

further characterize distinct hormone responsive cell states.
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Individual level characterization of age-dependent changesin breast epithelial cell gene
expression. Several donors to our tissue bank have donated breast tissues twice, 10 years apart
(described as timepoint 1 and timepoint 2) allowing us to determine gene expression differences
with age. Prior studies focused on identifying age-dependent differences in gene expression
utilized tissues from independent donors of different ages . Because of limited tissue samples,
we performed spatial transcriptomics with samples from five donors who donated breast tissues
twice. However, consistent results covering all regions of interest (ROI) were obtained with three
pairs of samples. Age and BMI status of three donors at both times of tissue collection, UMAP
of transcriptome data, and immunostaining of breast tissues to differentiate epithelial cells and
adipocytes are shown in Figure Sba and b). Micro-dissected ducts and lobules as well as
adipocytes are shown in Figure 7a. We first evaluated resulting spatial transcriptomics data for
adipocyte, endothelial and epithelial cell subtype gene signatures derived from multiome data
(Tables $4-S9). Theseinitial analyses showed that data from timepoint 2 cluster into two groups,
but are generally more abundant in adipocyte-2 (Adi-2), macrophages and Endo-2 cell types
compared to timepoint 1 (Figure S5¢). Adi-1 and Adi-2 differ with respect to adiponectin
expression with Adi-1 expressing 30-fold higher adiponectin than Adi-2 (Table S9). Endo-2is
enriched for lymphatic endothelial cell markers. Spatial transcriptomics allowed usto extend the
studies to find gene expression differences between lobular and ductal epithelial cells. Volcano
plot in Figure 7b shows differences in gene expression between ductal and lobular epithelial
cells. Pathway analysis of genes differentially expressed in ductal and lobular epithelial cells and
at two different time points are shown in Figure S6. While metabolic pathways are enriched in
epithelial cells of the lobules, ductal epithelial cells showed enrichment of extracellular signal

activated signaling networks such as cytokine and cancer-associated signaling networks. Age-
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dependent changes were also restricted to metabolic pathways in lobular epithelial cells, whereas
changes in splicing machinery were observed in ductal epithelial cells. Genes differentially
expressed in lobular epithelial cells compared to ductal epithelial cells (Table S15), differences at
timepoint 1 (Table S16), at timepoint 2 (Table S17); within ducts between timepoint 1 versus 2
(Table S18), within lobules between timepoint 1 versus 2 (Table S19) are provided as
supplementary information. Volcano plots shown in Figure 7c-7f further highlight key genes
differentially expressed in ductal and lobular epithelial cells under different conditions. Four-
hundred twenty six genes are differentially expressed in ductal versus lobular epithelial cells. A
recent study using a different spatial transcriptomic technique listed 30 genes that are expressed
differentialy in ductal and lobular epithelial cells ’. Among those 30 genes, 10 genes showed
similar expression patterns (MGP, ANXA1, TACSTD2, KRT14, KRT17, WFDC2, STAC2 and
ALDH1A3 are elevated in ductal epithelial cells whereas APOD and SNORC are elevated in
lobular epithelial cells). Expression pattern of these genes assessed through multiome datais
shown in Figure S7. Since 10 genes showed similar expression patternsin lobular and ductal
epithelial cellsin two independent studies, these genes can be considered as markers of ductal
and lobular epithelial subtypes. However, expression of only few of these genesis enriched in
epithelial cells. We observed upregulation of KRT14 and KRT17, BM cdll enriched genes, in
ductal compared to lobular epithelial cells, consistent with the previous report . Immunoglobulin
heavy constant alpha 1 (IGHA1) and Immunoglobulin Kappa Constant (IGKC) gene, both of
which are expressed in the breast as per GTEXx database, are expressed at higher levelsin lobular
compared to ductal epithelial cells. Several genes showed differences in expression in two
different timepoints but only PTBP1 showed consistent decline (~six folds) in expression in

timepoint 2 compared to timepoint 1 in both ductal and lobular epithelial cells. PTBP1is
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associated with mRNA processing and alternative splicing *° and, based on UALCAN database
3L PTPB1 isoverexpressed in al subtypes of breast cancer (Figure S8). We determined genes
commonly upregulated or down-regulated at timepoint-2 compared to timepoint-1 in both
lobular and ductal epithelial cells. IPA analyses of the genes showed downregulation of genes
associated with PKA signaling pathway but upregulation of EIF2 and oxidative phosphorylation

pathways in timepoint 2 compared to timepoint 1 (Figure 8 and Table S20).
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Discussion

The biomedical research community has recognized the importance of including tissues
from people of different genetic ancestry to make research representative of all people . This
recognition came from several clinical observations highlighting genetic ancestry-dependent
variability in utility of commonly used disease biomarkers, mutation patterns in cancer, response
to treatment, and ultimately disease outcome ®****. For example, a recent study showed that
genetic ancestry but not the amount of UV exposure dictates clonal architecture and skin cancer
susceptibility *. To aid disease specific research, global efforts such as Human Cell Atlas and
Chan-Zuckerberg initiatives are focused on developing a single cell atlas of the body. It is
recognized by these organizations that reference a single cdll atlas of the body should also
include tissues from people of diverse genetic ancestry. This study was undertaken to meet this
goal for the breast tissue atlas. By sequencing 88,005 nuclel from breast tissues collected using
the same standard operating procedure (details are in Komen Tissue Bank website) from women
of diverse genetic ancestry and with no clinical history of breast cancer, we have developed a
global breast single cell atlas. Unlike other efforts in this direction, which used reduction
mammoplasty or normal tissues adjacent to tumors, which we and other have shown to be

histologically abnormal /%%

, our study utilized tissues from healthy donors. Because we
subdivided the samples for the analyses based on self-reported race/ethnicity and verified further
with genetic ancestry analysis, we were able to present asingle cell atlas of different groups
based on genetic ancestry and to identify two major differences based on ancestry- alveolar
progenitor cellsin Indigenous Americans and stromal fibroblasts in women of African ancestry.

There have been many attempts to understand the biologic basis of breast cancer disparity based

on genetic ancestry. Most of these studies focused on identifying differences in genomic
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aberrationsin cancer cells and immune cells that infiltrate the tumors >, However, genetic
ancestry-dependent differences in stromal cells such as fibroblasts could be another source of
disparity as we demonstrated recently ** and need further attention.

A distinct differencein ESR1 expression in breast epithelial cells of Indigenous
Americans compared to othersis interesting and alveolar progenitor cells that express ESR1 in
Indigenous Americans have a gene expression program that is influenced by crosstalk between
estrogen receptor and growth factor signaling. Recent studies have suggested that Indigenous
Americans are more susceptible to ERBB2+ breast cancers *. It is unknown whether distinct
gene expression program in aveolar cells that involves ER-growth factor crosstalk increases
susceptibility to ERBB2+ breast cancers. ESR1 upregulation in alveolar progenitor cells of
Indigenous Americansis not due to distinct chromatin organization but rather appearsto be at
the level of transcriptional output. In this respect, a breast cancer protective allele found mostly
in Indigenous Americans has been suggested to affect ESR1 expression °. However, that
protective allele isless likely to be responsible for our observation as only two out 10 donors
carried this protective allele. Several other variants of ESR1 linked to various conditions have

been described in the literature >+

and it is possible that a few of these variants affecting ESR1
expression or transcript stability are more prevalent in Indigenous Americans.

Our studies revealed that FOXA1 but not ESR1 isareliable marker of LHS cellsasits
expression was much more restricted to LHS cells than any other genes we examined.
Furthermore, FOXA1 but not ESR1 showed unique chromatin accessibility patternsin LHS
cells. In our previous studies, we had observed FOXA1 expression in 300 out of 404 breast

tumors and three cell states among LHS cells are putative cells-of-origin of breast cancer %,
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Thus, it islikely that the majority of breast cancers, particularly ER+ breast cancers, originate
from LHS cellsinstead of LASP cells.

Breast cancer outcomes in women of African ancestry is generally poor even after
adjusting for socioeconomic factors and healthcare access °. The biologic basis for this disparity
isjust beginning to be elucidated. Genetic ancestry-dependent variability in the tumor
microenvironment, particularly immune cells, and inflammatory cytokines has been reported
2943 \We reported enrichment of stromal cells with mesenchymal stem-like and fibroadi pogenic
properties in the breast tissues of women of African ancestry and the ability of these cellsto alter
cytokine/chemokine profiles **. Fibroblast subcluster described in this study also show distinct
cell state in women of African Ancestry compared to others. Fibroblast cell state in women of
African ancestry is predominantly prematrix state compared to others and this cell stateis
associated with vasculogenesis *. How this fibroblast state impacts the normal biology as well as
breast tumor biology remains to be investigated. Considering genetic ancestry-dependent
diversity fibroblast state observed in this study, understanding fibroblast biology will likely
provide new insight into biologic basis of health disparity.

Integrated snATAC-seq and snRNA-seq revealed that chromatin accessibility is not the
primary determinant of cell type-specific expression of most of the genesin the breast. As breast
tissue undergoes frequent remodeling in response to hormonal cues during puberty, menstrual
cycle, pregnancy, lactation, involution, and menopause, ability of cells to respond to extracellular
signals rapidly and plasticity are very much essential during remodeling. Gene expression
changes that are not dependent on changes in chromatin accessibility are required in these
situations. In this context, it isinteresting that while ESR1 expression isrestricted to LHS cells

of the breast of women of all but Indigenous American ancestry, chromatin accessibility
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allowing gene expression is maintained in both LHS and LASP cells with minor differences.
Genomic aberration in any transcription factor that controls ESR1 expression could lead to ESR1
expression in LASP cells and make these cells responsive to estrogen and potentially promote
carcinogenesis. Several transcription regulators such as GATA3, FOXA1L, EP300, TCF7L2,
TFAP2C, BRCAL, TP53 and BARX2 control the expression of ESR1 %! and cBioportal analyses
revealed in at least 50% of breast cancers one or more of these transcription regulators show
genomic aberrations. ESR1 gene appears to be organized differently in BRCA2 mutation carriers
than others. BRCA2 mutation carriers typically develop ER+ breast cancers * and whether
distinct organization of ESR1 genein these carriers leads to altered ESR1 isoform expression
remains to be determined. Once a human single cdll atlas of multiple organs is developed, it will
be interesting to determine cells in how many organs have cells that maintain such a relationship
between gene expression and chromatin accessibility, and whether cancer susceptibility of an
organ is linked to a relationship between gene expression and chromatin accessibility.

Breast cancers originating from epithelial cells of the duct and lobules show distinct
biology, clinical features, and response to treatment “°. Therefore, there has been considerable
interest in deciphering biologic differencesin epithelial cells of the duct and lobules. Results of
our transcriptomics study identified few major differences between these two epithelial cell
types. Predominant expression of ALDH1AS3 in ductal epithelial cellsisinteresting in the context
of stem-progenitor-mature cell hierarchy of the breast *°. ALDH1A3 is expressed predominantly
in LASP cells from which most breast cancer in BRCA1 mutation carriers is suggested to
originate *"*8. Ductal epithelial cells also expressed higher levels of KRT14 and KRT17, which
are expressed mostly in BM cells. It is possible that ducts are enriched for BM and LASP cdlls,

whereas lobules are enriched for LHS cdlls and most lobular carcinomas are ER+.
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|dentifying age-dependent changes in breast epithelial cell gene expression has been of
interest to several groups because any deviation in this process may predispose breast epithelial
cellsfor breast tumorigenesis. Prior studies, however, utilized breast tissues from different
individuals for such studies ®*. Because of inter-individual differences in gene expression,
results of those studies are less generalizable. Our study utilizing breast tissues from the same
donor has enabled mapping of gene expression changes in ductal and lobular epithelial cellswith
age. PTBP1 expression is reduced at timepoint 2 compared to timepoint 1 in both cell types.
PTBPL1 isinvolved in mRNA biosynthesis and alternative splicing and its downregulation can
have a major impact on cellular proteome *°. Similar to a previous report, basal cell marker
KRT17 increased with age in ductal epithelial cells’. Pathway analysis of genes commonly
differentially expressed in lobular and ductal epithelial cells revealed downregulation of PKA
pathway but upregulation of EIF2 pathway with aging. Studiesin yeast models have shown
attenuating PKA pathway extends life span and tranglational inhibition through phosphorylation
of elF2 increases lifespan *>**. Since PKA and EIF2 pathways are also involved in breast

tumorigenesis >

, Whether deregulation of natural aging-dependent changes in these pathways
contribute to breast tumorigenesisis an unanswered question. Collectively, data presented in this
study provide an important resource generated from healthy breast tissuesto derive cell type-
specific chromatin accessibility and age-dependent gene expression signatures to study various

diseases of the breast.
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Materialsand Methods:

Normal breast tissues and genetic ancestry mapping of donors:. All breast tissues from
clinically breast cancer free healthy women were collected by the Komen Normal Tissue Bank
(KTB) with informed consent. The study has received the approval from the institutional review
board. International Ethical Guidelines for Biomedical Research Involving Human subjects were
followed. KTB website describes standard operating procedure and breast biopsies were always
collected from the upper outer quadrant of the breasts. Collected breast tissues were
cryopreserved till use as described previously **. DNA from blood of tissue donors were used for
genetic ancestry mapping. Procedures for genetic ancestry mapping are described in our recent
publication *°.

Single cell multiome assay: Tissues from two cores of five donors were rapidly thawed and
multiome assay reactions and sequencing were done in multiple batches. Nuclel were isolated
from these tissues using the protocol suggested for use with the 10X Genomics chromium Next
GEM Single Cell Multiome ATAC+Gene Expression protocol (CG000338). Thawed tissues
were washed in PBS, minced using scalpel, and transferred to 1.5 ml microcentrifuge tubes. 300
pl of NP40 Lysis buffer was added and tissues were homogenized 15x using a Pellet Pestle
(Fisher Scientific: 749625-0010). After homogenization, 1 ml of NP40 lysis buffer was added
and incubated on ice for three mins. Wide bore pipet was used to mix tissues in between few
times to alow better disintegration. Lysed tissue suspension was first filtered through a 70 uM
strainer followed by 40 uM strainer into a 50 ml conical tube. After centrifugation for 5 mins at
500 rcf at 4 degrees, most of the supernatant was removed leaving behind 50 pl. One ml of PBS
+ 1% BSA + 1U/ul of RNAse inhibitor was added and kept on ice for 5 mins. After resuspension

through pipet, nuclel were centrifuged at 500 rcf for 5 min at 4 degrees. After removing
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supernatant, nuclei were resuspend in 500 pl of PBS +1% BSA + RNase inhibitor. 5 pl of 7AAD
ready-made solution (Sigma Aldrich: SML1633-1ML) was added to the above nuclei
suspension. 7AAD+ nuclel were separated based on size and granularity using BD FACSMelody
(or equivalent). After estimating nuclei concentration through manual counting under a
microscope, next step was performed immediately as per 10X Genomics Chromium Next GEM
Single Cell Multiome ATAC + Gene Expression User Guide (CG000338). ATAC and cDNA
libraries were prepared using the 10X Genomics protocol (CG000338. Thefinal ATAC and gene
expression libraries were sequenced on an Illumina Novaseq 6000 sequencer, with index reads of
10 bp + 24 bp, and 100 bp paired-end reads.

Single-cell multiome data analysis; Cell Ranger ARC v2.0 (http://support.10xgenomics.con/)
was utilized to process the raw sequence data derived from the single-cell multiome libraries.
Both the ATAC and gene expression FASTQ files were processed with the cellranger-arc count
algorithm. The paired information of the gene expression UMIs and the count of transposition
eventsin peaks for each barcode was used to identify the cells from the non-cell populations.
The final filtered gene-cell barcode matrices and fragment files were used for further analysis
with Signac *° and Seurat v4 ***®, Since each sample was a pool of cells from multiple subjects,
souporcell > was used for genotype-free demultiplexing and the cells were assigned to their
origins. Analysis with Signac and Seurat started with quality check of the cellsidentified. From
the gene expression data, low quality cells and/or cells with extremely high or low number of
detected genesyUMIs were excluded. For the ATAC-seq data, cells with low signal enrichment
around transcriptional start sites, extremely high or low number of reads fallen in peaks detected
were discarded. The gene expression data was normalized using SCTransform ®. The chromatin

accessibility data was normalized applying the frequency-inversed document frequency (TF-
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IDF) procedure. After finishing the pre-processing and dimensionality reduction independently
on the gene expression and chromatin accessibility data, the closest neighbors of each cell in the
data were calculated based on a weighted combination of gene expression and chromatin
accessibility similarities. The weighted nearest neighbor graph (WNN) calculated were used for
cell clustering and visualization.

To annotate each cell population from the analysi s, automatic annotation using SingleR
together with manual annotation with known marker genes were employed. CoveragePlot
function from Signac was used to plot chromatin accessibility for specific genomic regions.
Single-nuclei data analysis: sSnRNA-seq datawas first processed using CellRanger 7.0.1

(http://support.10xgenomics.com/). The feature-cell barcode matrices generated from

CellRanger was used for further analysis with the R package Seurat v4 **8. The integrated
single-cell multiome data was used as a reference to annotate the shRNA-seq data.
FeaturePlot_scCustom function in scCustomize ®* was used to generate the gene expression
plots.
Spatial Transcriptomics analyses. FFPE sections from donors with two time tissue donations
were selected for the study. Each dlide contained two 5 micrometer sections from FFPE blocks.
Each dlide represented one donor with 2 barcodes representing 2-time donations. Each donor had
three repeats (3 slides per donor). The sections were cut with Leica DB80 LS blades (Leica
#14035843488) on arotary microtome instrument (LeicaRM2125 RTS) and placed on the
center of a Superfrost Plus Microscope dide (Fisher scientific #1255015). Tissue sections were
placed in the center of the dide and be no larger than 35.3 mm x 14.1 mm.

Regions of interest (ROISs) were selected after staining the slides with pan-keratin, apha-

SMA and FABP4 antibodies. All ROIs passed a sequencing quality control assessment. Next,
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negative control probes were used to estimate background and downstream gene detection and to
remove outliers. The limit of quantification (LOQ) of each ROI was calculated using the
geometric mean and geometric standard deviation of the negative control probes to identify
genes detected above background in the experiment. All ROIs passed LOQ-based filtering with
more than 1% of genes detected. Gene filtering was also performed, resulting in 10,270
remaining targets that were detected above the LOQ in 10% or more ROIs. 10,270 genes
remained for data analysis from 48 ROIs. Upper quartile (Q3) normalization was performed for
genesin each segment. Quality control and normalization was performed usng GeoMxTools
v3.0.1.

Statistical analyses of Spatial transcriptomics data: Dimension reduction analysis was
performed in R v4.2.1 using the following packages: ‘ FactoMineR’ v2.6, ‘Rtsne’ v0.16, and
‘UMAP v0.2.9.0. Differential gene expression analysis was performed on a per-gene basis,
modeling log-transformed, normalized gene expression using either a linear mixed-effect model
(LMM) for study-wide comparisons or alinear model for donor-specific comparisons with
GeoMxTools. LMMs are used to account for the sampling of multiple ROI/AOI segments per
tissue and non-independence of the data. For the study-wide pai rwise comparisons between the
ducts vs lobules, the following LMM was used: gene ~ ROIType + (1|Tissue). For comparing
ducts vs lobules within the same donor tissues, the following linear model was used: gene ~
ROIType. A false discovery rate (FDR) correction was applied to p-values. To avoid inter-
sample variability impacting data interpretation, the following seven analyses were performed
with the first four analyses restricted to sample number 3. Question 1: What are the differences
between the duct and gland at the first timepoint?; Question 2: What are the differences between

the duct and gland at the second timepoint?; Question 3: What are the differences in the duct
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between timepoints 1 and 27, Question 4: What are the differences in the gland between
timepoints 1 and 27, Question 5: What are the differences between ducts and glands across all
donors?, Question 6: What are the differences between ducts and glands at timepoint 17,
Question 7: What are the differences between ducts and glands at timepoint 2?

Spatial deconvolution was performed using the SpatialDecon packagein R, v1.6.0.
Spatial deconvolution requires the use of a cell profile matrix derived from scRNA-seg. For this
analysis, we used gene signatures derived from multiome data Tables $4-S9. Differential
abundance analysis was performed on the results of spatial deconvolution using the same
approach as differential gene expression.

Pathway analysis was performed using the GSVA v1.44.5 R package with the KEGG
Brite database. 796 gene sets were scored, where each gene set contained between 5 and 500
genes. Differential gene set enrichment analysis was performed on the results using the same
approach as differential gene expression. Ingenuity pathway analyses was used to determine

pathways altered due to aging.
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Figure Legends:

Figure 1. Integrated snATAC-seq and snRNA-seq analyses of breast issues of healthy women.
a) Genetic ancestry marker distribution pattern among donors of self-identified race/ethnicity
groups. b) Integrated cell clusters generated using snATAC-seq and shRNA-seq data
representing all donors except African American donors. c) Breast epithelial cells could be
further subclassified into six different cell types. d) Cell clustering analysis reveal further
refinement of cell state of LASP cells, fibroblasts, endothelial cells.

Figure 2. Genetic ancestry-dependent variability in cell state. a) Cell clustering in each group
based on integrated snATAC-seq and snRNA-seq analyses. b) Expression pattern of alveolar
cells marker EHF. ¢) Expression pattern of alveolar cells marker ELF5. d) Expression pattern of
luminal progenitor cells marker KIT. €) Expression pattern of the cell proliferation marker
MKI67.

Figure 3: Genetic ancestry-dependent variability of ESR1, FOXA1, and GATAS3, which
constitute a hormone responsive cell lineage enriched transcription factor network. a) Expression
pattern of ESR1. b) Expression pattern of FOXAL. ¢) Expression pattern of GATAS3. d) AP cdlls
enriched in Indigenous Americans show elevated ER-growth factor signaling crosstalk. Genes
differentially expressed in AP cells compared to other cell state among LASP cells were
subjected to IPA and the top signaling network is presented.

Figure 4: Relationship between chromatin accessibility and gene expression. a) ESR1 chromatin
accessibility patternsin LSH, LASP, and BM cells. Horizontal red arrow marks the direction of
the indicated gene transcription. Vertical arrow denotes cell type-specific chromatin accessible
regions. b) Chromatin accessibility map of ESR1 genein LHS and LASP cells of breast tissues

of women of different genetic ancestry. The chromatin accessible peaks are numbered 1-4 and
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few of these peaks showed genetic ancestry and BRCA2 mutation status dependent variabilities.
¢) Binding sites for ER are present in the chromatin accessible regions of multiple cell types,
including cell types in which ESR1 is not expressed. d) Chromatin accessibility map of FOXA1
in various epithelial cell types of the breast. €) Binding sites for FOXAL in chromatin accessible
regions of various cell types. f) Chromatin accessibility map of LASP markers EHF, ELF5, and
KIT in various cdll types of the breast. g) Chromatin accessibility map of BM cell markers TP63
and KRT14 in various epithelial cell types of the breast. h) EHF, ELF5, GATAS3, and TP63
expression patterns and binding site enrichment analysis.

Figure5: Limited relationship between cell-type specific gene expression and chromatin
accessibility. a) Epithelial cells do not express ZEB1. b) Despite fibroblast-restricted expression,
chromatin accessibility of ZEB1 is similar between fibroblasts and epithelial cells. ¢) IL7R and
IFNY expression and chromatin accessibility arerestricted to T cells. d) GZMK expression and
chromatin accessibility arerestricted to T cells. €) FCGR3A expression and chromatin
accessibility are restricted to macrophages. f) Lymphatic endothelial marker LYVEL is expressed
in Endo-2 and a fraction of macrophages but the chromatin accessibility patterns were not unique
to these two cell types. g) Although ACKR1 expression is restricted to a subpopulation of
endothelial cells, ACKR1 gene showed limited variation in chromatin accessibility between
various cell types. h) CXCL12 expression and chromatin accessibility showed limited
correlation.

Figure 6: Comparative analyses of breast tissues of women of African ancestry with European
ancestry using snRNA-seg. a) Fibroblasts and epithelial cells of the breast tissue cluster
differently in African ancestry compared to European ancestry. b) ESR1 and FOXA1 expression

patternsin epithelial cell clusters of African and European ancestry. c) MKI67 expression
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patternsin breast tissues of African and European ancestry. d) PROCR, ZEB1 and PDGFRo
expression patternsin breast tissues of African and European ancestry. d) Fibroblastsin African
and European ancestry show distinct cell states. e and f) Fibro-prematrix state dominate in
African ancestry, whereas Fibro-matrix state dominate in European ancestry. g) Genetic
ancestry- and germline mutation-dependent variability in clustering of fibroblasts.

Figure 7. Spatial transcriptomics reveal gene expression differences between ductal and lobular
epithelial cells. To avoid inter-individual variation, few of the plots are from donor #3. @) Images
of micro-dissected ducts, lobules and adipocytes. b) Volcano plot showing gene expression
differences between lobular and ductal epithelial cells. ¢) Gene expression differences between
ductal and lobular epithelial cells at timepoint 1. d) Gene expression differencesin ductal and
lobular epithelial cells at timepoint 2. €) Gene expression differencesin ductal epithelial cells
between timepoints 1 and 2. f) Gene expression differencesin lobular epithelial cells between
timepoints 1 and 2.

Figure 8: EIF2 and oxidative phosphorylation pathways are upregulated but PKA pathway is

downregulated at timepoint 2 compared to timepoint 1 in breast epithelial cells.
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Inventory of Supplementary Figuresand Tables:

Figure S1. Experimental design to generate sSnATAC-seq and snRNA-seq data.

Figure S2: Differences in expression of fibroblast-enriched genes in breast tissue fibroblasts of
African ancestry compared to European ancestry. Expression levels of genes that classify
fibroblasts into four subtypes are al'so shown.

Figure S3: Expression pattern of exhausted T cell markersin breast tissues of women of African
and European ancestry

Figure $4: Expression pattern of markers suggested to classify hormone responsive (HR) cells
into ER/PR-dependent HR State-1 (a) and hypoxia/pro-angiogenic HR State-2 (b).

Figure S5: a) UM AP showing differences in gene expression patterns between timepoint 1 and
timepoint 2. Age and BMI of donors at two timepoints of tissues collected for spatial
transcriptomics are also indicated. b) Staining pattern of breast tissues with antibodies against
pan-keratin, FABP4 and smooth muscle actin. ¢) Deconvolution of spatial transcriptomics data
show elevated Adi-2, macrophages and Endo-2 at timepoint 2 compared to timepoint 1 in most
samples.

Figure S6: Differencesin signaling pathways in ductal and lobular epithelial cells.

Figure S7: Expression pattern of 10 genes that showed differential expression in ductal
epithelial cells compared to lobular epithelial cells assessed using multiome data.

Figure S8: PTBP1 whose expression in normal breast epithelial cells was reduced in timepoint 2
compared to timepoint 1, is overexpressed in all breast cancer subtypes compared to normal

breast.
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Table S1: Detailed information on donors whose breast tissues were used for multiome study.
This table provides information on age, BMI, parity, menopausal status, self-reported
race/ethnicity etc.

Table S2: Details of number of donor tissues, nuclei and transcripts per nuclei in each group.
Table S3: Average RNA expression in indicated genesin each cell type.

Table $4: Gene expression differences between HSo (C19) and HSB (C3) cell states of LHS
cells.

Table S5: Gene expression differences among different cell states of LASP cells.

Table S6: Gene expression differences between different cell states of BM célls.

Table S7: Gene expression differences between major endothelial cell types and between
different cell states within the cdll type.

Table S8: Gene expression differences between cell states among fibroblasts.

Table S9: Gene expression differences between two types of adipocytes.

Table S10: Top 10 transcription regulators in each cell type.

Table S11: Average levels of specific mMRNA in each cell cluster.

Table S12: Cell proportions in each genetic ancestry group.

Table S13: ERo:E2 regulated genes that are expressed at higher level in cluster 9 (Indigenous
American enriched cluster).

Table S14: Gene expression differences between fibroblasts of African ancestry and European
ancestry.

Table S15: Gene expression differences between ductal and lobular epithelial cells

Table S16: Gene expression differences in ductal and lobular epithelial cells at timepoint 1

Table S17: Gene expression differences in ductal and lobular epithelial cells at timepoint 2
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Table S18: Gene expression differencesin ductal epithelial cells between timepoints 1 and 2
Table S19: Gene expression differences in lobular epithelial cells between timepoints 1 and 2
Table S20: Upregulated and downregulated signaling pathways in epithelial cells at timepoint 2

compared to timepoint 1.
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