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Summary: 

Metabolic syndrome (MetS) puts patients more at risk for neurodegenerative diseases 

such as Alzheimer’s disease (AD). Microglia are implicated as causal factors in AD, 

however, the effect of MetS on microglia has not been characterized. To address this, 

we contrasted New Zealand Obese (NZO) with C57BL/6J (B6J) mice in combination 

with a high fat/high sugar diet (HFD). Irrespective of diet, NZO mice displayed a broader 

array of MetS-relevant phenotypes compared to B6J mice fed a HFD. Single cell RNA-

sequencing of microglia predicted transcriptional shifts indicative of reduced 

responsiveness and increased vascular interactions in NZO, but not B6J HFD mice. 

Significant cerebrovascular fibrin deposition and increased perivascular accumulation of 

microglia were observed in NZO relative to B6J HFD mice. Further, compared to the 

widely used B6J.APP/PS1 mice, NZO.APP/PS1 exhibited increased amyloid plaque 

sizes alongside an increase in microhemorrhages. Overall, our work supports a model 

whereby MetS alters microglia-vascular interactions, compromising microglial plasticity.  
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Introduction: 

Metabolic syndrome (MetS) is a combination of three or more metabolic 

impairments such as dyslipidemia, hyperglycemia, hypertension, and increased waist 

circumference (1). Patients displaying aspects of MetS are more at risk for 

neurodegenerative disorders including Alzheimer’s disease (AD) (2-6). Central to this 

risk may be the influence of MetS and Type 2 Diabetes (T2D) on peripheral and central 

immune cell states and function (7,8).  

Burgeoning evidence has implicated critical roles for microglia, central nervous 

system (CNS) resident macrophages, in neurodegeneration (9-15). Microglia play roles 

in pathogen surveillance, debris phagocytosis, synapse regulation, and recently have 

been shown to support the cerebral vasculature (16-21). Current efforts have uncovered 

remarkable heterogeneity of microglial responses through single cell RNA-sequencing 

(scRNA-seq) (9,11,15,22). Increased disease-associated microglia (DAM) (11,12) and 

interferon response microglia (IRM) states (23) have been documented in 

neurodegeneration. The abundance of these states is heavily dependent on additional 

factors including age, sex, and genetic context (15,22-25). However, the effect of MetS 

on microglial states has yet to be determined. 

To address this, we investigated MetS-induced changes in microglial 

transcriptional states using scRNA-seq. We utilized combinations of genetic and 

environmental models relevant to MetS contrasting New Zealand Obese (NZO/HlLtJ) 

mice, a polygenic model of obesity (26-28), with the commonly used C57BL/6J (B6J) 

mice fed a high fat/high sugar diet (HFD). Microglia scRNA-seq suggested MetS 

resulted in reduced microglial responsiveness in NZO mice relating to vascular 
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interactions and function. In support of this, NZO but not B6J mice exhibited fibrin 

deposition within the cerebrovasculature. NZO mice also showed reduced microglia 

responses to an acute lipopolysaccharide (LPS) challenge compared to B6J mice, and 

larger amyloid-β plaques and increased microhemorrhages in the presence of APP/PS1 

transgenes (NZO.APP/PS1) compared to B6J.APP/PS1 mice. In summary, MetS 

appeared to impair microglial plasticity, which could potentially drive neurodegenerative 

disease pathology.  

 

Results: 

Metabolic syndrome (MetS) caused subtle changes in abundances of microglia states. 

To determine how MetS affects microglia, we fed NZO and B6J mice a HFD or a 

standard diet (SD) from 2-9 months of age (mo). NZO mice showed signs of MetS at 

2mo (Figure 1A-E). At 9mo, NZO mice displayed increased age- and diet-associated 

metabolic impairments relative to B6J mice, including weight gain, dyslipidemia, high 

blood pressure, and hyperglycemia (Figure 1F-J). These data indicate that the NZO 

strain better models complex endophenotypes observed in humans with MetS 

compared to HFD-fed B6J mice.  

 To determine the effects of strain (NZO, B6J) and diet (SD, HFD) on myeloid cell 

transcriptional states, we performed scRNA-seq of CD11B+ cells (24,29) from brains of 

2 and 9mo male and female B6J, B6J HFD, NZO, and NZO HFD mice (Figure 2A). 

Microglia represented ~75% of all captured CD11B+ cells in B6J mice, and ~88% in 

NZO mice, irrespective of diet (Figure S1A-D) (30,31). The remaining cells consisted 

mainly of monocytes, macrophages, NK cells, and neutrophils (Figure S1D). Re-
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clustering only microglia resulted in 18 clusters (Figure S1E-F) with further annotation 

as: homeostatic (H, clusters: 0-6,9, 13,14, and 16), proliferating (cluster 17), Hexb high 

(HexB, cluster 10), disease-associated (DAM, cluster 8), Ccl4 Ccl3 high DAM (Ccl4+ 

Ccl3+ DAM, cluster 7), major histocompatibility enriched (MHC, cluster 16), interferon 

responsive microglia (IRM, cluster 12) and Klf2 Tcim high (Klf2+ Tcim+, cluster 13) 

(Figure 2B-D, Figure S1E-F) (11,12,22,24). In contrast to amyloid- (11,12,24) and aging-

related (22) studies, MetS (NZO strain and/or HFD) did not cause significant changes in 

the percentages of DAM, IRM or MHC clusters (Figures 2E, S2A). However, the 

abundance of DAM, MHC, and Klf2+ microglia changed with age, regardless of strain or 

diet (Figure 2E, Figure S2A-B).  

 

High fat diet altered stress response and cell-cell communication gene expression in 

NZO, but not B6J microglia. 

Despite the lack of MetS-induced shifts in microglial states (Figure 2E), we reasoned 

that MetS may alter gene expression across all microglia. To determine this, we utilized 

a pseudobulking strategy followed by differential expression analyses, separately 

assessing the strain (NZOvB6J), and diet (HFDvSD) or aging (9v2mo) effect within each 

strain (Figure S3A-B)(32,33). First, we determined the HFD effect across both NZO and 

B6J mice and found that there were 141 differentially expressed genes (DEGs) in all 

microglia, which were enriched in gene sets associated with cell viability, migration, and 

proliferation (Figures 3A, S4A-C). However, when HFD effects were analyzed 

separately for each strain, B6J microglia did not show a substantial response to chronic 

HFD exhibiting only 2 DEGs in comparison with >300 DEGs in NZO microglia (Figure 
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3A,S4D). These NZO DEGs were associated with endothelial and immune cell 

signaling, and heat shock stress (Figure 3B-D). Together, these data suggest HFD 

caused a significant stress response in microglia in NZO, but not B6J mice.  

 

Aging differentially effected NZO and B6J microglia. 

To assess transcriptional programs in NZO compared to B6J, we first identified 

DEGs comparing NZO to B6J microglia at 2 or 9mo. DEGs identified at both ages 

included genes that have been implicated in regulating microglial and macrophage 

responses, such as Angptl7, Itgam, and Fcrls (Figure 4A-B,S5A-D) (22,34-36). 

Interestingly, Apoe, genetic variations in APOE increase risk for AD (37,38), was 

significantly greater in NZO compared to B6J microglia at both ages (Figure 4C). At 

9mo, DEGs were associated with immune responses, vascular interactions, and cell 

migration (Figure 4D-E), suggesting these processes are perturbed in NZO but not B6 

microglia. When microglia states were analyzed separately, differentially expressed 

genes detected in all microglia were primarily driven by homeostatic microglia, 

downsampling indicated this was independent of the number of microglia within each 

state (Figure S5A-B).  

Next, to better understand how transcriptional programs were influenced by 

aging, we compared 9 to 2mo microglia from either NZO or B6J mice (Figure 4F). Most 

aging related transcriptional changes were again detected within the homeostatic 

microglia state when analyzed separately (Figure S6A-B). Both strains showed aging-

associated changes in Itga6, Ctss, Cd48, and antigen processing and presentation 

pathways (Figure 4F-I). However, NZO microglia exhibited more aging-associated 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560877doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560877
http://creativecommons.org/licenses/by-nd/4.0/


 7

DEGs than B6J including Sparc, Pfkfb3, and Irf8; which have been implicated in 

regulating synaptic function, glycolysis, and microglial identity respectively (Figure 4F-

G) (39-41). In addition, NZO microglia exhibited age-dependent changes in cytotoxicity, 

wound healing, and circulation pathways (Figure 4I). Interestingly, Ingenuity Pathway 

Analysis (IPA) of upstream regulators predicted aging-associated upregulation of 

interferon signaling regulators in B6J microglia, but regulators associated with 

environmental stress and tissue repair in NZO microglia (Figure S6C-E). 

 

NZO microglia displayed increased association with blood vessels. 

The expression of genes regulating myeloid-endothelial interactions including 

Itgam, Ccr1, P2ry12, and Ccr5 (16,35,36,42), was higher in NZO relative to B6J 

microglia (Figure 4). To probe this further, we performed immunohistochemistry to 

localize microglia and vasculature within the cortex and hippocampus of 9mo NZO and 

B6J mice fed SD or HFD. We found that while the numbers of TMEM119+DAPI+ 

microglia in the hippocampus or cortex did not differ across strains or diets, the 

percentage of CD31+ area covered by microglia was significantly higher in NZO relative 

to B6J mice (Figure 5A-E). HFD did not modulate this phenomenon (Figure 5B-E). 

scRNA-seq analyses predicted fibrin(ogen) to be an upstream regulator of aging-

associated DEGs in NZO microglia (Figure 5F). Fibrin is absent in the healthy CNS but 

can deposit in the perivascular space and within vessels in conditions of stress 

(38,43,44). We found NZO vessels exhibited peri-vascular and vascular deposition of 

fibrin in the hippocampus and cortex, while B6J vessels did not (Figure 5G-I). 

Furthermore, many of these fibrin+ vessels had microglia juxtaposed (Figure 5G). 
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Altogether, these data suggest that vessel stress signals may promote microglia-

vascular interactions in NZO mice. 

 

NZO mice displayed a dampened response to LPS. 

As NZO microglia appeared to have a reduction in DEGs relevant to immune 

responses compared to B6J microglia (Figure 4,S5), we sought to probe the 

responsiveness of NZO microglia to an acute inflammatory challenge. LPS was 

administered to 4mo NZO and B6J mice, and bulk hemibrain RNA-seq (Figure 6A) was 

performed. As we suspected from the observed fibrin deposition, NZO animals exhibited 

altered CNS expression of vascular associated pathways and genes including Edn1, 

Angpt1, and Serpine1 (Figure 6B-C) even with PBS-treatment. LPS-treated NZO 

animals also displayed fewer DEGs than LPS-treated B6J mice (Figure 6D). The strain-

dependent LPS effects suggested potential differences in microglial responses, as NZO 

animals displayed no change in Cx3cr1 expression with LPS treatment (Figure 6E). 

Furthermore, IPA upstream regulator and pathway analyses predicted strain-dependent 

differences in the LPS induction of genes involving macrophage recruitment, antigen 

processing and presentation, and aggregation of cells (Figure 6F). These data indicate 

that compared to B6J, NZO mice display altered microglial responses to not only HFD, 

but also to an acute insult such as LPS.  

 

NZO.APP/PS1 mice displayed larger amyloid plaques and increased incidences of 

microhemorrhages. 
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MetS has been demonstrated to increase risk for AD and related dementias 

(2,4,5,45). We hypothesized that this may be due to reduced responsiveness of 

microglia to AD-relevant insults such as amyloid deposition. To test this, we 

backcrossed the commonly used amyloid-inducing transgenes (APP/PS1) (46) from 

B6J to NZO resulting in ~98.375% congenicity. Unexpectedly, male NZO.APP/PS1 mice 

exhibited pronounced weight loss, likely associated with exacerbation of T2D (Figure 

S7A-E). To avoid this confound, we primarily focused our analyses on amyloid-related 

microglia responses in female mice. At 8mo, in comparison to B6J.APP/PS1 mice, 

female NZO.APP/PS1 mice exhibited fewer, but larger, amyloid plaques in both the 

hippocampus and cortex, which were positive for the dystrophic neurite marker LAMP1 

(Figure 7A-L). Similar results were observed in several male NZO.APP/PS1 mice that 

survived to 8mo (Figure S7F-G). There was a small but significant increase in total 

IBA1+ area in the hippocampus, but not the cortex of NZO.APP/PS1 compared to 

B6J.APP/PS1 mice (Figure 7F,K). However, the area of plaque covered by microglia 

were the same in both regions (Figure 7G, L).  

Previous studies have shown microglia depletion drives development of cerebral 

amyloid angiopathy (CAA) (14,47). We wondered whether the reduced responsiveness 

of NZO microglia would result in increased CAA. However, extensive CAA was not 

present in NZO.APP/PS1 or B6J.APP/PS1 mice (Figure 7A, S7F-G). Our previous 

findings of increased vascular stress in NZO (Figures 5-6) suggested blood-brain-barrier 

integrity may be more compromised in NZO.APP/PS1 compared to B6J.APP/PS1 mice. 

To assess this, we stained brain tissue with Prussian blue, which marks areas of iron 

deposition, and found that NZO.APP/PS1 mice displayed increased incidence of 
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microhemorrhages throughout the brain relative to either B6J.APP/PS1 mice or their WT 

littermate controls (Figure 7M-N).  

Together, these data support that in a context of MetS, amyloid plaques are 

larger and the cerebrovasculature is more prone to microhemorrhages, outcomes which 

may increase risk for diseases such as AD.  

 

Discussion: 

Our work focused on the relationship between MetS and alterations in microglial 

responses using mice exhibiting varying aspects of MetS (26-28). Consistent with 

previous reports, NZO mice displayed most aspects of MetS, and this was exacerbated 

with HFD. However, HFD-fed B6J mice exhibited dysfunctional metabolic measures 

associated only with pre-diabetes and obesity, identifying NZO mice as a more 

appropriate model of MetS than B6J HFD mice. We profiled 83,757 microglia and 

unexpectedly, MetS did not significantly shift the proportion of previously identified 

microglial states (11,12,22,24). We noted an increase in MHC and Klf2+ transcriptional 

states and a decrease in both DAM populations between 2 and 9mo. This is consistent 

with previous reports of age-related alterations in MHC and DAM microglia populations 

(48). 

We identified significant strain-specific changes in gene expression programs 

across all microglia, and within specific states. Strikingly, when we analyzed differential 

expression within each state, cells within the homeostatic clusters exhibited the greatest 

number of DEGs even after downsampling. This suggests that these transcriptional 

changes, while not sufficient to alter state abundances, are potentially altering microglial 
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function. Strain-specific differences in microglia are likely driven by the MetS 

endophenotypes exhibited by NZO as early as 2mo. NZO microglia exhibited 

significantly higher expression of Apoe compared to B6J or B6J HFD microglia. ApoE 

has been linked to the transition to a DAM (or activated response microglia) state 

(12,23), yet, there was no difference in the abundance of DAM between NZO and B6J 

mice. One explanation for this paradox may be that the increase in Apoe expression is 

in response to dyslipidemia, as ApoE has known roles in lipid metabolism (37,49,50). 

Furthermore, it is possible that NZO microglia are unable to fully transition to a DAM 

state yet still acquire DAM-like characteristics such as high Apoe expression. In addition 

to the aging- and HFD-independent strain differences, there were also significant aging- 

and HFD-dependent strain differences between NZO and B6J microglia. For instance, 

aging influenced NZO microglia more than B6J microglia through higher numbers of 

DEGs and a broader range of impacted pathways, including wound healing and 

cytotoxicity. One recent study suggested that NZO mice display enhanced aging-

associated changes within peripheral immune populations —suggesting that NZO were 

a model of accelerated aging (51) — and our data also support this possibility.  

A prevailing signature of both aging- and strain-associated analyses implicated 

microglia differential interactions with the vasculature. Further exploration through IHC 

highlighted that regardless of diet, NZO mice exhibited more perivascular microglia than 

B6J mice. Upstream regulator analysis predicted fibrin may a significant culprit behind 

aging-associated changes in NZO microglia and fibrin deposition was detected in NZO 

brains. Fibrin has previously been shown to be neurotoxic (35,36). Fibrin upregulates 

Hmox1 expression in microglia (36) and upstream regulator analysis predicted 
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activation of HMOX1-dependent inflammatory response signaling pathways when 

comparing 9mo NZO and B6J microglia. Furthermore, MetS has been associated with 

increased CCL5, which can recruit immune cells via CCR1/CCR5 to vasculature (52-

54). NZO mice exhibit peripheral vascular stress (55), and NZO microglia display higher 

expression of Ccr1 and Ccr5.  

Collectively, these data predict MetS may increase vascular stress and fibrin 

deposition in the CNS, resulting in recruitment of microglia to the cerebrovasculature. 

This primary endophenotype may than render microglia less responsive to a secondary 

insult. To test this, we first used an acute LPS treatment and performed bulk RNA-seq 

on hemibrains. We found increased expression of vascular associated genes in NZO 

hemibrains relative to B6J hemibrains including Serpine1, Edn1 and Angpt1 which 

mediate vascular stress and fibrin accumulation (56-58). Further, fewer DEGs were 

identified in LPS-treated NZO mice compared to LPS-treated B6J. This provides 

support for decreased responsiveness in NZO microglia. For example, Cx3cr1 did not 

change in LPS-treated NZO mice. Cx3cr1 expression has been shown to decrease in 

neurodegeneration (11,12). Interestingly, recently published data suggest aged 

microglia display a dampened response to LPS, supporting the concept that NZO mice 

may be a model of MetS-dependent accelerated aging (59).  

Following acute stimuli, we turned to a more chronic and disease-relevant 

inflammatory stimulus, amyloid deposition (12,14,23,60). We found that NZO.APP/PS1 

mice displayed a significant increase in plaque size, independent of numbers of plaque-

associated microglia. Increased plaque sizes may impact larger regions leading to 

increased likelihood of cognitive dysfunction. Patients displaying MetS have accelerated 
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plaque deposition, and MetS blood biomarkers correlate with the rate of cognitive 

decline in patients with MCI and dementia (61,62). One possibility for the increased 

plaque size is in NZO.APP/PS1 compared to B6J.APP/PS1 mice is inefficient plaque 

compaction or clearance by NZO microglia - that would fit with the model of MetS-

dependent reduced responsiveness. A second possibility may be altered activity of 

insulin degrading enzyme (IDE). In addition to insulin degradation, IDE also contributes 

to plaque degradation (63). Microglia-specific or brain-wide Ide expression was not 

changed between NZO and B6J mice, however, a MetS-dependent increase in insulin, 

requiring degrading by IDE in NZO mice, may result in reduced amyloid-β degradation. 

Emerging work has implicated microglia in regulating blood flow and closure of 

injured vascular barriers (16,18,64). Therefore, given the vascular stress and changes 

to microglia-vascular interactions in NZO mice, we investigated whether NZO.APP/PS1 

mice were susceptible to microhemorrhages. NZO.APP/PS1 mice presented with 

microhemorrhages, which were rare in B6J.APP/PS1 mice or WT littermate controls. 

Microhemorrhages are more common in AD patients than in control groups and were 

previously detected in Ob/Ob APP/PS1 mice (65-68). One possible mechanism driving 

the microhemorrhages in NZO.APP/PS1 mice relates to fibrin deposition. Fibrin is 

stabilized by amyloid-β potentiating vascular damage and blood-brain-barrier 

breakdown (38,69). Recent evidence suggests the amount of fibrin coverage of vessels 

correlates to cerebral microbleeds in patients with CAA (70). Yet, we did not observe 

extensive CAA in NZO.APP/PS1 mice. It is possible microhemorrhages in 

NZO.APP/PS1 mice are a result of the inability of microglia to clear fibrin and/or 

amyloid-β efficiently, alongside potential impairments in wound healing and vascular 
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repair pathways may predispose NZO mice to increased microhemorrhages. Diabetes 

worsens wound healing and vascular repair pathways in a variety of pathological 

conditions (71) and NZO microglia exhibit age-associated alterations in wound healing 

pathways underscoring this possibility. These data provide further evidence that MetS 

reduces or dampens the responsiveness of microglia. 

In summary, we have found that MetS in NZO mice fundamentally altered 

microglia responses even when compared to microglia of HFD-fed B6J mice. NZO 

microglia displayed age-associated transcriptional changes concomitant with increased 

perivascular association. These changes were associated with abnormal responses to 

an acute LPS challenge and chronic amyloid pathology altogether suggesting MetS 

reduced microglial plasticity. Overall, this also supported the hypothesis of accelerated 

aging in NZO compared to B6J. This work provides the foundation to investigate the 

mechanisms by which MetS compromises microglial responses, leading to increased 

risk for neurodegenerative disease such as Alzheimer’s disease.  
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Figure Legends: 

Figure 1. Strain-dependent effects of both high-fat diet and aging on characteristics of 

metabolic syndrome. 
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a. Body weight at 2mo. b. Fasted cholesterol at 2mo. c. Fasted triglycerides at 2mo. d. 

Hemoglobin A1c (HbA1c) at 2mo. e. Blood pressure at 2mo. f. Body weight of mice fed 

either SD or HFD from 2-9mo. g. Fasted cholesterol at 9mo. h. Fasted triglycerides at 

9mo. i. HbA1c at 9mo. j. Blood pressure at 8mo. In a–e: two-way ANOVA with post-hoc 

Tukey’s test. In a, N=16 NZO (7M,9F), N=23 B6J (11M,12F) mice. In b-c, N=7 NZO 

(4M,3F), N=8 B6J (4M,4F) mice. In d, N=8 NZO (4/sex), N=9 B6J (4M,5F) mice. In e, 

N=4M mice/strain. In f, mixed effects model with repeated measures. N=7M NZO 

(4SD,3HFD), N=9F NZO (4SD,5HFD), N=11M B6J (5SD,6HFD), N=12F B6J 

(7SD,5HFD). In g-h, N=7M NZO (4SD,3HFD), N=9F NZO (4SD,5HFD), N=10M B6J 

(5SD,5HFD), N=12F B6J (7SD,5HFD). Dashed lines and represent values > 200mg/dL. 

In i, N=7M NZO (4SD,3HFD), N=9F NZO (4SD,5HFD), N=10M B6J (4SD,6HFD), 

N=11F B6J (6SD,5HFD). Red line indicates diabetic HbA1c, gray line indicates 

prediabetes. In j, N=13M NZO, N=9M B6J mice. All data shown are Mean±SEM. 

 

Figure 2. Profiling myeloid transcriptional states in a cohort of varying metabolic 

impairment.  

a. Experimental design scheme; created with BioRender.com. b. Dimensionality 

reduction plot (UMAP) of microglia colored by cluster. c. UMAPs of microglia colored by 

SCT-normalized expression of marker genes. d. Dot plot of marker genes associated 

with each annotated state. e. UMAP of microglia colored by annotated state. In a-e, 

9mo mice: N=3M NZO/diet, N=4F NZO/diet, N=4M B6J/diet, N=3F B6J/diet; 2mo mice: 

N=3 NZO/sex, N=7 B6J (3M,4F). 
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Figure 3. HFD promotes stress-responses and alters cellular communication pathways 

in NZO but not B6J microglia.  

a. Bar chart summarizing the number of DEGs associated with HFDvSD across all 

microglia, within NZO microglia alone, and within B6J microglia alone. b. IPA graphical 

summary of NZO HFDvSD microglia DEGs. c. Violin plots of selected HFDvSD NZO 

DEGs. d. Enrichment GO term plot for NZO HFDvSD microglia DEGs. In a-d, N=3M 

NZO/diet, N=4F NZO/diet, N=4M B6J/diet, N=3F B6J/diet mice. 

 

Figure 4. NZO and B6J microglia exhibit strain- and age- associated transcriptional 

differences. 

a. Venn diagram displaying overlap of NZOvB6J DEGs at 2 and 9mo. b. Violin plots of a 

subset of NZOvB6J 9mo DEGs. c. UMAP plots for NZO and B6J microglia. Colored by 

SCT-normalized Apoe expression. d. Enrichment GO term plot of 9mo NZOvB6J 

microglia DEGs. e. IPA graphical summary of 9mo NZOvB6J DEGs. f. Venn diagram of 

9v2mo DEGs identified in NZO and B6J microglia. g. Violin plots of selected 9v2mo 

NZO microglia DEGs. Enrichment GO term plots for 9v2mo B6J (h) or NZO (i) microglia 

DEGs. 9mo mice: N=7 NZO (3M,4F), N=7 B6J (4M,3F). 2mo mice: N=6 NZO mice 

(3M,3F), N=7 (3M,4F) B6J mice. 

 

Figure 5. NZO vasculature displays fibrin deposition concomitant with increased 

coverage by microglia. 

a. Representative images of TMEM119 and CD31 staining in the hippocampus. 

Quantification of microglia in the hippocampus (b) and cortex (d). Quantification of the 
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percentage of CD31 colocalized with TMEM119 in the hippocampus (c) and cortex (e). 

f. IPA upstream regulator analysis of 9v2mo NZO microglia DEGs. g. Representative 

images of TMEM119, CD31, and fibrin. Insets are high resolution confocal imaging of 

noted area. Quantification of the percentage of CD31 colocalized with fibrin in the 

hippocampus (h) and cortex (i). N=8 NZO (2/sex/diet) and N=8 B6J (2/sex/diet) mice. In 

b-c, independent two sample two-sided t test. In e, h-i, Mann-Whitney test. SD: closed 

circles, HFD: open circles. Data are presented as Mean±SEM.  

 

Figure 6. NZO animals display increased expression of hemibrain vascular associated 

genes and an altered central nervous system response to an acute LPS treatment. 

a. Experimental schematic of CNS responsiveness to LPS. Created with 

BioRender.com. b. Bar chart of DEGs associated with each comparison. c. Top IPA 

regulatory effect for NZOvB6J DEGs. d. Venn diagram displaying DEGs associated with 

the LPS response in each strain. e. Volcano plot of the Strain-by-Treatment interaction 

effect. Top 10 genes by significance are labeled. Genes are colored by significance. f. 

IPA graphical summary of the Strain:LPS interaction effect. In a-f, N=3F 

mice/strain/treatment. 

 

Figure 7. NZO mice exhibit fewer, but larger neuritic amyloid plaques, without 

differences in microglia coverage of plaques. 

Representative images of 6E10 amyloid-β staining with IBA1 (a) or regions of interest 

with LAMP1 co-staining (b) in the hippocampus. c. Quantification of 6E10+ area in the 

hippocampus (c) and cortex (h). Quantification of 6E10+ counts in the hippocampus (d) 
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and cortex (i). Quantification of the average size of 6E10+ objects in the hippocampus 

(e) and cortex (j). Quantification of IBA1+ area in the hippocampus (f) and cortex (k). 

Quantification of the percentage of 6E10+ area colocalized with IBA1+ area in the 

hippocampus (g) and cortex (l). m. Representative images of Prussian blue staining 

with higher magnification image of the inset. n. Quantification of Prussian blue+ 

microhemorrhages per brain section. SD: closed circles, HFD: open circles. In a-l, N=4F 

NZO.APP/PS1, N=3F B6J.APP/PS1 mice. Independent two sample two-sided t test. In 

m-n, N=4/strain/diet WT mice and N=4F NZO, N=3F B6J APP/PS1 mice. Two-way 

ANOVA with post-hoc Tukey’s test. Data are presented as Mean±SEM. 
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