

1 Comparative single-cell analysis reveals IFN- γ as a driver of respiratory sequelae post COVID-
2 19

3

4 Chaofan Li^{1, 2*,#}, Wei Qian^{1, 2*}, Xiaoqin Wei^{1, 2*}, Harish Narasimhan^{1, 2, 3}, Yue Wu^{1, 2}, Mohd Arish^{1, 2}, In Su
5 Cheon^{1, 2}, Kamya Sharifi^{1, 2}, Ryan Kern⁴, Robert Vassallo⁴ and Jie Sun^{1, 2, 3#}

6 1. Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA
7 22908, USA.

8 2. Division of Infectious Disease and International Health, Department of Medicine, University of
9 Virginia, Charlottesville, VA 22908, USA.

10 3. Department of Microbiology, Immunology and Cancer Biology, University of Virginia,
11 Charlottesville, VA 22908, USA.

12 4. Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester,
13 MN, USA 55905

14

15

16

17 * These authors contribute equally.

18 #, Email: J.S.: js6re@virginia.edu, C.L.: djp5yq@virginia.edu

19

20

21 **Abstract:**

22 Post-acute sequelae of SARS-CoV-2 infection (PASC) represents an urgent public health challenge,
23 with its impact resonating in over 60 million individuals globally. While a growing body of evidence
24 suggests that dysregulated immune reactions may be linked with PASC symptoms, most
25 investigations have primarily centered around blood studies, with few focusing on samples derived
26 from post-COVID affected tissues. Further, clinical studies alone often provide correlative insights
27 rather than causal relationships. Thus, it is essential to compare clinical samples with relevant animal
28 models and conduct functional experiments to truly understand the etiology of PASC. In this study, we
29 have made comprehensive comparisons between bronchoalveolar lavage fluid (BAL) single-cell RNA
30 sequencing (scRNAseq) data derived from clinical PASC samples and relevant PASC mouse models.
31 This revealed a strong pro-fibrotic monocyte-derived macrophage response in respiratory PASC (R-
32 PASC) in both humans and mice, and abnormal interactions between pulmonary macrophages and
33 respiratory resident T cells. IFN- γ emerged as a key node mediating the immune anomalies in R-
34 PASC. Strikingly, neutralizing IFN- γ post the resolution of acute infection reduced lung inflammation,
35 tissue fibrosis, and improved pulmonary gas-exchange function in two mouse models of R-PASC. Our
36 study underscores the importance of performing comparative analysis to understand the root cause of
37 PASC for developing effective therapies.

38

39 **Introduction**

40 Three years after the onset of the SARS-CoV-2 pandemic, the development of anti-viral therapies and
41 effective vaccines have significantly improved the management of acute COVID-19. However, an
42 urgent public health challenge remaining is the presence of an increasingly large number of
43 individuals (estimated to be more than 60 million globally) with post-acute sequelae of SARS-CoV-2
44 infection (PASC)^{1, 2}. PASC are characterized by persistent, recurring, or novel symptoms manifesting
45 after the resolution of acute infection³. Longitudinal assessments have indicated that PASC
46 contributed 80 – 642 disability-adjusted life years (DALYs) per 1,000 individuals recovering from
47 COVID-19, with over 20% experiencing symptoms beyond two years². As the lung is the primarily
48 affected organ during acute infection, respiratory PASC (R-PASC), which includes disabling symptoms
49 like dyspnea, cough, and interstitial lung disease, is recognized as one of the predominant sequelae³,
50 ^{4, 5}. Furthermore, impaired gas-exchange functions may lead to systemic symptoms, including
51 exertional dyspnea, chronic fatigue, and other limitations due to chronic hypoxia. Of note, respiratory
52 symptoms, impairment in lung gas exchange, and radiographic abnormalities can persist for more
53 than 2 years (possibly longer) in some patients, especially following severe acute COVID-19
54 infection^{6, 7, 8}.

55 Emerging evidence has associated prolonged or aberrant peripheral immune responses with systemic
56 or multi-organ symptoms observed in PASC, mainly through analyses of PBMCs and plasma^{9, 10, 11, 12}.
57 Currently, the immune status within affected organs during PASCs remains largely uncharacterized,
58 mainly due to the limited direct sampling of affected tissues after acute COVID-19. Furthermore, it is
59 extremely challenging to determine the causative mechanisms of PASC solely based on observational
60 clinical research, as most clinical studies can only provide correlative phenotypic associations.

61 Notably, a few animal models on COVID-19 sequelae have been developed^{13, 14}. However, whether
62 these animal models can faithfully model the pathophysiology and molecular etiology of human post
63 COVID-19 sequelae remains to be determined since there is a lack of direct comparative analysis of
64 these models with human investigations. Thus, there is an urgent need to perform a parallel
65 comprehensive analysis of clinical samples and samples from relevant animal models side-by-side to
66 acquire deeper mechanistic insights regarding PASC etiology, particularly in the respiratory tract.
67 Additionally, the development of future therapeutic interventions necessitates functional studies in
68 clinically relevant animal models for validating the causative drivers of PASC.

69 To address these challenges, here we undertook single-cell RNA (scRNASeq) sequencing of
70 bronchoalveolar lavage (BAL) cells and peripheral blood mononuclear cells (PBMCs) from a cohort of
71 COVID-19 convalescents with or without respiratory PASC (R-PASC). In parallel, we have performed
72 kinetical scRNASeq analysis of BAL samples obtained from SARS-CoV-2 mouse models. The
73 comparative scRNASeq analyses of human and animal samples revealed that R-PASC are associated

74 with aberrant responses and interactions of macrophages and resident T cells in the respiratory tract.
75 We further discovered IFN- γ as a central node mediating the aberrant interactions between respiratory
76 macrophages and T cells. Strikingly, neutralization of IFN- γ post the resolution of acute viral infection
77 dampened chronic pulmonary inflammation and tissue fibrosis, as well as restored pulmonary gas-
78 exchange function in mouse R-PASC models. Our findings thus open the door for therapeutic
79 interventions against R-PASC by targeting aberrant respiratory immunity in COVID-19 convalescents,
80 especially IFN- γ .

81

82

83 **Results**

84 **Single-Cell RNA-Seq reveals altered pulmonary immune landscape in R-PASC.**

85 The comprehensive respiratory immune and molecular landscape in COVID-19 convalescents,
86 particularly in R-PASC, have not been characterized. To this end, we utilized a cohort of COVID-19
87 convalescents and controls that were not previously infected with SARS-CoV-2 (non-COVID-19). All
88 convalescents were discharged and evaluated 60-90 days after the onset of SARS-CoV-2 infection
89 and were SARS-CoV-2 N1 gene PCR negative prior to recruitment, as detailed previously¹⁵ (Fig. 1a).

90 Pulmonary function was assessed using spirometry and lung diffusion capacity tests, including FVC
91 (forced vital capacity), indicative of total lung capacity; FEV1 (forced expiratory volume in one
92 second), indicative of lung volume exhaled in one second as a measure of obstructive airflow; and
93 DLCO (Diffusing capacity for carbon monoxide), indicative of lung gas exchange efficacy.

94 Convalescents with either FEV1 or FVC values below 80% of predicted were categorized as R-PASC
95 patients, while the rest were labeled as non-R-PASC (Fig. 1b and Table 1).

96 To discern the underlying differences in the immune landscape between R-PASC and non-R-PASC
97 convalescents, we conducted scRNAseq on bronchoalveolar lavage (BAL) and peripheral blood
98 mononuclear cells (PBMC). In total 85,971 BAL cells and 101,296 PBMCs (from five R-PASC, four
99 non-R-PASC, and two control individuals) were analyzed after integrating with published healthy
100 datasets (additional ten individuals)^{16, 17}. Ten major BAL cell clusters and ten PBMC clusters were
101 identified (Fig. 1c, and Extended data Fig. 1a, b, c). In comparison to non-infected controls and non-
102 R-PASC convalescents, R-PASC patients displayed an increased proportion of monocyte-derived
103 alveolar macrophages (MoAM) and T cells in BAL, and monocytes in PBMC (Fig. 1 d, and Extended
104 data Fig. 1d, e, f). Conversely, tissue resident alveolar macrophage (TRAM) counts significantly
105 diminished in the BAL of R-PASC patients (Fig. 1d and Extended data Fig. 1d).

106 Non-R-PASC BAL cells and PBMCs exhibited upregulated pathways such as IL2 signaling, KRAS
107 signaling, glycolysis, and the unfolded protein response (UPR) compared to controls (Extended data
108 Fig. 2a, b). BAL cells from R-PASC patients, however, predominantly highlighted pathways associated
109 with cell proliferation and inflammation, like the G2M checkpoint, MTOR pathways, and allograft
110 rejection (Extended data Fig. 2a). As the result, TRAM characteristic genes, such as *PPARG*, *FABP4*,
111 and *MARCO*, were prominently expressed in non-R-PASC BAL cells. In contrast, genes indicative of
112 cytotoxic T cells, like *NKG7*, *CCL5*, *GZMK*, and *CXCR6*, were prevalent in BAL cells from R-PASC
113 patients (Extended data Fig. 2c, d), consistent with what we and others have reported that T cell
114 signatures are enriched in R-PASC^{15, 18}. GSEA analysis between R-PASC and non-R-PASC groups
115 illustrated that pathway prominent in non-R-PASC BAL cells revolved around AM-driven tissue
116 homeostasis, while R-PASC cell pathways from both BAL and peripheral blood leaned towards tissue
117 reactivity and inflammation (Extended data Fig. 2e, f). Notably, the abundance of BAL MoAM and

118 PBMC monocytes, coupled with the decreased TRAM count, correlated with compromised lung
119 function in R-PASC patients, including a reduction in FEV1%, FVC%, and DLCO% (Extended data
120 Fig. 2g, h). Taken together, these data suggest that R-PASC is characterized by marked alteration of
121 immune cell composition and inflammatory responses in the respiratory tract compared to those of
122 non-infected controls or infected subjects without R-PASC.

123 **Pro-fibrotic monocyte-derived macrophages accumulate in R-PASC.**

124 We previously have reported scRNAseq analysis of purified T cells in this cohort; here, we observed
125 BAL T cells from R-PASC patients showed terminal differentiated features with upregulating *KLRG1*,
126 *GZMK* expression, and B cells from R-PASC BAL showed noticeable differentially expressed genes
127 (DEGs) compared with non-R-PASC counterparts (Extended data Fig. 2i, j). Subsequent analysis was
128 focused on macrophages, as those cells have been suggested to link with the development of tissue
129 fibrosis in animal models^{19, 20}. Functional correlation analysis revealed a contrasting distribution of
130 macrophage populations in convalescents with or without R-PASC. In order to gain a higher resolution
131 of BAL macrophages in R-PASC, we further subclustered macrophages into seven subclusters with
132 distinct gene expression profiles including three TRAM clusters (TRAM_1, TRAM_2, TRAM_3), two
133 proliferating AM clusters (ProAM_1, ProAM_2) and two monocyte-derived macrophage populations
134 (MoAM_1 and MoAM_2) (Fig. 1e). Among two monocyte derived macrophage clusters, MoAM_1
135 expressed high levels of *APOE*, *CD14* and *FCN1*, indicative of a transitory differentiation state from
136 monocytes to macrophages. This cell cluster was marked by a high expression of alarmins (*S100A8*),
137 inflammatory chemokines (*CCL2*) and chemokine receptors (*CCR2*, *CXCR4*) (Fig. 1f). Additionally,
138 MoAM_1 were associated with inflammatory responses, macrophage activation, cytokine production,
139 and pathogen phagocytosis (Fig. 1g). Notably, MoAM_1 population expressed high levels of *SPP1*,
140 which encodes Osteopontin—a multifunctional matricellular protein and cytokine seen in
141 macrophages across diverse pathologies, implicated as a pivotal factor in tissue damage and
142 fibrosis^{21, 22, 23}. The MoAM_2 cluster showed enhanced expression of *CD274* (PD-L1), *CD40*, and
143 *ICAM1*, primarily linking to cytokine-mediated signaling (Fig. 1f, g). We also identified three tissue
144 resident alveolar macrophage types (TRAM_1, TRAM_2, and TRAM_3), characterized by elevated
145 expression of *FBP1*, *FABP4*, *CD68* and *MARCO* (Fig. 1f)—traits characteristic of TRAMs²⁴. These
146 cells were predominantly enriched with cholesterol synthesis regulation, wound healing and lipid
147 metabolism pathways (Fig. 1g). Furthermore, two proliferative AM (ProAM) populations were
148 characterized by the expression of cell-cycle-related genes (*MKI67*, *NUSAP1* and *CDK1*).
149 Trajectory analysis posited that MoAM_1 likely differentiated towards TRAM_1 (Fig. 1h). When
150 compared to control or non-R-PASC donors, BAL cells from R-PASC patients showed a marked rise
151 in the MoAM_1 population and a decreased TRAM_1 population (Fig. 1i, j and Extended data Fig.
152 3a). Furthermore, there was a negative association between the enrichment of MoAM_1 and lung

153 function recovery (Extended data Fig. 3b). Transcription regulation analysis²⁵ elucidated that, relative
154 to TRAM_1, DEGs of MoAM_1 are modulated by hypoxia (mediated by transcription factors (TFs) like
155 HIF1A, VHL), and proinflammatory cytokine signaling (TFs such as STAT3, STAT1, IRF1 and NFKB1)
156 (Fig.1k). This is in agreement with GSEA, which indicated enrichment in IFN- γ , IL-6, and TNF
157 signaling within the MoAM_1 cluster (Fig. 1l).

158 It was indicated that MoAM generally adopts a pro-fibrotic phenotype during severe COVID-19 acute
159 respiratory distress syndrome (ARDS)²⁶; however, it remains uncertain if the accumulated MoAM cells
160 in R-PASC patients retain these pro-fibrotic characteristics after the resolution of ARDS. We thus
161 evaluated pro-pulmonary fibrosis macrophage core genes in BAL macrophages^{27, 28, 29}. MoAM_1
162 consistently scored the highest among the five macrophage populations examined (Fig.1m, and
163 Extended data Fig. 3c, d). Additionally, the R-PASC patients derived MoAM_1 subset displayed
164 notable enrichment of pro-pulmonary fibrosis macrophage gene sets (Fig. 1n, and Extended data Fig.
165 3e).

166 The heightened expression of the monocyte chemoattractant CCL2 in MoAM_1 cells hints at a
167 feedback mechanism for monocyte recruitment and subsequent macrophage differentiation (Fig. 1f,
168 and Extended data Fig. 3f-h). The positive correlation between BAL MoAMs and circulating
169 monocytes further underscores this hypothesis (Fig. 1o). However, no significant correlation was
170 observed between circulating T cells, NK cells, B cells, and their respiratory equivalents (Extended
171 data Fig. 3i). To further explore the recruitment of MoAMs from circulation, transcriptional similarity
172 was assessed between circulating monocytes and BAL macrophages, this assessment demonstrates
173 that the MoAM_1 subset in R-PASC patients bears a strong resemblance to circulating monocytes
174 (Extended data Fig. 3j, and Fig. 1p). Collectively, our comprehensive single-cell transcriptome
175 analysis revealed that post-COVID-19 lung sequelae are associated with marked dysregulation in the
176 pulmonary macrophage population, with R-PASC individuals exhibiting increased presence of
177 proinflammatory and pro-fibrotic MoAMs, likely due to persistent recruitment of monocytes to the
178 respiratory tract and/or incomplete differentiation of these monocytes to gain the mature TRAM
179 phenotype. Notably, a recent pre-print manuscript with a larger cohort of BAL donors also identified
180 that increased pulmonary MoAMs were associated with persistent respiratory symptoms and
181 radiographic abnormalities³⁰.

182 **Resident T cell-derived IFN- γ promotes MoAM recruitment and phenotype in R-PASC.**

183 Differential analysis between BAL macrophages from R-PASC and non-R-PASC individuals elucidated
184 a marked enrichment of inflammatory responses and cytokine signaling in R-PASC-derived
185 macrophages. In contrast, lipid metabolic pathways were predominantly evident in macrophages from
186 non-R-PASC donors (Extended data Fig. 4a). Focusing on MoAM_1 subset, there were more DEG
187 counts between R-PASC to non-COVID groups than those gene counts between non-R-PASC and

188 non-COVID groups (Fig. 2a). Direct comparison of MoAM_1 cells from R-PASC and non-R-PASC
189 groups showed an upregulation of TRAM associated genes, namely *FABP4*, *PPARG*, and *MARCO* in
190 MoAM_1 cells from non-R-PASC donors. In contrast, MoAM_1 cells from R-PASC patients exhibited
191 increased expression of inflammatory chemokines (*CCL2*, *CXCL10*), inflammatory regulators (*FCN1*,
192 *S100A12*, *S100A8*), the lung fibrosis factor *SPP1*, and the monocyte-derived alveolar macrophage
193 marker *APOE* (Fig. 2b). These data suggest that MoAM_1 from R-PASC groups may be more
194 arrested toward the TRAM differentiation. We then applied SCENIC³¹ to discover potential
195 transcriptional regulators that modulate the differential gene expression in MoAM cells from the three
196 groups. We found that MoAM_1 cells in R-PASC group showed increased STAT1, IRF1, IRF7, and
197 NFKB2 TF activities (Fig. 2c), consistent with enriched proinflammatory gene sets (Fig. 2d). Notably, a
198 prominent trait of R-PASC MoAM_1 cells was the heightened IFN- γ response among enriched
199 pathways (Fig. 2d). *IFNGR2*—a critical determinant for IFN- γ responsiveness^{32, 33}—was elevated,
200 further indicating an upregulated IFN- γ response in R-PASC patient-derived MoAM_1 cells (Extended
201 data Fig. 4b, c).

202 Additionally, IFN- γ responsive MoAM_1 cells demonstrated an elevated propensity for pro-pulmonary
203 fibrosis in R-PASC patients (Extended data Fig. 4d). Macrophage polarization, influenced by factors
204 such as IFN- γ , and IL-4, gives rise to distinct proinflammatory (M1) or pro-fibrotic (M2) gene
205 expression profiles^{34, 35}. Generally, compared with M1 polarized macrophages, M2 macrophages and
206 Th2-driven responses are critical in the areas of lung fibrosis^{36, 37, 38, 39}. We found that MoAM_1 cells
207 exhibited the upregulated M1 differentiation features while gaining the pro-fibrotic profile and IFN- γ
208 responsiveness. Conversely, the M2 features of MoAM_1 were low (Fig. 2e, and Extended data Fig.
209 4e). Furthermore, the MoAM_1 cells from R-PASC patients have the highest M1 score, and a
210 comparable M2 score comparing the donors without COVID-19 or R-PASC (Fig. 2f, and Extended
211 data Fig. 4f). Together, these data indicate that R-PASC MoAM_1 cells are M1-polarized. Of note,
212 similar IFN- γ response enrichment was discerned in other lung and circulatory cell types, including
213 TRAM_1, respiratory epithelial cells, MoAM_2, and circulating monocytes (Fig. 2g, and Extended data
214 Fig. 4g-i). These data revealed a widespread IFN- γ response across many respiratory cell types in R-
215 PASC individuals, potentially due to the presence of an IFN- γ abundant milieu in the respiratory tract
216 of those individuals.

217 To explore the cellular source of IFN- γ , *IFNG* expression levels were assessed in BAL cells, T cells
218 were revealed as the major cell type harboring high levels of *IFNG* transcripts (Fig. 2h). Correlating
219 with the increased prevalence of CD4 $^{+}$ conventional T cells and CD8 $^{+}$ T cells in R-PASC BAL
220 (Extended data Fig. 4j, k), there was an augmented *IFNG* expression from CD4 $^{+}$ conventional and
221 CD8 $^{+}$ T cells (Fig. 2i and Extended data Fig. 4l). Remarkably, most of these *IFNG*-expressing T cell
222 subsets exhibited tissue-resident characteristics (Extended data Fig. 4m and Fig. 2j, k). Consequently,

223 compared to those of the non-R-PASC group, there appeared to be elevated IFN- γ concentrations in
224 BAL from R-PASC patients, and R-PASC BAL-derived CD4 $^{+}$ and CD8 $^{+}$ T cells showcased enhanced
225 IFN- γ protein production upon antigenic stimulation (Extended data Fig. 4n, o), although the limited
226 sample size here prevents us to draw a firm conclusion. Additionally, correlation analysis in the
227 scRNAseq data revealed that BAL *IFNG*-expressing T cell proportions showed a negative association
228 with lung function recovery (Fig. 2l). The expression of type 2 and type 3 related cytokines, which
229 were associated with M2 macrophage polarization, was almost undetectable among three groups of
230 donors (Extended data Fig. 4p), further indicating that the IFN- γ mediated type 1 immune responses
231 likely promote lung fibrotic responses in R-PASC.

232 MoAM cells from R-PASC patients exhibited overexpressed *CCL2* (Extended data Fig. 3h and Fig.
233 2b), indicating continuous monocyte recruitment. To determine if IFN- γ plays a role in this process, we
234 differentiated MoAM like cells from human peripheral monocytes after the treatment TGF- β , GM-CSF,
235 and PPARG agonist Rosiglitazone *in vitro*⁴⁰ (Fig. 2m). When compared to monocytes, *in vitro*
236 differentiated MoAM like cells displayed increased expression of AM cell markers, such as CD169 and
237 CD68 (Extended data Fig. 4q). After exposed to recombinant human IFN- γ , MoAM-like cells exhibited
238 a significant rise in *CCL2* expression compared to untreated cells (Fig. 2n and Extended data Fig. 4r).
239 These data suggest that IFN- γ abundant microenvironment amplifies *CCL2* production by MoAMs,
240 further boosting or sustaining monocyte recruitment to the respiratory tract in R-PASC. In summation,
241 our data reveal that individuals with R-PASC are characterized with a potential exuberant
242 communication between respiratory resident T cells and myeloid cells (particularly MoAM cells)
243 mediated by IFN- γ , driving persistent monocyte recruitment and subsequent M1-like polarization in
244 monocyte-derived macrophages.

245 To further explore the altered immune status in lung tissues from R-PASC patients, we analyzed a
246 lung scRNAseq dataset from a cohort of five patients with extensive lung fibrosis (PASC-PF) that
247 requires lung transplantation⁴ (Extended data Fig. 5a). Analysis of lung monocytes and macrophages
248 revealed substantial alterations in cellular composition in PASC-PF lungs compared to those non-
249 COVID controls^{41, 42}. We observed markedly increased monocyte subclusters Mono1 and MoAM and
250 diminished TRAM2 and TRAM3 clusters in PASC-PF lungs (Extended data Fig. 5b, and Fig. 2o). This
251 shift mirrors the macrophage composition observed in BAL samples from our cohort. Notably, MoAM
252 from PASC-PF lungs displayed increased IFN- γ responsiveness, enhanced pro-fibrotic characteristics
253 and a bias towards M1 differentiation (Fig. 2 p,q, and Extended data Fig. 5c). Further assessment
254 also pinpointed that T cells with increased tissue-resident characteristics were the major cellular
255 source of *IFNG* expression in the lung tissues during PASC-PF (Fig. 2 r, s and Extended data Fig. 5d).
256 Thus, exuberant IFN- γ -mediated pulmonary T-macrophage communications appear to be present in
257 two cohorts of respiratory PASC cohorts.

258 **Aged C57BL/6J mice manifest pulmonary sequelae after acute SARS-CoV-2 infection.**

259 To gain insight into the underlying mechanisms, we leveraged a mouse adapted strain of SARS-CoV-
260 2, MA10, generated from the ancestral Wuhan isolate⁴³. In humans, advanced age is a known risk
261 factor for developing severe and lethal disease following SARS-CoV-2 infection⁴⁴. To determine this
262 age dependent susceptibility to SARS-CoV-2 infection, we infected both young (3-mo-old) and aged
263 (21-mo-old) female mice with 5x10⁴ pfu MA10 virus and monitored their weight changes (Fig. 3a).
264 Infection of young mice resulted in an approximately 15% weight loss followed by rapid recovery,
265 whereas aged animals experienced more substantial and prolonged weight loss (Fig. 3b).
266 Furthermore, none of the young mice succumbed to the infection, while 40% of the aged mice
267 succumbed to the infection or reached the humane euthanasia criteria (Fig. 3c).

268 To elucidate the age-associated disease progression, we collected tissues at various time points to
269 capture both the acute phase and post-acute phase of infection, and assessed lung pathology and
270 immune responses in the respiratory tract (Fig. 3a). Three days post infection (dpi), virus replication in
271 the lungs of aged mice increased about 5-fold compared to young mice and there was no detectable
272 infectious virus by 10 dpi in all mice except for one aged mouse (Fig. 3d). Additionally, histological
273 examination revealed that young mice exhibited subpleural lesions from days 10 to 35. The lung
274 pathology in young mice peaked at 10 dpi and essentially all recovered at 35 dpi. In contrast, aged
275 mice displayed more severe lung pathology with considerable lung inflammation at 21 dpi when the
276 virus had been completely cleared after primary infection. Lung pathology in aged mice remained
277 noticeable at 35 dpi, although largely resolved from day 21 (Fig. 3e, f). Similarly, heightened collagen
278 deposition was also evident in the aged mice at 21 dpi (Fig. 3e). These data suggest that aged
279 C57BL/6J mice manifest pulmonary inflammatory and fibrotic sequelae after acute SARS-CoV-2
280 infection.

281 We next compared immune cell recruitment in the BAL of young and aged mice. MA10 infection
282 triggered a rapid infiltrating of cells into the respiratory tract in both age groups at the evaluated
283 infection time points. However, aged mice exhibited a notably higher cell count upon 3 dpi (Fig. 3g). In
284 addition, a significantly elevated number of neutrophils and inflammatory monocytes were seen in
285 infected aged mice compared with young counterparts (Fig. 3h, i, and Extended data Fig. 6a, b).
286 Previous studies have shown that influenza virus infection can lead to a reduction in Siglec-F^{hi}
287 TRAMs, subsequently instigating the emergence of Siglec-F^{lo} MoAMs^{45, 46}. Indeed, our observations
288 align with these findings, demonstrating a significant reduction in the percentage of TRAMs and a
289 marked increase in MoAMs in both age groups. Notably, aged mice showed a more pronounced
290 deficit in TRAMs and a greater prevalence of MoAMs in comparison to their young counterparts (Fig.
291 3j, k, and Extended data Fig. 6a, b), suggesting a more proinflammatory response in aged animals.
292 Moreover, we observed significantly higher CD8⁺ and CD4⁺ T cells in aged mice. Intriguingly, while

293 their proportion is largely reduced compared to young mice, overall spike-specific CD8⁺ T cell counts
294 are higher in aged mice, indicating a more prominent bystander CD8⁺ T cell response in aged mice
295 (Fig. 3l, m, and Extended data Fig. 6c, d). Together, these data indicate that the post SARS-CoV-2
296 pulmonary sequelae model developed in aged C57BL/6 mice is characterized by similar respiratory
297 proinflammatory cell profiles as those R-PASC individuals.

298 **scRNAseq analysis of respiratory immune cells in mouse R-PASC**

299 We next sought to understand the cellular and molecular profiles associated with this mouse R-PASC.
300 To this end, sc-RNA-seq was performed on BAL cells from both young and aged C57BL/6J mice at
301 various time-points post-infection (0, 10, 21, and 35 dpi). Subsequent analysis identified 8 distinct cell
302 populations in the BAL post SARS-CoV-2 infection (Fig. 4a and Extended data Fig. 7a). Kinetic
303 analysis revealed that T cell proportion showed an increase following infection in the aged mice.
304 Moreover, an accumulation of MoAM populations, coupled with a decrease in TRAM populations in
305 aged mice at 21dpi (Extended data Fig. 7b). MoAM cells were greatly diminished in the respiratory
306 tract at 35 dpi, coinciding with the decreased lung pathology at 35 dpi.

307 Notably, differential gene expression profiles between young and aged mice were pronounced at 21
308 dpi (Fig. 4b). Genes previously identified as upregulated in the MoAM population from R-PASC
309 patients, including *Apoe*, *Spp1*, and *Lyz2*, were markedly upregulated in the aged mice at 21 dpi, and
310 subsided by 35 dpi—aligning with the observed recovery of lung pathology (Fig. 4b). Associated with
311 these findings was persistent inflammation in BAL cells from aged mice at 21 dpi (Fig. 4c). This
312 temporal pattern correlates with lingering inflammatory responses observed in BAL cells from aged
313 mice at 21 dpi, when pathways like TGF-β response and Epithelial–mesenchymal transition (EMT)
314 were uniquely enriched, potentially hinting at inflammation-associated fibrosis development⁴⁷ (Fig. 4c).
315 Additionally, the patterns of BAL cell type composition in the aged mice at 21 dpi exhibited a similarity
316 with those of R-PASC individuals (Fig. 4d), reinforcing the usefulness of the model to investigate the
317 immune mechanisms underlying R-PASC.

318 To delineate the altered macrophage dynamics during the progression of lung sequelae, we stratified
319 macrophages into four distinct clusters: a TRAM cluster, two MoAM clusters (MoAM1 and MoAM2),
320 and a proliferating AM cluster (ProAM) based on their gene expression (Fig. 4e). TRAM cells
321 predominantly express *Siglec1*, a hallmark marker of mature tissue-resident AMs. MoAM1 cells,
322 characterized by elevated expression of *Spp1* and *Apoe*, manifested a pronounced accumulation in
323 aged mice relative to their younger counterparts at 21 dpi (Fig. 4f, and Extended data Fig. 7c). In
324 contrast, MoAM2 cells exhibited rapid lung infiltration during the acute infection phase, accompanied
325 by upregulated expression of the migratory regulator, *Klf2* (Fig. 4f, and Extended data Fig. 7c).
326 Pathway enrichment analysis further highlighted the superior endocytic potential of TRAM cells, the

327 enhanced proinflammatory signature of MoAM1 cells, and the heightened migration and cellular
328 extravasation capabilities of MoAM2 cells (Extended data. Fig. 7d).

329 Subsequent assessment of transcriptomic similarities between MoAM cells in R-PASC and analogous
330 MoAM1 from SARS-CoV-2 MA10 infected mice indicated a significant transcriptomic overlap,
331 particularly in MoAM1 cells from aged mice at 21 dpi (Fig. 4g, and Extended data Fig. 7e). A
332 comparative analysis between MoAM1 and TRAM cells from aged mice unveiled the inflammatory
333 polarization of MoAM1 cells at 21 dpi (Extended data Fig. 7f and Fig. 4h). Moreover, MoAM1 cells
334 showcased elevated chemotactic properties, aligning with increased *Ccl2* expression (Extended data
335 Fig. 7g, h), indicating they might be differentiated from consistently recruited monocytes. A defining
336 characteristic of human R-PASC MoAM_1 is its elevated pro-pulmonary fibrosis access score (Fig.
337 1m). We observed a similar pattern wherein MoAM1 cells from aged mice possessed the highest pro-
338 fibrosis score across all assessed time points and cell types at 21 dpi (Fig. 4i and Extended data Fig.
339 7i, j).

340 Consistent with human scRNAseq analysis, GSEA of mouse BAL cells identified a sustained IFN- γ
341 response across diverse cell types (BAL Macrophages, MoAM1, TRAM, and epithelial cells) in aged
342 mice at 21 dpi (Fig. 4j, and Extended data Fig. 7k-m). However, this chronic IFN- γ signaling waned by
343 week 5 (Fig. 4k), aligning with the timeline of lung pathology resolution (Fig. 3e). Similar to the human
344 R-PASC MoAM_1 subset, IFN- γ responsiveness levels in MoAM1 cells positively correlated with M1
345 like macrophage differentiation and heightened pro-pulmonary fibrosis features in aged mice at 21 dpi
346 (Fig. 4l, m), further suggesting the potential association of IFN- γ stimulation and post-viral fibrotic
347 response. Coincident with human MoAM-like cells (Fig. 2n), there was an IFN- γ dependent *Ccl2*
348 production after bone marrow-derived MoAM-like cells were treated with IFN- γ *in vitro* (Fig. 4n, and
349 Extended data Fig. 7n), indicating the role of IFN- γ in monocyte chemotaxis to the lung for the
350 subsequent development into the proinflammatory and pro-fibrotic MoAM1 cells. Notably, similar to
351 what was observed in the human scRNAseq analysis, T cells exhibiting tissue-resident memory (T_{RM})
352 traits emerged as primary IFN- γ sources at 21 dpi (Fig. 4o, and Extended data Fig. 7o, p).

353 Taken together, our comparative scRNAseq analysis on respiratory samples from both COVID-19
354 convalescents and SARS-CoV-2 infected mice identified that, the immune landscape in aged mice
355 three weeks after infection resembles the respiratory immune profile observed in R-PASC individuals,
356 marked by skewed TRAM and MoAM composition, prolonged IFN- γ responses, and pro-pulmonary
357 fibrosis attributes in MoAM cells.

358 **Therapeutic targeting of persistent IFN- γ mitigates post SARS-CoV-2 lung sequelae.**

359 Our comprehensive analysis, spanning clinical samples to SARS-CoV-2 MA10 infected mice,
360 uncovers IFN- γ signaling as a key potential contributor to developing post-COVID-19 chronic lung

361 complications. To directly test this, we treated the SARS-CoV-2 MA10 infected aged C57BL/6 mice
362 with anti-IFN- γ intraperitoneally to block IFN- γ signaling after the clearance of primary viral infection
363 (i.e. 10 dpi). We then measured pulmonary pathology and respiratory immune responses at 21 dpi,
364 the time-point when pronounced pulmonary sequelae were observed after SARS-CoV-2 infection (Fig.
365 5a). The treatment ameliorated lung inflammatory and fibrotic pathology compared to IgG controls,
366 indicating an overall improvement in outcomes (Fig. 5b, c). In line with this data, IFN- γ blockade
367 resulted in a reduction in total BAL cell counts (Fig. 5d), attributed to a decrease in Siglec-F^{lo} MoAMs
368 and inflammatory monocytes (Fig. 5e and f, and Extended data Fig. 8a), to a lesser impact on
369 neutrophils (Fig. 5g, and Extended data Fig. 8a). There was no significant difference in the counts of
370 total CD8⁺ T and CD4⁺ T cells (Extended data Fig. 8b). However, Spike-specific CD8⁺ T cells were
371 significantly diminished after anti-IFN- γ treatment (Extended data Fig. 8c).

372 To interrogate alterations in the respiratory immune profile subsequent to IFN- γ signaling blockade,
373 we performed sc-RNA-seq on BAL cells isolated from control or anti-IFN- γ treated mice at 21 dpi.
374 Following IFN- γ neutralization, we noted an increase in the TRAM population (Fig. 5h, i, and Extended
375 data Fig. 8d). To further explore the role of IFN- γ in MoAM recruitment and differentiation,
376 macrophages were isolated and subsequently re-clustered into distinct clusters: one TRAM, two
377 MoAMs, and one proliferative AM subcluster (Fig. 5j). Anti-IFN- γ administration resulted in an
378 augmented TRAM population presence while diminished MoAM1 cells (Fig. 5k), mirroring
379 observations from flow cytometric analyses (Fig. 5e, f). Pseudotime trajectories suggest a directional
380 push by IFN- γ signaling blockade toward TRAM differentiation (Extended data Fig. 8e, f). Post anti-
381 IFN- γ treatment, MoAM1 clusters markedly exhibited attenuated pro-pulmonary fibrotic characteristics
382 (Fig. 5l, and Extended data Fig. 8g-i), characterized by suppressed expression of genes including
383 *Arg1*, *Spp1*, *Ccl8* and *Ccl2*, and elevated expression of genes favoring tissue homeostasis and repair,
384 including *Pparg*, *Cebpb*, and *Plet1*⁴⁸ (Fig. 5m). This gene modulation correlated with improved lung
385 histopathology and diminished collagen deposition (Fig. 5b). Moreover, anti-IFN- γ treatment
386 dampened inflammatory pathways within MoAM cells and curtailed typical MoAM1 features observed
387 in R-PASC patients (Fig. 5n, o). In conclusion, direct targeting extended IFN- γ responses ameliorated
388 pro-inflammatory and pro-fibrotic macrophage development, and dampened lung pathology in this
389 murine model of post SARS-CoV-2 lung sequelae.

390

391 **IFN- γ is dispensable for post SARS-CoV-2 lung sequelae in BALB/c mice.**

392 Previously, it was shown that SARS-CoV-2 MA10 infection in aged BALB/c mice (1 year old) triggered
393 potent respiratory inflammatory responses and lung pathology at 1 month post infection, which can
394 persist up till 120 dpi¹³. Similar to the previous findings, we observed that SARS-CoV-2 MA10
395 infected aged BALB/c mice displayed pronounced chronic lung anomalies at 1 month post infection,

396 including cell infiltration and collagen deposition in the lung (Extended data Fig. 9a-d). scRNASeq
397 analysis of BAL cells revealed decreased TRAM cell proportion and accumulation of MoAM cells
398 (Extended data Fig. 9e, f). However, pathway analyses did not reveal significant IFN- γ or
399 proinflammatory responses in those MoAM cells even though persistent lung pathology was observed
400 in this model (Extended data Fig. 9g-k). Additionally, MoAM1 cells in infected BALB/c mice did not
401 show significant congruence with human MoAM_1 cells from R-PASC individuals (Extended data Fig.
402 9l), and pro-fibrotic attributes in these cells were comparable between infected and uninfected control
403 groups (Extended data Fig. 9m). Furthermore, there was a lack of observable differences in *Ifng*-
404 expression from T cells between infected and uninfected BALB/c mice (Extended data Fig. 9n).
405 Finally, the blockade of IFN- γ signaling starting at 10 dpi *in vivo* did not ameliorate infection-induced
406 chronic lung pathology in this model (Extended data Fig. 9o, p). Taken together, these results suggest
407 that chronic lung conditions developed after SARS-CoV-2 infection in BALB/c mice might not be
408 mediated by IFN- γ and/or IFN- γ responsive MoAMs, which is in sharp contrast to what were observed
409 in R-PASC individuals or SARS-CoV-2 infected C57BL/6 mice.

410 **Inhibition of IFN- γ enhances lung functional recovery in a persistent sequelae model after
411 influenza viral pneumonia.**

412 In contrast to the relatively transient lung inflammatory and fibrotic sequelae after SARS-CoV-2
413 infection in animal models, we previously found that influenza viral pneumonia can lead to more
414 persistent chronic lung pathology (more than 60 dpi) in aged C57BL/6 mice, likely due to more
415 extensive alveolar damage caused by mouse-adapted influenza (H1N1 A/PR8/34) virus than SARS-
416 CoV-2 virus during the primary infection in mice ⁴⁹ ⁵⁰. In this model, there was evident impairment in
417 lung compliance (Crs, Cst), increased tissue elastance (H, Ers) and respiratory resistance (Rrs), and
418 heightened trend of respiratory damping (G) at 6 weeks post infection in aged mice (Fig. 6a),
419 suggesting acute influenza viral pneumonia leads to chronic impairment of lung physiological function.
420 Furthermore, increased lung resident T cells, which have a higher IFN- γ production capacity, could be
421 observed in the aged mice post 6 weeks after infection (Fig. 6b, and Extended data Fig. 10a). To
422 explore whether IFN- γ is important in the development of chronic lung sequelae in this model, we
423 administered influenza-infected aged mice with IFN- γ neutralizing antibody following viral clearance at
424 14 dpi⁴⁹ (Fig. 6c, and Extended data Fig. 10b). Anti-IFN- γ treated mice exhibited reduced lung and
425 BAL cell counts including BAL T cells, indicating a potential IFN- γ -dependent feed forward loop for
426 immune cell recruitment to the respiratory tract (Fig. 6d, and Extended data Fig. 10c). IFN- γ blockade
427 also resulted in a pronounced reduction of both percentages and numbers of infiltrating monocytes in
428 the respiratory tract (Fig. 6e, f, and Extended data Fig. 10d, e). Consistently, SiglecF^{lo} MoAM cells
429 were significantly reduced (Fig. 6g).

430 Histopathological evaluation of the lungs highlighted a marked reduction in inflammatory lesions post
431 IFN- γ blockade (Fig. 6h, i). Complementing this, Masson's trichrome staining unveiled diminished
432 collagen deposition following anti-IFN- γ intervention, indicating attenuated lung fibrosis (Fig. 6h).
433 Previous reports have revealed R-PASC lung tissue with decreased alveolar type 1 (AT1) cells and
434 AT2 cells^{4 50}. We found that AT1 staining densities (PDPN⁺) and AT2 cell counts (proSP-C⁺) are
435 enhanced after IFN- γ neutralization (Fig. 6j, k), suggesting that IFN- γ blockade promoted lung
436 functional recovery. Consequent assessments of lung compliance (Cst), respiratory damping (G),
437 respiratory resistance (Rrs), and tissue elastance (Ers) affirmed a significant improvement of airway
438 hyperresponsiveness, parenchyma injury and tissue fibrosis (Fig. 6l, and Extended data Fig. 10f).
439 Collectively, our findings underscore that targeting IFN- γ offers a promising avenue to mitigate
440 persistent lung sequelae and promote pulmonary functional recovery after acute viral pneumonia
441 (Extended data Fig. 11).

442

443 **Discussion**

444 Although a number of studies have associated dysregulated peripheral immune responses with
445 PASC^{10, 11, 12}, the immune landscape in a primarily affected organ, the lung, remains largely unknown
446 in PASC. Here, integrating scRNAseq and clinical lung function evaluations, we noted a marked
447 dysregulated MoAM cell responses associated with respiratory PASC. Pathway analysis underscored
448 that respiratory resident T cell-derived IFN- γ drives MoAM precursor recruitment, polarization, and
449 endorsing a pro-fibrotic property. Additionally, comparative analysis and functional studies in murine
450 models of pulmonary sequelae established IFN- γ as a driver in chronic pathology and functional
451 decline post-acute viral pneumonia (Extended data Fig. 11).

452 Notably, IFN- γ was associated with severe inflammation and alveolar injury during acute COVID-19⁵¹,
453 and elevated serum IFN- γ levels⁵² were found in individuals with PASC after the resolution of primary
454 infection¹¹. However, those studies did not address whether IFN- γ acts as a “driver” or a “passenger”
455 in the acute and chronic pathogenesis of SARS-CoV-2. Our comparative scRNAseq analysis coupled
456 with functional neutralization at the post acute infection stage clearly established the role of IFN- γ in
457 driving R-PASC, which likely further lead to systemic symptoms such as fatigue due to chronic
458 hypoxia. Our analysis further unveiled two potential IFN- γ -mediated mechanisms in driving PASC,
459 enhancement of inflammatory monocyte recruitment via the promotion of CCL2 production, and/or
460 facilitating the development of pro-fibrotic MoAM polarization and differentiation. Additionally, IFN- γ
461 has been recently shown to inhibit alveolar stem cell proliferation directly⁵³, and thus it may inhibit the
462 regeneration of alveolar and interstitial tissues through its direct signaling in alveolar epithelial cells
463 following acute SARS-CoV-2 infection.

464 Our analysis revealed that lung-resident T cells were likely the major IFN- γ producing cells in PASC.
465 Additionally, SARS-CoV-2 specific IFN- γ producing T cells were correlated with worse lung function,
466 indicating aberrant virus-specific memory or “long-lived effector” T cells are a major culprit for
467 pulmonary sequelae after acute COVID-19. Such a notion is consistent with previous findings by us
468 and others^{15, 18}. Of note, IFN- γ protein production by effector or memory T cell usually require
469 concurrent TCR signaling. To this end, SARS-CoV-2 RNA can persist in various organs for weeks to
470 months in humans^{54, 55, 56}, and the duration of viral RNA shedding can last up to 59 days in the lower
471 respiratory tract⁵⁷. Therefore, it is possible that SARS-CoV-2 RNA or antigen persistence in the
472 respiratory tract may drive the continued production of IFN- γ after the clearance of infectious virus⁵⁸.
473 Alternatively, chronic autoantigen release due to persistent tissue injury and/or innate inflammatory
474 signals may also contribute to the production of IFN- γ in the respiratory tract⁵⁹.

475 A few animal models with persistent tissue inflammation and fibrotic responses after acute SARS-
476 CoV-2 infection have been developed. For instance, sustained pathology was first described in the
477 hACE2-expressing humanized (MISTRG6-hACE2) mouse model¹⁴, although it is hard to assess the

478 roles of dysregulated immune responses in this PASC model due to the lack of intact functional
479 immune responses in those humanized mice. Recently, an aged BALB/c model of chronic disease
480 after acute SARS-CoV-2 infection was developed and persistent sequelae including pulmonary
481 lesions, immune infiltrate, and tissue fibrotic responses were observed in those infected mice¹³.
482 Interestingly, we found that the chronic tissue pathology observed in infected BALB/c mice is
483 independent of IFN- γ as evidenced by the lack of the IFN- γ responsive signature in pulmonary cells
484 and the inability of IFN- γ neutralization to ameliorate lung sequelae. This may be related to the bias
485 toward Th2 responses in the BALB/c genetic background^{60, 61, 62}. Therefore, it is crucial to perform a
486 comparative analysis between human specimens and mouse PASC models to dissect the underlying
487 molecular mechanisms driving PASC in patients for the development of relevant therapeutics in the
488 future.

489 Through rigorous comparative analyses, we pinpointed a transient window in aged C57BL/6J mice
490 that closely emulated the immune profile of R-PASC patients. Notably, the lung conditions in the R-
491 PASC patients can persist for more than two years². Given the short lifespan of rodents (one aged
492 mouse day may be equal to 20 to 170 human days^{63, 64}), the R-PASC window duration in aged
493 C57BL6 mice in our model is perceivable. Interestingly, the recovery of the post SARS-CoV-2
494 sequelae at a later time point is linked to diminished IFN- γ signaling in the respiratory tract. Therefore,
495 the brief window of persistent IFN- γ production and/or signaling may be the ultimate reason
496 underlying the limited time window of R-PASC in mice. Thus, it is of interest to examine in the future
497 whether forced extension of IFN- γ signaling by biologicals or genetic means could sustain pulmonary
498 sequelae after SARS-CoV-2 infection. Furthermore, some patients do gradually recover from R-PASC
499 over time². Whether diminished IFN- γ signaling underlies the timely recovery of R-PACS requires
500 future studies with kinetical BAL sampling, which is extremely difficult to perform given the invasive
501 nature of BAL procedure in humans. Nevertheless, influenza viral pneumonia in aged mice appear to
502 generate more persistent pulmonary sequelae^{49, 50}, likely due to more persistent antigen deposit
503 and/or wide spread of alveolar damage in the acute phase^{65, 66}. IFN- γ neutralization did promote
504 tissue regeneration and mitigate lung functional impairment in this prolonged lung sequelae model.
505 Thus, prolonged IFN- γ responses may be a common mechanism underlying the development of
506 chronic pulmonary sequelae after acute respiratory viral infections.

507 TRAMs typically maintain themselves through self-renewal independent of monocyte input during
508 homeostasis. Under specific conditions such as infections or irradiation injuries, circulating monocytes
509 are recruited to the alveolar space and can gradually adopt AM signature^{45, 67, 68}. Notably, M2
510 polarized macrophages are generally considered as the macrophage subset mediating tissue
511 fibrosis⁶⁹. Studies have highlighted MoAMs in fibroblast foci within IPF lung tissues or after bleomycin
512 injury, displaying a shift toward M2 phenotypes correlating with collagen deposition^{70, 71, 72, 73, 74}. More

513 recent reports also found that MoAMs may transiently upregulate both M1 and M2 genes during lung
514 fibrosis development²⁰. Nevertheless, our study connects IFN- γ -responsive M1-like MoAMs with
515 tissue fibrosis development and lung functional impairment. This is likely due to the highly polarized
516 Th1 responses in the lung microenvironments after viral infection. Future studies are needed to
517 explore the potential underlying mechanisms by which those M1-like MoAMs cause tissue
518 inflammation and fibrosis after acute SARS-CoV-2 infection.

519 The limited R-PASC cohort size (nine convalescents, two non-COVID-19 controls, and ten published
520 healthy donor datasets, with a total of 85,971 BAL cells) restricts conclusive statements regarding
521 specific patient comorbidities or treatment influences in this study. Nevertheless, through the
522 evaluation of a published dataset featuring lung tissues from a distinct cohort of PASC pulmonary
523 fibrosis patients ⁴, we were able to corroborate our observations across different cohorts. Notably, a
524 larger cohort of R-PASC donors in a recent pre-print manuscript also supports our findings by
525 identifying a population of MoAMs associated with persistent respiratory symptoms and radiographic
526 abnormalities ³⁰, although functional investigations with appropriate models were not performed in the
527 study. Our research uniquely applied comparative analysis across human data and three different
528 animal models to explore the molecular mechanisms underlying R-PASC development. Through
529 these, we have revealed IFN- γ as a central node mediating exuberant T-monocyte-derived
530 macrophage interactions, driving persistent pulmonary inflammation, tissue fibrosis and lung
531 functional impairment in R-PASC. Our work emphasizes the necessity of performing a comparative
532 analysis of human specimens and relevant animal-derived samples side-by-side to probe into the
533 cellular and molecular origins of PASC for the development of future therapeutic tactics. Furthermore,
534 our data strongly suggest that the JAK-inhibitor, Baricitinib, which has already been granted
535 emergency use authorization for acute COVID-19 by United States Food and Drug Administration
536 (FDA), may also serve as a promising candidate to treat ongoing respiratory PASC in the clinic.

537
538
539
540
541
542
543
544
545
546
547

548 **Acknowledgments**

549 We thank Mayo genomic core, UVA Research Histology Core and Genome Analysis Technology Core
550 for technical assistance. Cartoon in Extended data Fig. 10. was created with BioRender.com. We
551 thank Dr. Maxim N. Artyomov and Dr. Sheng'en Hu during the data analysis. The study was in part
552 supported by the US National Institutes of Health grants AI147394, AG069264, AI112844, AI176171
553 and AI154598 to J.S, and HL170961 to J.S. and R.V.

554

555 **Author contribution.**

556 C.L., W.Q., X.W. & J.S. conceived the overall project. C.L., W.Q., X.W., Y.W., H.N., M.A., I.S.C., K.S.,
557 R.K. and R.V. designed the experimental strategy and analyzed data, performed experiments,
558 analyzed data, or contributed critical reagents to the study. C.L., W.Q., X.W. & J.S. wrote the original
559 draft. All authors read, edited, and approved the final manuscript.

560

561 **Methods**

562 **Ethics statement and biosafety**

563 This study was approved by Mayo Clinic Institutional Review Board (protocol ID 20-004911). Informed
564 consent was obtained from all enrolled individuals. All animal experiments were performed in animal
565 housing facilities at the University of Virginia (UVA; Charlottesville, VA). The animal experiments were
566 approved by UVA Institutional Animal Care and Use Committees. All work with SARS-CoV-2 infection
567 was approved under Animal Biosafety Level 3/Biosafety Level 3 (A-BSL3/BSL3) conditions and was
568 performed with approved standard operating procedures and safety conditions by the UVA
569 Institutional Review Board.

570 **Study cohorts**

571 Patients hospitalized due to PCR-confirmed SARS-CoV2 infection and COVID-19 pneumonia,
572 requiring at least 2 liters of supplemental oxygen to manage respiratory failure, were considered
573 convalescents of moderate to severe SARS-CoV-2 pneumonia. A control group of individuals matched
574 for age and without lung disease were included in the study. When hospitalized patients needed more
575 than 6 liters of supplemental oxygen, a high-flow nasal cannula (HFNC) oxygen delivery system was
576 used, providing oxygen flows from 40 to 70 liters per minute, resulting in oxygen levels (FiO2)
577 between 0.45 and 0.70 at the highest flow rate. The flow rate of the HFNC was adjusted at the
578 bedside to maintain oxygen saturation between 88% and 92%.

579 The COVID-19 convalescent cohort consisted of patients between the ages of 60 and 85 with no
580 evidence of preexisting interstitial or any prior chronic lung disease. For both the COVID-19 and
581 control cohorts, previous lung disease was excluded through evaluation of the electronic medical
582 records and clinical evaluation before performing a bronchoscopy. Patients with a history of <10 pack-
583 years of smoking and mild chronic obstructive pulmonary disease (COPD) with FEV1 > 80% predicted
584 and FEV1/FVC < 0.7 were still eligible for enrollment. At the time of bronchoscopy, control individuals
585 had to have an absence of lung infiltrate, fever, or any signs of infection. Most controls underwent
586 bronchoscopy to evaluate lung nodules or focal adenopathy of indeterminate cause. The exclusion
587 criteria for both the COVID-19 and control cohorts included the inability to provide consent to
588 participate in the study; patient under guardianship or curatorship; preexisting chronic lung disease
589 including interstitial lung disease, pulmonary fibrosis, or any other chronic lung disease except for mild
590 COPD as outlined in “inclusion criteria”; active cigarette smoking, vaping, or other inhalation use
591 (former smoker providing quit >90 days before admission acceptable); and immunocompromised host
592 status due to ongoing therapy with methotrexate, CellCept, azathioprine, prednisone dose >15 mg
593 daily, rituximab, cyclophosphamide, or other immunosuppressive or other biologic agents. All patients
594 with COVID-19 were enrolled for the study with bronchoscopy and BAL, acquisition of peripheral

595 blood for PBMC, RNA research sample, peripheral blood for clinical preoperative clearance
596 laboratories, and pulmonary function testing. The COVID-19 patient cohort was enrolled within a 60-
597 to 90-day window after the onset of acute COVID-19 infection, the onset of which was defined as the
598 day when the PCR SARS-CoV-2 swab was recorded as positive.

599 **Human pulmonary function tests**

600 Pulmonary function testing was performed on COVID-19 and control cohort. All individuals underwent
601 measurements of FVC and FEV1 as well as measurement of DLCO. In all individuals, spirometry was
602 performed in the institutional pulmonary function laboratory at Mayo Clinic in accordance with
603 American Thoracic Society (ATS) guidelines⁷⁵.

604 **Bronchoscopy and BAL collection**

605 Fiber-optic bronchoscopy and BAL were performed using moderate conscious sedation using
606 standard clinical procedural guidelines in an outpatient bronchoscopy suite. Conscious sedation was
607 administered in accordance with hospital policies, and a suitably trained registered nurse provided
608 monitoring throughout the procedure. About 100 to 200 ml of saline were instilled in 20 ml aliquots
609 until 60 ml of lavage fluid was obtained. The specimen was placed on ice, and immediately hand
610 carried to the laboratory for analysis. The fluid collected was placed on ice and transferred
611 immediately to the laboratory for processing.

612 **Single-cell purification from peripheral blood and BAL**

613 The whole blood was mixed with phosphate-buffered saline (PBS) and then gently put over on Ficoll-
614 Paque (Cytiva) in a 50-ml tube. Buffy coat generated by centrifuging at 400g for 40 min at RT was
615 collected. For single-cell purification from BAL, BAL was filtered with a 70-µm cell strainer (Falcon)
616 and then centrifuged at 300g for 10 min at 4°C. The supernatant was collected for multiplex assay and
617 ELISA. The cells were collected for flow cytometry analysis and scRNAseq.

618 **Single-cell RNA sequencing library construction and results analysis**

619 To facilitate the single-cell gene expression (GEX), PBMC and BAL cells from donors and MA10
620 infected mice at indicated time points were barcoded with 10X 5' Library & Gel Bead Kit v1.1 or 3'
621 Library & Gel Bead Kit v3.1. A total of 10,000 cells were targeted for single-cell libraries preparation
622 per the manufacturer's instructions (10x Genomics).

623 scRNAseq were aligned and quantified using 10x Genomics Cell Ranger Software Suite (v4.0.0)
624 against their corresponding human reference genome (GRCh38) downloaded from 10x Genomics
625 website. Using default settings in Seurat 4.0.1 package, the filtered transcriptome data were then
626 normalized (RNA expression by a factor of 10,000 with log-transformed). Aligned sequencing data

627 were further analyzed with Seurat (v4.3.0). The threshold of percent.MT is 10 to exclude dead cells.
628 The RNA expression data were then further scaled based on regressing the number of unique
629 molecular identifiers (UMIs) detected and the percentage of gene counts per cell. Principal
630 components analysis (PCA) was performed using the top variable genes. FindNeighbors and
631 FindClusters functions were applied for cell clustering in Seurat for either dataset. Differential gene
632 expression analysis was performed by the function of FindAllMarkers from Seurat with model-based
633 analysis of single-cell transcriptomics (MAST) test or negbinom test, and gene set enrichment
634 analysis (GSEA) analysis is based on the results of FindAllMarkers with the package of
635 clusterProfiler⁷⁶, and the online tool: Metascape⁷⁷; AddModuleScore function was applied for
636 analyzing cell population signature scores; Pseudotime analysis was performed using
637 SeuratWrappers and Monocle 3 combination, based on the Seurat processed analysis at the single-
638 cell level; transcription factor regulations were analyzed with SCENIC³¹. Additional BAL cells were
639 extracted from the published dataset GSE151928¹⁷, and Aged-matched control PBMC scRNASeq
640 data were merged with the public dataset¹⁶ (<https://artyomovlab.wustl.edu/immune-aging/explore.html>). Lung cell sc-RNA-seq data sets were adopted from: GSE224955, GSE146981
641 and GSE135893.
642

643 **Virus infection and antibody administration**

644 Young female C57BL/6J mice were purchased from The Jackson Laboratory (JAX) at aged of 10
645 weeks and housed in specific pathogen-free animal facility for 2 weeks before infection. Aged female
646 C57BL/6J mice were received at 20 to 24 months of age from the National Institute of Aging or the
647 JAX and maintained in the same conditions for at least 1 month before infection. One-year-old female
648 BALB/cJ mice were obtained from JAX at age of 10 weeks and aged to 1 year old. All mice were used
649 under conditions fully reviewed and approved by the Institutional Animal Care and Use Committee
650 guidelines at the University of Virginia.

651 Vero E6 cell line (ATCC CRL-1587) was maintained in Dulbecco modified Eagle medium (DMEM)
652 supplemented with 10% fetal bovine serum (FBS), along with 1% of penicillin-streptomycin and L-
653 glutamine at 37°C in 5% CO₂. The SARS-CoV-2 mouse-adapted strain MA10 was kindly provided by
654 Dr. Barbara J Mann (University of Virginia School of Medicine). MA10 was passed into Vero E6 cells
655 and the titer was determined by plaque assay using Vero E6 cells⁷⁸. Influenza A/PR8/34 virus stock
656 was generated in our laboratory.

657 For SARS-CoV-2 MA10 infection in C57BL/6 mice, young or aged female C57BL/6J mice were
658 intranasally infected with 5x10⁴ PFU MA10 virus. For SARS-CoV-2 MA10 infection in BALB/c mice,
659 around 1-year-old female BALB/c mice were intranasally inoculated 10³ PFU SARS-CoV-2 MA10
660 virus as previously reported¹³. All control mice were intranasally inoculated with DMEM. For primary
661 influenza virus infection, influenza A/PR8/34 strain was inoculated at the dose of ~50 PFU as

662 described before⁴⁹. Infected mice were monitored daily for changes in weight and clinical signs of
663 disease over a period of 2 weeks, following once a week throughout the duration of the experiments.
664 The mortality rate of mice determined as “deceased” were either found dead in their cages or were
665 euthanized upon reaching 70% of their initial body weight in accordance with the established humane
666 endpoint specified in animal protocol. Mice were euthanized on days 0, 3, 10, 21 and 35 post
667 infection. Bronchoalveolar lavage (BAL) samples were collected for flow cytometry and scRNAseq
668 analysis. The lung lobes were preserved in 10% phosphate buffered formalin for 7 days prior being
669 removed from BSL3 facility for further processing.

670 For in vivo blocking of IFN- γ , mice were injected intraperitoneally from 10 days post MA10 infection or
671 14 days post PR8 infection weekly, with 500 μ g (first dose) or 250 μ g (second and the following doses)
672 of InVivoMAb anti-mouse IFNy antibody (Clone: XMG1.2, Bio X Cell) or InVivoMAb rat IgG1 isotype
673 control (Clone: HRPN, Bio X Cell).

674 **Mouse lung tissue dissociation and BAL cell collection**

675 Mice were injected i.v. with 2 μ g of anti-CD45 diluted in 200 μ L of sterile PBS as previously
676 described⁷⁹. Mice were euthanized, and tissues were collected five minutes after injection of the i.v.
677 Ab. Mouse BAL cells were obtained from BAL as described previously⁸⁰, briefly, alveolar lavages were
678 pooled from BAL washes (PBS with 2 mM EDTA). The lung tissues were harvested and dissociated in
679 37°C for 30 min with Gentle-MACS (Miltenyi). Single cell suspensions were further passed through
680 70 μ m cell strainers once before the next step operation as previously described⁸¹.

681 **Mouse lung tissue section and immunofluorescence staining**

682 After euthanasia, mice were perfused with PBS (10 ml) via the right ventricle. Formalin (10%) was
683 then gently instilled into the lung and left inflated for 1 min before excising and moving the lobe to 10%
684 formalin for 48 hours followed by transfer to ethanol (70%). Samples were embedded in paraffin, and
685 5- μ m sections were cut for hematoxylin, eosin (H&E), and Masson’s trichrome stain. Slides were then
686 digitally scanned 20 \times resolution with the Aperio system (Leica), and the inflammatory area were
687 quantified by QuPath software.

688 Immunofluorescence staining was performed on formalin-fixed paraffin-embedded (FFPE) lung tissue
689 slides. FFPE slides were deparaffinized in Xylene and later rehydrated prior to heat-induced antigen
690 retrieval using 9pH Dako Target retrieval solution for 20 min. The slides were then blocked with 10%
691 normal goat serum phosphate-buffered saline (PBS) for 30 min at room temperature (RT) and then
692 were incubated with either Hamster anti-PDPN (Abcam Cat#: ab11936) or Rabbit anti-proSP-C
693 (Millipore Sigma Cat#: AB3786) overnight at 4°C. After rinsing in 0.1% PBST (PBS with Tween 20)
694 solution, the slides were incubated with Goat anti-Armenian Hamster IgG (H+L) (ThermoFisher Cat#:
695 A78963) and Goat anti-rabbit IgG (H+L) (ThermoFisher Cat#: A-11036). Slides were aired after rinsing

696 with 0.1% PBST before mounting with 4',6-diamidino-2-phenylindole for nuclei counterstain. Tissue
697 staining for the Ab mixture was reviewed, and images were captured using the Olympus BX63
698 microscope. For each lung section, images were taken in at least 10-12 random areas in the distal
699 lung. All images were further processed and quantification by using ImageJ Fiji and/or QuPath
700 software.

701 **Virus titer measurement**

702 The viral titer in the BAL which collect from young and aged female C57BL/6J mice at 3 d.p.i, 10 d.p.i,
703 21 d.p.i and 35 d.p.i, were determined using plaque assay. Vero E6 cells were cultured in DMEM with
704 the addition of 2% Fetal Clone II serum (Hyclone) and 1% Pen/Strep/glutamate. Serial dilutions were
705 added to the cells. The plate was incubated at 37°C and 5% CO₂ for 1 hour, shaking the plates every
706 15 minutes. After incubation, monolayers were overlayed with media containing 1.2% Avicel PH-101
707 and incubated at 37 °C and 5% CO₂. After 72 hours, the overlay was removed, wells were fixed with
708 10% formaldehyde, and stained with 0.1% crystal violet to visualize plaques. Plaques were counted,
709 and PFUs were calculated according to the following equation: Average # of plaques/dilution factor ×
710 volume diluted virus added to the well.

711 **Mouse lung function measurement**

712 Lung function measurements using FOT and the resulting parameters have been previously
713 described⁴⁹. In brief, animals were anesthetized with an overdose of ketamine/xylazine (100 and
714 10mg/kg intraperitoneally) and tracheostomized with a blunt 18-gauge canula (typical resistance of
715 0.18 cmH₂O s/mL), which was secured in place with a nylon suture. Animals were connected to the
716 computer-controlled piston (SCIREQ flexiVent), and forced oscillation mechanics were performed
717 under tidal breathing conditions described in⁴⁹ with a positive-end expiratory pressure of 3 cm H₂O.
718 The measurements were repeated following thorough recruitment of closed airways (two maneuvers
719 rapidly delivering TLC of air and sustaining the required pressure for several seconds, mimicking
720 holding of a deep breath). Each animal's basal conditions were normalized to their own maximal
721 capacity. Measurement of these parameters before and after lung inflation allows for determination of
722 large and small airway dysfunction under tidal (baseline) breathing conditions. Only measurements
723 that satisfied the constant-phase model fits were used (>90% threshold determined by software). After
724 this procedure, mice had a heart rate of ~60 beats per minute, indicating that measurements were
725 done on live individuals.

726 **Intracellular staining, antibodies, and flow cytometry**

727 Cell suspensions were stained with indicated surface markers after Fc receptors blockade, staining
728 was performed at 4 °C for 30 min. Cells were washed twice with FACS buffer (PBS, 2 mM EDTA, 2%
729 FBS, 0.09% Sodium Azide), before fixation and permeabilization with either Perm Fix and Perm Wash

730 (Biolegend, for cytokine staining) in the dark. Cells were washed twice with perm wash (BioLegend),
731 stained with Abs for at least 30 min at RT and then washed twice with perm wash before flow
732 cytometry acquisition. FACS Abs were primarily purchased from Biolegend, BD Biosciences or
733 Thermo. The clone number of those Abs as follows: Zombie NIR, Anti-mouse- y6G (clone 1A8), Anti-
734 mouse- Ly6C(clone HK1.4), Anti-mouse- SiglecF(clone E50-2440), Anti-mouse- CD8 (clone 53-6.7),
735 Anti-mouse- CD4 (clone RM4-5), Anti-mouse- CD45 (clone 30-F11), Anti-mouse- CD11c (clone N418),
736 Anti-mouse- CD11b (clone M1/70), Anti-mouse- MerTK (clone 2B10C42), Anti-mouse- CD64 (clone
737 X54-5/7.1), Anti-mouse- MHCII (clone M5/114.15.2), Anti-mouse- CD44 (clone IM7), Anti-mouse-
738 CD19 (clone SJ25C1), Anti-mouse- IFN- γ (clone XMG1.2), Anti-human-CD68 (clone Y1/82A), Anti-
739 human-CD169 (clone 7-239), Anti-human-IFN- γ (clone 4S.B3), Anti-human-CD4 (clone OKT4), Anti-
740 human-CD8a (clone RPA-T8). The dilution of surface staining Abs was 1:200 and dilution of
741 intracellular staining Abs was 1:100. After staining, cells were acquired through an 14-color Attune
742 NXT system (Life Technologies). Data were then analyzed by FlowJo software (Treestar).

743 **Bone marrow and circulating monocytes derived macrophage like cell differentiation and**
744 **stimulation**

745 C57BL/6J mice derived Bone marrow cells or human blood derived monocytes (purified with CD14
746 MicroBeads from PBMC) were harvested and treated as describe⁴⁰, briefly, recombinant mouse or
747 human GM-CSF (20 ng/ml), mouse or human TGF- β (2 ng/ml), and 0.1 μ M PPAR- γ agonist
748 rosiglitazone were added into the culture system, 8 days after differentiation, differentiated cells were
749 treated with recombinant mouse or human IFN- γ for 24 hours. Culture medium and RNA were
750 collected for the following experiments.

751 **Statistical analysis**

752 To compare between two sample groups, Mann-Whitney test was applied for unpaired comparisons.
753 For analysis between several groups, one- or two-way analysis of variance (ANOVA) was performed;
754 Wilcoxon rank-sum test and MAST were performed during scRNAseq data analysis. Correlations
755 were assessed by the Pearson correlation coefficient running under R in RStudio (1.4). All statistical
756 tests were performed using GraphPad Prism version 10 (GraphPad Software) or R (version 4.0.3).

757 **Data and materials availability:** scRNAseq data are available from the Gene Expression Omnibus
758 under accession number. All other data needed to evaluate the conclusions of the paper are present
759 in the paper or the Supplementary Materials.

760

761 **Figure legends:**

762 **Figure 1. Accumulation of pro-inflammatory and pro-fibrotic MoAM in R-PASC.**

763 **a**, The schematic of the experimental procedure.

764 **b**, Three-dimensional distributions of the lung function test results. DLCO, diffusing capacity of the
765 lungs for carbon monoxide; FVC, Forced vital capacity; FEV1, Forced expiratory volume in the first
766 second.

767 **c**, UMAP plots showing integrated analysis of BAL cells grouped by the lung function, including four
768 non-R-PASC, five R-PASC, two non-COVID control, and these data were integrated with published
769 sc-RNA-seq dataset¹⁷ that contain 10 healthy BAL samples before the pandemic.

770 **d**, Stacked bar plots showing the proportion of indicated cell types in the BAL among non-COVID,
771 non-R-PASC and PASC groups.

772 **e**, The UMAP plot of BAL macrophage populations.

773 **f**, Signature gene expression by each subcluster of BAL macrophages.

774 **g**, Enriched pathways in BAL macrophage clusters.

775 **h**, Pseudotime analysis of BAL macrophage differentiation.

776 **i**, Contour plots showing the density of cell clusters in the UMAP among non-COVID, non-R-PASC
777 and PASC groups.

778 **j**, Proportions of TRAM_1 and MoAM_1clusters in BAL macrophages among non-COVID, non-R-
779 PASC and R-PASC groups.

780 **k**, TRRUST predicted transcriptional regulation between TRAM_1 and MoAM_1cluster.

781 **l**, Differential pathways enriched in MoAM_1cluster and TRAM_1 cluster.

782 **m**, Relative score of Pro-Pulmonary Fibrotic Macrophage gene signature in BAL macrophage clusters.

783 **n**, GSEA of Pulmonary Fibrosis-related macrophage gene sets^{27, 28} between non-R-PASC and R-
784 PASC MoAM_1 cells.

785 **o**, Correlation of BAL MoAM_1 proportions and PBMC monocytes percentages.

786 **p**, PBMC monocyte feature assessment in MoAM_1 cells from indicated groups.

787 Data are represented mean \pm SEM unless otherwise indicated. Significance were tested by one-way
788 ANOVA with Tukey's adjustment or Wilcoxon test, *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
789 0.0001.

790 **Figure 2. T cell-derived IFN- γ promotes MoAM recruitment, phenotype and polarization in R-
791 PASC.**

792 **a**, Differentially expressed gene (DEG) counts in MoAM_1 cells from indicated comparison.

793 **b**, Volcano plot showing the differentially expressed genes between non-R-PASC and R-PASC
794 MoAM_1 cells.

795 **c**, SCINEC analysis of transcriptional regulation of MoAM_1 from indicated groups.

796 **d**, Dot plot showing enriched pathways in non-R-PASC and R-PASC MoAM_1 cells.

797 **e**, Scatter plots showing IFN- γ responsiveness score and M1 (left) or M2 (right) macrophage features
798 in MoAM_1 cells from indicated groups.

799 **f**, M1 macrophage feature score of non-COVID, no-R-PASC and R-PASC MoAM_1 cells.

800 **g**, Gene sets enriched in non-R-PASC and R-PASC TRAM_1 cells.

801 **h**, *IFNG* expression in indicated cell types from BAL.

802 **i**, Violin plot showing *IFNG* expression in BAL T cells from indicated groups.

803 **j, k**, Tissue residency score (j) and *IFNG* expression (k) of BAL CD4 $^{+}$ conventional and CD8 $^{+}$ T cell
804 subclusters.

805 **l**, Correlation of IFNG highly expressed cell proportion with lung functional parameters.

806 **m**, Schematic of peripheral monocyte derived MoAM-like cells treated with recombinant IFN- γ .

807 **n**, CCL2 concentration in the culture medium from IFN- γ or Vehicle treated MoAM like cells.

808 **o**, Proportion of indicated macrophage clusters in indicated lung tissue from non-COVID or PASC
809 patients with pulmonary fibrosis (PASC-PF) in GSE224955.

810 **p**, IFN- γ responsiveness score of MoAMs from Non-COVID or PASC-PF patient lung tissues in
811 GSE224955.

812 **q**, Relative score of pro-pulmonary fibrotic macrophage gene signature in MoAM cells in indicated
813 groups in GSE224955^{4, 41, 42}.

814 **r, s**, Tissue residency score (r) and *IFNG* expression (s) in T cells from indicated lung tissues in
815 GSE224955.

816 Data are represented mean \pm SEM. Significance were tested by paired *t* test, Wilcoxon test, or one-
817 way ANOVA with Tukey's adjustment, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and **** $p < 0.0001$.

818 **Figure 3. A model of postacute SARS-CoV-2 pulmonary sequelae in aged C57BL/6 mice.**

819 **a**, Schematic overview of SARS-CoV-2 MA10 infection experimental design.

820 **b, c**, Weight loss (**b**) and survival (**c**) of young and aged mice were monitored.

821 **d**, Viral titers in the respiratory track (BAL) were determined by plaque assay on Vero E6 cells.

822 Symbols represent individual mice. The dashed line indicates the detection limit.

823 **e**, Representative images of histopathology are shown. H&E indicates hematoxylin and eosin staining.

824 Masson's trichrome (TRI-MA) staining highlights fibrotic collagen deposition. The scale bar indicates

825 2.5 mm for the whole lung lobe or 100 mm for the zoomed area.

826 **f**, QuPath quantification of inflamed area in the lungs for indicated time points as in **e**, represented as
827 the percentage of total lung area.

828 **g - m**, Total BAL cell counts (**g**), neutrophils (**h**), Ly6C^{hi} monocytes (**i**), Siglec-F^{hi} AMs (**j**), Siglec-F^{lo}
829 AMs (**k**), CD8⁺ T cells (**l**), and CD4⁺ T cells (**m**) in BAL of MA10-infected young and aged mice at the
830 indicated time points.

831 Data are represented mean \pm SEM unless otherwise indicated. Significance were tested by two-way
832 ANOVA with Tukey's adjustment for multiple comparisons, * p < 0.05, ** p < 0.01, *** p < 0.001, and
833 **** p < 0.0001.

834

835 **Figure 4. Comparative sc-RNA-seq analysis of human and mouse R-PASC BAL cells.**

836 **a**, The integrated UMAP of BAL cells from young and aged C57BL/6J mice at 0, 10, 21 and 35 dpi.

837 **b**, Heatmap showing the top 50 variable genes of BAL cells in young or aged mice at indicated time
838 points.

839 **c**, The enriched pathways in BAL cells at 10, 21 and 35 dpi compared with uninfected (day 0).

840 **d**, Stacked bar plots showing the proportion of indicated cell types in BAL of human R-PASC, non-R-
841 PASC and infected mice.

842 **e**, The integrated UMAP of BAL macrophages from young and aged C57BL/6J mice at 0, 10, 21 and
843 35 days post MA10 infection.

844 **f**, Violin plot of indicated gene expression in the BAL macrophage subclusters.

845 **g**, The similarity score of human MoAM_1 features in young or aged C57BL/6J mouse MoAM1 cells
846 at 21 dpi.

847 **h**, Gene set enrichment in MoAM1 and TRAM clusters at 21 dpi.

848 **i**, Relative score of pro-pulmonary fibrotic macrophage gene signature in MoAM1 cells at indicated
849 group and time points.

850 **j**, Enriched gene sets of MoAM1 clusters from young or aged C57BL/6J mice at 21 dpi.

851 **k**, INF- γ responsiveness score of MoAM1 from young or aged C57BL/6J mice at indicated time points
852 post MA10 infection.

853 **l**, Scatter plots showing IFN- γ responsiveness score and M1 (left) or M2 (right) macrophage features
854 in MoAM1 cells from young or aged C57BL/6J mice at 21 dpi.

855 **m**, Scatter plot showing IFN- γ responsiveness and pro-pulmonary fibrosis scores in MoAM1 cells from
856 young or aged C57BL/6J mice at 21 dpi.

857 **n**, Culture medium MCP-1 (CCL2) concentration at 24 hours post bone marrow derived MoAM-like
858 cells exposure to IFN- γ .

859 **o**, Total cell counts of IFN- γ -producing CD8 $^+$ T and CD4 $^+$ T cells in young or aged mice infected with
860 MA10 at indicated time points.

861 Data represent the mean \pm SEM. Data were analyzed by two-way ANOVA or unpaired *t* test, * *p* <
862 0.05, ** *p* < 0.01, and **** *p* < 0.0001.

863

864 **Figure 5. Therapeutic targeting persistent IFN- γ mitigates pulmonary pathology postacute
865 SARS-CoV-2 infection.**

866 **a**, Experimental setup for evaluating the role of INF- γ in MA10 infection-induced lung pathology in
867 aged B6 mice.

868 **b**, Representative images of lungs stained for H&E and trichrome from aged mice treated with IgG or
869 α IFN- γ . Scale bars, 2.5 mm for the whole lung lobe, and 100 mm for the zoomed area.

870 **c**, Quantification of inflamed lung area from IgG- or α IFN- γ -treated aged mice. Mock, *n* = 5 mice; IgG,
871 *n* = 10 mice; α IFN- γ , *n* = 8 mice, pooled from two independent experiments.

872 **d - g**, Total BAL cell counts (**d**), Siglec-F $^{\text{lo}}$ AMs and Siglec-F $^{\text{hi}}$ AMs (**e**), Ly6C $^{\text{hi}}$ monocytes (**f**), and
873 neutrophils (**g**) in BAL of MA10-infected aged mice treated with IgG or α IFN- γ .

874 **h**, The UMAP of BAL cells from IgG or α IFN- γ treated aged mice.

875 **i**, Stacked bar plots showing the proportion of indicated cell types in BAL cells from IgG or α IFN- γ
876 treated aged mice.

877 **j**, The UMAP of BAL macrophages from IgG or α IFN- γ treated aged mice.

878 **k**, The proportion of indicated macrophage clusters in BAL cells from IgG or α IFN- γ treated aged
879 mice.

880 **l**, Relative score of pro-pulmonary fibrotic macrophage gene signature in MoAM1 cells at indicated
881 group post treatment.

882 **m**, Volcano plot showing the differentially expressed genes of MoAM1 cells from IgG or α IFN- γ
883 treated aged mice.

884 **n**, Enriched gene sets of MoAM1 clusters from IgG or α IFN- γ treated aged mice.

885 **o**, The similarity score of human MoAM_1 features in IgG or α IFN- γ treated aged mouse MoAM1
886 cells.

887 Data represent the mean \pm SEM. Data were analyzed by onw-way ANOVA, unpaired *t* test, or
888 Wilcoxon test, * $p < 0.05$, ** $p < 0.01$, and **** $p < 0.0001$.

889

890 **Figure 6. IFN- γ blockade promotes lung functional recovery in a persistent sequelae model**
891 **caused by influenza pneumonia.**

892 **a**, Evaluation of respiratory compliance (Crs, Cst), tissue resistance (H), respiratory Elastance (Ers),
893 respiratory Resistance (Rrs) and respiratory damping (G) in aged naïve or 6 weeks post infected
894 C57BL/6J mice with flexiVent, $n= 9$, pooled from two independent experiments.

895 **b**, IFN- γ producing lung-resident (left) and BAL (right) CD8 $^{+}$ and CD4 $^{+}$ T cell counts in aged naïve or 6
896 weeks post influenza infected C57BL/6J mice. $n= 9$, pooled from two independent experiments.

897 **c**, Schematics for evaluating the role of IFN- γ in influenza infection-induced lung pathology in aged
898 C57BL/6J mice.

899 **d**, Total lung and BAL cell counts in infected aged mice post treatment, $n= 11-14$, pooled from three
900 independent experiments.

901 **e** and **f**, Proportion (**e**) and counts (**f**) of Ly6c hi monocytes in the lung and BAL post treatment.

902 **g**, Siglec-F lo AMs counts in the lung and BAL post treatment, $n= 11-14$, pooled from three independent
903 experiments.

904 **h**, Representative images of lungs stained for H&E and trichrome from aged mice treated with IgG or
905 α IFN- γ . Scale bars, 2.5 mm for the whole lung lobe, and 250 mm for the zoomed area.

906 **i**, Quantification of inflamed lung area from IgG- or anti-IFN- γ -treated aged mice.

907 **j**, Immune fluorescent staining of PDPN and proSP-C in the aged mouse lung sections post treatment.

908 **k**, Quantification of PDPN staining positive area proportion per mm^2 (left) and proSP-C staining
909 positive cell counts per mm^2 (right) as in **j**, each dot represents one randomly picked field, $n= 7$,
910 pooled from two independent experiments.

911 **l**, Evaluation of compliance (Cst), damping (G), Resistance (Rrs) and Elastance (Ers) of the
912 respiratory system in infected aged mice post treatment with flexiVent, $n= 8$, pooled from two
913 independent experiments.

914 Data represent the mean \pm SEM. Data were analyzed by unpaired *t* test, * $p < 0.05$, ** $p < 0.01$, *** p
915 < 0.001 , and **** $p < 0.0001$.

916

917

918 **References**

- 919 1. Davis, H.E., McCorkell, L., Vogel, J.M. & Topol, E.J. Long COVID: major findings, mechanisms and
920 recommendations. *Nat Rev Microbiol* **21**, 133-146 (2023).
- 921 2. Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. *Nat Med* **29**, 2347-2357 (2023).
- 922 3. Thaweechai, T. *et al.* Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. *JAMA*
923 **329**, 1934-1946 (2023).
- 924 4. Yao, C. *et al.* Maladaptive TGF-beta Signals to the Alveolar Epithelium Drive Fibrosis after COVID-19
925 Infection. *Am J Respir Crit Care Med* **208**, 201-204 (2023).
- 926 5. Stewart, I. *et al.* Residual Lung Abnormalities after COVID-19 Hospitalization: Interim Analysis of the
927 UKILD Post-COVID-19 Study. *Am J Respir Crit Care Med* **207**, 693-703 (2023).
- 928 6. Huang, L. *et al.* Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a
929 longitudinal cohort study. *Lancet Respir Med* **10**, 863-876 (2022).
- 930 7. Nalbandian, A. *et al.* Post-acute COVID-19 syndrome. *Nat Med* **27**, 601-615 (2021).
- 931 8. Group, C.M.P.-C.C. Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a
932 prospective, multicentre, observational cohort study. *Lancet Respir Med* (2023).
- 933 9. Fernandez-Castaneda, A. *et al.* Mild respiratory COVID can cause multi-lineage neural cell and myelin
934 dysregulation. *Cell* **185**, 2452-2468 e2416 (2022).
- 935 10. Su, Y. *et al.* Multiple early factors anticipate post-acute COVID-19 sequelae. *Cell* **185**, 881-895 e820
936 (2022).
- 937 11. Phetsouphanh, C. *et al.* Immunological dysfunction persists for 8 months following initial mild-to-
938 moderate SARS-CoV-2 infection. *Nat Immunol* **23**, 210-216 (2022).
- 939 12. Bergamaschi, L. *et al.* Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and
940 early immune pathology distinguish severe COVID-19 from mild disease. *Immunity* **54**, 1257-1275
941 e1258 (2021).
- 942 13. Dinnon, K.H., 3rd *et al.* SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell
943 dysfunction with fibrosis in mice. *Sci Transl Med* **14**, eab05070 (2022).
- 944 14. Sefik, E. *et al.* A humanized mouse model of chronic COVID-19. *Nat Biotechnol* **40**, 906-920 (2022).

950

951

952

953

954

955

956

957

958

959 15. Cheon, I.S. *et al.* Immune signatures underlying post-acute COVID-19 lung sequelae. *Sci Immunol* **6**,
960 eabk1741 (2021).

961 16. Mogilenco, D.A. *et al.* Comprehensive Profiling of an Aging Immune System Reveals Clonal GZMK(+)
962 CD8(+) T Cells as Conserved Hallmark of Inflammaging. *Immunity* **54**, 99-115 e112 (2021).

963 17. Mould, K.J. *et al.* Airspace Macrophages and Monocytes Exist in Transcriptionally Distinct Subsets in
964 Healthy Adults. *Am J Respir Crit Care Med* **203**, 946-956 (2021).

965 18. Vijayakumar, B. *et al.* Immuno-proteomic profiling reveals aberrant immune cell regulation in the
966 airways of individuals with ongoing post-COVID-19 respiratory disease. *Immunity* **55**, 542-556 e545
967 (2022).

968 19. Huang, S. *et al.* Macrophage PPAR-gamma suppresses long-term lung fibrotic sequelae following acute
969 influenza infection. *PLoS One* **14**, e0223430 (2019).

970 20. Misharin, A.V. *et al.* Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung
971 over the life span. *J Exp Med* **214**, 2387-2404 (2017).

972 21. Oh, K., Seo, M.W., Kim, Y.W. & Lee, D.S. Osteopontin Potentiates Pulmonary Inflammation and Fibrosis
973 by Modulating IL-17/IFN-gamma-secreting T-cell Ratios in Bleomycin-treated Mice. *Immune Netw* **15**,
974 142-149 (2015).

975 22. Pardo, A. *et al.* Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary
976 fibrosis. *PLoS Med* **2**, e251 (2005).

977 23. Ashizawa, N. *et al.* Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA
978 synthesis and collagen gel contraction. *J Clin Invest* **98**, 2218-2227 (1996).

979 24. Aegeerter, H., Lambrecht, B.N. & Jakubzick, C.V. Biology of lung macrophages in health and disease.
980 *Immunity* **55**, 1564-1580 (2022).

981 25. Han, H. *et al.* TRRUST v2: an expanded reference database of human and mouse transcriptional
982 regulatory interactions. *Nucleic Acids Res* **46**, D380-D386 (2018).

983 26. Wendisch, D. *et al.* SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis.
984 *Cell* **184**, 6243-6261 e6227 (2021).

985 27. Morse, C. *et al.* Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. *Eur*
986 *Respir J* **54** (2019).

987 28. Reyfman, P.A. *et al.* Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the
988 Pathobiology of Pulmonary Fibrosis. *Am J Respir Crit Care Med* **199**, 1517-1536 (2019).

989 1000

1002
1003 29. Ayaub, E. *et al.* Single Cell RNA-seq and Mass Cytometry Reveals a Novel and a Targetable Population of
1004 Macrophages in Idiopathic Pulmonary Fibrosis. *bioRxiv*, 2021.2001.2004.425268 (2021).

1005
1006 30. Bailey, J.I. *et al.* Expansion of profibrotic monocyte-derived alveolar macrophages in patients with
1007 persistent respiratory symptoms and radiographic abnormalities after COVID-19. *bioRxiv*,
1008 2023.2007.2030.551145 (2023).

1009
1010 31. Aibar, S. *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nat Methods* **14**, 1083-
1011 1086 (2017).

1012
1013 32. Regis, G., Conti, L., Boselli, D. & Novelli, F. IFNgammaR2 trafficking tunes IFNgamma-STAT1 signaling in T
1014 lymphocytes. *Trends Immunol* **27**, 96-101 (2006).

1015
1016 33. Schroder, K., Hertzog, P.J., Ravasi, T. & Hume, D.A. Interferon-gamma: an overview of signals,
1017 mechanisms and functions. *J Leukoc Biol* **75**, 163-189 (2004).

1018
1019 34. Murray, P.J. *et al.* Macrophage activation and polarization: nomenclature and experimental guidelines.
1020 *Immunity* **41**, 14-20 (2014).

1021
1022 35. Martinez, F.O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for
1023 reassessment. *F1000Prime Rep* **6**, 13 (2014).

1024
1025 36. Wynn, T.A. & Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. *Immunity* **44**,
1026 450-462 (2016).

1027
1028 37. Yao, Y. *et al.* Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by
1029 Attenuating M2 Macrophage Production. *Mol Ther* **24**, 915-925 (2016).

1030
1031 38. Van Dyken, S.J. & Locksley, R.M. Interleukin-4- and interleukin-13-mediated alternatively activated
1032 macrophages: roles in homeostasis and disease. *Annu Rev Immunol* **31**, 317-343 (2013).

1033
1034 39. Duffield, J.S., Luper, M., Thannickal, V.J. & Wynn, T.A. Host responses in tissue repair and fibrosis.
1035 *Annu Rev Pathol* **8**, 241-276 (2013).

1036
1037 40. Luo, M., Lai, W., He, Z. & Wu, L. Development of an Optimized Culture System for Generating Mouse
1038 Alveolar Macrophage-like Cells. *J Immunol* **207**, 1683-1693 (2021).

1039
1040 41. Yao, C. *et al.* Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. *Am J Respir Crit
1041 Care Med* **203**, 707-717 (2021).

1042
1043 42. Habermann, A.C. *et al.* Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and
1044 mesenchymal lineages in pulmonary fibrosis. *Sci Adv* **6**, eaba1972 (2020).

1045
1046 43. Leist, S.R. *et al.* A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard
1047 Laboratory Mice. *Cell* **183**, 1070-1085 e1012 (2020).

1048
1049 44. Team, C.-F. Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the
1050 pre-vaccine era: a systematic analysis. *Lancet* **399**, 1469-1488 (2022).

1051
1052 45. Li, F. *et al.* Monocyte-derived alveolar macrophages autonomously determine severe outcome of
1053 respiratory viral infection. *Sci Immunol* **7**, eabj5761 (2022).

1054
1055 46. Zhu, B. *et al.* Uncoupling of macrophage inflammation from self-renewal modulates host recovery from
1056 respiratory viral infection. *Immunity* **54**, 1200-1218 e1209 (2021).

1057
1058 47. Kim, K.K. *et al.* Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary
1059 fibrosis and is regulated by the extracellular matrix. *Proc Natl Acad Sci U S A* **103**, 13180-13185 (2006).

1060
1061 48. Pervizaj-Oruqaj, L. *et al.* Viral pneumonia elicits a lung epithelial repair program in transdifferentiating
1062 alveolar macrophages characterized by Plet1. *ERJ Open Research* **9**, 112 (2023).

1063
1064 49. Goplen, N.P. *et al.* Tissue-resident CD8(+) T cells drive age-associated chronic lung sequelae after viral
1065 pneumonia. *Sci Immunol* **5** (2020).

1066
1067 50. Narasimhan, H. *et al.* Proximal immune-epithelial progenitor interactions drive chronic tissue sequelae
1068 post COVID-19. *bioRxiv*, 2023.2009.2013.557622 (2023).

1069
1070 51. Grant, R.A. *et al.* Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. *Nature*
1071 **590**, 635-641 (2021).

1072
1073 52. Sadanandam, A. *et al.* A blood transcriptome-based analysis of disease progression, immune
1074 regulation, and symptoms in coronavirus-infected patients. *Cell Death Discov* **6**, 141 (2020).

1075
1076 53. Wang, C. *et al.* Dysregulated lung stroma drives emphysema exacerbation by potentiating resident
1077 lymphocytes to suppress an epithelial stem cell reservoir. *Immunity* **56**, 576-591 e510 (2023).

1078
1079 54. Zollner, A. *et al.* Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in Inflammatory
1080 Bowel Diseases. *Gastroenterology* **163**, 495-506 e498 (2022).

1081
1082 55. Cheung, C.C.L. *et al.* Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five
1083 recovered patients with COVID-19. *Gut* **71**, 226-229 (2022).

1084
1085 56. Gaebler, C. *et al.* Evolution of antibody immunity to SARS-CoV-2. *Nature* **591**, 639-644 (2021).

1086

1087 57. Cevik, M. *et al.* SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding,
1088 and infectiousness: a systematic review and meta-analysis. *Lancet Microbe* **2**, e13-e22 (2021).

1089
1090 58. Proal, A.D. *et al.* SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). *Nat Immunol* (2023).

1091
1092 59. Cheon, I.S., Son, Y.M. & Sun, J. Tissue-resident memory T cells and lung immunopathology. *Immunol
1093 Rev* **316**, 63-83 (2023).

1094
1095 60. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. *Nature* **383**, 787-793
1096 (1996).

1097
1098 61. Guler, M.L. *et al.* Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development.
1099 *Science* **271**, 984-987 (1996).

1100
1101 62. Hsieh, C.S., Macatonia, S.E., O'Garra, A. & Murphy, K.M. T cell genetic background determines default T
1102 helper phenotype development in vitro. *J Exp Med* **181**, 713-721 (1995).

1103
1104 63. Agoston, D.V. How to Translate Time? The Temporal Aspect of Human and Rodent Biology. *Front Neurol*
1105 **8**, 92 (2017).

1106
1107 64. Dutta, S. & Sengupta, P. Men and mice: Relating their ages. *Life Sci* **152**, 244-248 (2016).

1108
1109 65. Wei, X., Narasimhan, H., Zhu, B. & Sun, J. Host Recovery from Respiratory Viral Infection. *Annu Rev
1110 Immunol* **41**, 277-300 (2023).

1111
1112 66. Kim, T.S., Hufford, M.M., Sun, J., Fu, Y.X. & Braciale, T.J. Antigen persistence and the control of local T
1113 cell memory by migrant respiratory dendritic cells after acute virus infection. *J Exp Med* **207**, 1161-1172
1114 (2010).

1115
1116 67. Aegeerter, H. *et al.* Influenza-induced monocyte-derived alveolar macrophages confer prolonged
1117 antibacterial protection. *Nat Immunol* **21**, 145-157 (2020).

1118
1119 68. Nakata, K. *et al.* Augmented proliferation of human alveolar macrophages after allogeneic bone
1120 marrow transplantation. *Blood* **93**, 667-673 (1999).

1121
1122 69. Gieseck, R.L., 3rd, Wilson, M.S. & Wynn, T.A. Type 2 immunity in tissue repair and fibrosis. *Nat Rev
1123 Immunol* **18**, 62-76 (2018).

1124
1125 70. Hou, J. *et al.* M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated
1126 with pulmonary fibrogenesis. *Cell Commun Signal* **16**, 89 (2018).

1127
1128 71. He, C. *et al.* Cu,Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3
1129 Modulates Macrophage Polarization and Pulmonary Fibrosis. *Am J Respir Cell Mol Biol* **55**, 58-71 (2016).

1130
1131 72. Murthy, S. *et al.* Alternative activation of macrophages and pulmonary fibrosis are modulated by
1132 scavenger receptor, macrophage receptor with collagenous structure. *FASEB J* **29**, 3527-3536 (2015).

1133
1134 73. Gibbons, M.A. *et al.* Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation
1135 of lung fibrosis. *Am J Respir Crit Care Med* **184**, 569-581 (2011).

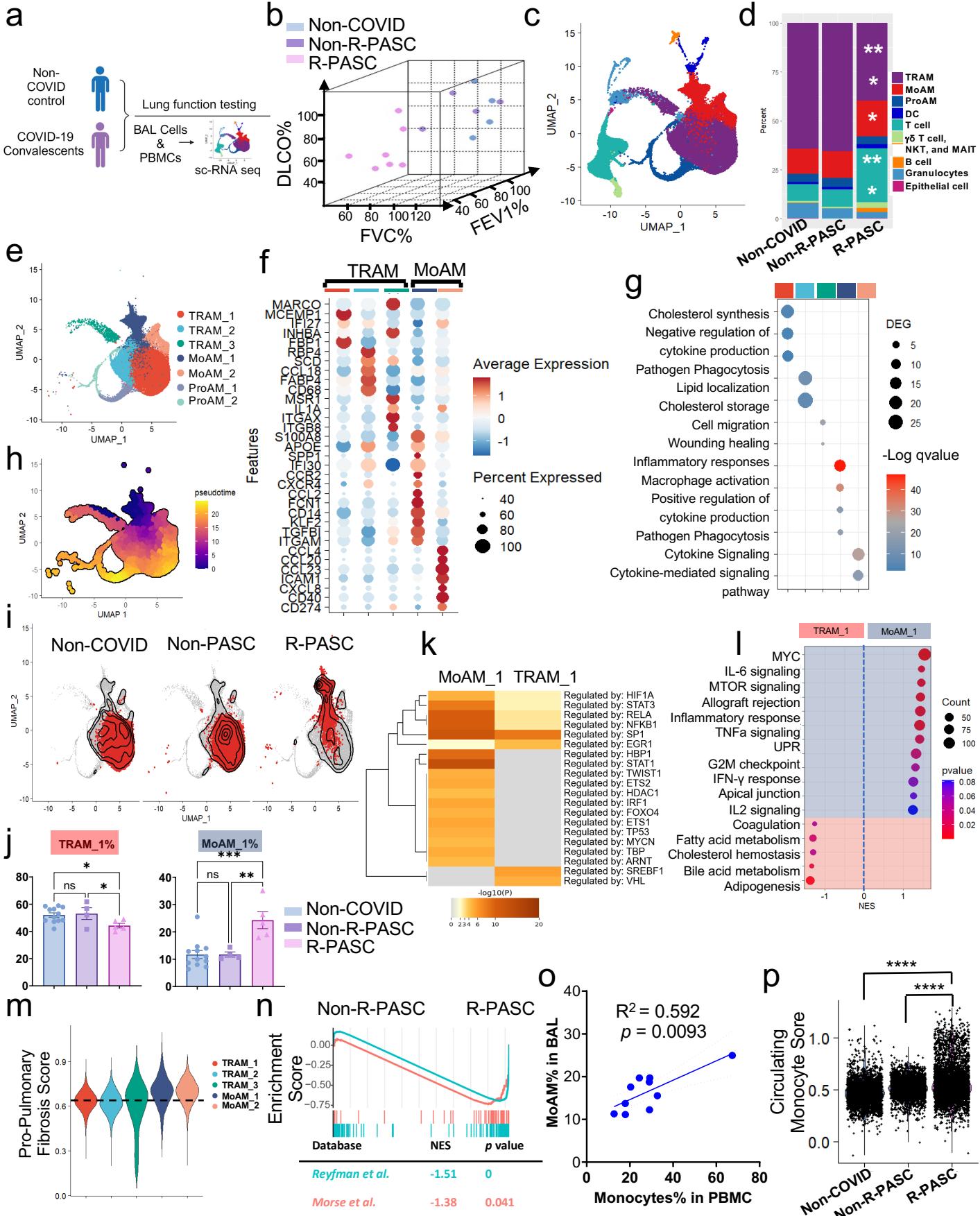
1136
1137 74. Wynes, M.W., Frankel, S.K. & Riches, D.W. IL-4-induced macrophage-derived IGF-I protects
1138 myofibroblasts from apoptosis following growth factor withdrawal. *J Leukoc Biol* **76**, 1019-1027 (2004).

1139
1140 75. Graham, B.L. *et al.* Standardization of Spirometry 2019 Update. An Official American Thoracic Society
1141 and European Respiratory Society Technical Statement. *Am J Respir Crit Care Med* **200**, e70-e88 (2019).

1142
1143 76. Yu, G., Wang, L.G., Han, Y. & He, Q.Y. clusterProfiler: an R package for comparing biological themes
1144 among gene clusters. *OMICS* **16**, 284-287 (2012).

1145
1146 77. Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of systems-level
1147 datasets. *Nat Commun* **10**, 1523 (2019).

1148
1149 78. Kuo, S.M. *et al.* Subcellular localization of metallothionein IIA in human bladder tumor cells using a
1150 novel epitope-specific antiserum. *Toxicol Appl Pharmacol* **125**, 104-110 (1994).


1151
1152 79. Anderson, K.G. *et al.* Intravascular staining for discrimination of vascular and tissue leukocytes. *Nat
1153 Protoc* **9**, 209-222 (2014).

1154
1155 80. Zhu, B. *et al.* Inhibition of the mitochondrial pyruvate carrier simultaneously mitigates
1156 hyperinflammation and hyperglycemia in COVID-19. *Sci Immunol* **8**, eadf0348 (2023).

1157
1158 81. Li, C. *et al.* The Transcription Factor Blhhe40 Programs Mitochondrial Regulation of Resident CD8(+) T
1159 Cell Fitness and Functionality. *Immunity* **51**, 491-507 e497 (2019).

1160
1161

Fig. 1

Figure 1. Accumulation of pro-inflammatory and pro-fibrotic MoAM in R-PASC.

a, The schematic of the experimental procedure.

b, Three-dimensional distributions of the lung function test results. DLCO, diffusing capacity of the lungs for carbon monoxide; FVC, Forced vital capacity; FEV1, Forced expiratory volume in the first second.

c, UMAP plots showing integrated analysis of BAL cells grouped by the lung function, including four non-R-PASC, five R-PASC, two non-COVID control, and these data were integrated with published sc-RNA-seq dataset¹⁷ that contain 10 healthy BAL samples before the pandemic.

d, Stacked bar plots showing the proportion of indicated cell types in the BAL among non-COVID, non-R-PASC and PASC groups.

e, The UMAP plot of BAL macrophage populations.

f, Signature gene expression by each subcluster of BAL macrophages.

g, Enriched pathways in BAL macrophage clusters.

h, Pseudotime analysis of BAL macrophage differentiation.

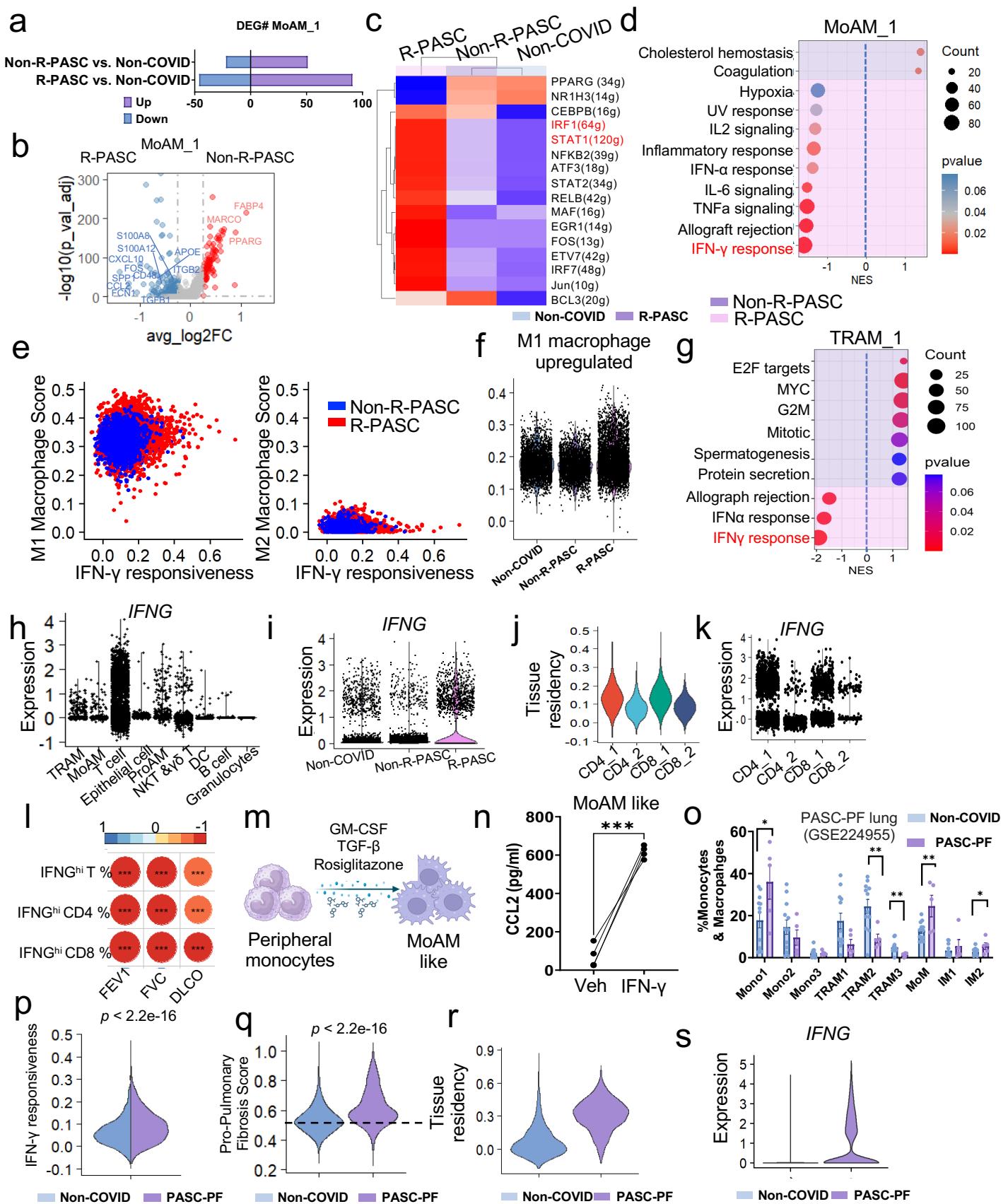
i, Contour plots showing the density of cell clusters in the UMAP among non-COVID, non-R-PASC and PASC groups.

j, Proportions of TRAM_1 and MoAM_1clusters in BAL macrophages among non-COVID, non-R-PASC and R-PASC groups.

k, TRRUST predicted transcriptional regulation between TRAM_1 and MoAM_1cluster.

l, Differential pathways enriched in MoAM_1cluster and TRAM_1 cluster.

m, Relative score of Pro-Pulmonary Fibrotic Macrophage gene signature in BAL macrophage clusters.


n, GSEA of Pulmonary Fibrosis-related macrophage gene sets^{27, 28} between non-R-PASC and R-PASC MoAM_1 cells.

o, Correlation of BAL MoAM_1 proportions and PBMC monocytes percentages.

p, PBMC monocyte feature assessment in MoAM_1 cells from indicated groups.

Data are represented mean \pm SEM unless otherwise indicated. Significance were tested by one-way ANOVA with Tukey's adjustment or Wilcoxon test, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Fig. 2

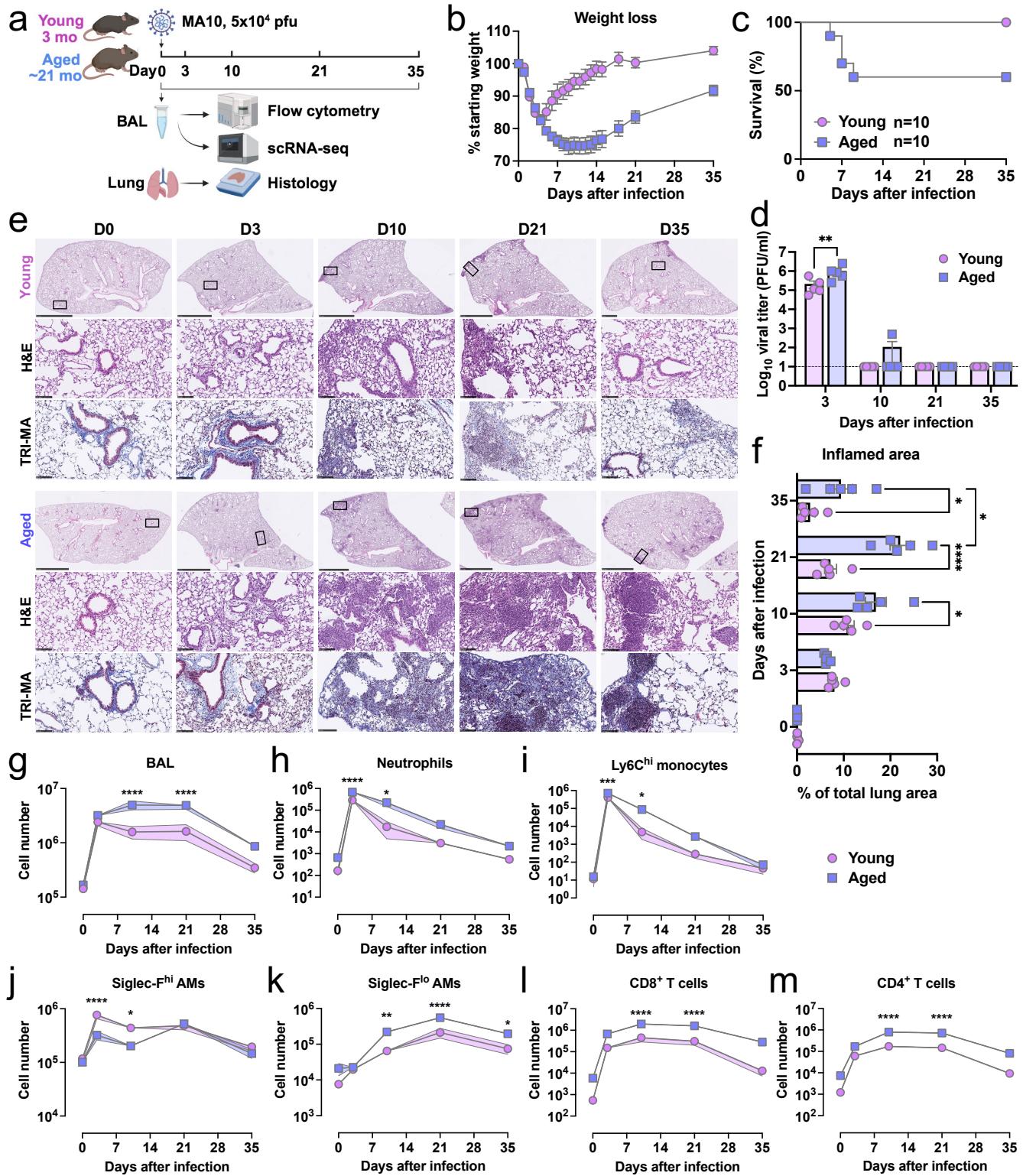


Figure 2. T cell-derived IFN- γ promotes MoAM recruitment, phenotype and polarization in R-PASC.

- a**, Differentially expressed gene (DEG) counts in MoAM_1 cells from indicated comparison.
- b**, Volcano plot showing the differentially expressed genes between non-R-PASC and R-PASC MoAM_1 cells.
- c**, SCINEC analysis of transcriptional regulation of MoAM_1 from indicated groups.
- d**, Dot plot showing enriched pathways in non-R-PASC and R-PASC MoAM_1 cells.
- e**, Scatter plots showing IFN- γ responsiveness score and M1 (left) or M2 (right) macrophage features in MoAM_1 cells from indicated groups.
- f**, M1 macrophage feature score of non-COVID, no-R-PASC and R-PASC MoAM_1 cells.
- g**, Gene sets enriched in non-R-PASC and R-PASC TRAM_1 cells.
- h**, *IFNG* expression in indicated cell types from BAL.
- i**, Violin plot showing *IFNG* expression in BAL T cells from indicated groups.
- j, k**, Tissue residency score (**j**) and *IFNG* expression (**k**) of BAL CD4 $^{+}$ conventional and CD8 $^{+}$ T cell subclusters.
- l**, Correlation of IFNG highly expressed cell proportion with lung functional parameters.
- m**, Schematic of peripheral monocyte derived MoAM-like cells treated with recombinant IFN- γ .
- n**, CCL2 concentration in the culture medium from IFN- γ or Vehicle treated MoAM like cells.
- o**, proportion of indicated macrophage clusters in indicated lung tissue from non-COVID or PASC patients with pulmonary fibrosis (PASC-PF) in GSE224955.
- p**, IFN- γ responsiveness score of MoAMs from Non-COVID or PASC-PF patients' lung tissues in GSE224955.
- q**, Relative score of pro-pulmonary fibrotic macrophage gene signature in MoAM cells in indicated groups in GSE224955.
- r, s**, Tissue residency score (**r**) and *IFNG* expression (**s**) in T cells from indicated lung tissues in GSE224955.

Data are represented mean \pm SEM. Significance were tested by paired *t* test, Wilcoxon test, or one-way ANOVA with Tukey's adjustment, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and **** $p < 0.0001$.

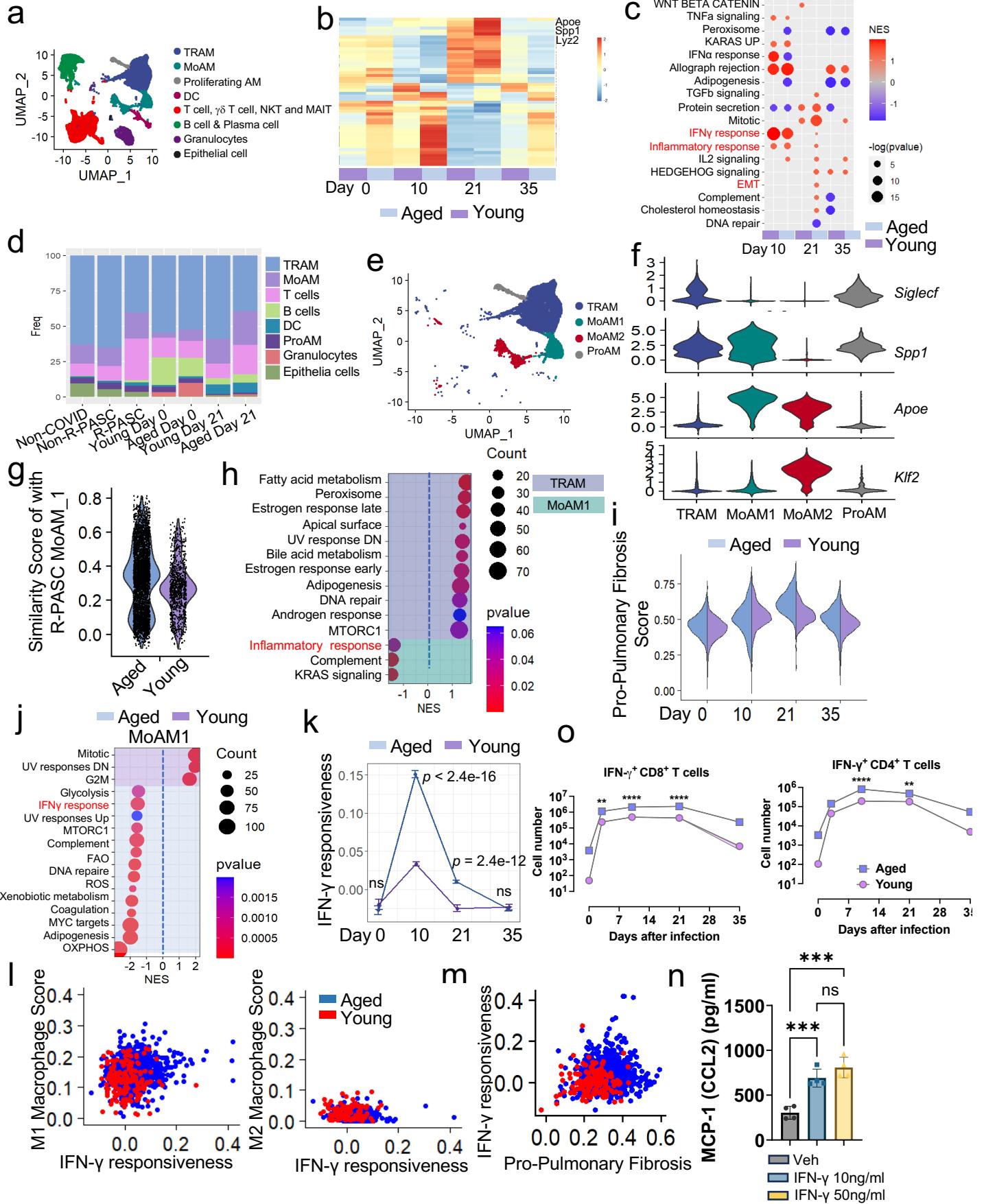
Fig. 3

Figure 3. A model of postacute SARS-CoV-2 pulmonary sequelae in aged C57BL/6 mice.

a, Schematic overview of SARS-CoV-2 MA10 infection experimental design.

b, c, Weight loss (**b**) and survival (**c**) of young and aged mice were monitored.

d, Viral titers in the respiratory track (BAL) were determined by plaque assay on Vero E6 cells. Symbols represent individual mice. The dashed line indicates the detection limit.


e, Representative images of histopathology are shown. H&E indicates hematoxylin and eosin staining. Masson's trichrome (TRI-MA) staining highlights fibrotic collagen deposition. The scale bar indicates 2.5 mm for the whole lung lobe or 100 μ m for the zoomed area.

f, QuPath quantification of inflamed area in the lungs for indicated time points as in **e**, represented as the percentage of total lung area.

g - m, Total BAL cell counts (**g**), neutrophils (**h**), Ly6C^{hi} monocytes (**i**), Siglec-F^{hi} AMs (**j**), Siglec-F^{lo} AMs (**k**), CD8⁺ T cells (**l**), and CD4⁺ T cells (**m**) in BAL of MA10-infected young and aged mice at the indicated time points.

Data are represented mean \pm SEM. Significance were tested by two-way ANOVA with Tukey's adjustment for multiple comparisons, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and **** $p < 0.0001$.

Fig. 4

Figure 4. Comparative sc-RNA-seq analysis of human and mouse R-PASC BAL cells.

a, The integrated UMAP of BAL cells from young and aged C57BL/6J mice at 0, 10, 21 and 35 dpi.

b, Heatmap showing the top 50 variable genes of BAL cells in young or aged mice at indicated time points.

c, The enriched pathways in BAL cells at 10, 21 and 35 dpi compared with uninfected (day 0).

d, Stacked bar plots showing the proportion of indicated cell types in BAL of human R-PASC, non-R-PASC and infected mice.

e, The integrated UMAP of BAL macrophages from young and aged C57BL/6J mice at 0, 10, 21 and 35 days post MA10 infection.

f, Violin plot of indicated gene expression in the BAL macrophage subclusters.

g, The similarity score of human MoAM_1 features in young or aged C57BL/6J mouse MoAM1 cells at 21 dpi.

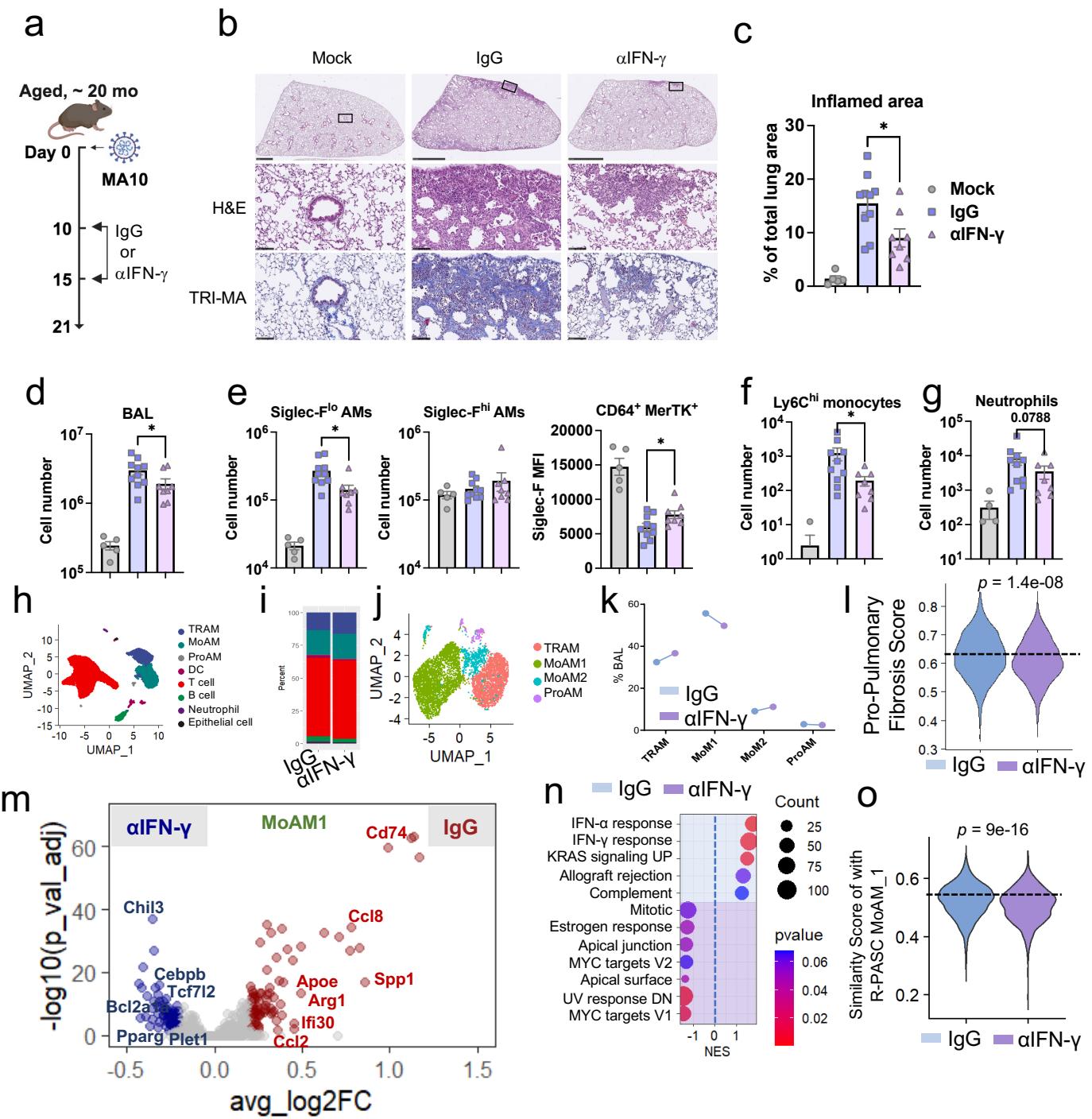
h, Gene set enrichment in MoAM1 and TRAM clusters at 21 dpi.

i, Relative score of pro-pulmonary fibrotic macrophage gene signature in MoAM1 cells at indicated group and time points.

j, Enriched gene sets of MoAM1 clusters from young or aged C57BL/6J mice at 21 dpi.

k, INF- γ responsiveness score of MoAM1 from young or aged C57BL/6J mice at indicated time points post MA10 infection.

l, Scatter plots showing INF- γ responsiveness score and M1 (left) or M2 (right) macrophage features in MoAM1 cells from young or aged C57BL/6J mice at 21 dpi.


m, Scatter plot showing INF- γ responsiveness and pro-pulmonary fibrosis scores in MoAM1 cells from young or aged C57BL/6J mice at 21 dpi.

n, Culture medium MCP-1 (CCL2) concentration at 24 hours post bone marrow derived MoAM-like cells exposure to INF- γ .

o, Total cell counts of INF- γ -producing CD8 $^{+}$ T and CD4 $^{+}$ T cells in young or aged mice infected with MA10 at indicated time points.

Data represent the mean \pm SEM. Data were analyzed by two-way ANOVA or unpaired *t* test, * $p < 0.05$, ** $p < 0.01$, and **** $p < 0.0001$.

Fig. 5

Figure 5. Therapeutic targeting persistent IFN- γ mitigates pulmonary pathology post acute SARS-CoV-2 infection.

a, Experimental setup for evaluating the role of IFN- γ in MA10 infection-induced lung pathology in aged B6 mice.

b, Representative images of lungs stained for H&E and trichrome from aged mice treated with IgG or α IFN- γ . Scale bars, 2.5 mm for the whole lung lobe, 100 mm for the zoomed area.

c, Quantification of inflamed lung area from IgG- or α IFN- γ -treated aged mice. Mock, n = 5 mice; IgG, n = 10 mice; α IFN- γ , n = 8 mice, pooled from two independent experiments.

d - g, Total BAL cell counts (**d**), Siglec-F^{lo} AMs and Siglec-F^{hi} AMs (**e**), Ly6C^{hi} monocytes (**f**), and neutrophils (**g**) in BAL of MA10-infected aged mice treated with IgG or α IFN- γ .

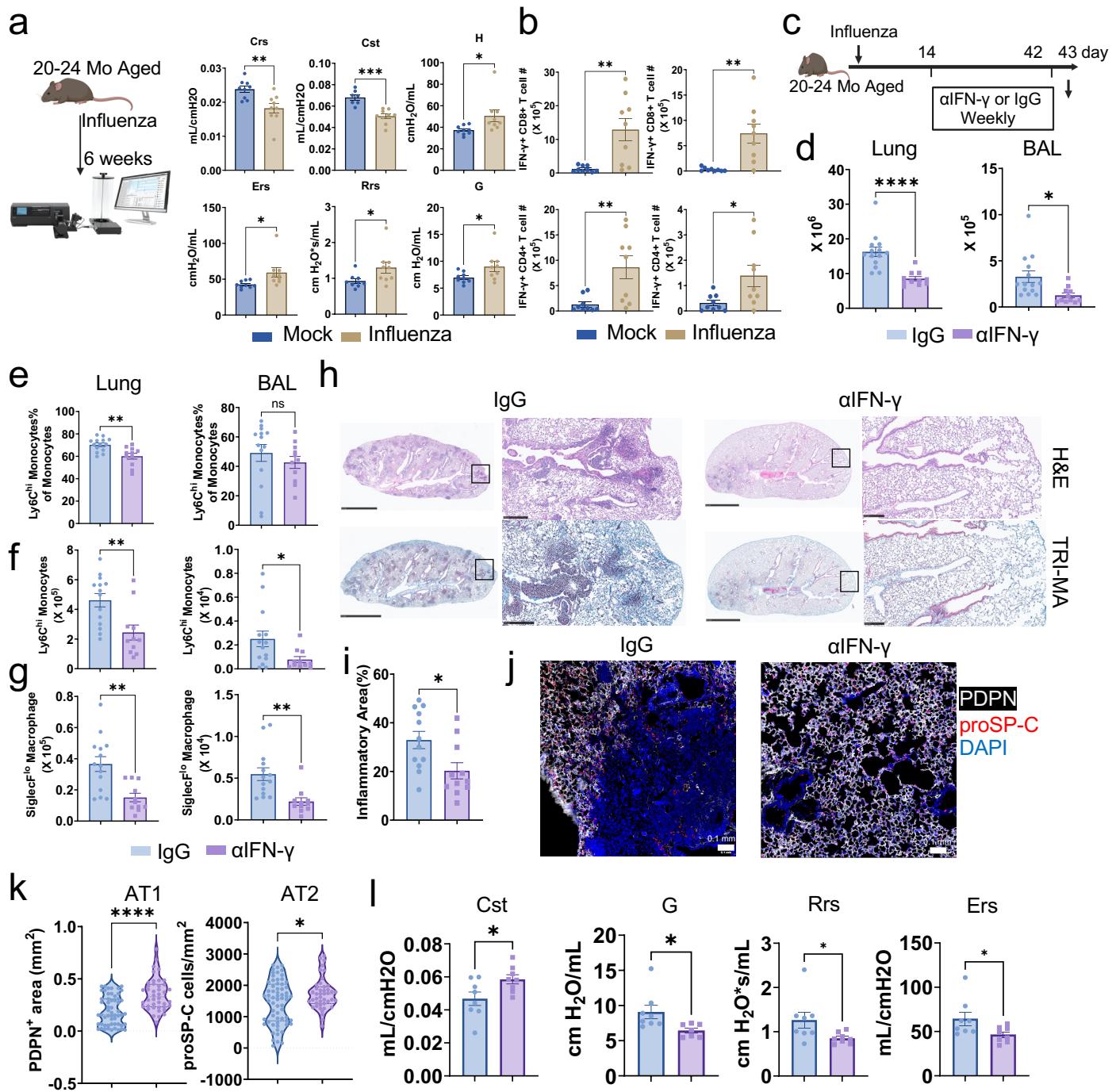
h, The UMAP of BAL cells from IgG or α IFN- γ treated aged mice.

i, Stacked bar plots showing the proportion of indicated cell types in BAL cells from IgG or α IFN- γ treated aged mice.

j, The UMAP of BAL macrophages from IgG or α IFN- γ treated aged mice.

k, The proportion of indicated macrophage clusters in BAL cells from IgG or α IFN- γ treated aged mice.

l, Relative score of pro-pulmonary fibrotic macrophage gene signature in MoAM1 cells at indicated group post treatment.


m, Volcano plot showing the differentially expressed genes of MoAM1 cells from IgG or α IFN- γ treated aged mice.

n, Enriched gene sets of MoAM1 clusters from IgG or α IFN- γ treated aged mice.

o, The similarity score of human MoAM_1 features in IgG or α IFN- γ treated aged mouse MoAM1 cells.

Data represent the mean \pm SEM. Data were analyzed by one-way ANOVA, unpaired *t* test, or Wilcoxon test, * p < 0.05, ** p < 0.01, and **** p < 0.0001.

Fig. 6

Figure 6. IFN- γ blockade promotes lung functional recovery in a persistent sequelae model caused by influenza pneumonia.

a, Evaluation of respiratory compliance (Crs, Cst), tissue resistance (H), respiratory Elastance (Ers), respiratory Resistance (Rrs) and respiratory damping (G) tested with flexiVent from naïve or influenza infected aged C57BL/6J mice at 6 weeks post infection, n= 9, pooled from two independent experiments.

b, IFN- γ producing lung-resident (left) and BAL (right) CD8 $^{+}$ and CD4 $^{+}$ T cell counts in naïve or influenza infected aged C57BL/6J mice at 6 weeks post infection. n= 9, pooled from two independent experiments.

c, Schematics for evaluating the role of IFN- γ in influenza infection-induced lung pathology in aged C57BL/6J mice.

d, Total lung and BAL cell counts in infected aged mice post treatment, n= 11-14, pooled from three independent experiments.

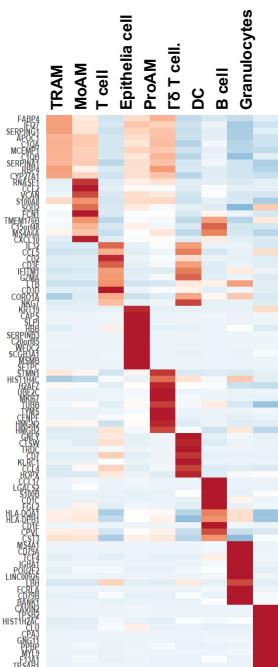
e and **f**, Proportion (**e**) and counts (**f**) of Ly6c $^{\text{hi}}$ monocytes in the lung and BAL post treatment.

g, Siglec-F $^{\text{lo}}$ AMs counts in the lung and BAL post treatment, n= 11-14, pooled from three independent experiments.

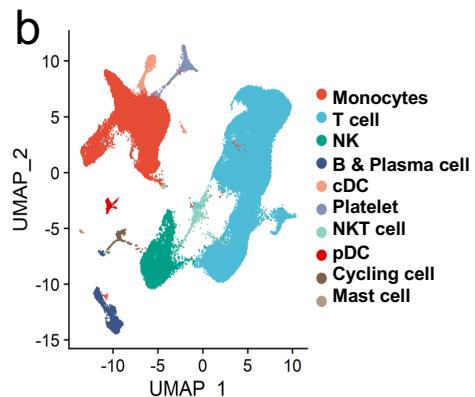
h, Representative images of lungs stained for H&E and trichrome from aged mice treated with IgG or α IFN- γ . Scale bars, 2.5 mm for the whole lung lobe, and 250 mm for the zoomed area.

i, Quantification of inflamed lung area from IgG- or anti-IFN- γ -treated aged mice.

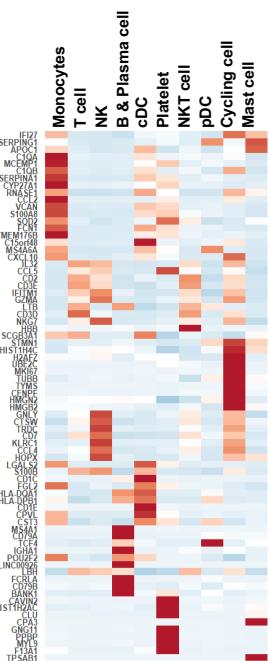
j, Immune fluorescent staining of PD PN and proSP-C in the aged mouse lung sections post treatment.

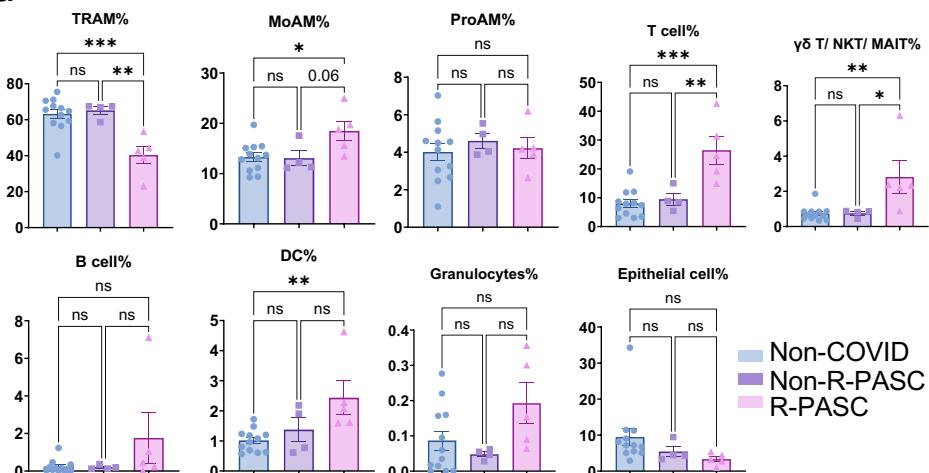

k, Quantification of PD PN staining positive area proportion per mm 2 (left) and proSP-C staining positive cell counts per mm 2 (right) as in **j**, each dot represents one randomly picked field, n= 7, pooled from two independent experiments.

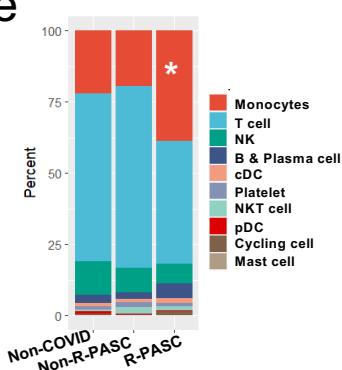
l, Evaluation of compliance (Cst), damping (G), Resistance (Rrs) and Elastance (Ers) of the respiratory system in infected aged mice post treatment with flexiVent, n= 8, pooled from two independent experiments.

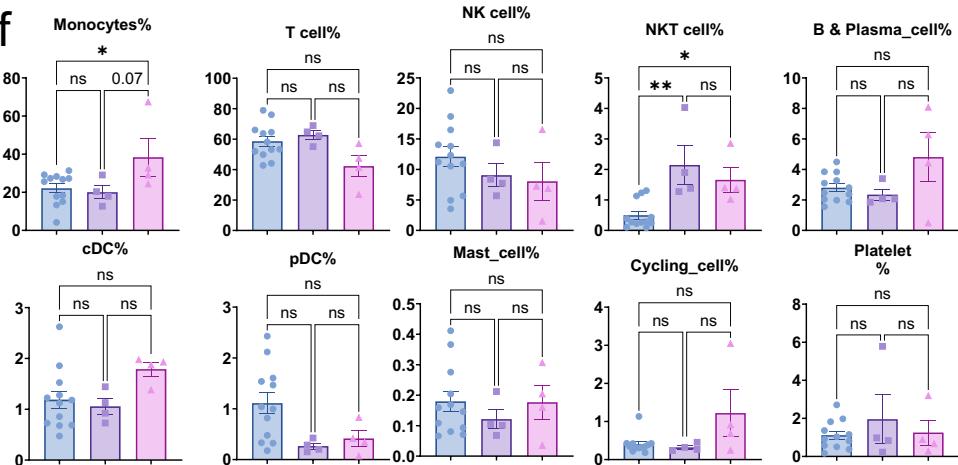

Data represent the mean \pm SEM. Data were analyzed by unpaired *t* test, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

Extended Data Fig. 1


a

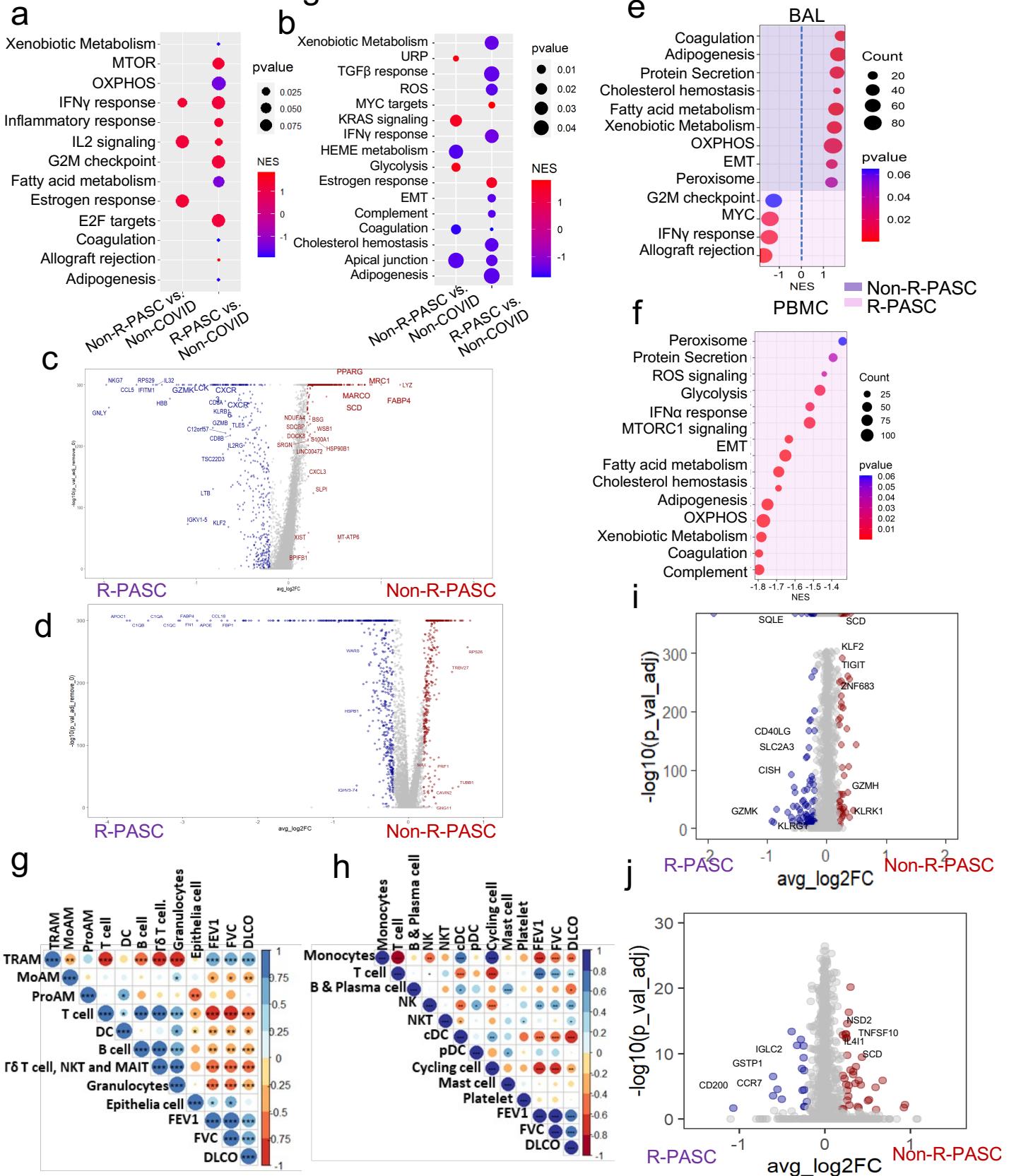

b


c


d

e

f



Extended Data Figure 1. R-PASC patients exhibit an altered immune cell composition.

- a**, The top 10 representative genes of each cell cluster from BAL.
- b**, The UMAP plot of integrated analysis of PBMCs from donors.
- c**, The top10 representative genes of each cell cluster from PBMCs.
- d**, Proportions of cell clusters in BAL among non-COVID, non-R-PASC and R-PASC groups.
- e**, Stacked bar plots showing the proportion of indicated cell types in PBMCs among non-COVID, non-R-PASC and PASC groups.
- f**, Proportions of cell clusters in PBMC among non-COVID, non-R-PASC and R-PASC groups.

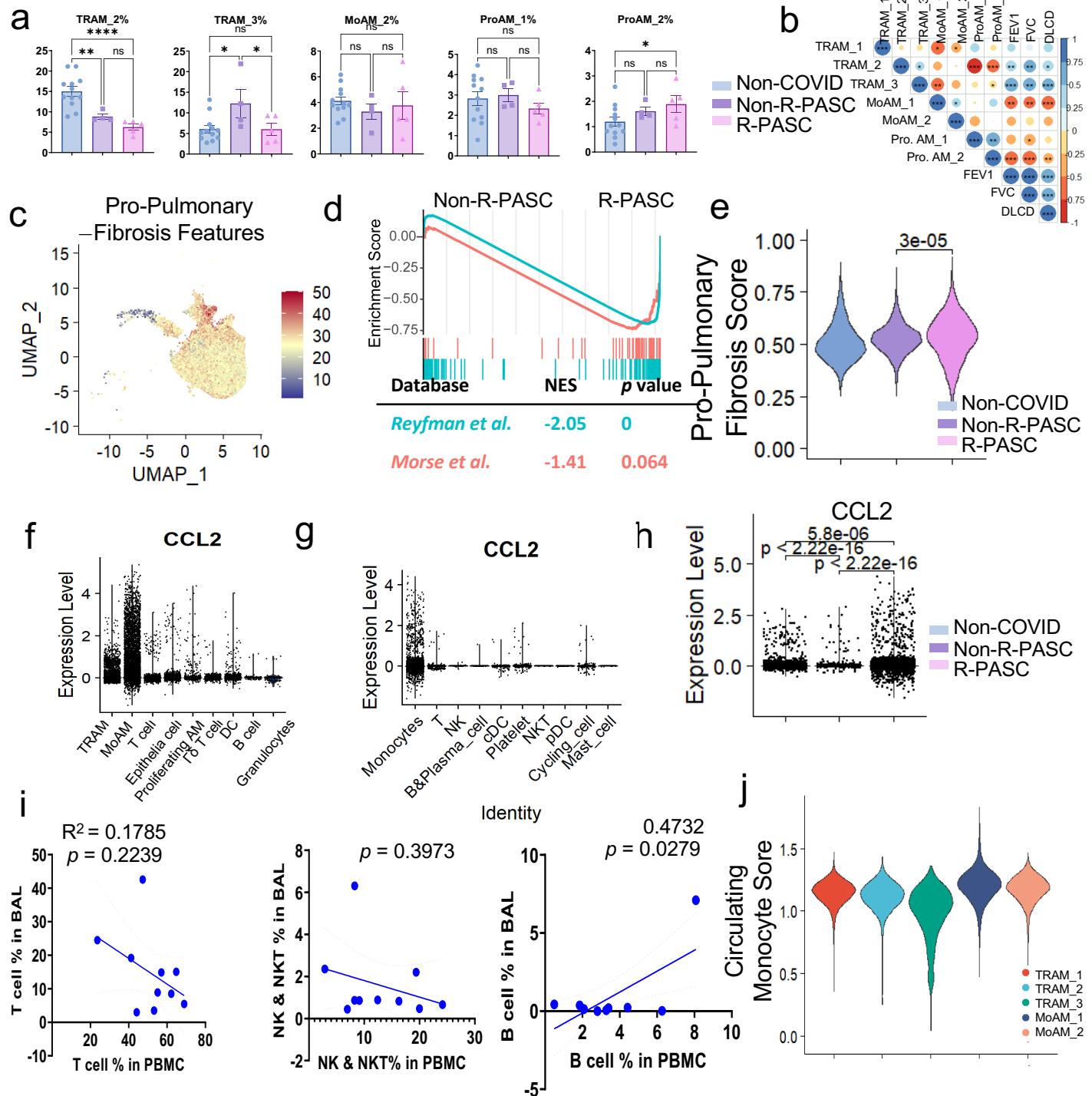
Data are represented mean \pm SEM unless otherwise indicated. Significance were tested by one-way ANOVA with Tukey's adjustment for multiple comparisons, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Extended Data Fig. 2

Extended Data Figure 2. R-PASC patients exhibit an altered immune landscape.

a, b, Dot plots showing the BAL cells (**a**) and PBMCs (**b**) enriched pathways in non-R-PASC or R-PASC groups compared to non-COVID controls.

c, d, Volcano plots showing the difference expressed genes in BAL cells (**c**) and PBMCs (**d**) between non-R-PASC and R-PASC donors.


e, f, GSEA results of BAL cells (**e**) and PBMCs (**f**) from non-R-PASC or R-PASC donors.

g, h, Correlation of lung functional parameters with properties of BAL cells (**g**) or PBMCs (**h**).

i, j, Different expressed genes of BAL T cells (**i**) and BAL B cells (**j**) between non-R-PASC and R-PASC donors.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Extended Data Fig. 3

Extended Data Figure 3. Respiratory macrophage phenotypes in R-PASC individuals.

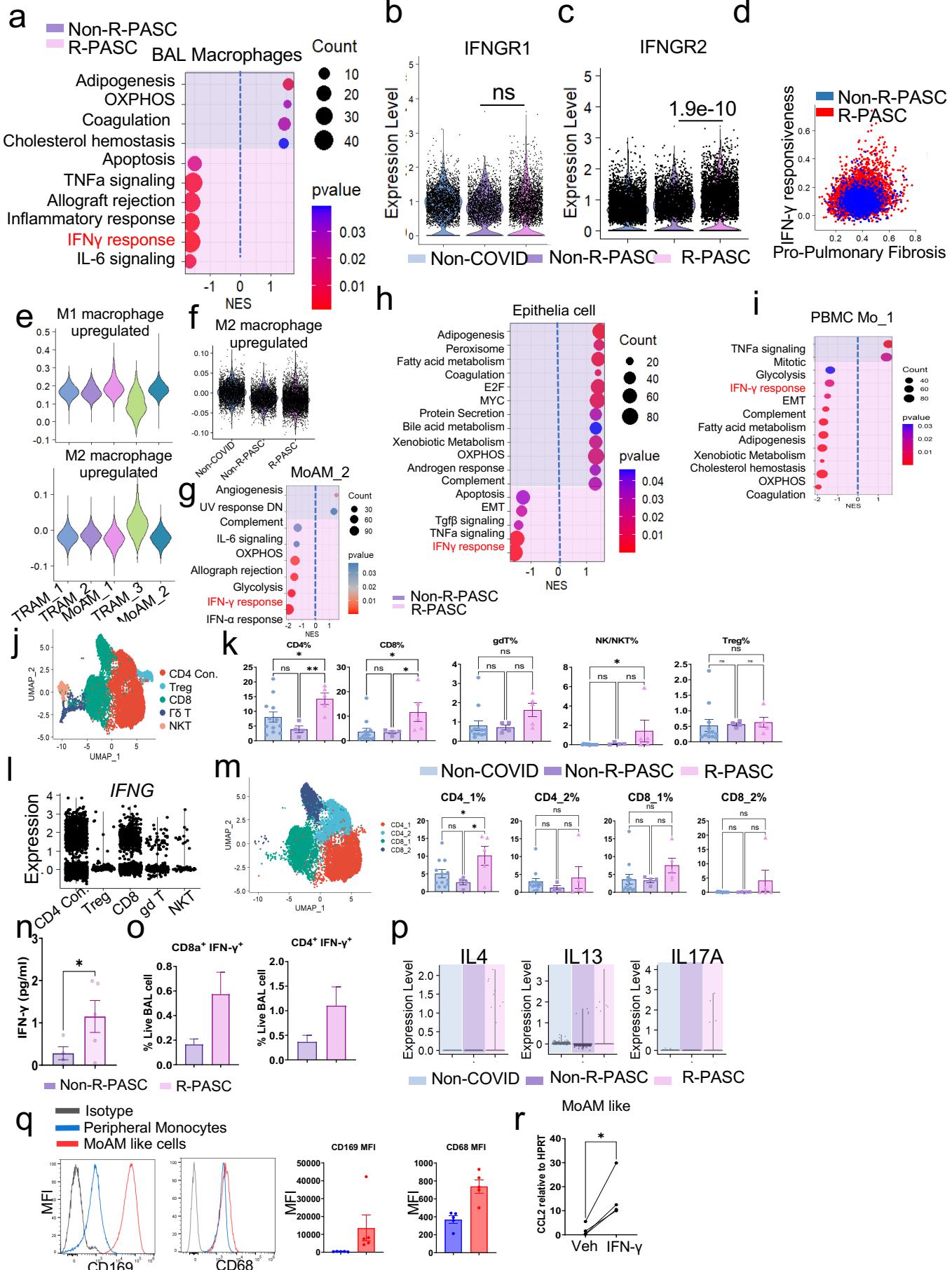
a, Percentage of BAL macrophage clusters among non-COVID, non-R-PASC and R-PASC groups.

b, Correlation of lung function parameters and BAL macrophage clusters proportion.

c, Feature plot of pro-pulmonary fibrotic macrophage gene signature.

d, GSEA plots of pulmonary fibrosis related macrophage gene sets between non-R-PASC and R-PASC BAL Macrophages.

e, Relative scores of a pro-pulmonary fibrotic macrophage gene signature in MoAM_1 cells from indicated groups.


f – h, Violin plots showing the *CCL2* expression level in BAL cells (**f**), PBMCs (**g**), and BAL MoAM_1 cells (**h**) in indicated groups.

i, Correlation of BAL T cells, NK and NKT cells, and B cells percentages with their circulating counterparts.

j, PBMC monocyte feature assessment in BAL macrophage clusters.

Data are represented mean \pm SEM unless otherwise indicated. Significance were tested by one-way ANOVA with Tukey's adjustment or Wilcoxon test, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Extended Data Fig. 4

Extended Data Figure 4. IFN- γ as a critical node mediating exuberant T-macrophage interactions in R-PASC.

a, Gene sets enriched in the BAL macrophages from Non-R-PASC or R-PASC donors.

b, c, Violin plot showing the *IFNGR1* (**c**) and *IFNGR2* (**d**) expression in the MoAM_1 cell from indicated groups.

d, Scatter plot showing the IFN- γ responsiveness score and pro-fibrotic score in non-R-PASC and R-PASC MoAM_1 cells.

e, M1 (upper) or M2 (lower) macrophage features among the BAL macrophage clusters.

f, M2 macrophage feature score of non-COVID, non-R-PASC and R-PASC MoAM_1 cells.

g-i, Gene sets enriched in the BAL MoAM_2 cluster (**g**), epithelial cell cluster (**h**), and PBMC Monocyte_1 cluster (**i**) from Non-R-PASC or R-PASC donors.

j, The UMAP plot of BAL T cells.

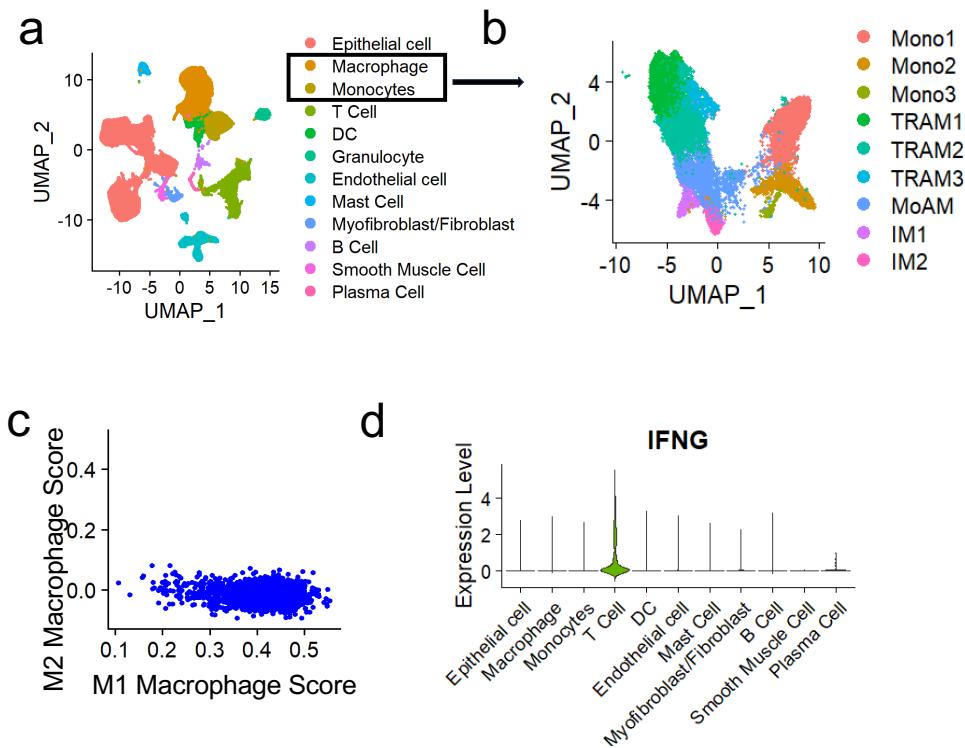
k, Proportions of T cell clusters in BAL among non-COVID, non-R-PASC and R-PASC.

l, *IFNG* expression in BAL T cell subpopulations.

m, UMAP plot of BAL CD4 $^{+}$ conventional T and CD8 $^{+}$ T cells subpopulations(left). Proportions of BAL CD4 $^{+}$ conventional T and CD8 $^{+}$ T cell subpopulations among non-COVID, non-R-PASC and R-PASC (right).

n, IFN- γ concentration in the BALF from indicated groups tested by multiplex assays.

o, IFN- γ $^{+}$ CD8 $^{+}$ or CD4 $^{+}$ T cell percentage of whole BAL cells in response to SARS-CoV-2 peptides stimulation.


p, Violin plot showing the *IL4*, *IL13* and *IL17A* mRNA expression in the T cells from indicated groups.

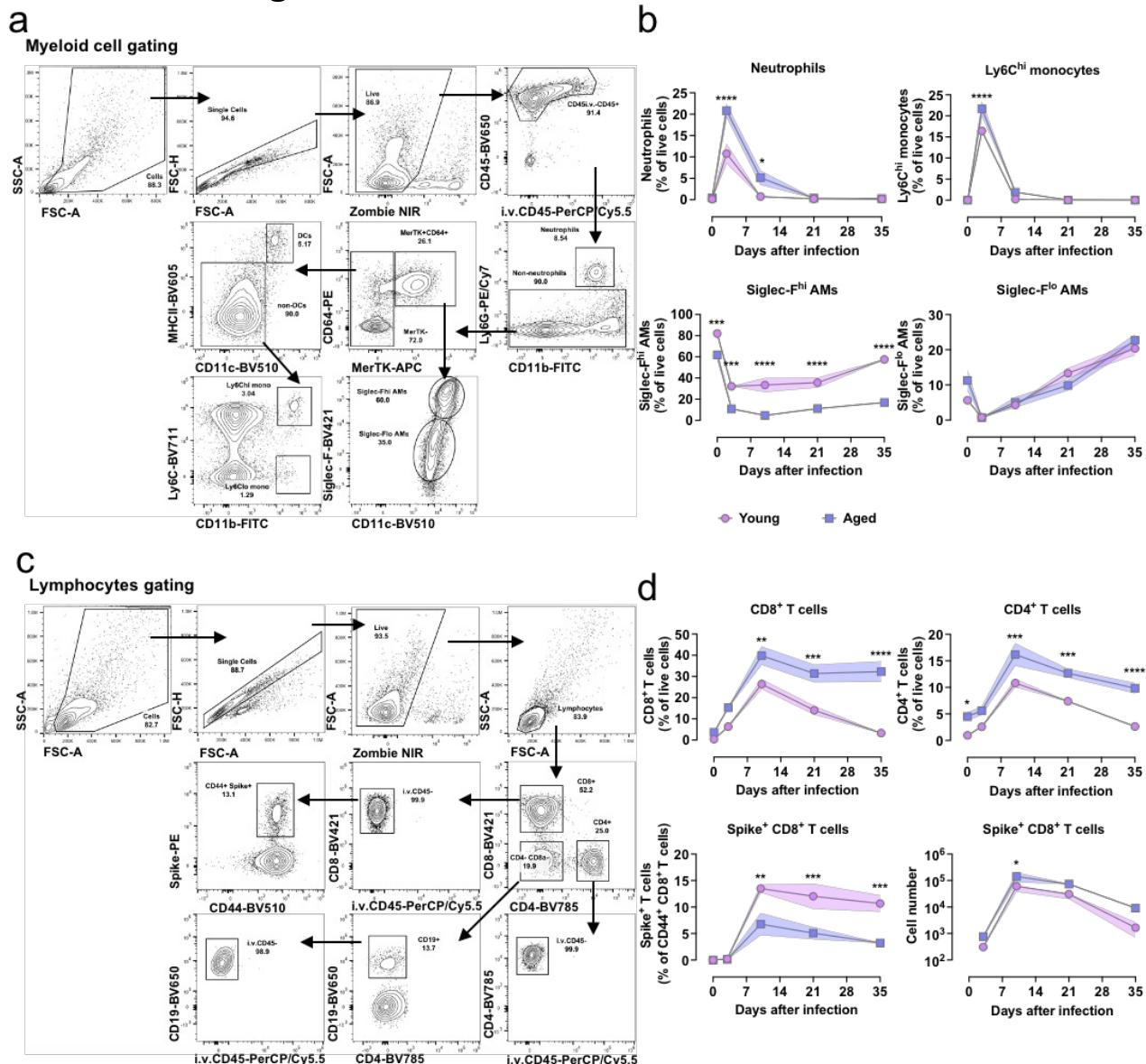
q, MFI of CD169 and CD68 in the peripheral blood derived monocytes or peripheral blood derived monocyte differentiated alveolar macrophage like cells.

r, *CCL2* mRNA expression in the MoAM like cells post Vehicle or recombinant IFN- γ treatment.

Data are represented mean \pm SEM unless otherwise indicated. Significance were tested by one-way ANOVA with Tukey's adjustment for multiple comparisons or Wilcoxon test, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Extended Data Fig 5.

Extended Data Figure 5. sc-RNA-seq analysis of PASC pulmonary fibrosis (PASC-PF) lung tissues.


a, The integrated UMAP of cells from Non-COVID control or PASC-PF patients' lung tissues ^{4, 41, 42}.

b, The integrated UMAP of macrophages from Non-COVID control or PASC-PF patients' lung tissues.

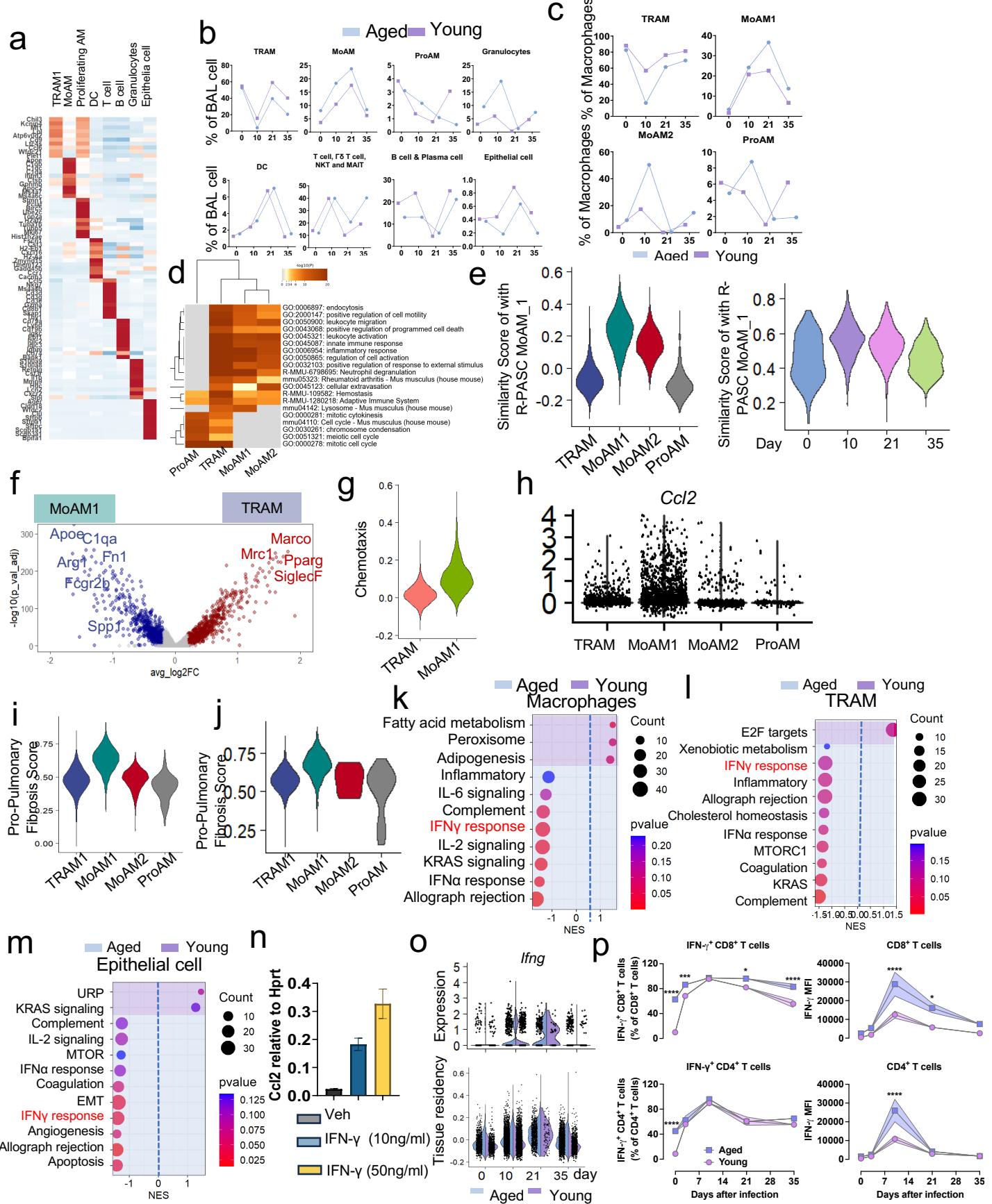
c, Scatter plots showing M1 and M2 macrophage features in MoAM cells from lung tissues.

d, *IFNG* expression in indicated cell types from lung tissues.

Extended Data Fig. 6

Extended Data Figure 6. Flow cytometry gating strategy and percentages of major immune cells in BAL of mice infected with MA10.

a, Representative flow cytometry plots of gating strategy for myeloid cells in BAL of young and aged mice infected with MA10.


b, The percentage of neutrophils, Ly6C^{hi} monocytes, Siglec-F^{hi} TRAMs, and Siglec-F^{lo} MoAMs.

c, Representative flow cytometry plots of gating strategy for T cells and Spike-specific CD8⁺ T cells in BAL of MA10-infected young and aged mice.

d, The percentage of CD8⁺ T cells, CD4⁺ T cells and Spike-specific CD8⁺ T cells, as well as the number of Spike-specific CD8⁺ T cells.

Data are represented mean \pm SEM, and were analyzed by two-way ANOVA with Tukey's adjustment for multiple comparisons, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and **** $p < 0.0001$.

Extended Data Fig. 7

Extended Data Figure 7. sc-RNA-seq analysis of BAL cells of a mouse R-PASC model.

a, The top10 representative genes of each cell cluster from integrated C57BL/6J mice BAL.

b, The proportion of each cell type in MA10 infected young and aged C57BL/6J mice at indicated time points.

c, The proportion of each BAL macrophage subclusters in MA10 infected young and aged C57BL/6J mice at indicated time points.

d, Heatmap of BAL macrophage subclusters enriched pathways.

e, The similarity score of human MoAM_1 features in mouse BAL macrophage subclusters (**left**) or in MoAM1 cells at indicated time points (**right**)

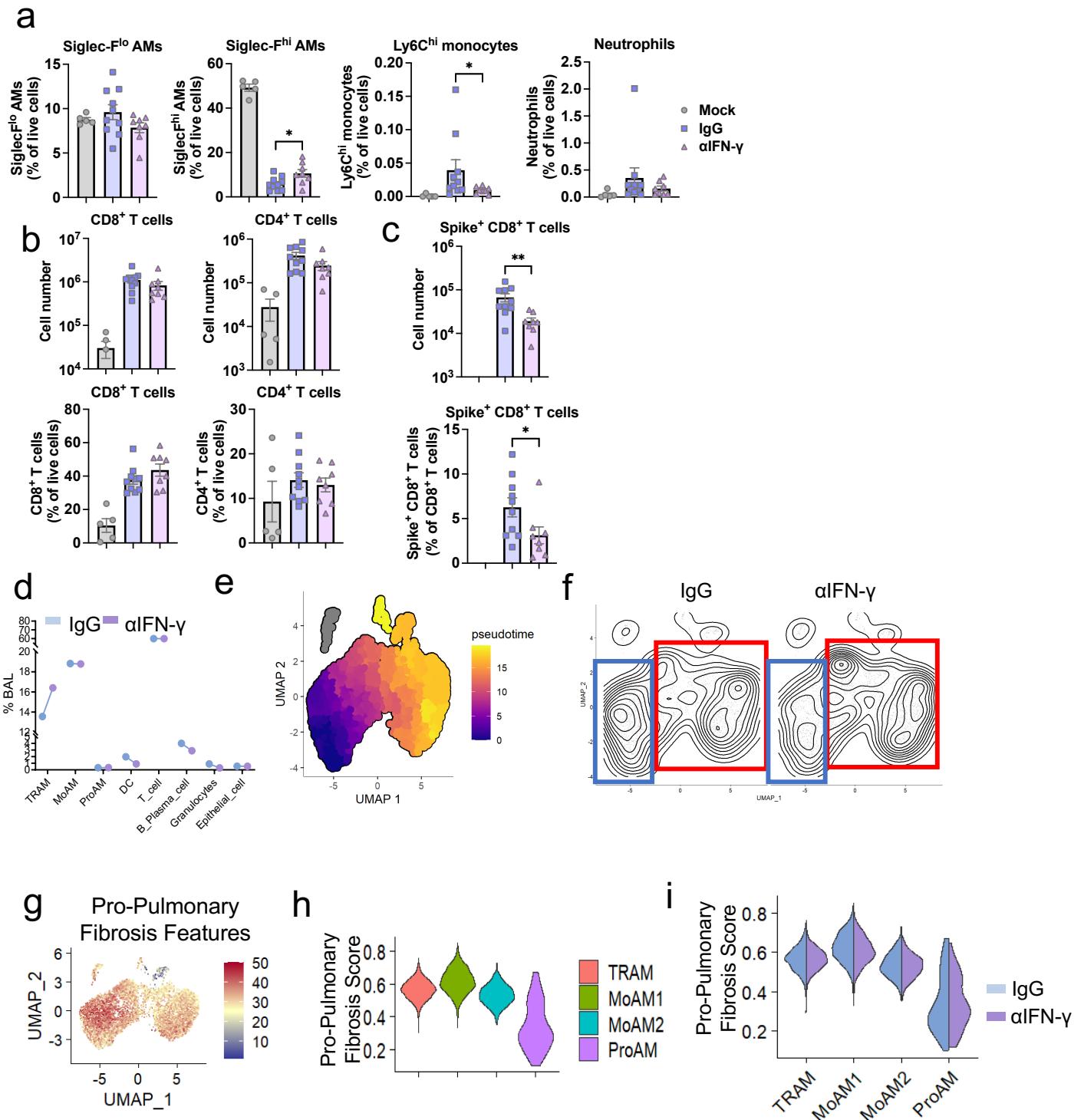
f, Volcano plot showing differentially expressed genes between MoAM1 and TRAM at 21 days post MA10 infection.,

g, Chemotaxis ability of MoAM1 and TRAM at 21 days post MA10 infection.

h, *Cc2* expression level in the BAL macrophage subclusters.

i, j, Relative score of pro-pulmonary fibrotic macrophage gene signature in BAL macrophage clusters from all time points (i), or at day 21 post MA10 infection (j).

k - m, Enriched gene sets of BAL macrophages (k), epithelial cell (l) and TRAM clusters (m) from young or aged C57BL/6J mice at 21 days post M10 infection.


n, Relative expression of *Cc2* in bone marrow derived MoAM like cells exposure to IFN- γ .

o, *Ifng* expression (**upper**) and tissue residency score (**lower**) in BAL T cells from young or aged C57BL/6J mice at indicated time points post MA10 Infection.

p, The percentage of IFN- γ -producing CD8 $^{+}$ T and CD4 $^{+}$ T cells, as well as MFI of IFN- γ in CD8 $^{+}$ T and CD4 $^{+}$ T cells, from young and aged mice infected with MA10 at indicated time points.

Data represent the mean \pm SEM. Data were analyzed by two-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

Extended Data Fig. 8

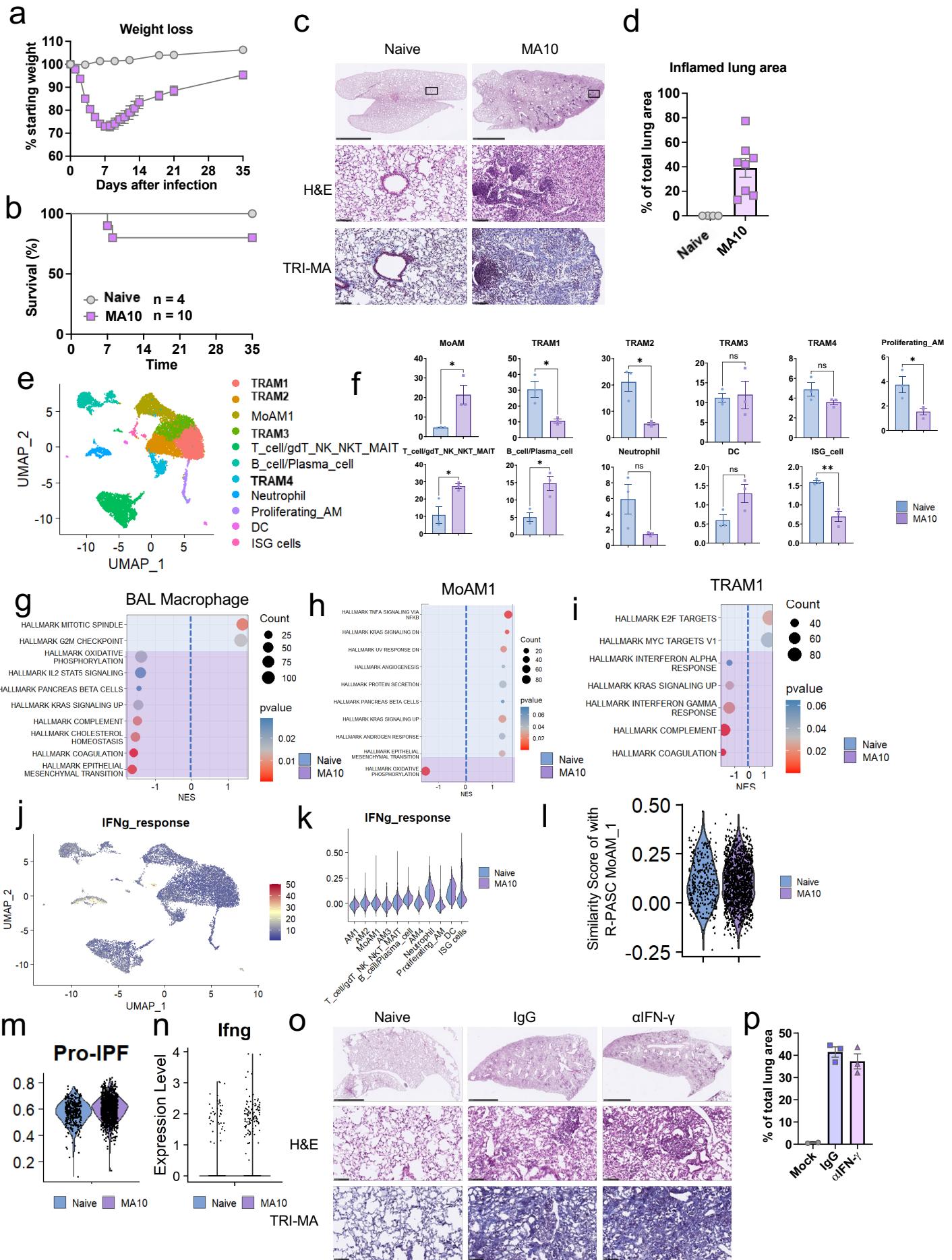
Extended Data Figure 8. Targeting IFN- γ ameliorates post SARS-CoV-2 lung sequelae.

a, The proportion of Siglec-F^{lo} AMs, Siglec-F^{hi} AMs, Ly6C^{hi} monocytes, and neutrophils in BAL of MA10-infected aged mice treated with IgG or α IFN- γ .

b, c, The cell counts and percentage of CD8⁺ T and CD4⁺ T cells (**b**) and Spike⁺ CD8⁺ T cells (**c**) from aged mice treated with IgG or α IFN- γ .

d, The proportion of indicated BAL cell types from IgG or α IFN- γ treated aged mice.

e, Pseudotime analysis of BAL macrophage differentiation.


f, Contour plots showing the density of BAL macrophage clusters in the UMAP.

g, Feature plot of pro-pulmonary fibrotic features in BAL macrophages.

h, i, Relative score of pro-pulmonary fibrotic macrophage gene signature in all BAL macrophage clusters (**h**), or in indicated groups (**i**).

Data represent the mean \pm SEM. Data were analyzed by one-way ANOVA or unpaired *t* test, * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001, and **** *p* < 0.0001.

Extended Data Fig. 9

Extended Data Figure 9. IFN- γ response is dispensable for post SARS-CoV-2 sequelae in BALB/c mice.

a and **b**, Weight loss (**a**) and survival (**b**) of aged BALB/c mice were monitored post infection.

c, Representative images of histopathology are shown. H&E indicates hematoxylin and eosin staining. Masson's trichrome (TRI-MA) staining highlights fibrotic collagen deposition. Scale bar indicates 2.5 mm for whole lung lobe or 100 mm for zoomed area.

d, QuPath quantification of inflamed area in the lungs for indicated time points as in **c**, represented as the percentage of total lung area.

e, The integrated UMAP of BAL cell from naïve or 35 days post MA10 infected aged BALB/c mice, pooled from 3 mice each group.

f, The proportion of each cell type in naïve or 35 days post MA10 infected aged BALB/c mice.

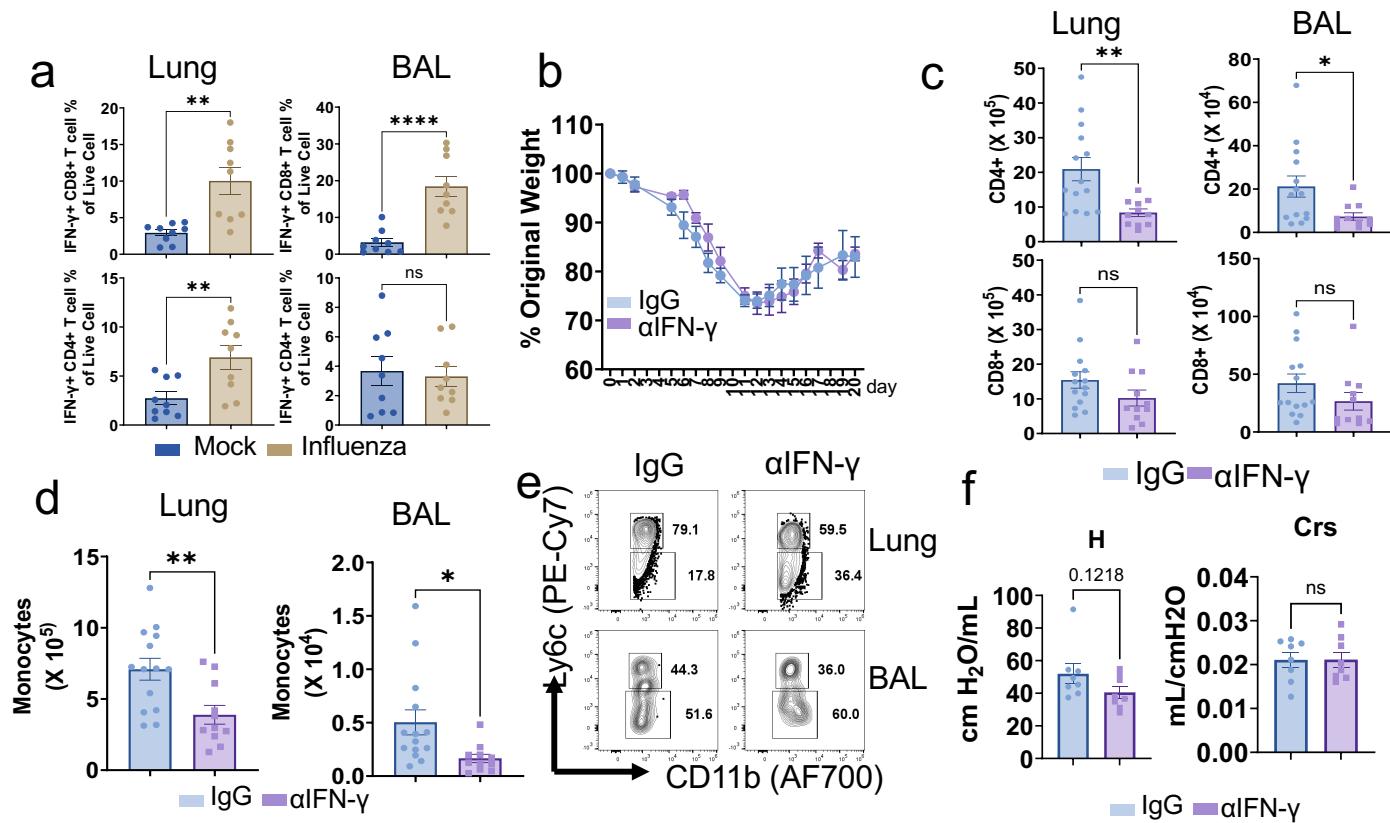
g-i, Enriched gene sets of BAL macrophages (**g**), MoAM1 clusters (**h**) and TRAM1 clusters (**i**) from aged BALB/c mice at 0 or 35 days post MA10 infection.

j, INF- γ responsiveness features in BAL cell from aged BALB/c mice at day 0 and day 35.

k, Relative score of INF- γ responsiveness in indicated cell types from naïve or 35 days post MA10 infected aged BALB/c mice.

l, The similarity score of human MoAM_1 feature in MoAM1 cells from indicated groups.

m, Relative score of pro-pulmonary fibrotic macrophage gene signature in MoAM1 cells from indicated groups.


n, Violin plot showing the *Ifng* expression in the T cells from indicated groups.

o, Representative images of histopathology in the α IFN- γ or IgG treated aged BALB/c mice at 30 days post MA10 infection. H&E indicates hematoxylin and eosin staining. Masson's trichrome (TRI-MA) staining highlights fibrotic collagen deposition. Scale bar indicates 2.5 mm for whole lung lobe or 100 mm for zoomed area.

p QuPath quantification of inflamed area in the lungs for indicated treatment groups as in **o**, represented as the percentage of total lung area.

Data represent the mean \pm SEM. Data were analyzed by unpaired *t* test, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and **** $p < 0.0001$.

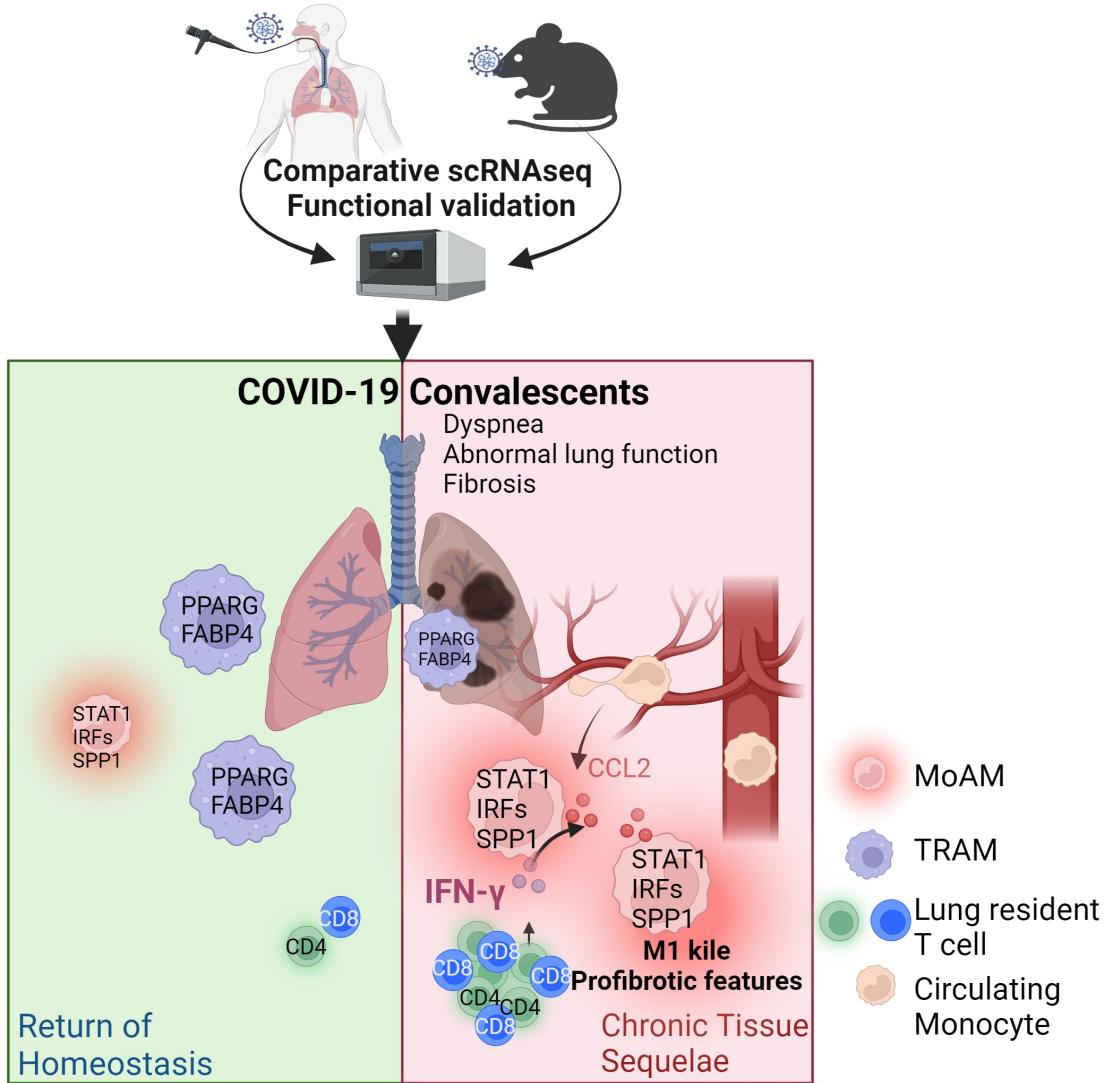
Extended Data Fig. 10

Extended Data Figure 10. IFN- γ blockade promotes lung functional recovery in a persistent lung sequelae model after influenza pneumonia.

a, IFN- γ producing lung resident (left) and BAL (right) CD8 $+$ and CD4 $+$ T cell proportion in naïve or influenza infected aged C57BL/6J mice at 6 weeks post infection, n= 9, pooled from two independent experiments.

b, Weight loss of the infected aged mice post treatment, n= 4-6.

c, Tissue resident CD4 $+$ T cell and CD8 $+$ T cell counts in lung (left) and BAL (right) post treatment, n= 11-14, pooled from three independent experiments.


d, Monocytes counts in lung (left) and BAL (right) post treatment.

e, Representative dot plots of Ly6C hi or Ly6C lo monocytes in lung (left) and BAL (right) post treatment.

f, Evaluation of respiratory compliance (Crs), tissue resistance (H) post treatment with flexiVent, n= 8, pooled from two independent experiments.

Data represent the mean \pm SEM. Data were analyzed by unpaired *t* test, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

Extended Data Fig. 11

Extended Data Figure 11. Graphic model.

Patient description and Pulmonary Function Test

Subject ID	Gender	AGE	Hospitalization Following COVID-19 diagnosis	Maximum O2 need (L/min)	ICU Stay (days) / Mechanical Ventilation (days)	Pulmonary Embolism	Secondary Bacteri al Pneumonia	Other complications (type)	Date of bronchoscopy following COVID-19 diagnosis	FEV1	FVC	DLCO	Grouping	sc-RNA-seq
CON-1	M	65								112 / 3.54 / 2.33	116 / 4.80 / 3.10	60 / 15.1 / 18.6	Non-COVID	No
CON-3	F	77								124 / 2.35 / 1.35	124 / 3.07 / 1.76	89 / 15.9 / 13.4	Non-COVID	Yes
CON-4	M	73								114 / 3.16 / 1.98	116 / 4.24 / 2.69	109 / 24.9 / 16.7	Non-COVID	Yes
CON-5	M	73								119 / 3.30 / 1.97	126 / 4.59 / 2.68	72 / 16.4 / 16.4	Non-COVID	No
CVD-01	M	64	D 5-14 D19-22	12 L	7 / -	Yes	No	No	D 74	72 / 2.54 / 2.62	70 / 3.23 / 3.49	56 / 15.5 / 20.7	R-PASC	Yes
CVD-02	M	83	D10-18	3 L	- / -	No	No	No	D 74	85 / 2.14 / 1.73	76 / 2.60 / 2.44	75 / 16.3 / 15.7	R-PASC	Yes
CVD-03	M	63	D 5-26	HFNC 60L	11 / CPAP	Yes	No	No	D 74	68 / 2.39 / 2.61	64 / 2.95 / 3.46	45 / 12.5 / 20.5	R-PASC	Yes
CVD-04	M	65	D 3-14	HFNC 60L	8 / + 5	No	Yes	No	D 88	81 / 2.42 / 2.20	75 / 2.88 / 2.90	92 / 21.8 / 17.6	R-PASC	No
CVD-05	M	74	D 6-16	HFNC 60L	3 / -	Yes	No	No	D 74	78 / 2.08 / 1.90	69 / 2.45 / 2.59	46 / 10.2 / 16.2	R-PASC	No
CVD-06	F	66	D 5-10	5 L	- / -	No	No	No	D 87	127 / 3.18 / 1.85	129 / 4.17 / 2.40	87 / 18.8 / 16.2	Non-R-PASC	Yes
CVD-07	M	62	D 5-10	2 L	- / -	No	No	No	D 84	112 / 4.06 / 2.70	99 / 4.66 / 3.58	99 / 28.0 / 21.1	Non-R-PASC	Yes
CVD-08	F	76	D 9-23	HFNC 40L	- / -	No	No	No	D 80	83 / 1.64 / 1.40	77 / 1.99 / 1.83	44 / 8.2 / 13.9	R-PASC	Yes
CVD-09	F	63	D 6-14	HFNC 60 L	5 / -	No	No	No	D 78	53 / 1.36 / 1.77	52 / 1.69 / 2.26	60 / 11.9 / 14.9	R-PASC	Yes
CVD-10	M	68	D 1 - 13	HFNC 50 L	3 / -	No	No	No	D 67	119 / 4.09 / 2.50	114 / 5.17 / 3.39	81 / 22.2 / 20.3	Non-R-PASC	Yes
CVD-11	F	64	D2 - 21	50% FiO2	11/+9	No	No	No	D 64	93 / 4 / 2	87 / 1 / 2.4	73 / 18.8 / 14.2	Non-R-PASC	Yes