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Abstract

Magjor depressive disorder (MDD) associated genetic variants reside primarily in the non-coding,
regulatory genome. Here we investigate genome-wide regulatory differences and putative gene-
regulatory effects of disease risk-variants by examining chromatin accessibility combined with
single-cell gene-expression profiles in over 200,000 cells from the dorsolateral prefrontal cortex
(DLPFC) of 84 individuals with MDD and neurotypical controls. MDD-associated accessibility
alterations were prominent in deep-layer excitatory neurons characterized by transcription factor
(TF) motif accessibility and binding of nuclear receptor (NR)4A2, an activity-dependent TF
responsive to pathological stress. The same neurons were significantly enriched for MDD-
associated genetic variation disrupting cis-regulatory sites and TF binding associated with genes
involved in synaptic communication. Furthermore, a grey matter microglial cluster exhibited
differentially closed chromatin in MDD affecting binding sites bound by TFs known to regulate
immune homeostasis. In summary, our study points to specific cell types and regulatory

mechanisms whereby genetic variation may increase predisposition to MDD.

Introduction

Major depressive disorder (MDD) is a debilitating and life-threatening psychiatric disorder
affecting almost 5% of the world's population “*. Many neurobiological factors and cellular
alterations have been previously associated with MDD including changes in monoaminergic and
glutamatergic systems *°, and abnormalities in astrocytes ®’, oligodendrocytes &, and immune
cells . In spite of progress, the precise molecular mechanisms mediating risk for MDD remain

unknown.

Genome-wide associations studies (GWAS) have identified over 200 MDD risk loci 3
however, similarly to other psychiatric phenotypes, characterizing the functional impact of such
variants has remained challenging as they mostly map outside protein-coding regions. In addition
to genetic variation, the adverse effects of environmental factors, such as early-life stress, on
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increasing the risk for depression , are mediated by regulatory changes'®. Single-cell atlases



of open chromatin cis-regulatory elements (cCCREs) holds promise to uncover mechanisms

whereby disease-associated risk-variants may impact cell-specific gene-regulatory targets .

Previoudly, using single-nucleus RNA-seq (snRNA-seq), our group identified gene-expression
changes mainly in the deep-layer excitatory neurons, and certain glial subtypes, including
microgliain individuals with MDD **?* Here, we bridge current knowledge gaps by employing
single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seg)®,
which provides unprecedented opportunities for interrogating epigenetic and genetic variants
through the lens of chromatin accessibility 3?2, By measuring chromatin accessibility in more
than 200,000 cells from the DLPFC of 84 individuals and integrating ShARNA-seq obtained from

19,20

the same samples ", we generated a large cell-type specific accessibility and expression atlas

of cortical cellsin MDD.

Our results revealed that MDD-associated chromatin accessibility alterations were most
prominent in NR4A2+ deep-layer excitatory neurons (ExN1) and in a grey matter (GM)
microglial cluster (Mic2). ExN1 neurons were aso most significantly enriched for the
heritability of MDD GWAS SNPs. Examining allele-specific effects of M DD-associated genetic
variation in these neurons identified TFs and genes likely affecting synaptic communication and
plasticity. Together, our single-nucleus multi-modal dataset provides an in-depth examination of
MDD-associated genetic variation and downstream gene regulatory mechanisms with cell type

specificity.

Results

Chromatin accessibility in human dor solateral pre-frontal cortical (DLPFC) célls.

We performed snATAC-seq in 44 individuals who died during an episode of MDD and 40 age-
and sex-matched neurotypical controls (Fig 1A, schematic; demographic and sample
characteristics;, Supplementary Table 1). Male and female nuclel were combined prior to
microfluidic-capture, common variants, and chromatin accessibility measured in this dataset
permitted accurate demultiplexing of pooled subjects (Supplementary Fig 1; Supplementary
note). Filtering of doublets and low-quality barcodes revealed 201,456 high-quality nuclei
having overall high TSS enrichment score (median: 7) and uniquely mapped fragments (median:



15,833) with equal contributions from both sexes (51% female cells) and conditions (53% case

cells, Supplementary Figure 2-4).

Unsupervised iterative clustering of nuclei by genome-wide chromatin accessibility measured at
500bp resolution 2* revealed 7 broad cell-types (ExN: 35.2%, InN: 13.4%, Ast: 6.8%, Oli:
36.8%, OPC: 3.8%, Mic: 2.4%, End: 1.6%) condgisting of 38 distinct clusters (Fig 1B; Extended
Fig 1D). Multiple approaches for assigning cell annotations confirmed snATAC-seq cell-type
and cluster identities (Fig 1C-E, Extended Fig 1-2), including label-transfer from sample-
matched snRNA-seq % (median: 0.94; Extended Fig 1A-E) and published PFC snATAC-seq %
(median: 0.99; Extended Fig 2A-B).

The clusters were characterized by cluster-specific accessibility across 239,824 cCREs,
(hereafter called marker cCRES; Fig 1G; Wilcoxon test, FDR<0.05; Extended Fig 1l (top);
Supplementary Table 2) and cluster-specific TF motif accessibility and binding (Wilcoxon test,
FDR<0.05, Fig 1H-I, Supplementary Table 3). To identify gene-regulatory mechanisms in
cortical cells, we examined correlations between cCRE accessibility and gene-expression (peak-
to-gene linkages), identifying 117,328 unique cCREs highly correlated (r>0.45) with 11,575
expressed genes (Supplementary Table 4). As expected, almost al (>90%) of these cCREs
overlapped histone markers of transcriptionally active chromatin from cortical cells % (Extended

Fig 11 (bottom)) and captured gene-regulatory variations from each cell-type (Extended Fig 1C).

M DD-associated chromatin differencesfound in microglia and deep-layer neurons.

We investigated MDD-associated accessibility within clusters and cell-types using per-subject
pseudo-bulked accessibility estimates (Method: Differential accessibility analysis;
Supplementary Table 5). Of 38 characterized clusters, 25 clusters were associated with atotal of
4751 MDD-associated differentially accessible regions (hereafter called DARs, Fig 2A), whereas
only 297 differential chromatin regions were found at broad level (Supplementary figure 5A-C).
Most DARs were less accessible in individuals with MDD (76%; Fig 2B) and were primarily
observed in clusters of microglia Mic2 (58.5%) and excitatory neurons ExXN1 (21.2%). The

number of cells in these clusters were comparable to all others (except Oli4; interquartile range



(IQR)) and depicted uniform contributions from potential covariates (Fig 1F; Supplementary Fig
4).

To understand the likely regulatory impact of DARS, we asked how they overlapped with
PsychEncode ChiP-seq histone marks from cortical cells . Nearly al of the DARS less
accessible in MDD (98%) coincided with histone marks that are typicaly found in gene
promoters (defined by H3K4me3+H3K27ac; 74%) and enhancers (H3K27ac, 23%). By contrast,
most DARs more accessible in MDD (85%) overlapped with enhancers (H3K27ac; 56%) more
than promoters (28%; Fig 2B).

To understand the overall functional impact of DARS, we identified the most likely affected
genes (n= 2254) using peak-to-gene linkages (r>0.45) and investigated their known functions. Of
these genes, the highest psychiatric disease association was found for depression (Fig 2C),
whereby 80% of these associations showed consistent evidence in PsyGeNet % and 64% for
schizophrenia. In fact, there was an overrepresentation among DAR-linked genes (FDR < 0.05;
one-sided Fisher’s exact test; Fig 2D) for PsyGeNet genes linked to depression, MDD-associated

1113 and genes previously observed to be differentially expressed in MDD 2.

genetic variation
We did not observe similar enrichments for genes associated with cell-type DARS observed at

broad level.

Cdl type-specific roles of proximal and distal gene-regulation have been previously reported.
For example, activity-dependent regulation in neurons involves many distal regulatory elements
2" while microglial-activation involves mostly proximal regulation 2. Here we similarly observed
that whereas DARSs in excitatory neurons tended to be distal to any TSS (e.g. 77% of DARs in
ExN1 were> 2kbp from a TSS; Fig 2A), DARs in microglia tended to be proximal to a TSS (e.g.
73% of DARs in Mic2 were within 2kbp of a TSS).

Given that ExN1 and Mic2 were the most affected clusters in MDD, we focused on these to
examine the relationship between altered chromatin and variants associated with gene regulation.
Both ExN1 and Mic2 DARs showed significant enrichment for splicing (SQTLS) and expression
guantitative trait loci (eQTLs; Fig2E-F inset), implicating potential impact of DARs on DLPFC

gene expression. Moreover, using snRNA-seq clusters®, we identified significantly increased



module scores in MDD for expression of genes linked to EXN1 DARs showing specifically
increased accessibility in MDD (p = 0.0009, Wilcoxon rank-sum test; Extended figure 2F), and
we observed tendency for the opposite in Mic2 (p=0.1).

Finally, to elucidate functional pathways likely affected by MDD-associated chromatin, we
examined cluster-specific DAR-linked gene ontologies (GO; Supplementary Table 6). ExN1
DARs were largely more accessible in cases (73% of DARs) and linked to genes involved in
modulating synaptic and neurotransmitter release functions (FDR<0.05; Fig 2H). Whereas Mic2
DARs with significantly decreased accessibility in MDD linked to genes enriched in
phagocytosis- and immune-signaling pathways (FDR<0.05; Fig 2I; Supplementary figure 5D).

TF binding sites overrepresented in M DD-associated chromatin.

TF binding can both regulate and be affected by chromatin accessibility leading to gene-
expression °. In order to determine the possible interplay between TFs and transcriptional
effects, we first identified TF binding motifs enriched in cluster-specific DARs compared to GC-
matched background pesks (Homer *°; p<0.05, Fig 3A, Supplementary table 7). TF binding
motifs highly enriched (FDR<0.05) in ExXN1 DARs belonged to basic leucine zipper (bZIP),
basic helix-oop—helix (bHLH), Zinc finger (Zf), and helix-turn-helix (HTH) families, which are

known to regul ate activity-dependent *! and neurodevel opment-associated functions 2%,

On the other hand, TF motifs enriched (FDR<0.05) in Mic2 DARs included many canonical
microglial factors, such as ETS domain (SPI1) and interferon regulatory factors (IRFs), some of
which are pioneering and lineage-specifying TFs that can regulate local chromatin accessibility

343> and can affect microglial development *, proliferation *, and immune-activation®*.

To confirm these observations, we assessed GC and accessibility bias-corrected TF motif
deviations across motif-matching cCREs in each cluster (ChromVar % Wilcoxon test;

FDR<0.05). These results suggested an overall agreement between MDD-associated TF motifs
enriched_in differentially more or less accessible DARs among MDD individuals and those



identified comparing motif accessibility signals between MDD and controls at single-cell
resolution (Supplementary Table 8).

TFsmediate effects of M DD-associated chromatin on gene expression.

We hypothesized that reduced chromatin accessibility in MDD at TF binding sites would reduce
TF binding and result in reduced expression of target genes, and vice versa. We investigated this
hypothesis by identifying a set of TFs whose binding was most likely to be affected by MDD-
associated accessibility, compiling a list of their most likely target genes, and then examining if

the expression of these genes was associated with MDD.

To identify high-priority TFs affected by differential accessibility, we selected TFs with motifs
enriched in DARs that were also highly expressed in integrated sShRNA-seq. Then, among these,
we further restricted selection to those with the greatest MDD-associated accessibility

differences at their binding sites in cases versus controls (Fig 3B; Supplementary Figure 5E).

We identified the likely targets of these prioritized TFs by constructing gene regulatory networks
using igraph (Fig 3C; Method: Gene regulatory networks) in ExXN1 (BACH2, ASCL1, CTCF,
RFX3) and Mic2 (SP1, SPI1, IRF1, ATF7). The nodes in green represent non-coding DARs with
individual TF binding motifs connected to their putative target-genes colored according to MDD
DEGs or MDD-associated genetic variation and PsyGeNET depressive disorder gene status.

Finally, we calculated MDD-associated module scores for these networks using snRNA-seq
clusters®. In general, these scores confirmed that increased binding site accessibility was

associated with increased module expression levels, and vice versa (Fig 3D-F).

Strong enrichment for MDD heritability in deep-layer excitatory neurons.

To prioritize cell type clusters that are likely to mediate the heritable risk for MDD, we
calculated GWAS SNP heritability enrichment within cluster-specific chromatin using stratified



linkage-disequilibrium score regression (S-LDSC; Method: Heritability enrichment) “°**. For
this, we used GWAS summary statistics available for MDD and related psychiatric phenotypes
and non-brain related control traits. The heritable risk for psychiatric disorders and traits that are
known to be genetically correlated with MDD ** were significantly enriched in marker cCREs of
ExN1 and ExN2 clusters (Fig 4A). Similarly to ExN1, ExN2 showed similarities to deep-layer
(layer 5-6) excitatory neurons (Extended Fig 2A, 3C). In fact, enrichments calculated from data
obtained from both MDD GWAS used in our study*** were coherently highest in ExN1 cluster
(Fig 4A; p=0.003 (Howard), p=0.0005 (Als), Supplementary Table 9). We also calculated
heritability enrichments in MDD-associated chromatin in each cluster (candidate DARS),
showing that the enrichment was likewise highest in ExN1 for MDD (Fig 4B; p=0.01; nominal)

and insomnia (p=0.02).

To determine if these enrichments were driven by linkage disequilibrium (LD), we first
estimated the heritability of MDD-associated variants in heritable LD blocks defined by 1000
Genome European (EUR) population using heritability estimator from summary statistics
(HESS) *. This resulted in about 5% of LD blocks significantly enriched for M DD-associated
genetic variants (p<0.05, Supplementary table 10). We then examined if MDD-associated blocks
contained an overepresentation of candidate DARs within each cluster compared to
chromosome-matched cCREs in any LD block (Permutation testing; nPerm=10,000). Consi stent
with previous observations, the most significant enrichment was observed in ExN1 (p=0.007; Fig
4C).

Finally, to identify regulatory TFs associated with chromatin enriched for MDD heritability, we
examined TF motifs enriched in ExN1-specific cCRES located within MDD-associated LD
blocks compared to GC-matched background peaks. TF families that were significantly enriched
(0<0.05; Supplementary table 11) in both ExN1 marker and differential chromatin included those
associated with activity-dependent functions (bZIP; Fig 4D) * and neurodevelopment (bHLH,
HTH, zf) 3%,

M DD-associated genetic variation shows cell type specific effects on gene regulatory sites.



To examine the functional impact of MDD-associated genetic variation within each cluster, we
assessed allelic-effects of MDD-associated SNPs on accessibility of cCREs and TF binding sites
and identified likely target risk genes. We used MDD-associated SNPs in GWAS 3 those in
high LD with them (r2 value >0.8) and those identified by finemapping ™**. To predict
accessibility in each cluster, we used three complementary models; in-silico mutagenesis (ISM),
delta-support vector machine (delta-SVM) * and gapped-kmer (gkm-explain) “° based variant-

effect scores derived from cluster-specific gkmSVM classifiers 4

(Supplementary Fig 6-7).

In order to determine cell-type and cluster-specific effects of MDD-associated genetic variation,
we focused on MDD-associated SNPs overlapping cell-type- or cluster-specific candidate cCREs
(referred to as candidate SNPs (cdSNPs) with 14% cdSNPs in candidate DARs and remaining in
marker cCREs; Extended Fig 3A-B; Supplementary Table 12). Compared to MDD-associated
SNPs, cdSNPs showed significant enrichment for expression quantitative trait loci (eQTLS;
p<1x10>; Hypergeometric test) and splicing QTLs (sQTLs; p<5x10®), suggesting an over-
representation of MDD SNPs with known effects on DLPFC gene-expression using our
candidate cCREs (Extended Fig 3C-D).

Overdl, we identified 97 non-coding statistically significant cdSNPs (sSNPs; 15% in candidate
DARs; Extended Fig 3B) that were significant across all three gkmSVM models. Notably, 97.9%
of MDD sSNPs were exclusively identified in clusters of a single broad cell-type (Extended Fig
3E), suggesting largely cell-type specific impact of genetic variation on chromatin accessibility.

Further, GWAS SNPs often alter expression of distally-located genes *’. Putatively long-range
gene-regulatory effect of genetic variation was determined by identifying gene-expression targets
most significantly correlated (up to 500kbps; peak-to-gene linkages) with accessibility of-cCCRES
associated with MDD sSNPs. Both nearest and linked target genes of MDD sSNPs enriched for
pathways related to synapse organization and communication (Extended Fig 4A-B;
Supplementary Table 13).

Functional impact of M DD-associated genetic variation in ExN1 and Mic2 clusters.



To examine functional effects of MDD sSNPs in clusters that were strongly associated with
MDD, we focused on sSNPs showing significant allelic-impact in ExXN1 and Mic2 and
overlapping cell-type- or cluster-specific candidate cCREs. We highlighted sSNPs that strongly
disrupted accessibility in these cluster (medium- to high-confidence) and integrated
PsychEncode DLPFC histone modifications ? and 3D chromatin loops *° to interpret long-range
gene-regulatory targets (Method: Multi-modal Visualization).

Of all MDD sSNPs, 25% (52% s/eQTLs; Fig 5A) mapped to EXN1 marker cCRESs or candidate
DARs. Together, the target genes of EXN1 sSNPs (nearest, linked, and eQTLS) enriched for
pathways related to synaptic communication and plasticity (Extended Fig 4C). This included a
lead MDD sSNPs (rs2276138; Fig 5B) in GWAS meta-analysis *° overlapping ExN1 marker
cCRE in intronic region of SPTBN2 gene and disrupting TF binding site for RFX3, whose motif
accessibility was also atered in EXN1 DARs and at single-cell level in MDD (Fig 3B).
Moreover, RFX3 motifs enriched in ExN1 cCREs located within heritable LD regions for MDD
(Fig 4D) and have been previously associated with neuropsychiatric disorders . This sSSNPis
an eQTL and sQTL for a few genes (Fig 5A) including a GTEx eQTL, ZDHHC24, with major
regulatory effects on synaptic plasticity >* and associated through pesk-to-gene linkages (r=0.42)
with expression of SYT12, a synaptic vesicle protein. Additionally, MDD sSNP in SHANK2 gene
(rs11601579; Fig 5C) disrupted binding site accessibility for GLI2 TF, associated with
neurodevelopment 3. This sSNP overlapped ExN1 marker cCRE and significantly correlated
with the anti-sense RNA expression of SHANK2 (r=0.6), a postsynaptic density scaffolding
protein linked to neuropsychiatric disorders >**°. Finally, about 40% (10/25) of ExN1 sSNPs
were found to alter accessibility exclusively in this cluster (Extended Fig 5A-B).

In Mic2, MDD-associated variants with alelic-effects on chromatin accessibility (Fig 6A)
included a SSNP mapping to microglia cell-type marker cCCRE (rs5995992; Fig 6B) and showing
Hi-C linkages to ARL4C gene, which regulates lipid homeostasis in immune cells *°. This SSNP
disrupted binding site for FLI1 TF, which is known to beinvolved in microglia development and
homeostasis ***" and whose motifs were enriched in Mic2 DARs (Fig 3A). Additionally, a lead
MDD GWAS SNP ™2 which is an e/sQTL for several genes (rs5995992; Fig 6C) mapped to



candidate Mic2 DAR in promoter region of EP300, a gene encoding histone acetyl-transferases
and is co-activator of NF-kB mediated immune-activation .

Molecular characterization of ExXN1 and Mic2 clustersin depression.

To relate molecular profiles of clusters with their likely functional roles, we compared promoter-
accessibility with gene-expression from the Allen brain institute (ABI) snRNA-seq *°. ExN1
neurons had the highest similarity to layer 6 (L6) intratelencephalic (IT) Car3 neurons
(AUC=0.98; Extended Fig 6A), which are transcriptionally similar to NR4A2-marked neurons
implicated in regulating stress-response . Likewise, compared to other excitatory neurons,
ExN1 showed the highest TF motif accessibility and binding for NR4A2 (Fig 1H; Extended Fig

6B-C), also known as NURR1, which has been consistently linked to stress-response ®"°

, and
depression #%"172 Moreover, ExN1 marker TF, NR4A2 showed evidence for interactions with
MDD-associated EXN1 TFs (Method: StringDB; direct interactions: bZIP: FOS, FOSB, bHLH:
ASCL1; indirect: Zf: EGR1; Extended Fig 6D). Together, this presents an intriguing possibility
for the role of coordinated TF-activities in NR4A2+ ExN1 neurons in regulating stress-related

molecular alterationsin depression.

On the other hand, between the two microglial clusters, Mic2 showed a significantly higher
enrichment for GM than white matter (WM) microglial genes ®, (Extended Fig 6E-F). Likewise,
Mic2 localized mostly to the GM when integrated with DLPFC spatial gene-expression dataset ™
(Extended Fig 6G). GM and WM microglia tend to be phenotypically different ", and in a recent
postmortem study on freshly-isolated microglia, only GM microglia showed differential gene-
expression in MDD with downregulation of immune-related genes (referred to as, disease-
associated microgliain depression (depDAM)) . Compared to Micl, promoter-accessibility and
gene-expression profiles of Mic2 reflected molecular status of depDAM (Extended Fig 6H-I),
with significantly lower module scores for downregulated and higher for upregulated genes in
MDD. While these patterns were not statistically different between groups, genes linked to
downregulated Mic2 DARs in MDD significantly captured downregulated genes in depDAM (p-
value=8.1e-05; one-sided Fisher’s exact test).



Discussion

We examined chromatin accessibility with integrated gene-expression in ~200,000 cells from the
DLPFC. Our results indicate that nearly 75% of DARs identified across cell-type clusters were
differentially closed in MDD individuals. These differences were found primarily in GM
microglia (Mic2) and NR4A2+ deep-layer excitatory neuronal cluster (ExN1), which was also
significantly enriched for the heritability of MDD GWAS SNPs.

In line with a previous cell-type-specific study examining PFC maturation ", our study identified
MDD-associated differentially accessible chromatin in deep-layer (L5/6) EXN1 neurons enriched
for activity-dependent (bZIP) motifs. These neurons were also enriched for neurodevel opment-
associated (bHLH/HTH) TF binding sites. Moreover, MDD-associated TFs from these families
in EXN1 showed interactions with ExN1-specific marker TF, NR4A2. NR4A2 is an immediate-

67,77 63-70

early factor ® which responds to glucocorticoids ®””, acute and chronic stress ®7°, and has been
previously associated with depression *%"2, NR4A2 gene and protein levels were found to be
decreased in bulk-tissue DLPFC from MDD individuals ®. Moreover, NR4A2 induction can

8 and chronic

have neuroprotective effects after exposure to neuropathological stress
inflammation-induced depression-like behaviors ™. The roles of NR4A2+ neurons in stress-
response are consistent with observations in Nr4a2-null heterozygous mice showing significant
reduction in cortical and limbic dopamine levels ™ and greater behavioral impairment associated
with neuropsychiatric traits after exposure to developmental stress ®. This suggests that
NR4A2+ ExN1 neurons may be more sensitive to stress-related perturbations in depression,

possibly mediated by coordinated TF activities.

Furthermore, NR4A2+ ExN1 neurons were found to be most similar to L6 IT Car3 neurons 7,
which share developmental and transcriptional similarities with NR4A2-marked Claustrum
neurons ®®'. Chemogenetic silencing of these neurons attenuates stress-induced anxiety- and
depression-like behaviors in rodents ®. Moreover, activity-dependent induction of NR4A2 can

2

modulate AMPA-receptor mediated synaptic plasticity ® whose alterations are strongly

associated with depression %.

In our study, NR4A2+ EXN1 neurons were also most significantly enriched for the heritability of
MDD GWAS SNPs, especially in the marker cCRES, suggesting cell-intrinsic programs may be
involved in regulating differential accessibility alterations. MDD-associated genetic variation in



these neurons affected regulatory sites linked to genes involved in synaptic plasticity and

communication, possibly impacting the sensitivity of EXN1 neurons to stress and depression.

In contrast to ExN1, a microglia cluster Mic2 in GM showed differentially closed chromatin
associated with genesinvolved in phagocytosis- and immune-related pathways. Mic2 cluster also
showed transcriptional similarities with a cortical GM microglia (depDAM), depicting down-
regulation of genes involved in immune-response and phagocytosis, suggesting an overall
immune-suppressed phenotype in MDD™. MDD-associated downregulation in immune-
signaling pathways may be contributed by decreased binding activities of immune-regulatory
TFsidentified in this study, such as ETS domain and IRFs **, Likewise, chronic stress-induced
depression-like behavior in rodents has been associated with decreased interferon-response TF
motif accessibility and transcriptional-repression in microglia 3. MDD-associated TFs identified
in Mic2 were also among those depicting motif accessibility changes in response to disruption in
microglia micro-environment and associated with neurodegenerative and psychiatric disorder
genes %, This suggests possible roles of surrounding tissue-environment 8 or microglia-neuron

20,75 :

communication in shaping regulatory landscape of microglia.

Previous work investigating tissue inflammation in depression produced contradictory findings,

suggesting both increased #® and decreased immune-activation 0788

, either peripherally or
centrally. Consistent with our findings, bulk-tissue ° and single-nucleus ? RNA-seq in the
DLPFC revealed downregulation of genes associated with inflammatory cytokines, microglia—

84,90

activation, and immune-signaling pathways in MDD. Some studies in rodents and humans **

have likewise suggested suppression of microglial immune-response in chronic stress-induced

9,10,20,75

disorders. Furthermore, recent reports provide evidence at gene-expression and protein

levels %9 for a non-inflammatory microglial phenotypein MDD.

It is possible that inflammatory changes taking place over time may eventually lead to
widespread changes in chromatin accessibility of microglia, dysregulating TF binding and gene-
expression and altering overall immune-homeostasisin MDD individuals. Additionally, MDD

has been associated with alterations in microglial homeostatic functions %

, such as microglia-
neuron communication . For example, early-life stress in mice induced disruption in
microglia-associated pruning of excitatory synapses leading to aberrant adult stress-response .

Whereas both microglia-suppressing and -stimulating properties associate with context-specific



anti-depressant response *. These results emphasize the need to further determine the influence
of microglia-associated inflammatory as well as synapse-regulatory functions in context of

depression.

Unlike excitatory neurons, marker cCREs specific to glial clusters were not significantly
enriched for the heritability of MDD GWAS risk loci; however, examining variant-effects of
individual MDD sSNPs pointed to disruption of specific gene-regulatory sites. Together, these
results delineated regulatory mechanisms by which MDD-associated genetic and environmental

factors may impact distinct cortical clusters (Extended Fig 7).

Limitations

Sex-specific transcriptomic changes have been identified in depression %, Here, we
interrogated M DD-associated accessibility by accounting for sex of individuals but did not assess
moderation effects of sex on phenotypic differences. Future studies hold promise to uncover

chromatin regions possibly mediating sex differencesin MDD.

The downstream interpretation of MDD-associated chromatin could be limited by the number of
subjects or cells. Notably, the cohort-size of this study was comparable, if not larger, to other

182476% Due to cohort-size and

publicly-available postmortem single-cell brain studies
overrepresentation of EUR population, we opted to use reference LD panels instead of in-sample

LD. Consequently, our findings may not be applicable to other populations.

Finally, we adopted gkm-SVM models to predict aldic-impact of genetic variants on
accessibility. Although the performance of our models is comparable to other studies %, these

models do not directly evaluate read-count differences between individuals .

Conclusions

To our knowledge, our study is the first single-nucleus measurement of chromatin accessibility
and integrated gene-expression in individuals affected by a psychiatric phenotype. Our study
revealed MDD-associated accessibility alterations in the deep-layer excitatory neurons



characterized by TF activity of NR4A2, which is known to regulate stress-response. NR4A2+
excitatory neurons were also most significantly enriched for the heritable risk for MDD, whereby
the associated genetic variation disrupted regulatory sites linked to genes involved in synaptic
communication. Additionally, a grey matter microglial cluster showed significant chromatin
accessibility disruption in MDD, impacting binding of TFs known to mediate immune
homeostasis. This rich resource will prompt future investigations into narrowing down the
functional effects of MDD-associated regulatory sites and risk-variants using more targeted
approaches, in attempts to further tease-apart the interplay of genetic and environmental factors
contributing to MDD.

M ethods

Post-mortem brain samples for snATAC-seq

We investigated a total of eighty-four human post-mortem dorsolateral prefrontal cortex samples
obtained from the Douglas Bell Canada Brain Bank (www.douglasbrainbank.ca) and University
of Miami Miller School of Medicine Brain Endowment Bank
(https://med.miami.edu/programs/brain-endowment-bank). Clinical information was obtained
using psychological autopsies, which were performed using proxy-based, structured and
standardized interviews *. This study was approved by the Douglas Hospital Research Ethics
Board, and written informed consent from next of kin was obtained. The frozen histological
grade samples of grey and white matter were dissected from the dIPFC (Brodmann Area 9) by
expert neurocanatomists and stored at —80 °C. Cases met criteria for MDD and died by suicide
during an episode of major depression, whereas controls were individuals who died of natural
causes or in accidents and did not meet criteria for magjor axis | disorders. No differences were
observed for the age of individuals (p-value=0.81, Case=44.6, Control=44.15). Although there

was a difference between MDD and control subjectsin the mean values for post-mortem interval



(PMI; p-value=0.0037, Case=44.2, Control=33.4), no significant differences were observed for
the pH values, which is a better correlate of tissue integrity (p-value=0.16, Case=6.5,

Control=6.4; Supplementary Figure 2).

Nucle extraction, library multiplexing, and sequencing

We extracted nuclel using thick coronal sections (~350um on average) as they were found to
produce higher nuclei-to-debris ratio compared to thinner sections (data not shown). This also
allowed for obtaining nuclel across cross-sections of GM and WM. Nuclei extraction from the
homogenized brain tissue was performed as previously described * with some modifications
(Supplementary note: Nuclel Extraction). We combined nuclei extracted from a male and female
pair (either control or MDD) into one well of 10x microfluidic device (Supplementary note:
Multiplexing and library construction) and sequenced the combined libraries together using
[llumina NovaSeq 6000. These libraries were demultiplexed using 1000 Genomes based
common variants and sex-specific chromatin accessibility (Supplementary note: Demultiplexing
and assignment of sex). For each library, we obtained on an average 505M raw sequencing read-
pairs with on an average 89.1% sequenced read pairs with mapping quality > 30 and having on
an average 141.34 bp insert-size. Quality-metrics for each subject are provided in

(Supplementary Figure 1, Supplementary Table 1).

Doublet removal



10x fragment files were used as an input to ArchR [release 1.0.1]. High-quality cells were
defined as those passing threshold criteria for the number of unique fragments per cell > 1000,
TSSEnrichmentScore > 3.5 and fraction in mitochondrial reads < 10%. Cells detected as 10x gel-
bead doublets or barcode multiplets originaly identified in *® and cells with possibly mixed

genotype profiles detected using Vireo ™ were filtered out.

Unsupervised iterative clustering

Genome-wide tile-matrix was generated by binning the genomic accessibility (GRCh38) into
500bp bins. Dimensionality reduction was then performed on the tile-matrix using the estimated
iterative LS| procedure in ArchR and batch-effects were corrected with Harmony %
Unsupervised graph-based clustering with a smart local moving algorithm was applied to
addClusters(reducedDims="Harmony" ,dimsToUse=1:25,method=3,resolution=0.4filterBias=TR
UE). Thisfirst round of iterative clustering produced atotal of 11 clusters, including 1 cluster of
endothelial (C4), microglia (C5), astrocytic (C10), OPCs (C11), inhibitory neurons (C6), 3
oligodendrocyte clusters (C1-3), and 3 excitatory neuronal clusters distinguished by upper
(Cluster 7), middle (C8), and deep cortical layers (C9), which were then combined for
subsequent clustering within broad cell-types. For each broad cell-type, we re-computed LSI
(15,000 varFeatures and 1:20 dimsToUse) and retained clusters with at least 50 cells. The second
round of clustering was performed at multiple resolutions (0.2,0.4,0.6), retaining the clustering
resolution that produced the highest median of mean Silhouette scores across clusters. For larger
cell-types (oligodendrocytes and excitatory neuronal cell-types) for which Silhouette scores

could not be computed (>70,000 cells), we used clustering resolution of 0.6.



Quality-assessment of clusters

The quality of identified clusters produced after the first and second rounds of clustering was
assessed based on: @) uniform percentage contribution from subjects, batches, sexes, and
conditions in each cluster, b) having at least 10 marker genes based on ArchR GeneScore matrix
(Wilcoxon test, FDR < 0.05 & Log2FC > 0.5). This retained 11 out of 15 clusters after the first

round and 38 out of 40 clusters after second round of clustering for downstream analysis.

Identification of chromatin cis-regulatory elements (cCCRES)

To identify reproducible sets of cCREs capturing biological variability across cell-types and
clusters, cells belonging to same cell-type and cluster were first partitioned into four non-
overlapping pseudobulk aggregates whereby each replicate had uniform contributions from
subjects belonging to each sex and condition. Open chromatin regions (OCRsS) were called using
MACS2 '® on each pseudobulk replicate available for each cell-type and cluster using
addReproduciblePeak Set(excludeChr="chrM", maxPeaks=300000, cutOff=0.1) in ArchR.
Finally, OCRs reproducible in at least two of the four replicates in each broad cell-type and
cluster were retained. Next, we generated a non-overlapping and fixed-with peak-set (501bp)
separately at cell-type and cluster levels using iterative overlap peak merging and removal (IPR)
procedure in ArchR. This retains the most significant OCR (based on MACS2 significance)
among those overlapping across clusters. OCRs accessible in at least 1% of cells resulted in
approximately 600 and 800 thousand non-overlapping cCRES at broad cell-type and cluster
resolution, respectively. Majority of broad cell-type cCREs (86%) overlapped with cluster-

resolved cCREs. Conversely, a much smaller percentage of cluster cCREs (64%) overlapped



with broad level cCREs. Notably, most cluster cCREs (95%) were located within 5000bp
neighborhood of broad cCRE coordinates. Finally, we computed per-cell Tn5 insertion countsin
each cell with respect to the above-mentioned non-overlapping cCREs from broad cell-type and

cluster resolution, which were then used for downstream analyses.

Marker cCREs

Cdll-type- and cluster-specific marker cCREs were identified using the respective Tn5 insertion
count matrices. For this, getMarkerFeatures() in ArchR was used with Wilcoxon test (FDR <
0.05 & Log2FC > 0.5). Majority of broad cell-type-specific marker cCRES (77%) overlapped
with cluster-specific marker cCRES. Conversaly, a much smaller number of cluster marker
CcCREs (36%) overlapped with the broad marker cCRES. About 67% of cluster marker cCRES
were within 5000bp of broad marker cCRE coordinates. Three (ExXN7, InNN3, and Oli6) of the 38
clusters were potentially low-quality as they had very few marker cCRESs (<5) compared to all

others.

Cluster annotation

Clusters were annotated based using several approaches. a) pseudo-bulk accessibility profiles
(normalized by reads in TSS) at cell-type marker genes plotted using ArchR plotBrowserTrack
function, b) assessing gene regulatory activity of cell-type marker genes in BraininABlender 1%

(Species=="Human") for every cluster using ArchR addModuleScores() function, and c)



measuring gene activity profiles with ArchR GeneScore matrix (Wilcoxon test; FDR < 0.05 &

Log2FC > 0.5) and manually assessing the enrichment of following marker genes:

Neurons: SNAP25, RBFOX3; Excitatory neurons. SATB2, SLC17A7, SLC17A6; Excitatory
neuronal cortical layers (upper to lower): CUX2, RORB, PCP4, BCL11B, FEZF2; Inhibitory
neurons. GAD1, GAD2, SLC32A1; Inhibitory neuronal subtypes: LHX6, PVALB, SST, ADARB2,
VIP, LAMP5 Macrophage/microgliaa MRC1, CSF1R, CX3CR1; Endothelial: CLDN5, SRGN,
FLT1,; Astrocytes: AQP4, SLC1A2, GFAP; OPCs: HAR?, CSPG4, OLIG1; OPCs: HAS?, CSP(G4,

and Oligodendrocytes. MBP, OPALIN, PLP1, MAG, MOG.

Validation of cell type clusters

Enrichment of Fluorescence-activated nuclei (FAN)-sorted cell-type marker peaks
We thoroughly validated snATAC-seq cell-type and cluster profiles using various strategies.
First, we examined enrichment overlap of marker cCREs from FAN-sorted bulk ATAC-seq cell-

typ es 105

in cluster-specific marker cCREs defined by our snATAC-seq data using ArchR
peak AnnoEnrichment(cutOff ="FDR < 0.05 & Log2FC > 0.5") and plotted FANS-sorted cell-
type cCREs with the highest enrichment for each  cluster  using

plotEnrichHeatmap(enrichRegions, n = 1).

Comparison with external snATAC-seq dataset



Second, using Signac '®

, cell-types identified in our data were compared to the cell-types
available in PFC snATAC-seq . Specifically, for each cell in our cohort, fragment counts were
computed using peaks identified in the external PFC snATAC-seq dataset. Next, cell-type labels
from the external snATAC-seq were transferred onto our data using cell-by-peak fragment count

matrix and using FindTransferAnchors(reduction="lsiproject", dims=2:20) function in Seurat '*.

M etaNeighbor

Finally, we assessed the concordance between cell-type and clustersin this dataset with multiple
SnRNA-seq datasets. For this, we used the top 3000 most variable features to create gene-
expression classifiers for each of the cluster defined in these snRNA-seq datasets *° *° ', Using
MetaNeighbor %, we predicted their similarities (AUCROC plots; Extended Figure 2C-D) to
SNATAC-seq clusters based on promoter-accessibility (<2kbp to gene TSS) computed using

GeneActivity() function in Signac *®

Integration with snRNA-seq dataset

Prior to integration, cells with uncertain (“Mixed”) annotation in MDD snRNA-seq data ° were
removed. First, an unconstrained integration was performed using snRNA-seq gene-expression
as reference and snATAC-seq GeneScore matrix as query to derive prediction scores and assess
concordance between cell-types. As we observed high similarity between cell-type labels
between two datasets (Extended Fig 1A-B), we individually applied constrained integration

within broad cell-types across two datasets and subsequently imputed gene expression from



snRNA-seq to snATAC-seq cells using addGenelntegrationMatrix(reducedDims="Harmony",

addToArrow = TRUE, dimsToUse=1:20) function in ArchR.

Integration with spatial gene-expression dataset

SnATAC-seg microglia clusters (Micl and Mic2) were mapped onto 10x Visium spatial gene-
expression dataset comprising of male and female DLPFC tissue sections " using Seurat '®.
Briefly, SCTransform() was used on promoter-accessibility and integrated snRNA-seq gene-
expression for snAATAC-seq cells mapping to microglial clusters. Microglia cluster labels were
then transferred using the top 30 principal components (PC) with FindTransferAnchors()

function and predicted spatial positions were visualized using Spatial FeaturePlot() in Seurat.

Differential accessibility analysis
Differential accessibility analysis was performed in every broad cell-type and cluster using

10 implemented in muscat ™. First, pseudo-bulk accessibility profiles were

[imma-voom
generated by aggregating counts across cells for each cCRE for each subject within the broad
cell-types and clugters. One female was omitted prior to differential analysis due to discordance
between the sex identified and reported (Supplementary note). Batch, sex, age, PMI, and the total
number of cells contributed by each subject were added as covariates in the limmavoom
differential accessibility model. A series of quality-control measures for differential accessibility

analyses were taken: a) Filtering out subjects with very low cell contribution (less than 10 cells

in broad cell-types or 5 cellsin clusters), b) Filtering out potential outlier subjects based on peak-



count matrix using isOutlier(type = "lower", nmads = 3) function in muscat, ¢) Filtering out
cCREs with consistently low counts across multiple subjects using filterByExpression() function
from edgeR 2. Finally, for each broad cell-type and cluster, we retained cCREs accessible in
more than 1% and 3% of cells, respectively, on an average in either cases or controls.
Differentially accessible regions (DARS) with abs(logFC) > log2(1.1) and FDR-adjusted local p-
value < 0.05 was used for al the analysis, except GWAS based analysis for which we defined

candidate DARs (abs(logFC) > log2(1.1) and FDR < 0.2).

Differential motif analysis

DARs were first partitioned by the direction of their association with MDD and were then
provided as inputs to Homer. GC-content matched background regions were automatically
selected by Homer and motifs were scanned within 200bp region of the peak center using
findMotifsGenome.pl function with default parameters. We only assessed the “known” motifs
for downstream results. Additionally, ChromVar ** based GC content and mean accessibility
biases-corrected motif accessibility deviations z-scores were computed at single-cell level with
Cisbp motif database using addDeviationsMatrix() function in ArchR. Maker TFs for each cell-
type and cluster were defined as those with significantly higher motif accessibility in a cluster
compared to all others using Wilcoxon test (FDR < 0.05 & MeanDiff > 1.5) with
getMarkerFeatures() default function in ArchR. MDD-associated TFs were also identified using
getMarkerFeatures(useGroups = "Case", bgdGroups = "Control") after adding PMI, age, and

total number of fragments as bias variables.



TF motif footprinting

We generated TF binding profiles by aggregating Tn5 insertion counts across al the motif
matching peaks using Cisbp motif database and subtracting Tn5 insertion sequence bias before
plotting. Specifically, for cell-type and cluster-specific marker TFs, we generated a maximum of
5 pseudo-bulk aggregates (default parameter) representing each cluster. For MDD-associated
TFs, we created 10 pseudo-bulk replicate profiles from each group usng

addGroupCoverages(groupBy="Condition”, maxReplicate=10) in ArchR.

Gene regulatory networks

We prioritized MDD-associated TFs for constructing gene regulatory networks (Supplementary
Figure 5E). Briefly, among the topmost significantly enriched TF motifs (FDR<0.05) in cluster-
specific DARs, we selected the top two TFs with the highest median gene-expression using
snRNA-seq integrated expression. Between these two TFs, we prioritized the one with the most
significant difference (FDR<0.05) between case and control cells using ChromVAR. For EXN1
gene-regulatory network, following DARs (FDR<0.05, abs(logFC) >log2(1.1)) were used, but
for Mic2 network, we selected topmost significant DARs (FDR<0.01, abs(logFC) >log2(1.1)).
To improve readability of graphs, we only plotted DARSs mapping to ArchR-defined non-coding
elements, including promoters, introns and distal regions and excluded exons. The edges in these
networks are directed from DAR nodes to gene nodes and are drawn whenever the corresponding
DAR contained a TF binding site and: (a) connects any DAR (promoter, introns, or distal) to

corresponding target-genes through peak-to-gene linkages (r>0.45); and (b) connects promoter



DARs to their nearest gene. Directed gene-regulatory networks were visualized using the
Fruchterman-Reingold layout algorithm with the R package igraph (v 1.2.6). The nodes in green
represent DARs enriched for individual TF binding sites directed towards putative target-genes
colored according to MDD associated gene or MDD DEG status. For MDD-associated genes, we
compiled list of potential risk-genes in MDD GWAS 137213 14 Hii_C based analysis (H-
MAGMA; FDR<0.1) ** and PsyGeNET depressive disorders genes . For MDD DEGs, we
used bulk (FDR<0.1) **® and snRNA-seq DEGs % obtained from the meta-analysis of both sexes

(FDR<0.1, abs(log2FC) > log2(1.1), signs> 0).



Functional interpretation of differential results

e Co-accessible peaks and peak-to-gene linkages

Co-accessibility of all pairs of cCREs at cell-type and cluster levels were computed using via
addCoAccessibility(maxDist=5e+05) function in ArchR. Moreover, usng MDD snRNA-seq
integrated expression, for all pairs of cCREs and genes, we computed the correlations between
CcCRE-accessibility and gene-expression, using addPeak2GenelLinks(maxDist = 5e+05) in
ArchR. We pruned the resulting peak-to-peak co-accessibility and peak-to-gene linkage matrices
to retain al significantly correlated pairs (r>0.45), as defined in ArchR. Additionaly, we
retained genes that were most significantly correlated (lowest FDR values) with cCREs

associated with MDD sSNPs using peak-to-gene linkages (Supplementary Table 12).

e Geneontology (GO) pathways

Gene ontology pathways were identified for DAR-linked genes (r>0.45) in each cluster using
enrichGO(minGSSize=5, pAdjustMethod="BH", pvalueCutoff=0.05, ont="ALL") with

clusterProfiler 1/

. We also split genes according to differentially more or less accessible DARs
and peformed pathway enrichment analysis using more relaxed parameters:.

enrichGO(pAdjustM ethod="BH", pvalueCutoff=0.2).

o PsyGeNET

For examining the association of DAR-linked genes with psychiatric phenotypes, we used

psygenet2r package with database="ALL" and default parameters associated with PsyGeNET



database °. The total number of gene-disease associations and evidence index for each

psychiatric disorder was computed using geneAttrPlot() with default parameters.

e StringDB

Protein-protein (PP) interactions were extracted from “full String network” of organism="Homo
Sapiens.” The minimum required interaction score was set to “high” (i.e., 0.7) and the maximum
number of interactions allowed in first and second shells of the network were limited to 20 and 5
interactions, respectively. The fully-connected PP interaction network was generated by

removing the disconnected nodes.

e CCRE overlap analysis

To compute overlap of PsychEncode H3K27ac and H3K4me3 histone modification peaks
consolidated from cortical cells > with marker cCRES, cCREs in peak-to-gene linkages (r>0.45),

and MDD DARs, we used subsetByOverlaps() in IRanges R package with default parameters.

e Geneoverlap analysis

To assess enrichment of sSnRNA-seq DEGs, GWAS risk-genes, PsyGeNET depressive disorder
genes in DAR-linked genes at broad and cluster levels, we used one-sided Fisher’s exact test in
newGOM () GeneOverlap R package [v.1.36.0; http://shenlab-sinai.github.io/shenlab-sinai/] and
plotted FDR-corrected p-values using drawHeatmap(go.obj, adj.p = T,log.scale = T, ncolused =

9).



e Module scores

Gene-expression module scores (average weighted expression of genes at single-cell level) were
calculated using Seurat AddModuleScore() function *® for DAR-linked genes and TF target-
genes. These scores were compared between MDD versus control cells (Wilcoxon test) using the
most similar snRNA-seq defined clusters % to ExN1 and Mic2 snATAC-seq clusters. Both
ExN16 L56 and ExN20 L56 snRNA-seq clusters showed correspondence to ExN1 (Extended
Figure 2C); however, similarly to EXN1, EXN16_L56 also showed the highest similarity % with
ExN L6 IT Car3 neurons in the ABI snRNA-seq >, and had the highest mean expression for
NR4A2 (Extended Figure 2E), a cell-defining TF marker for EXN1. On the other hand, snRNA-
seq data defined only one microglial cluster, which was used for the assessment of Mic2 gene-
expression module scores. In addition, we examined module scores using promoter-accessibility
and snRNA-seq integrated gene-expression for molecular characterization of microglia. For GM
versus WM comparison, we used top 25 differential genes between GM and WM microglia
(sorted by fold change) ”. For comparison with M DD-associated microglia (depDAM), we used

al the genes that were upregulated or downregulated in MDD ”.

Heritability enrichment

To calculate heritability enrichment of GWAS SNPs within cluster-specific marker cCREs and
MDD-associated chromatin, we applied stratified LDSC regression model (v 1.0.1) to GWAS
summary statistics for MDD ** ** and other complex traits 118 19 120 121 122123 124 qter-specific
marker cCCREs were retained at FDR<0.05 & Log2FC>0.5. For MDD-associated chromatin, we

used candidate DARs (abs(logFC) > log2(1.1) & FDR < 0.2) to obtain topmost dysregulated



CcCREs representing most of the clusters. These cCREs were converted from hg38 to hgl9
coordinates using the UCSC liftover tool (v377). Cell-type specific partitioned heritability
analysis was computed using a full baseline-LD model and after adding LD scores estimated on
matching cCRE set combined across all clusters as background. Finally, one-sided p-values were
computed based on the enrichment z-scores for each annotation relative to the background for

every trait.

Heritability Estimator from Summary Statistics (HESS)

We used HESS * to estimate local heritability for MDD-associated variants ** in LD blocks
defined on 1000 Genomes . This identified LD blocks significantly enriched (p<0.05) for
MDD heritability. We then tested the enrichment of cluster-specific candidate DARS within
MDD-associated heritable LD blocks identified above. For this, we compared cluster-specific
overlap of candidate DARs in significantly heritable LD blocks for MDD (n=90) with per-cluster
null distribution of the overlap of chromosome-matched cCREs within any LD block permutated
10,000 times to derive an empirical p-value of significance (p<0.05). Finally, both ExN1-specific
marker cCREs and candidate DARs whose peak-coordinates were located specifically within
significant MDD heritable LD blocks were input to Homer motif analysis (as described above).
TF families enriched (q<0.05) commonly in both EXN1 marker cCRESs and candidate DARs
were identified. The occurrence frequency of enriched TF families was plotted using
worlcloud2(v. 0.2.1) based on the number of individual TF members (belonging to each family)

that were significantly enriched in ExN1-specific cCCRES.



Enrichment of DLPFC expression and splicing QTLs in cCREs

To perform e/sQTL enrichment in cCREs, we used binomial test to assess whether uniformly
processed DLPFC eQTL and sQTLs (FDR<0.05; Supplementary method) are significantly
enriched within cCREs. First, eQTL and sQTL SNPs located within 501-bp cCREs were
identified. Next, the expected number of eQTL and sQTLs in cCREs were computed as the
product of (1) cCRE coverage with respect to hg38 genome; and (2) total number of QTL SNPs
a FDR < 0.05 (~3,000,000 eQTL and ~2,450,000 sQTL SNPs). Furthermore, binomial
enrichment test p-values are calculated for each QTL type and cCREs. Here, success rate,
number of trials, and number of successes for the binomial test were set to the cCRE coverage
percentage, total number QTL SNPs, and the number of QTL SNPs observed in cCREs,

respectively.

Functional impact of MDD-associated genetic variation in each cluster

To identify allelic-effects of MDD-associated GWAS SNPs and those associated by LD (r>0.8)
and fine-mapping (Supplementary methods) on chromatin accessibility of each cluster, we
adapted three complementary gapped kmer support vector machine (gkmSVM) models ¢ 4" %,
Briefly, for each of the snATAC cluster, gkmSVM models were trained on top 60,000 OCRs
(whenever available) identified in each cluster by MACS2 (ranked by FDR) to predict whether
1001bp reference genome sequences were accessible (i.e.,, cCRE) or inaccessible (i.e,, GC-
content and chromosome-matched sequences) for the corresponding cluster. We specificaly

focused on MDD SNPs located in either marker cCREs or candidate DARs of each cluster (e.g.,

ExN1) and its respective cell-type (e.g., EXN) to assess the effects of MDD sSNPs at cluster-



refined resolution. Using cluster-specific trained models, we then identified significant MDD
SNPs (sSNPs) altering chromatin accessibility of 201bp neighborhood of a cCRE. Moreover, we
partitioned sSNPs identified per cluster to high, medium and low confidence sets reflecting
significance of accessibility disruption in its immediate local neighborhood (<201bp). Putatively
disrupted TF binding sites were determined by matching affected alele sequence with Cisbp

motif databasein TOMTOM 2,

Multi-modal Visualization

For interpreting functional targets of MDD sSNPs, we used snRNA-seq integrated peak-to-gene
linkages (r>0.45) and snATAC-seq based peak-to-peak co-accessibility (r>0.45) using all the co-
accessible loops within 10kbp region of cCREs associated with MDD sSNPs. We further
overlayed PsychEncode DLPFC histone modification peaks (H3K27ac, H3K4me3) merged
across subjects *° and DLPFC NeuN+/- promoter-interacting Hi-C linkages (10kbp resolution) *°

(Supplementary note: PsychEncode data).
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Figure Legends



Figure 1. Chromatin Architecture at the single-cell level. A. Schematic overview of the
SNATAC-seq study design in 84 subjects from nuclei extraction and multiplexing to downstream
data analyses B. UMAP of 201,456 Chromatin accessibility defined high-quality cells colored by
38 clusters from 7 broad cell-types. C. Iterative clustering within broad excitatory and inhibitory
cell-types revealed 12  excitatory (ExN1-12; top), 5 inhibitory clusters
(INN3/PV/SST/LAMP5/VIP; bottom). D. UMAP plot colored by gene-activity computed using
ArchR GeneScore matrix for cortical layer (top) and interneuron lineage marker genes (bottom).
Top: CUX2: Upper layer (L1-2), RORB, TOX: Middle layer (L3-4), SYNPR, NTNG2, FEZF2:
Deep layer (L5-6). Bottom: LHX2, SST, PVALB: media ganglionic eminence (MGE),
ADARB2, VIP, LAMPS: cauda (CGE) lineage interneurons. E. Pseudo-bulk chromatin
accessibility at cell-type marker genes (normalized by reads in TSS; Ast: GFAP; ExNLI:
SLC17A7; InN: GAD2; Mic: CX3CRL1,; Oli: MAG; OPC: CSPG4). F. Total no. of nuclei in each
cluster followed by proportion of nucle contributed by MDD and control subjects and
contributed by male and female subjects. G. Heatmap showing differentially accessible cCREs
identified in each cluster compared to all others (marker cCRES; Wilcoxon test, FDR < 0.05,
Log2FC > 0.5). H. Heatmap showing mean differences in ChromVar based bias-corrected motif
accessibility deviation z-scores in each cluster compared to all others (Top 3 marker TFs are
plotted; Wilcoxon test, FDR < 0.05, MeanDiff>1.5; Grey boxes represent NA values). . Tn5
bias subtracted motif footprints for cell-type marker TFs (JUN: Neuronal marker, SPI1:

Microglial marker).

Figure 2. Chromatin profiling in individuals with major depression. A. Differentialy
accessible regions (DARs) in MDD compared to neurotypical control by cluster (Limma-voom;
FDR < 0.05 & abs(LogFC) > log2(1.1)). Points above the line represent increased accessibility,
below decreased. Colors represent distance to the nearest transcription start sites (TSS). B. Total
number of differentially accessible regions (DARS) that are differentially more (open; n=1142)
or less accessible (closed; n=3609) in MDD versus controls subjects across all clusters. Adjacent
bar plots show the total number of PsychEncode ChIP-seq histone modification peaks from
cortical cells (H3K27ac; marks active enhancers and H3K27ac+H3K4me3; marks promoters)
that overlap differentially more (bottom) or less (top) accessible MDD DARs. C. PsyGeNet



identified the total number of gene-disease associations linked to DARs across al clusters
(DAR-linked genes (r>0.45); Sl: substance induced; 100% association: consistent evidence for
the disease; 100% no association: consistently not associated with the disease). D. Gene overlap
enrichment (one-sided Fisher's exact test; FDR<0.05) between DAR-linked genes and MDD-
associated GWAS risk-genes from Howard et. al (2019) and Als et.al (2023), PsyGeNET genes
associated with depressive disorder, and MDD DEGs identified in sSnRNA-seq meta-analysis
across both sexes. E. DAR-linked genes plotted according to log2FC and -loglO(adjusted p-
values) of each DAR in ExN1 (left) and F. Mic2 (right). Inset: Bar plots depict significant
enrichment (p<0.05) of expression (eQTLS) and splicing quantitative trait loci (SQTLS) in EXN1
(left) and Mic2 DARs (right) compared to expected genomic coverage. G-H. Gene ontology
(GO) terms enriched in G. EXN1 and H. Mic2 DAR-linked genes converted into networks
(emapplot) plotted by significance (FDR<0.05). Nodes in the network show significant GO
terms (size of node is scaled by the number of genes associated with each GO term). Edges
connect overlapping gene sets (minimum 10% overlap required for an edge criterion between

GO terms and thickness of edges are scaled by the overlap percentage).

Figure 3: Therole of transcription factorsin MDD. A. Circos plot shows TF motif families
enriched (Homer; p<0.05) in differentially more (open) or less accessible (closed) EXN1 DARS
and differentially less accessible (closed) Mic2 DARs (width of links represent —ogl10(p-value)
scaled within each cluster). Each segment is colored by individual TF families representing TF
motifs significantly enriched in DARs. Only TFs present in both ArchR peak-motif matrix and
snRNA-seq integrated gene-expression matrix are plotted. B: Workflow for TF prioritization.
Left to right: (i) Top 4 most significant TF families (FDR<0.05) in ExXN1 (top) and Mic2
(bottom); (ii) DNA motifs of prioritized TFsin each TF family; (iii) Density plots show snRNA-
seg integrated gene expression for topmost significant TFs belonging to each family (plotted
from the lowest to highest median gene expression) across cells in each cluster (iv) ChromVar
based bias-corrected TF motif accessibility deviation z-scores in MDD versus controls
(Wilcoxon test, **FDR<0.01, *FDR<0.05; white stars indicate prioritized TFs with the most
significant differences in motif accessibility z-scores in MDD versus controls; (v) Number of

DARs enriched for the prioritized TF motifs and the number of target-genes associated with



prioritized TFs (% represents TF target-genes which are also MDD DEGs (in MDD bulk or
single-nucleus RNA-seq datasets) or MDD-associated genes (in MDD GWAS or PsyGeNET
depressive disorder genes). C. TF target-gene regulatory networks for prioritized TFs associated
with ExXN1 DARs (FDR<0.05; left) and Mic2 DARs (FDR<0.01; right). Nodes in the network
are colored by target-gene status of MDD associated genes or MDD DEGs or both. Edges are
colored by type of DARSs (promoters, introns or distal DARS). An edge is added to the network
when a significant DAR contains the prioritized TF motif and connects to genes linked to any
DAR through peak-to-gene linkages (r>0.45) and nearest genes to promoter DARs. D. snRNA-
seg gene expression module scores for the prioritized TF target-genes in ExN1 (left) and Mic2
(right) compared between MDD versus control groups (Wilcoxon test) in the corresponding
snRNA-seq clusters. E-F. Tn5 bias subtracted motif footprints of prioritized TFsin MDD versus
control subjects (left) and snRNA-seq gene-expression module scores for target-genes of
prioritized TFs in MDD versus controls in corresponding snRNA-seq clusters (right; Wilcoxon
test) for E. ExN1 and F. Mic2.

Figure 4. Genetic overlap with cell- and M DD- specific chromatin structure. A-B: Heatmaps
scaled by —-ogl0(p-value) (LDSC z-score test) for heritability enrichment of GWAS SNPs
belonging to each trait in each cluster using A. cluster-specific marker cCREs B. cluster-specific
candidate DARs C. Overrepresentation of cluster-specific candidate DARs (permutation test;
n=10,000; p<0.05) within significant heritable LD blocks identified for MDD (HESS; p<0.05).
Boxplots represent expected proportions of chromosome-matched permuted cCRES within any
LD block. Circles show the observed proportion of candidate DARs within significantly
heritable MDD-associated LD blocks. D. Word cloud represents TF motif families significantly
enriched (g<0.05; Homer) in both ExN1-specific marker cCREs and candidate DARs located
within MDD-associated LD blocks. The size of TF families is scaled by the total number of
distinct TF members (belonging to these families) identified to be significantly enriched
(0<0.05). Dendity plots shows snRNA-seq integrated gene-expression of enriched TFs across
ExN1 cdls.

Figure 5: MDD sSNPs with significant allelic-effects on chromatin accessibility landscape
in EXN1 cluster. A. Left to right: MDD sSNPs with significant allelic-effects in EXN1 cluster;
ExN1 sSNP-associated nearest genes, linked genes most significantly (FDR<0.05) correlated



with cCREs associated with sSNPs (peak-to-gene linkages; in grey are genes that did not pass
FDR); DLPFC eQTLs and sQTLs genes associated with sSSNPs;, sSNPs categorized based on
accessibility disruption confidence sets; TF binding sites potentially disrupted by sSNPs (listed
in the order of significance for TF motif match). B. Example plot for EXN1 sSNP (rs2276138).
Top to bottom: snATAC-seg-derived pseudo-bulk tracks for each cell-type and EXN1 cluster,
Manhattan plot showing MDD sSNP (chrll: T>C; rs2276138) overlapping ExXN marker cCCRE
(peak-to-gene linkage: SPTBN2 gene) and ExN1 marker cCRE (peak-to-gene linkage: SYT12
gene), ExN1 candidate DARs and marker cCREs within the plotted region, DLPFC neuronal and
non-neuronal (NeuN+/-) H3K27ac and H3K4me3 ChiP-seq peaks merged across each subject
25, DLPFC NeuN+/- promoter anchored HiC fragments and HiC loops49, snATAC-seq peak-to-
peak co-accessible loops (r>0.45) within 10kbps of sSNP associated cCRE, SYT12 gene locus
(chrl11:67006771-67050863) with the most significant peak-to-gene linkage (r=0.42) with cCRE
associated with sSSNP, gkmExplain importance scores for each base in 50-bp region surrounding
SSNP for Al and A2 alleles from ExN1 gkm-SVM mode, the predicted TF binding site (RFX3)
affected by sSNP is shown at the bottom. C. Example plot for EXN1 sSNP (rs11601579). Top to
bottom: snATAC-seg-derived pseudo-bulk tracks for each cell-type and ExN1 cluster
(normalized by readsin TSS), Manhattan plot showing MDD lead SNP, SNPsin LD (r>0.8), and
MDD sSNP (chrll: C>A; rs11601579) overlapping ExN and ExN1 marker cCRE (peak-to-gene
linkage: SHANK?2-AS1 gene), EXN1 candidate DARs and marker cCREs within the plotted
region, DLPFC neurona and non-neuronal (NeuN+/-) H3K27ac and H3K4me3 ChiP-seq peaks
merged across each subject25, DLPFC NeuN+/- promoter anchored HiC fragments and HiC
loops49, snATAC-seq peak-to-peak co-accessible loops (r>0.45) within 10kbps of sSNP
associated cCRE, SHANK2-AS1 gene locus (chrll-70625973-70635733) with the most
significant peak-to-gene linkage (r=0.6) with cCRE associated with sSNP, gkmExplain
importance scores for each base in 50-bp region surrounding sSNP for A1 and A2 aleles from
ExXN1 gkm-SVM model, the predicted TF binding site (GL12) affected by the sSSNP is shown at

the bottom.

Figure 6: MDD sSNPs with significant allelic-effects on chromatin accessibility landscape
in Mic2 cluster. A. Left to right: MDD sSNPs with significant allelic-effects in Mic2 cluster;



nearest genes to sSNPs, linked genes most significantly (FDR<0.05) correlated with cCREs
associated with sSNPs (peak-to-gene linkages, in grey are genes that did not pass FDR); DLPFC
eQTLs and sQTLs genes associated with sSNPs; sSNPs categorized based on accessibility
disruption confidence sets; TF binding sites potentially disrupted by sSNPs (listed in the order of
significance for TF motif match) B. Example plot for Mic2 sSNP (rs10210757). Top to bottom:
SNATAC-seg-derived pseudo-bulk tracks for each cdll-type and Mic2 cluster (normalized by
reads in TSS), Manhattan plot showing MDD lead SNP, SNPs in LD (r>0.8), and MDD sSNP
(chr2: C>T; rs10210757) overlapping Mic marker cCRE (also a candidate DAR in Mic;
FDR=0.1), Mic candidate DARs and marker cCRESs within the plotted region, DLPFC neuronal
and non-neuronal (NeuN+/-) H3K27ac and H3K4me3 ChiP-seq peaks merged across each
subject25, DLPFC NeuN+/- promoter anchored HiC fragments and HiC loops49, snATAC-seq
peak-to-peak co-accessible loops (r>0.45) within 10kbps of sSNP associated cCRE, ARL4C
gene locus (chr2:234493041-234497081) has HiC linkages with sSNP region, gkmExplain
importance scores for each base in 50-bp region surrounding sSNP for A1 and A2 alleles from
Mic2 gkm-SVM mode, the predicted TF binding site (FLI1) affected by the SSNP is shown at
the bottom. C. Example plot for Mic2 sSNP (rs5995992). Top to bottom: snATAC-seg-derived
pseudo-bulk tracks for each cell-type and Mic2 cluster (normalized by reads in TSS), Manhattan
plot showing MDD lead SNP, SNPs in LD (r>0.8), and MDD sSNP (chr22: C>T; rs5995992)
overlapping Mic2 candidate DAR (FDR=0.06) (peak-to-gene linkage: TOB2 gene), Mic2
candidate DARs and marker peaks in the plotted region, DLPFC neuronal and non-neuronal
(NeuN+/-) H3K27ac and H3K4me3 ChiP-seq peaks merged across each subject25, DLPFC
NeuN+/- promoter anchored HIiC fragments and HiC loops49, snATAC-seq peak-to-peak co-
accessibility (r>0.45) for cCRE within 10kbps of sSNP associated cCRE, TOB2 gene locus
(chr22:41433494-41446801) with the most significant peak-to-gene linkage (r=0.8) with sSSNP
associated cCRE, No TF binding site was identified to be significantly disrupted by this SSNP.

Extended Figure 1. Annotation of snATAC-seq cdll-types and clusters. A. UMAP plot based
on chromatin accessibility in cCRESs identified at cluster resolution and colored by cell-type
labels predicted from MDD snRNA-seq from the same samples. B. Histogram shows MDD
snRNA-seq cell-type label-transfer prediction scores across snATAC-seq cells (median



prediction score: 0.95; in red). C. K-nearest neighbors (KNN; k=10) based on snATAC-seq
peak-accessibility z-scores (left) and snRNA-seq integrated gene-expression z-scores (right) for
significant peak-to-gene linkages (r>0.45) grouped by snATAC-seq cell-types. D. UMAP plot
based on chromatin accessibility in cCREs identified at cluster resolution and colored by
SNATAC-seq clusters. E. Distribution of MDD snRNA-seq cell-type label-transfer prediction
scores across snATAC-seq cells in each cluster. F. MetaNeighbor best hit plot depicting
correspondence (AUROC) between cell-types in MDD snATAC-seq and snRNA-seq datasets.
G. Dotplot depicting module scores (size of dots represents percentage of cells) in each
SNATAC-seq cluster computed based on gene-activity (ArchR GeneScore matrix) for cell-type
marker genes catalogued in BraininABlender104. H. Heatmap shows the overlap enrichment of
the most significant fluorescence-activated nuclei (FAN)-sorted bulk ATAC-seq cell-type
marker peaks in SNnATAC-seq cluster-specific marker peaks (Hypergeometric test; FDR<0.05 &
Log2FC > 0.5; n=1; MGAS: Microglia and Astrocytes;, ExN: Excitatory neurons; InN: Inhibitory
neurons, Oli: Oligodendrocyte-lineage cells). I. Overlap of PsychEncode ChiP-seq histone
modification peaks (H3K27ac, marks active enhancers, H3K27ac+H3K4me3: marks promoters)
from cortical cells with cluster-specific marker cCREs (top) and cCREs in significant peak-to-
gene linkages (r>0.45) (bottom).

Extended Figure 2: Comparison of snATAC-seq with published single-cell datasets. A.
UMAP plot based on chromatin accessibility in cluster resolution cCREs colored by cell-type
labels predicted from the reference PFC snATAC-seq24. Histogram shows reference label-
transfer prediction scores across cells in our data (median prediction score: 0.99; in red). B.
Distribution of reference cell-type label-transfer prediction scores across snATAC-seq cells in
each cluster. C-D. MetaNeighbor AUROC plots show correspondence of MDD snATAC-seq
gene promoter-accessibility with C. MDD snRNA-seq clusters20 and D. White matter
postmorterm human brain tissue snRNA-seq clusters107. E. Violin plot shows NR4A2 gene
expression in excitatory neuronal clustersidentified in MDD snRNA-seg20. F. Gene expression
module score differences in MDD versus controls in corresponding snRNA-seq clusters.
NR4A2+ excitatory neuronal cluster (ExN16 L56) for EXN1 DAR-linked genes (left) linked to

significantly less accessible (down; FDR<0.05) or more accessible DARs in MDD (up;



FDR<0.05) and gene expression module score differences in snRNA-seq Mic cluster for genes
liked to differentially less accessible Mic2 DARs (FDR<5%; right).

Extended Figure 3: MDD risk variants identified in each cluster. A. Flowchart for
identification of significant MDD SNPs (sSNPs) with alleic-effects on cluster-specific
chromatin accessibility predicted to be significant across all three cluster-specific gkmSVM
models (ISM, deltaSVM, gkmexplain) B. Stacked bar plots show overview of cdSNPs (top) and
SSNPs (bottom) in each cluster (left to right: counts in each cluster, % SNPs that are significant
eQTLs and sQTLs in the DLPFC (FDR<0.05), % SNPs mapping to cluster-specific marker
cCREs and candidate DARs. C. Pie charts depicting (first row) percentage of cdSNPs in MDD-
associated SNPs, percentage of SSNPs in cdSNPs, and sSNPs categorized based on accessibility
disruption confidence sets; (second row) percentage of significant DLPFC eQTLs in MDD-
associated SNPs, cdSNPs, sSNPs. Arrow represents significant enrichment (p<0.001;
hypergeometric test) of eQTLs in cdSNPs compared to all MDD-associated SNPs; (third row)
depicting percentage of sQTLs in MDD-associated SSNPs, cdSNPs, sSSNPs. Arrows represents
the significant enrichment (p<5e-08; hypergeometric test) of sQTLs in cdSNPs compared to all
MDD-associated SNPs. D. DLPFC eQTLs and sQTLs were significantly enriched (binomial test,
p<0.05) in marker cCRES and candidate DARs compared to the expected genomic coverage. E.
Heatmap showing sSNP overlap across cell-types. Each cell in the plot is scaled with respect to
the total number of SSNPs available for the cell type in the column.

Extended Figure 4. Gene ontology (GO) pathways associated with MDD risk variants. GO
pathways enriched (FDR<0.05) in genes associated with MDD sSNPs A. nearest genes, B linked
genes (peak-to-gene linkages, r>0.45). C. GO pathway enrichment (FDR<0.05) for EXN1 sSNP



associated genes (nearest, linked, and eQTLS). D. GO pathway enrichment (FDR<0.05) for Mic2
SSNP associated genes (nearest, linked, and eQTLYS).

Extended Figure 5. Examples of MDD sSNPs with allelic-effects exclusively on chromatin
accessbility in ExN1 cluster. A. Example plot for EXN1 sSNP (rs9299525). Top to bottom:
SNATAC-seg-derived pseudo-bulk tracks for each cell-type and ExN1 cluster (normalized by
reads in TSS), Manhattan plot showing MDD sSNP (chr10: G>A; rs9299525) overlapping ExN
marker cCRE (peak-to-gene linkage: KAT6B gene), ExXN1 candidate DARs and marker cCCRES
within the plotted region, DLPFC neuronal and non-neuronal (NeuN+/-) H3K27ac and
H3K4me3 ChIP-seq peaks merged across each subject25, DLPFC neuronal and non-neuronal
(NeuN+/-) H3K27ac and H3K4me3 ChIP-seq peaks merged across each subject25, DLPFC
NeuN+/- promoter anchored HiC fragments and HiC loops49, snATAC-seq peak-to-peak co-
accessible loops (r>0.45) within 10kbps of sSNP associated cCRE, KAT6B gene locus
(chr10:74824927-75032624) with the most significant peak-to-gene linkage (r=0.4) with cCRE
associated with sSNP, gkmExplain importance scores for each base in 50-bp region surrounding
SSNP for A1l and A2 alleles from ExN1 gkm-SVM model corresponding, the predicted TF
binding site (ZFP3) affected by the sSNP is shown at the bottom. B. Example plot for ExN1
SSNP (rs6063348). Top to bottom: snATAC-seg-derived pseudo-bulk tracks for each cell-type
and ExN1 cluster (normalized by reads in TSS), Manhattan plot showing MDD sSNP (chr20:
C>G; rs6063348) overlapping ExN1 candidate DAR (FDR=0.15) (peak-to-gene linkage:
KCNBL1 gene), ExN1 candidate DARs and marker cCRESs within the plotted region, DLPFC
neuronal and non-neuronal (NeuN+/-) H3K27ac and H3K4me3 ChIP-seq peaks merged across
each subject25, DLPFC NeuN+/- promoter anchored HiC fragments and HiC loops49, snATAC-
seq peak-to-peak co-accessible loops (r>0.45) within 10kbps of sSNP associated cCRE, KCNB1
gene locus (chr20-49293394-49484297) with the most significant peak-to-gene linkage (r=0.4)
with cCRE associated with sSSNP, No TF binding site was identified to be significantly disrupted
by this sSNP.

Extended Figure 6. Functional characterization of ExN1 and Mic2 clusters. A.
MetaNeighbor AUROC plot shows the strongest correspondence of SnATAC-seq ExN1 cluster



with ExXN layer 6 IT Car3 neurons in Allen brain ingtitute (ABI) snRNA-seq from the motor
cortex (M1)59. B. Violin plot depicts promoter-accessibility for NR4A2 genein ExN clusters. C.
Tn5 bias subtracted NR4A2 motif footprints aggregated in each of the ExN clusters. D. StringDB
analysis depicts protein-protein interactions (PPl) between EXN1 marker NR4A2 TF (circled in
blue) and MDD-associated TFs significantly enriched (g<0.05; Homer) in EXN1 DARs (circled
in red) (interaction evidence>0.7 (high); direct interactions: FOS, ASCL1, FOSB and indirect:
EGR1). E-F. Module scores computed using E. promoter-accessibility and F. snRNA-seq
integrated gene-expression for GM and WM specific microglia marker genes. Boxplot shows
significant differences in module scores between snATAC-seq microglia clusters (Micl and
Mic2; Wilcoxon, p<0.05). G. 10x Visium spatial gene-expression in male and female DLPFC
sections colored by the label-transfer prediction scores from snATAC-seq microglia clusters,
Micl (top) and Mic2 (bottom), using promoter-accessibility (left) and snRNA-seq integrated
gene-expression (right) H-I. Module scores computed using H. promoter accessibility and |.
SnRNA-seq integrated gene-expression for MDD-associated sgnificantly down-regulated and
up-regulated genes in cortical GM depression disease-associated microglia (depDAM)75.
Boxplot shows significant differences in module scores between snATAC-seq microglial clusters
(Micl and Mic2; Wilcoxon, p<0.05).

Extended Figure 7: Proposed model for MDD associated regulatory mechanisms in deep-layer
excitatory neurons (ExN1) and grey matter microglia (Mic2) through which genetic and
epigenetic factors may mediate disease pathology.

Supplementary Figure 1. Demultiplexing of pooled male and female subjects. A. UMAP
plot based on chromatin accessibility in 500bp genomic bins and colored by sex. B. The table
shows R2 values reflecting cluster, individual and sex-specific variation explained by UMAP1
and UMAP2 embeddings. C. PCA of top 1% most variable cCREs identified using pseudo-
bulked counts per subject and colored by the sex identified for each demultiplexed subject. D.



Best match between genotypes of demultiplexed subjects piled-up using 1000 Genomes based
common variants and genotypes obtained from the blood of these individuals. E. Pseudo-bulk
chromatin accessibility (normalized by reads in TSS) at XIST gene in each of the demultiplexed

subject.

Supplementary Figure 2: Quality-control of snATAC-seq. A. snATAC-seq fragment-size
distribution in each subject. B. Normalized Tn5 insertions profiles aggregated across TSSin each
subject. C. Density scatter plot depicting relationship between TSS Enrichment and log(10)
unique fragments across 201456 cells. D. Ridge plots showing distribution of total number of
fragments (nFrags), TSSEnrichment, and fraction reads in peaks (FRIP) in each of the

demultiplexed subjects.

Supplementary Fig 3. Quality-control of snATAC-seq. Comparison of following mean
variable values across cells in MDD versus control subjects (Wilcoxon test) A. no. of fragments
B. TSSEnrichment. C. fraction reads in peaks (FRIP). D. Age. E. post-mortem interval (PMI). F.

pH of the brain tissue.

Supplementary Fig 4: Quality-control of sSnATAC-seq. A. UMAP plots before (left) and after
(right) batch-correction colored by batches. B. Bar plots showing proportions of cells contributed
by each batch in each cluster. C. Bar plots shows proportions of cells contributed by each subject
in each cluster. D. UMAP plot colored by PMI (left) and Bar plots (right) showing proportions of
cells contributed by PMI groups in each cluster. E. UMAP plot colored by age of subjects (left)
and Bar plots (right) showing proportions of cells contributed by each age group in each cluster.
F. Violin plots depicting distribution of FRIP across individual cellsin each cluster.

Supplementary Figure 5: Differential accessbility in MDD. A. Differential accessibility in
MDD versus control subjects in each cell-type (Limma-voom; FDR < 0.05 & abs(LogFC) >
log2(1.1)) split by the direction of effect in MDD versus controls and colored by the distance to
the nearest TSS. B. B. Pie chart depicts the total number of differentially accessible regions
across cell-type DARs that are differentially more (open; n=121) or less accessible (closed;
n=176) in MDD versus controls subjects. C. PsyGeNet analysis for psychiatric disorders shows

the total number of gene-disease associations for genes linked to cell-type DARs (r>0.45). D.



Heatmap (colored by —ogl0(p-values)) shows GO pathways (Top 10; FDR<0.2) enriched in
genes linked (r>0.4) to differentially less (down) or more accessible (up) MDD DARs
(FDR<5%) in broad microglia cell-type (Mic) and microglial clusters (Micl, Mic2). E.
Flowchart overview of TF prioritization workflow and construction of target gene-regulatory
networksin MDD.

Supplementary Figure 6. Schematic describing gkm-SVM based variant-scoring wor kflow
employed for each snATAC cluster. A. Cluster-specific gkm-SVM classifiers were trained to
predict cCRE status of input 1001-bp genome sequences via 5-fold cross validation. B. MDD
SNPs located within 1001-bp marker cCREs and DARs are pooled to obtain candidate SNP set
per cluster (cdSNPs). C. gkm-SVM-based cdSNP variant effect scores were computed by
running ISM, deltaSVM and gkmexplain on 201-bp allelic sequences of cdSNPs. D. Statigtical
significance of cdSNPs were assessed with respect to score-specific null t-distributions fitted to
null variant effect scores computed on shuffled (di-nucleotide preserved) 201-bp alldic
sequences. For each score type and cluster, cdSNPs whose variant effect scores unanimously lie
outside of 95%CI of respective null distributions were coined as statistically significant (SSNP).
E. sSNPs were further partitioned into three groups according to the prominence and magnitude
of their alelic impact to their immediate (seglet) as well as 51-bp neighborhood. Additionally,
seglets of sSNPs having high or medium importance were interrogated for potential TFBS
matches in CIS-BP 2.0 (TOMTOM, ¢g-value < 0.1). Please see supplementary methods for
implementation specific details regarding the workflow, and supplementary results for reliability

analysis of workflow components.

Supplementary Figure 7: Cluster-specific SYM modelsfor identification of MDD sSNPs. A.
Performance comparison of cluster-specific gkm-SVM classifiers on cross validation test splits
(top) and marker cCREs (bottom) with respect to AUC-ROC (left) and AUC-PR (right). B.
Pairwise correlation of cdSNP variant effect scores across snATAC clusters. C. Statistical
significance of cdSNPs according to ISM, deltaSVYM and gkmexplain variant effect scores. D.
Distribution of potentially significant cdSNPs into confidence sets. E. Composition of MDD



SNP (left), cdSNP (middle) and sSNP (right). (Panel F) Genomic location based categorization
of MDD SNPs (top), cdSNPs (middle) and sSNPs (bottom).
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Get transcription
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Prioritize TFs with
most significant

ChromVar) across
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in MDD versus
controls (Fig3B)

differences (FDR<0.05;

Filter TFs present in
ArchR peak-motif
matrix and snRNA-

seq integrated gene-
expression matrix
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having (>2) distinct
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i §

(Fig3A) ‘
Filter top two TFs Rank TF motif families
with highest median and TFs by enrichment
gene-expression in DARs
using the integrated (FDR<0.05)
snRNA-seq

Construct MDD-
related cluster-
specific TF target
gene-regulatory
networks (Fig3C)
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