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Abstract

We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on
oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is
dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor
drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity,
the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how
mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our
data show that utilization of mitochondrial calcium is fundamentally different between drug
responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate
a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium.
Consequently, we tested genetic and pharmacological approaches to target the mitochondrial
calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces
OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a
central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for

clinical management of venetoclax resistance.

Significance: We identify increased utilization of mitochondrial calcium as distinct metabolic
requirement of venetoclax-resistant LSCs and demonstrate the potential of targeting

mitochondrial calcium uptake as a therapeutic strategy.
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Introduction

Targeting BCL-2 with the small molecule inhibitor, venetoclax, has become a mainstay in AML
therapy. Multiple clinical studies have demonstrated that venetoclax (ven) in combination with
hypomethylating agents (HMAs) including azacitidine and decitabine yields rates of complete
remission (CR) that are comparable to conventional chemotherapy with considerably less toxicity,
making the regimen particularly useful for elderly/unfit patients [1-4]. Despite the success of this
regimen, approximately 30% of patients do not respond upfront and the majority of patients who
initially achieve a response ultimately relapse on therapy [1, 3, 4]. Notably, while venetoclax-
based regimens are able to directly target some LSCs [2], resistant LSCs either co-reside or
evolve from sensitive LSCs [5, 6] and confer resistance. Consequently, there is an urgent need

to develop therapeutic strategies to target venetoclax-resistant LSCs.

Regardless of sensitivity (or lack thereof) to venetoclax, a conserved property of all LSCs appears
to be reliance on OXPHOS [5, 7-10]. While BCL-2 inhibition is able to target OXPHOS activity in
sensitive LSCs, resistant LSCs display no change in metabolism upon venetoclax treatment [5,
9]. Consistent with this observation, multiple previous studies have demonstrated that various
aspects of mitochondrial metabolism can be leveraged to overcome venetoclax resistance[11-
14]. For example, one feature found in venetoclax-resistant AML cells in increased utilization of
fatty acid oxidation (FAO) to drive OXPHOS. We have demonstrated that adding inhibition of
FAO to venetoclax-based regimens is sufficient to restore inhibition of OXPHOS and
consequently eradicate venetoclax-resistant LSCs [9]. Similarly, inhibition of MCL1 in the context
of monocytic AML appears to function via an analogous mechanism and can also eradicate
venetoclax-resistant LSCs [5, 9]. Another aspect of mitochondrial metabolism, increased reliance
on NAD to drive OXPHOS, is also a therapeutic vulnerability, and represents yet another potential

entry point for therapy[7] . Collectively, these studies overwhelmingly demonstrate the potential
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of manipulating LSC mitochondrial biology as an avenue to inhibit OXPHOS and thereby address
venetoclax resistance.

While inhibiting OXPHOS in LSCs is an empirical goal, the initial molecular events that dictate
venetoclax response remain elusive. Thus, in the present study, we investigated early-acting
BCL-2 mediated pathways that may influence OXPHOS activity to determine if they are
differentially utilized in sensitive versus resistant LSCs. One such pathway is BCL-2 mediated
regulation of intracellular calcium dynamics [15]. It has been well established that BCL-2
modulates intracellular calcium localization by interacting with and activating or inhibiting calcium
channels at the ER and mitochondria [15-19]. Further, mitochondrial calcium levels can directly
influence OXPHOS activity as calcium is a cofactor for multiple metabolic enzymes [20, 21].
Calcium overload in the mitochondrial matrix has been shown to suppress OXPHOS activity by
inhibiting the activity of key metabolic enzymes and electron transport chain activity [22-30].
Similarly, insufficient calcium can also reduce OXPHOS activity [31, 32]. Consequently, the role
of mitochondrial calcium has been deemed as a “goldilocks” effect where either insufficiency or
overload is detrimental to cellular function [30, 33]. Herein, we demonstrate that not only is
mitochondrial calcium homeostasis critical for survival of LSCs, but that the steady-state
requirement for calcium is substantially higher in venetoclax-resistant LSCs. Intriguingly, this
observation may provide a unique opportunity to develop improved clinical strategies for patients

who are refractory or relapse following venetoclax-based therapy.
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Results

Venetoclax Responsiveness is Associated with Intrinsic Differences in Calcium Pathway
Signaling

We first validated previous literature that has established the wide range of non-canonical
functions of BCL-2. Through an unbiased proteomics screen using BIO-ID, we confirmed the
diversity of BCL-2 functions which included proximity interactors at various cellular locations
including the ER, mitochondria, nucleus and golgi apparatus (Supplementary Fig. 1A). Further,
analysis of proteins detected by BIO-ID showed strong enrichment for pathways involved in
calcium transport (Fig. 1A). Next, we reasoned that if calcium signaling is relevant to the action of
venetoclax, then calcium biology properties may be different in venetoclax sensitive versus
resistant LSCs. To investigate this issue, LSCs were enriched from primary human AML
specimens as previously described using labeling of reactive oxygen species (ROS) followed by
flow cytometric sorting to isolate ROS-low cells [8, 34]. Venetoclax sensitivity was defined as
previously described [5] and validated using viability assays (Supplementary Fig. 2A). Initial
comparisons were performed using bulk RNA-seq (Supplementary Fig. 1B-E). The data show
significant enrichment of multiple calcium-mediated signaling genesets in venetoclax resistant
LSCs, where the “GO-BP Calcium Mediated Signaling Pathway” was the most prevalent (Fig. 1B,
Supplementary Fig. 1E) [5].

Given the significant heterogeneity observed within primary AML tumors, we next examined how
calcium signaling may differ within varying subpopulations using single-cell transcriptomic
analyses. The method employed, CITE-Seq (cellular indexing of transcriptomes and epitopes),
permits global transcriptomic analyses coupled with high-resolution immunophenotyping.
Comparison of venetoclax sensitive (n=8), and resistant (h=14) AML specimens is shown in Fig.
1C , and Supplementary Fig. 1F-J. As expected from bulk RNA-seq findings (Fig. 1B), the “GO-
BP Calcium Mediated Signaling” pathway was enriched in venetoclax-resistant specimens (Fig.

1C, Supplementary Fig. 1J). Interestingly, this pathway was enriched in multiple tumor


https://doi.org/10.1101/2023.10.02.560330
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.02.560330; this version posted October 3, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint ip=perpetuity. It is mggle
available under aCC-BY-NC-ND 4.0 International license. FI@ l}re

Molecular function

calcium ion transmembrane transporter activity
enzyme binding
coreceptor activity involved in Wnt signaling pathway
protein binding
phosphatidylinositol 3-kinase regulatory subunit binding
phosphotyrosine residue binding
kinase binding
1-phosphatidylinositol-3-kinase regulator activity
kinase regulator activity
protein kinase binding

1 1 1 1 1

0 1 2 3 4

B -Logyo(P)

GOBP_CALCIUM_MEDIATED_SIGNALING ~ GOBP_CALCIUM_ION_TRANSPORT

0o | RTINS

01-

o padj = 0.004
.. NES=-1.980
a-

padj = 0.0037
NES = -1.99

enrichment score
=]
S

enrichment score

-0.3
-0.4
0577 7T 7 A A N P P L L LR L L P e L PR L e e e ey e
0 2500 5000 7500 10000 il L. =0 scho 780 1oim
sensitive : resistant - sensitive resistant
ROS-Low ROS-Low ROS-Low ROS-Low
C © Monocytes
15 . Non—Myeloid P =
N W B cells : Dgl'sl yeloi recursors . P 00*0027 p=2‘66_5
Plagma e ©CD4 T cells 2 0.061 LX)
cells ® Promyelocytes ] Y
*B cell (%]
4 pro000es
© Plasma cells = 4
©CD8 T cells/NK cells T 0.04
. “Non-Myeloid & pDCs )

'~ Precursors

p=0.00018 SENS
|:| RES

o
o
O}

Calcium Mediated Si
o
o
S

-0.021
5
E-O 04 " . T o
S X 2 &
OCT‘\@’ ‘Q\q;o <§ \OoA
S > & ¢
RS B < )
Q€
. . +
D Mitochondrial Ca?
- p=0.0161

7 39 p0Q

P4

m [ ]
o> =
2 5g 2"
© > T
L © 0
O o £
oo
S S 11

® =

[5)

e

0-
o &
& &


https://doi.org/10.1101/2023.10.02.560330
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.02.560330; this version posted October 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 1. Venetoclax Responsiveness is Associated with Intrinsic Differences in Calcium
Pathway Signaling

A. BCL-2 interacts with signaling proteins using BiolD in T-REx HEK293 cells. Pathway
enrichment analysis of BCL-2 proximity interactors involved in cellular signaling. Gene ontology
(Molecular Function) analysis shows the top 10 enrichment pathways. B. Enrichment plot for
GOBP Calcium Mediated Signaling pathway (198 genes) and GOBP Calcium lon Transport (455
genes) in N=7 venetoclax sensitive primary human AML ROS-Low cells and N=5 venetoclax
resistant primary human AML ROS-Low cells C. Projection of all samples with cluster
assignments annotated. In various populations of tumor including, monocytes, primitive cells,
promyelocytes, and total blasts (a combination of monocytes, primitive cells and promyelocytes)
GO-BP Calcium Mediated Signaling Pathway expression was analyzed using Seurat's
AddModuleScore function in sensitive (n=8) versus resistant (n=12) AML patient specimens with
median plotted. Significance was determined using t-test. D. Mitochondrial calcium levels in
venetoclax resistant primary human AML ROS-low cells compared to sensitive ROS-low cells
presented as mean fluorescence intensity (MFI). N=5 venetoclax sensitive (AML 2,4,6,7,18) and
n=6 venetoclax resistant (AML 1,3,11,12,13,14) cells. Data are presented as mean +/- SD.
Significance was determined using two-tailed unpaired t-test.
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subpopulations including the primitive, monocytic, promyelocytic and the total blast compartment
(a compilation of primitive, monocytic, and promyelocytic), suggesting changes in intracellular
calcium signaling are a consistent feature of venetoclax resistant cells.

For our subsequent studies, we primarily focused on mitochondrial calcium given its critical role
in regulating cellular metabolism and OXPHOS activity. To examine mitochondrial calcium,
Rhod2AM labeling was used on ROS-low cells from sensitive (n=5) and resistant (n=6) AML
specimens. As shown in Fig. 1D, levels of mitochondrial calcium were significantly higher in
venetoclax-resistant specimens. We confirmed mitochondrial localization of the Rhod2AM dye
using confocal microscopy which showed co-localization of the dye with mitochondria
(Supplementary Fig. 1K). These data are consistent with our previous empirical observations,
showing that venetoclax-resistant LSCs have substantially increased mitochondrial metabolism,
with more fatty acid oxidation-driven TCA cycle activity, and elevated OXPHOS activity as
mitochondrial calcium is required for these processes [5, 9]. Taken together the data suggest that
venetoclax sensitive versus resistant LSCs have intrinsically different calcium requirements. The
data also imply that mitochondrial calcium levels may be functionally linked to venetoclax

resistance in LSCs.

BCL-2 Inhibition Causes Mitochondrial Calcium Changes Associated with SERCA
Disruption in Venetoclax Sensitive LSCs

Given the apparent differences in calcium biology between venetoclax sensitive versus resistant
AML specimens, we next investigated the role of venetoclax in modulating calcium signaling in
responsive LSCs. ROS-low cells were isolated from venetoclax sensitive specimens, treated with
venetoclax, and analyzed by Rhod2AM labeling. Notably, 16-hour treatment with venetoclax led
to significant changes in viability (Supplementary Fig. 2A). Therefore, shorter time points (3 hours
of treatment) were subsequently employed where no significant changes in mitochondrial

membrane potential or viability were evident (Supplementary Fig. 2B, 2C). This approach
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Figure 2. BCL-2 Inhibition Causes Mitochondrial Calcium Changes Associated with SERCA
Disruption in Venetoclax Sensitive LSCs

A. Mitochondrial calcium content presented as mean fluorescence intensity (MFI) after venetoclax
treatment (500nM, 3 hours). N=6 venetoclax sensitive primary human AML ROS-low cells
(AML#2,4-7,18). Significance was determined using two-tailed ratio paired t-test. B. Primary
human ROS-low AML cells analyzed 36 hours post electroporation with indicated siRNA.
Mitochondrial calcium after genetic inhibition of BCL-2. N=5 venetoclax sensitive specimens
(AML# 2,4-7). Significance was determined using two-tailed ratio paired t-test. C. BCL-2 and
SERCA3 proximity interaction in primary human ROS-low AML cells after venetoclax treatment
(500nM, 3 hours) as measured by PLA assay with flow cytometry (n=3, AML #2,4,7). Significance
was determined using two-tailed ratio paired t-test. Confocal microscopy to confirm PLA assay
results. Representative images from AML #4. Red signal is positive signal from PLA assay
(FarRed) while blue signal is from Dapi staining. Signal was quantified using Imaged for MFI of
loci. N=82 loci for DMSO and N=77 loci for venetoclax. Data are presented as mean with individual
data points. Significance was determined using two-tailed unpaired t-test. D. Western blot of
SERCAS and BCL-2 levels upon venetoclax treatment (500nM, 3 hours) in venetoclax sensitive
primary human AML ROS low cells. Anti-actin antibody was used as loading control, anti-BCL-2
and anti-SERCA3 antibodies were used to determine protein levels of BCL-2 and SERCAS3
respectively. Quantification presented in supplementary figure 2J E. Western blot of SERCA3
levels upon BCL-2 inhibition via siRNA electroporation in primary human ROS-low AML cells 36
hours post infection. Anti-actin antibody was used as loading control, anti-BCL-2 and anti-
SERCAS antibodies were used to determine protein levels of BCL-2 and SERCAS respectively.
Quantification presented in supplementary figure 2K F. Mitochondrial calcium 36 hours post
siRNA electroporation of primary human ROS-low AML cells. N=3 (AML#2,5,6). Significance
determined using two-tailed ratio paired t-test. G. Mitochondrial calcium content after thapsigargin
treatment (500nM, 3 hours). N=4 primary human ROS-low AML cells (AML# 2,5-7). Significance
determined using two-tailed ratio paired t-test. H. OCR after genetic knockdown of SERCA3 36
hours post infection in venetoclax sensitive primary human ROS-low AML cells. N=5 (AML# 2,4-
7). Significance was determined using two-tailed ratio paired t-test. I. OCR after thapsigargin
treatment (500nM, 3 hours). N=4 (AML# 2,5-7) in venetoclax sensitive primary human ROS-low
AML cells. Significance was determined using two-tailed ratio paired t-test.
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abrogates the potential confounding effect of overt cell death on the results. Venetoclax
significantly increased mitochondrial calcium levels in sensitive primary human AML LSCs (Fig.
2A). Importantly, these changes were not observed in the ROS-high population indicating that
venetoclax-induced calcium flux is relatively specific to the LSC compartment (Supplementary
Fig. 2D). To confirm whether the venetoclax mediated change in mitochondrial calcium was an
on-target effect of BCL-2 inhibition, we utilized electroporation of siRNA to knock-down BCL-2
(Supplementary Fig. 2E). Notably, inhibition of BCL-2 in sensitive LSCs phenocopied the effects
of venetoclax on mitochondrial calcium levels (Fig. 2B). Further, calcium flux into the mitochondria
preceded the onset of overt apoptosis or cell death (Supplementary Fig. 2F-G). To determine if
changes in mitochondrial calcium could contribute to venetoclax-mediated inhibition of OXPHOS
activity, we performed seahorse assays at the same time point. As shown in Supplementary Fig.
2H-1, both venetoclax treatment and genetic inhibition of BCL-2 decreased OXPHOS activity in
sensitive LSCs. Taken together, these data suggest that mitochondrial calcium overload arising

from BCL-2 inhibition may contribute to OXPHOS inhibition.

Notably, previous studies in other cell types (DLBCL and pancreatic acinar cell lines) showed that
in contrast to our findings venetoclax does not perturb intracellular calcium signaling [35, 36]. This
has been ascribed to the fact that venetoclax is a BH3 mimetic which primarily disrupts the BH3
domain, while a majority of BCL-2 binding interactions with intracellular calcium channels are
thought to occur at the BH4 domain. Specifically, the key ER/mitochondrial calcium channels
VDAC (responsible for influx of calcium and other metabolites into mitochondria) [37], and IP3R
(responsible for calcium efflux out of the ER) [18] have been shown to lose binding with BCL-2
upon perturbation of the BH4 domain. In contrast, the binding relationship between SERCAGS, the
main protein responsible for calcium influx at the ER, and the BH domains of BCL2 has not been
fully elucidated [16]. Thus, we investigated whether venetoclax could perturb intracellular calcium

signaling by modulating SERCAS3 activity. We utilized proximity ligation assays (PLA) to first
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establish the relationship between the main calcium regulatory proteins and BCL-2. As expected,
BCL-2 showed proximity interactions with SERCA3, VDAC and IP3R in venetoclax sensitive
ROS-low cells (Supplementary Fig. 2L-N). Additionally, as a control for non-specific antibody
binding, PLAs were performed using primary AML cells with IgG controls and BCL-2 knockdown,
which confirmed the specificity of the assay (Supplementary Fig. 2L-M). Notably, the interaction
with SERCA3 was the most consistent and statistically significant interaction among multiple
samples (Supplementary Fig. 2N). Further, venetoclax treatment consistently and significantly
decreased the proximity interaction of BCL2 and SERCAS3 in sensitive LSCs (Fig. 2C,
Supplementary Fig. 20) as measured by both confocal microscopy and flow cytometry-based

PLA.

To determine how venetoclax may perturb BCL-2/SERCAS interaction in sensitive LSCs, we first
used immunoblotting to assess whether protein levels of BCL-2 or SERCA3 were changed upon
treatment. We observed a strong reduction in SERCAS protein levels after 3 hours of venetoclax
treatment, suggesting that the loss of PLA signal was due to SERCAS3 degradation and/or reduced
expression (Fig. 2D, Supplementary Fig. 2J). siRNA-mediated knockdown of BCL-2 also led to
decreased SERCABS levels, supporting an on-target role of venetoclax in regulating SERCAS (Fig.
2E, Supplementary Fig. 2K). As venetoclax treatment did not lead to significant changes in
ATP2A3 (the gene encoding SERCAS3) transcript levels (Supplementary Fig. 2Q), we
hypothesized proteolysis may be the mechanism by which venetoclax modulates SERCA3
degradation in sensitive LSCs. Preincubation with MG-132, a proteasome inhibitor, rescued
SERCAZ3 levels in two of five samples tested indicating proteolysis may contribute to venetoclax-

mediated SERCAS3 loss in at least some AML specimens (Extended Data Fig. 2T).

To test whether loss of SERCAS is functionally relevant for venetoclax sensitive LSCs, we

employed genetic and pharmacologic inhibition of SERCA. Inhibition of SERCA3 by siRNA-
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mediated knockdown (Supplementary Fig. 2R-S) or treatment with the SERCA inhibitor
thapsigargin led to increased mitochondrial calcium (Fig. 2F, 2G) and decreased OXPHOS
activity (Fig. 2H, 21) in venetoclax sensitive ROS-low AML cells, thereby phenocopying the effects
of BCL-2 inhibition. Additionally, at the early time points assessed, there were no changes in overt
cell death upon genetic or pharmacologic SERCA inhibition (Supplementary Fig. 2P). To assess
the effect of SERCA inhibition on LSC activity, we utilized patient derived xenograft (PDX) models
to functionally measure LSC activity. Briefly, venetoclax sensitive primary AML specimens were
treated overnight with vehicle or thapsigargin, then transplanted into immunodeficient mice
(Supplementary Fig. 2U). As shown in Figure 2U, we observed reduction in LSC engraftment
potential of thapsigargin treated cells. Notably, thapsigargin did not affect engraftment of normal
mobilized peripheral blood samples in NSG-S mice, suggesting SERCA inhibition is a vulnerability
in venetoclax sensitive LSCs (Supplementary Fig. 2V). Taken together, these data indicate that
SERCA inhibition is able to phenocopy the effects of BCL-2 inhibition on mitochondrial calcium,

OXPHOS activity and LSC function in venetoclax sensitive AML specimens.

Reducing Mitochondrial Calcium Levels Targets Venetoclax Resistant LSCs

As the data in Figure 2 indicate a link between venetoclax activity and calcium signaling, we next
examined venetoclax-resistant specimens. In contrast to our findings with drug sensitive
specimens, venetoclax treatment did not induce any changes in mitochondrial calcium, BCL-
2/SERCAS proximity interactions, or SERCAGS levels in resistant LSCs (Fig. 3A-C, Supplementary
Fig. 3A-B). In addition, transcriptomic analyses showed that SERCA3 (ATP2A3) expression was
decreased in resistant LSCs whereas expression of MCU and MCUB, channels responsible for
importing calcium into the mitochondrial matrix, were increased (Fig. 3D, Supplemental Fig. 3C)
These data support the concept that ven-resistant LSCs exist in a more active metabolic state in
which intrinsically higher levels of mitochondrial calcium are required and therefore more calcium

is sequestered to the mitochondria.
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Figure 3. Reducing Mitochondrial Calcium Levels Targets Venetoclax Resistant LSCs

A. Mitochondrial calcium content presented as mean fluorescence intensity (MFI) after venetoclax
treatment (500nM, 3 hours). N=7 venetoclax resistant primary human AML ROS-low cells (AML#
11-14, 19-21). Significance was determined using two-tailed ratio paired t-test. B. BCL-2 and
SERCA3 proximity interaction in venetoclax resistant primary human AML ROS-low cells after
venetoclax treatment (500nM, 3 hours) as measured by PLA assay with flow cytometry (n=3, AML
#11-13). Significance was determined using two-tailed ratio paired t-test. Confocal microscopy to
confirm PLA assay results. Representative images from AML #13. Red signal is positive signal
from PLA assay (FarRed) while blue signal is from Dapi staining. Signal was quantified using
Imaged for MFI of loci. N=56 foci for DMSO and N=62 foci for venetoclax. Data are presented as
mean with individual data points. Significance was determined using two-tailed unpaired t-test. C.
Western blot of SERCA3 and BCL-2 levels upon venetoclax treatment (500nM, 3 hours) in
venetoclax resistant primary human AML ROS-Low cells. Anti-actin antibody was used as loading
control, anti-BCL-2 and anti-SERCAS3 antibodies were used to determine protein levels of BCL-2
and SERCAB3 respectively. Quantification presented in supplementary figure 3B D. Boxplot of
specific genes of interest. All genes shown were significantly different between resistant and
sensitive samples with p-values shown on figure. N=7 venetoclax sensitive ROS-Low cells and
N=5 venetoclax resistant ROS-Low cells. E-G. Venetoclax resistant primary human AML ROS-
Low cells (n=3, AML#11-13) treated with MCUi4 for 16 hours at 5uM. E. Mitochondrial calcium
content after MCUi4 treatment presented as mean fluorescence intensity (MFI). Significance was
determined using two-tailed ratio paired t-test. F. OCR after MCUi4 treatment. Significance was
determined using two-tailed ratio paired t-test. G. Isocitrate dehydrogenase activity and alpha
keto-glutarate dehydrogenase activity after MCUi4 treatment. Significance was determined using
two-tailed ratio paired t-test. H. MCUi4 treatment (5uM, 16 hours, ex vivo) and subsequent
engraftment potential of venetoclax resistant primary human AML specimens after transplantation
into immune-deficient mice. N=13,16,12 for vehicle control group and n=12,12,9 for MCUi4
treatment group for AML 11,13 and 14 respectively. 2 million cells injected per mouse and
engraftment was assessed between 4-8 weeks. Data are presented as mean with individual data
points. Significance was measured by two-tailed unpaired t-test.
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Given the increased expression of MCU, higher basal mitochondrial metabolism and higher
mitochondrial calcium levels in resistant LSCs, we hypothesized that MCU inhibition could be a
strategy to reduce mitochondrial calcium and thereby target venetoclax-resistant LSCs. To test
this concept, we first employed laboratory grade pharmacological inhibitors of MCU (MCUi4,
Ru265) and siRNA mediated genetic inhibition in venetoclax resistant LSCs. Treatment with
MCUi4, a compound that inhibits MICU1, a protein that controls the activity of MCU [38] led to
decreased mitochondrial calcium (Fig. 3E), decreased OXPHOS activity (Fig. 3F) and decreased
activity of the calcium-dependent metabolic dehydrogenases alpha-ketoglutarate dehydrogenase
and isocitrate dehydrogenase (Fig. 3G). Additionally, Ru265, a compound that directly binds to
the matrix side of MCU and inhibits its activity [39] showed similar effects (Supplementary Fig.
3H-J). Consistent with the pharmacological data, siRNA mediated knockdown of MCU showed
decreased OXPHOS activity (Supplementary Fig. 3L-N). To determine whether MCU inhibition
could directly affect venetoclax-resistant LSCs, we performed patient-derived xenograft (PDX)
assays using venetoclax-resistant primary AML specimens. As shown in Figure 3H, we observed
a consistent reduction in LSC engraftment potential of MCUi4 treated cells. These data were
corroborated by Ru265 treatment which led to decreased colony forming abilities in venetoclax
resistant specimens (Supplementary Fig. 3K). Importantly, at the time points assessed in the
above experiments, there were no changes in viability upon treatment indicating the effects
observed from MCU inhibition were before overt cell death (Supplementary Fig. 3D-E). Further,
both MCUi4 and Ru265 did not affect engraftment or colony-forming abilities of normal mobilized
peripheral blood samples, suggesting MCU inhibition is a specific vulnerability in venetoclax

resistant LSCs (Supplementary Fig. 3F-G).

Mitoxantrone Inhibits Mitochondrial Metabolism and Colony Formation in Venetoclax

Resistant LSCs
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To determine whether inhibition of mitochondrial calcium uptake could be clinically applicable, we
examined the literature for FDA approved mitochondrial calcium inhibitors. Several agents have
been shown to inhibit mitochondrial calcium uptake including doxycycline/minocycline [40],
benzothenium chloride [41] and mitoxantrone [42]. Of these agents, only the well charactered
chemotherapy drug mitoxantrone (mitox) is known to be a direct MCU inhibitor. While mitox is
primarily known as a DNA-damaging agent, a recent study reported a single amino acid
substitution in MCU rendered mitoxantrone unable to bind and inhibit mitochondrial calcium
uptake [42]. We therefore investigated mitox as an agent to suppress calcium transport in
venetoclax-resistant LSCs. As shown in Fig. 4A-C, mitox treatment of venetoclax-resistant
specimens demonstrated a consistent reduction in mitochondrial calcium, a marked decrease in
OXPHOS activity, and suppression of calcium-dependent dehydrogenases. Importantly, at the
relatively low dose employed (100nM) there was no detectable DNA damage observed (as
assayed by gamma H2AX labeling, Fig. 4D) or changes in viability (Supplementary Fig. 4A). To
determine the functional consequence of mitox treatment, a panel of venetoclax-resistant
specimens was tested for colony-forming ability. In all specimens’ doses as low as 10nM
completely eradicated colony-forming ability with significant suppression evident at 1nM in three
of four specimens (Fig. 4E). Control studies show no significant inhibition of colony-formation for

normal stem/progenitor cells derived from mobilized peripheral blood specimens (Fig. 4F).

To further investigate the specificity of mitox, we also tested the related anthracycline doxorubicin,
and the topoisomerase inhibitor etoposide. Doxorubicin did not inhibit uptake of mitochondrial
calcium or OXPHOS activity (Supplementary Fig. 4C-D). Further, dose-response experiments
show that while mitox and etoposide were both effective inducers of DNA damage (measured by
yH2AX), only mitox was able to reduce mitochondrial calcium in a dose-dependent manner

(Supplementary Fig.4E). Functionally, neither doxorubicin nor etoposide were able to
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Figure 4. Mitoxantrone Inhibits Mitochondrial Metabolism and Colony Formation in
Venetoclax Resistant LSCs

A-D. Venetoclax resistant primary human AML ROS-low cells treated with mitoxantrone for 16
hours at 100nM. A. Mitochondrial calcium content after mitoxantrone treatment presented as
mean fluorescence intensity (MFI). Significance was determined using two-tailed ratio paired t-
test. (N=4, AML#11-14) B. OCR after mitoxantrone treatment. Significance was determined using
two-tailed ratio paired t-test. (N=4, AML#11-14) C. Isocitrate dehydrogenase activity and alpha
keto-glutarate dehydrogenase activity after mitoxantrone treatment (N=3, AML#11-13).
Significance was determined using two-tailed ratio paired t-test. D. Gamma H2AX presented as
mean fluorescence intensity (MFI). Significance was determined using two-tailed ratio paired t-
test. (N=3, AML#11,13,14) E. Colony forming units measured by colony formation assays in
venetoclax resistant primary human AML specimens after mitoxantrone treatment (1nM,10nM
and 100nM, 16 hour treatment, ex vivo). Data are presented as mean values +/-SD. Significance
was measured by two-tailed unpaired t-test. N=3 per sample per condition. F. Colony forming
units measured by colony formation assays in mobilized peripheral blood samples after
mitoxantrone treatment (DMSO, 10nM or 100nM, 16 hour treatment, ex vivo). Data are presented
as mean values +/-SD. Significance was measured by two-tailed unpaired t-test. N=3 per sample
per condition.
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substantially suppress the colony forming ability of venetoclax resistant specimens

(Supplementary Fig. 4B).

Mitoxantrone Targets Venetoclax Resistant LSCs

To further investigate the efficacy of mitox, we utilized patient derived xenograft (PDX) models to
measure LSC activity. Pre-treatment with mitoxantrone strongly suppressed the engraftment
potential of five independent AML specimens (Fig. 5A) that span a variety of mutational
backgrounds (KRAS, PTPN11, FLT-3-ITD/TKD, and MLL rearranged, see Table 2). Next, to test
in vivo activity of mitox, we transplanted venetoclax-resistant AML specimens into NSG-S immune
deficient mice and allowed tumor burden to establish in marrow (~4 weeks). Animals were then
treated with mitox (0.5mg/kg/day) for 4 days followed by sacrifice and assessment of human
leukemic cells. This regimen resulted in a modest reduction of primary tumor burden in marrow
(Fig. 5B), with no significant weight loss (Supplementary Fig. 5A) or overt toxicity. However, upon
secondary transplantation, an assay that directly measures LSC activity, we observed complete
suppression of engraftment in leukemic cells derived from mitox treated primary mice (Fig. 5B,
Supplementary Fig. 5B). These data indicate effective in vivo targeting of venetoclax-resistant

LSCs by mitox.

Based on the findings presented in this study, we propose the model shown in Fig. 6A, where
sensitive LSCs require relatively low calcium due to inherently low basal respiration. Venetoclax
treatment induces calcium overload through BCL-2 mediated reduction of SERCA, which disrupts
OXPHOS and leads to cell death. Conversely, resistant LSCs (Fig. 6B) require relatively high
calcium levels to support increased respiration. This state is maintained by decreased SERCA
and increased MCU levels. Therefore, we postulate that venetoclax treatment has no effect on
calcium flux in resistant specimens because SERCA is intrinsically suppressed and is therefore

no longer a target for down-regulation in the context of BCL-2 inhibition. However, venetoclax-
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Figure 5. Mitoxantrone Targets Venetoclax Resistant LSCs

A. Engraftment potential of venetoclax resistant primary human AML specimens after
mitoxantrone treatment (100nM, 16 hours, ex vivo) after transplantation into immune-deficient
mice. Data are presented as mean values with individual data points. Significance was measured
by two-tailed unpaired t-test. n=8,8,8,10,13 for vehicle control group and n=10,11,7,10,10 for
mitoxantrone treatment group for AML 1,3,11,13, 14 respectively. B. In vivo treatment of NSG-S
mice with venetoclax resistant AML tumor burden. Venetoclax resistant specimens were
transplanted into immune-deficient mice. Upon at least 20% bone marrow tumor burden, mice
were treated with either vehicle (PBS,i.p/day. 4 days ) or mitoxantrone (0.5mg/kg/day,i.p. 4 days).
On day 5, mice were sacrificed and bone marrow was assessed for tumor burden. Cells were
then transplanted again into NSG-S mice for secondary transplants (1million cells per mouse per
condition) to assess LSC potential. Data are presented as mean values with individual data points.
Significance was measured by two-tailed unpaired t-test. For AML #1, n=11 (vehicle) and n=12
(mitoxantrone) for primary transplants. For AML #1, n=11 (vehicle) and n=9 (mitoxantrone) for
secondary transplants. For AML #13, n=12 (vehicle) and n=12 (mitoxantrone) for primary
transplants. For AML #13, n=10 (vehicle) and n=10 (mitoxantrone) for secondary transplants. For
AML#14, n=8 (vehicle) and n=9 (mitoxantrone) for primary transplants. For AML #11, n=8
(vehicle) and n=9 (mitoxantrone) for secondary transplants.
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resistant LSCs are preferentially reliant on maintaining relatively high levels of mitochondrial
calcium and are consequently sensitive to perturbations that inhibit calcium uptake (i.e., MCUi4,

Ru265, and Mitox).
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Figure 6. Hypothesized Model of Intracellular Calcium Dynamics in Venetoclax Sensitive
versus Resistant LSCs. Hypothesized model of differences in intracellular calcium localization
between venetoclax sensitive versus resistant LSCs. A. Due to inherently low basal respiration,
venetoclax sensitive LSCs require relatively low basal mitochondrial calcium. During basal
conditions, in venetoclax sensitive primary human AML LSCs, BCL2 promotes proper SERCA
activity, thereby shuttling calcium into the ER for proper storage preventing cytosolic or
mitochondrial calcium overload. MAMs facilitate proper exchange of calcium from the ER to
mitochondria to fuel OXPHOS activity. Upon venetoclax treatment, SERCA activity it is decreased
leading to decreased ER calcium uptake. Increased cytosolic calcium levels combined with
transfer of calcium from MAMs leads to increased calcium being stored in the mitochondria
leading to calcium overload and inhibition of proper mitochondrial metabolism. B. In contrast to
sensitive LSCs, venetoclax resistant LSCs have evolved to have higher levels of mitochondrial
calcium to support increased metabolic demands including higher OXPHOS activity. These
functional changes are supported by decreased BCL-2 and SERCA3 levels concomitant with
increased MCU expression. As a result, venetoclax treatment does not induce further decreased
BCL-2 activity or SERCA levels. As venetoclax is unable to perturb intracellular calcium signaling
in resistant LSCs, we hypothesized directly perturbing mitochondrial calcium content, a key ion
required for OXPHOS activity, could target venetoclax resistant LSCs. Inhibition of MCU through
genetic or pharmacologic inhibition leads to decreased mitochondrial calcium levels, OXPHOS
activity and LSC activity. Taken together, our data demonstrate that either mitochondrial calcium
overload or depletion is detrimental to mitochondrial metabolism and cell function.
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Discussion

We identify a novel function of venetoclax in modulating intracellular calcium localization that is
directly linked to targeting of LSCs. Using transcriptomic analyses, we first established differences
in expression of calcium mediated signaling genes between venetoclax-sensitive and resistant
AML specimens. As LSCs are the key cell population responsible for disease initiation and
progression, we focused subsequent functional studies on this population. Basal levels of
mitochondrial calcium were significantly higher in resistant LSCs. These data support our previous
findings which show distinct differences in the biology of venetoclax resistant LSCs that include
increased basal mitochondrial metabolism and utilization of multiple fuel sources including fatty
acids [5, 9]. In seeking to determine if and how venetoclax may impact this pathway, we analyzed
the effects of treatment on sensitive versus resistant LSCs. We discovered that venetoclax
treatment causes mitochondrial calcium overload subsequent to SERCA inhibition in sensitive
LSCs only. This finding establishes for the first time the ability of venetoclax to perturb intracellular
calcium dynamics and inhibit SERCA. In contrast, resistant LSCs did not undergo changes in
mitochondrial calcium levels or SERCA activity upon venetoclax treatment. Therefore, we
explored an alternative strategy to target venetoclax resistance which included inhibition of MCU,
the only channel known to mediate uptake of calcium into the mitochondrial matrix. As calcium is
required for the rate-limiting TCA cycle enzymes isocitrate dehydrogenase and alpha-
ketoglutarate dehydrogenase, we hypothesized MCU inhibition would decrease OXPHOS
activity, a key vulnerability of LSCsI[5, 7-9] . Indeed, both pharmacologic and genetic inhibition of
MCU led to decreased OXPHOS activity and LSC function in venetoclax resistant specimens.
Lastly, we leveraged the recently described function of mitoxantrone as an MCU inhibitor to target
venetoclax resistance. Importantly, at doses ~10-100 fold lower than commonly used for
chemotherapy, mitox efficiently inhibited OXPHOS and induced death of functionally defined
LSCs. Taken together, these data demonstrate an unexpected and central link between BCL-2

and calcium signaling in the biological response to venetoclax in primitive AML cells. Additionally,
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our findings support clinical utility of mitox, specifically in the context of targeting venetoclax-

resistant LSCs.

While previous reports have demonstrated that BCL-2 can have both positive and negative effects
on SERCA structure and function [16, 43, 44], to our knowledge the data in Figure 2 are the first
to indicate that BCL-2 may act to stabilize SERCAS3 levels in primary human AML cells. Previous
studies indicate that the BH4 domain is mainly responsible for the role of BCL-2 in regulating ER
and mitochondrial calcium [17, 45-47]. As venetoclax was designed as a BH3 mimetic, it was not
expected to influence calcium levels. Our data suggest a mechanism by which SERCAS3 protein
levels are rapidly reduced (~3hrs) upon venetoclax binding of BCL2, leading to alteration of
calcium homeostasis. Additionally, another mechanism of SERCAS3 inhibition could be the
oxidation of cysteine residues due to increased ROS levels post venetoclax treatment [2, 48]. It
is also possible that the binding of venetoclax to BCL-2 causes a previously unrecognized steric
hindrance of the BH4 domain leading to effects on SERCA3. A more detailed structural analysis

of BCL2 interactions with SERCA3 appears warranted by our findings.

Aside from a role in regulating metabolism, several studies have documented the functional role
of intracellular calcium homeostasis in AML cell lines and cancer stem cells [49-51]. For example,
in AML cell lines mitochondrial calcium levels were increased in cells that evaded cytarabine
treatment [49]. In addition, indirect evidence of a role for calcium signaling in LSCs was recently
reported in studies that targeted ORPA4L, a protein responsible for IP; generation [51]. Specifically,
pharmacological inhibition of ORP4L led to decreased cytosolic and mitochondrial calcium
oscillations in LSCs which was associated with decreased OXPHOS activity and subsequent
cytotoxicity [51]. These studies support our data showing intracellular calcium dynamics are

crucial for LSC activity and can be leveraged for novel therapeutic strategies.
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Our studies were motivated by the need to overcome venetoclax resistance in AML. This is a
critical clinical need as venetoclax-based regimens have become ubiquitous in AML and most
elderly patients are initially treated with these regimens. However, up-front resistance/relapse on
therapy occurs in almost all patients. Therefore, we sought to investigate strategies to target
venetoclax resistant LSCs that are clinically actionable. In particular, MCU inhibition was an
attractive therapeutic strategy to target venetoclax resistance as previous studies have shown
that MCU KO may not affect cells at basal conditions, but rather impair function during stressed
situations [52]. Therefore, it is plausible that MCU inhibition is critical for malignancy but not
necessarily for normal conditions. Our studies using normal hematopoietic stem/progenitor cells

support this notion.

As there are currently no clinical grade MCU inhibitors, we explored previous agents that have
been shown to inhibit mitochondrial calcium uptake. Of all FDA approved agents, mitox was the
only inhibitor shown to lose its MCU inhibitory properties upon a single amino acid mutation
strongly suggesting direct inhibition. Additionally, mitox is a well-established chemotherapeutic
agent currently approved for the treatment of AML and other malignancies. Therefore, the safety
and toxicity profile of this agent is well known. It is important to note that mitox is the only agent
in this class (topoisomerase Il inhibitors) that inhibits MCU due to its unique positively charged
side chains [42]. Our data supported this as doxorubicin and etoposide, other topoisomerase Il
inhibitors, were unable to decrease mitochondrial calcium or colony formation in venetoclax-
resistant specimens. Given these data, we tested mitox as a LSC targeting agent. Surprisingly,
doses significantly lower than the plasma concentration of standard mitox regimens in AML
patients (1uM), were effective at suppressing the colony formation of venetoclax resistant
specimens [53]. Further, the doses used in our murine in vivo models are roughly equivalent to
1.5mg/m?/day based on morphometric calculations with previously established methods [54]. To

our knowledge, these data are the first to show activity of mitox against LSCs. Based on our
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findings, we postulate that lower doses of mitox may be effective in venetoclax resistant AML
which may be particularly useful in the context of treating elderly patients with comorbidities. Our
data suggest that lower dose mitox alone may not be sufficient to reduce bulk tumor disease in
florid venetoclax relapse scenarios. Therefore, we are currently designing clinical trials to use
lower dose mitox as an agent to target MRD+ disease, thereby delaying time to relapse or
progression of disease. Indeed, mitox is a well-established agent in the AML field and has
historically had limited efficacy in the chemotherapy relapsed/refractory setting. Currently, mitox
is being used in conjunction with other agents in clinical trials for both upfront and chemotherapy
relapse/refractory AML (NCT03839446, NCT05522192, NCT04195945, NCT04797767,
NCT04330820, NCT03531918). However, the effects of mitox on venetoclax-resistant disease
have never been clinically tested. Additionally, considerable evidence suggests that venetoclax-
resistant LSCs have unique features that make them biologically distinct from chemotherapy-
resistant LSCs [5, 9, 55]. Our data show that hyper-sensitivity to mitox is one such feature, thereby
indicating that clinical evaluation is warranted specifically in the context of venetoclax-resistant

AML.

Beyond AML, our findings are relevant to other malignancies. Indeed, perturbation of intracellular
calcium channels in the ER and mitochondria such as IP3R, MCU, and SERCA led to decreased
cancer stem cell activity in breast cancer, glioblastoma, and melanoma stem cells, suggesting a
central role for calcium in cancer stem cell function [50]. Given the rapid decrease in SERCA
protein levels observed following venetoclax treatment, we suggest that other tumor types with
aberrant SERCA expression may also be responsive to venetoclax (e.g., prostate, breast, colon
and T-cell acute lymphoblastic leukemia) via a similar mechanism [56]. For instance, in T-cell

acute lymphoblastic leukemia, SERCA inhibition has been shown to target NOTCH1 mutated
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disease [57]. However, there are currently no clinically available SERCA or NOTCH1 inhibitors.

Therefore, venetoclax may be an alternative strategy to target SERCA in this context.

In conclusion, we demonstrate that venetoclax responsiveness is associated with unique calcium
biology properties. Surprisingly, venetoclax was able to induce significant changes in
mitochondrial calcium levels and inhibit SERCA3 levels in sensitive LSCs only. Further,
venetoclax-resistant LSCs have adapted to their unique metabolic demands by increasing basal
mitochondrial calcium levels and do not undergo changes in calcium signaling upon treatment.

Genetic and pharmacologic inhibition of MCU led to decreased OXPHOS activity and LSC
targeting. These data establish calcium biology as a critical mediator of LSC survival as either
mitochondrial calcium overload or insufficiency targets venetoclax sensitive or resistant LSCs,
respectively. Lastly, we postulate mitoxantrone may be an effective component of anti-LSC

therapy specifically in the context of venetoclax-resistant AML.
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Methods

Human Specimens

Primary human AML specimens were obtained by apheresis product, peripheral blood or bone
marrow. Mobilized peripheral blood was obtained from normal healthy donors. All patients gave
informed consent for procurement of samples on the University of Colorado tissue procurement
protocol. The University of Colorado Institutional Review Board approved the retrospective
analysis. Further details on each human AML specimen used for analysis are included in

Supplementary Table 1.

Human Specimen Culturing

Primary human AML specimens were cultured as previously described using InVitria
Metabolomics AF media supplemented 10nM human cytokines SCF (PEPROTech, 300-07), IL3
(PEPROTech, 200-03), and FLT3 (PEPROTech, 300-19) [9]. In addition, the media was

supplemented with low density lipoprotein (Millipore, 437744) and penicillin/streptomycin.

Cell Sorting

Primary human AML specimens were sorted for ROS-low LSCs as previously described [8, 34].
Briefly, specimens were thawed and stained with DAPI (EMD Millipore, no. 278298; dilution
500nM) to exclude dead cells, CD19 (BD, no. 555413; dilution 1:20) and CD3 (BD, no. 557749;
dilution 1:40) to exclude lymphocytes, CD45 (BD, no. 571875; dilution 1:40) to identify the blast
population and CellROX deep red (Thermo Fisher, no. C10422; dilution 5uM) to identify the 20%

of AML blasts with the lowest ROS stain signal, deemed “ROS-Low LSCs”.

Mitochondrial Calcium and Membrane Potential Measurement by Flow Cytometry
100,000-500,000 primary human AML Ros-Low cells or MOLM-13 cells were used for analysis of
mitochondrial calcium content or mitochondrial membrane potential. For mitochondrial calcium

measurements, cells were incubated with Rhod2AM (Invitrogen, R1245MP; 500nM) for 30
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minutes at 37°C. Cells were then washed with calcium free, magnesium free 1X PBS (Corning,
21-031-CV) twice and resuspended in 1X calcium free, magnesium free PBS supplemented with
2% FBS (Atlas Biologicals, no. F-500-D) and analyzed by flow cytometry (PE channel). For co-
localization studies using confocal microscopy of Rhod2AM with mitochondria, 20,000 cells were
used per condition. Cells were fixed with 4% PFA for 20 minutes at 4 degrees and permeabilized
with 0.1% Triton X100 for 15 minutes at room temperature. Slides were mounted using Prolong
Gold Antifade mounting media (Thermo Fisher Scientific, P36935) containing DAPI. The stained
cells were analyzed by a LSM 780 confocal microscope system (Carl Zeiss) equipped with an
inverted microscope using a Plan Apochromat x40 H20 immersion lens. Images were analyzed
and processed using Image J and Adobe Photoshop v23.4.1. Detection for Rhod2AM was done
on 552/581 channel, MitoTracker was done on GFP channel and detection of nucleus was done
using DAPI. Rhod2AM was labeled as described above and MitoTracker was stained as we
previously established in ROS-low cells [58]. For mitochondrial membrane potential
measurements, cells were incubated with TMRE (Invitrogen, T669; 1uM) for 30 minutes at 37°C.
Cells were then washed with calcium free, magnesium free 1X PBS twice and resuspended in 1X
calcium free, magnesium free PBS supplemented with 2% FBS and analyzed by flow cytometry
(PE channel).

Viability Measured by Flow Cytometry

Cell viability was measured using Dapi and measured by flow cytometry. Cells were stained in

PBS supplemented with 2% FBS.

Seahorse

The extracellular flux assay kit XF96 (Agilent Technologies, no.102417-100) was used to measure
OCR per manufacturer’s instructions and as previously described [5]. Briefly, 200,000-500,000
cells were used per well per condition with 5 technical replicates per condition and measured

using the MitoStress Test as per manufacturers protocol. Cells were plated in Cell-Tak-coated
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(Corning, no. 354240) XF96 cell culture microplates. OCR was measured at basal levels and after
injections of oligomycin A (Sigma, no. 75351; 5ug/mL), FCCP (Sigma, no. C2920; 2umol/L) and

Antimycin A with Rotenone (Sigma, no. A8674 and no. R8875, 5umol/L each).

Enzyme Activity assays
Activity of either isocitrate dehydrogenase or alpha-ketoglutarate dehydrogenase was measured
by manufacturer’s protocol (Abcam, no. ab102528 or no. ab185440). 500k cells were used per

replicate per condition and assay was run in technical triplicate per condition.

BiolD Sample Preparation

BCL-2 open reading frame was cloned in-frame with an N-terminus Flag-BirA R118G (Flag-BirA*)
into a tetracycline-inducible pcDNA5 FLP recombinase target/tetracycline operator (FRT/TO)
expression vector. Flp-In T-REx HEK293 cells were transfected with the FlagBirA*-BCL-2 or
control FlagBirA* only. Cells were incubated with 1ug/mL tetracycline (Sigma-Aldrich) and 50 yM
biotin (BioShop) in DMEM supplemented with 10% FBS and 1% pen/strep for 24 hrs at 37°C with
5% COs.. Cells were collected, rinsed in PBS and lysed in RIPA buffer. The lysates were sonicated
twice for 10 sec at 35% amplitude (Sonic Dismembrator 500; Fischer Scientific) and centrifuged
at 16,000 rpm for 30 min at 4°C. Supernatants were then passed through Micro Bio-Spin
Chromatography column (Bio-Rad) and incubated with high-performance streptavidin sepharose
(GE Healthcare) for 3 hours at 4°C on an end-over-end rotator. Beads were washed 6 times with
50 mM ammonium bicarbonate and then treated with TPCK-treated modified trypsin (Promega)
for 16 hours at 37°C on an end-over-end rotator. Supernatants were lyophilized and desalted

using C18 tips prior to downstream MS analysis.

Liquid chromatography — Mass Spectrometry (LC-MS) for Bio-ID
Lyophilized samples reconstituted in 0.1% HCOOH were loaded on a pre-column (C18 Acclaim

PepMap™ 100, 75uM x 2cm, 3um, 100A) prior to chromatographic separation through an
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analytical column (C18 Acclaim PepMap™ RSLC, 75um x 50cm, 2um, 100A) by HPLC over a
reversed-phase gradient (120-minute gradient, 5-30% CH3CN in 0.1% HCOOH) at 225nL/min on
an EASY-nLC1200 pump in-line with a Q-Exactive HF (Thermo Scientific) mass spectrometer
operated in positive ESI mode. An MS1 ion scan was performed at 60,000 fwhm followed by
MS/MS scans (HCD, 15,000 fwhm) of the 20 most intense parent ions (minimum ion count of
1000 for activation). Dynamic exclusion (10 ppm) was set at 5 seconds. To identify peptides and
proteins, raw files (.raw) were converted to .mzML format using Proteowizard (v3.0.19311). Peak
list files were searched using X!Tandem (v2013.06.15.1) and Comet (v2014.02.rev.2) against the
human RefSeqV104 database (36,113 entries). Search parameters specified a parent ion mass
tolerance of 15 ppm and an MS/MS fragment ion tolerance of 0.4 Da, with up to two missed
cleavages allowed for trypsin. No fixed modification was set. Deamidation (NQ), oxidation (M),
acetylation (protein N-term) were set as variable modifications. Data were processed through the
trans-proteomic pipeline (TPP v4.7) using iProphet. Proteins were identified with an iProphet
cut-off of 0.9 and at least two unique peptides. High-confidence proximity interactors were
identified using Significance Analysis of INTeractome (SAINT,) [59] comparing FlagBirA*-only
samples to FlagBirA*-BCL-2 samples using a Bayesian false discovery rate (BFDR) cut-off of
<0.01 (1%). All mass spectrometry data have been deposited in the MassIVE repository
(massive.ucsd.edu) under accession MSV000090632.

Immunoblotting

Protein lysates were loaded on a polyacrylamide gel and transferred to a polyvinylidene difluoride
membrane using the mini trans-blot transfer system (Biorad). To probe for specific antigens, blots
were probed with primary antibodies of the following targets: BCL-2 (Cell Signaling Technologies,
no.15071), Actin (Cell Signaling Technologies, no.4970), SERCAS3 (Biorad, no. VPA00530) and
MCU (Cell Signaling Technologies, no.14997) overnight at 4°C on a shaker. All primary antibodies
were used at a 1:1000 dilution. After overnight incubation, membranes were incubated with

respective HRP conjugated secondary antibodies (Biorad) for 1 hour at room temperature and
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imaged by the ChemiDoc Imaging System (Biorad). Images were analyzed and processed using

Image Lab and quantitation of band intensity was done through Image J.

siRNA Transfection of Primary Human AML Specimens

Primary human AML specimens were transfected with siRNA using previously established
protocols [5, 60]. Briefly, 2x10° cells were electroporated in Buffer T containing 50nM siRNA, final
concentration, targeting either a scrambled nontargeting sequence, BCL-2, ATP2A3 or MCU

(Dharmacon, no.D-001810-01, no.L-003307-00, no.L-006114-00, no.L-015519-02).

Proximity Ligation Assays

Proximity ligation assays (PLA) were performed according to manufacturer’s protocol for both flow
cytometry and in situ confocal microscopy detection (Sigma, DUO94104 and DUO92013
respectively). For flow cytometry, 100,000 cells were used per reaction. Fixation was done with
4% PFA for 15 minutes at room temperature and permeabilization was done for 10 minutes with
ice cold methanol. For in situ detection through confocal microscopy, 20,000 cells were used per
condition. Cells were fixed with 4% PFA for 20 minutes at 4 degrees and permeabilized with 0.1%
Triton X100 for 15 minutes at room temperature. Slides were mounted using Prolong Gold
Antifade mounting media (Thermo Fisher Scientific, P36935) containing DAPI. The stained cells
were analysed by a LSM 780 confocal microscope system (Carl Zeiss) equipped with an inverted
microscope using a Plan Apochromat x40 H20O immersion lens. Images were analyzed and
processed using Image J and Adobe Photoshop v23.4.1. Detection for PLA signal was done on
FarRed channel and detection of nucleus was done using DAPI. Primary antibodies used include
BCL-2 (Cell Signaling Technologies, no.15071), SERCA3 (Biorad, no. VPA00530), IgG Mouse
(Cell Signaling Technologies, no. 5415S), IgG Rabbit (Cell Signaling Technologies, no. 3900S),
VDAC1 (Abcam, no. 15895) and IP3R1 (Santa Cruz, no. 271197). Antibody incubation was done

overnight at 4° C with dilution factor 1:100. Amplification step was done overnight at 37 ° C.
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Gamma H2AX Assays
Briefly, gamma-h2AX levels were measured for conditions indicated in figures using
manufacturer’s protocol (Sigma, no. 17-344). 200k cells were used per replicate per condition and

assay was run in technical triplicate per condition.

Colony Forming Assays

Primary AML specimens or normal mobilized peripheral blood samples were plated in human
methylcellulose (R&D systems) at cell concentrations indicated in respective figures. Samples
were treated with small molecule inhibitors for 16 hours, washed of drug and added into

methylcellulose cultures. Colonies were counted at 2 weeks after initial plating.

Engraftment Assays

Leukemia stem cell function was assessed by measuring engraftment of primary AML specimens
or mobilized peripheral blood samples from health donors with indicated therapies transplanted
into NSGS mice. One day prior to transplant, freshly thawed primary AML cells were treated in
culture dishes overnight with indicated agents in media with cytokines as listed above. NSG-S
mice were conditioned with 25 mg/kg busulfan via i.p. injection. Second day at injection, overnight-
treated primary AML cells were washed and resuspended in calcium free, magnesium free PBS
supplemented with FBS. Anti-human CD3 antibody (BioXCell) was added at a final concentration
of 1 ug/10° cells to avoid potential graft-versus-host disease. Per mouse, 2 x 10° cells in 0.1 mL
saline were tail vein injected; there were 8 to 16 mice per experiment group. Mice engrafted with
primary AML cells were sacrificed after 4 to 8 weeks. Engraftment was measured by flow
cytometry for human CD45+ cells (BD no. 571875, dilution 1:100). All animal studies were done
at the University of Colorado under Institutional Animal Care and Use Committee— approved

protocol no. 308. The University of Colorado is accredited by the Association for Assessment and
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Accreditation of Laboratory Animal Care (ALAC), abides by the Public Health Service (PHS)

Animal Assurance of Compliance and is licensed by the United States Department of Agriculture.

In Vivo PDX Drug Treatments

Effects of mitoxantrone on PDX tumor burden were assessed as follows. One day prior to
transplant, NSG-S mice were conditioned with 25 mg/kg busulfan via i.p. injection. Second day at
injection, primary AML cells were washed and resuspended in calcium free, magnesium free PBS
supplemented with FBS. Anti-human CD3 antibody (BioXCell) was added at a final concentration
of 1 pug/10° cells to avoid potential graft-versus-host disease. Per mouse, 1 x 10° cells in 0.1 mL
saline were tail vein injected; mouse number per experiment per condition indicated in respective
figure legends. Mice were treated with indicated condition (PBS-vehicle or mitoxantrone) when at
least 20% bone marrow disease burden was present. Treatment regimen was once per day, 4
days in a row of either PBS or mitoxantrone (0.5mg/kg/day). For secondary transplants, bone
marrow cells harvested from the previous experiment were injected in equal numbers into NSG-
S mice conditioned with busulfan as described above (1 million cells/mouse per condition). Mice
were sacrificed after 4 weeks. Engraftment was measured by flow cytometry for human CD45+
cells (BD no. 571875, dilution 1:100). All animal studies were done at the University of Colorado
under Institutional Animal Care and Use Committee— approved protocol no. 308. The University
of Colorado is accredited by the Association for Assessment and Accreditation of Laboratory
Animal Care (ALAC), abides by the Public Health Service (PHS) Animal Assurance of

Compliance, and is licensed by the United States Department of Agriculture.

Quantitative RT-PCR

RNA was isolated using the RNeasy plus mini kit (QIAGEN) following manufactures instructions.
cDNA was synthesized using gScript cDNA SuperMix as per manufacturers protocol (Quanta Bio,
no. 95048). Quantitative real-time PCR was performed with LightCycler96 real-time PCR using

PerfeCTA SYBR Green FastMix (Quanta Bio, no. 95072-05K). Following primers were used:
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ACTIN (For: GGACTTCGAGCAAGAGATGG Rev: AGCACTGTGTTGGCGTACAG), GAPDH
(For: TGTGGGCATCAATGGATTTGG Rev: ACACCATGTATTCCGGGTCAAT)

, BCL-2 (For: GGTGGGGTCATGTGTGTGG Rev: CGGTTCAGGTACTCAGTCATCC), SERCA3
(For: GGAACCACATGCACGAAGAA Rev: TGAGGTACACACCGGAGACT), and MCU (For:

AGAGACTGAGAGACCCATTACA Rev: GTTCCTTCTGCCAGGATTCA).

DE Analysis of Bulk RNA-seq Dataset

Raw fastgs were obtained from GEO (GSE132511) [5]and processed using salmon v0.10.2. Data
was imported into R using tximport. For principal component analysis, the data was batch
corrected using limma v3.46 and variance stabilized using DESeq2 v1.30.1. Differential
expression analysis was performed using DESeq2 comparing sensitive to resistant and correcting
for batch effect using the Wald test. Significantly differentially expressed genes were defined as
absolute log2 fold change >= 0.5 & adjusted pvalue < 0.05. Log2 fold change values reflect
sensitive/resistant. There were 1953 DEGs with negative log2 fold change values (up in resistant)

and 1984 DEGs with positive log2 fold change values (up in sensitive).

GSEA Analysis

Gene set enrichment analysis was performed using the fgsea v1.16 package and GO biological
process pathways were downloaded from BROAD (https://www.gsea-msigdb.org/gsea/msigdb/).
Ranked test statistics from the above described DE test was used as the input to fgsea. Ten
thousand permutations were used to calculate significance and enrichment scores. Significant

pathways were those with adjusted p values < 0.05.

CITE-SEQ Analysis

Raw sequencing data for gene expression, antibody derived tag (ADT; surface protein), and
hashing libraries were processed using STARsolo 2.7.8a

(https://doi.org/10.1093/bioinformatics/bts635; https://github.com/alexdobin/STAR/blob/master/d
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ocs/STARsolo.md) with the 10X Genomics GRCh38/GENCODE v32 genome and transcriptome
reference (version GRCh38_2020A; https://support.10xgenomics.com/single-cell-gene-
expression/software/release-notes/build#GRCh38_2020A) or a TotalSeq barcode reference, as
appropriate. Hashed samples were demultiplexed using GMM-Demux
(https://doi.org/10.1186/s13059-020-02084-2; https://github.com/CHPGenetics/GMM-Demux).
Next, cell-containing droplets were identified using dropkick 1.2.6
(https://doi.org/10.1101/gr.271908.120; https://github.com/KenLaulLab/dropkick) using manual
thresholds when automatic thresholding failed, ambient RNA was removed using DecontX 1.12
(https://doi.org/10.1186/s13059-020-1950-6; https://github.com/campbio/celda) and cells
estimated to contain >50% ambient RNA were removed, and doublets were identified using
DoubletFinder 2.0.3 (https://doi.org/10.1016/j.cels.2019.03.003; https://github.com/chris-
mcginnis-ucsf/DoubletFinder) and removed. Remaining cells were then filtered to retain only
those with > 200 genes, 500-80,000 UMIs, < 10-20% of UMIs from genes encoded by the
mitochondrial genome (sample dependent based on UMI distributions), < 5% of UMIs derived
from HBB, < 20,000 UMIs from antibody-derived tags (ADTs), and >100-2,750 UMIs from
antibody derived tags (sample dependent based on UMI distribution). Filtered cells were
modeled in latent space using TotalVI 0.18.0 (ttps://doi.org/10.1038/s41592-020-01050-

X; https://github.com/scverse/scvi-tools) to create a joint embedding derived from both RNA and
ADT expression data, corrected for batch effects, mitochondrial proportion, and cell cycle.
Scanpy 1.8.2 (https://doi.org/10.1186/s13059-017-1382-0; https://github.com/scverse/scanpy)
was used to cluster the data in latent space using the leiden algorithm
(https://doi.org/10.48550/arXiv.1810.08473) and marker genes were identified in latent space
using TotalVI. Clusters were annotated using clustifyr 1.9.1
(https://doi.org/10.12688/f1000research.22969.2; https://github.com/rnabioco/clustifyr) and the
leukemic/normal bone marrow reference dataset presented in (https://doi.org/10.1038/s41590-

021-01059-0). Scanpy and Seurat 4.1.1
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(https://doi.org/10.1016/j.cell.2021.04.048; https://github.com/satijalab/seurat) were then used to
generate UMAP projections from the TotalVI embeddings and perform exploratory analysis,

data visualization, etc. Antibodies used are in Table 3.

Statistical Analysis

Statistical analyses of all biological assays were performed utilizing denoted tests in Graphpad
Prism v.9.0. Graphs and data are visualized as noted in figure legends. In all figures, ns indicates
a not significant P value of >0.05; *, **, ***, and **** indicate P <0.05, P <0.01, P<0.001,and P <
0.0001, respectively. Animal experiments were carried out based on previous power analysis and
publications regarding AML xenograft models from groups utilizing the Lenth power calculator,
and animal sample sizes of eight or greater based on expected standard deviation for a two-
sample t-test. Technical replicates from Seahorse experiments were excluded when outliers
(pmolmin™ readings for OCR) were identified through an outlier analysis using Grubb’s test or
when negative values occurred as indicated by manufacturers protocol for analysis. Seahorse
experiments were done in technical replicates of five and multiple specimens from patients to
account for technical issues with plates and collection of values. Randomization was applied in
animal experiments as animals were randomized to injection and treatment groups. Investigators

were not blinded to allocation during experiments and outcome assessment.

Data Availability Statement
All sequencing data have been deposited into public database. The CITE-Seq data can be found

at the GEO database and are available via accession number GSEXXXXXX.
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Supplementary Figure 1. Venetoclax Responsiveness is Associated with Intrinsic Differences in Calcium
Pathway Signaling

A. BCL-2 interacts with signaling proteins using BiolD in T-REx HEK293 cells. All BCL-2 proximity interactors
organized by established cellular location. B-E. Bulk RNA-sequencing performed in primary human AML
specimens sorted for ROS-low cells that were either ven sensitive (n=7) or ven resistant (n=5). B. Principal
component analysis was performed on all genes expression data after batch effect was removed using limma
and variance stabilized using DESeq2. Resistant samples are in red, and sensitive are in teal. C. All genes in
the GO biological process Calcium Mediated Signaling pathway were considered for this analysis. Batch
corrected and variance stabilized gene expression values for these genes were z-scored and clustered on a
heatmap. Black annotation on the left depicts whether or not the gene was considered significant in the DE test
(padj < 0.05). Both rows and columns are clustered. D. Volcano plot depicting differentially expressed genes.
Differential expression analysis was performed on previously published data using DESeq2 comparing sensitive
(n =7) to resistant (n = 5) and controlling for batch effect [41]. Differentially expressed genes were defined as
padj < 0.05 and absolute log2FoldChange > 0.5. 1,984 genes were significantly increased in sensitive; whereas
1,953 genes were significantly increased in resistant. E. GSEA results in waterfall plot format of all calcium
related pathways in the GO biological process pathway set. F-J. CITE-seq analysis performed on n=9 ven
sensitive primary human AML specimens or n=14 ven resistant primary human AML specimens. F. Presto
Wilcoxon rank test was used to determine the top 10 markers for each cluster using the log2 fold change values.
These markers heavily informed on cell types within each cluster. G. Presto Wilcoxon rank test used to determine
the top 10 markers for each cluster using the log2 fold change values. These markers heavily informed on cell
types within each cluster. Note that some of the genes are duplicated in the matrix because they were called
markers for multiple clusters. Expression is z-scored normalized RNA measurement. H. Featureplot showing
GOBP Calcium Mediated Signaling Module Scores for Normal Bone Marrow Samples (n=3). I. Featureplot
showing GOBP Calcium Mediated Signaling Module Scores for Sensitive Samples (n=9). J. Featureplot showing
GOBP Calcium Mediated Signaling Module Scores for Resistant Samples (n=14). K. Confocal microscopy to
confirm localization of Rhod2AM signal. Representative images from AML #4 and AML#18 that were sorted for
ROS-low cells. Green signal is from mitotracker-GFP, red signal is positive signal from Rhod2AM (552/581) while

blue signal is from Dapi staining. Individual staining and co-localization staining are shown.
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Supplementary Figure 2. BCL-2 Inhibition Causes Mitochondrial Calcium Changes Associated with
SERCA Disruption in Venetoclax Sensitive LSCs

A. Viability of venetoclax sensitive primary human AML ROS-low cells after venetoclax treatment (500nM, 16
hours). N=6 (AML# 2,4-7, 18). Data are presented as mean +/- SD. Significance was determined using two-
tailed ratio paired t-test. . B. Mitochondrial membrane potential of venetoclax sensitive primary human AML ROS-
low cells after venetoclax treatment (500nM, 3 hours). N=6 (AML# 2,4-7, 18). Data are presented as mean +/-
SD. Significance was determined using two-tailed ratio paired t-test. C. Viability of venetoclax sensitive primary
human AML ROS-low cells after venetoclax treatment (500nM, 3 hours). N=6 (AML# 2,4-7, 18). Data are
presented as mean +/- SD. Significance was determined using two-tailed ratio paired t-test. D. Mitochondrial
calcium content presented as mean fluorescence intensity (MFI) after venetoclax treatment (500nM, 3 hours) in
n=3 venetoclax sensitive primary human AML specimens (AML# 2,4,5) that were sorted for ROS-High cells.
Significance was determined using ratio paired t-test E. Venetoclax sensitive primary human AML ROS-low cells
were electroporated with either siRNA scramble sequence or siRNA for BCL-2 as described in the methods.
gRT-PCR was performed to confirm knockdown in AML #2,4-7,18 36 hours post infection. Actin was used as
housekeeping gene and expression was normalized to actin expression. Data are presented as mean +/- SD.
Significance was determined using two-tailed ratio paired t-test. Western blot to confirm knockdown at 36 hours
post infection with representative blots shown for AML #5 and #7. Additional blots showing confirmation of
knockdown for AML #2, #4, #18 are shown in Fig. 2E. Anti-actin antibody was used as loading control and anti-
BCL-2 antibody was used to determine knockdown. F. Mitochondrial membrane potential after BCL-2 knockdown
in primary human AML ROS-low cells. N= 4 biological replicates (AML# 2,5,7,18). Data are presented as mean
+/- SD. Significance was determined using two-tailed ratio paired t-test. G. Viability of primary human AML ROS-
low cells (AML #2,4-7,18) after BCL-2 knockdown. Cells were analyzed by flow cytometry 36 hours after infection.
Data are presented as mean +/- SD. Significance was determined using two-tailed ratio paired t-test. H. OCR
after venetoclax treatment (500nM, 3 hours). N=6 venetoclax sensitive primary human AML ROS-low cells
(AML# 2,4-7, 18). Significance was determined using two-tailed ratio paired t-test. I. OCR after genetic
knockdown of BCL-2. N=4 (AML# 2,4,5,7) venetoclax sensitive primary human AML ROS-low cells. Cells were
analyzed by flow cytometry 36 hours after infection Significance was determined using two-tailed ratio paired t-

test. J. Quantification using Imaged of respective bands from Figure 2D are presented. Significance was
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determined using two-tailed ratio paired t-test. K. Quantification using ImageJ of respective bands from Figure
2E are presented. Significance was determined using two-tailed ratio paired t-test. L. Confocal microscopy was
used to determine background signal from PLA Assay (Far Red) in primary human AML ROS-low cells. Ms-IgG
and Rb-IgG were used for primary antibody incubation steps. Representative images from AML #12 and #13 are
presented. M. Primary human AML ROS-low cells electroporated with either siRNA scramble sequence or siRNA
for BCL-2 as described in the methods. Confirmation of knockdown was assessed at 36 hours post infection as
shown in Supplementary 2F. BCL-2 and SERCAS3 proximity interaction was measured by PLA assays analyzed
through flow cytometry to show specific binding of BCL-2 antibody to BCL-2. N. BCL-2 and SERCAS3, VDAC1 or
IP3R1 proximity interaction as measured by PLA assays presented as MFI. N=3 (AML#2,4,7) venetoclax
sensitive primary human AML specimens sorted for ROS-low cells. Significance was determined using two-tailed
ratio paired t-test. O. BCL-2 and SERCAS3, VDAC1 or IP3R1 proximity interaction as measured by PLA assays
presented as MFI upon venetoclax treatment (500nM, 3 hours). N=3 (AML#2,4,7) venetoclax sensitive primary
human AML specimens sorted for ROS-low cells. Significance was determined using two-tailed ratio paired t-
test. P. Viability of venetoclax sensitive primary human AML ROS-low cells after thapsigargin treatment (500nM,
3 hours). N=5 (AML# 2,4-7, 18). Data are presented as mean +/- SD. Significance was determined using two-
tailed unpaired t-test. Viability of primary human AML ROS-low cells (AML #2,5,7) after SERCA3 knockdown.
Cells were analyzed by flow cytometry 36 hours after infection. Data are presented as mean +/- SD. Significance
was determined using two-tailed ratio paired t-test. Q. qRT-PCR was performed after venetoclax treatment (500
nM, 3 hours) in venetoclax sensitive primary human AML ROS-low cells to determine ATP2A3 expression
compared to DMSO treated cells in N=3 (AML# 2,4,7). Actin was used as housekeeping gene and expression
was normalized to actin expression. Data are presented as mean +/- SD. Significance was determined using
two-tailed ratio paired t-test. R. gqRT-PCR was performed to confirm knockdown in AML #2, 4-7. Actin was used
as housekeeping gene and expression was normalized to actin expression. Data are presented as mean +/- SD.
Significance was determined using two-tailed ratio paired t-test. S. Representative western blot showing
knockdown of SERCAS3 in primary human AML specimen sorted for ROS-low cells using siRNA targeting
SERCAS at 36 hours post infection Anti-actin antibody was used as loading control and anti-SERCA3 antibody

was used to determine knockdown. T. Venetoclax sensitive primary human AML ROS-low cells (n=5) were

treated with either DMSO, venetoclax alone (500 nM, 3 hours) or pre-incubated with MG-132 (1uM, 2 hours)
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then treated with venetoclax (500 nM, 3 hours). Western blot was done to analyze SERCAS3 levels in various
treatment groups. Anti-actin antibody was used as loading control and anti-SERCA3 antibodies were used to
determine protein levels of SERCA3. U. Thapsigargin treatment (500nM, 16 hours, ex vivo) and subsequent
engraftment potential of venetoclax sensitive primary human AML specimens after transplantation into immune-
deficient mice. N=10 for DMSO control group and n=10 and 8, for thapsigargin treatment group for AML 6,7
respectively. 2 million cells injected per mouse and engraftment was assessed between 4-8 weeks. Data are
presented as mean with individual data points. Significance was measured by two-tailed unpaired t-test. V.
Thapsigargin treatment (500nM, 16 hours, ex vivo) and subsequent engraftment potential of normal mobilized
peripheral blood samples after transplantation into immune-deficient mice. N=14 for DMSO control group and
n=13 and 12, for thapsigargin treatment group for Mob Peri #1 and 2, respectively. 1 million cells injected per

mouse and engraftment was assessed between 4-8 weeks. Data are presented as mean with individual data

points. Significance was measured by two-tailed unpaired t-test.
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Supplementary Figure 3. Reducing Mitochondrial Calcium Levels Targets Venetoclax Resistant LSCs
A. Viability of venetoclax resistant primary human AML ROS-low cells after venetoclax treatment (500nM, 16
hours). N=3 (AML#11-13). Significance was determined using two-tailed ratio paired t-test. B. Quantification
using ImagedJ of respective bands from Figure 3C are presented. Significance was determined using two-tailed
ratio paired t-test. C. Only significant (padj < 0.05, absolute log2FoldChange > 0.5) genes in the GO biological
process Calcium Mediated Signaling pathway were considered for this analysis. Batch corrected and variance
stabilized gene expression values for these genes were z-scored and clustered on a heatmap. Resistant
samples are annotated in red, sensitive samples are in teal. Both rows and columns are clustered. D. Viability
of venetoclax resistant primary human AML ROS-low cells after MCUi4 treatment (5uM, 16 hours). N=3
(AML#11-13). Significance was determined using two-tailed ratio paired t-test. E. Viability of venetoclax
resistant primary human AML ROS-low cells after Ru265 treatment (10uM, 16 hours). N=3 (AML#11-14).
Significance was determined using two-tailed ratio paired t-test. F. Engraftment potential of healthy mobilized
peripheral blood samples after MCUi4 treatment (5uM, 16 hours, ex vivo) after transplantation into immune-
deficient mice. Data are presented as mean values with individual data points. Significance was measured by
two-tailed unpaired t-test, and n=14 technical replicates for DMSO control group and n=14 and 12 technical
replicates for MCUi4 treatment groups for Donor #1 and #2 respectively. G. Colony forming units measured by
colony formation assays in healthy mobilized peripheral blood samples after Ru265 treatment (10uM, 16
hours). Data are presented as mean values +/-SD. Significance was measured by two-tailed unpaired t-test.
N=3 replicates per sample per condition. H-K. Venetoclax resistant primary human AML ROS-Low cells (n=4,
AML#11-14) treated with Ru265 for 16 hours at 10uM. H. Mitochondrial calcium content after Ru265 treatment
presented as mean fluorescence intensity (MFI). Significance was determined using two-tailed ratio paired t-
test. I. OCR after Ru265 treatment. Significance was determined using two-tailed ratio paired t-test. J.
Isocitrate dehydrogenase activity and alpha keto-glutarate dehydrogenase activity after Ru265 treatment.
Significance was determined using two-tailed ratio paired t-test. K. Colony forming units measured by colony
formation assays in venetoclax resistant primary human AML specimens after Ru265 treatment (DMSO, 10uM
Ru265, 16 hour treatment, ex vivo). Data are presented as mean values +/-SD. Significance was measured by
two-tailed unpaired t-test. N=3 per sample per condition. L. OCR after genetic knockdown of MCU in

venetoclax resistant primary human AML specimens. N=5 replicates per AML specimen. Significance was
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determined using two-tailed unpaired t-test. M. qRT-PCR was performed to confirm knockdown in AML #3 and
#11. Actin was used as housekeeping gene and expression was normalized to actin expression. Data are
presented as mean +/- SD. Significance was determined using two-tailed unpaired t-test. N. Representative
western blot showing knockdown of MCU in venetoclax resistant primary human AML specimen using siRNA

targeting MCU at 48 hours post infection Anti-actin antibody was used as loading control and anti-MCU

antibody was used to determine knockdown.
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Supplementary Figure 4. Mitoxantrone Inhibits Mitochondrial Metabolism and Colony Formation in
Venetoclax Resistant LSCs

A. Viability of venetoclax resistant primary human AML ROS-low cells after venetoclax treatment (100nM, 16
hours). N=4 (AML#11-14). Significance was determined using two-tailed ratio paired t-test. B. Colony forming
units measured by colony formation assays in venetoclax resistant primary human AML specimens after
etoposide or doxorubicin (DMSO,10nM and 100nM, 16 hour treatment, ex vivo). Data are presented as mean
values +/-SD. Significance was measured by two-tailed unpaired t-test. N=3 per sample per condition. C and D.
Venetoclax resistant primary human AML ROS-low cells treated with doxorubicin for 16 hours at 100nM. C.
Mitochondrial calcium content after doxorubicin treatment presented as mean fluorescence intensity (MFI).
Significance was determined using two-tailed ratio paired t-test. (N=3, AML#11-13) D. OCR after doxorubicin
treatment. Significance was determined using two-tailed ratio paired t-test. (N=3, AML#11-13). E. Gamma H2AX
or mitochondrial calcium content (Rhod2AM) presented as mean fluorescence intensity (MFI) after treatment of

MOLM-13 cell line with dose curve of etoposide or mitoxantrone concentrations. Cells were treated with drug for

1 hour due to confounding cell death at higher concentrations at later time points. N=3 replicates.
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Supplementary Figure 5. Mitoxantrone Targets Venetoclax Resistant LSCs

A and B. Mouse weight average across in vivo vehicle or mitox treatment experiment. N=12 per condition per
dose for AML#13 patient sample derived xenograft. N=8 (vehicle), n=9 (mitoxantrone) per condition per dose
for AML#14 patient sample derived xenograft. Data are presented as mean values +/-SD. Significance was
measured by two-tailed unpaired t-test. B. Picture of spleen size of mice harvested after secondary

transplantation of cells from Figure 5B (AML #1). Spleen weight in milligrams and data presented as individual

values, significance measured by two-tailed unpaired t-test. P<0.0001


https://doi.org/10.1101/2023.10.02.560330
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.02.560330; this version posted October 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 1. List of Bonafide BCL-2 Interactors in HEK293T Cells.
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Table 2. Genotypic and Cytogenetic Characteristics of Patient Specimens

Patient Sex | Age | Diagnosis | Karyotyping Mutations
Sample
Number
AML 1 F 73 De Novo 45,XX,add(3)(q27),- N/A
AML 7,add(8)(q24),(9;22)(q34;911.2)
[4]/54,sl,+3,add(3)(927),+7,+8,+10,
+12,+13,+15,+20,+der(22)t(9;22)
(934;911.2)[16]
AML 2 M 21 De Novo inv(16) (p13.1922) CKIT D816V
AML
AML 3 M 79 Prior MDS, | 46,XY,1(6;9) (p21;934) FLT3 ITD+ and FLT3 TKD
AML mutation (D835); IDH2 R140Q;
Relapse
AML 4 M 52 De Novo 45,XY,- ASXL1 c.4120_4121insT;
AML 7[3)/46,sl,+r(7)(p11921)[11]/46,sdI1, DNMT3A c.885delG; Notch1
der(5)t(1;5) (q31;p14)[5]/46,XY[1] C.4746_4747insTGGGGA;
NRAS c. 182A>G
AML 5 F 49 De Novo Normal karyotype (46, XX) FLT3 ITD+, FLT3 D835
AML
AML 6 NA | NA De Novo NA NA
AML
AML 7 M 47 Relapse 46,XY,del(7)(q21)[8]/46,sl,del(5) IDH1 R132; CKIT D816V
AML (931935),add(12)(p13)[71/46,sl,
add(12)(p13),del(17)(q21)[3)/46,
XY,del(9)(922932)[2]
AML 8 F 49 Relapse Normal karyotype (46, XX)[21] FLT3 ITD+, FLT3 D835
AML
AML 9 NA | 36 Relapse Normal karyotype TET2.11762V, ASXL1.L815P,
AML CUX1.A448T, BCORL1.F111L,
TP53.P33R
AML 10 NA NA NA clone 1: +8q, +3q, 1(9;22); clone 2: NA
clone 1 abnormalities AND +3,
+10, +12 +13, +15 +20; clone 3:
clone 2 abnormalities AND der (22);
by FISH -7
AML 11 F 74 De Novo 46,XX[20] FLT3 TKD (D835), NPM1+,
AML TET2 c.4311_4318GAAAAAC,
41%, TET2.11762V 24%,
PTPN11.A72T 43%,
ASXL1.L815P 100%,
BCCORL1.F111L 100%,
DNMT3AA.G354C 43%,
CUX1.A448T 100%,
NOTCH1.v2285I 41%,
CBLC.P389S 38%.
AML 12 F 65 Relapse 46,XX,add(14)(q22)[4], 46,XX[16] FLT3+, NPM1+, IDH1+
AML
AML 13 F 60 De Novo 46,XX,1(9;11)(p21;923)[13]/47, KRAS.G13D 23%,
AML sl,+21[4)/47,s1,+8[3] KRAS.A146T 6%,
PTPN11.T52A 47%
AML 14 NA | NA De Novo 45,X,-Y; 1(9;11)(p22;923) FLT3 ITD
AML
AML 15 NA | NA NA 46,XX,inv(3)(921926)[10] NA
AML 16 M 52 De Novo 46,XY,add(1)(p11),del(5)(q15q ASXL1 c.4120_4121insT;
AML 33),del(7)(922936),der(11)t(1;1 DNMT3A c.885delG; Notch1
1)(p31;p12-14)[20] , Loss of 5q31 C.4746_4747insTGGGGA;
and 7931 NRAS c. 182A>G
AML 17 F 77 De Novo 46,XX[20] NPM1: W288fs 45%, RUNX1:
AML S469P 6%, TET2: V1232del
48%
AML 18 F 80 De Novo 47 ,XX,+8[15)/47 XX,+11[1]/44- CBL M400R, SRSF2 P95H,
AML 45,XX,add(5)(p12),dic(5;12)(q10;g10) | TET2 Q916X and S1290X
t(11;14)(913;932),dic(17;18)(q10;910),
add(20)(q11.2)[cp8]/44,XX,dic(5;12)
(910;910),der(8)(11qgter- >
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11913::14932- > 14910::8p11.2- >
8qter),der(11)t(11;14)(q13;932),
dic(17;18)(910;910)[2]/46,XX[5]

AML 19 M 63 De Novo 46,XY[19] FLT3 ITD+, NPM1+
AML
AML 20 F 64 De Novo NA NA
AML
AML 21 M 69 CMML to 46,XY[18] NPM1.W288CFs*12 37%,
AML ASXL1.G646Wfs*12 36%,
NRAS.G12D 46%,
STAG2.G46Rfs*41 11%,
EZH2.Q533L 50%,
EZH2.L149Q 49%,
TET2.N1610Ifs*6 50%,
TET2.Q1699* 50%
AML 22 F NA | De Novo 46,XX,1(6;11)(q27;923)[18]/92,sIx2[2] | KRAS.G12C 16%,
AML PTPN11.E76L 7%
AML 23 Relapse 46,XY[20] NA
AML
AML 24 NA | NA NA Trisomy 8 in 37% of cells. Positive for | NA

IGH/CCND1 in 7.7% of cells, positive
for trisomy 12 in 12.5% of cells,
positive for trisomy 11 in 3.5% of cells,
positive for a population with one copy
of TP53 and three copies of

centromere 17 comprising 3% of cells.
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Table 3. CiteSeq Antibodies Used for Clustering

CITESEQ-
Total Seq B
Cat Antigen Clone

300565 CD4 RPA-T4
343129 CD7 CD7-6B7
362561 CD56 5.1H11
344853 CD3 SK7
302263 CD19 HIB19
366635 CD33 P67.6
CD34 581
328147 CD90 5E10
313247 CD117 104D2
304161 CD45RA HI100
306047 CD123 6H6
301857 CD14 M5E2
307661 HLA-DR L243
301357 CD11b ICRF44
305049 CD64 10.1
303547 CD38 HIT2
368547 CD45 2D1
304066 CD45 HI30
336233 CD36 5-271
336125 CD93 VIMD2
312123 CD9 HI9a
355125 CD70 113-16
302851 CD27 0323
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