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ABSTRACT

Ductal carcinoma in situ (DCIS) and invasive breast cancer share many morphologic, proteomic, and
genomic alterations. Yet in contrast to invasive cancer, many DCIS tumors do not progress and may
remain indolent over decades. To better understand the heterogenous nature of this disease, we
reconstructed the growth dynamics of 18 DCIS tumors based on the geo-spatial distribution of their
somatic mutations. The somatic mutation topographies revealed that DCIS is multiclonal and consists of
spatially discontinuous subclonal lesions. Here we show that this pattern of spread is consistent with a
new ‘Comet’ model of DCIS tumorigenesis, whereby multiple subclones arise early and nucleate the buds
of the growing tumor. The discontinuous, multiclonal growth of the Comet model is analogous to the
branching morphogenesis of normal breast development that governs the rapid expansion of the
mammary epithelium during puberty. The branching morphogenesis-like dynamics of the proposed Comet
model diverges from the canonical model of clonal evolution, and better explains observed genomic
spatial data. Importantly, the Comet model allows for the clinically relevant scenario of extensive DCIS
spread, without being subjected to the selective pressures of subclone competition that promote the
emergence of increasingly invasive phenotypes. As such, the normal cell movement inferred during DCIS
growth provides a new explanation for the limited risk of progression in DCIS and adds biologic rationale

for ongoing clinical efforts to reduce DCIS overtreatment.
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INTRODUCTION

Mammography screening has been successful in reducing breast cancer mortality," yet its benefits are
accompanied by harms such as false positive findings, unnecessary procedures, and overdiagnosis.* The
overdiagnosis of indolent tumors that would not cause any harm in the woman’s remaining lifetime is of
particular concern for patients diagnosed with ductal carcinoma in situ (DCIS).> DCIS is considered a
precursor of invasive breast cancer, yet studies support that as many as 70-80% of DCIS found on
mammography would not progress to invasive cancer if left untreated.®’ Because it is currently not
possible to accurately distinguish indolent from aggressive DCIS, nearly all DCIS patients undergo
surgery, and many receive additional radiation and endocrine therapy.? This strategy leads to widespread

overtreatment, affecting as many as 40,000 women each year in the US alone.®

The goal of breast cancer screening is to intercept the progression from normal breast tissue to invasive
cancer. Current dogma purports that this transformation occurs in a linear stepwise fashion, with DCIS
being a proximate step before invasion.” Indeed, DCIS and invasive breast cancer share similar

morphologic, proteomic and genomic alterations,****

and frequently the only histologic distinction between
DCIS and invasive cancer is abnormal tumor cell migration beyond the basement membrane. Given the
genomic similarity between DCIS and invasive breast cancer and the ability of DCIS to spread within the
ductal tree over several centimeters, one might expect that abnormal cell movement is an inherent feature
of DCIS growth. However, there is a lack of evidence to support this claim, and the common observation
of “skip” lesions with large segments of intervening normal tissue within DCIS is not explained by the

current model.

In animal models, cell lineage markers can be traced in situ to reconstruct epithelial breast cell
movement.* In such studies, individual progenitor cells are labeled in vivo and the migration of their
progeny (subclones) is inferred from the final topographic distribution of lineage markers. This approach
has been used to quantify the dynamics of murine pubertal breast duct development, whereby ducts grow,
branch, and penetrate the surrounding stroma through a process called branching morphogenesis (Figure
1).”>*" Importantly, normal duct growth does not occur by continuous subclone spreading but is
orchestrated by advancing growth buds that each contain multiple stem cell subclones.™ These stem cells
intermittently contribute to ductal growth, leading to multiclonal ducts whose subclones form spatially

discontinuous ‘skip’ patterns.

While direct observation of cell movement in human breast epithelium is impractical, somatic mutations
uniquely label the progeny of individual subclones.® We thus postulate that cell migration in human DCIS
can be inferred from the spatial distribution of somatic mutations. We reconstruct the three-dimensional
mutation topographies of 18 DCIS tumors over macroscopic length scales of up to 7cm and find many

spatially discontinuous subclones that are difficult to reconcile with canonical clonal evolution.*
3
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Interestingly, a model of DCIS growth that mimics the dynamics of branching morphogenesis of the normal
breast (Figure 1) naturally recapitulates the discontinuous mutation patterns observed in DCIS. We
propose that normal cell movement conferred by branching morphogenesis-like growth reveals a
biological basis for why many DCIS grow to a macroscopic size and then remain stable for decades

without progression to invasive cancer.

RESULTS

Multiregional sequencing reveals spatial mutation topographies

We identified 18 women who had undergone surgery for a diagnosis of screen-detected DCIS, including 9
patients with DCIS tumors alone (pure DCIS), and 9 patients with DCIS tumors adjacent to invasive breast
cancer (synchronous DCIS). All tumors were of nuclear grade 2 or 3 and most (14/18) were hormone-
receptor positive. The most common histologic patterns were solid and cribriform type, and most tumors
(15/18) exhibited comedo-like features (Suppl. Table S1). From each surgical specimen we obtained
between 2 and 5 spatially separated formalin-fixed and paraffin-embedded (FFPE) tissue regions, and in
each tissue section we microdissected® and spatially registered small regions, or spots, each containing
approximately 100 to 500 epithelial cells (Figure 2A, Suppl. Figure S1). In addition to spots containing
individual ducts with DCIS, we microdissected normal breast ducts, ducts with benign breast disease, and
areas of synchronous invasive cancer. To complement the spatial and histologic spot annotations, we
determined the genotype of each spot through targeted sequencing of tumor-specific mutation panels

derived from whole exome sequencing (WES) of macro-dissected DCIS foci.

After eliminating germline mutations and low-quality targets (Suppl. Figure S2), the final study cohort
comprised 463 individual spots across 60 tissue sections (Suppl. Table S1). The resulting dataset (Figure
2B) combined phenotypic and genotypic annotations of the spatially registered spots. In addition to 313
spots with DCIS, we registered 87 spots with invasive cancer, 46 spots with benign breast disease, and 17
spots with normal breast ducts, all confirmed by pathology review. A total of 823 (median per tumor: 45,
range: 24-66) mutation targets were identified by WES, of which 558 (68%; median per tumor: 31, range:
8-59) mutations were detected by targeted sequencing (Suppl. Figure S3). Across all 558 mutations we
identified two de novo mutational signatures that matched established consensus signatures implicated in
carcinogenesis (Suppl. Figure S4). Across the 18 DCIS tumors we identified a total of 21 putative driver
mutations (median per tumor: 1, range: 0-3) (Suppl. Table S2). Combining the genotypic spot
characterizations with the spatial tumor maps, we constructed geospatially annotated somatic mutation
topographies for each DCIS (Figure 2C).

DCIS is a multiclonal and heterogeneous disease
The resulting spatial-genetic data were used to characterize the clonality and intratumor heterogeneity

(ITH) of the DCIS portions within each tumor. Indeed, the variant allele frequencies (VAFs) of somatic
4
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mutations within individual spots contain valuable information about the structure of cell populations in the
local cellular neighborhood (Figure 3A). Variant allele frequencies of 50% or greater reflect locally clonal
mutations that are present in all cells of the sampled duct cross-section, whereas VAFs below 50%
indicate locally subclonal mutations carried by a subpopulation of resident cells only. Across the 313
histologically confirmed DCIS spots in our cohort, the within-spot VAF spectra of detected mutations were
generally subclonal and dispersed, as evidenced by low median values and high inter-quartile ranges,
respectively (Figure 3B). These data demonstrate that most DCIS ducts contain an admixture of distinct
genetic subclones which vary in frequency throughout the lesion. This finding of multiclonal DCIS is

consistent with previous single cell-based studies.*****

To quantify the degree of genetic ITH, we defined spot genotypes as the binary vectors of somatic
mutation calls (present/absent), visualized as the columns of the mutation panels (Figure 3C-D, Suppl.
Figure S5). While some DCIS tumors comprised only few distinct spot genotypes (e.g., Figure 3C), most
contained a substantial number of distinct genotypes (e.g., Figure 3D), which is indicative of pervasive
ITH. Notably, we observed a lack of spatial clustering of similar spot genotypes (Figure 3C-D, Suppl.
Figure S5), suggesting limited spatial correlations of duct genotypes. We further investigated this by
computing the correlations of spatial and genetic spot distances (Figure 3E) and found that most tumors
exhibited low spatial-genetic correlations (median: -.01), without detectable differences between pure and

synchronous DCIS tumors (p=.81, Wilcoxon rank-sum test).

In summary, these findings support the presence of multiclonal ducts and extensive spatial heterogeneity
within each DCIS tumor,*****° but do not address when and how such ITH arises during tumorigenesis. To

investigate this, we turned our attention to the spatial topographies of individual somatic mutations.

Expansive skip lesions favor a model of early evolution

We categorized mutations as public (present in 290% of DCIS spots in the tumor) or restricted (present in
<90% of DCIS spots); the latter are particularly informative because they allow for tracking of individual
subclones in space. Across the 17 tumors with more than 2 DCIS spots, we identified a total of 379
restricted mutations (Suppl. Table S1). Interestingly, restricted mutations often spanned expansive but
discontinuous tumor regions of up to 7cm in diameter, and in 14 of 17 tumors, one or more restricted
mutations covered the entire DCIS portion (Figure 4A). This finding of expansive mutational skip lesions is

consistent with two recent studies that performed spatial subclone mapping in DCIS tumors.**?

Mutational skip lesions can arise by two distinct mechanisms, depending on whether evolution takes place
early or late in the growth process. In the early evolution scenario, subclonal mutations arise during the

early expansion from the first DCIS cell and then disperse across the ductal tree during expanding tumor
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growth. In the late evolution scenario, the mutations arise late during tumor expansion and disseminate

across the tree through extensive sweeps, in competition against less fit subclones.

Delineation of these two scenarios is possible because they predict different types of spatial mutation
patterns. In the early evolution scenario, the passive dissemination of early mutations is expected to
produce scattered mutation topographies, or ‘skip’ lesions (Figure 4B). In contrast, in the late evolution
scenario, late mutations that expand through subclonal sweeps are expected to produce more contiguous
mutation patches (Figure 4C). To test these predictions against the data, we introduced a new tumor-level
measure, the expansion index (El), which ranges from 0 to 1 and measures whether a lesion is dominated
by disperse (EI > .5) or contiguous (EI =~ .5) mutations (Methods and Suppl. Figure S6). The median El
across all tumors was 0.74, and 12/17 (71%) tumors had an El in the disperse range of EI > .6 (Figure
4D). Notably, there was no detectable difference in El between pure DCIS (median: 0.71) and
synchronous DCIS (median: 0.74, Wilcoxon rank-sum test: p=0.88). The consistently elevated expansion
indices are indicative of mutational skip lesions and suggest that the widespread ITH is likely due to the

passive dissemination of early subclones in the early evolution scenario.

Two additional observations provide evidence against the late evolution scenario of mutation
dissemination. First, expansive subclonal sweeps are expected to yield locally homogeneous ducts,?
which is at odds with the observation of subclonal VAFs at the spot level (Figure 3B, Suppl. Figure S7).%
Second, expansive subclonal sweeps would require the acquisition of a substantial cellular fitness, yet we
only found a limited number (n=21) of putative driver mutations in our cohort (Suppl. Table S2), and there

was no evidence that driver mutations were more disperse than passenger mutations (Suppl. Figure S8).

In theory, copy number changes producing spatially localized losses of mutant alleles can account for
discontinuous mutation patterns. In practice, however, such a mechanism would need to be very
pervasive to account for the widespread skip lesions in our data. To ascertain the likelihood that copy
number aberrations formed the primary mechanism for discontinuous mutation patterns, we performed
spatial copy-number profiling across 19 spots of a large DCIS tumor in our cohort. Copy-number profiles
across DCIS ducts were stable (Suppl. Figure S9), and in spots where both copy number and DNA
mutation data were available, none of the absent mutations coincided with an allelic loss (Suppl. Figure
S9).

In summary, our data support a model of early evolution where genetic subclones arise during the initial
expansion from the first DCIS cell and before dispersion across the ductal tree through expansive tumor
growth. What remains unclear, however, are the cellular mechanisms that govern this expansive growth

phase.
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DCIS growth recapitulates normal ductal morphogenesis

The scattered mutation topographies we inferred from our data (Figure 5A) are strikingly analogous to
patterns observed during the normal pubertal development of murine mammary ductal trees.*>!’” During
breast development, individual mammary stem cells contribute to ductal expansion only intermittently to
produce dispersed subclone patterns along the branching ductal tree. Based on these similarities, we
posited the ‘Comet model’ of DCIS tumorigenesis which recapitulates the stochastic fate rules of ductal

elongation and binary branching as inferred from pubertal branching morphogenesis.

The Comet model posits that DCIS growth is driven by the expanding end buds of the tumor front which
contain populations of long-lived neoplastic cells that arise early in evolution (Figure 5B, Methods). These
long-lived cells stochastically undergo episodic expansion to produce the subclone populations that
populate the elongating DCIS duct. When an expanding tumor bud reaches a branching point in the ductal
tree, the long-lived cells are randomly divided between the two daughter ducts and then duplicate. Such
comet tail-like backward seeding of subclones naturally results in multiclonal DCIS ducts and expansive
mutational skip lesions across the involved portions of the mammary tree. Simulations of the Comet model

illustrate the expansive dispersion of subclonal mutations and high levels of ITH (Figure 5C).

On the other hand, because DCIS shares many morphologic, proteomic, and genomic features with

invasive breast cancer,**®

it would appear natural for its growth to be governed by the uncontrolled
cellular proliferation and subclone competition of canonical clonal evolution. Yet when combined with the
branching topology and thin tube-like geometry of the ductal tree, these dynamics are expected to result in
rapid stochastic fixation or extinction of individual mutations along the ductal tree?® (Figure 5D). Indeed,
simulations indicate a smaller number of subclones and limited ITH (Figure 5E) when compared to the

Comet model (Figure 5C).

To quantify the ability of the Comet model to explain the spatial-genetic data in our cohort, we developed a
computational platform that mimics our experimental design (Methods and Technical Appendix). In brief,
we generated a stochastic ductal tree in silico, randomly seeded the first tumor cell, simulated the DCIS
growth dynamics, and recorded the simulated VAFs of sampled DCIS ducts in the final tumor. We fit the
model to the experimental data using approximate Bayesian computation (ABC) and found that it agreed
with salient summary statistics of the empirical mutation topographies (Suppl. Figure S10A). Through
formal Bayesian model selection, we showed that the Comet model provided a superior fit compared to a
model of clonal evolution, as evidenced by a Bayes’ factor* of 11.7 (Suppl. Table S3, Suppl. Figure S10-
B).

In summary, these data support a novel Comet model of DCIS growth, whereby genetic heterogeneity is

acquired early and multiple subclones are disseminated across the ductal tree through a process that

7
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recapitulates the branching morphogenesis of normal pubertal breast development. This model not only
provides a simple explanation for the observed discontinuous mutation patterns in DCIS,* but also

generates testable hypotheses regarding the local composition of DCIS ducts.

Stable hierarchical cell populations

The Comet model posits that local DCIS cell populations are deposited during growth by stochastically
expanding progenitor cells. As with normal gland development, these clonal subpopulations are expected
to be maintained by a stable hierarchical mixture of progenitor, transit-amplifying, and more mature luminal
cells.™® To test this hypothesis we characterized the local epithelial subtype compositions of 57 individual
spots from 10 tumors in our cohort through multiplexed ion-beam imaging (MIBI).?> Using a machine
learning algorithm, individual epithelial cells were classified as stem-like, basal, luminal, epithelial-to-
mesenchymal (EMT), or myoepithelial (Figure 5F), thus allowing us to characterize the local cell type
composition in each spot (Figure 5H). As predicted by the Comet model, individual DCIS ducts
consistently comprised a hierarchical mixture of more differentiated luminal cells and less differentiated

stem-like and basal cells.

We further performed targeted DNA methylation sequencing of individual DCIS ducts from 6 tumors in our
cohort (Suppl. Figure S11). We found extensive epigenetic diversity, which further corroborates the
notion that DCIS ducts are maintained by a stable epithelial hierarchy rather than clonal competition and

frequent subclonal sweeps.

Phenotypic plasticity and multiclonal invasion

13,26,27
S

Phenotypic heterogeneity is common in DCI and may be driven by the underlying genotypic

heterogeneity. However, because it has been difficult to map mutations to phenotypes,**?’

phenotypic
heterogeneity may also be the result of phenotypic plasticity, whereby cells of the same genotype express
different phenotypes in response to their local microenvironment. In our cohort, we found evidence of
phenotypic plasticity in the form of many shared mutations between spots with benign breast disease,
DCIS and invasive cancer (Figure 6A-B, Figure 6D-E, Suppl. Figure S12). To further investigate

potential plasticity, we focused on the 8 synchronous DCIS tumors with adjacent invasive cancer.

Most somatic mutations were shared between in situ and invasive spots (mean: 89%, range: 78-100%),
and among the 3 tumors that also contained ducts with benign breast disease, a substantial fraction of
mutations was shared across all three phenotypes (Suppl. Table S4). Putative driver mutations found in
the invasive tumor portions were consistently present in adjacent DCIS and benign breast disease ducts.
In genotype space, DCIS and invasive spots tended to co-cluster (Figure 6C, Figure 6F, Suppl. Figure
S12A-H), and we observed genotypic co-clustering of all three phenotypes in 2 of 3 tumors with benign

breast disease ducts (Suppl. Figure S12B-C). A similar lack of correlations between genotype and

8
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phenotype was observed with respect to the spots’ local cell type composition (Suppl. Figure S13). Taken
together, a pervasive lack of phenotype-genotype correlations in these tumors suggests phenotypic

plasticity.

Phenotypic plasticity can also result in multiclonal invasion, that is the co-migration of multiple genetic
subclones from the ducts into the stroma as they encounter a permissive microenvironment.'* At the single
mutation level, multiclonal invasion manifests itself in the form of mutations that are present in some but
not all DCIS spots, and in some but not all invasive spots (Figure 6G). Counting the number of unique
such patterns in each tumor, we found evidence of multiclonal invasion in all 8 synchronous tumors
(Figure 6H). In addition to being multiclonal, invasion was spatially dispersed, with admixed clusters of in
situ and invasive spots across multiple spatially separated sections in 7 of the 8 tumors (Suppl. Figure
S1). In summary, the spatially disperse patterns of multiclonal invasion are consistent with phenotypic
plasticity in DCIS.*

DISCUSSION

Based on the mutation topographies of 18 human DCIS tumors, we propose the Comet model of DCIS
tumorigenesis. The Comet model posits that multiple genetic subclones arise shortly after the first DCIS
cell, and then disperse across the ductal tree through a mechanism that recapitulates the branching

morphogenesis of normal breast development.

Because of its histologic and genomic similarity with invasive breast cancer, DCIS is often considered “just
one step” away from invasion. Yet this characterization is at odds with a growing recognition that most
DCIS tumors remain latent for decades if left untreated.®?® The Comet model offers a potential solution to
this clinical incongruency. Indeed, the branching morphogenesis of normal breast development is a
regulated expansion where mobile progenitor cells proliferate, differentiate, and branch to form new ductal
elements but remain confined within the basement membrane. By recapitulating this developmental
program of mobile expansion, many DCIS tumors can grow into macroscopic yet stable neoplasms
without reliance on the uncontrolled proliferation and abnormal mobility of invasive cancer. Importantly, in
contrast to neoplastic growth governed by clonal evolution, the Comet dynamics are not subject to
incessant subclone competition that produces increasingly aggressive phenotypes. The proposed model
thus provides a simple explanation for the common occurrence of indolent DCIS tumors and provides
biologic rationale for an evolving clinical paradigm that seeks to de-escalate treatment in low-risk DCIS

patients.>*

The Comet model is consistent with previously reported multiclonality and intratumor heterogeneity of
DCIS tumors,'®*® and expands this knowledge with a novel explanation for the co-occurrence of duct-level

multiclonality and global subclone dispersal. While the origins of multiclonality per se can be explained™
9
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30-32 the simultaneous occurrence of duct-level

by an early punctuated burst of genomic instability,
multiclonality and global subclone dispersal have been difficult to reconcile.* Indeed, under a canonical
model of cancer growth—characterized by uncontrolled proliferation and clonal evolution—the thin tube-
like mammary ducts are expected to accelerate local sweeps, resulting in contiguous patches of
monoclonal DCIS ducts.?® This currently accepted model is at odds the observed mutational patterns, but
is readily resolved by the proposed Comet model, where the tumor’s expanding end buds contain multiple,

episodically proliferating subclones that produce local multiclonality and global subclone dispersal.

A subgroup analysis of 8 patients with DCIS and adjacent invasive cancer supported a multiclonal

invasion model*

in which multiple subclones co-migrate from the ducts into the stroma. Such multiclonal
invasion, taking place at spatially distant foci and amidst a paucity of putative driver mutations, could arise
through convergent stepwise progression where each physical focus represents an independent
evolutionary bottleneck. Yet the Comet model provides a more parsimonious scenario in which invasion is
facilitated by a conducive local microenvironment rather than being conferred by accumulated somatic
mutations. This model is strikingly consistent with the previously described plasticity of both normal breast
tissue®®* and DCIS tumors?®’, and suggests that certain DCIS tumors are essentially born to be bad and
ready to invade when and where permissive conditions are met. More fundamentally, it remains unclear
what differentiates indolent from progressive DCIS tumors, although recent studies suggest primary roles
for the tumor microenvironment such as early changes in the ductal myoepithelium® or the immune
microecology.?

Similar studies performed in colorectal cancers (CRC)***>%

provide a direct comparison of cancer growth
patterns between the two organs. In both sites, growth is driven by long-lived progenitor cells, situated in
the growing end buds of DCIS™ and at the base of CRC glands,® respectively. Furthermore, the
branching of DCIS ducts is analogous to the fission of cancer glands during CRC growth.*” Yet while the
transit-amplifying progenies of CRC stem cells exit the gland within a few days, their DCIS counterparts
are embedded in the expanding duct and provide a genomic record of the end buds’ proliferative activity
during growth. This difference can explain why CRC glands are generally monoclonal populations
dominated by a single fixated subclone, whereas duct cross-sections contain multiple subclones. This

comparison highlights the likely role of tissue architecture in shaping the mode of evolution.?*3°

Our study has limitations. First, due to sequencing constraints in FFPE samples, spot selection was
biased toward larger ducts. While this may have led to an underestimation of overall heterogeneity, our
findings of local multiclonality and global subclone dispersion would be invariant under the inclusion of
smaller ducts. Second, because patient-specific mutation panels were derived from microdissected DCIS
areas, they did not contain mutations private to the invasive compartment of synchronous tumors. While

this may have led us to overestimate the fraction of mutations shared between DCIS and adjacent
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invasive cancer, our findings are consistent with a body of literature documenting the genomic similarity
between DCIS and adjacent invasive cancer.'®*® Third, we cannot exclude the possibility that long-range
seeding of individual cells may be responsible for the observed skip lesions. However, given the lack of
evidence for such cellular migration—across macroscopic distances and through often densely packed
DCIS ducts—the Comet model provides a more parsimonious explanation. Fourth, since our cohort was
composed of intermediate to high grade and mostly hormone receptor positive tumors with solid or
cribriform growth patterns, the Comet dynamics may not be applicable to other pathologic subtypes, such
as micropapillary DCIS and low-grade tumors. Finally, while it is commonly assumed that DCIS cells grow
along the pre-existing mammary ductal tree, an alternative model of neoductogenesis® proposes that
DCIS may branch off the pre-existing tree to grow its own subtrees. However, as long as the subtrees

resulting from neoductogenesis are topologically invariant, our mathematical models remain applicable.

An expansive and structured penetration of the breast stroma in the absence of invasion and metastasis is
an inherent feature of normal pubertal breast development. In this study, we provide evidence that DCIS
cell migration recapitulates this developmental process of normal branching morphogenesis, resulting in
indolent tumors that are susceptible to mammographic overdiagnosis. Interestingly, the process of
branching morphogenesis is not unique to the breast and is equally implicated in the development of the
prostate, thyroid, and lung.'”*"** The intriguing observation that cancer overdiagnosis is common in these

|43-45

organs as wel raises the possibility that a recapitulation of developmental branching morphogenesis

could be a contributing factor to the etiology of indolent tumors across cancer sites.
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METHODS

Patient cohort and biological samples

The study was approved by the Institutional Review Board of the Duke University Medical Center (protocol
Pro00054877), and a waiver of consent was obtained according to the protocol. We identified patients
diagnosed with screen-detected breast cancer who underwent breast-conserving surgery or mastectomy
at Duke University Medical Center between 1999 and 2016. During the selection process, formalin-fixed
paraffin-embedded (FFPE) tissue blocks for cases with a complete spatial block map were obtained from
the Duke Pathology archives. Each block was pathology reviewed (A.H.) for diagnosis according to the
WHO classification of tumors.*® A total of 21 cases with tumor tissue present in two or more FFPE blocks
were identified through this process, including 11 patients with pure DCIS tumors, and 10 patients with
DCIS tumors with synchronous ipsilateral invasive breast cancer (synchronous DCIS). DCIS nuclear grade
and estrogen- and progesterone-receptor status were abstracted from the patients’ medical records. As
described below, a total of 3 patients were excluded prior to final data analyses, because of technical
issues (n=2) or insufficient information content (n=1). The final analytic cohort thus comprised 18 patients,
9 with pure DCIS and 9 with synchronous DCIS (Suppl. Table S1). Finally, we collected matched normal
samples for all patients, in the form of blood (n=4), uninvolved lymph nodes (n=4), or adjacent,

morphologically normal breast tissue (n=9).

Whole exome sequencing

To design tumor-specific mutation panels, whole exome sequencing (WES) was performed on bulk tissue
samples as follows. For each patient, two or more spatially separated (28mm) FFPE blocks were
identified, and areas containing DCIS (but no invasive cancer) were macro-dissected from between 10
and 25 hematoxylin-stained tissue sections (5 microns thick). The first and last sections were stained with
hematoxylin-eosin (H&E) and reviewed by a study pathologist (A.H.) to confirm that tumor cellularity was
at least 70%. DNA was extracted using the FFPE GeneRead DNA Kit according to manufacturer
instructions. DNA quantity was determined using a QubitTM 1X dsDNA HS Assay Kits (ThermoFisher, cat.
n. Q33230), and DNA quality was assessed using the Agilent 2100 Bioanalyzer. WES was performed on
240ng of genomic DNA from each sample. Each aliquot was sheared to a mean fragment length of 250 bp
(Covaris LE200), and Illlumina sequencing libraries were generated as dual-indexed, with unique bar-code
identifiers, using the Accel-NGS 2S PCR-Free library kit (Swift Biosciences, cat. n. 20,096). We pooled
groups of 96 equimolar libraries (100 ng/library) for hybrid capture of the human exome as well as a
targeted panel of the exons of 83 breast cancer genes, using IDT's xGen Exome Research Panel v1.0;
see Fortunato et al.*’ for details. After hybridization, capture pools were quantitated via qPCR (KAPA
Biosystems kit), and the final product was sequenced using an lllumina HiSeq 2500 1T instrument
(multiplexing nine tumor samples per lane). After binning the data based on its index identifier and aligning
it to the Genome Reference Consortium Human Build 37 (GRCh37) using the BWA-MEM algorithm,*®

sequencing duplicates were identified using Picard’s MarkDuplicates (GATK). The resulting BAM files
12
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were then used to design the tumor-specific mutation panels as described in the next section. The WES
protocol was performed at the McDonnell Genome Institute at Washington University School of Medicine

in St Louis.

Tumor-specific mutation panels

For each patient, we designed a tumor-specific target panel of single nucleotide variants (SNVs) based on
the BAM files obtained from WES of tumor and matched normal tissue. Variants were called using the
software MuTect* (Broad Institute), using default settings. Starting from a combined set of SNVs that had
“judgment=KEEP” in at least one of the two samples, we excluded SNVs not mapped to chromosomes 1
through 22 or the X chromosome, SNVs identified as single nucleotide polymorphisms in dbSNP*° and
SNVs that were within 300bp of another SNV. For patients where more than 100 SNVs remained after
these exclusions, we decreased the final panel size to 100 or less by first removing mutations at a variant
allele frequency (VAF) below 10% in both bulk samples and taking a simple random sample if necessary.

SNVs identified in COSMIC® (https://cancer.sanger.ac.uk/cosmic) were included independently of the

above filter settings.

Saturation microdissection

From each tumor, between 2 and 5 spatially separated FFPE blocks that contained individual DCIS ducts
or lobules suitable for microdissection were identified by the study pathologists (AH, DS). In mixed tumors,
the study pathologists (A.H. and D.S.) further identified DCIS-adjacent areas of IBC suitable for
microdissection. From each block, between 5 and 10 consecutive 5-micron tissue sections were prepared
on plastic slides and lightly stained with H&E. A study pathologist (DS) then microdissected small tissue
areas, or spots, using selective ultraviolet light fractionation (SURF) as previously described® and
implemented by our group.®. In brief, a micromanipulator was used to place small ink dots over individual
duct cross-sections and, in the case of synchronous DCIS tumors, over equivalently sized areas of
invasive breast cancer. The absolute number of tumor cells in each microdissected spot was estimated to
be between 100 and 500 cells. After the destruction of unprotected DNA through 3-4 hours of short-wave
ultraviolet light irradiation, individual ink dots were removed from the slides using a pipette tip and placed

in a microfuge tube for DNA extraction.

Targeted mutation sequencing

After proteinase K and TE treatment at 60°C for 4 hours, and then at 98°C for 10 minutes, AMPure XP
beads (Beckman Coulter) were added (1.2x) to extract the DNA. Polymerase chain reaction (PCR) was
performed directly on the dried beads (35-40 cycles) using a custom AmpliSeq primer for the tumor-
specific SNV panels as described above. PCR repeatedly failed for two tumors and led to their exclusion
from further analysis (DCIS-118, DCIS-158). Barcoded libraries (One-step, Qiagen) were then run on

MiSeq or NextSeq lllumina sequencers, with an average coverage of >500x and a minimum coverage of
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20x for each mutation. The FASTQ files from the sequencers were uploaded to the Galaxy web platform

).53

and analyzed using the public server (http://usegalaxy.ora/).>* Briefly, our Galaxy pipeline included FASTQ

grooming, adapter trimming (TrimGalore), short read alignment (BWA) to GRCh37, Naive Variant Caller
and Variant Annotator. For each locus, we defined the reference and alternate alleles based on the WES

results and recorded their respective read counts from the targeted sequencing runs.

Targeted methylation sequencing

Custom AmpliSeq primers were designed for a target amplicon (chromosome 7; positions 77395824 to 77295930)
containing 5 consecutive CpG sites, as well as three amplicons with LUMP (leukocytes unmethylation for purity)
sites to assess epithelial content (cg10559416, cg21376733, cg27215100).>* After proteinase K and TE treatment at
60°C for 4 hours, and then at 98°C for 10 minutes, the DNA was first bisulfite treated (EZ DNA Methylation-Lightning
Kit, Zymo Research), and then amplified and sequenced as described in ‘Targeted mutation sequencing’. Sequences
were processed on Galaxy Europe (Bismark Mapper) and amplicons with incomplete conversion (C's at non-CpG
sites) were removed. After excluding 39 spots because of low epithelial content (mean methylation 5-value of three
LUMP sites <0.7), 2 spots because of low read depth (<10 target amplicon reads), and 33 spots with non-DCIS
histology (benign or invasive), we analyzed a total of 68 DCIS spots across 6 tumors. Assigning each amplicon read
to one of the 32 possible haplotypes (binary vectors of length 5), we visualized haplotype proportions in each spot

as a measure of local epigenetic heterogeneity.

Low-pass whole genome sequencing for spatial copy number profiling

A total of 19 spots were microdissected from DCIS-286; 9 spots corresponded to a spot with available somatic
mutation calls. Whole genome libraries were prepared with NEBNext™ Ultra™ Il DNA Library Prep Kit and sequenced
on lllumina NovaSeq-6000 using paired end reads extending 150 bases and demultiplexed into pairs of FASTQ files
for each sample. The FASTQ files were aligned to GRCH37 using the BWA-MEM algorithm,* and the resulting BAM
files were used in the CNV analysis pipeline implemented in the R package QDNAseq.> Count data were obtained,
smoothed, and normalized using default settings with bin annotations of size 30 kbp derived from reference
genome GRCH37 as provided in the package. CNV calls were obtained using the multi-state mixture model

CGHcall.*®

Multiplexed ion beam imaging by time of flight (MIBI-TOF)
We identified 57 fields of view (FOVs; 500um x 500 um) from microscope sections of 10 tumors in our cohort

25,57,58

(range: 4 to 6 FOVs per tumor). MIBI-TOF analysis was then performed by IONPath Inc. In brief, this
technology uses primary ion beam and secondary ion time-of-flight mass spectrometry to simultaneously measure
protein expression and interrogate the spatial organization of tissue sections. The samples were stained with 34
metal-labeled antibodies, irradiated, and then imaged using time-of-flight mass spectroscopy. The spatial resolution

of individual cells was obtained by combining the nuclear dsDNA signal with cytoplasmic and membrane markers. A
14
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deep-learning model was used to identify individual cells and score each cell for the presence of biomarkers. Cell
types were determined based on the presence/absence of biomarker combinations as follows. Focusing on
epithelial cells (pan cytokeratin-positive), we defined the following five epithelial cell types: luminal (BCL2-positive
and/or GATA3-positive); stem-like (PAX5-positive and/or SOX10-positive); basal (CK5-positive); epithelial-to-
mesenchymal (EMT; Vimentin-positive); and myoepithelial (SMA-positive). Among the 133,724 epithelial cells
identified across all 57 FOVs, 78,157 (58.4%) were assigned to at least one of the 5 subtypes, and 20% (27,267)

were assigned to two or more subtypes.

Spatial registration of spots

To construct three-dimensional maps of spot locations within each tumor (Suppl. Figure S1), we first used
the clinical pathology maps that show the spatial relationship of each paraffin block within the excised
tissue. These block maps were used to locate pathologic features with respect to surgical margins and to
determine the positions of each of the paraffin blocks included in the study along the long axis of the
tissue/tumor (referred to as the z-axis). Once positioned along the z-axis, we oriented the thin sections
from these blocks based on colored ink stains along the tissue margins. Once the slides were properly
oriented, we determined the in-plane location (x- and y-coordinates) of individual spots which had been
recorded during microdissection. The origin of the x- and y-coordinates were anchored at the center of
each slide, and spot coordinates were recorded after accounting for microscopic magnification. Combining
the in-plane x- and y-coordinates with the z-coordinate along the tumor’s long axis thus completed the

process of spatial spot registration.

Phenotypic annotation of spots

The histologic phenotype of each spot was determined in three steps. First, two board-certified breast
pathologists (A.H. and J.G.) independently reviewed the H&E slides, classified each spot as ‘normal’,
‘benign’, ‘DCIS’ or ‘invasive’, and used a free text field to provide a comprehensive description of all
‘benign’ spots. Spots where the two pathologists agreed on the main category (normal, benign, DCIS,
invasive) were considered complete (n=445, or 85%); the remaining spots (n=79, or 15%) were
adjudicated by a third board-certified breast pathologist (D.W.). A board-certified pathologist (D.S.) used
the free text annotations of all ‘benign’ spots to refine their classification as either ‘normal breast tissue,’
‘benign breast disease without atypia’, or ‘benign breast disease with atypia’. Finally, a board-certified
breast pathologist (A.H.) assigned to each DCIS spot a pathologic subtype (solid, cribriform,

micropapillary) and determined whether comedo-like features were present.

Mutation calls
Variant calling based on the tumor-specific SNV panels was performed in each spot separately, using a

previously described Bayesian inference method.*® Briefly, for any given sequencing target, the posterior
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distribution of the target's VAF f was calculated by combining a data likelihood and a prior distribution
according to Bayes’ theorem. For the data likelihood, we used a binomial model for the variant read count

K and the total read count N, accounting for a sequencing error rate e as follows

PONKIN = (}) A=)+ =P+ (fe+ A -1 - )"
Our prior belief about the VAF was modeled as a mixture
n(f) = co8(0) + (1 — co)Beta(l,ys ),
where ¢, is the prior probability of the mutation being absent (as reflected by the point mass §(0)), and, if
present, the mutation’s VAF was assumed to have a prior distribution Beta(1,y,"1), where y; is the sample
purity. Applying Bayes’ theorem, the posterior distribution of the VAF, or P(f|N,K;e, cy,7v;), can be

calculated explicitly. Finally, the posterior probability that a mutation is absent (g) or present (p) is then
given by

q=P(f < faps vsIK.N;€,C0,¥5), P=1—q,
where f,,s is a pre-defined sequencing threshold. For applications where binary mutation calls were

needed, we called individual SNVs absent if g > 95% and present if p > 95%. The handling of mutations

with g, p € [5%,95%] was determined in situ, depending on the analyses performed.

Unless otherwise specified we used the following parameter values: e = 0.01 which reflects the empirical
error rate of the sequencing platform®®; f,,. = 5% to avoid false positives mutation calls®’; ¢, = 0.5 to
reflect a lack of prior knowledge about the absence vs presence of a mutation; and y, = 0.8 to reflect the

high sample purity achieved by SURF.

Mutational signatures
To analyze the DNA mutation patterns in our cohort, we compiled a list of targeted mutations that were

present in at least one microdissected spot. Using the R package MutSignatures,®

we categorized
mutations into 96 types based on 6 possible single base pair substitution categories (C>A, C>G, C>T,
T>A, T>C and T>G) and 16 combinations of 3' and 5’ nucleotide neighbors. We performed de novo
extraction of mutational signatures using the non-negative matrix factorization method (n=1,000 bootstrap
iterations, k=2 signatures) and estimated the exposure of each tumor sample to the two signatures. In
separate analyses, we performed de novo extraction for k=3 and k=4 signatures; since these resulted in
the same two high-quality signatures as extracted for k=2, accompanied by additional low-quality
signatures, we chose k=2 for the final analysis. We then compared the two extracted signatures to the

COSMIC database (https://cancer.sanger.ac.uk/cosmic) using the cosine distance, and further assessed

whether matching signatures were breast cancer related®® or possible sequencing artefacts.

Driver mutation annotation
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Single nucleotide variants were annotated using the SIFT annotation tool (https://sift.bii.a-star.edu.sqg/),

which predicts mutation effect and functional impact on the protein. Briefly, SNVs were organized into a
VCEF file format, specifying chromosome, genomic position, and reference and alternate alleles according
to the GCRh37. The VCF file was input into the SIFT Java executable tool, which output annotated SNVs,
labeling Ensembl transcript and gene IDs, gene name, coding region (CDS, UTR_3, UTR_5), variant type
(noncoding, nonsynonymous, stop-gain, substitution, synonymous), and functional prediction (deleterious,
tolerated). SNVs with no gene label were labeled as intergenic, and SNVs with a gene label but not in a
coding or UTR region were labeled as intronic. Protein coding changes in genes that have been

functionally associated with breast cancer in either the TCGA (https://www.cancer.gov/tcga) or COSMIC

(https://cancer.sanger.ac.uk/cosmic) databases were considered putative driver mutations (Suppl. Table

S2). All others were categorized as passenger mutations.

Final study cohort

After eliminating two tumors due to PCR issues, the remaining 19 tumors comprised a total of 524
individual spots and 1,108 targeted loci. Among the 31,265 sequencing targets (each target is a spot-SNV
pair), there were 7,130 (22.8%) low-quality targets (LQTs) where either no sequencing results were
obtained or the total absolute read count was less than 20. After removing 6 spots with undefined
histology, 247 mutations that constituted LQTs in more than 40% of assayed spots, 32 germline mutations
(which were present in the matched normal with a probability 299%), and an additional 45 spots that
contained more than 40% of LQT, there were fewer than 5% of LQTs left among the 22,612 targets. At
this stage, we excluded one more tumor (DCIS-221) because of low information content: 11 of the 14
detected mutations were germline mutations, and the remaining 3 mutations were detected in only one
spot each. An overview of the LQT removal process among the 18 tumors included in the final study

cohort is found in Suppl. Figure S2.

Uncertainty quantification

For tumor statistics based on binary mutation calls, we leveraged the Bayesian framework to propagate
posterior uncertainty through Monte Carlo sampling. More precisely, for a tumor with N spots and M
mutations, we sampled T independent and identically distributed binary spot-mutation arrays S = (Sij) €
RN*M where sij ~ Bernoulli(p;;) and p;; is the posterior probability of mutation j being present in spot i.
For LQTs, because there was no data available, we used the prior probability instead. The statistic of
interest was then computed for each of the T realizations of S, and the posterior predicted mean and 95%

prediction interval were recorded. Unless otherwise specified, the default was T = 1,000.

Spatial-genetic correlation
A tumor-level spatial-genetic correlation measure was introduced to assess the degree of spatial

intratumor heterogeneity. Uncertainty was quantified as described above, and we focus here on the
17
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derivation of the statistic for a single realization of the binary array S = (sij) € RV*M for a tumor with N
spots and M mutations. First, we defined the spatial distance d,(i,j) between two spots i and j as their
Euclidian (L?) distance in R3. Next, we introduced the notion of spot i’s genotype as the vector g; =
(Si1, Siz, -, Sim) € RM and defined the genetic distance d, (i, j) between two spots i and j as the Manhattan
(L') distance between g; and g;. Finally, we calculated the spatial and genetic distances between all

N(N — 1) spot pairs and computed their correlation (Pearson’s R).

Expansion index

The expansion index (El) was introduced to distinguish, at the tumor level, between spatially discontinuous
‘skip’ lesions and continuous “patch” lesions (Suppl. Figure S6). Again, uncertainty quantification was
performed as described above, and we focus here on the derivation of the statistic for a single realization

of the binary array S = (sij) € RV*M for a tumor with N spots and M mutations. The definition of the El is

based on a bivariate characterization {(f;,d;)}}2, of the tumor's mutations, where f; is the fraction of DCIS
spots in which mutation i is present, and d; is the normalized diameter of mutation i, defined as the
maximum Euclidian distance between any two DCIS spots containing the mutation, divided by the
maximum Euclidian distance between any two DCIS spots in the tumor. As illustrated in Suppl. Figure

S6, the EI is then obtained by integrating the piecewise constant curve over the M bivariate points

1
El =J- h(x)dx,
0

where
h(x) = sup d;.

iifi<x
By definition, EI € [0,1]. If mutation diameter grows approximately linearly with the fraction of occupied
spots, then EI ~ 0.5, indicative of a continuous patch lesion. If there are mutations with a large diameter at

a low fraction of occupied spots, EI > 1, indicative of a disperse skip lesion.

Mutation energy

This statistic was introduced to quantify the mutational diversity of the tumor. Again, uncertainty
guantification was performed as described above, and we focus here on the derivation of the statistic for a
single realization of the binary array S = (sij) € RV*M for a tumor with N spots and M mutations, each of
which was detected in 21 spot(s). First, we applied hierarchical column clustering (using the Manhattan
distance) to obtain the spot genotype-clustered array § = (§ij) € RV*M_Next, in analogy with the Ising

model from statistical mechanics,®® we defined the mutation energy I, of mutation k as

1 N
I = mz 1Skj = Skij-ls
j=2
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where the normalizing factor accounts for the N — 1 possible flips and ensures that I, € [0,1] irrespective
of the number of spots in the tumor. Intuitively, I, measures, for each mutation, the number of “flips” from
“absent” to “present” along the rows of the spot-mutation array (e.g., Suppl. Figure S3). If there is only a
single spot genotype in the tumor, then [, = 0 for all k; and I, increases as both the number of different
spot genotypes and their degree of dissimilarity increase. To quantify the mutation energy at the tumor
rather than individual mutation level, we used the median and interquartile range (IQR) across all detected

mutations in the tumor.

Dimension reduction of genotype space

First, we assigned each spot i (i =1,...,N) a vector of posterior mutation probabilities p; = (pij) € RM,
where p;; is the posterior probability of mutation j being present in spot i, and M is the number of detected
mutations in the tumor. For low-quality targets and targets with read count <20, p;; was set to the prior

probability of the mutation being detected. Next, we applied t-distributed stochastic neighbor embedding to
reduce the genotype space to two dimensions (package Rtsne, v0.16, with perplexity=(N —1)/3 and

default settings otherwise).

Multiclonal invasion

For synchronous DCIS tumors, multiclonal invasion is defined as the co-occurrence of 2 or more
subclones that are present in both the in situ and invasive compartments of the tumor.** Because subclone
deconvolution is not practical for SNV panels of limited size, we derived a necessary and sufficient
condition for multiclonality in terms of individual mutations as follows. We identified mutations that were
restricted (present in <90% of eligible spots) in both the DCIS and invasive portions of the tumor. If a
mutation satisfies this pattern, this implies the existence of at least two distinct subclones (one with and
one without the mutation) both of which are present in the DCIS and invasive tumor portions, thus
satisfying the definition of multiclonal invasion. For each tumor, we counted the number of such unique

mutation patterns.

Mathematical models of DCIS growth

Here, we provide a summary only; details about model formulation and model fitting are found in the
Technical Appendix. To model DCIS growth, we combined a generative stochastic model of the binary
ductal tree structure with a stochastic model of the cellular DCIS growth dynamics. The ductal tree model
was based on the experimentally delineated dynamics of branching ductal morphogenesis, that is ductal
elongation followed by either branching into two daughter ducts, or branch termination, with equal

probability.™

Tumor growth along the ductal tree architecture was initiated by random seeding of the first DCIS cell.

Growth from this first cell to the macroscopic tumor was modeled as a two-stage process, consisting of an
19
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initial exponential expansion subject to the mutation bursts of punctuated evolution (with mutation rate u
per cell division), followed by an expansive growth along the branching tree structure. To describe the

expansive growth phase, we considered three competing models as follows.

Model 1, or Comet model, recapitulates the cellular dynamics of pubertal branching morphogenesis of the
mammary gland.*®*" In this model, the DCIS end buds are nucleated by a pool of N long-lived cancer
cells, half of which undergo intermittent asymmetric division followed by n;, generations of transit-
amplification, and half of which remain quiescent. As the end buds of the growing tumor thus move along
the pre-existing ducts, the transit-amplifying progenies of the dividing end bud cells contribute to the
growing tumor. Upon reaching a ductal branching point, the long-lived end bud cells are randomly divided
between the two daughter branches, and after a round of duplication, the two newly created end buds

begin to grow along the respective daughter ducts.

Model 2 is a variation of Model 1, whereby all cells in the DCIS end bud are assumed to undergo
intermittent asymmetric division. This variation of the Comet model was introduced to assess its sensitivity

to the separation of proliferating and quiescent end bud cells.

Model 3 is a canonical cancer evolution model characterized by uncontrolled proliferation and competition
among DCIS cells. To account for spatial crowding and resource constraints behind the actively growing
tips of the tumor, we formulated a boundary growth model where only the N cells immediately behind the
growing tips contribute to the net growth of the elongating DCIS duct. The same branching dynamics as in

Models 1 and 2 were applied.

Model fitting and model selection

We used a rejection sampling-based version of approximate Bayesian computation to fit the models to the
experimental data, estimate the posterior parameter distributions (N, u, ny,) and identify the best fitting
model.®*®° For a given model, we sampled a set of parameters from the prior distributions (see Technical
Appendix), simulated a ductal tree and DCIS tumor as described above, and compared the simulated
tumor against the experimental tumors in our study cohort using a distance function. By keeping only
parameter sets resulting in simulated tumors that were sufficiently similar to the experimental data—that
is, the distance between simulation and experiment was below a specified threshold—we thus
approximated the posterior parameter distributions. Finally, we used a joint model-parameter space
approach®® to compute the posterior marginal model probabilities and calculate the Bayes’ factors for

model selection.

Statistical analyses

20
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All statistical analyses were performed using R version 4.2.0 (R Foundation for Statistical Computing,
Vienna, Austria). All statistical tests were two-sided. Data visualizations were made with R, using the

packages ggplot2 (v3.3.6), ggbeeswarm (v0.6.0), and circlize®” (v0.4.16).

DATA AVAILABILITY

Upon publication of the manuscript, the whole exome and targeted sequencing data will be deposited in

the Sequence Read Archive database (https://www.ncbi.nlm.nih.gov/sra) under a unique accession code.

All other data supporting the findings of this study are available within the paper and its supplementary

files or available from the corresponding authors upon reasonable request.

CODE AVAILABILITY

The code archive has been submitted alongside the manuscript. Upon publication of the manuscript, the
code used to produce the results in this manuscript will be made available at
https://github.com/mdryser/D5_DCIS (MIT License).
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FIGURES

A Birth B  Puberty C ' Ductal carcinoma in situ D ' Invasive breast cancer

'/

DCIS Invasion

Figure 1: The female breast: From normal development to invasive cancer. (A) At birth, the mammary gland consists of the simple embryonic rudiment. (B)
During pubertal development, the embryonic rudiment undergoes branching morphogenesis and develops into the adult ductal tree. (C) Ductal carcinoma in
situ (DCIS) consists of neoplastic cells that are contained within the ducts and lobules of the adult mammary gland. (D) During invasive progression, DCIS cells

penetrate the basement membrane of the ducts and lobules and invade the breast stroma.
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Figure 2: Multiregional sequencing reveals spatial mutation topographies of DCIS tumors. (A) Between 2 and 5 spatially separated microscope sections were
obtained from 18 DCIS tumors. From each microscope slide, small tissue areas (spots) were microdissected, spatially registered, histologically annotated
(normal breast duct, duct with benign breast disease, duct with DCIS, invasive breast cancer), and genotyped. Genotyping was based on targeted sequencing of
tumor-specific mutation panels that had been derived from whole exome sequencing analyses of macro-dissected DCIS areas. (B) Summary of the genetic and
phenotypic spot data for all 18 DCIS tumors. Each sector groups together spots of the same tumor, and tumor labels are shown at the periphery. Differences in
height of the outermost track (mutation calls) reflect the varying mutation panel sizes for each tumor. (C) Spatial pattern of a select mutation in DCIS-66 (gene:

EP400, chr12:132472310). Shapes indicate spot histology and colors the mutation status.
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Figure 3: DCIS tumors are multiclonal and spatially heterogeneous. All analyses in this figure are restricted to DCIS spots. (A) The variant allele frequency
(VAF) spectra of detected mutations are shown for 4 select spots in DCIS-173; the VAF of two select mutations in the genes SFXN1 (blue) and NAF1 (red) are
highlighted. (B) Bivariate summary statistics for spot-level VAF spectra are shown across all DCIS spots (n=313) of the 18 tumors, with median VAF on the x-
axis, and interquartile range (IQR) of the VAF on the y-axis. Red color scheme visualizes spot density. (C) Mutation patterns for all DCIS spots in DCIS-168 are
organized by hierarchical clustering of mutations (rows) and spatial clustering of spots (columns); spatial clustering was based on one-dimensional t-distributed
stochastic neighbor embedding (t-SNE) of the spots’ spatial coordinates. (D) Mutation patterns for all DCIS spots in DCIS-173, see panel C for details and color
legend. (E) For each tumor, the spatial correlations of DCIS spot genotypes were quantified using Pearson’s R; DCIS-222 was excluded because it had only 2
DCIS spots. Monte Carlo sampling was used to account for posterior uncertainty of mutation calls, resulting in predicted means (circles) and 95% prediction
intervals (bars). Median predicted mean correlation was -0.01, without detectable differences between pure DCIS and synchronous DCIS with adjacent invasive

cancer (p=.81, Wilcoxon rank-sum test).
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Figure 4: DCIS mutations form expansive skip lesions. All analyses in this figure are restricted to DCIS spots; DCIS-222 was excluded because it only had 2 DCIS
spots. (A) The diameter of restricted mutations (found in <90% of spots; black dots) relative to the extent of the DCIS tumor itself (bar). (B) Scattered mutations
are characterized by a lack of spatial separation between spots that do and do not contain the mutation. An example from DCIS-91 is shown. Grey rectangles
represent the microscope sections (x-y plane) along the tumor’s long (z-) axis. (C) Contiguous mutations are characterized by a spatial separation of spots that
do and do not contain the mutation. An example from DCIS-168 is shown; see also description of panel B. (D) The expansion index (EI) of a tumor characterizes
the degree of mutation scattering, ranging from contiguous ( ) to scattered ( ). Monte Carlo sampling was used to account for posterior
uncertainty of mutation calls, resulting in predicted means (circles) and 95% prediction intervals (bars). Median El was 0.74 across all tumors, without

detectable difference between pure DCIS (median: 0.71) and synchronous DCIS with adjacent invasive cancer (median: 0.74; p=0.88, Wilcoxon rank-sum test).
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Figure 5: The Comet model of DCIS tumorigenesis. (A) A modified Muller plot illustrating the typically observed data in our cohort. After initial expansion of
early subclones, the growth patterns are characterized by multiclonal ducts and disperse skip lesions. (B) The Comet model of DCIS growth recapitulates the
dynamics of pubertal branching morphogenesis. During ductal elongation (top), the long-lived neoplastic cells of the DCIS end bud undergo intermittent
proliferation; after transit-amplification, the clustered progenies of the long-lived cells become embedded in the growing multiclonal DCIS duct. During
branching (bottom), the end bud cells are randomly distributed between the two daughter branches where they duplicate, and the two resulting end buds
start growing along their respective daughter branches. (C) Mutation patterns resulting from the Comet model. Left: DCIS growth is initiated at the starting

node and propagated across the ductal tree, with pie charts indicating the local variant allele frequencies (VAFs) of a select mutation. Right: the hierarchically
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912 clustered mutation pattern corresponding to the simulation in the left panel, illustrating the local presence/absence of mutations (rows) across the examined
913 duct cross-sections (columns). (D) A modified Muller plot illustrating the expected subclone frequencies that arise from a canonical model of cancer evolution
914 along the ductal tree. Initial expansion of the first DCIS cell and subsequent branching growth are governed by quasi-neutral clonal evolution. Due to the thin
915 tube-like geometry of the ducts, individual subclones are expected to rapidly go extinct or fixate, resulting in monoclonal ducts. (E) As in C, but instead using a
916 canonical model of cancer evolution, see Methods for details. (F) Spatial distribution of epithelial cell types in two DCIS-filled ducts, generated by multiplexed
917 ion-beam imaging (MIBI). Each field of view (FOV) is of size 500um x 500um; corresponding color legend at the bottom of panel G. (G) A total of 57 FOVs across
918 10 tumors, including 49 DCIS ducts, 2 normal breast ducts, and 8 areas of invasive cancer were analyzed using MIBI. Where applicable, spot ID (top) maps each
919 FOV to the corresponding spot label from the mutational analysis. Epithelial cells (PanCK+) were classified as either luminal (BCL2+ and/or GATA3+), stem-like
920 (PAX5+ and/or SOX10+), basal (CK5+), epithelial-to-mesenchymal (Vimentint), or myoepithelial (SMA#+); for cells assigned to multiple subtypes, we
921 distinguished the three most common combinations, and grouped the less frequent combinations; cells that did not match any of the subtypes were classified
922 as not otherwise specified (NOS).
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Figure 6: Phenotypic plasticity and multiclonal expansion. (A-C) Mutational summary of DCIS-66. (A) Mutation flow across the phenotypic spectrum of breast
disease, from normal breast tissue and benign breast disease to DCIS and invasive cancer; n indicates the total number of mutations detected among spots of a
given histology. The vertical rectangles represent individual spots, and their color indicates the corresponding microscope slide. Grey connections indicate one
or more shared mutation(s) in the absence of shared putative driver mutations, and red connections indicate one or more shared putative driver mutation(s).
(B) Venn diagram summarizing shared mutations (drivers and passengers) across spot histologies. (C) t-distributed stochastic neighbor embedding (t-SNE) of
spot genotypes, with colors indicating spot histology. (D-F) Mutational summary of DCIS-173. See captions of panels A, B, and C for details about panels D, E
and F, respectively. (G) Example of a mutation pattern that indicates multiclonal invasion: the mutation is present in some but not all DCIS spots, and in some

but not all invasive spots. Such a pattern indicates that two distinct cell populations, one with and one without the mutation, are present both inside and
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outside the ducts. (H) Multiclonal invasion patterns were found in all 8 tumors that had both DCIS and invasive spots; duplicate patterns were excluded. Monte

Carlo sampling was used to account for posterior uncertainty of mutation calls, resulting in predicted means (bars) and 95% prediction intervals (error bars).
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