

1 **A Specialized Epithelial Cell Type Regulating Mucosal Immunity and**
2 **Driving Human Crohn's Disease**

3 Jia Li^{1,2}, Alan J. Simmons^{3,4}, Sophie Chiron⁵, Marisol A. Ramirez-Solano^{1,2}, Naila
4 Tasneem^{3,4}, Harsimran Kaur^{3,6}, Yanwen Xu^{3,4}, Frank Revetta⁷, Paige N. Vega^{3,4}, Shunxing
5 Bao^{8,9}, Can Cui^{8,9}, Regina N. Tyree⁵, Larry W. Raber⁵, Anna N. Conner⁵, Dawn B.
6 Beaulieu⁵, Robin L. Dalal⁵, Sara N. Horst⁵, Baldeep S. Pabla⁵, Yuankai Huo^{8,9}, Bennett A.
7 Landman^{8,9}, Joseph T. Roland^{3,10}, Elizabeth A. Scoville^{5,12}, David A. Schwartz⁵, M. Kay
8 Washington^{7,12}, Yu Shyr^{1,2}, Keith T. Wilson^{5,7,11,12*}, Lori A. Coburn^{5,11,12*}, Ken S.
9 Lau^{1,3,4,6,10,12*}, Qi Liu^{1,2*}.

10 *Corresponding authors:

11 keith.wilson@vumc.org; lori.coburn@vumc.org; ken.s.lau@vanderbilt.edu;
12 qi.liu@vumc.org

13 ¹Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN,
14 USA

15 ²Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA

16 ³Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA

17 ⁴Department of Cell and Developmental Biology, Vanderbilt University School of
18 Medicine, Nashville, TN, USA

19 ⁵Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine,
20 Vanderbilt University Medical Center, Nashville, TN, USA

21 ⁶Program in Chemical and Physical Biology, Vanderbilt University School of Medicine,
22 Nashville, TN, USA

23 ⁷Department of Pathology, Microbiology, and Immunology, Vanderbilt University
24 Medical Center, Nashville, TN, USA

25 ⁸Department of Electrical and Computer Engineering, Vanderbilt University, Nashville,
26 TN, USA

27 ⁹Department of Computer Science, Vanderbilt University, Nashville, TN, USA

36
37
38
39
40
41
42
43

¹⁰Department of Surgery, Vanderbilt University Medical Center, Nashville TN, USA

¹¹Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA

¹²Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA

44 ABSTRACT: Crohn's disease (CD) is a complex chronic inflammatory disorder that may
45 affect any part of gastrointestinal tract with extra-intestinal manifestations and
46 associated immune dysregulation. To characterize heterogeneity in CD, we profiled
47 single-cell transcriptomics of 170 samples from 65 CD patients and 18 non-inflammatory
48 bowel disease (IBD) controls in both the terminal ileum (TI) and ascending colon (AC).
49 Analysis of 202,359 cells identified a novel epithelial cell type in both TI and AC, featuring
50 high expression of *LCN2*, *NOS2*, and *DUOX2*, and thus is named LND. LND cells,
51 confirmed by high-resolution in-situ RNA imaging, were rarely found in non-IBD controls,
52 but expanded significantly in active CD. Compared to other epithelial cells, genes defining
53 LND cells were enriched in antimicrobial response and immunoregulation. Moreover,
54 multiplexed protein imaging demonstrated that LND cell abundance was associated with
55 immune infiltration. Cross-talk between LND and immune cells was explored by ligand-
56 receptor interactions and further evidenced by their spatial colocalization. LND cells
57 showed significant enrichment of expression specificity of IBD/CD susceptibility genes,
58 revealing its role in immunopathogenesis of CD. Investigating lineage relationships of
59 epithelial cells detected two LND cell subpopulations with different origins and
60 developmental potential, early and late LND. The ratio of the late to early LND cells was
61 related to anti-TNF response. These findings emphasize the pathogenic role of the

62 specialized LND cell type in both Crohn's ileitis and Crohn's colitis and identify novel
63 biomarkers associated with disease activity and treatment response.

64

65 **INTRODUCTION**

66 Inflammatory Bowel Disease (IBD), comprising Crohn's disease (CD) and ulcerative
67 colitis (UC), is characterized by chronic, relapsing inflammation in the gastrointestinal
68 tract (Kaser et al., 2010). CD can affect any portion of the gastrointestinal tract with
69 inflammation that can span across all layers of the gut, while UC is localized to the colon
70 and rectum and confined to the mucosa. IBD is believed to be driven from the complex
71 interplay between environmental factors and genetic susceptibilities, resulting in
72 dysregulated immune responses to environmental triggers and the breakdown of the
73 epithelial barrier and intestinal homeostasis (Torres et al., 2017; Van Heel et al., 2001;
74 Yang and Jostins-Dean, 2022). Genome-wide association studies have revealed more
75 than 200 IBD-susceptibility genes, which are involved in microbial sensing, antigen
76 presentation, autophagy, T-cell signaling, and other immune-related pathways (de Lange
77 et al., 2017; Jostins et al., 2012; Liu et al., 2015; Momozawa et al., 2018).

78

79 A wide range of cell types orchestrate intestinal host defense to environmental exposures.
80 Characterizing cellular organizations and their rewiring in intestinal development and
81 response to inflammation is of great importance to understanding IBD pathogenesis and
82 to reveal novel potential treatment options. Recent studies utilized single cell and spatial
83 omics profiling to provide an unbiased census of cell lineages and to characterize their
84 functional states in healthy control and IBD samples (Boland et al., 2020; Bomidi et al.,
85 2021; Burclaff et al., 2022; Elmentait et al., 2021; Elmentait et al., 2020; Fawkner-

86 Corbett et al., 2021; Friedrich et al., 2021; Haber et al., 2017; Jaeger et al., 2021; Kanke et
87 al., 2022; Li et al., 2021; Martin et al., 2019; Mitsialis et al., 2020; Moor et al., 2018;
88 Parikh et al., 2019; Rosati et al., 2022; Smillie et al., 2019; Uniken Venema et al., 2019;
89 Zhou et al., 2022). These studies successfully identified novel cells, dissected well-known
90 cell types at high resolution, and revealed spatial, temporal, and functional heterogeneity
91 of cellular compositions (Burclaff et al., 2022; Elmentait et al., 2021; Fawkner-Corbett
92 et al., 2021; Haber et al., 2017; Moor et al., 2018; Parikh et al., 2019). Comparing cellular
93 differences between IBD and healthy controls, they found molecular and cellular
94 alterations in disease, identified cellular modules associated with drug response, and built
95 transcriptional links between the developing gut and childhood CD (Elmentait et al.,
96 2020; Friedrich et al., 2021; Martin et al., 2019; Smillie et al., 2019). While their main
97 findings centered around immune cell signatures and immune-stromal interactions, few
98 studies have shed light on epithelial cells regulating immune response and driving disease.
99 Moreover, CD often involves the ileum where Paneth cells are abundant, while the colon
100 contains no or few Paneth cells. Whether Crohn's ileitis and Crohn's colitis/UC act
101 through a common mechanism remains largely unknown.

102
103 In this study, we combined bulk and single-cell RNA profiling, multiplexed imaging of
104 proteins and RNAs, and spatial transcriptomics to study molecular and cellular
105 remodeling and reorganization in active/inactive CD compared to non-IBD controls in
106 both the terminal ileum (TI) and ascending colon (AC). We not only discovered rewiring
107 of epithelial, stromal, and immune cells, but also identified a specific epithelial cell type
108 in CD, which we named “LND cells” given their high expression of *LCN2*, *NOS2*, and
109 *DUOX2*. LND cells are present in both the TI and AC of CD patients and expand with

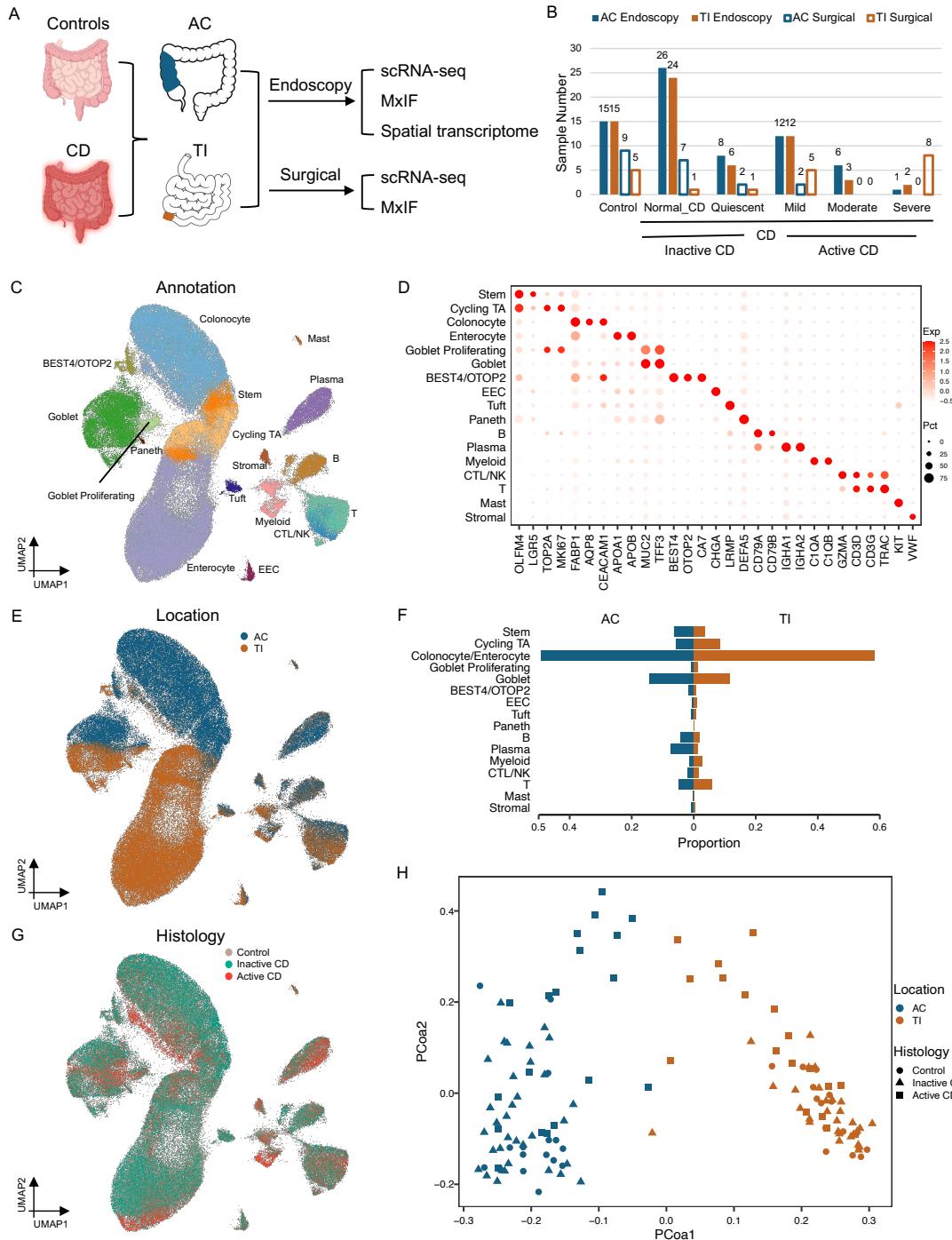
110 disease activity. LND cells specialize in regulating defense responses by recruiting and
111 activating immune cells as signaling senders. Multiplexed imaging and spatial
112 transcriptomics further demonstrated cross-talk between LND and immune cells. LND
113 cells are a disease-critical cell type indicated by highly specific expression of IBD
114 susceptibility genes. The presence of the LND cell type in both the TI and AC in CD
115 patients suggests a common link to dysregulated host-environment interactions. A high
116 resolution view of LND cells identified two subpopulations with different stem-potential
117 and their ratio was associated with anti-TNF treatment response.

118

119 **RESULTS**

120 **Cellular landscape of terminal ileum and ascending colon in non-IBD control 121 and CD**

122 We profiled 82 TI and 88 AC specimens from either endoscopic biopsies or surgical
123 resection specimens across 83 unique individuals (65 CD patients and 18 non-IBD
124 controls) using single-cell RNA-sequencing (scRNA-seq), representing one of the largest
125 cohorts of CD patients profiled (Fig. 1A and Table S1). Non-IBD endoscopic specimens
126 were collected from individuals presenting for colonoscopy for colorectal cancer
127 screening or colon polyp surveillance without evidence of intestinal inflammation, while
128 non-IBD surgical specimens were taken from normal adjacent tissue from patients
129 undergoing surgical resection of endoscopically unresectable polyps in the cecum or
130 ascending colon. Patient characteristics were as follows: ethnic background (CD: 77%
131 white, 15% African American, 5% Asian, and 3% Hispanic; Control: 83% white, 11%
132 African American, and 6% Hispanic), sex (CD: 63% female, 37% male; Control: 61%
133 female, 39% male), and age (CD: 18-75; Control: 45-70) (Table S1). 6% of CD patients


134 were treatment naïve, with the rest currently undergoing various treatments or previously
135 treated for their CD symptoms (Table S1). Disease severity of each specimen was classified
136 as active CD (31 mild, 9 moderate, and 11 severe) and inactive CD (58 normal and 17
137 quiescent) based on histopathologic analysis (Fig. 1B). The non-IBD specimens
138 comprised 20 TI and 24 AC (Fig. 1B). In 77% of cases, matching TI and AC samples were
139 collected from the same individual (Table S1).

140
141 After quality control, 155,093 cells from endoscopic specimens and 47,266 cells from
142 surgical specimens were retained, and these datasets were analyzed separately (Table S2).
143 Louvain clustering on single cells from endoscopic specimens revealed major cell types
144 within the epithelial compartment (enterocytes/colonocytes, transit amplifying (TA) cells,
145 stem cells, goblet cells, goblet proliferating cells, BEST4/OTOP2 cells, tuft cells,
146 enteroendocrine cells (EEC), and Paneth cells - only in the TI), and the non-epithelial
147 compartment (T cells, B cells, plasma cells, myeloid cells, cytotoxic T/natural killer
148 (CTL/NK) cells, mast cells, and stromal cells) (Fig. 1C). Cell types were manually curated
149 by known marker genes with TI enterocytes expressing *APOA1/APOB*, AC colonocytes
150 expressing *AQP8*, TA cells expressing *MKI67*, stem cells expressing *LGR5*, goblet cells
151 expressing *MUC2* and *TFF3*, goblet proliferating cells expressing both *MUC2* and *MKI67*,
152 crypt absorptive cells expressing *BEST4* and *OTOP2*, Paneth cells expressing defensins
153 such as *DEFA5* and *DEFA6*, T cells expressing *CD3D* and *CD3G*, B cells expressing *CD79A*
154 and *CD79B*, plasma cells expressing *IGHA1* and *IGHA2*, myeloid cells expressing *C1QA*
155 and *C1QB*, mast cells expressing *KIT*, CTL/NK cells expressing *GZMA*, and stromal cells
156 expressing *VWF* (Fig. 1D). These results are consistent with cell types identified by

157 previous scRNA-seq studies of the healthy human small intestine and colon (Burclaff et
158 al., 2022; Fawkner-Corbett et al., 2021).

159

160 The largest transcriptomic difference was derived from absorptive cells from TI or AC (Fig.
161 1E). The most distinguishing marker genes for TI enterocytes were *APOA1* and *APOB*,
162 which encode apolipoproteins and play a key role in intestinal lipid absorption. In
163 contrast, AC colonocytes were marked by *AQP8*, a major transcellular water transporter
164 (Fig. 1D). Differential transcriptional programs between TI enterocytes and AC
165 colonocytes were identified (Fig. S1A), which reflected tissue-specific functions. Genes
166 highly expressed in the TI were enriched in programs of protein/fat/vitamin absorption
167 and processing, while genes highly expressed in the AC were enriched in nitrogen/sulfur
168 metabolism (Fig. S1B), consistent with the nutrient digestion function of the small
169 intestine and the interaction of the colon with microbial metabolites. Furthermore,
170 signatures of region-specific development programs were also different between TI and
171 AC. AC cells expressed hindgut-specific transcription factors such as *SATB2* and *CDX2*
172 (Gu et al., 2022; Munera et al., 2017; Stringer et al., 2012), as well as the colon-specific
173 chloride anion exchanger *SLC26A3*, also known as DRA (Down-regulated in
174 adenoma)(Chatterjee et al., 2017) (Fig. S1A). In contrast, TI cells exhibit increased
175 expression of machinery that organizes the brush border, including *VIL1* (Villin) and
176 *CDHR2*, also known as protocadherin-24 (Crawley et al., 2014) (Fig. S1A).

177

178 Figure 1. A) Schematic for processing endoscopic and surgical specimens from TI and AC for non-
 179 IBD controls, inactive and active CD patients. B) Summary of the number of samples in each
 180 group. C) UMAP of 155,093 cells from endoscopy samples colored by cell types. D) Dotplot
 181 showing markers for each cell type. E) UMAP of 155,093 cells colored by tissue origin, TI (brown)
 182 or AC (blue). F) Proportion of each cell type in TI (brown) and AC samples (blue). G) UMAP of
 183 155,093 cells colored by disease status, control (tan), inactive (green) or active CD (red). H) MDS
 184 plot of cellular compositional differences across all endoscopic specimens.

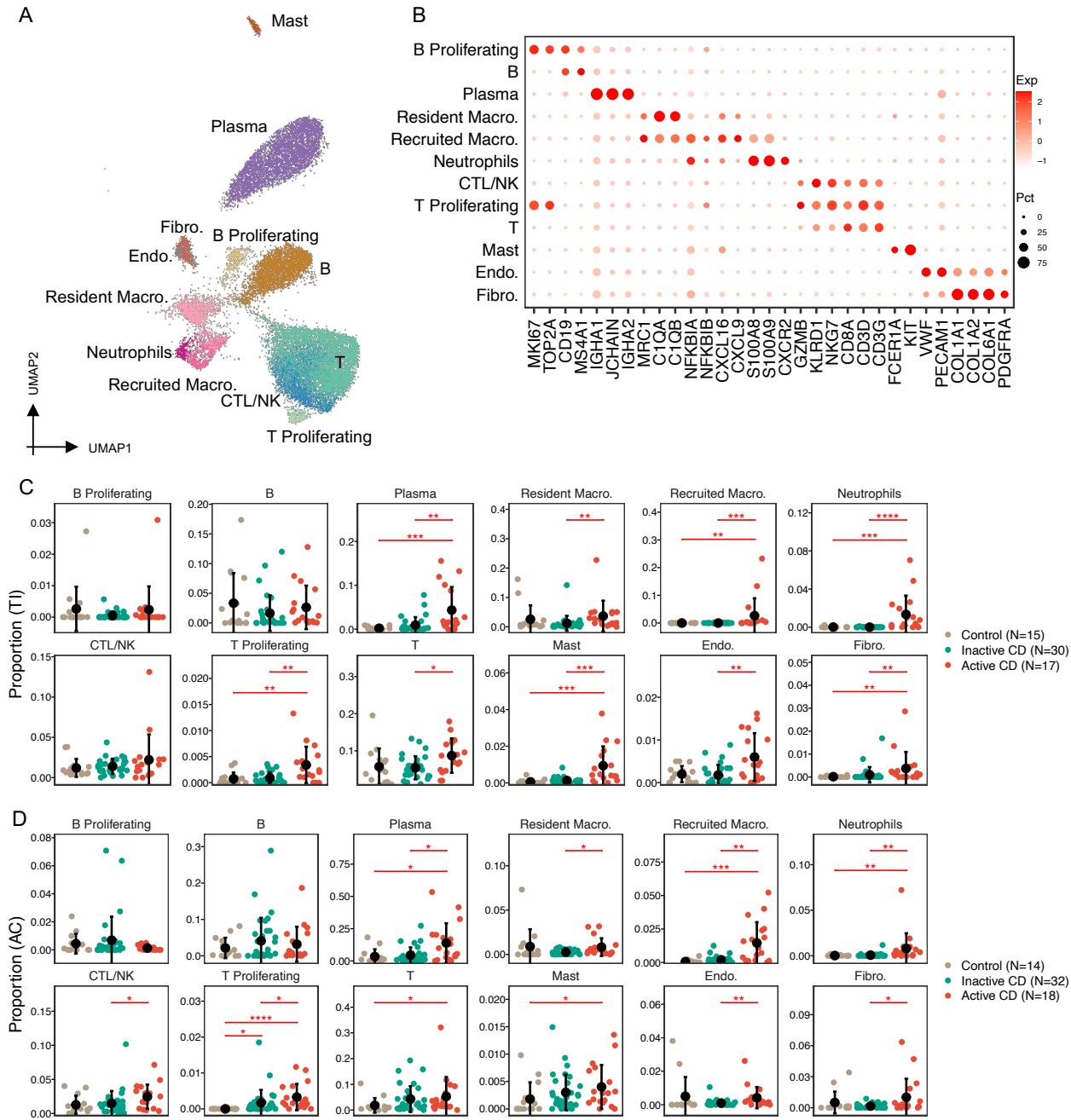
185 Differences in goblet, EEC, and tuft cells between human TI and AC have not been fully
186 investigated previously. We found that expression of region-specific genes identified in
187 absorptive cells were also generally different in goblet, EEC, and tuft cells between TI and
188 AC (Fig. S1C). Interestingly, there are region-specific genes that are also cell type-specific
189 (Fig. S1C). For instance, *BEST2* was exclusively expressed in AC goblet cells, but not in TI
190 goblet cells or other AC epithelial cell types (Figs. S1C and S1D) (Ito et al., 2013). *XBP1*,
191 an ER stress response factor commonly expressed highly in secretory cells, was more
192 highly expressed in TI goblet cells (Figs. S1C and S1D). SNPs in *XBP1* have been found to
193 confer increased risk for developing IBD (Kaser et al., 2008), pointing towards an
194 overload of protein production and ER stress that can potentially lead to secretory cell
195 and barrier dysfunction, tipping the balance toward IBD. *RGS13* was exclusively
196 expressed in TI tuft cells (Figs. S1C and S1D). *NTS* and *CLU* were exclusively expressed in
197 TI EEC cells (Figs. S1C and S1D). EEC cells have been shown to act as facultative stem
198 cells upon certain types of damage (Vega et al., 2019). Clusterin expression in TI EEC cells
199 may implicate stem cell activation in the context of TI epithelial restitution as a response
200 to damage, as clusterin was recently identified as a marker of revival stem cells (Ayyaz et
201 al., 2019). Regarding immunological genes, AC goblet cells expressed more *IL1R2*,
202 suggesting they were more sensitive to inflammatory stimuli (Fig. S1C). TI enterocytes
203 expressed more *CCL25*, which is a chemokine ligand for CCR9 expressed on T cells
204 responsible for inflammatory T cell recruitment (Wendt and Keshav, 2015) (Fig. S1A).
205 While the TI and AC have distinct epithelial transcriptional programs, expression profiles
206 of immune and stromal cells between the two sites largely overlapped, with similar cell
207 types identified (Figs. 1C and 1E). In addition, the TI and AC exhibited similar
208 composition of epithelial, stromal, and immune cells (Fig. 1F).

209 Transcriptomic differences were also observed as a function of disease activity (Fig. 1G).
210 UMAP co-embedding revealed a shift of epithelial cell transcriptional state from non-IBD
211 control, inactive, to active CD (Fig. 1G), indicating transcriptional changes driven by
212 inflammation. Quantifying cellular compositional distances between individuals by
213 scUniFrac (Liu et al., 2018) revealed that disease status is one of the main factors driving
214 compositional shifts (Fig. 1H). Surprisingly, UMAP co-embedding revealed intermixing
215 of cells from different individuals with the same disease status, suggesting only subtle if
216 any patient-specific variability (Fig. 1G).

217

218 Analysis of 47,266 cells from surgical specimens generated similar results, with similar
219 epithelial and non-epithelial cell types identified by marker genes and gene signatures
220 (Figs. S2A, S2E, and S2G). The same differences between transcriptional programs of the
221 TI and AC were observed in data generated from biopsies (Fig. 1E) and surgical resections
222 (Fig. S2B). Furthermore, shifts in cell populations as a function of disease activity were
223 also observed in the two specimen types (Fig. S2C and S2F). However, cell distributions
224 between biopsies and surgical resections were different, with endoscopic biopsies
225 dominated by epithelial cells and surgical specimens enriched for immune and stromal
226 cells (Fig. S2D). This result reflects the superficial mucosal sampling of biopsies versus
227 deeper submucosal sampling of surgical resections. For the rest of the analysis, we mainly
228 focused on endoscopic specimens, which had a larger sample size with more evenly
229 distributed disease status compared with surgical specimens.

230


231

232

233 **Distinct immune and stromal cellular organizations in active CD**

234 Because CD is inherently characterized as an inflammatory disease, we set out to delineate
235 changes within the immune and stromal compartments as a function of disease activity
236 within our CD specimens. High resolution clustering revealed 12 populations of immune
237 and stromal cells (Fig. 2A), with T cells expressing *CD3D* and *CD3G*, CTL/NK cells
238 expressing *GZMB*, *KLRD1* (*CD94*), and *NGK7*, B cells expressing *CD19* and *MS4A1*
239 (*CD20*), and plasma cells expressing immunoglobins such as *IGHA1*, *IGHA2*, and
240 *JCHAIN*. Proliferative T and B cells were also marked by a proliferative signature
241 including *TOP2A* and *MKI67*. Within myeloid cells, mast cells were annotated by high
242 expression of *KIT* and *FCER1A*, and neutrophils were marked by high expression of
243 *S100A8*, *S100A9*, and *CXCR2* (Fig. 2B). We also recovered two types of macrophages.
244 Resident macrophages expressed tissue residency markers *MRC1* and complement genes
245 *C1QA* and *C1QB*, while recruited macrophages highly expressed inflammatory molecules,
246 such as *NFKBIA*, *NFKBI*, *CXCL16*, and *CXCL9* (Fig. 2B). We identified fibroblasts
247 expressing *PDGFRA* and ECM genes, such as *COL1A1*, *COL1A2*, and *COL6A1* and
248 endothelial cells expressing *VWF* and *PECAM1* (Fig. 2B).

249

250
251 Figure 2. A) UMAP of immune and stromal cells, colored by cell type. B) Dotplot of
252 markers in each cell type. C) Proportional changes of each immune and stromal cell type
253 from non-IBD controls to inactive and active CD patients in TI. D) Proportional changes
254 of each immune and stromal cell type from non-IBD controls to inactive and active CD
255 patients in AC (* FDR<0.05, ** FDR<0.01, *** FDR<0.001, **** FDR<0.0001).
256

257 As expected, cellular composition within the immune and stromal compartments differed
258 significantly between inactive and active CD (Table S3). Almost all immune and stromal
259 cell numbers increased significantly in active compared to inactive CD (Figs. 2C and 2D),
260 with the exception of B cells, proliferating B cells, and CTL/NK cells in the TI (Fig. 2C),
261 and mast cells, B cells, proliferating B cells, and T cells in the AC (Fig. 2D). Among them,
262 neutrophils and recruited macrophages showed the most significant elevation in active
263 CD, in both TI and AC. The proportion of neutrophils increased from 0% to 1.3%
264 (FDR=2e-6) in TI and from 0.06% to 0.7% in AC (FDR=0.002), which is not surprising
265 as the presence of neutrophils is a hallmark of histologically active disease, while the
266 proportion of recruited macrophages increased from 0% to 2.7% in TI (FDR=1e-4) and
267 from 0.19% to 1.5% in AC (FDR=0.002)(Figs. 2C and 2D). Beyond cellular compositional
268 changes, transcriptional upregulation of pro-inflammatory genes was observed in active
269 CD compared to inactive CD within each cell type (Fig. S3A). Inflammatory signaling
270 programs characteristic of the type 1 immune response appear to be upregulated in almost
271 all immune cells; these include components of the JAK/STAT (*JAK3*, *STAT1*, *SOCS1*)
272 pathway and a large variety of interferon regulatory factors (IRFs) and interferon
273 stimulated genes (ISGs). Consequently, antigen-presentation genes, such as *CD74*, *B2M*,
274 *HLA-A*, *HLA-B*, and others, were upregulated in both lymphoid and myeloid cell types
275 (Fig. S3A). T cells were characterized by increases in both cytotoxic (*GZMB*, *NKG7*) and
276 exhaustion phenotypes (*LAG3*, *TIGIT*) (Fig. S3A). Resident macrophages in active CD
277 specifically increased expression of various cathepsins (such as *CTSB* and *CTSC*) that are
278 important in microbial defense, as well as *CXCL9* that is important in further recruitment
279 of CXCR3+ T cells (Figs. S3A).

280

281 Immune and stromal cell compositions were mostly unchanged between inactive CD and
282 controls, with the exception of T proliferating cells in the AC, which was slightly increased
283 in inactive CD (from 0% to 0.17%, FDR=0.02) (Fig. 2D). However, transcriptional
284 upregulation of proinflammatory genes was still observed in a cell type-specific manner,
285 such as overexpression of MHCII genes, such as *HLA-DRB5* and *HLA-DPB1* in B cells, and
286 *HLA-DQB1* in both B cells and resident macrophages (Fig. S3B).

287

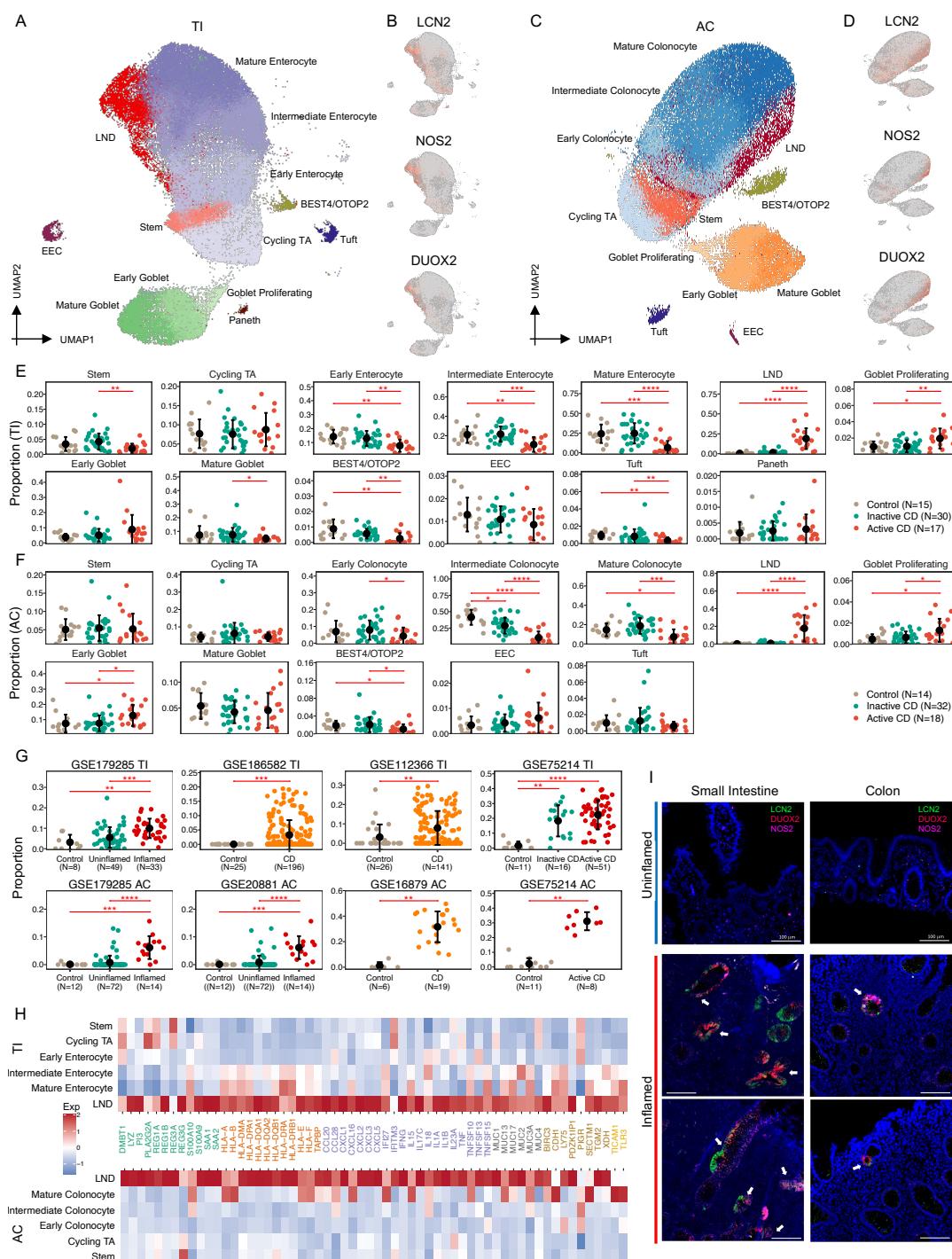
288 Analysis of surgical samples revealed similar cell types (Fig. S4A). Furthermore, we
289 identified three subtypes of fibroblasts, *PDGFRA*+ fibroblasts, *ABCA8*+ fibroblasts, and
290 *PDPN*+ fibroblasts in both the TI and AC (Fig. S4A). The three subtypes had distinct
291 expression profiles. *ABCA8*+ fibroblasts had high expression of *ABCA8*, *CFD* and *SFRP2*,
292 *PDGFRA*+ fibroblasts had enriched expression of *PDGFRA*, *CXCL14*, and *ADGRL3*, and
293 *PDPN*+ fibroblasts were marked by high expression of *PDPN*, *MMP1*, and *SOD2* (Fig.
294 S4B). The *PDGFRA*+ fibroblasts in the surgical samples were similar to fibroblasts
295 identified in TI and AC endoscopic biopsies (Fig. S4C). The *PDPN*+ fibroblasts, also called
296 activated or inflammatory fibroblasts, reside in the submucosa of the inflamed intestine
297 outside of the lamina propria (Friedrich et al., 2021). They have been proposed as a
298 central hub in IBD with an essential role in hematopoietic-stromal interactions (Friedrich
299 et al., 2021; Martin et al., 2019; West et al., 2017). An increasing trend was observed for
300 most stromal cell types in the TI (not implemented in the AC due to only two active CD
301 surgical samples), especially *PDPN*+ fibroblasts (Fig. S4D). Increases in recruited
302 macrophages and neutrophils were observed in surgical specimens similar to the
303 endoscopic biopsies (Fig. S4D). However, the increases were not statistically significant
304 due to limited sample sizes in the TI surgical samples.

305 **A novel LND cell cluster specialized in regulating mucosal immunity**

306 Deep annotation of epithelial cells revealed a continuum of cells consisting of stem, TA,
307 early, intermediate, and mature enterocytes/colonocytes (Figs. 3A and 3C) (Burclaff et al.,
308 2022; Fawkner-Corbett et al., 2021). Most interestingly, we identified a novel absorptive
309 cell type that emerges and then expands during active inflammation in both the TI and
310 AC. This subpopulation was marked by high expression of *LCN2*, *NOS2*, and *DUOX2*,
311 therefore, we named it LND (Figs. 3B and 3D). LND cells were rare in non-IBD control
312 tissues, increased marginally in inactive CD (0.3% to 1.3%, FDR=0.5 in TI; 0.06% to 0.6%,
313 FDR=0.1 in AC), and expanded significantly in active CD (1.3% to 18.9%, FDR=1.7e-6 in
314 TI; 0.6% to 17.8%, FDR=1e-5 in AC) (Figs. 3E and 3F; Table S3). The increase was
315 observed both in the TI and AC, even though absorptive cells from both regions, as well
316 as LND cells, have distinct transcriptomes. The proportion of LND cells was not
317 associated with medication exposures (Fig. S5). LND cells increased at the expense of
318 early, intermediate, and mature enterocytes/colonocytes, as well as *BEST4*/*OTOP2* crypt-
319 top cells as CD progresses from inactive to active disease (Figs. 3E and 3F; Table S3). The
320 emergence and expansion of the LND cluster in actively inflamed tissues was also
321 observed in surgical TI samples (Fig. S6).

322

323 We verified the emergence and expansion of LND cells in CD in six independent studies
324 with publically available datasets and clinical information on disease activity.
325 Consistently, LND cells were rare in healthy controls and emerged in uninflamed CD and
326 expanded significantly in inflamed CD (Fig. 3G). Significant expansion of LND cells was
327 observed from uninflamed to inflamed CD in both TI and AC in GSE179285 (FDR=1e-4
328 in TI and FDR=4e-9 in AC) (Fig. 3G). In GSE75214, LND cells also expanded from healthy


329 controls to inactive CD in TI (FDR=4e-4) and to active CD in AC (FDR=2e-4) (Fig. 3G). A
330 similar trend was detected in four other independent studies (GSE186582 and GSE12366
331 in TI, and GSE20881 and GSE66207 in AC) (Fig. 3G). The increase of LND cells at the
332 expense of mature enterocytes/colonocytes was also observed in the six studies (Figs. S7
333 and S8).

334
335 Genes defining the LND cell cluster, *LCN2*, *NOS2*, and *DUOX2*, are all involved in host
336 response to microbiota. *LCN2*, lipocalin 2, acts as an antimicrobial protein, which
337 attenuates bacterial growth by binding and sequestering iron-scavenging siderophores
338 (Goetz et al., 2002). *LCN2* is a serum and fecal biomarker for intestinal inflammation
339 (Stallhofer et al., 2015), and it has been reported to be increased in serum from CD
340 patients (Scoville et al., 2019). *NOS2*, nitric oxide synthase 2, is an enzyme catalyzing the
341 production of nitric oxide (NO), a broad-spectrum anti-bacterial agent (Muhl et al., 2011),
342 and *NOS2* has been shown to be increased in colonic tissues from both CD and UC
343 patients (Coburn et al., 2016). *DUOX2*, dual oxidase 2, produces hydrogen peroxide that
344 supports mucosal oxidative antimicrobial defense. *DUOX2* has been found to be
345 upregulated in intestinal inflammation in a TLR-4-dependent manner (Burgueno et al.,
346 2021) and is involved in NOD2-mediated antibacterial response (Lipinski et al., 2009).
347 In addition to these marker genes, LND cells also express a high level of anti-microbial
348 peptides (AMPs), including *DMBT1*, *REG1A*, *REG1B*, *REG3G*, *PI3*, *S100A9*, *LYZ*, *SAA1*,
349 and *SAA2*, and upregulate transmembrane mucins (*MUC13*, *MUC17*, and *MUC3A*) that
350 form the glycocalyx, which acts a physical barrier to luminal antigens (Fig. 3H).
351 Downstream of immediate microbial defense, LND cells also overexpress genes that
352 orchestrate immune responses. These include pattern recognition receptors *TLR3* and its

353 interacting partner *TICAM1*, inflammatory signaling and immunity modulator *BIRC3*,
354 antigen-presenting machinery (*HLA-B*, *HLA-A*, *HLA-DPA1*, *HLA-E*, *HLA-F*, *HLA-DQA1*,
355 *HLA-DQB1*, *HLA-DQA2*, and *TAPBP*), and cytokines (*CCL2O*, *CCL28*, *CXCL1*, *CXCL2*,
356 *CXCL3*, *CXCL5*, *CXCL16*, *TNF*, *IFNG*, *IL13A*, and *IL17C*) (Fig. 3H). Functional analysis of
357 genes upregulated only in LND cells compared to other epithelial cells found that they
358 were enriched in antigen processing and presentation, Th17 cell differentiation, Th1 and
359 Th2 cell differentiation, HIF-1 signaling pathway, and TNF signaling pathway (Fig. S9).
360 These results suggest that the LND cell cluster that expands in active inflammation serves
361 specialized functions of antimicrobial response and immunoregulation.

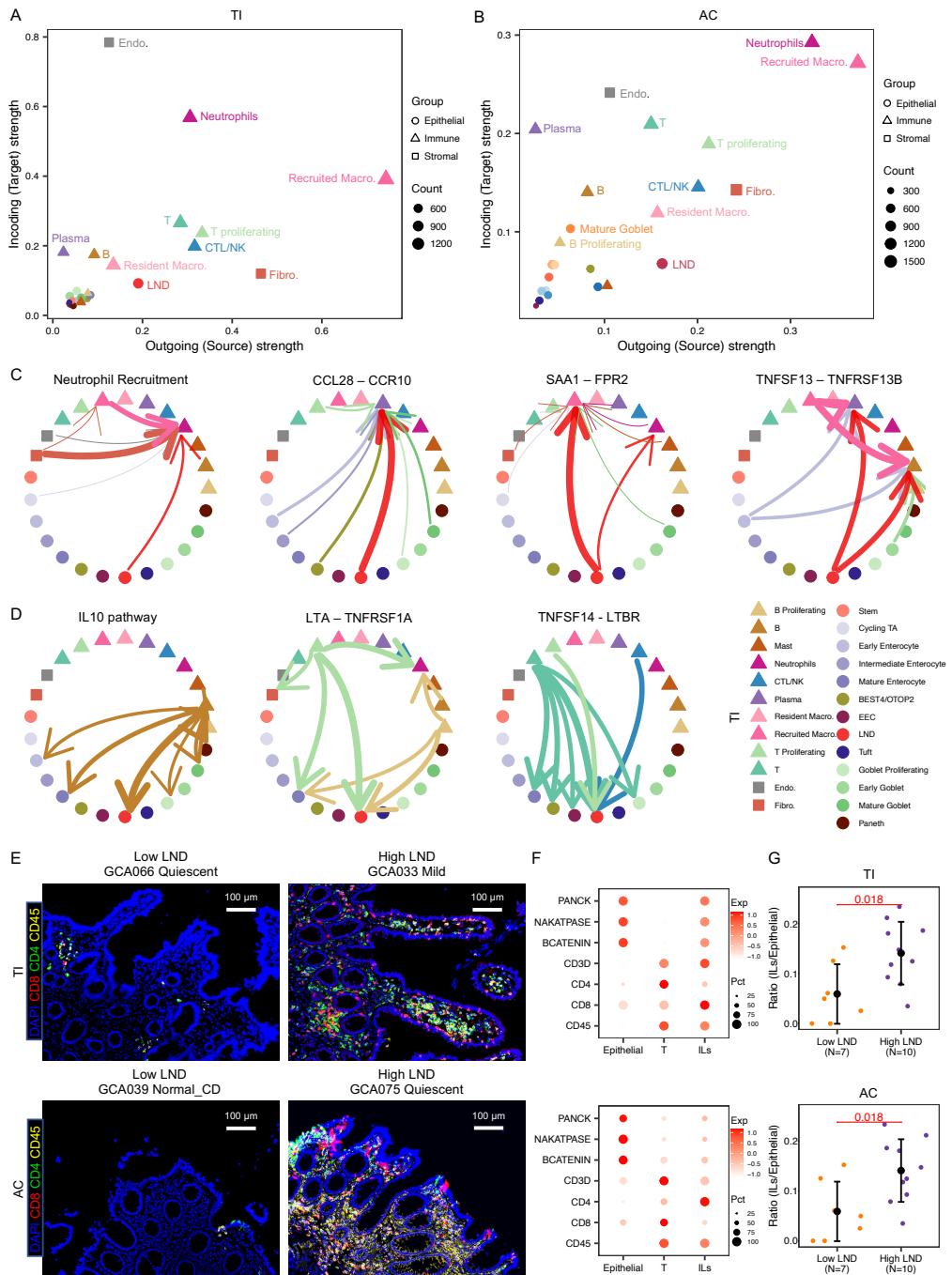
362
363 To confirm the presence and location of LND cells, we employed hybridization chain
364 reaction-fluorescence in-situ hybridization (HCR-FISH) on inflamed and uninflamed TI
365 and AC tissues to examine the co-occurrence of *LCN2*, *NOS2*, and *DUOX2* transcripts
366 (Fig. 3I). In general, uninflamed tissues have stereotypical architectures with a well-
367 delineated crypt/villus axis in the TI and regularly-spaced crypts in the AC. Inflamed
368 tissues are generally characterized by villous and/or crypt loss and infiltration of immune
369 cells, which distorts spatial architecture. *LCN2*, *NOS2*, and *DUOX2* expression was
370 undetectable in uninflamed tissues (Fig. 3I). In both inflamed TI and AC, *LCN2*, *NOS2*,
371 and *DUOX2* FISH staining co-localized in a subset of, but not all, epithelial cells,
372 consistent with the scRNA-seq results (Fig. 3I). These results validate the presence of
373 *LCN2*, *NOS2*, and *DUOX2* co-expressing cells and their induction in active CD.

374

375

376 Figure 3. A) UMAP of 13 epithelial cell types in TI. B) UMAP labeled with expression of LCN2, NOS2, and DUOX2 in TI. C) UMAP of 12 epithelial cell types in AC. D) UMAP labeled with expression of 377 LCN2, NOS2, and DUOX2 in AC. E) Proportional changes of each epithelial cell type from controls to 378 inactive and active CD patients in TI. F) Proportional changes of each epithelial cell type from controls to 379 inactive and active CD patients in AC (* FDR<0.05, **FDR<0.01, ***FDR<0.001, **** FDR<0.0001). 380 G) Proportional changes of LND cells with disease status in six independent cohorts (** FDR<0.01, 381 ***FDR<0.001, **** FDR<0.0001). H) Heatmap of high expression of immune-related genes in the 382 LND in both TI (top) and AC (bottom). I) HCR-FISH Co-staining of LCN2 (green), NOS2 (pink), and 383 DUOX2 (red) on inflamed and uninflamed TI and AC tissues. The scale bar represents 100 μm. 384

385 **LND cells actively interact with immune cells**


386 To identify the potential immunomodulatory function of the LND cells, we inferred cell-
387 cell communications between LND and any other cell types using CellChat (Jin et al.,
388 2021). We found that LND cells actively interact with immune cells as both signaling
389 senders and receivers with similar patterns in the TI and AC (Figs. 4A and 4B). Compared
390 with other epithelial cells (stem, cycling TA, enterocytes/colonocytes, tuft,
391 BEST4/OTOP2, goblet, EEC), LND cells showed stronger cytokine-receptor interactions
392 especially as signaling sources, suggesting a specialized role in regulating mucosal
393 immunity (Fig. 4A and 4B). *CXCL2*, *CXCL3*, and *CXCL5*, which encode known
394 neutrophil-attracting chemokines acting through CXCR1/CXCR2 receptors, were
395 expressed significantly higher in LND cells (Figs. S10A and S10B). The LND-neutrophil
396 interaction showed a similar interaction strength as the recruited macrophage-neutrophil
397 interaction, implicating similar importance of this interaction in neutrophil recruitment
398 and inflammatory response orchestration (TI: Fig. 4C; AC: Fig. S10D). LND was also the
399 primary cell type for recruiting plasma cells through CCL28-CCR10 signaling (TI: Fig. 4C;
400 AC: Fig. S10D), where *CCL28* was significantly expressed in LND cells and *CCR10* in
401 plasma cells (Figs. S10A and S10B). The CCL28-CCR10 interaction is critical for
402 regulating intestinal IgA production under homeostasis or infection (Hu et al., 2011).
403 *SAA1* is an acute phase protein in response to inflammation and tissue injury, which has
404 strong chemotactic activity for neutrophils and macrophages mediated through FPR2
405 (Badolato et al., 1994; Dufton et al., 2010; Liang et al., 2000). *SAA1* was significantly
406 upregulated in LND cells (Figs. S10A and S10B), leading to strong LND-neutrophil and
407 LND-recruited macrophage interactions (TI in Fig. 4C; AC in Fig. S10D). We also detected
408 LND-B/Plasma cells interactions through TNFSF13-TNFRSF13B (TI in Fig. 4C; AC in Fig.

409 S1oD), LND-T cells by NECTIN2-CD226, and LND-immune cells by CD55-ADERG5 (TI
410 in Fig. S1oC; AC in Fig. S1oD). Furthermore, we identified interactions between LND and
411 T cells via TNFSF15-TNFRSF25, LND-recruited macrophages via TNFSF10-TFNRSF10B
412 and strong MHC-I signaling, but only in TI not in AC (Fig. S1oC).

413
414 LND cells not only actively participate in immune responses as signaling senders, but also
415 respond to signals from immune cells as signaling receivers, although their activities as
416 signal receivers were similar to other absorptive cells. A few examples of LND cells acting
417 as signal receivers include B cell-LND by IL10 signaling and T/NK-LND by TNFSF14-
418 LTBR in both TI and AC (TI in Fig. 4D; AC in Fig. S1oD), and proliferative B/T cell-LND
419 by LTA-TNFRSF1A only in TI (Fig. 4D).

420
421 Similar LND-immune interactions were observed for surgical TI samples (Fig. S11A).
422 LND cells acted as both source and target for immune interactions. Consistent with the
423 results found in endoscopic samples, LND cells were the primary cell type for recruiting
424 plasma cells through CCL28-CCR10 signaling. Strong LND-neutrophil and LND-
425 recruited macrophage interactions via SAA1-FPR2, LND-B/Plasma cells interactions
426 through TNFSF13-TNFRSF13B, LND-T cells by NECTIN2-CD226, and LND-immune
427 cells by CD55-ADERG5 were also detected (Fig. S11C). Furthermore, LND cells acted as
428 signal receivers in the IL10 signaling and LTA-TNFRSF1A interaction (Fig. S11D).
429 Interestingly, the PDPN+ fibroblast population serves as a strong signaling sender and is
430 a main source for releasing CXCL2/CXCL3/CXCL5 in neutrophil recruitment (Figs. S11B
431 and S11C).

432

433

434 Figure 4. A) Scatterplot of incoming and outgoing interaction strength of each cell type in TI. B)
435 Scatterplot of incoming and outgoing interaction strength of each cell type in AC. C) Circle plots show
436 the intercellular communication for LND-recruiting neutrophils, LND-plasma interaction via CCL28-
437 CCR10, LND recruiting macrophage and neutrophils through SAA1-FPR2, and LND-mast/plasma
438 interaction by TNFSF13-TNFRSF13B. D) Circle plots show the intercellular signaling of LND cells
439 targeted by a variety of immune cells including IL10, LTA-TNFRSF1A, and TNFSF14-LTBR. E)
440 Multiplex images of CD8+, CD4+, and CD45+ cells in low and high LND in the TI (top) and AC
441 (bottom). The scale bar represents 100 μm. F) DotPlot of marker genes in infiltrating lymphocytes (ILs).
442 G) The proportion differences of ILs between high and low LND patients.

443 We performed multiplexed protein imaging analysis on 55 tissues, of which 38 have
444 single-cell RNAseq profiling (17 CD and 3 controls in TI, 15 CD and 3 controls in AC). We
445 classified the multiplex imaging of CD patients into two categories based on the LND
446 proportion reported in the single-cell RNAseq data, low and high LND. We found those
447 with a high LND proportion had a significantly higher infiltration of lymphocytes into the
448 epithelial submucosa in both the TI and AC compared to those with a low LND proportion
449 (Figs. 4E and 4G). These infiltrating lymphocytes (ILs) were characterized by association
450 of both epithelial (PANCK, NAKATPASE, and BCATENIN) and lymphocyte markers
451 (CD3D, CD4, CD8, and CD45) (Fig. 4F). These results strengthen the association between
452 CD activity, LND expansion, and immune cells infiltration. Since LND releases a variety
453 of chemokines and cytokines (Fig. 3H) and actively interacts with immune cells (Figs 4A
454 and 4B), they likely play a role in T cell recruitment and infiltration.

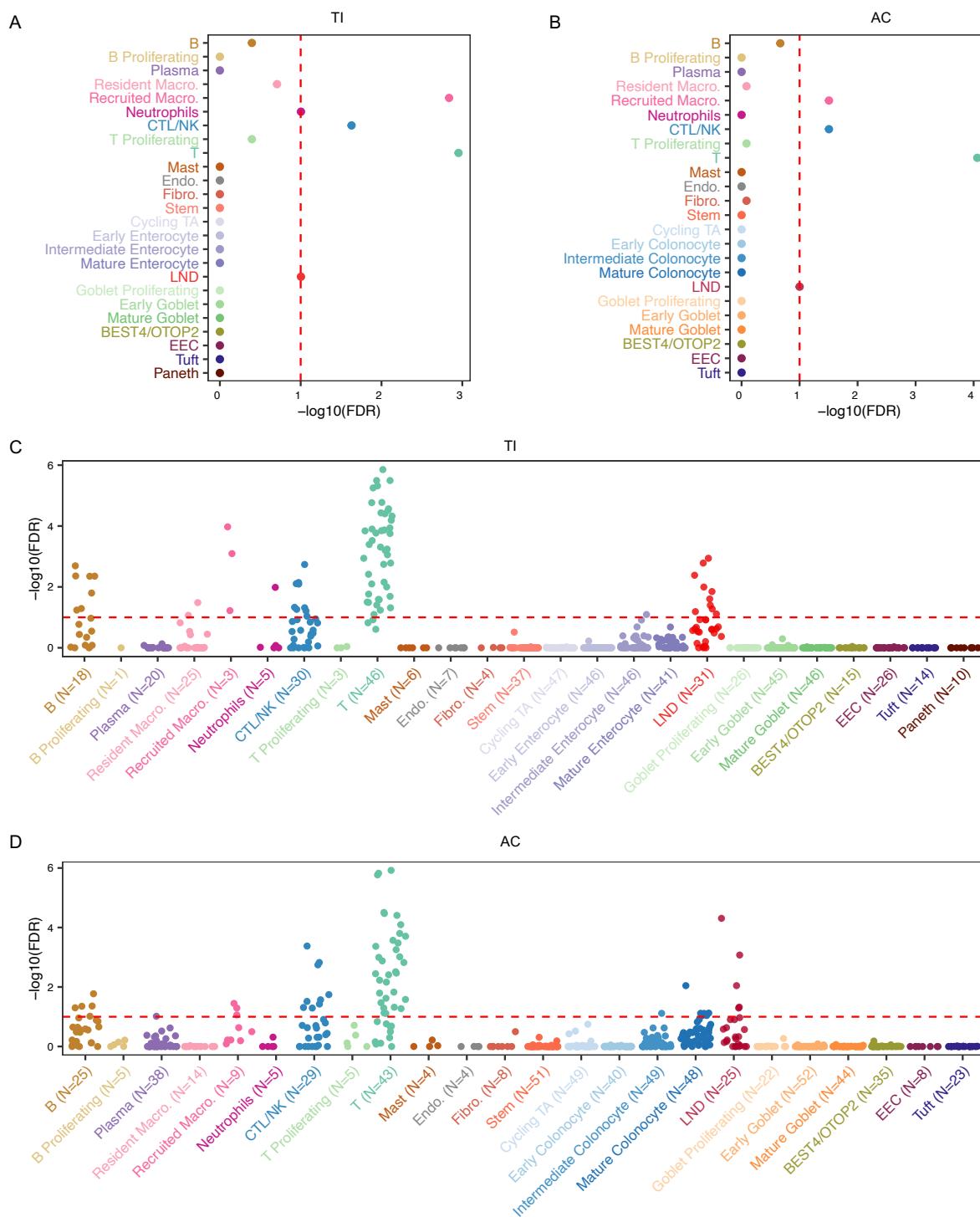
455

456 **LND is a CD/IBD-critical cell type**

457 Genome-wide association studies (GWAS) on IBD have reported more than 200 genes
458 involving 300 risk loci in multiple pathways (de Lange et al., 2017; Jostins et al., 2012;
459 Liu et al., 2015; Momozawa et al., 2018). Previous studies applying these SNPs in a cell-
460 type specific manner identified that these alterations in immune cells, especially T cells,
461 are most strongly associated with IBD (Parikh et al., 2019). We combined GWAS-
462 identified SNPs with single-cell RNA profiling to investigate the role of each cell type in
463 CD. We utilized SNPsea (Slowikowski et al., 2014) to infer cell type-disease association by
464 evaluating expression specificity of CD/IBD-associated risk genes in our scRNAseq data,
465 with the assumption that risk genes specifically expressed in a cell type are likely driving
466 disease by affecting a function unique to this cell type. Consistent with previous results

467 (Parikh et al., 2019), we found T cells to be the most CD/IBD-associated cell type
468 (FDR=0.001 in TI, FDR=9e-5 in AC), followed by recruited macrophages (FDR=0.001 in
469 TI, FDR=0.03 in AC) and CTL/NK cells (FDR=0.02 in TI, FDR=0.03 in AC) in both TI
470 and AC (Figs. 5A and 5B) (Table S4). T cell-disease association was driven by specific
471 expression of *FYN*, *PTPRC*, *CD28*, *CD5*, *CD6*, *CARD11*, and other immune related genes
472 (Fig. S12A). The macrophage-disease relationship was contributed to by specific
473 expression of *LITAF*, *HCK*, *SLC11A1*, *MMP9*, *FCGR2A*, and *TNFAIP3*, and CTL/NK
474 involvement was indicated by *KIF2DL4*, *IKZF3*, *TNFRSF18*, *CTSW*, and *PTPN22* (Fig.
475 S12A).

476

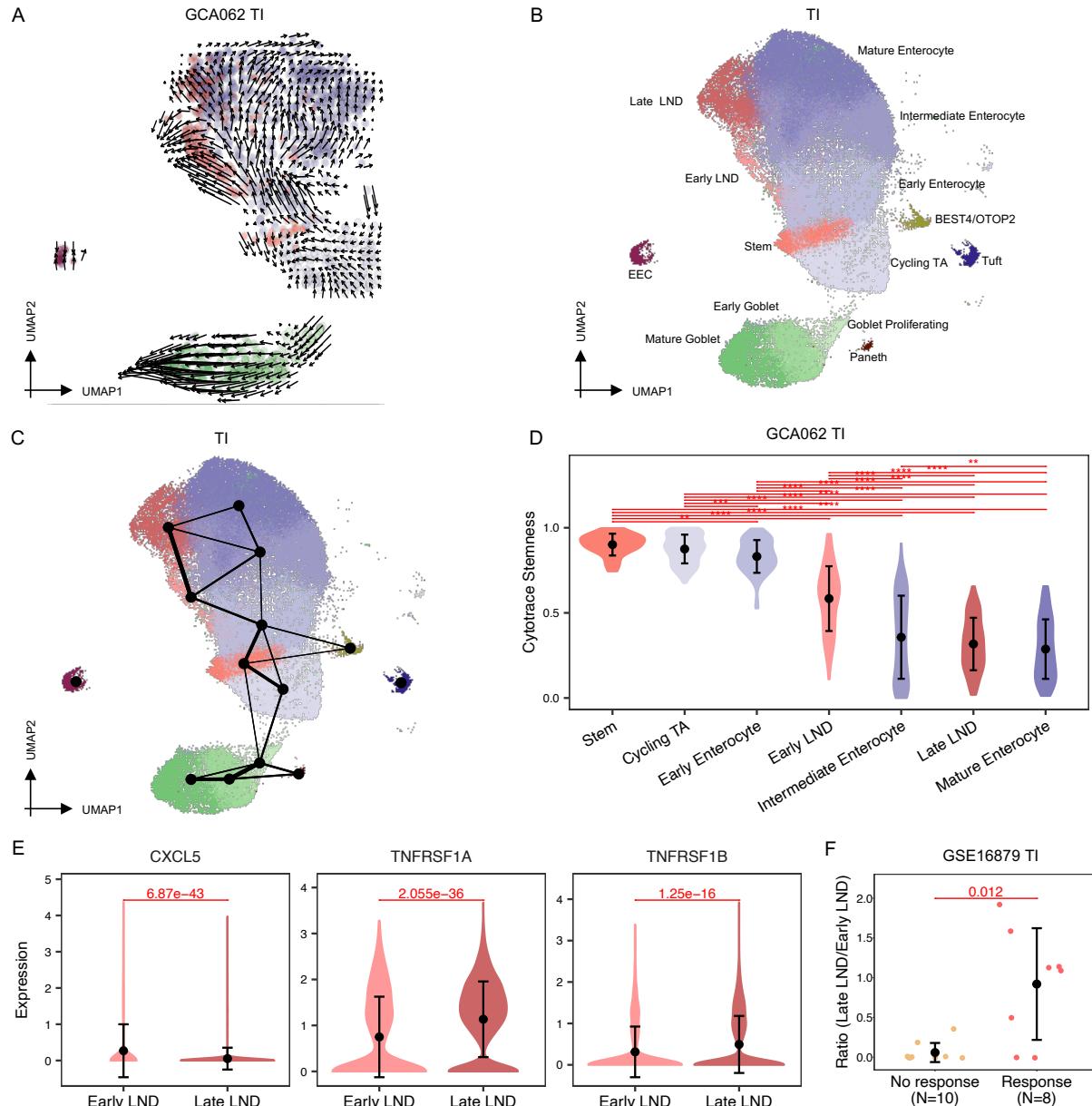

477 Among epithelial and stromal cells, only LND cells were associated with CD/IBD, with
478 marginal significance in both TI and AC (FDR=0.1) (Figs. 5A and 5B). *NOS2* was highly
479 upregulated in LND compared to other cell types (Fig. S12A). A *NOS2* variant rs2297518
480 resulting in increased NO production has been associated with IBD (both CD and UC)
481 (Dhillon et al., 2014). *CCL20* was also highly upregulated in LND cells (Fig. S12A), and
482 one of its gene variants, rs111781203, has been reported to decrease the risk of IBD (Liu
483 et al., 2015). Other CD/IBD-risk genes with high expression in LND cells were shown in
484 Fig. S12A, such as *TNFRSF1A*, *STAT3*, *PLA2G2A*, *IRF1*, *TMBIM1*, and *PIGR*. Although
485 genes highly expressed in LND cells, such as *DUOX2* and *LCN2*, have not been identified
486 as CD/IBD-risk genes in large-scale GWAS studies, they have been reported to be
487 associated with IBD risk or demonstrated to contribute to intestinal inflammation. Rare
488 loss-of-function variants in *DUOX2* have been associated with increased plasma levels of
489 IL-17C in patients, and *Duox2*-deficient mice confirmed increased IL-17C induction in the
490 intestine (Grasberger et al., 2021). Biallelic mutations in *DUOX2* have been reported to

491 be associated with very early-onset IBD (Kyodo et al., 2022). Depletion of LCN2 in mice
492 leads to dysbiosis with increased intestinal inflammatory activity and an induction of
493 Th17 cell differentiation (Kluber et al., 2021).

494

495 We observed extensive transcriptional heterogeneity of key genes in LND cells across CD
496 patients. For example, *NOS2* was expressed highly in some patients, but its expression
497 was low in others, although this gene was upregulated globally in the LND cluster (Fig.
498 S12B). To address patient heterogeneity, we further evaluated disease association of each
499 cell type on a per patient basis. We found T cells were significantly associated with CD in
500 43 out of 46 patients in TI, and 33 out of 43 patients in AC (FDR<=0.1). LND cells were
501 significantly related to CD in 13 out of 31 patients in TI and 8 out of 25 patients in AC
502 (FDR<=0.1) (Figs. 5C and 5D). In one CD patient (GCAo62) with severe TI involvement,
503 LND was significantly associated with CD, superceding the involvement of immune cells
504 outside of recruited macrophages (FDR=0.001 for LND, FDR=0.001 for T cells,
505 FDR=0.0008 for recruited macrophages). LND cells in this patient expressed high levels
506 of *NOS2* and *CXCL5*, suggesting that this population is likely disease-critical (Fig. S12C).
507 In contrast, no significant patient-specific association was observed for any other
508 epithelial cell types, endothelial cells, or fibroblasts. These findings support the
509 conclusion that LND cells might drive a significant portion of CD via dysregulated LND-
510 immune cell communication.

511


512

513 Figure 5. A) Significance of cell-type specific expression of IBD/CD-risk genes in TI. B) 514 Significance of cell-type specific expression of IBD/CD-risk genes in AC. C) Significance 515 of cell-type specific expression of IBD/CD-risk genes in each CD TI specimen. D) 516 Significance of cell-type specific expression of IBD/CD-risk genes in each CD AC 517 specimen.

518 **Developmental origins of LND cells**

519 To infer the developmental origin of LND cells, we applied RNA velocity, an algorithm
520 that predicts the future transcriptional states of each individual cell by the ratio of
521 unspliced to spliced gene isoforms over the transcriptome (La Manno et al., 2018). As
522 expected, we observed a cycling pattern for TA cells and a strong directional flow
523 originating from stem cells, passing through early enterocyte, intermediate enterocyte,
524 and ending in mature enterocytes in the TI (Fig. 6A). Interestingly, we found two origins
525 that point toward LND cell development, one was from early enterocytes/stem cells, and
526 the other was from mature/intermediate enterocytes, which paralleled the two
527 subclusters of LND cells from high resolution clustering (Fig. 6B). The subcluster that
528 originates from early enterocytes/stem cells was labeled “early LND”, while the other was
529 labeled “late LND”. Partition-based graph abstraction (PAGA) analysis, which defines
530 total connection strength between progenitor and differentiated cell populations (Wolf et
531 al., 2019), also showed that early LND cells were associated strongly with early
532 enterocytes, while late LND cells were linked to intermediate and mature enterocytes, as
533 well as early LND cells (Fig. 6C). CytoTRACE analysis to infer the developmental potential
534 of cell populations (Gulati et al., 2020) demonstrated that stem and TA cells had the
535 highest inferred stemness score, followed by early enterocytes, early LND, intermediate
536 enterocytes, late LND, and finally mature enterocytes (Fig. 6D). Our results indicate that
537 LND cells can differentiate directly from stem/progenitor cells (early LND), or they may
538 arise later (late LND) from intermediate/mature enterocyte or from early LND cells
539 themselves.

540

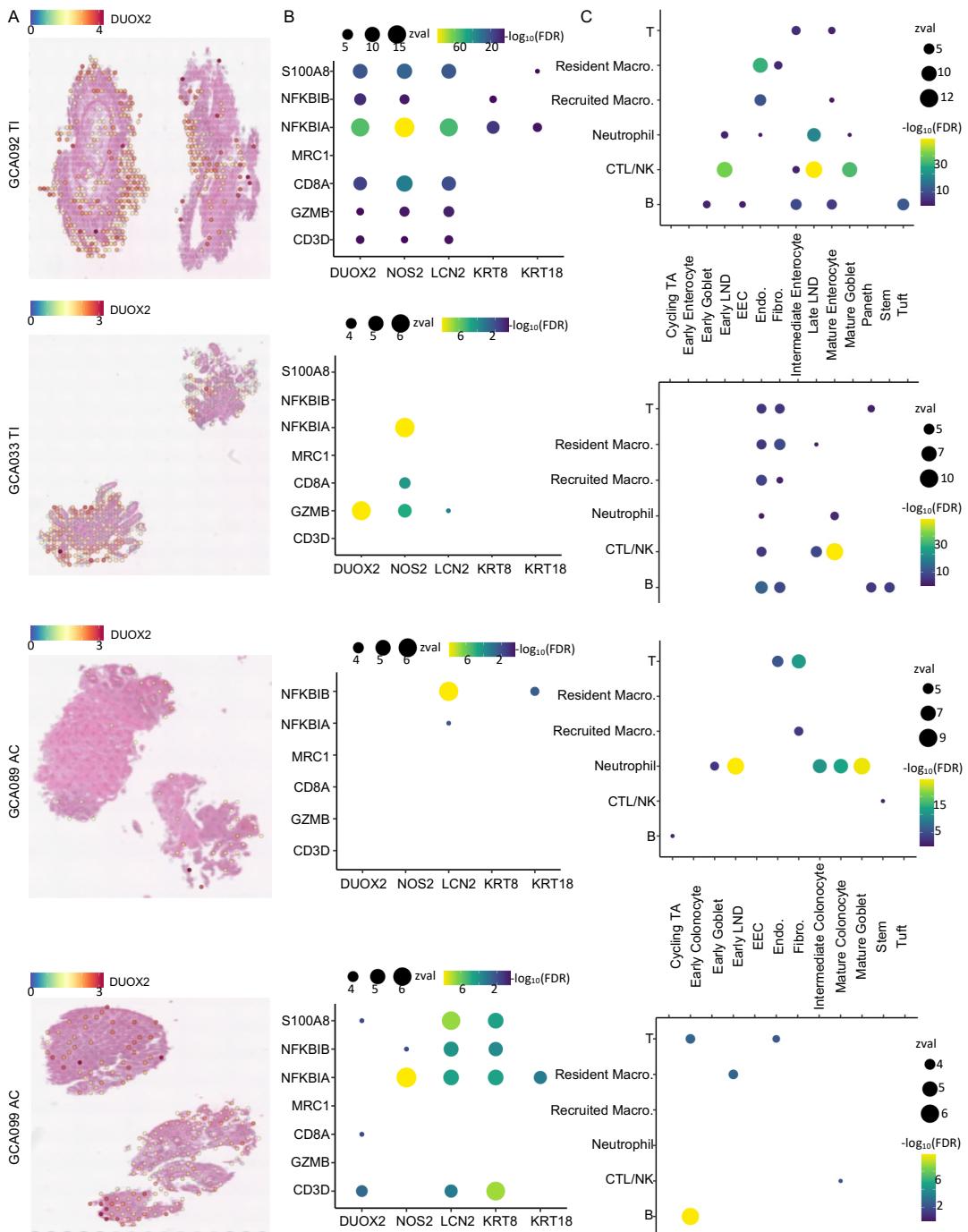
542 Figure 6. A) RNA velocity results mapped on the UMAP plot showing the predicted future
 543 transcriptional state of each cell. B) UMAP of early and late LND clusters in the TI. C)
 544 PAGA results mapped on the UMAP plot showing connectivity between cell types. D)
 545 Villion plot comparing the developmental potential of each epithelial cell type predicted
 546 by CytoTRACE (** FDR<0.01, *** FDR<0.001, ****FDR<0.0001). E) Comparison of the
 547 expression of CXCL5, TNFRSF1A, and TNFRSF1B between early and late LND cells. F)
 548 Comparison of the ratio of late to early LND cells between anti-TNF responders and non-
 549 responders after the first dose of medication.

550

552 Differential expression analysis between early and late LND cells found that early LND
553 cells are enriched in neutrophil chemoattractants (*CXCL3* and *CXCL5*), mucin (*MUC1*
554 and *MUC4*), and anti-microbial genes (*DMBT1*, *PL2AG2A*, *REG4*, and *PIGR*), while late
555 LND cells are enriched in lipid-metabolic genes (such as *APOC3*, *APOA4*, *APOB*, and
556 *APOA1*), cytokines (*CCL20* and *CCL25*), *MUC3A*, *REG3G*, and TNF receptors
557 (*TNFRSF1A*, *TNFRSF10B*, and *TNFRSF1B*) (Fig. 6E and Fig. S13A). They shared similar
558 expression levels of *SAA1* and *CCL28*. Both early and late LND cells were increased as a
559 function of disease activity, from normal non-IBD controls, inactive CD, to active CD (Fig.
560 S13B). The ratio of early to late LND cells was also associated with disease activity (Fig.
561 S13C), with early LND cells being enriched along the CD progression spectrum.

562
563 Since late LND cells expressed TNF receptors, we were curious whether the proportion of
564 LND subclusters can predict anti-TNF response. We utilized the GSE16879 dataset (Arijs
565 et al., 2009), which included 18 CD ileum patients assessed before and after their first
566 anti-TNF treatment. In the Arijs et al. study, patients were classified as responders or
567 non-responders based on endoscopic and histologic findings at 4-6 weeks after the initial
568 treatment. We estimated the proportion of early and late LND cells by deconvolving bulk
569 gene expression profiles through CIBERSORT (Newman et al., 2015). Although sample
570 sizes were limited (n=10 responders and n=8 non-responders), we found that patients
571 with higher proportions of late LND cells were more likely to respond to anti-TNF
572 treatment ($p=0.05$). The proportion of early LND cells was not significantly associated
573 with anti-TNF response. However, the ratio of late vs. early LND cells was significantly
574 associated with anti-TNF response ($p=0.012$) (Fig. 6F).

575


576 **Colocalization between LND and immune cells**

577 To investigate the organization and crosstalk between epithelial and immune cells, we
578 used spatial transcriptomics to profile four CD samples selected for relatively high
579 proportions of LND cells. The four samples consisted of two with active TI disease
580 (GCAo92 and GCAo33) and two with active AC disease (GCAo89 and GCAo99) (Fig. 7A).
581 As expected, LND marker genes, including *LCN2*, *NOS2*, *DUOX2*, and *CCL20/CCL28*,
582 were coexpressed across spots in all four samples, indicating the existence of LND cells
583 (Fig. S14). In contrast, expression of LND marker genes were not correlated with immune
584 cell signatures, including *CD3D* for T cells, *CD8A* and *GZMB* for CD8+ T/NK, *MRC1* for
585 resident macrophages, *NFKBIA* and *NFKBIB* for recruited macrophages, and *S100A8* for
586 neutrophils (Fig. S14). Instead, high expression of LND marker genes in one spot was
587 significantly correlated to high expression of immune cell signatures in its neighboring
588 spots in all four samples using SpaGene (Liu et al., 2022) (Fig. 7B), suggesting heterotypic
589 interaction between immune and epithelial cells (Fig. 7B). Specifically, *NOS2*, *LCN2*, and
590 *DUOX2* all had a very significant colocalization with *GZMB*, *S100A8*, and *NFKBIA* in the
591 GCAo92_TI (FDR<3e-16). *DUOX2* colocalized with *CD8A* (FDR=2e-8) and *NOS2* with
592 *NFKBIA* (FDR=2e-8), *CD8A* (FDR=2e-5), and *GZMB* (FDR=8e-5) in the GCAo33_TI.
593 *LCN2* colocalized with *NFKBIB* (FDR=3e-9) in the GCAo89_AC. *NOS2* colocalized with
594 *NFKBIA* (FDR=2e-9), and *LCN2* colocalized with *S100A8* (FDR=4e-8), *NFKBIA*
595 (FDR=1e-5), and *NFKBIB* (FDR=2e-5) in the GCAo99_AC. In comparsion, only
596 marginally significant or insignificant colocalizations were found between the general
597 epithelial genes (*KRT8* and *KRT18*) and immune markers in these samples (Fig. 7B).

598

599 To discover cell-type-specific spatial patterns and organization, we further deconvoluted
600 spatial transcriptomics spots with cell-type profiles from scRNAseq using RCTD (Cable
601 et al., 2022). We identified colocalization patterns between epithelial cells and immune
602 cells based on decomposed cellular components by SpaGene (Liu et al., 2022) (Fig. 7C).
603 In the GCAo92_TI, the most significant association was found between late LND and
604 CTL/NK (FDR=8e-35), followed by early LND-CTL/NK (FDR=2e-27) and late LND-
605 Neutrophils (FDR=3e-16). In the GCAo33_TI, significant association was observed
606 between late LND-CTL/NK (FDR=3e-8). In the GCAo89_AC, early LND and neutrophils
607 were significantly colocalized (FDR=5e-24). In the GCAo99_AC, LND and resident
608 macrophages (FDR=1e-3) were significantly colocalized (Fig. 7C). In summary, LND cells
609 were much more significantly associated with immune cells in all four inflamed
610 specimens as compared to other epithelial cells, further demonstrating their specialized
611 ability to interact with immune cells.

612

613

614 Figure 7. Spatial organization between LND and immune cells. A) H&E images for the four patient
 615 samples overlaid and colored by the expression of DUOX2. B) Dotplot of colocalization of LND markers
 616 (LCN2, NOS2, and DUOX2) and the general epithelial genes (KRT8 and KRT18) with immune
 617 signatures. Only significant colocalization (FDR<0.01) was included. Dot size denotes the z-value and
 618 color denotes the colocalization significance compared to random distribution. C) Dotplot of
 619 colocalization between epithelial and immune cells. Only significant colocalization (FDR<0.01) was
 620 included. Dot size denotes the z-value and color denotes the colocalization significance compared to
 621 random distribution.

622 **DISCUSSION**

623 In this study, we present a comprehensive single-cell atlas of 170 specimens from 83
624 individuals, consisting of 202,359 cells from the terminal ileum and ascending colon of
625 human gut in non-IBD controls and inactive and active CD patients. We confirmed prior
626 findings about region-specific transcriptomics to maintain physiologic function of the
627 intestine and colon. Despite the distinct epithelial transcriptome between the TI and AC,
628 we identified similar cellular rewiring in epithelial, immune, and stromal cell proportions
629 with CD activity. For example, T cells, Mast, and recruited macrophages expand from
630 inactive to active CD.

631

632 Most interestingly, we uncovered a new epithelial cell type, named LND, in both the TI
633 and AC with high expression of *LCN2*, *NOS2*, and *DUOX2*. LND cells were rarely detected
634 in non-IBD controls, but expanded significantly in active CD. Compared to other
635 enterocytes/colonocytes, LND cells had high expression of anti-microbial proteins (such
636 as *REG1A*, *REG1B*, *LYZ*, *PLA2G2A*, *SAA1/SAA2*), inflammatory cytokines (such as
637 *CXCL2*, *CXCL3*, *CXCL5*, *CCL20*, *CCL28*), as well as antigen-presentation and processing
638 genes, *STAT3* and *STAT1*, indicating a specialized immunoregulatory role. Cell-cell
639 communication analysis supported that LND cells actively interact with a variety of
640 immune cells as signaling senders. For example, LND cells release CXCL2, CXCL3 and
641 CXCL5 to recruit neutrophils through CXCR2, and they can direct IgA+ plasma cell
642 migration via CCL28-CCR10 interactions. Spatial transcriptomics further demonstrated
643 the colocalization of LND cells and immune cells. The cross-talk between LND and
644 immune cells highlights the role of LND in regulating mucosal immunity.

645

646 The intestinal epithelium is known to be the central coordinator of mucosal immunity,
647 which requires a synergy of distinct epithelial cell types to promote homeostasis. These
648 cell types carry out unique and specialized functions, including enterocytes/colonocytes
649 for nutrient and water absorption, goblet cells for secreting mucins, Paneth cells for
650 releasing antimicrobial peptides, and enteroendocrine cells for producing hormones.
651 LND cells, in comparison, highly expressed some host defense-related genes which are
652 cell-type specific in homeostatic conditions. For example, *REG1B*, *LYZ*, and *PLA2G2A*,
653 which are antimicrobial peptides specifically released from Paneth cells, are highly
654 expressed in LND cells. Consistently, previous studies found that expression of genes that
655 are cell-type specific in homeostatic conditions was broadened across multiple cell types
656 during infection (Haber et al., 2017). Therefore, LND cells are highly likely to be derived
657 from enterocytes/colonocytes under chronic inflammatory stress, leading to specialized
658 functions in immunoregulation. Studying the developmental origins of LND cells also
659 supports that LND cells originate from early enterocytes or intermediate/mature
660 enterocytes.

661
662 LND cells not only had high expression of cell-type specific genes as mentioned above,
663 but also showed high expression of IBD/CD GWAS-risk genes, such as *NOS2*, *CCL20*,
664 *TNFRSF1A*, and *STAT3*. The specific expression of IBD/CD-risk genes suggest LND cells
665 are a critical disease cell type. The disease-association of LND cells was quite
666 heterogenous across patients. In TI, LND cells in ~ 30% of CD patients showed significant
667 disease association and were ranked the second most important cell type. The
668 heterogeneity of LND cells also reflects the complex and multifactorial pathogenesis of
669 CD. In addition to IBD/CD-risk genes, LND cells were marked by high expression of

670 additional genes previously demonstrated to modulate colitis, indicating their potential
671 pathogenic role. Our studies identified that hematopoietic-LND cell interactions play an
672 important role in regulating host response and driving CD, which extends previous
673 findings emphasizing hematopoietic-stromal interactions as a central hub in IBD
674 pathology (Friedrich et al., 2021; Martin et al., 2019; West et al., 2017).

675

676 Taken together, our study identified a novel LND cell populations with unique molecular
677 features enriched in immunoregulation, providing a better understanding of the
678 mechanisms sustaining the pathogenic process in Crohn's Disease. Our results indicate
679 that LND marker genes and their cellular proportion could have clinical significance as
680 markers of disease activity, risk for disease progression, or likelihood of anti-TNF
681 response. Our findings establish the possibility of meeting evolving clinical needs with
682 characterization and personalized treatment of CD at the molecular level, which would
683 greatly benefit future clinical studies.

684

685 **Materials and Methods**

686 **Human specimen collection and processing**

687 The study protocol was approved by the Institutional Review Board at Vanderbilt
688 University Medical Center. Written informed consent was obtained from non-IBD control
689 and CD subjects to obtain terminal ileum (TI) and ascending colon (AC) tissue at the time
690 of scheduled endoscopic procedures. TI and AC tissues from non-IBD control and CD
691 subjects undergoing surgical resection were also obtained from under a separate IRB
692 protocol in coordination with the Comparative Human Tissue Network (CHTN). All

693 samples were obtained as a part of the clinical trial “Combinatorial Single Cell Strategies
694 for a Crohn's Disease Gut Cell Atlas”, identifier NCT04113733 (clinicaltrials.gov).

695
696 Between December 2019 and January 2022, endoscopy subjects were prospectively
697 recruited in the IBD clinic or GI endoscopy unit at Vanderbilt University Medical Center
698 prior to colonoscopy for CD disease activity assessment or non-IBD indications including
699 colorectal cancer screening or polyp surveillance. Surgical resection subjects were those
700 undergoing resection for CD-related complications or other non-inflammatory
701 indications, including endoscopically unresectable polyps. Patient participation in the
702 current study ended after tissue samples were obtained. Exclusion criteria for the study
703 were: pregnancy, known coagulopathy or bleeding disorders, known renal or hepatic
704 impairment, history of organ transplantation, or inability to give informed consent. After
705 appropriate exclusions, there were 65 CD subjects with varying disease activity and 18
706 non-IBD controls.

707
708 For all participants, demographics including age, gender, medical history, and medication
709 use were determined from participant reporting and review of the electronic medical
710 record. Tissue biopsies for research purposes in the TI and AC were obtained as follows:
711 fresh tissue biopsies were placed in chelation buffer (4mM EDTA, 0.5 mM DTT in DPBS)
712 for further processing and scRNAseq analysis, and an adjacent set of tissue biopsies were
713 formalin-fixed and paraffin-embedded (FFPE) for research blocks. 5 μ m sections were
714 used from each FFPE block and stained with hematoxylin and eosin (H&E) and examined
715 in a blinded manner by a gastrointestinal pathologist (MKW) and graded accordingly as:
716 inactive (normal, quiescent) or active (mild, moderate, or severe activity). All associated

717 study data were collected and managed using Research Electronic Data Capture (REDCap)
718 electronic data capture tools hosted at Vanderbilt (Harris et al., 2019; Harris et al., 2009),
719 including Clinical Data Interoperability Services, such as Clinical Data Pull (Cheng et al.,
720 2021) and e-consent (Lawrence et al., 2020).

721

722 **Single-cell encapsulation and library generation**

723 Single-cell RNA-seq data were generated from human biopsy and surgical specimen
724 similarly to (Chen et al., 2021; Simmons and Lau, 2022). For surgical specimens that are
725 considerably larger, a representative portion (~2mm²) of the tissue was used. Briefly,
726 tissues were incubated in a chelating buffer (0.5M EDTA, 0.1M DTT in DPBS) for 1.25hrs,
727 and then transferred to cold active protease (5 mg/ml Protease from *Bacillus*
728 *licheniformis*, 2.5 mg/mL DNase in PBS) for 25 minutes at 4 °c. Tissues were then
729 pipetted 10-20 times to yield single cells. Cell suspensions were filtered, washed, and
730 inspected for count and quality before loading onto inDrops for microfluidic capture.
731 inDrops scRNA-seq was performed as described (Banerjee et al., 2020; Klein et al., 2015).
732 Single-cell libraries were prepared for sequencing as documented (Southard-Smith et al.,
733 2020). Libraries (consisting of an estimated 2000-3000 cell transcriptomes) were
734 sequenced at ~125 million reads each on the Novaseq6000.

735

736

737 **HCR-FISH**

738
739 HCR FISH was performed for three targets mRNAs using three DNA probe sets DUOX2,
740 LCN2, and NOS2, using the HCR™ RNA-FISH Protocol for FFPE tissue sections (Choi et
741 al., 2018). Tissue slides were baked at 60 °C for 1 hour, followed by tissue deparaffinization
742 by immersing slides in Xylenes, 3X for 5 minutes. After deparaffinization, slides were

743 incubated in 100% Ethanol, 2X for 3 minutes. Rehydration of tissue slides was done by
744 series of graded ETOH washes at 95%, 70% and 50% concentrations followed by
745 nanopure water wash. After the rehydration steps, slides were immersed for 15 min in
746 Tris-EDTA buffer (PH 9.0) at 95°C. Tris-EDTA buffer temperature was slowly cooled
747 down to 45°C in 20 minutes, by adding nanopure water every 5 min. Slides were kept in
748 nanopure water for 10 min at room temperature, followed by PBS1X wash. Proteinase K
749 was introduced at 0.5 μ L of 20 mg/1mL PBS1X concentration, for 10 min at 37°C, followed
750 by PBS1X washes. 200 μ L of Probe Hybridization Buffer was added on top of each tissue
751 sample for pre-hybridization and slides were kept in humidified chamber, at 37°C, for 10
752 min. Probe solution was prepared by adding 0.4 μ L of 1 μ M Stock/100 μ L of probe
753 hybridization buffer at 37°C for DUOX2 and LCN2 probe sets and 0.8 μ L of 1 μ L of 1 μ M
754 stock/100 μ L of probe hybridization buffer at 37°C for NOS2 probe set. Pre-hybridization
755 solution was removed from tissue slides and 100 μ L of the Probe solution was added on
756 top of each tissue sample. Sample slides were covered with parafilm and incubated
757 overnight at 37°C in the humidified chamber. Excess probes were washed by incubating
758 slides at 37°C in: a) 75% of probe wash buffer/25% 5X SSCT for 15 min, b) 50% of probe
759 wash buffer/50% 5X SSCT for 15 min, c) 25% of probe wash buffer/75% 5X SSCT for 15
760 min d) 100% 5X SSCT for 15 min. Slides were immersed in 5X SSCT for 5 min at room
761 temperature. For pre-amplification, 200 μ L of amplification buffer was added on top of
762 each tissue sample for 30 min at room temperature. 2 μ L of 3 μ M stock hairpins h1 and
763 h2 (per slide), for each probe set, were separately heated at 95°C for 90 seconds and
764 cooled to room temperature in the dark for 30 min. Hairpin solution was prepared by
765 adding snap-cooled hairpins h1 and snap-cooled hairpins h2 to 100 μ L of amplification
766 buffer at room temperature. Pre-amplification buffer was removed and 100 μ L of the

767 hairpin solution was added on top of each tissue sample. Slides were incubated overnight
768 $\geq 12\text{h}$ at Room temperature. Excess hairpins were removed by incubating slides in 5X
769 SSCT at room temperature for 1 x 5 min, 2 X 15 min and lastly 1 X for 5 min. Slides were
770 dried by blotting edges on a kimwipe. 100 μL of Hoechst stain (1:100 dilution) was added
771 on top of each tissue slide and slides were incubated at room temp for 5 min. Cover
772 slipping was done by using Invitrogen ProlongTM Gold antifade reagent. Slides were
773 imaged using the Aperio Versa slide scanner (Leica). Probe sets were designed by
774 Molecular Instruments: LCN2 Probe set: probe set size 13 targeting NM_005564.5,
775 DUOX2 Probe set: probe set size 20 targeting NM_014080.5, NOS2 Probe set: probe set
776 size 20 targeting NM_000625.4.

777

778 **Multiplex Immunofluorescence and Image Analysis**

779 Multiplex immunofluorescence (MxIF) imaging was performed on FFPE sections at 4 μm
780 after standard histological processing and antigen retrieval. Slides were iteratively stained
781 using a fluorescence-inactivation protocol, as performed previously (Herring et al., 2018;
782 Vega et al., 2022), using directly labeled antibodies incubated overnight at 4°C. Slides
783 were scanned using the Aperio Versa (Leica) at 20X magnification, and then were photo-
784 inactivated with an alkaline peroxide solution for repeated staining and imaging cycles
785 until images for all analytes were acquired. A validated antibody panel was used,
786 including DAPI, NAKATPASE, PANCK, CD8, CD4, CD45, etc.(Chen et al., 2021). Images
787 were computationally registered and corrected for illumination and autofluorescence
788 against periodic blank imaging rounds without antibody staining. Cells were segmented
789 with an algorithm modified from one published (McKinley et al., 2022), using a
790 combination of Ilastik machine learning, watershed using multiple membrane markers,

791 and membrane completion. Cells meeting a certain quality thresholds of size were kept.
792 The mean, standard deviation, median, and maximum staining intensity for each protein
793 was quantified with respect to the whole cell, cell membrane, cytoplasm, and nucleus.
794 Location, area, and shape metrics were obtained. Cells were clustered based on the
795 similarity of protein intensity profiles and each cluster was annotated by positive
796 expression of known marker genes.

797

798 **Spatial Transcriptomics**

799 Spatial transcriptomics was performed using the Human FFPE Visium platform, as
800 described previously (Heiser et al., 2023). FFPE sections (5 μ m) of biopsies were cut
801 directly into 6.5mm \times 6.5mm capture areas of Visium FFPE spatial gene expression slides
802 (10X Genomics). Visium slides were temporarily coverslipped, stained with hematoxylin
803 and eosin, and imaged in brightfield at 20X magnification using Y (Leica) prior to tissue
804 permeabilization, probing, and library prep according to the Human Visium FFPE
805 protocol (10X Genomics). Sample libraries were sequenced on the NovaSeq6000
806 sequencer (Illumina). Resulting sequencing data were aligned using 10X Genomics Space
807 Ranger version 1.3.0 (10X Genomics).

808 809 **Single-cell RNAseq alignment and quality control**

810 Single-cell RNAseq reads were filtered, demultiplexed, and quantified by dropEst
811 (Petukhov et al., 2018) to generate cell-by-gene count matrices. Specifically, reads with
812 expected structure were kept, and cell barcodes and UMI were extracted by dropTag.
813 Demultiplexed reads were aligned to the human reference transcriptome GRCh38 using
814 STAR (Dobin et al., 2013). Uniquely mapped reads were quantified into UMI-filtered

815 counts by dropEst. Cells with >40% mitochondria reads, or <500 UMI counts, or <200
816 or >6,000 genes expressed were considered as low quality and excluded. After this rough
817 quality control, each sample was manually checked to remove those clusters of empty
818 droplets (low number of UMI and genes, and no distinct markers) and clusters of doublets
819 (high number of UMI and genes, and markers from two different cell types). Samples with
820 cells less than 100 were excluded from the downstream analysis. Outliers and batch
821 effects were detected using scRNABatchQC (Liu et al., 2019).

822

823 **Single-cell RNAseq data analysis**

824 Single-cell RNAseq count matrices were normalized to 10,000 and the top 2,000 highly
825 variable genes were selected by fitting the variance-mean relationship in the Seurat
826 package (Butler et al., 2018; Stuart et al., 2019). The normalized data were scaled to z-
827 scores and principal component analysis was performed to reduce dimension. The top 10
828 principle components were used to generate the UMAP embedding for visualization and to
829 build the k -nearest neighbor graph ($k=20$). Louvain clustering at a resolution of 0.8
830 was applied on the graph to partition cells into non-overlapping groups by the Seurat. Cell
831 clusters were automatically annotated by a marker-based approach scMRMA (Li et al.,
832 2022) and were further manually curated using cluster-specific genes from the
833 differential expression analysis. A divide-and-conquer strategy was adopted to provide a
834 more precise clustering for those minor cell populations, such as immune cells and
835 fibroblasts. Those minor cell populations identified from the initial clustering were
836 extracted, reclustered, and reannotated. The clustering and annotation results served as
837 the input to scUnifrac (Liu et al., 2018) to quantify cell compositional distances across
838 samples, which considered both cellular compositions and similarities. Multidimensional

839 scaling was used to map each sample into a space based on pairwise distances from
840 scUniFrac.

841

842 **Cell type deconvolution for bulk transcriptomics data**

843 CIBERSORT (Newman et al., 2015) was applied to characterize the cell composition of
844 bulk RNAseq data using single-cell transcriptional profiles of each cell type from TI and
845 AC as the reference. The signature matrix was created from average expression of the top
846 100 marker genes in each cell type. Default parameters were used to implement
847 CIBERSORT, except that the parameter of quantile normalization of bulk mixture was set
848 to False.

849

850 **Cell-cell interaction analysis**

851 CellChat (Jin et al., 2021) was used to infer communications between cell types through
852 ligand-receptor interaction analysis from single-cell RNAseq data of TI and AC separately.
853 The standard workflow was followed with the normalized data and the annotated cell
854 types as inputs. The built-in database CellChatDB.human involving 1,939 interactions
855 was used as a reference to screen potential ligand-receptor interactions. The
856 communication probability was quantified between cell types having at least 10 cells. The
857 average gene expression per cell type was caculated without trimming.

858

859 **Development trajectory analysis**

860 RNA velocity (La Manno et al., 2018) was applied to infer lineage relationships between
861 epithelial cell populations and predict future transcriptional state of a single cell. First,
862 the loom file including spliced/unspliced matrices was generated from the bam file using

863 Velocyto. Then velocity was calculated by the function RunVelocity in the SeuratWrapper
864 package with default parameters. The velocity was plotted on the pre-computed UMAP
865 embedding and colored by the annotated cell types.

866

867 CytoTRACE (Gulati et al., 2020) was performed to predict stemness status from single
868 cell RNAseq data based on the assumption that the number of genes expressed in a cell
869 decreases during differentiation. CytoTRACE was implemented with default parameters
870 and the raw count matrix of each sample as the input. A CytoTRACE score was assigned
871 to each cell based on its differentiation potential, with higher score indicating higher
872 stemness. CytoTRACE scores from different samples were grouped by cell types and score
873 differences between two cell types were compared by Wilcoxon rank-sum test.

874

875 Partition-based graph abstraction (PAGA) (Wolf et al., 2019) was used to reconstruct
876 lineage relationships of epithelial cell populations. First, the Seurat object was converted
877 to h5ad file for the PAGA input. Then, a neighborhood graph was computed based on the
878 size of local neighborhood of 50 and the number of PCs of 30 using scanpy. Finally the
879 connections between cell types were quantified. The connections of weight less than 0.2
880 were removed.

881

882 **Cell types associated with CD/IBD-risk Loci**

883 SNPsea algorithm (Slowikowski et al., 2014) was used to identify cell types associated
884 with CD/IBD-risk SNPs based on the assumption that genes specificity to a cell type is an
885 indicator of its importance to the cell type function. Thus if one cell type have significant
886 enrichment of specific genes associated with GWAS risk loci, this cell type is highly likely

887 to be pathogenic and critical to the disease. The CD/IBD-risk SNPs were compiled from
888 two GWAS studies (Jostins et al., 2012; Liu et al., 2015), which reported 344 loci in total.
889 A pseudobulk dataset for each cell type in CD was generated by summing all UMI counts
890 for each gene in each cell type and adding pseudocount of 1. The data were then
891 normalized by DESeq2 to remove the effects introduced by cell cluster-sizes. SNPsea was
892 run with defult parameters and all genes in a SNP's linkage interval are accounted when
893 calculating scores. The p-values were further adjusted by the Benjamini-Hochberg
894 multiple testing procedure.

895

896 **Cell type deconvolution and spatial colocalization**

897 Robust Cell-Type Decomposition (RCTD) (Cable et al., 2022) in the spacexr package was
898 applied to deconvolve cell type compositions of each spot. Single-cell RNAseq data and
899 cell types annotations from all TI and AC samples were used as the reference to
900 decompose spatial TI and AC samples, respectively. The anchor-based integration
901 workflow in the Seurat was also used to predict the underlying composition of cell types
902 in each spot and similar results were obtained.

903

904 SpaGene (Liu et al., 2022) was used to quantify colocalization of markers of epithelial
905 genes (*KRT8* and *KRT18*) and LND (*LCN2*, *NOS2*, and *DUOX2*) with immune cell
906 signatures (*CD3D*, *CD8A*, *GZMB*, *MRC1*, *S100A8*, *NFKB1A*, and *NFKB1B*). Z-scores and
907 FDR values were generated to estimate the significance of spatial connections of two
908 genes (such as *NOS2* and *CD8A*) compared to random distributions. SpaGene was also
909 performed to quantify colocalization between epithelial and immune cells based on the
910 inferred composition of each cell type from RCTD (Cable et al., 2022). Z-scores and FDR

911 values were produced to estimate the significance of spatial colocalizations of two cell
912 types (such as LND and Neutrophils) compared to random connections.

913

914 **Acknowledgements**

915 We thank Dr. Nicholas Zachos and I-Ling Chiang for their helpful contributions. This
916 work is part of the Gut Cell Atlas Crohn's Disease Consortium funded by The Leona M.
917 and Harry B. Helmsley Charitable Trust and is supported by a grant from Helmsley to
918 Vanderbilt University Medical Center (G-1903-03793)
919 (<http://www.helmsleytrust.org/gut-cell-atlas/>). This work was also funded National
920 Institutes of Health (NIH) grants (P01AI139449, R01DK103831, R01 DK128200),
921 National Cancer Institute grants (NCI) (P50CA236733, P01CA229123, and U54
922 CA274367), Veterans Affairs Merit Review grants I01BX004366 (LAC), I01CX002171
923 (KTW), and I01CX002473 (KTW), Department of Defense PRCRP Impact Award
924 W81XWH-21-1-0617 (KTW), Crohn's & Colitis Foundation Senior Research Award
925 703003 (KTW), and NCI/NIH Cancer Center Support Grant P30CA068485. Additional
926 support was provided by NIH grant P30DK058404 (Vanderbilt Digestive Disease
927 Research Center) and NCATS/NIH grant UL1TR000445 (Vanderbilt Institute for Clinical
928 and Translational Research). Whole slide imaging and quantification were performed in
929 the Digital Histology Shared Resource at Vanderbilt University Medical Center. Surgical
930 resection specimens were provided by the Cooperative Human Tissue Network (CHTN),
931 which is funded by National Cancer Institute grant UM1CA183727.

932

933 **Supplementary Tables**

934 Table S1. Metadata per sample, including sample ID, patient ID, endoscopy/surgical,
935 specimen location, and disease status.

936 Table S2. Technical statistics per sample, including the number of cells and genes, and
937 the total UMI.

938 Table S3. Cellular compositions in each sample.

939 Table S4. Cell type-disease association in each sample.

940

941 **REFERENCES**

942 Arijs, I., De Hertogh, G., Lemaire, K., Quintens, R., Van Lommel, L., Van Steen, K., Leemans, P.,
943 Cleynen, I., Van Assche, G., Vermeire, S., *et al.* (2009). Mucosal gene expression of antimicrobial
944 peptides in inflammatory bowel disease before and after first infliximab treatment. *PLoS One* 4,
945 e7984.

946 Ayyaz, A., Kumar, S., Sangiorgi, B., Ghoshal, B., Gosio, J., Ouladan, S., Fink, M., Barutcu, S., Trcka,
947 D., Shen, J., *et al.* (2019). Single-cell transcriptomes of the regenerating intestine reveal a revival
948 stem cell. *Nature* 569, 121-125.

949 Badolato, R., Wang, J.M., Murphy, W.J., Lloyd, A.R., Michiel, D.F., Bausserman, L.L., Kelvin, D.J.,
950 and Oppenheim, J.J. (1994). Serum amyloid A is a chemoattractant: induction of migration,
951 adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. *J Exp Med*
952 180, 203-209.

953 Banerjee, A., Herring, C.A., Chen, B., Kim, H., Simmons, A.J., Southard-Smith, A.N., Allaman,
954 M.M., White, J.R., Macedonia, M.C., McKinley, E.T., *et al.* (2020). Succinate Produced by
955 Intestinal Microbes Promotes Specification of Tuft Cells to Suppress Ileal Inflammation.
956 *Gastroenterology* 159, 2101-2115 e2105.

957 Boland, B.S., He, Z., Tsai, M.S., Olvera, J.G., Omilusik, K.D., Duong, H.G., Kim, E.S., Limary, A.E.,
958 Jin, W., Milner, J.J., *et al.* (2020). Heterogeneity and clonal relationships of adaptive immune
959 cells in ulcerative colitis revealed by single-cell analyses. *Sci Immunol* 5.

960 Bomidi, C., Robertson, M., Coarfa, C., Estes, M.K., and Blutt, S.E. (2021). Single-cell sequencing
961 of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell
962 infection. *Proc Natl Acad Sci U S A* 118.

963 Burclaff, J., Bliton, R.J., Breau, K.A., Ok, M.T., Gomez-Martinez, I., Ranek, J.S., Bhatt, A.P., Purvis,
964 J.E., Woosley, J.T., and Magness, S.T. (2022). A Proximal-to-Distal Survey of Healthy Adult
965 Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics. *Cell Mol*
966 *Gastroenterol Hepatol* 13, 1554-1589.

967 Burgueno, J.F., Fritsch, J., Gonzalez, E.E., Landau, K.S., Santander, A.M., Fernandez, I., Hazime,
968 H., Davies, J.M., Santaolalla, R., Phillips, M.C., *et al.* (2021). Epithelial TLR4 Signaling Activates
969 DUOX2 to Induce Microbiota-Driven Tumorigenesis. *Gastroenterology* 160, 797-808 e796.

970 Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell
971 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol* 36,
972 411-420.

973 Cable, D.M., Murray, E., Zou, L.S., Goeva, A., Macosko, E.Z., Chen, F., and Irizarry, R.A. (2022).
974 Robust decomposition of cell type mixtures in spatial transcriptomics. *Nat Biotechnol* 40, 517-
975 526.

976 Chatterjee, I., Kumar, A., Castilla-Madrigal, R.M., Pellon-Cardenas, O., Gill, R.K., Alrefai, W.A.,
977 Borthakur, A., Verzi, M., and Dudeja, P.K. (2017). CDX2 upregulates SLC26A3 gene expression in
978 intestinal epithelial cells. *Am J Physiol Gastrointest Liver Physiol* 313, G256-G264.

979 Chen, B., Scurrah, C.R., McKinley, E.T., Simmons, A.J., Ramirez-Solano, M.A., Zhu, X., Markham,
980 N.O., Heiser, C.N., Vega, P.N., Rolong, A., *et al.* (2021). Differential pre-malignant programs and
981 microenvironment chart distinct paths to malignancy in human colorectal polyps. *Cell* 184,
982 6262-6280 e6226.

983 Cheng, A.C., Duda, S.N., Taylor, R., Delacqua, F., Lewis, A.A., Bosler, T., Johnson, K.B., and Harris,
984 P.A. (2021). REDCap on FHIR: Clinical Data Interoperability Services. *J Biomed Inform* 121,
985 103871.

986 Choi, H.M.T., Schwarzkopf, M., Fornace, M.E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha,
987 A., and Pierce, N.A. (2018). Third-generation *in situ* hybridization chain reaction: multiplexed,
988 quantitative, sensitive, versatile, robust. *Development* 145.

989 Coburn, L.A., Horst, S.N., Allaman, M.M., Brown, C.T., Williams, C.S., Hodges, M.E., Druce, J.P.,
990 Beaulieu, D.B., Schwartz, D.A., and Wilson, K.T. (2016). L-Arginine Availability and Metabolism Is
991 Altered in Ulcerative Colitis. *Inflamm Bowel Dis* 22, 1847-1858.

992 Crawley, S.W., Shifrin, D.A., Jr., Grega-Larson, N.E., McConnell, R.E., Benesh, A.E., Mao, S.,
993 Zheng, Y., Zheng, Q.Y., Nam, K.T., Millis, B.A., *et al.* (2014). Intestinal brush border assembly
994 driven by protocadherin-based intermicrovillar adhesion. *Cell* 157, 433-446.

995 de Lange, K.M., Moutsianas, L., Lee, J.C., Lamb, C.A., Luo, Y., Kennedy, N.A., Jostins, L., Rice,
996 D.L., Gutierrez-Achury, J., Ji, S.G., *et al.* (2017). Genome-wide association study implicates
997 immune activation of multiple integrin genes in inflammatory bowel disease. *Nat Genet* 49,
998 256-261.

999 Dhillon, S.S., Mastropaoletto, L.A., Murchie, R., Griffiths, C., Thoni, C., Elkadri, A., Xu, W., Mack, A.,
1000 Walters, T., Guo, C., *et al.* (2014). Higher activity of the inducible nitric oxide synthase
1001 contributes to very early onset inflammatory bowel disease. *Clin Transl Gastroenterol* 5, e46.

1002 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M.,
1003 and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15-21.

1004 Dufton, N., Hannon, R., Brancaleone, V., Dalli, J., Patel, H.B., Gray, M., D'Acquisto, F.,
1005 Buckingham, J.C., Perretti, M., and Flower, R.J. (2010). Anti-inflammatory role of the murine
1006 formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental
1007 inflammation. *J Immunol* 184, 2611-2619.

1008 Elmentait, R., Kumashita, N., Roberts, K., Fleming, A., Dann, E., King, H.W., Kleshchevnikov, V.,
1009 Dabrowska, M., Pritchard, S., Bolt, L., *et al.* (2021). Cells of the human intestinal tract mapped
1010 across space and time. *Nature* 597, 250-255.

1011 Elmentait, R., Ross, A.D.B., Roberts, K., James, K.R., Ortmann, D., Gomes, T., Nayak, K., Tuck, L.,
1012 Pritchard, S., Bayraktar, O.A., *et al.* (2020). Single-Cell Sequencing of Developing Human Gut
1013 Reveals Transcriptional Links to Childhood Crohn's Disease. *Dev Cell* 55, 771-783 e775.

1014 Fawkner-Corbett, D., Antanaviciute, A., Parikh, K., Jagielowicz, M., Geros, A.S., Gupta, T., Ashley,
1015 N., Khamis, D., Fowler, D., Morrissey, E., *et al.* (2021). Spatiotemporal analysis of human
1016 intestinal development at single-cell resolution. *Cell* 184, 810-826 e823.

1017 Friedrich, M., Pohin, M., Jackson, M.A., Korsunsky, I., Bullers, S.J., Rue-Albrecht, K.,
1018 Christoforidou, Z., Sathananthan, D., Thomas, T., Ravindran, R., *et al.* (2021). IL-1-driven
1019 stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease
1020 that does not respond to therapies. *Nat Med* 27, 1970-1981.

1021 Goetz, D.H., Holmes, M.A., Borregaard, N., Bluhm, M.E., Raymond, K.N., and Strong, R.K. (2002).
1022 The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-
1023 mediated iron acquisition. *Mol Cell* 10, 1033-1043.

1024 Grasberger, H., Magis, A.T., Sheng, E., Conomos, M.P., Zhang, M., Garzotto, L.S., Hou, G., Bishu,
1025 S., Nagao-Kitamoto, H., El-Zaatari, M., *et al.* (2021). DUOX2 variants associate with preclinical
1026 disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease
1027 risk. *J Clin Invest* 131.

1028 Gu, W., Wang, H., Huang, X., Kraiczy, J., Singh, P.N.P., Ng, C., Dagdeviren, S., Houghton, S.,
1029 Pellon-Cardenas, O., Lan, Y., *et al.* (2022). SATB2 preserves colon stem cell identity and
1030 mediates ileum-colon conversion via enhancer remodeling. *Cell Stem Cell* 29, 101-115 e110.

1031 Gulati, G.S., Sikandar, S.S., Wesche, D.J., Manjunath, A., Bharadwaj, A., Berger, M.J., Ilagan, F.,
1032 Kuo, A.H., Hsieh, R.W., Cai, S., *et al.* (2020). Single-cell transcriptional diversity is a hallmark of
1033 developmental potential. *Science* 367, 405-411.

1034 Haber, A.L., Biton, M., Rogel, N., Herbst, R.H., Shekhar, K., Smillie, C., Burgin, G., Delorey, T.M.,
1035 Howitt, M.R., Katz, Y., *et al.* (2017). A single-cell survey of the small intestinal epithelium.
1036 *Nature* 551, 333-339.

1037 Harris, P.A., Taylor, R., Minor, B.L., Elliott, V., Fernandez, M., O'Neal, L., McLeod, L., Delacqua,
1038 G., Delacqua, F., Kirby, J., *et al.* (2019). The REDCap consortium: Building an international
1039 community of software platform partners. *J Biomed Inform* 95, 103208.

1040 Harris, P.A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., and Conde, J.G. (2009). Research
1041 electronic data capture (REDCap)--a metadata-driven methodology and workflow process for
1042 providing translational research informatics support. *J Biomed Inform* 42, 377-381.

1043 Heiser, C.N., Simmons, A.J., Revetta, F., McKinley, E.T., Ramirez-Solano, M.A., Wang, J., Shao, J.,
1044 Ayers, G.D., Wang, Y., Glass, S.E., *et al.* (2023). Molecular cartography uncovers evolutionary
1045 and microenvironmental dynamics in sporadic
1046 colorectal tumors. *bioRxiv*.

1047 Herring, C.A., Banerjee, A., McKinley, E.T., Simmons, A.J., Ping, J., Roland, J.T., Franklin, J.L., Liu,
1048 Q., Gerdes, M.J., Coffey, R.J., *et al.* (2018). Unsupervised Trajectory Analysis of Single-Cell RNA-
1049 Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. *Cell Syst* 6, 37-51 e39.

1050 Hu, S., Yang, K., Yang, J., Li, M., and Xiong, N. (2011). Critical roles of chemokine receptor CCR10
1051 in regulating memory IgA responses in intestines. *Proc Natl Acad Sci U S A* 108, E1035-1044.

1052 Ito, G., Okamoto, R., Murano, T., Shimizu, H., Fujii, S., Nakata, T., Mizutani, T., Yui, S., Akiyama-
1053 Morio, J., Nemoto, Y., *et al.* (2013). Lineage-specific expression of bestrophin-2 and bestrophin-
1054 4 in human intestinal epithelial cells. *PLoS One* 8, e79693.

1055 Jaeger, N., Gamini, R., Cella, M., Schettini, J.L., Bugatti, M., Zhao, S., Rosadini, C.V., Esaulova, E.,
1056 Di Luccia, B., Kinnett, B., *et al.* (2021). Single-cell analyses of Crohn's disease tissues reveal

1057 intestinal intraepithelial T cells heterogeneity and altered subset distributions. *Nat Commun* 12,
1058 1921.

1059 Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.H., Myung, P., Plikus, M.V.,
1060 and Nie, Q. (2021). Inference and analysis of cell-cell communication using CellChat. *Nat*
1061 *Commun* 12, 1088.

1062 Jostins, L., Ripke, S., Weersma, R.K., Duerr, R.H., McGovern, D.P., Hui, K.Y., Lee, J.C., Schumm,
1063 L.P., Sharma, Y., Anderson, C.A., *et al.* (2012). Host-microbe interactions have shaped the
1064 genetic architecture of inflammatory bowel disease. *Nature* 491, 119-124.

1065 Kanke, M., Kennedy Ng, M.M., Connelly, S., Singh, M., Schaner, M., Shanahan, M.T., Wolber,
1066 E.A., Beasley, C., Lian, G., Jain, A., *et al.* (2022). Single-Cell Analysis Reveals Unexpected Cellular
1067 Changes and Transposon Expression Signatures in the Colonic Epithelium of Treatment-Naive
1068 Adult Crohn's Disease Patients. *Cell Mol Gastroenterol Hepatol* 13, 1717-1740.

1069 Kaser, A., Lee, A.H., Franke, A., Glickman, J.N., Zeissig, S., Tilg, H., Nieuwenhuis, E.E., Higgins,
1070 D.E., Schreiber, S., Glimcher, L.H., *et al.* (2008). XBP1 links ER stress to intestinal inflammation
1071 and confers genetic risk for human inflammatory bowel disease. *Cell* 134, 743-756.

1072 Kaser, A., Zeissig, S., and Blumberg, R.S. (2010). Inflammatory bowel disease. *Annu Rev*
1073 *Immunol* 28, 573-621.

1074 Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D.A.,
1075 and Kirschner, M.W. (2015). Droplet barcoding for single-cell transcriptomics applied to
1076 embryonic stem cells. *Cell* 161, 1187-1201.

1077 Kluber, P., Meurer, S.K., Lambertz, J., Schwarz, R., Zechel-Gran, S., Braunschweig, T., Hurka, S.,
1078 Domann, E., and Weiskirchen, R. (2021). Depletion of Lipocalin 2 (LCN2) in Mice Leads to
1079 Dysbiosis and Persistent Colonization with Segmented Filamentous Bacteria. *Int J Mol Sci* 22.

1080 Kyodo, R., Takeuchi, I., Narumi, S., Shimizu, H., Hata, K., Yoshioka, T., Tanase-Nakao, K., Shimizu,
1081 T., and Arai, K. (2022). Novel biallelic mutations in the DUOX2 gene underlying very early-onset
1082 inflammatory bowel disease: A case report. *Clin Immunol* 238, 109015.

1083 La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber, K.,
1084 Kastriti, M.E., Lonnerberg, P., Furlan, A., *et al.* (2018). RNA velocity of single cells. *Nature* 560,
1085 494-498.

1086 Lawrence, C.E., Dunkel, L., McEver, M., Israel, T., Taylor, R., Chiriboga, G., Goins, K.V., Rahn, E.J.,
1087 Mudano, A.S., Roberson, E.D., *et al.* (2020). A REDCap-based model for electronic consent
1088 (eConsent): Moving toward a more personalized consent. *J Clin Transl Sci* 4, 345-353.

1089 Li, G., Zhang, B., Hao, J., Chu, X., Wiestler, M., Cornberg, M., Xu, C.J., Liu, X., and Li, Y. (2021).
1090 Identification of Novel Population-Specific Cell Subsets in Chinese Ulcerative Colitis Patients
1091 Using Single-Cell RNA Sequencing. *Cell Mol Gastroenterol Hepatol* 12, 99-117.

1092 Li, J., Sheng, Q., Shyr, Y., and Liu, Q. (2022). scMRMA: single cell multiresolution marker-based
1093 annotation. *Nucleic Acids Res* 50, e7.

1094 Liang, T.S., Wang, J.M., Murphy, P.M., and Gao, J.L. (2000). Serum amyloid A is a chemotactic
1095 agonist at FPR2, a low-affinity N-formylpeptide receptor on mouse neutrophils. *Biochem*
1096 *Biophys Res Commun* 270, 331-335.

1097 Lipinski, S., Till, A., Sina, C., Arlt, A., Grasberger, H., Schreiber, S., and Rosenstiel, P. (2009).
1098 DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial
1099 responses. *J Cell Sci* 122, 3522-3530.

1100 Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., Ripke, S., Lee, J.C.,
1101 Jostins, L., Shah, T., *et al.* (2015). Association analyses identify 38 susceptibility loci for
1102 inflammatory bowel disease and highlight shared genetic risk across populations. *Nat Genet* 47,
1103 979-986.

1104 Liu, Q., Herring, C.A., Sheng, Q., Ping, J., Simmons, A.J., Chen, B., Banerjee, A., Li, W., Gu, G.,
1105 Coffey, R.J., *et al.* (2018). Quantitative assessment of cell population diversity in single-cell
1106 landscapes. *PLoS Biol* 16, e2006687.

1107 Liu, Q., Hsu, C.Y., and Shyr, Y. (2022). Scalable and model-free detection of spatial patterns and
1108 colocalization. *Genome Res* 32, 1736-1745.

1109 Liu, Q., Sheng, Q., Ping, J., Ramirez, M.A., Lau, K.S., Coffey, R.J., and Shyr, Y. (2019).
1110 scRNABatchQC: multi-samples quality control for single cell RNA-seq data. *Bioinformatics* 35,
1111 5306-5308.

1112 Martin, J.C., Chang, C., Boschetti, G., Ungaro, R., Giri, M., Grout, J.A., Gettler, K., Chuang, L.S.,
1113 Nayar, S., Greenstein, A.J., *et al.* (2019). Single-Cell Analysis of Crohn's Disease Lesions Identifies
1114 a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. *Cell* 178, 1493-
1115 1508 e1420.

1116 McKinley, E.T., Shao, J., Ellis, S.T., Heiser, C.N., Roland, J.T., Macedonia, M.C., Vega, P.N., Shin,
1117 S., Coffey, R.J., and Lau, K.S. (2022). MIRIAM: A machine and deep learning single-cell
1118 segmentation and quantification pipeline for multi-dimensional tissue images. *Cytometry A*
1119 101, 521-528.

1120 Mitsialis, V., Wall, S., Liu, P., Ordovas-Montanes, J., Parmet, T., Vukovic, M., Spencer, D., Field,
1121 M., McCourt, C., Toothaker, J., *et al.* (2020). Single-Cell Analyses of Colon and Blood Reveal
1122 Distinct Immune Cell Signatures of Ulcerative Colitis and Crohn's Disease. *Gastroenterology*
1123 159, 591-608 e510.

1124 Momozawa, Y., Dmitrieva, J., Theatre, E., Deffontaine, V., Rahmouni, S., Charlotteaux, B., Crins,
1125 F., Docampo, E., Elansary, M., Gori, A.S., *et al.* (2018). IBD risk loci are enriched in multigenic
1126 regulatory modules encompassing putative causative genes. *Nat Commun* 9, 2427.

1127 Moor, A.E., Harnik, Y., Ben-Moshe, S., Massasa, E.E., Rozenberg, M., Eilam, R., Bahar Halpern,
1128 K., and Itzkovitz, S. (2018). Spatial Reconstruction of Single Enterocytes Uncovers Broad
1129 Zonation along the Intestinal Villus Axis. *Cell* 175, 1156-1167 e1115.

1130 Muhl, H., Bachmann, M., and Pfeilschifter, J. (2011). Inducible NO synthase and antibacterial
1131 host defence in times of Th17/Th22/T22 immunity. *Cell Microbiol* 13, 340-348.

1132 Munera, J.O., Sundaram, N., Rankin, S.A., Hill, D., Watson, C., Mahe, M., Vallance, J.E., Shroyer,
1133 N.F., Sinagoga, K.L., Zarzoso-Lacoste, A., *et al.* (2017). Differentiation of Human Pluripotent
1134 Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. *Cell Stem Cell* 21,
1135 51-64 e56.

1136 Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., and
1137 Alizadeh, A.A. (2015). Robust enumeration of cell subsets from tissue expression profiles. *Nat
1138 Methods* 12, 453-457.

1139 Parikh, K., Antanaviciute, A., Fawkner-Corbett, D., Jagielowicz, M., Aulicino, A., Lagerholm, C.,
1140 Davis, S., Kinchen, J., Chen, H.H., Alham, N.K., *et al.* (2019). Colonic epithelial cell diversity in
1141 health and inflammatory bowel disease. *Nature* 567, 49-55.

1142 Petukhov, V., Guo, J., Baryawno, N., Severe, N., Scadden, D.T., Samsonova, M.G., and
1143 Kharchenko, P.V. (2018). dropEst: pipeline for accurate estimation of molecular counts in
1144 droplet-based single-cell RNA-seq experiments. *Genome Biol* 19, 78.

1145 Rosati, E., Rios Martini, G., Pogorelyy, M.V., Minervina, A.A., Degenhardt, F., Wendorff, M., Sari,
1146 S., Mayr, G., Fazio, A., Dowds, C.M., *et al.* (2022). A novel unconventional T cell population
1147 enriched in Crohn's disease. *Gut*.

1148 Scoville, E.A., Allaman, M.M., Adams, D.W., Motley, A.K., Peyton, S.C., Ferguson, S.L., Horst,
1149 S.N., Williams, C.S., Beaulieu, D.B., Schwartz, D.A., *et al.* (2019). Serum Polyunsaturated Fatty
1150 Acids Correlate with Serum Cytokines and Clinical Disease Activity in Crohn's Disease. *Sci Rep* 9,
1151 2882.

1152 Simmons, A.J., and Lau, K.S. (2022). Dissociation and inDrops microfluidic encapsulation of
1153 human gut tissues for single-cell atlasing studies. *STAR Protoc* 3, 101570.

1154 Slowikowski, K., Hu, X., and Raychaudhuri, S. (2014). SNPsea: an algorithm to identify cell types,
1155 tissues and pathways affected by risk loci. *Bioinformatics* 30, 2496-2497.

1156 Smillie, C.S., Biton, M., Ordovas-Montanes, J., Sullivan, K.M., Burgin, G., Graham, D.B., Herbst,
1157 R.H., Rogel, N., Slyper, M., Waldman, J., *et al.* (2019). Intra- and Inter-cellular Rewiring of the
1158 Human Colon during Ulcerative Colitis. *Cell* 178, 714-730 e722.

1159 Southard-Smith, A.N., Simmons, A.J., Chen, B., Jones, A.L., Ramirez Solano, M.A., Vega, P.N.,
1160 Scurrah, C.R., Zhao, Y., Brenan, M.J., Xuan, J., *et al.* (2020). Dual indexed library design enables
1161 compatibility of in-Drop single-cell RNA-sequencing with exAMP chemistry sequencing
1162 platforms. *BMC Genomics* 21, 456.

1163 Stallhofer, J., Friedrich, M., Konrad-Zerna, A., Wetzke, M., Lohse, P., Glas, J., Tillack-Schreiber,
1164 C., Schnitzler, F., Beigel, F., and Brand, S. (2015). Lipocalin-2 Is a Disease Activity Marker in
1165 Inflammatory Bowel Disease Regulated by IL-17A, IL-22, and TNF-alpha and Modulated by IL23R
1166 Genotype Status. *Inflamm Bowel Dis* 21, 2327-2340.

1167 Stringer, E.J., Duluc, I., Saandi, T., Davidson, I., Bialecka, M., Sato, T., Barker, N., Clevers, H.,
1168 Pritchard, C.A., Winton, D.J., *et al.* (2012). Cdx2 determines the fate of postnatal intestinal
1169 endoderm. *Development* 139, 465-474.

1170 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y.,
1171 Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data.
1172 *Cell* 177, 1888-1902 e1821.

1173 Torres, J., Mehandru, S., Colombel, J.F., and Peyrin-Biroulet, L. (2017). Crohn's disease. *Lancet*
1174 389, 1741-1755.

1175 Uniken Venema, W.T., Voskuil, M.D., Vila, A.V., van der Vries, G., Jansen, B.H., Jabri, B., Faber,
1176 K.N., Dijkstra, G., Xavier, R.J., Wijmenga, C., *et al.* (2019). Single-Cell RNA Sequencing of Blood
1177 and Ileal T Cells From Patients With Crohn's Disease Reveals Tissue-Specific Characteristics and
1178 Drug Targets. *Gastroenterology* 156, 812-815 e822.

1179 Van Heel, D.A., McGovern, D.P., and Jewell, D.P. (2001). Crohn's disease: genetic susceptibility,
1180 bacteria, and innate immunity. *Lancet* 357, 1902-1904.

1181 Vega, P.N., Lau, K.S., and Goldenring, J.R. (2019). Not All Insults Are Created Equal for
1182 Awakening Dormant Stem Cell Abilities. *Cell Mol Gastroenterol Hepatol* 7, 619-621.

1183 Vega, P.N., Nilsson, A., Kumar, M.P., Niitsu, H., Simmons, A.J., Ro, J., Wang, J., Chen, Z., Joughin,
1184 B.A., Li, W., *et al.* (2022). Cancer-Associated Fibroblasts and Squamous Epithelial Cells

1185 Constitute a Unique Microenvironment in a Mouse Model of Inflammation-Induced Colon
1186 Cancer. *Front Oncol* 12, 878920.

1187 Wendt, E., and Keshav, S. (2015). CCR9 antagonism: potential in the treatment of Inflammatory
1188 Bowel Disease. *Clin Exp Gastroenterol* 8, 119-130.

1189 West, N.R., Hegazy, A.N., Owens, B.M.J., Bullers, S.J., Linggi, B., Buonocore, S., Coccia, M., Gortz,
1190 D., This, S., Stockenhuber, K., *et al.* (2017). Oncostatin M drives intestinal inflammation and
1191 predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory
1192 bowel disease. *Nat Med* 23, 579-589.

1193 Wolf, F.A., Hamey, F.K., Plass, M., Solana, J., Dahlin, J.S., Gottgens, B., Rajewsky, N., Simon, L.,
1194 and Theis, F.J. (2019). PAGA: graph abstraction reconciles clustering with trajectory inference
1195 through a topology preserving map of single cells. *Genome Biol* 20, 59.

1196 Yang, A.Z., and Jostins-Dean, L. (2022). Environmental variables and genome-environment
1197 interactions predicting IBD diagnosis in large UK cohort. *Sci Rep* 12, 10890.

1198 Zhou, L., Zhou, W., Joseph, A.M., Chu, C., Putzel, G.G., Fang, B., Teng, F., Lyu, M., Yano, H.,
1199 Andreasson, K.I., *et al.* (2022). Group 3 innate lymphoid cells produce the growth factor HB-EGF
1200 to protect the intestine from TNF-mediated inflammation. *Nat Immunol* 23, 251-261.

1201