

1 **B cell directed CAR-T cell therapy results in activation of CD8+ cytotoxic CAR-negative
2 bystander T cells in both non-human primates and patients**

3 Running title: CAR-T cell therapy induces activation of CAR neg bystander T cells.

4

5 James Kaminski^{1,2}, Ryan A. Fleming¹, Francesca Alvarez-Calderon^{1,3,4}, Connor McGuckin¹,
6 Emily E. Ho⁵, Fay Eng⁵, Xianliang Rui¹, Paula Keskula¹, Lorenzo Cagnin¹, Joanne Charles¹,
7 Jillian Zavistaski¹, Steven P. Margossian^{1,3,4}, Malika A. Kapadia^{1,3,4}, James B. Rottman⁵,
8 Jennifer Lane^{1,6}, Susanne H.C. Baumeister^{1,3,4}, Victor Tkachev^{1,3,6}, Alex K. Shalek^{*2, 7, 8}, Leslie S.
9 Kean^{*1,3,4} Ulrike Gerdemann^{*#1,3,4}

10

11 ¹Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA.

12 ²Broad Institute of MIT and Harvard, Cambridge, MA, United States.

13 ³Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA.

14 ⁴Harvard Medical School, Boston, MA.

15 ⁵2seventy bio, Cambridge, MA

16 ⁶ Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129

17 ⁷ Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch
18 Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.

19 ⁸Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA,
20 United States.

21

22 *Co-Senior Authors

23 #Corresponding Author

24

25 Ulrike Gerdemann, MD,

26 ulrike_gerdemann@dfci.harvard.edu

27 Karp Research Building, 8th Floor, 1 Blackfan Circle, Boston 02115, Phone: 617-9716105

28

Conflict of Interest statement:

U.G. possesses intellectual property rights related to Allovir, including interests in royalties. L.S.K is on the scientific advisory board for Mammoth Biosciences and HiFiBio. She reports research funding from Magenta Therapeutics, Tessera Therapeutics, Novartis, EMD-Serono, Gilead Pharmaceuticals, and Regeneron Pharmaceuticals. She reports consulting fees from Vertex. L.S.K. reports grants and personal fees from Bristol Myers Squibb. L.S.K. conflict-of-interest with Bristol Myers Squibb is managed under an agreement with Harvard Medical School. A.K.S. reports compensation for consulting and/or scientific advisory board membership from Merck, Honeycomb Biotechnologies, Cellarity, Repertoire Immune Medicines, Ochre Bio, Third Rock Ventures, Hovione, Relation Therapeutics, FL82, FL86, Empress Therapeutics, IntrECate Biotherapeutics, Senda Biosciences and Dahlia Biosciences unrelated to this work. Parts of the study were supported by 2seventy bio. Authors F.E. and E.E.H. are employees of 2seventy bio, J.B.R. is an employee of Tessera therapeutics and S.B.M. is an employee of Cue Biopharma. There are no conflicts of interest of any of these or other authors regarding the data generated for this manuscript.

29 **Abstract:**

30

31 There is growing appreciation for the emergence of CAR^{neg} bystander T cells after CAR-T cell
32 infusion. However, their phenotypic and transcriptomic hallmarks and mechanisms of activation
33 remain uncertain. We performed single-cell RNA-Seq (scRNA-Seq) on non-human primate (NHP)
34 and patient-derived T cells to interrogate CAR^{neg} T cells following B cell targeted CAR-T cell
35 therapy. In a NHP model, we observed a distinct population of activated CD8+ CAR^{neg} T cells
36 emerging during CAR-T cell expansion. These bystander CD8+ CAR^{neg} T cells exhibited a unique
37 transcriptional signature with upregulation of NK-cell markers (*KIR3DL2*, *CD160*, *KLRD1*),
38 chemokines and chemokine receptors (*CCL5*, *XCL1*, *CCR9*), and downregulation of naive T cell-
39 associated genes (*SELL*, *CD28*). A transcriptionally similar population was identified in patients
40 following Tisagelecleucel infusion. Mechanistic studies revealed that IL-2 and IL-15 exposure
41 induced bystander-like CD8+ T cells. These T cells efficiently killed leukemic cells through a TCR-
42 independent mechanism. Together, these data identify bystander CD8+ T cells as a novel
43 mechanism by which CAR-T cell infusion can induce further anti-leukemic activity, measurable in
44 both NHP and in patients.

45

46

47 **Statement of Significance:**

48 We have deeply interrogated CAR^{neg} bystander CD8+ T cells during CAR-T cell expansion in non-
49 human primates and patients receiving Tisagelecleucel to identify the unique transcriptomic
50 signature defining these cells, and to determine that IL-2- and IL-15- induced cytotoxic bystander
51 T cells are capable of killing in a TCR-independent manner. These data highlight the potential of
52 bystander T cells for leukemia control and provide a critical foundation for their future analysis.

53

54 **Introduction**

55

56 Chimeric antigen receptor T cells (CAR-T cells) are a breakthrough therapy, capable of inducing
57 remission in patients with relapsed or refractory B cell-derived malignancies, including both B-
58 lineage leukemias and lymphomas.¹⁻⁴ However, despite high rates of initial response, some
59 patients are refractory to CAR-T cells, and up to 50% of responding patients will eventually
60 experience relapse.^{3,4} As experience with CAR-T cells has grown, the field has gained an
61 increased understanding of the factors that determine the success or failure of these cells,^{1,5} with
62 several studies using single-cell RNA-Seq (scRNA-Seq) to identify key transcriptional drivers of
63 CAR-T cell function.⁶⁻¹² Unfortunately, despite the growing biological insights into CAR-T cell
64 profiles and their association with disease control, it is still not possible to accurately predict which
65 patients will respond and which patients will be resistant to CAR-T cell treatment. An additional
66 aspect of the therapeutic effect of CAR-T cells, which is now gaining increasing attention, is their
67 impact on surrounding immune cells,¹³ and the potential of these 'bystander' cells to also elicit an
68 anti-tumor response.¹³

69

70 The phenomenon of bystander activation was initially described in viral infections, where T cells
71 lacking TCRs cognate to viral antigens were discovered to contribute to viral clearance.¹⁴ Recent
72 studies have found evidence of bystander activated T cells within the tumor (including B cell
73 lymphoma) microenvironment.^{13,15,16} These findings indicate that the inflammatory conditions
74 present in the tumor microenvironment can facilitate the activation of T cells that do not possess
75 T cell receptors specifically targeting cancer antigens. Interestingly, these activated T cells often
76 contribute to tumor cell destruction through alternative cytotoxic pathways, such as interactions
77 involving NKG2D and FAS-FASL.¹⁵⁻¹⁹ In both viral infections and the tumor microenvironment,
78 activated bystander T cells have been found to express canonical NK cell genes, along with more
79 typical CD8+ effector markers.^{14-16,20-22}

80 Initial evidence for the presence of CD19 CAR-T cell induced bystander activated T cells came
81 from immunohistochemical studies in lymphomas;¹³ however there have thus far been no reports
82 of bystander activation when CAR-T cells are delivered to treat leukemia, a setting where the
83 tumor microenvironment includes the peripheral blood as well as the bone marrow. Furthermore,
84 a comprehensive analysis of the transcriptional profile and the underlying mechanisms governing
85 the activation of bystander T cells during CAR-T cell therapy has remained elusive.

86

87 Here, in both non-human primate (NHP) and patient samples, we identify an activated CD8+
88 CAR^{neg} T cell bystander population characterized by a unique transcriptional profile, including the
89 expression of both T cell activation markers as well as canonical NK cell markers. We further
90 demonstrate that bystander T cells generated *in vitro* can induce significant lysis of leukemic
91 blasts in a TCR-independent manner. These results suggest that bystander T cell activation could
92 contribute to the efficacy of CAR-T cell therapeutics for refractory leukemia.

93 **Results**

94 **CD20 CAR-T cell expansion results in activation of CD8+ but not CD4+ CAR^{neg} T cells in**
95 **NHP.**

96 To identify CAR^{neg} T cell bystander activation in the peripheral blood after CAR-T cell infusion, we
97 utilized flow cytometry, scRNA-Seq, and single-cell TCR-Seq (scTCR-Seq) to determine whether
98 these cells expanded in the NHP CD20-CAR-T cell model.²³ As previously described,²³ this model
99 recapitulates the efficacy and toxicity of human CAR-T cells, including CAR-T cell expansion,
100 induction of B cell aplasia, CRS and ICANS. This model presents a significant advantage, as it
101 consistently demonstrates expansion of CAR-T cells, along with the induction of both clinical and
102 laboratory cytokine release syndrome (CRS), within an immunologically analogous animal
103 system.²³ Importantly, the activation state of T cells in this model remains unaffected by disease
104 status or prior chemotherapy treatments, enabling a highly uniform platform for transcriptomic
105 analysis.

106

107 **Figure 1A** demonstrates the experimental strategy used for a representative NHP, R.315, for
108 which detailed sampling to measure bystander T cells was performed. This included baseline
109 samples (representing sorted T cells collected prior to lymphodepletion and CAR-T cell infusion,
110 termed ‘Pre-infusion T cells’), cells sampled from the infusion product, and cells from the
111 peripheral blood sampled at two time-points (Day 10 and Day 14) after CAR-T cell infusion. The
112 two post-infusion time-points collected included the time of peak CAR-T cell expansion (Day 10)
113 and the time of the start of CAR-T cell contraction (Day 14). For these samples, CAR^{pos} and
114 CAR^{neg} T cells were purified flow cytometrically, identifying CAR^{pos} cells using the CD20-CAR
115 directed Rituximab antibody. **Figure 1B** demonstrates both CAR-T cell expansion/contraction and
116 B cell aplasia in R.315. As shown in the figure, the peak expansion of CAR-T cells in R.315 was
117 39% of all CD3+ cells at Day 10. This was consistent with CAR-T cell expansion in previously

118 reported NHP CAR-T cell recipients (R.301-304, for which 20%-88% of total CD3+ T cells were
119 CAR+ at peak expansion, **Table S1**).²³

120 To further characterize the CAR^{pos} and CAR^{neg} cells emerging after CAR-T cell infusion, we
121 performed 5' scRNA-Seq and scTCR-Seq and obtained 11,392 CAR^{neg} and 9,340 CAR^{pos} T cells
122 (after data filtering and quality control) from R.315 (**Figure 1C-F, Supplemental Figure 1**). **Figure**
123 **1C** demonstrates the separation between the CAR-T cell product and the pre- and post-infusion
124 timepoints comprising both CAR^{pos} and CAR^{neg} T cells purified from the peripheral blood from
125 R.315 via a UMAP plot. **Figure 1D** displays CAR^{pos} (red) and CAR^{neg} (blue) T cells, based on flow
126 cytometrically sorted populations.²³ **Figure 1E** displays normalized expression of the CAR
127 transcript, with a comparison of **Figure 1D to 1E** confirming high congruency between flow
128 cytometric and transcriptomic identification of the CAR-expressing T cells. **Figure 1F** shows the
129 unadjusted CAR transcript count in each sorted population, with significantly higher levels of the
130 CAR transcript in the CAR^{pos} cells vs CAR^{neg} (Wilcoxon rank sum test, p <0.001), again confirming
131 our ability to identify both CAR^{pos} and CAR^{neg} T cells with high accuracy.

132 Prior studies have indicated that bystander activation primarily occurs in CD8+ T cells¹⁴⁻¹⁶. To
133 investigate whether bystander activation during NHP CAR-T cell expansion primarily affected
134 CD8+ T cells rather than CD4+ T cells, we conducted an initial global transcriptional analysis to
135 determine the memory/effector status of CAR^{pos} and CAR^{neg} cells (for both CD4+ and CD8+ T
136 cells) at peak expansion. To accomplish this, we used the DecoupleR²⁴ computational package
137 to evaluate the extent to which CD4+ T cells acquired a canonical memory-associated T cell
138 signature (using the GSE11057 gene set²⁵), and the extent to which CD8+ T cells acquired a
139 canonical effector-associated T cell signature (using the KEACH Naïve vs Day8 Effector CD8+ T
140 cell gene set²⁶). **Figure 1G** demonstrates that, for CD4+ T cells, when comparing the peak
141 expansion enrichment scores, CAR^{pos} cells acquired a more memory-like signature at peak
142 expansion compared to CAR^{neg} T cells (mean signature scores at peak expansion: CAR^{pos}: -6.86,
143 CAR^{neg}: -4.11, p <0.001 using Welch's t-test for the comparison of CAR^{pos} to CAR^{neg} cells). In

144 contrast, CAR^{neg} CD8+ T cells acquired a similar effector-like signature compared to CAR^{pos} CD8+
145 T cells (**Figure 1G**), suggestive of activation of bystander CD8+ T cells. Consistent with this
146 effector signature, both CD8+ CAR^{pos} and CAR^{neg} cells demonstrated enrichment for the genes
147 encoding Granzyme B (*GZMB*), Perforin (*PRF1*) and IFN γ (*IFNG*) at the time of peak CAR-T cell
148 expansion (**Figure 1H**). These findings indicate that bystander activation predominantly occurred
149 within the CD8+ CAR^{neg} T cell populations.

150

151 **Analysis of scRNA-Seq data identifies the transcriptional program of bystander activated**
152 **CD8+ T cells after CAR-T cell infusion.**

153 While alterations in the expression levels of single bystander-defining proteins have been
154 previously characterized¹⁴⁻¹⁶, there has not yet been a comprehensive transcriptional analysis to
155 elucidate the underlying mechanisms of activation of these cells. Therefore, to deepen our
156 understanding of the transcriptional signature of NHP CD8+ CAR^{neg} bystander T cells, we
157 performed additional scRNA-Seq analysis on R.315. **Figure 2A** demonstrates Leiden clustering
158 of both CAR^{pos} and CAR^{neg} T cells from this experiment, in which 16 unique cell clusters were
159 identified. Four of these clusters were enriched for CD8+ CAR^{neg} T cells (cluster #s 4, 5, 10, 14,
160 **Figure 2B-C**). As shown in **Figure 2C and Supplemental Table S2**, these clusters demonstrated
161 expression of selected effector molecules (*IFNG*, *IL2*), cytolytic molecules (*GZMA*, *GZMB*,
162 *GZMM*) as well as several canonical NK cell markers (including *NKG2D* and *KLRD1*). These
163 effector- and NK-associated molecules are similar to those described in bystander activated T
164 cells in the setting of viral infections and in the solid tumor microenvironment.^{14-16,20,21}

165

166 To determine which cluster(s) may be enriched in bystander cells associated with CAR-T cell
167 expansion, we investigated the time-point composition of clusters 4, 5, 10, and 14. **Figure 2D** and
168 **Supplementary Table S3** demonstrate that clusters 4, 5, and 10 included a substantial proportion

169 of cells obtained at the pre-infusion timepoint, and therefore were not exclusively identified during
170 CAR-T cell expansion. In contrast, the CAR^{neg} CD8+ T cell Cluster #14 was almost entirely
171 composed of T cells identified post-infusion, suggesting that the effector/activation status of cells
172 in this cluster may be more closely linked to CAR-T cell expansion. Cluster 14 also demonstrated
173 high T Cell Receptor (TCR) diversity (**Supplemental Figure 2A, B**), consistent with these cells
174 being composed of polyclonal T cells. Further computational analysis therefore focused on
175 Cluster 14.

176
177 To develop a transcriptional signature for activated CAR^{neg} CD8+ T cells, we used scVI's
178 differential expression test.^{27,28} We applied several stringent filters to the results (see **Methods**)
179 to identify a distinct transcriptional signature ('**Bystander Signature #1**') of genes that were
180 differentially expressed (DE) in Cluster 14 versus all other cells (see **Methods**). Applying an FDR
181 cutoff of 0.05, this resulted in a list of 43 genes upregulated and 29 genes downregulated in these
182 activated CAR^{neg} CD8+ T cells (**Table 1**). **Figure 2E**, labeled with the top six up- and
183 downregulated genes, demonstrates that this signature included upregulation of T cell effector
184 and NK cell-associated genes, including *CD160* and *KIR3DL2*, and downregulation of naïve T
185 cell-associated genes, including *SELL*, *CD28*, and *CCR7* (**Table 1, Figure 2E**). This is consistent
186 with a protein expression pattern previously associated with highly activated bystander CD8+ T
187 cells during viral infections and in the tumor microenvironment.^{14-16,20-22} Indeed, an analysis of the
188 43 upregulated DE genes underscored this conclusion, with 40% of these genes being associated
189 with effector T cell and/or NK cell function (**Figure 2F**). The differential expression test used for
190 **Bystander Signature #1** measured overall differences between all bystander CD8+ T cells and
191 all non-bystander T cells (both CD4+ and CD8+) in our dataset. To more specifically identify what
192 distinguished bystander CD8+ T cells from other CD8+ T cells, we conducted additional bystander
193 vs non-bystander DE tests: We performed DE analysis only on CD8+ T cells (creating the
194 '**Bystander Signature #2**', **Supplemental Figure 2C, Supplemental Table S4**), and only on

195 CAR^{neg} CD8+ T cells at the time of peak CAR-T cell expansion (creating '**Bystander Signature**
196 **#3**', **Supplemental Figure 2C**, **Supplemental Table S4**). All three signatures demonstrated
197 substantial overlap of upregulated and downregulated genes (**Supplemental Figure 2D**),
198 underscoring the consistency of these analyses in identifying bystander-defining genes. Finally,
199 we created a minimal gene list, '**Bystander Signature #4**', that enabled the identification of the
200 bystander cluster (Cluster 14, (**Supplemental Figure 2C**). This signature was generated using
201 five genes (*CD8A*, *CD160*, *KLRK1* (NKG2D), *KLRD1* (CD94) and *CCL5*) that are each highly
202 expressed in the bystander cluster and that are also amenable to flow cytometric identification.
203 Underscoring the rigor of our cluster identification, the CAR^{neg} bystander cluster was also distinct
204 across multiple levels of clustering resolution. Thus, the same cluster of bystander cells was
205 identified when the data were clustered using the Leiden algorithm²⁹ at resolutions of 0.8, 1.0 and
206 1.2 (**Supplemental Figure 2E, F**).

207

208

209 **Bystander T cells arise from recipient peripheral blood CD8+ T cells after CAR-T cell**
210 **infusion.**

211 To determine whether CD8+ CAR^{neg} bystander T cells expanded from the infused product, or from
212 T cells in the recipient, we performed VDJ-TCR single cell sequencing and assembled TCRs³⁰
213 from R.315, assigned them to clones, assessed their number and diversity, and determined their
214 similarity across samples (**Supplemental Figure 2 A,B**). We utilized the Morisita index, an
215 ecological metric commonly used to assess overlap of species counts between two different
216 environments³¹, to examine the degree of clonal overlap between Cluster 14 clones and clones
217 identified in the infused product, at the time of peak CAR-T cell expansion, and in the CAR-T cell
218 contraction phase. This analysis identified a high degree of clonal overlap between Cluster 14
219 CAR^{neg} bystander T cells present at the time of CAR-T peak expansion and contraction, but much
220 less overlap between this cluster and either the pre-infusion T cells or the infused product (**Figure**
221 **2G**). These data support a model wherein the majority of the CAR^{neg} bystander cells arise from
222 peripheral blood CD8+ T cells that acquire this unique phenotype in the setting of CAR-T cell
223 expansion.

224

225 **Bystander T cells identified in 4 additional NHP recipients of CD20-CAR T cells.**

226 To determine if cells bearing the bystander signature were present in other NHP recipients of
227 CAR-T cells, we applied **Bystander Signature #1** to a validation cohort of four additional
228 recipients.²³ The clinical and CAR-T course for these animals has been previously described,²³
229 with CAR-T cell expansion in these animals being comparable to animal R.315 (**Supplemental**
230 **Table 1**). For this analysis, we again performed 5' scRNA-Seq on pre-infusion T cells, CAR^{pos} and
231 CAR^{neg} T cells from the infused CAR-T product, from the peripheral blood at the time of peak
232 CAR-T expansion, and from the peripheral blood at the onset of CAR-T contraction
233 (**Supplemental Figure 3 A-C**). **Figure 3A** demonstrates the Leiden clustering of 29,050 CAR^{neg}

234 and 5,480 CAR^{pos} derived from animals R.301, R.302, R.303 and R.304 with 24 distinct clusters
235 identified (**Supplemental Tables S5 and S6**).

236 We next applied **Bystander Signature #1** to these clusters, using DecoupleR to score the cells.
237 As shown in **Figure 4B**, Cluster 22 exhibited a much higher **Bystander Signature #1** score than
238 the other clusters, identifying the cluster as likely consisting of bystander T cells (Cluster 22
239 signature score vs score on all other cells, Welch's t-test p<0.001). Cluster 22 also achieved the
240 highest signature scores when applying **Bystander Signatures # 2-4 (Supplemental Figure 3D**,
241 Welch's t-test p<0.001 for all three signatures). The **Figure 3C** heatmap displays the log-scaled
242 normalized expression for the top ten upregulated and bottom ten downregulated genes for
243 **Bystander Signature #1**, illustrating the alignment of Cluster 22 with this signature. A plot of all
244 available genes in the dataset shared with the signature (**Supplemental Figure 4A**) shows similar
245 concordance. **Figure 3D** demonstrates that Cluster 22 is composed of cells from all four animals
246 albeit with two animals dominating the cluster (R.303, R301), and with the majority of cells (95%)
247 coming from the maximal expansion and contraction timepoints (**Figure 3E**), consistent with the
248 findings from R.315 (**Figure 2**).
249

250 **Bystander activated T cells are present in patients after Tisangelecleucel infusion.**

251 To determine if CD8+ CAR^{neg} bystander T cells were also activated in patients receiving CAR-Ts
252 for acute B cell lymphoblastic leukemias (B-ALL), we utilized samples from six pediatric patients
253 with a diagnosis of relapsed B-ALL who received Tisangelecleucel, and who were enrolled on an
254 institutional biology study (**Supplemental Table S7**). We obtained 11,555 total T cells from the
255 CAR-T products infused into these six patients, and 23,322 T cells from peripheral blood collected
256 on Day +6 after infusion. The peripheral blood cells were sorted into CAR^{pos} T cells (9,073 total
257 cells) and CAR^{neg} T cells (14,249 total cells) (**Supplemental Figure 5 A-C**). We then performed
258 5' scRNA-Seq and Leiden clustering, which identified 15 distinct clusters (**Figure 4B**,
259 **Supplemental Tables S8 and S9**).

260
261 To identify potential bystander T cell clusters, we first identified CD8+ clusters composed of more
262 than 50% CAR^{neg} T cells (Clusters 0, 12, and 13) and then scored these cells using **Bystander**
263 **Signature #1**. We thereby identified three potential clusters (Clusters 0,12, and 13, **Figure 4B-**
264 **C, Supplemental Figure 5D**), each of which was primarily composed of CAR^{neg} T cells collected
265 after CAR-T infusion, with each cluster being composed of <1% T cell clones from the infused cell
266 product (**Figure 4D**). The mean score for **Bystander Signature #1** on these clusters were Cluster
267 0: 5.37, Cluster 12: 2.82, and Cluster 13: 0.44. Applying Welch corrected t-tests to compare
268 whether the mean **Bystander Signature #1** score was greater in each cluster compared to all of
269 the remaining cells, we found that Clusters 0 and 12 each were significantly enriched ($p < 0.001$)
270 for **Bystander Signature #1**, but that Cluster 13 was not ($p=1.0$, **Figure 4D**). Of note, the analysis
271 depicted in **Figure 4** included Patient ID as a batch term to account for patient specific clusters.
272 As shown in **Figure 4F**, Cluster 0 was predominantly composed of cells from Patient #Pt-007
273 (77.5%) while 85.7% of Cluster 12 cells included cells from patients #Pt-007, #Pt-008, and #Pt-
274 011. Repeat analysis was also conducted without including individual patient IDs as a batch term,
275 and yielded similar results (**Supplemental Figure 6, Supplemental Tables S10-S11**). Thus, as
276 shown in **Tables S12-S13**, the cells identified as bystanders were quite similar in both analyses,
277 with a Jaccard Index=0.72 for the two datasets (**Table S12**) and the share of T cells identified as
278 bystanders similar for most patients in the dataset (**Table S13**). Of note, Shannon diversity
279 analysis of the CD8+ CAR^{neg} bystander cells (Cluster 0 and 12) vs non bystander cells (Cluster
280 13) demonstrated a lower clonal diversity in the bystander clusters within each patient
281 (Hutcheson's t-test within each patient, all p-values < 0.001) (**Figure 4G**), which was driven by
282 expansion of several large clones (**Supplemental Table S14 and S15**). While some CDR3
283 regions of these large clones were commensurate with published CMV or EBV specific TCRs^{32,33},
284 the majority of the clones in this cluster were uncharacterized. Therefore, the antigen-specificity
285 of these expansions remains to be determined.

286

287 **Bystander activation is induced by the gamma cytokines IL-2 and IL-15**

288 The identification of CD8+ bystander CAR^{neg} T cells in both NHP and patients prompted us to
289 explore the mechanisms that might contribute to their activation. In viral infection models,
290 stimulation of bystander T cells with cytokines has been proposed as the major activating
291 mechanism.¹⁴ To test this hypothesis *in vitro*, we exposed healthy donor human T cells to
292 cytokines that have previously been documented to be elevated after CAR-T infusion^{34,35}. These
293 included IL-6, IFN- γ , GM-CSF, IL-2, IL-15, IL-7, IL-18, IL-12, IL-4, IL-1 β and TNF- α . We
294 determined whether exposure to these cytokines would increase expression of some of the
295 markers identified on the bystander CAR^{neg} CD8+ T cells, including CD8, CD160, NKG2D, and
296 CCL5 (**Figure 5A**). **Figure 5B** demonstrates that only stimulation with the gamma cytokines IL-2
297 and IL-15 was able to increase the expression of CD160, NKG2D, and CCL5 in CD8+ T cells,
298 consistent with the acquisition of the bystander CD8+ phenotype. Of note, TCR stimulation with
299 CD3/CD28-coated beads did not result in the evolution of CD8+ T cells towards a bystander
300 phenotype, suggesting that direct TCR stimulation is not responsible for the generation of this cell
301 population. Titration of IL-2 (0-1000 U/ml) and IL-15 (0—50ng/ml) demonstrated a dose-
302 dependency of the expression of the bystander markers CD8, CD160, NKG2D, and CCL5.
303 Addition of 500U/ml IL-2 and 50ng/mg IL-15 resulted in the largest population of CD8+ T cells
304 with expression of the bystander markers CD8, CD160, CCL5 and NKG2D (15.5% +/- 6.6, 16.1%
305 +/-5.4, respectively) when compared to all other conditions (**Figure 5C and D**).

306

307 To assess if bystander CD8+ T cells could potentially participate in tumor control, healthy donor
308 primary human CD8+ T cells were activated with IL-15, and then flow-sorted based on the
309 presence or absence of the expression of the bystander markers NKG2D, CD94 and CD160
310 (**Figure 6A**). NKG2D/CD94/CD160-positive and -negative T cells were then co-cultured with the
311 B-ALL leukemia cell line Nalm6 (**Figure 6B**). Evaluation of live Nalm6 cells by flow cytometry 16

312 hours after co-culture revealed a significantly higher degree of tumor killing by bystander
313 NKG2D/CD94/CD160-positive CD8+ T cells compared to NKG2D/CD94/CD160-negative T cells
314 (80.96% killing +/- 5.7 vs 58.2 % killing +/- 9.7%, p<0.01, paired t-test, **Figure 6B**). To assess if
315 this killing was TCR-dependent or -independent, sorted bystander CD8+ T cells were also
316 cocultured with β 2M knock-out Nalm6 cells (lacking MHC-I surface expression). Similar amounts
317 of target cell lysis were observed when these cells were co-cultured with bystander CD8+ T cells
318 (98.2% +/- 0.7% killing by NKG2D/CD94/CD160- positive cells vs 63.9% +/- 1.9% by
319 NKG2D/CD94/CD160- negative cells, p<0.01, paired T-test), consistent with a TCR-independent
320 cytotoxic mechanism (**Figure 6C**).

321

322 **Discussion:**

323 Activation of bystander T cells has been identified in the setting of viral infection, as well as in the
324 solid tumor microenvironment.^{14-16,36} However, bystander activation in the setting of CAR-T cell
325 therapy for leukemia has not yet been described. Here we demonstrate that B cell-directed CAR-
326 T cell infusion results in bystander activation of CD8+ T cells in NHP, and in patients receiving
327 Tisagelecleucel. We further identified bystander-specific gene signatures which were enriched
328 for genes involved in T cell activation, in CD8+ effector functionality, and which included several
329 canonical NK cell-associated genes. Furthermore, we demonstrated that bystander activation
330 could be induced by IL-2 and IL-15, and that bystander activated cells have the potential to kill
331 leukemic cells in a TCR-independent manner.

332

333 T cell bystander activation has been studied in viral infections including hepatitis B,^{37,38}
334 Influenza³⁹, CMV²¹ and HIV.^{40,41} In these settings, bystander activated, non-viral antigen specific
335 T cells were found to be CD8+ effector T cells which also demonstrated expression of NK cell
336 markers including NKG2D, CD56, KIR, NKG2A, NKG2C, CD94, NKp30, expression of effector
337 cytokines including IFN- γ , as well as cytolytic enzymes, including Granzyme B and Perforin.¹³⁻
338 ^{16,20,21,36,39,42} Bystander activated T cells of a similar phenotype have also been identified in
339 multiple solid tumors, including the identification of activated CAR^{neg} T cells infiltrating the tumor
340 microenvironment of diffuse large B cell lymphomas in patients who received the CD19 CAR-T
341 cell therapeutic Axicabtagene.¹³ Although multiplex immunohistochemistry assays revealed that
342 these CAR^{neg} T cells were CD8+ T cells expressing proliferation, proteolytic, and activation
343 molecules¹³, there is still a lack of comprehensive phenotypic and transcriptional analysis of
344 activated bystander T cells residing in the peripheral blood, outside of the tumor
345 microenvironment, in the context of CAR-T cell therapy for liquid tumors.

346

347 As patient-derived datasets for transcriptional analysis can be influenced by factors including
348 disease stage and treatment history, we first employed a NHP model of CAR-T cell therapy to
349 explore the activation of CAR^{neg} bystander cells. This model provided a consistent framework for
350 identifying transcriptional patterns specific to bystander effects, and enabled the discovery of a
351 series of four Bystander Signatures which subsequently served as the foundation for the analysis
352 of patient samples. The phenotypic markers of bystander activated CD8+ T cells identified in this
353 study demonstrate substantial overlap with bystander CD8+ T cells identified in viral infections
354 and solid tumors.¹⁴⁻¹⁶ Importantly, in addition to standard phenotypic evaluation, the current
355 analysis included an in-depth single-cell transcriptomic analysis of these cells, which is expected
356 to expand and deepen our ability to understand the broader T cell immune environment that
357 becomes activated during CAR-T therapy.

358
359 Bystander-activated T cells have been proposed to enhance both antiviral and antitumor immune
360 responses.^{14,15} This enhancement is believed to be partly mediated through TCR-independent
361 cytotoxicity, involving molecules such as NKG2D or the Fas-FasL interaction.^{17,18,20,42,43} Our
362 experiments also confirmed TCR-independent killing of leukemic cells. However, within the tumor
363 microenvironment, some bystander-activated T cells may possess tumor antigen specificity and
364 engage in TCR-dependent mechanisms of killing. It is notable that in the NHP CAR-T model, the
365 target cells are autologous non-malignant B cells, which are not expected to express leukemia-
366 derived neo-antigens, and therefore are not anticipated to trigger non-CAR-T cell antigen-specific
367 clonal expansion of T cells. Our finding that CAR^{neg} bystander cells in this non-tumor model did
368 not include prominent clonal expansions is consistent with this fact. In contrast, in the patient
369 samples analyzed, we did identify clonal expansions within the bystander population. While some
370 clones were commensurate with published CMV or EBV specific TCRs, the specificity of the
371 majority of these clones could not be determined through public databases. The determination of

372 whether these clones potentially possess anti-leukemic specificity remains an important area for
373 future investigation.

374

375 In this study, we identified the gamma cytokines IL-2 and IL-15 as the major drivers of *in vitro*
376 differentiation of CD8+ T cells towards the bystander activated phenotype. This finding suggests
377 that ongoing clinical trials of CAR-T cells that include the administration of IL-15, or the
378 development of CAR-Ts that autologously express this cytokine⁴⁴⁻⁴⁷ may have a salutary effect
379 on bystander as well as CAR-T cells. This may be of particular importance given that our *in vitro*
380 data demonstrated the potential for anti-leukemic cytotoxicity of these bystander T cells. Further
381 investigations utilizing large patient datasets to assess the association of bystander expansion
382 with the duration of clinical response to CAR-T cells will be required to validate the ability of these
383 cells to enhance clinical tumor control. Our identification of a bystander signature that is amenable
384 to both transcriptomic and flow cytometric assessment represents an important milestone towards
385 conducting future analyses for this purpose.

386

387 In summary, this study presents a comprehensive analysis of CD8+ bystander T cell activation in
388 the setting of CAR-T cell expansion in both NHP and in patients. It reveals a unique gene
389 expression signature of these cells, and their antigen-agnostic anti-tumor capacity. The
390 identification of a robust bystander CD8+ T cell signature establishes a critical foundation for
391 future analyses of these cells in patients undergoing B cell-directed CAR-T cell therapeutics.

392 **Methods**

393 **CD20 CAR vector and virus production**

394 Two different NHP CD20 domains were utilized in this study:

395 Animal R.315 received a CD20 CAR with an antibody domain identical to the clinically-used CD20

396 antibody Rituximab.⁴⁸ The remaining animals (R.301-304) received a CD20 CAR-T cell product

397 with a previously described CD20 CAR antibody domain.²³ All CAR-T cell vectors expressed a

398 CD28 transmembrane domain, a 4-1BB costimulatory domain and the CAR construct utilized for

399 animals R.301-304 additionally expressed EGFRt.²³ CARs were encoded by an χ HIV plasmid

400 which was co-transfected with an HIV-1 Rev/Tat and VSV-G envelope plasmid

401 (RRID:Addgene_138479) for lentiviral production as previously described.²³

402

403 **Transduction and Expansion of NHP CD20 CAR-T cells**

404 NHP CD20 CAR-T cells were transduced and expanded as previously described.²³ Peripheral

405 blood mononuclear cells (PBMC) were isolated from adult NHP peripheral blood by Ficoll-

406 PaquePLUS (GE Healthcare Bio-Sciences) or SepMate-50 (Stemcell). Total T cells were isolated

407 from PBMCs using a T cell isolation kit per manufacturer's instructions (Miltenyi Biotech).

408 Polyclonal T cells were activated with Miltenyi NHP T cell Activation/Expansion kit (Miltenyi

409 Biotec) in NHP media (X-Vivo 15 medium (Lonza) supplemented with 10% FBS (HyClone/Gibco),

410 and recombinant human IL-2 (rhIL2,50 U/mL; R&D Systems/CellGenix)) with or without 1%

411 penicillin/streptomycin/l-glutamine (Invitrogen), with or without 50 μ mol/L β -mercaptoethanol

412 (Sigma). Lentiviral transduction with spinoculation was performed 24-48 hours post stimulation.

413 At the end of the stimulation cycle, stimulation beads were removed using Miltenyi LS columns

414 (Miltenyi Biotec) and cryopreserved.

415 **NHP In Vivo Adoptive T cell Transfer Studies**

416 NHP experiments were performed according to the Guide for the Care and Use of Laboratory
417 Animals of the National Institutes of Health, which were approved by the University of Washington,
418 Boston Children's Hospital, and the Biomere Institutional Animal Care and Use Committee. Each
419 Rhesus Macaque recipient received cyclophosphamide (Baxter) as lymphodepleting
420 chemotherapy at a dose of 40 mg/kg/dose cyclophosphamide on two consecutive days (day -7
421 and -6). Mesna (Sagent Pharmaceuticals) was administered to each recipient as a bladder
422 protectant. The total mesna dose was equal to the cyclophosphamide dose, divided into 4 doses
423 (7.5–10 mg/kg/dose), administered intravenously (i.v.), 30 minutes prior, and 3, 6, and 8 hours
424 after cyclophosphamide infusion. CD20 CAR-T cells were infused at doses ranging from 0.6×10^7
425 to 1.2×10^7 CD20 CAR-T cells/kg. All recipients received antibiotic prophylaxis with ceftazidime
426 and vancomycin, antiviral prophylaxis with acyclovir and weekly cidovovir and antifungal
427 prophylaxis with fluconazole. Recipients underwent clinical and neurologic monitoring according
428 as previously described.²³ Peripheral blood was collected longitudinally in all recipients and
429 cryopreserved for later use.

430

431 **Patient sample collections and cryopreservation**

432 Peripheral blood samples from pediatric patients with B-ALL receiving Trisangeleucel were
433 collected under the Boston Children's Hospital and Dana Farber Cancer Institute approved clinical
434 protocol, 'PREDICT' (NCT03369353). Patient blood was obtained and PBMCs were isolated by
435 Ficoll-PaquePLUS (GE Healthcare Bio-Sciences) gradient centrifugation. PBMCs were
436 cryopreserved and stored for further use.

437

438 **Human and NHP T cell flow cytometric sorting**

439 Cryopreserved NHP and human cells were thawed, stained with fixable Live/Dead stain
440 (Invitrogen), CD4 (BD bioscience, Cat# 563914, RRID:AB_2738485), CD8 (BD bioscience Cat#
441 563795, RRID:AB_2722501), CD20 (BD Bioscience, Cat# 566988, RRID:AB_2869992) and
442 CD14 (Biolegend, Cat# 301834, RRID:AB_11126983) antibodies. The CAR was detected by
443 staining with an anti-rituximab conjugated flow antibody (GeneTex, Cat# GTX43347,
444 RRID:AB_11166924) in animal R.315 and with an anti-EGFR antibody (R&D systems, Cat#
445 FAB9577G-100) for animals R.301-304. CD19 CAR-T cells from patient samples were stained
446 with an anti-CD19 CAR antibody (ACRO Biosystem, Cat#: CD9-HF251-25ug). CD3 flow
447 cytometric antibodies were not utilized, to avoid in vitro stimulation, which can result in alteration
448 of the transcriptional profile. Live CARpos and CARneg, CD4/CD8pos and CD20/CD14neg cells
449 were flow cytometrically sorted and immediately processed for single cell sequencing.

450

451 **Library Preparation**

452 All products used in the preparation of these samples, excluding the NHP TCR specific custom
453 primer set³⁰, are available from 10x Genomics. Samples in this publication were prepared using
454 the Next GEM 5' v2 Gel Beads with the i7 Multiplex Plate (Single Index) or the Next GEM Single
455 Cell 5' v2 Sample Index Plate TT (Dual Index). GEMs were generated using v2 Gel Beads and
456 the v1 Target Enrichment kit utilizing the off-the-shelf human/mouse T Cell Mix 1 and 2 premixed
457 primers for the human samples and substituting the provided primers with custom designed
458 primers as previously described³⁰ for NHP samples.

459

460 **Cytokine stimulation assays**

461 For the cytokine stimulation assay, healthy donor PBMCs were obtained under a Boston
462 Children's Hospital IRB-approved healthy donor protocol. PBMCs were selected as previously
463 described and sorted for T cells using the Pan T cell isolation kit (Miltenyi Biotech). T cells were

464 plated at 200,000 cells in 96 well U bottom plates and stimulation with the following cytokines for
465 24-48 hours: IL-2 (10-1000U/ml), TNF- α (100ng/ml), IL-15 (1-50ng/ml), IL-1 β (100ng/ml), IL-12
466 (100ng/ml), IL-6 (1000ng/ml), GM-CSF (8000 U/ml), IL-4 (10000U/ml), IL-7 (250ng/ml), IL-18
467 (1000ng/ml) and IFN- γ (1.25 ug/ml). After cytokine stimulation cells were collected for flow
468 cytometry and stained with CD3, CD4, CD8, CD160, NKG2D, CD94, CCL5.

469

470 **Cytotoxicity assays**

471 Healthy donor PBMCs were isolated as described above. Cells were stimulated with IL-15 (50
472 ng/ml) for 24 hours. After 24 hours, cells were stained with a Live/Dead marker, CD3, CD4, CD8,
473 CD94, NKG2D, CD160. CD8+ cells were sorted on the live CD3, CD8, NKG2D, CD160 and CD94
474 positive or negative populations. Sorted cells were counted and placed in coculture with Nalm 6
475 (Nalm6 Clone G5, ATCC Cat# CRL-3273) and Nalm 6 b2M k/o T cells at an effector: target ratio
476 of 1:1. After 16 hours, Precision Count Beads (Biolegend, Cat# 424902) were added at a 1:1 ratio
477 to target cell input. Cells were collected and stained with Live/Dead, Caspase3+7, CD3 and CD19.
478 The percentage killing was determined by the number of live, Caspase 3+7 negative, CD19+
479 Nalm6 cells.

480

481 **scRNA-Seq analysis:** Details of scRNA-Seq analysis are found in **Supplemental Methods**.

References:

- 1 Frigault, M. J. & Maus, M. V. State of the art in CAR T cell therapy for CD19+ B cell malignancies. *J Clin Invest* **130**, 1586-1594 (2020). <https://doi.org/10.1172/JCI129208>
- 2 Boyiadzis, M. M. et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. *J Immunother Cancer* **6**, 137 (2018). <https://doi.org/10.1186/s40425-018-0460-5>
- 3 Bachy, E. et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. *Nat Med* **28**, 2145-2154 (2022). <https://doi.org/10.1038/s41591-022-01969-y>
- 4 Fabrizio, V. A. et al. Tisagenlecleucel outcomes in relapsed/refractory extramedullary ALL: a Pediatric Real World CAR Consortium Report. *Blood Adv* **6**, 600-610 (2022). <https://doi.org/10.1182/bloodadvances.2021005564>
- 5 Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T cell journey. *Nat Med* **25**, 1341-1355 (2019). <https://doi.org/10.1038/s41591-019-0564-6>
- 6 Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. *Nat Med* **28**, 1848-1859 (2022). <https://doi.org/10.1038/s41591-022-01959-0>
- 7 Wilson, T. L. et al. Common Trajectories of Highly Effective CD19-Specific CAR T Cells Identified by Endogenous T-cell Receptor Lineages. *Cancer Discov* **12**, 2098-2119 (2022). <https://doi.org/10.1158/2159-8290.CD-21-1508>
- 8 Jackson, Z. et al. Sequential Single-Cell Transcriptional and Protein Marker Profiling Reveals TIGIT as a Marker of CD19 CAR-T Cell Dysfunction in Patients with Non-Hodgkin Lymphoma. *Cancer Discov* **12**, 1886-1903 (2022). <https://doi.org/10.1158/2159-8290.CD-21-1586>
- 9 Sheih, A. et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. *Nat Commun* **11**, 219 (2020). <https://doi.org/10.1038/s41467-019-13880-1>
- 10 Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. *Nat Med* **26**, 1878-1887 (2020). <https://doi.org/10.1038/s41591-020-1061-7>
- 11 Anderson, N. D. et al. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. *Nat Med* (2023). <https://doi.org/10.1038/s41591-023-02415-3>
- 12 Anderson, N. D. et al. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. *Nat Med* **29**, 1700-1709 (2023). <https://doi.org/10.1038/s41591-023-02415-3>
- 13 Chen, P. H. et al. Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy. *JCI Insight* **5** (2020). <https://doi.org/10.1172/jci.insight.134612>
- 14 Kim, T. S. & Shin, E. C. The activation of bystander CD8(+) T cells and their roles in viral infection. *Exp Mol Med* **51**, 1-9 (2019). <https://doi.org/10.1038/s12276-019-0316-1>
- 15 Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy. *Nat Cancer* **3**, 143-155 (2022). <https://doi.org/10.1038/s43018-022-00335-8>
- 16 Maurice, N. J., Taber, A. K. & Prlic, M. The Ugly Duckling Turned to Swan: A Change in Perception of Bystander-Activated Memory CD8 T Cells. *J Immunol* **206**, 455-462 (2021). <https://doi.org/10.4049/jimmunol.2000937>
- 17 Verneris, M. R., Karimi, M., Baker, J., Jayaswal, A. & Negrin, R. S. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. *Blood* **103**, 3065-3072 (2004). <https://doi.org/10.1182/blood-2003-06-2125>

- 18 Upadhyay, R. *et al.* A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-cell Immunotherapy. *Cancer Discov* **11**, 599-613 (2021). <https://doi.org/10.1158/2159-8290.CD-20-0756>
- 19 Lerner, E. C. *et al.* CD8(+) T cells maintain killing of MHC-I-negative tumor cells through the NKG2D-NKG2DL axis. *Nat Cancer* (2023). <https://doi.org/10.1038/s43018-023-00600-4>
- 20 Chu, T. *et al.* Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner. *Cell Rep* **3**, 701-708 (2013). <https://doi.org/10.1016/j.celrep.2013.02.020>
- 21 Sottile, R. *et al.* Human cytomegalovirus expands a CD8(+) T cell population with loss of BCL11B expression and gain of NK cell identity. *Sci Immunol* **6**, eabe6968 (2021). <https://doi.org/10.1126/sciimmunol.abe6968>
- 22 Tietze, J. K. *et al.* Delineation of antigen-specific and antigen-nonspecific CD8(+) memory T-cell responses after cytokine-based cancer immunotherapy. *Blood* **119**, 3073-3083 (2012). <https://doi.org/10.1182/blood-2011-07-369736>
- 23 Taraseviciute, A. *et al.* Chimeric Antigen Receptor T Cell-Mediated Neurotoxicity in Nonhuman Primates. *Cancer Discov* **8**, 750-763 (2018). <https://doi.org/10.1158/2159-8290.CD-17-1368>
- 24 Badia, I. M. P. *et al.* decoupleR: ensemble of computational methods to infer biological activities from omics data. *Bioinform Adv* **2**, vbac016 (2022). <https://doi.org/10.1093/bioadv/vbac016>
- 25 Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z. & Clark, H. F. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. *PLoS One* **4**, e6098 (2009). <https://doi.org/10.1371/journal.pone.0006098>
- 26 Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. *Cell* **111**, 837-851 (2002). [https://doi.org/10.1016/s0092-8674\(02\)01139-x](https://doi.org/10.1016/s0092-8674(02)01139-x)
- 27 Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. *Nat Methods* **15**, 1053-1058 (2018). <https://doi.org/10.1038/s41592-018-0229-2>
- 28 Lafi, A. & Parry, J. M. Cytogenetic activities of tobacco particulate matter (TPM) derived from a low to middle tar British cigarette. *Mutat Res* **201**, 365-374 (1988). [https://doi.org/10.1016/0027-5107\(88\)90024-3](https://doi.org/10.1016/0027-5107(88)90024-3)
- 29 Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. *Sci Rep* **9**, 5233 (2019). <https://doi.org/10.1038/s41598-019-41695-z>
- 30 Gerdemann, U. *et al.* Identification and Tracking of Alloreactive T Cell Clones in Rhesus Macaques Through the RM-scTCR-Seq Platform. *Front Immunol* **12**, 804932 (2021). <https://doi.org/10.3389/fimmu.2021.804932>
- 31 Morisita, M. Measuring of interspecific association and similarity between communities. *Memoirs of the Faculty of Science, Kyushu Univ. Series E (Biology)*, 65-80 (1959).
- 32 Gowthaman, R. & Pierce, B. G. TCR3d: The T cell receptor structural repertoire database. *Bioinformatics* **35**, 5323-5325 (2019). <https://doi.org/10.1093/bioinformatics/btz517>
- 33 Chronister, W. D. *et al.* TCRMatch: Predicting T-Cell Receptor Specificity Based on Sequence Similarity to Previously Characterized Receptors. *Front Immunol* **12**, 640725 (2021). <https://doi.org/10.3389/fimmu.2021.640725>
- 34 Baumeister, S. H. C., Mohan, G. S., Elhaddad, A. & Lehmann, L. Cytokine Release Syndrome and Associated Acute Toxicities in Pediatric Patients Undergoing Immune Effector Cell Therapy or Hematopoietic Cell Transplantation. *Front Oncol* **12**, 841117 (2022). <https://doi.org/10.3389/fonc.2022.841117>

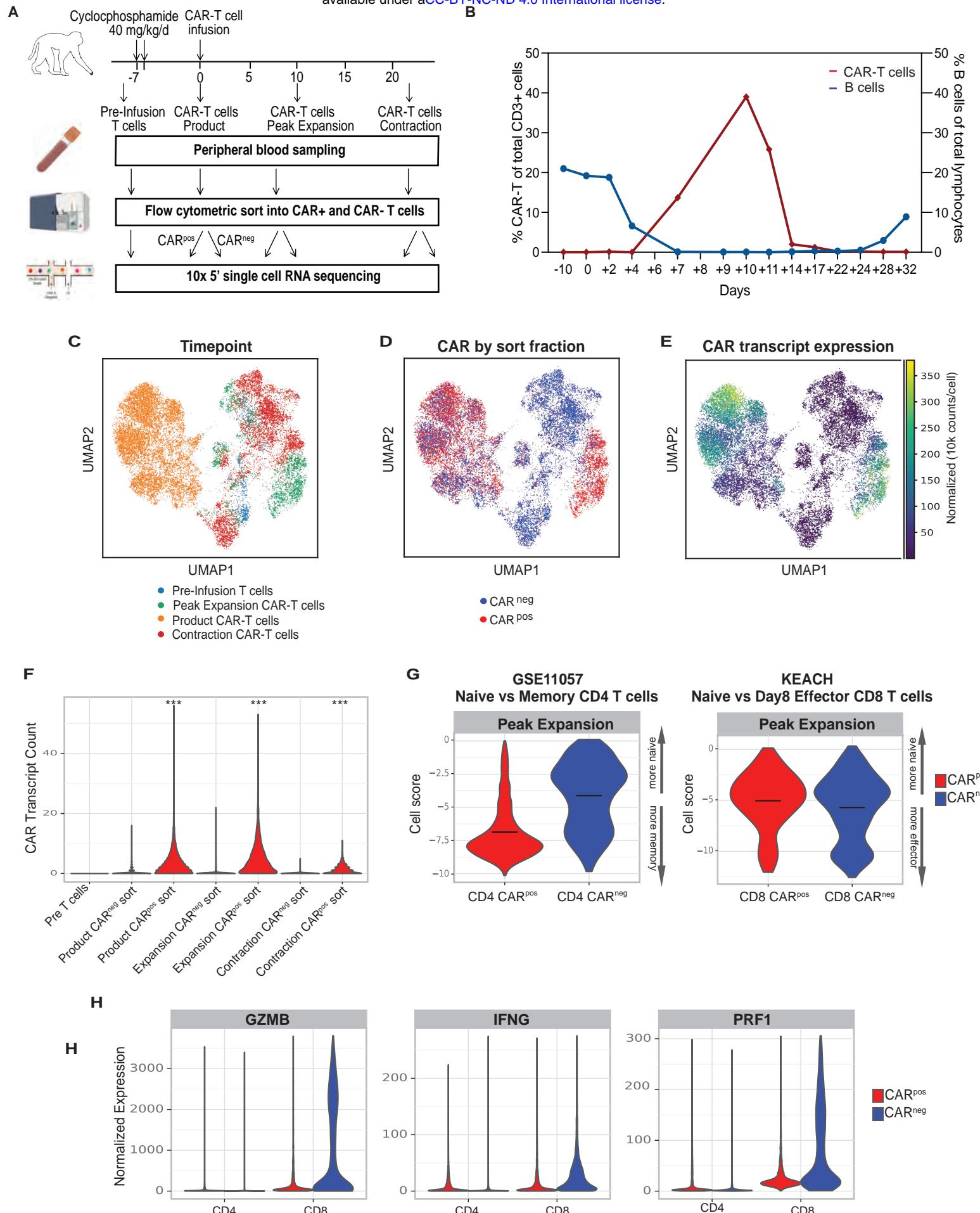

- 35 Diorio, C. et al. Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell-Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. *Clin Cancer Res* **28**, 3804-3813 (2022). <https://doi.org/10.1158/1078-0432.CCR-22-0822>
- 36 Klampatsa, A. et al. Analysis and Augmentation of the Immunologic Bystander Effects of CAR T Cell Therapy in a Syngeneic Mouse Cancer Model. *Mol Ther Oncolytics* **18**, 360-371 (2020). <https://doi.org/10.1016/j.omto.2020.07.005>
- 37 Shin, E. C., Sung, P. S. & Park, S. H. Immune responses and immunopathology in acute and chronic viral hepatitis. *Nat Rev Immunol* **16**, 509-523 (2016). <https://doi.org/10.1038/nri.2016.69>
- 38 Maini, M. K. et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. *J Exp Med* **191**, 1269-1280 (2000). <https://doi.org/10.1084/jem.191.8.1269>
- 39 Sckisel, G. D. et al. Influenza infection results in local expansion of memory CD8(+) T cells with antigen non-specific phenotype and function. *Clin Exp Immunol* **175**, 79-91 (2014). <https://doi.org/10.1111/cei.12186>
- 40 Doisne, J. M. et al. CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection. *J Immunol* **173**, 2410-2418 (2004). <https://doi.org/10.4049/jimmunol.173.4.2410>
- 41 Bangs, S. C., McMichael, A. J. & Xu, X. N. Bystander T cell activation--implications for HIV infection and other diseases. *Trends Immunol* **27**, 518-524 (2006). <https://doi.org/10.1016/j.it.2006.09.006>
- 42 Zhang, X. et al. IL-15 induced bystander activation of CD8(+) T cells may mediate endothelium injury through NKG2D in Hantaan virus infection. *Front Cell Infect Microbiol* **12**, 1084841 (2022). <https://doi.org/10.3389/fcimb.2022.1084841>
- 43 Hong, L. K. et al. CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30(+) and CD30(-) Embryonal Carcinoma via Antigen-Dependent and Fas/FasL Interactions. *Cancer Immunol Res* **6**, 1274-1287 (2018). <https://doi.org/10.1158/2326-6066.CIR-18-0065>
- 44 Ataca Atilla, P. et al. Modulating TNFalpha activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia. *J Immunother Cancer* **8** (2020). <https://doi.org/10.1136/jitc-2020-001229>
- 45 Mu-Mosley, H. et al. Transgenic Expression of IL15 Retains CD123-Redirected T Cells in a Less Differentiated State Resulting in Improved Anti-AML Activity in Autologous AML PDX Models. *Front Immunol* **13**, 880108 (2022). <https://doi.org/10.3389/fimmu.2022.880108>
- 46 Heczey, A. et al. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results. *Nat Med* (2023). <https://doi.org/10.1038/s41591-023-02363-y>
- 47 Hirayama, A. V. et al. A novel polymer-conjugated human IL-15 improves efficacy of CD19-targeted CAR T-cell immunotherapy. *Blood Adv* **7**, 2479-2493 (2023). <https://doi.org/10.1182/bloodadvances.2022008697>
- 48 Belviso, B. D. et al. Structural Characterization of the Full-Length Anti-CD20 Antibody Rituximab. *Front Mol Biosci* **9**, 823174 (2022). <https://doi.org/10.3389/fmolb.2022.823174>

Table 1 - Genes defining the bystander specific gene signature 'Bystander Signature #1'.

Upregulated genes		Downregulated genes	
gene name (human ortholog)	log fold change	gene name	log fold change
<i>KIR3DL2</i>	10.26	<i>EZH2</i>	-1.73
<i>CD160</i>	9.21	<i>SLC2A3</i>	-1.78
<i>IGFBP3</i>	8.31	<i>GNG2</i>	-1.83
<i>ABCB4</i>	7.72	<i>LYST</i>	-1.97
<i>ENSMMUG00000050862 (KLRC2)</i>	7.62	<i>LTB</i>	-1.98
<i>SPRY2</i>	7.58	<i>TESPA1</i>	-1.98
<i>XCL1</i>	7.44	<i>SATB1</i>	-2.11
<i>CCL5</i>	7.36	<i>CCR7</i>	-2.16
<i>NUGGC</i>	6.65	<i>ICOS</i>	-2.24
<i>ENSMMUG00000063583 (GNLY)</i>	6.63	<i>SIT1</i>	-2.25
<i>ENSMMUG00000013779</i>	5.95	<i>DUSP16</i>	-2.38
<i>CCR9</i>	5.93	<i>SH2D1A</i>	-2.41
<i>KLRD1</i>	5.52	<i>PTPRJ</i>	-2.43
<i>ENSMMUG00000054501 9 (TRGV)</i>	5.47	<i>H1-3</i>	-2.52
<i>CD101</i>	5.04	<i>SLFN12L</i>	-2.71
<i>PPP2R2B</i>	4.89	<i>PDE4B</i>	-2.71
<i>SERPINB6</i>	4.61	<i>PGAP1</i>	-2.72
<i>PLCG2</i>	4.55	<i>CFP</i>	-2.75
<i>ENSMMUG00000057791 (TRDV)</i>	4.54	<i>ANTXR2</i>	-2.88
<i>LAT2</i>	4.48	<i>GPR183</i>	-2.93
<i>ANK3</i>	4.16	<i>SPOCK2</i>	-3.37
<i>THAP6</i>	4.03	<i>MT1E</i>	-3.46

<i>JAKMIP2</i>	4.02	<i>S1PR1</i>	-3.89
<i>THY1</i>	3.96	<i>LEF1</i>	-4.09
<i>MATK</i>	3.87	<i>TOB1</i>	-4.13
<i>ENTPD1</i>	3.71	<i>CD4</i>	-4.47
<i>ENSMMUG00000032338 (SMIM10)</i>	3.62	<i>PLAC8</i>	-4.59
<i>TIGIT</i>	3.59	<i>CD28</i>	-5.29
<i>OTUD5</i>	3.52	<i>SELL</i>	-5.68
<i>FCRL6</i>	3.44		
<i>NCALD</i>	3.32		
<i>NKG7</i>	3.17		
<i>ITGA1</i>	3.03		
<i>NR3C2</i>	2.88		
<i>DAPK2</i>	2.79		
<i>SPINK2</i>	2.73		
<i>PRR29</i>	2.73		
<i>STX3</i>	2.34		
<i>RIN3</i>	2.32		
<i>NR4A1</i>	2.27		
<i>S100A6</i>	2.23		
<i>UBASH3B</i>	2.13		
<i>CPQ</i>	2.11		

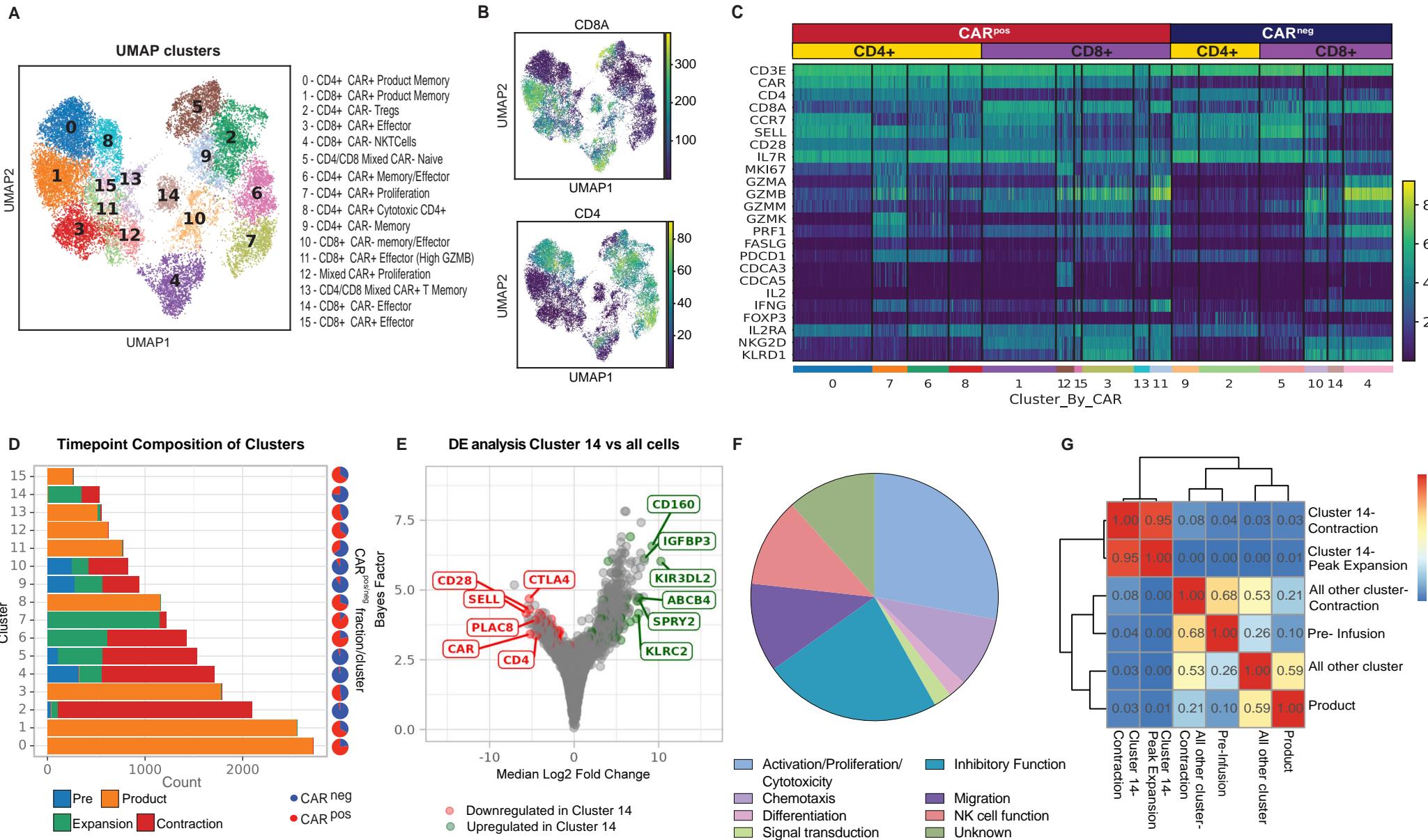
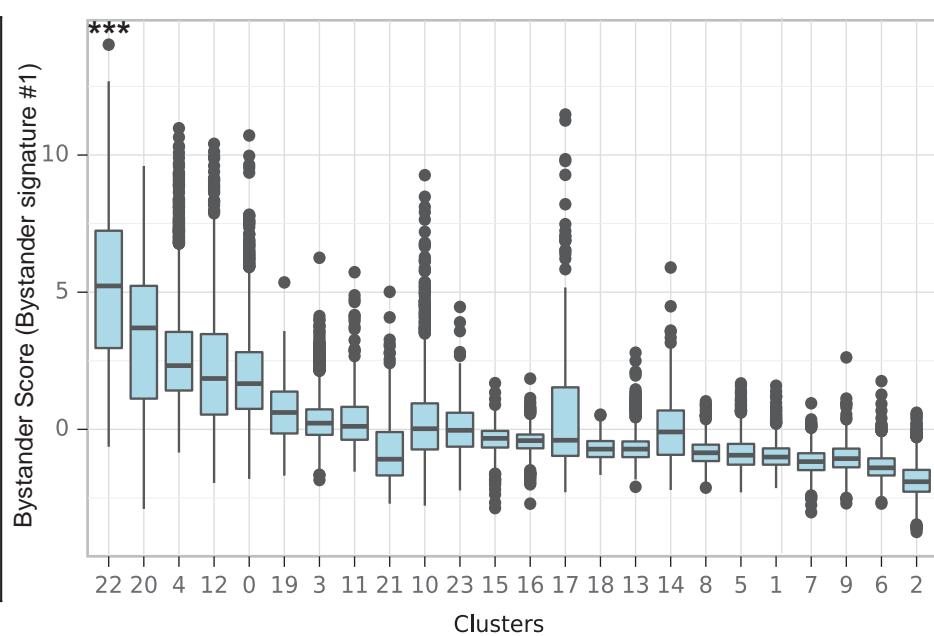
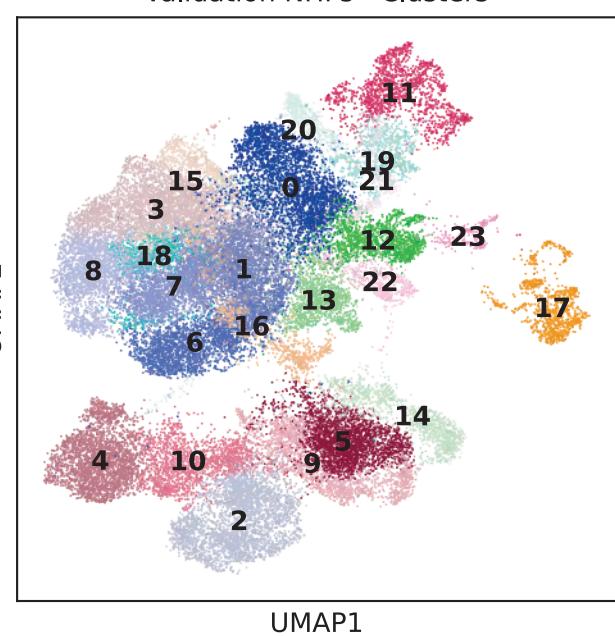

Table 1: Gene list for Bystander Signature #1. Listed genes are differentially expressed (up and downregulated) in Cluster 14 in comparison to all other cells in the dataset for animal R.315.

Figure 1 - NHP model of CAR-T cell therapy reveals CD8+ CAR^{neg} T cells with an activation signature. (A)

Schematic of sample preparation: T cells and CAR^{pos} and CAR^{neg} cells were flow cytometrically sorted prior to infusion, from the product, at day 10 (peak expansion), and at day 14 (the start of CAR-T contraction), and prepared for scRNA-Seq and scTCR-Seq. **(B)** CAR-T cell expansion and B cell aplasia were tracked in animal R.315. **(C)** UMAP with shared nearest neighbor clustering of the scRNA-Seq dataset, colored by timepoint. **(D)** UMAP of the scRNA-Seq dataset, colored by flow cytometrically sorted CAR-positive and CAR-negative cells. **(E)** UMAP of the scRNA-Seq dataset, colored by normalized CAR transcript counts. **(F)** Unadjusted CAR transcript counts in sorted CAR^{pos} and CAR^{neg} populations. **(G)** DecoupleR Weighted Sum (WSUM) analysis of a naïve vs memory gene signature in CD4 CAR^{pos} and CAR^{neg} T cells, and a naïve vs effector gene signature in CD8+ CAR^{pos} and CAR^{neg} T cells, with the analysis performed with cells isolated at the time of peak expansion. **(H)** Violin plots of normalized expression of the CD8+ effector molecules Granzyme B (GZMB), Interferon gamma (IFNG) and perforin 1 (PRF1) in CD4 and CD8+ CAR^{pos} and CAR^{neg} T cells.



Figure 2

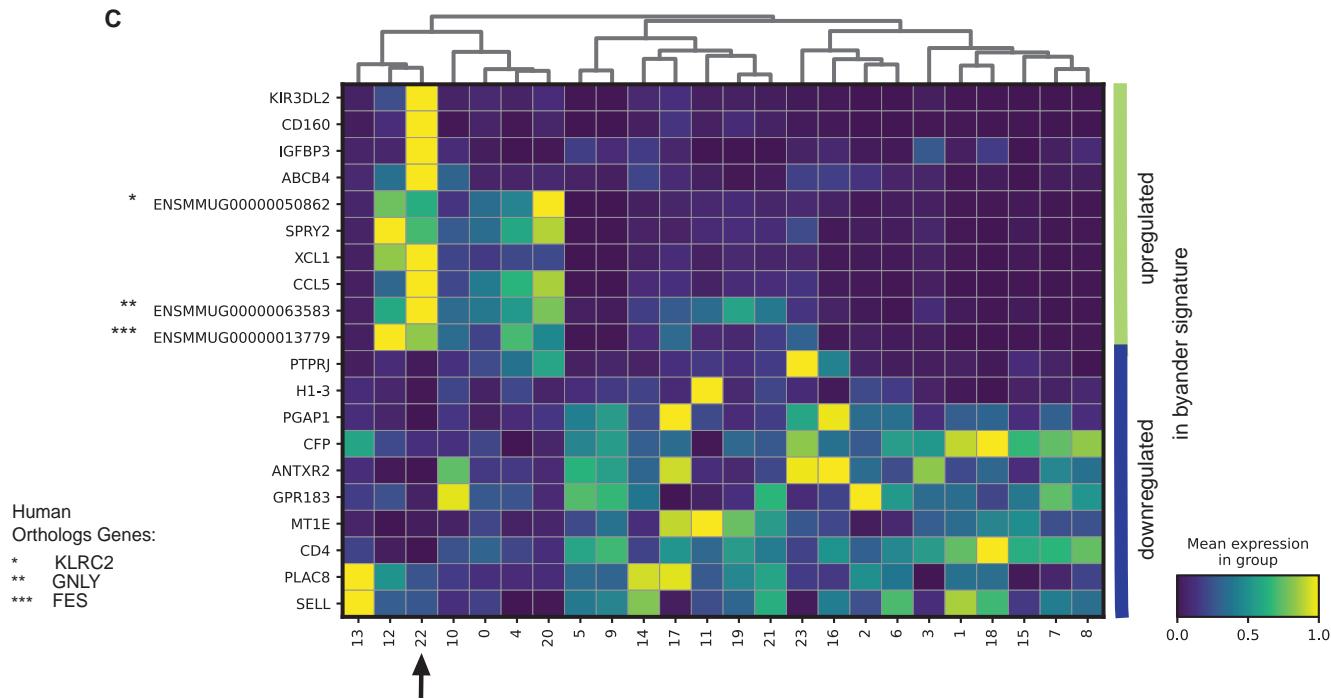
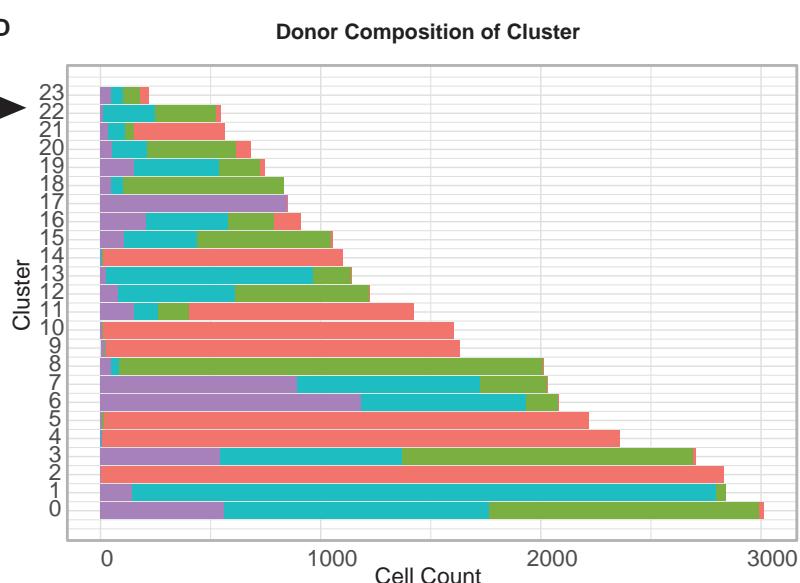
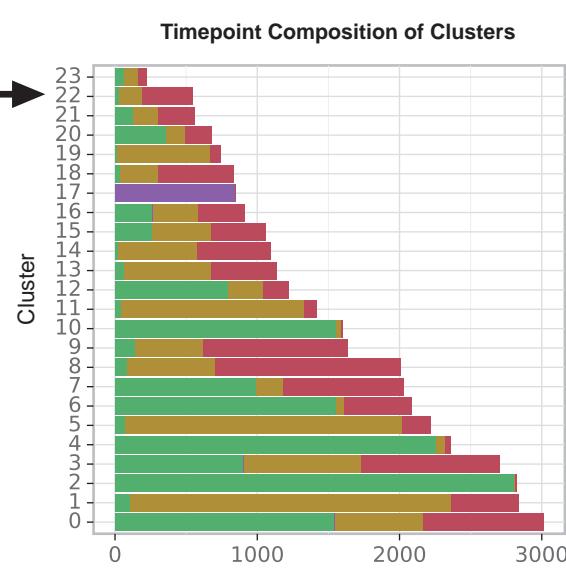
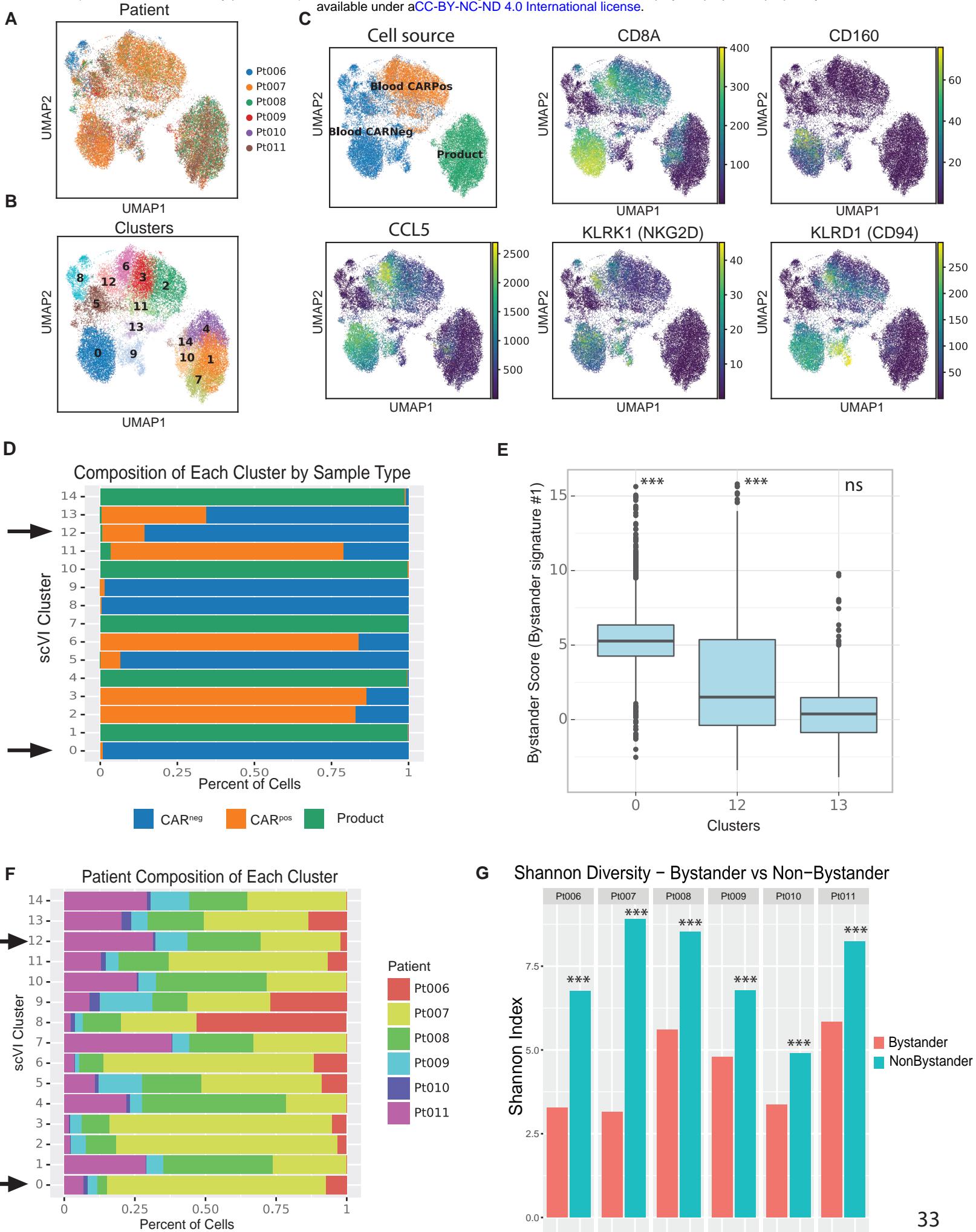

Figure 2 - Identification of the CD8+ bystander signature in the NHP model (A) UMAP with shared nearest neighbor clustering from NHP recipient R.315. 16 Clusters are denoted by colors and labeled with inferred cell states. (B) UMAP with normalized CD8a and CD4 expression. (C) Heatmap demonstrating normalized and log-scaled expression of selected T cell activation, effector and known bystander genes. (D) Cluster composition based on the timepoint of sample collection. (E) Differential expression of the bystander cluster (Cluster 14) vs all other clusters in the dataset. The top six upregulated (green) and downregulated (red) genes by median log2 fold change are labeled. (F) The 42 genes that exhibited upregulation in **Bystander Signature #1** were classified based on their proposed function in T cells. (G) Heatmap of Morisita Index for all samples, comparing cluster 14 cells (at contraction and peak expansion) to all other cells by using the clonotype ID inferred by cellranger to group cells into clones.

Figure 3 bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.28.559936>; this version posted September 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A

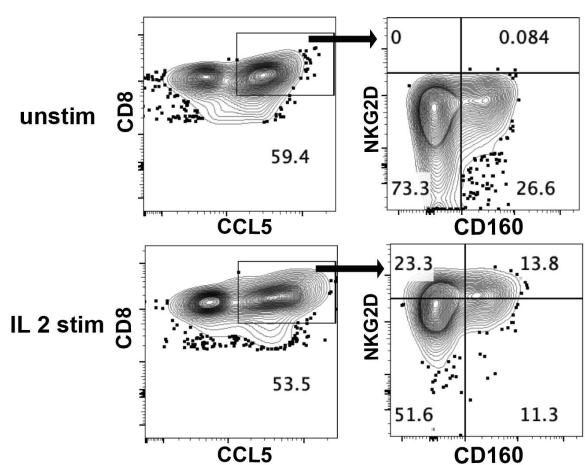

C

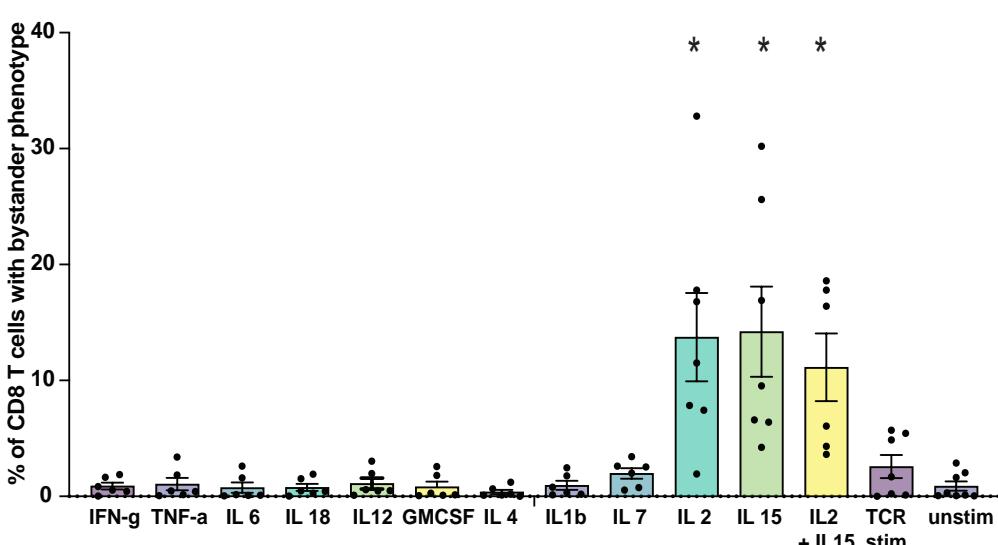
D



E

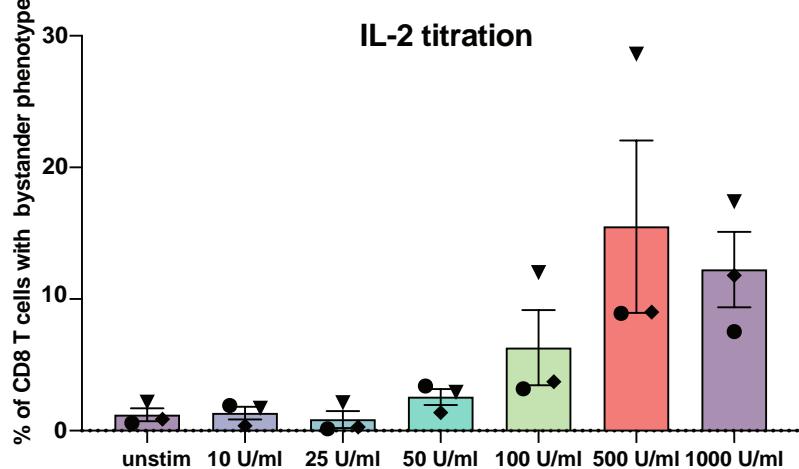
Figure 3 –Bystander CAR-T cells can be detected in a validation cohort of 4 additional NHP. (A) UMAP with shared nearest neighbor clustering across 4 additional animals, colored to identify 23 transcriptional clusters. (B) Bystander score determined by applying **Bystander Signature #1** to each cluster using DecoupleR. (C) Heatmap of log-scaled normalized expression, averaged across each cluster, for the top ten upregulated and downregulated genes identified in **Bystander Signature #1**. (D) Composition of cluster by animal, with an arrow highlighting Cluster #22, the cluster with the highest signature score when applying **Bystander Signature #1**. (E) Composition of clusters based on sample collection timepoint, with an arrow highlighting Cluster #22, the cluster with the highest signature score when applying **Bystander Signature #1**.


Figure 4

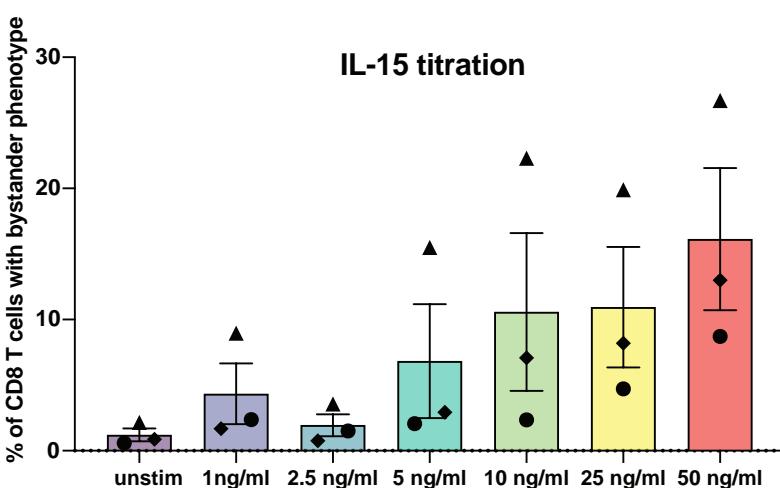

Figure 4 – Identification of CD8+ CAR^{neg} bystander T cells in patients after Tisagelecleucel infusion. (A) UMAP of scRNA-seq data from six pediatric patients post Tisagelecleucel, colored by patient ID. (B) UMAP with shared nearest neighbor clustering across all patients, colored by 15 transcriptional clusters. (C) UMAP colored by cell source, as well as normalized expression of genes from **Bystander Signature #4** (CD8+, CD160, CCL5, KLRK1 (NKG2D) and KLRD1 (CD94). The product was not cytometrically sorted into CAR^{pos} and CAR^{neg} T cells and therefore contained a mixed population of CAR^{pos} and CAR^{neg} T cells. (D) Composition of clusters by cell source, with arrow highlighting Clusters 0 and 12, which were enriched for **Bystander Signature #1**. (E) Bystander score determined by applying **Bystander Signature #1** to each CD8+ CAR^{neg} cluster using DecoupleR. (F) Composition of clusters by Patient ID, with arrows highlighting Clusters 0 and 12, which were enriched for **Bystander Signature #1**. (G) Shannon diversity of T cell clones in Bystander clusters 12 and 0 vs all CD8+ CAR^{neg} cells in each patient.

A

Gated on CD3+/CD8+ T cells

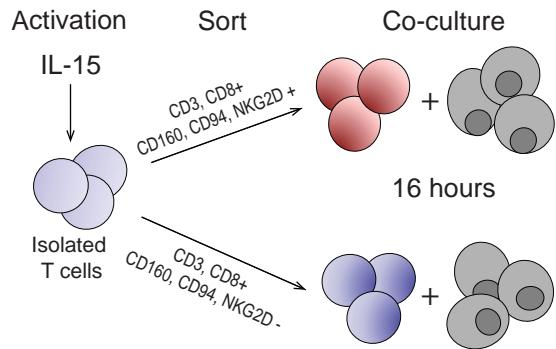


B


C

IL-2 titration

D


IL-15 titration

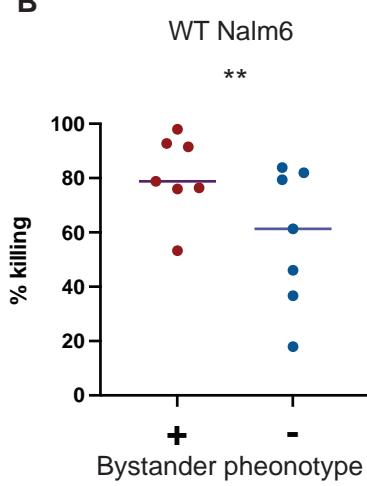
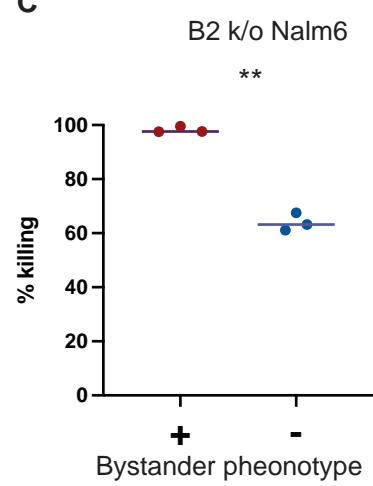

Figure 5 -Stimulation of primary human T cells with the gamma cytokines IL-2 or IL-15 generates cells with a bystander phenotype. (A) Representative flow plots demonstrating the gating strategy used to identify T cells expressing the bystander markers CD8+, CD160, NKG2D, and CCL5 in unstimulated cells (unstim), and cells stimulated with IL-2. Cells were gated on CD3+/CD8+ double positive T cells and then subsequently gated on the bystander markers CCL5, NKG2D and CD160. CD8/CCL5 double-positive cells were assessed for the expression of the bystander marker of NKG2D and CD160. (B) Percentage of total CD8+ T cells exhibiting expression of the bystander markers CD160, NKG2D and CCL5 after stimulation with CRS-associated cytokines. (C) Percentage of total CD8+ T cells with the bystander phenotype after titration of IL-2 and (D) IL-15.

Figure 6


A

B

C

Figure 6 – Cytokine-stimulated primary human T cells expressing bystander surface markers are capable of killing leukemic cells. (A) Schematic of co-culture cytotoxicity assay (B) Percentage killing of Nalm6 and (C) Nalm6 b2M k/o cells 16 hours after co-culture with sorted CD8+ T cells, with and without the bystander phenotype at a target:effector ratio of 1:1. Percentage killing was calculated by comparing the remaining live NALM6 cells in cultures containing CD8+ T cells to the remaining live Nalm6 cells in cultures without the addition of T cells.