

1 **Multiscale chromatin dynamics and high entropy in plant iPSC
2 ancestors.**

3 Kinga Rutowicz¹, Joel Lüthi², Reinoud de Groot², René Holtackers², Yauhen Yakimovich², Diana
4 M. Pazmiño¹, Olivier Gadrillon³, Lucas Pelkmans² and Célia Baroux¹

5
6 ¹ *University of Zurich, Institute of Plant and Microbial Biology, Plant Developmental Genetics,
7 Switzerland.*

8 ² *University of Zurich, Department of Molecular Life Sciences, Switzerland.*

9 ³ *University of Lyon, ENS de Lyon, Laboratory of Biology and Modeling of the Cell, France.*

10

11 **Keywords**

12 Arabidopsis, iPSC, protoplast, chromatin dynamics, nuclear morphology, texture features, H1,
13 linker histone, high-throughput imaging, high content imaging, supervised image analysis,
14 entropy, cell-to-cell variability

15

16 **Abstract**

17 Plant protoplasts constitute the starting material to induce pluripotent cell masses *in vitro*
18 competent for tissue regeneration. Dedifferentiation is associated with large-scale chromatin
19 reorganisation and massive transcriptome reprogramming, characterized by stochastic gene
20 expression. How this cellular variability reflects on chromatin organisation in individual cells and
21 what are the factors influencing chromatin transitions during culturing is largely unknown. High-
22 throughput imaging and a custom, supervised image analysis protocol extracting over 100
23 chromatin features unravelled a rapid, multiscale dynamics of chromatin patterns which trajectory
24 strongly depends on nutrients availability. Decreased abundance in H1 (linker histones) is
25 hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns
26 indicating an intrinsic entropy as hallmark of the initial cultures. We further measured an entropy
27 decline over time, and an antagonistic influence by external and intrinsic factors, such as
28 phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an
29 approach to understand the variability and evolution of chromatin patterns underlying plant cell
30 reprogramming *in vitro*.

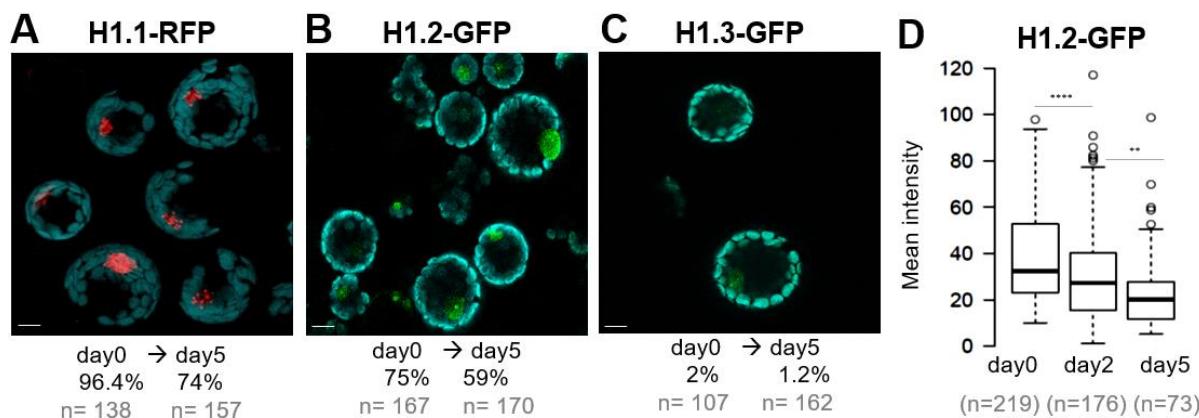
31 **Introduction**

32 Plant tissues have a remarkable plasticity. This phenomenon is illustrated by the capacity of plant
33 parts, tissue fragments or isolated cells *in vitro* to regenerate whole plant individuals. This property
34 is largely exploited by horticulture and agriculture since centuries for the accelerated amplification
35 of garden plants, crop and tree species, the propagation of disease-free plants, the production of
36 plant biomass for industrial applications and the creation of starting material for genetic
37 engineering approaches (Ibanez et al., 2020; Momoko Ikeuchi et al., 2019; Reed & Bargmann,
38 2021; *Special Issue "New Frontiers in Micropropagation"*, 2021). By contrast, organ regeneration,
39 notably from single cells, is not a prevalent property in the animal kingdom, except in basal
40 lineages like in Cnidarians (Holstein et al., 2003).

41 Cellular plasticity describes the ability of differentiated cells under certain conditions to
42 reprogramme physiologically and molecularly towards a pluri-competent (or pluripotent) state
43 (Reddy et al., 2021). There is a vivid interest in understanding the mechanisms controlling cellular
44 plasticity. In animals, several pioneer transcription factors have been identified that can potentiate
45 cell reprogramming following overexpression *in vitro* (Iwafuchi-Doi & Zaret, 2014). Similarly,
46 several transcription factors were identified in the model plant *Arabidopsis* with tissue
47 reprogramming properties (BABYBOOM, WUSCHEL, LEAFY COTYLEDON1, WOUND
48 INDUCIBLE 1 (reviewed in Momoko Ikeuchi et al., 2019; Iwase et al., 2017; Iwase et al., 2011).
49 Among them, so far only LEAFY was formally demonstrated to share the molecular and cellular
50 properties of a pioneer transcription factor (Jin et al., 2021). In addition, several studies concur to
51 the idea that chromatin modifiers, controlling the epigenetic landscape and accessibility, are key
52 to cellular plasticity, in both plants and animals (Birnbaum & Roudier, 2017; Reddy et al., 2021).
53 For instance in *Arabidopsis*, mutants with reduced levels of DNA methylation or histone
54 methylation (particularly H3K4me4, H3K27me3, and H3K9me2) have altered plasticity and have
55 impaired, or, by contrast enhanced abilities for somatic embryogenesis, callus production, shoot
56 or root regeneration or a combination thereof (He et al., 2012; Ishihara et al., 2019; Jing et al.,
57 2020; Lee & Seo, 2018; Reddy et al., 2021; Shemer et al., 2015).

58 Conveniently in plants, cells released from aerial, or underground tissues following an enzymatic
59 degradation of the cell wall, protoplasts, provide starting material to generate pluripotent cells.
60 When cultivated on medium supplemented with phytohormones, protoplasts dedifferentiate before
61 reinterring the cell cycle. Proliferation then enables the formation of microcalli, within which some
62 cells will express pluripotency markers. Those plant iPSCs will differentiate shoot and root tissues
63 competent to form a fully fertile plant (reviewed in (Muller-Xing & Xing, 2022); see also Figure 8 in

64 the discussion). Protoplast cultures, considered to share “stem cell-like” properties (Grafi et al.,
65 2011; Sang et al., 2018), and are thus the functional equivalent of iPSC ancestors in plants.


66 The release of protoplasts from their native tissue rapidly leads to transcriptome reprogramming
67 with a large fraction of affected genes corresponding to stress responses, energy metabolism and
68 photosynthesis (Chupeau et al., 2013). But this response is not uniform, even in cultures
69 composed of 95% of mesophyll cells and the cultures are characterized by a high level of
70 heterogeneity in the transcript composition among cells (Xu et al., 2021). Transcriptome
71 reprogramming is accompanied by profound changes in chromatin accessibility (Xu et al., 2021;
72 Zhao et al., 2001) and in histone acetylation, thought to establish a transcriptionally permissive
73 landscape (Williams et al., 2003). Chromatin changes are also visible at the cytological level.
74 Pioneer studies in tobacco and Arabidopsis (Tessadori et al., 2007; Williams et al., 2003; Zhao et
75 al., 2001) showed that heterochromatin decondenses during, or shortly after protoplasts isolation
76 (Zhao et al., 2001), leading to the spatial dispersion of centromeric and pericentromeric repeats
77 together with their associated DNA and histone methylation marks (Tessadori et al., 2007) and
78 decondensation of rDNA arrays (Ondrej et al., 2010). Despite these large-scale alteration,
79 transposable elements and genomic repeats remain transcriptionally silent, suggesting uncoupling
80 of heterochromatin condensation and silencing (Tessadori et al., 2007). Within the first 3-5 days
81 of culture, heterochromatin gradually recondense and the transcriptome changes again showing
82 more attributes of the cell cycle and regeneration process (Chupeau et al., 2013; Xu et al., 2021).

83 We aimed here to obtain a comprehensive, quantitative overview of the cytological patterns of
84 chromatin (re)organisation during early culturing of protoplasts corresponding to the
85 dedifferentiation phase (Grafi et al., 2011). In order to foster conceptual comparisons between the
86 cellular reprogramming phases leading to plant and animal iPSC, we will use the term plant iPSC
87 ancestors to refer to the protoplast cultures. Specifically, we deployed high-throughput imaging
88 and customised a supervised-learning image processing to analyse the chromatin patterns in leaf-
89 derived iPSC ancestor within the first 5-7 days of culture. Multivariate analysis of the different
90 chromatin features revealed rapid chromatin changes at different scales. The chromatin of plant
91 iPSC ancestors also rapidly changed in composition, with a notable decrease in linker histone
92 complements. We found that the trajectory of chromatin changes largely depends on nutrient
93 availability and less on phytohormones. In addition, the cultures are characterized by a high
94 heterogeneity as assessed by entropy analyses. Yet, entropy of chromatin patterns decreases
95 progressively in the following 5-to-7 days, a process dampened by the absence of phytohormones
96 but enhanced by an inhibitor of histone deacetylation.

97 **Results**

98 **H1 as a marker of chromatin reorganisation at early stages of plant iPSC ancestor cultures.**

99 To select a live reporter monitoring chromatin changes we analysed various, fluorescently tagged
100 histone variants. First, we considered the three *Arabidopsis* linker histone variants for which
101 translational fusions are available (Rutowicz et al., 2019; Rutowicz et al., 2015). In a first approach,
102 we scored the number of fluorescent positive cells at day 0 (just after isolation), at day 2 and at
103 day 5. At day 0, H1.1-RFP and H1.2-GFP were detected in most cells (96%, n= 138 and 75%, n= 168,
104 respectively). But at day 5 the fraction of detectable, positive cells had decreased by ~25%
105 and 22%, respectively (**Figure 1A-B, Fig.S1A**). By contrast, the stress inducible, H1.3-GFP
106 variant reporter was detected only in 2% cells at day 0, likely corresponding to guard cells in which
107 it is constantly expressed (Rutowicz et al., 2015). This fraction did not increase upon culturing
108 (**Figure 1C, Fig.S1A**). Thus, this marker was not further considered. In a second approach, we
109 focused on H1.2 which is the most abundant variant in leaf cells (Kotlinski et al., 2016) and
110 quantified the mean signal intensity per nucleus. We measured a 30% decrease of H1.2-GFP
111 abundance in the fraction of expressing nuclei at day 5 (**Figure 1D**).

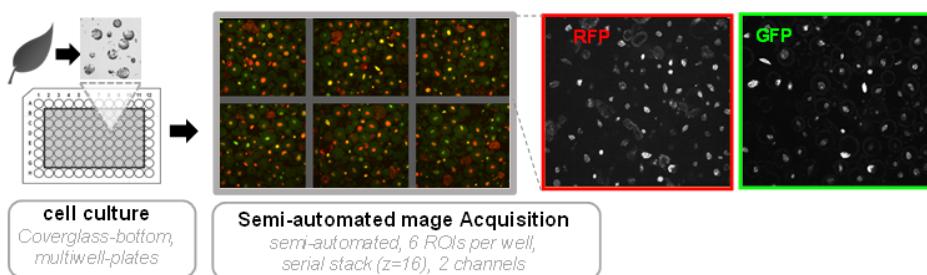
112

113 **Figure 1. Plant iPSC ancestor cultures are marked by a progressive decrease in H1.1 and H1.2 linker histone**
114 **variants.**
115 Protoplasts were prepared from *Arabidopsis* leaves expressing a fluorescently tagged variant of H1.1 (A), H1.2 (B) or
116 H1.3 (C) and their level was assessed during five days of culture. (A-C) Representative images and percentage (%) of
117 cells with detectable fluorescence signal (n= number of cells scored). See also source data in Table S1 and additional
118 related measurements in Fig.S1. Cyan - chloroplasts (autofluorescence), red – RFP, green – GFP. (D) measurements
119 of H1.2-GFP signal intensity in a replicate culture sampled at day 0, 2 and 5. ***, P<0.001 ; **, P<0.01 (Mann-Whitney-
120 U test). Scale bar 10 μ m

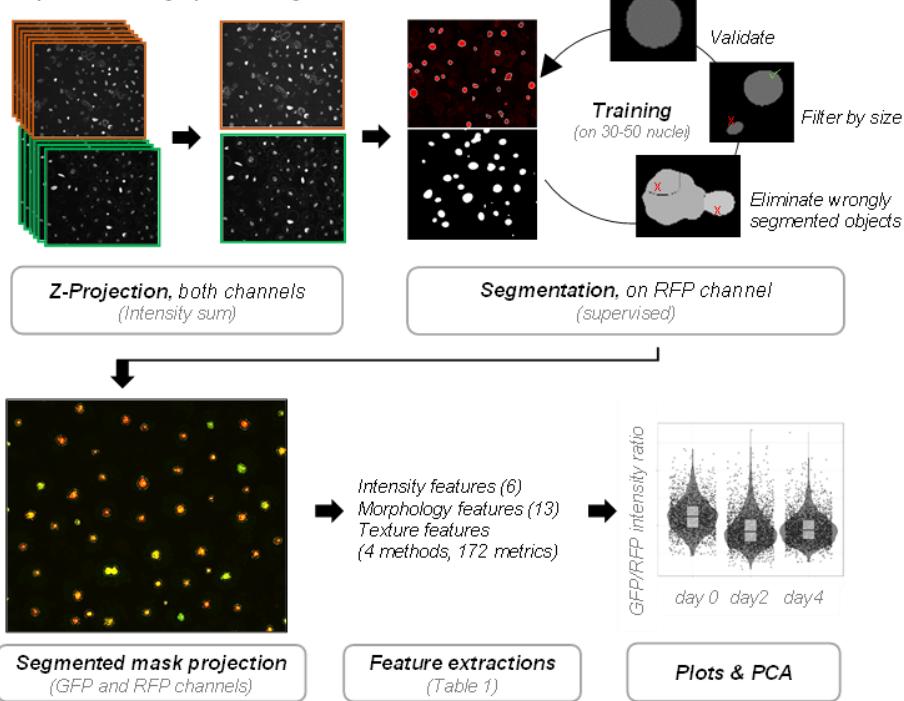
121 In contrast, two core nucleosome histone reporter (H2B-RFP and H3.3-GFP, respectively) were
122 equally detected throughout culturing time (**Fig.S1B**). A GFP tagged H2A.Z reporter also included
123 in the analysis was not further considered since it captured only ~40% cells (**Fig.S1B**).

124 Finally, to quantify the mitotic competence of the cultured cells in our conditions, we monitored a
125 S-to-early G2 phase marker (Desvoyes et al., 2020). At day 0 only 5% cells (n=275) showed
126 detectable signal increasing to 8% (n=250) at day 5 and 11% (n=230) at day 6 (**Fig.S1C**). Thus,
127 plant iPSC ancestor cultures are mitotically relatively quiescent in the first 6 days corresponding
128 to the dedifferentiation phase, the first phase of plant cells reprogramming (Grafi et al., 2011).
129 Furthermore, the rarity of S-phase occurrence cannot explain the major decrease in H1
130 abundance occurring already at day 2. This suggests an active mechanism degrading H1 and
131 likely contributing heterochromatin decondensation described previously in leaf protoplasts
132 (Tessadori et al., 2007).

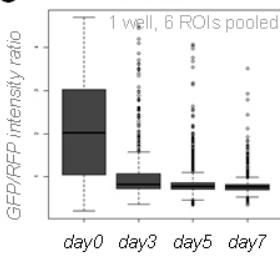
133 **A semi-automated pipeline for high-throughput analysis of chromatin reporters**

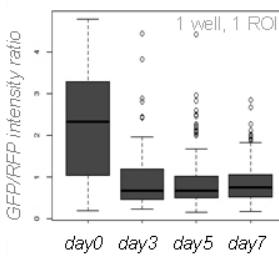

134 We aimed at high-throughput imaging of plant iPSC ancestors in culture, similar than done
135 previously for analysing cellular morphology (Dawson et al., 2022), but focusing here on chromatin
136 markers. For this, we generated a dual reporter *Arabidopsis* line expressing both the H1.2-GFP
137 and H2B-RFP markers (selected following the strategy explained above), and used it to establish
138 and benchmark the growth conditions, imaging setup and an image analysis pipeline. The details
139 are provided in the Methods but in short, leaf protoplasts were cultured under sterile conditions in
140 coverglass-bottom 96-well plates for semi-automated imaging using Cell Voyager (**Figure 2A**).
141 The imaging set-up allows to capture up to 60 wells, *i.e.* 60 cultures, per multi-well plate, each
142 being covered by 6 region-of-interest (ROIs). Imaging of a full 60x6 ROIs takes 90 min. After each
143 time point, the plate was returned to the temperature and light-controlled plant growth incubator
144 until the next measurement. Image analysis, illustrated in **Figure 2B**, consisted in a supervised,
145 batch processing approach comprising the following steps performed in *TissueMaps*
146 (<http://tissuemaps.org>): (i) maximum intensity projection of the image series; (ii) denoising; (iii)
147 watershed-based segmentation of H2B-RFP-stained nuclei and image masking using the
148 segmented objects; (iv) training, classification and filtering of segmented objects to improve nuclei
149 segmentation; (v) quantitative measurements using validated nuclei objects.

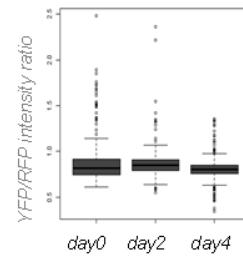
150 To benchmark this approach, we cultured protoplasts expressing the dual marker in replicate wells
151 and applied our imaging and image processing procedure between day 0 and day 7
152 (representative images **Fig.S2A-B**). The setup of replicate wells allowed to capture a total of 500-
153 1000 nuclei per time point, per initial culture. Using FDA staining (Saruyama et al., 2013) we
154 confirmed a high density of viable cells at each time points (**Fig.S2C**). However, we observed a
155 decrease in the number of nuclei (cells) identified following the segmentation, particularly at day
156 7 (**Fig.S2D**), indicating loss of viability, consistently with previous reports (Chupeau et al., 2013;


157 Xu et al., 2021). The analysis of GFP to RFP ratios per nuclei confirmed a dramatic reduction of
158 H1.2 abundance relative to H2B as soon as day 3 (**Figure 2C**). This automated measurement
159 compared very well to a set of manually segmented images used for the same intensity ratio
160 measurement (**Figure 2D**). Then, to assess the reproducibility of the culturing-imaging-image
161 analysis workflow, we set up eight replicate measurements in the same multiwell plate with
162 cultures from two independent reporter lines expressing H1.2-GFP and H2B-RFP. The H1.2-
163 GFP/H2B-RFP intensity ratio distributions were highly consistent between wells at each day
164 (**Fig.S2E**). Finally, as a control, we analysed cultures co-expressing a nuclear localised (nls)-YFP
165 and the same H2B-RFP internal control, using the same setup as before. The analysis showed a
166 stable ratio during culturing (**Figure 2E, Fig.S2F**).

167 In conclusion, we established a robust automated high-throughput imaging-image analysis
168 workflow enabling the capture of several hundred nuclei per time point suitable for quantitative
169 measurements of chromatin patterns during culturing of plant iPSC ancestor. In addition, the
170 quantifications confirmed that the decrease in H1.2 abundance is a hallmark of chromatin changes
171 within the first two days of culturing.


A Semi-automated microscopy imaging (high-throughput)


B Supervised image processing


C automated

D manual

E control

172

173 **Figure 2. A semi-automated pipeline for high-throughput analysis of chromatin reporters in plant iPSC ancestor**
 174 **cultures. (A)** Semi-automated microscopy imaging is carried out in cover-glass bottom multi-well plates containing
 175 cultures of protoplasts, corresponding to plant iPSC ancestors, using a Cell Voyager platform. Six Regions of Interest
 176 (ROI) are randomly selected per well and imaged for each channel. The procedure is repeated for each time point, the
 177 culture being returned to the growth incubator in between two measurements **(B)** Supervised image processing followed
 178 a workflow as depicted using TissueMaps (www.tissuemaps.org) and enabled the segmentation of several hundred
 179 nuclei with high accuracy. The image analysis package returns several descriptors (features) of the segmented objects
 180 describing the morphology, the intensity distribution and texture (see details in the text). These metrics can be plotted
 181 or further analysed. **(C-D)** Comparison of the H1.2-GFP/H2B-H2B ratios obtained following automated (C) or manual
 182 (D) image analysis, showing a reproducible reduction of H1.2-GFP relative to H2B-RFP during culturing time

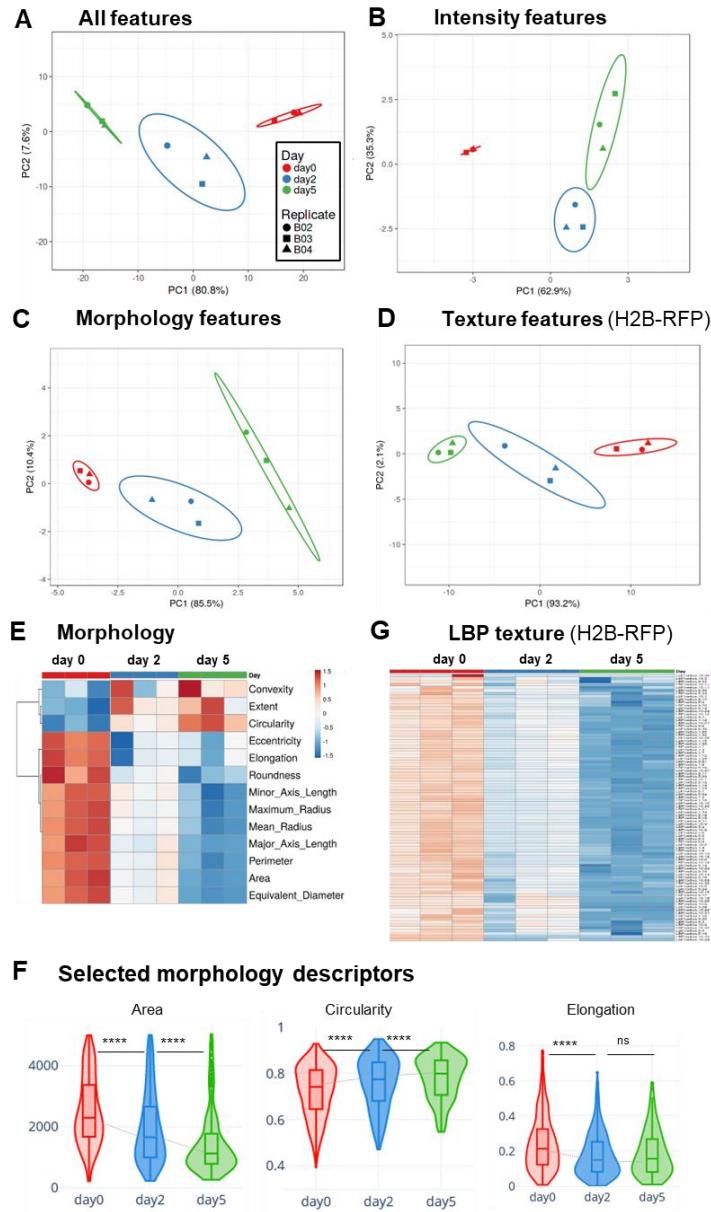
183 (experiment HTI001). (E) Control experiment showing stable signals of a nuclear localised, free YFP marker, relative to
184 H2B-RFP levels (experiment HTI002).

185

186 **Nuclei morphology and chromatin patterns change rapidly**

187 Next, we exploited the numerous image features exported by the pipeline to analyse the
188 cytological organisation of chromatin in plant iPSC ancestor, particularly during the first days of
189 culturing corresponding to the dedifferentiation phase, before cells start dividing (Grafi et al.,
190 2011). Three groups of metrics were produced from the analysis: signal intensity features,
191 morphology features and texture features. This corresponds to a total of 193 metrics per channel
192 and 370 for both channels (morphology features were derived from segmentation on the H2B-
193 RFP signal only, Supplemental Table1). A principal component analysis (PCA, Metsalu & Vilo,
194 2015) that included all the features indicated clear changes within the first two days of culturing
195 time (**Figure 3A**, replicate **Fig.S3A**).

196 To then estimate the contribution of each feature groups we carried out separate PCA. Clearly,
197 each of the intensity, morphology and texture features contributed to explain chromatin
198 organisation changes during the dedifferentiation phase (**Figure 3B-D**, **Fig.S3A**).


199 The observation that intensity features distinguish cells at day0, day 2 and day 5 indicates that the
200 relationships between chromatin markers change rapidly in the early culturing phase. Consistent
201 with our previous observation that cells barely divide within the first 5 days of culturing, we found
202 that H2B-RFP intensity distribution did not significantly change during this period of time, but
203 increased, however, at day 7 probably indicating that cells entered S phase (**Fig.S3B**). Likely, the
204 global decrease in linker histone abundance (H1.2-GFP), relative to total chromatin (H2B-RFP),
205 documented before, largely contribute to separate chromatin features on this PCA. Yet, the
206 standard deviation, min and max intensity values also contribute the principal components
207 (**Fig.S3C**) suggesting that, beyond the absolute levels of chromatin markers, their spatial
208 distribution, reflecting the occurrence of chromatin regions with varying density and compaction,
209 also change rapidly.

210 Morphology features are computed on the segmented H2B-RFP signal, thus provide a proxy for
211 nuclei size and shape (**Fig.S3D**). A PCA considering all morphology features indicated that nuclei
212 undergo continuous size and shape changes between day 0 and day 5 (**Figure 3C, 3E**).
213 Interestingly, although an increase in nuclear size would be expected from the decreased
214 abundance in H1 variants (Rutowicz et al., 2019; She et al., 2013) we did not detect a positive
215 correlation, albeit a moderate one at day 5 (Pearson correlation $r < 0.3$, **Fig.S3E**). Instead, the

216 nuclear size distribution shifts towards smaller sizes at day 2 and day 5 (**Fig.S3F**). The median
217 and the distribution of shape descriptors at day 5 also differ from day 0 (**Figure 3E**), with, for
218 instance, slightly rounder and less elongated nuclei at day 5 than day 0 (**Figure 3F**).

219 Next, we interrogated the group of texture features, showing a clear evolution during culturing
220 (**Figure 3D**). Textures metrics describe the spatial distribution of signal intensities as a function of
221 scale (Depeursinge et al., 2017a; Di Cataldo & Ficarra, 2017) and can be used to analyse patterns
222 in chromatin organisation (Kerr et al., 2010; Lee et al., 2021; P. Rana et al., 2021). *TissueMaps*
223 returns metrics corresponding to four types of texture analysis: Gabor wavelet filter, Local Binary
224 Pattern (LBP), Threshold Applied Statistics (TAS), and Hu invariant moment (Hu) (reviewed in (Di
225 Cataldo & Ficarra, 2017), (Hamilton et al., 2007); list Table S2). The LBP analysis, based on
226 neighbouring pixel intensity scanning in incrementally growing circles, is particularly interesting as
227 a proxy of chromatin organisation patterns at different length scales (**Fig.S3G**) (Di Cataldo &
228 Ficarra, 2017; P. Rana et al., 2021). We detected a rapid, global decrease in LBP values along
229 the different radii for the H2B-RFP signal (**Figure 3G**) suggesting a decreasing heterogeneity in
230 chromatin distribution at day 2. The texture metrics of H1.2-GFP signal also showed rapid changes
231 in iPSC ancestor chromatin (**Fig.S3G**). These dynamics in H2B-RFP and H1.2-GFP textures,
232 reflecting the distribution pattern of these histone variants, were confirmed with the TAS and Gabor
233 filter methods (**Fig.S3H-I**). Furthermore, we detected modest, but consistent positive correlations
234 between the LBP metrics and the H1.2-GFP / H2B-RFP ratio, indicating that the changes in
235 chromatin distribution patterns are likely linked with the relative abundance of linker and
236 nucleosome histones (**Fig.S3J**).

237 Collectively, the analysis of nuclei morphology and of H2B-RFP signal distribution indicate clear
238 changes in nuclear size, shape and in chromatin organisation in the dedifferentiation phase of
239 plant iPSC ancestors (Grafi et al., 2011). These changes occur largely within the first two days
240 and are concurrent, but not correlated, with a decrease in the relative abundance of linker histone
241 H1.2. The distinct texture of H2B-RFP distribution at different length scales at day 5 compared to
242 day 0 suggests a reorganisation of chromatin domains at the (sub)micrometre scale.

243

244 **Figure 3. Marked changes in nuclear morphology and chromatin organisation during the dedifferentiation**
245 **phase**

246 (A-D) Principal Component Analysis (PCA) of chromatin features measured in *Arabidopsis* leaf protoplasts expressing
247 H1.2-GFP and H2B-GFP, imaged ~4h after release (day0), at day 2 and day 5 (Dataset HTI004). (A) PCA computed
248 on all features (Table S2), (B) PCA on H1.2-GFP and H2B-GFP intensity features, (C) PCA on morphology features,
249 *i.e.* size and shape descriptors of the segmented nuclei, (D) PCA on LBP texture features for H2B-RFP. See also
250 Fig.S3A for replicate PCAs, Fig.S3B for the PCA loading scores per descriptors. X and Y axis show principal component
251 1 and principal component 2 that explain the given % of the total variance, respectively. Ellipses: 95% confidence
252 interval. Each point represents a culture replicate (well). (E) Relative changes for each morphology descriptors during
253 culturing. Heatmaps represent the median value for each descriptor, with unit variance scaling applied to rows. (F) Plots
254 of selected morphology descriptors. (G) Relative changes for LBP texture descriptors for the H2B-RFP signal
255 distribution. Heatmaps represent the median value for each descriptor, with unit variance scaling applied to rows.
256 Number of nuclei, n= 1008, 508, 238 at day 0, 3, 5 , respectively. ****, p<0.0001; ns, not significant, Kruskal Wallis test
257 followed by post-hoc Dunn's test and Bonferroni correction.

258 **Plant iPSC ancestor cultures show a marked heterogeneity in their chromatin features,**
259 **which reduces over time.**

260 The former analysis clearly showed spread distribution of intensity, size and shape descriptors,
261 indicative of a vast heterogeneity of nuclei type, despite the fact that leaf-derived protoplasts
262 consist in ~85-90% mesophyll cells (Xu et al., 2021). To assess this heterogeneity, we first
263 generated density distribution maps of chromatin features summarised by the principal
264 components computed previously. The maps confirmed a broad dispersion of the data in the PC
265 landscape, indicating a very heterogenous population in terms of nuclei type and chromatin
266 patterns (**Figure 4A**). The distribution however changed over time with an apparent enrichment of
267 nuclei with similar PC values at day 5 (**Figure 4A and Fig.S4**).

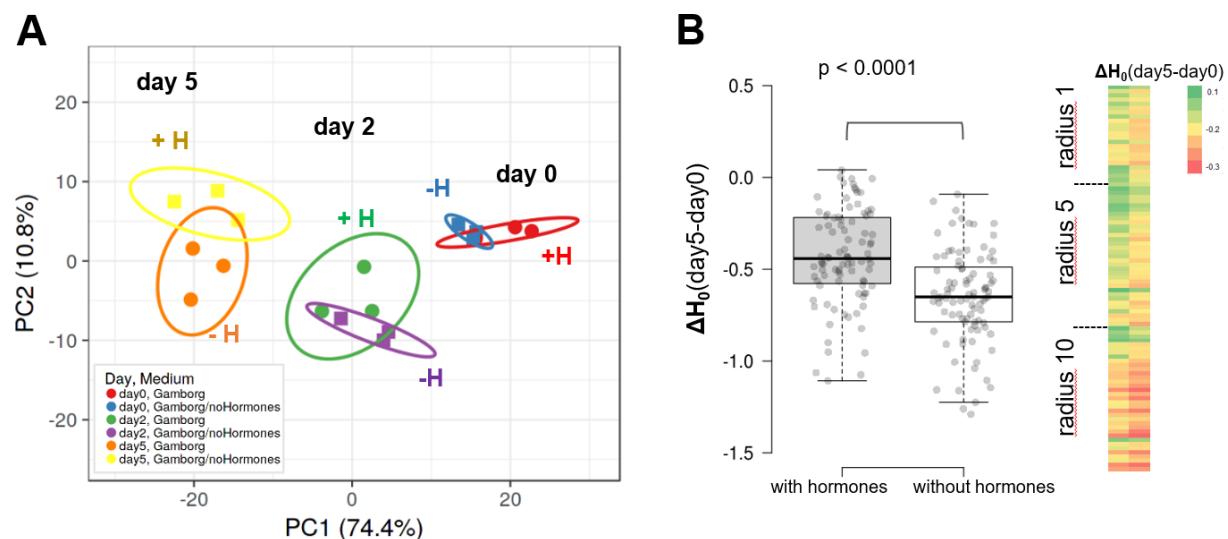
268 To quantify this heterogeneity and possible changes during the culturing time, we computed the
269 entropy of the data. Entropy is a useful measure of variability in biological data, capturing both the
270 variance and the shape of the data distribution (Gandrillon et al., 2021). The analysis indeed
271 revealed a marked positive entropy (H_0) for a large fraction of chromatin features (**Fig.S4B**),
272 changing significantly over time.

273 We then analysed the family of features separately and found that heterogeneity as assessed by
274 a positive entropy was contributed by all features (**Figure 4B**). Strikingly, the entropy decreased
275 over time, particularly that of texture features and moderately for morphology features, while it
276 remained largely positive for intensity features. Interestingly, the heterogeneity of chromatin
277 distribution, measured by LBP texture features on H2B-RFP, was higher at a small length scale
278 (LBP radius 1, **Fig.S4C**) but entropy reduction over time (ΔH_0) was more significant for the highest
279 length scale (radius 10, **Figure 4C**).

280 These findings were confirmed in a replicate experiment and where an additional imaging time
281 point, at day 7 showed that entropy continue to decrease but more slowly after day 5 (**Fig.S4D**).

282 In conclusion, entropy analysis indicates a profound heterogeneity of nuclei morphology and of
283 chromatin organisation among iPSC ancestors. Strikingly, heterogeneity reduces progressively,
284 mostly within the first five days, and more particularly for chromatin distribution patterns (texture).
285 This suggests a tendency towards homogenisation of chromatin types, although entropy remains
286 high even after 7 days.

287


288 **Figure 4. Plant iPSC ancestor cultures are characterized by a high entropy of chromatin features, reducing over**
 289 **time.**

290 (A) Density distribution of chromatin features summarised by principal components PC1 and PC2 as computed in Figure
 291 3A. Density contours are coloured according to the frequency (percent) of nuclei falling in the corresponding PC space.
 292 (B) Entropy (H_0) of chromatin features per family (n, number of descriptors per family). (C) Differential entropy (ΔH_0)
 293 between day 5 and day 0 for LBP texture features of H2B-RFP and at different length scale (radius). *P* values, paired
 294 Wilcoxon rank test. Dataset: HTI004.

295 **Chromatin heterogeneity is influenced by phytohormones.**

296 Protoplast cells cultured in the absence of phytohormones do not grow nor divide and undergo
 297 progressive cell death (Zhao et al., 2001). We thus asked whether the chromatin changes detected
 298 within the first days of culturing are part of the cellular responses to phytohormones. For this, we
 299 partitioned the initial pool of freshly released cells in two media: either in the regular Gamborg
 300 B5's medium (Gamborg et al., 1968) rich in macro- and microelements, vitamins, supplemented
 301 with glucose (2%) and phytohormones (auxins and cytokinin); or in the same medium but without
 302 phytohormones. First, we asked whether the absence of phytohormones would affect the

303 reduction in the relative abundance of linker histones (H1.2) that was observed previously.
 304 Quantifications showed that this is not the case and H1.2 reduction is still taking place in the
 305 absence of phytohormones, though perhaps along a milder gradient (**Fig.S5A**). This suggests that
 306 H1.2 reduction is not a response to phytohormones in the medium but most likely a response to
 307 the cellular isolation, away from the source tissue, and culturing. Next, we interrogated the entire
 308 family of chromatin features with or without hormones, using PCA. The analysis showed that cells
 309 cultured without hormones undergo similar changes in chromatin organisation than in the
 310 presence of hormones (**Figure 5A**, **Fig.S5B**). However, and unexpectedly, we detected that
 311 chromatin organisation heterogeneity (measured by the entropy on the LBP texture of H2B-RFP
 312 distribution) decreased significantly more in the absence of phytohormones (**Figure 5B**), whereas
 313 the heterogeneity of intensity and morphology features were not, or only moderately affected
 314 (**Fig.S5C**). We made the same observation when culturing the cells in a nutrient poor medium
 315 (W5) without phytohormones (**Fig.S5D**). This suggests that phytohormones contribute maintaining
 316 a certain level of heterogeneity during dedifferentiation, in the plant iPSC ancestor cultures.
 317 Whether the effect is direct, with chromatin reorganisation responding to phytohormones, or
 318 indirect, due to higher cell viability in the presence of phytohormones (Fig.S1D) remains to be
 319 determined. Yet, the first scenario is supported by the numerous evidence of crosstalk between
 320 phytohormones and chromatin modifiers particularly affecting plant cell identity and plasticity
 321 (Maury et al., 2019).

322
 323 **Figure 5. Phytohormones do not influence the trajectory of chromatin changes induced by culturing but**
 324 **dampen entropy reduction.**

325 (A) PCA of chromatin features of plant iPSC ancestor cultured in the Gamborg medium, including phytohormones
 326 ('Gamborg' or '+H' as quick annotation on the graph), or in the same basis but without phytohormones ('Gamborg/no
 327 Hormones' or '-H' as quick annotation on the graph). The PCA was computed with all features (see Methods, Dataset:

328 HTI004). **(B)** Differential entropy (ΔH_0) between day 5 and day 0 for the chromatin texture features (LBP texture metrics,
329 H2B-RFP) of cells cultured in Gamborg with or without hormones as indicated. P value: Wilcoxon signed-rank test.

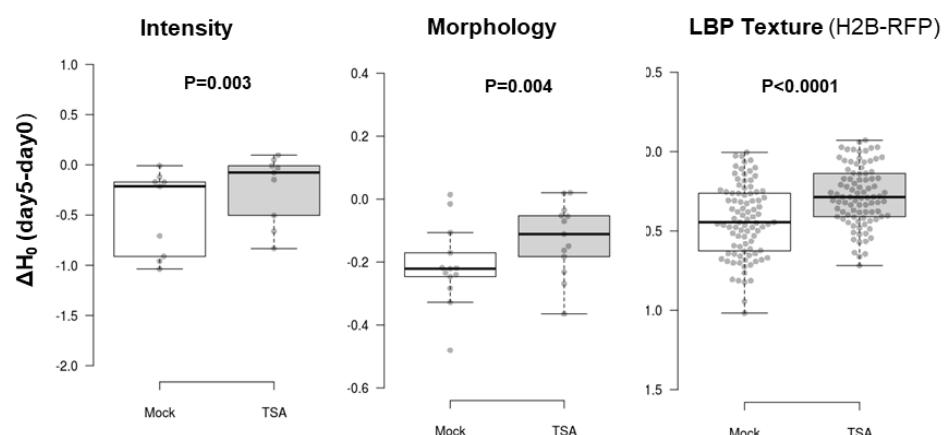

330 **Nutrient availability influence chromatin changes during culturing.**

331 To answer the question whether chromatin changes respond to the physiological quality of the
332 culturing medium we partitioned a pool of freshly released leaf protoplasts into W5 (nutrient poor,
333 Yoo et al., 2007) or Gamborg B5 (nutrient rich, (Gamborg et al., 1968), both prepared with or
334 without phytohormones (**Table S3**). We analysed the chromatin features as before focusing on
335 the first two days. Clearly, the culturing medium strongly influenced the chromatin changes with
336 distinct trajectories principally influenced by the nutrient basis more than by the phytohormones
337 (**Figure 6A, Fig.S6A**).

338 Next, to verify whether the nutrient composition influences chromatin changes further in time we
339 imaged new cultures for seven days. The analysis confirmed that major changes occur essentially
340 between day 0 and day 3, yet according to different trajectories depending on the medium, and
341 with chromatin features stabilising rapidly after day 3 (**Fig.S6B**). The typical process of H1.2
342 reduction also occurred in the nutrient poor medium (W5) although at a slightly lower rate
343 (**Fig.S6C**). The medium affected nuclei morphology (**Figure 6B, Fig.S6D**) with notably rounder
344 and larger nuclei in the nutrient poor (W5) medium (**Figure 6C, Fig.S6D-E**). The nutrient poor
345 medium also damped changes in chromatin texture across all length scales possibly indicating
346 a slower transition in chromatin reorganisation (**Figure 6E**).

347 Finally, we asked whether, the heterogeneity of chromatin features may be affected by the
348 culturing medium. The differential entropy (ΔH_0) between day 0 and day 7 per family of features
349 did not reveal an overall significant effect of the medium (**Fig.S6F**), although, some morphology
350 features showed an increase (eg Area) or a decrease (eg Roundness) in entropy in the nutrient
351 poor medium compared to the Gamborg's medium (**Fig.S6G**).

352 In conclusion, nutrients strongly influenced chromatin dynamics during the dedifferentiation phase
353 of plant iPSC ancestors, with lower nutrient availability inducing rounder, bigger nuclei with a less
354 differentiated chromatin texture.


Figure 6. Nutrient availability strongly influences the trajectory of chromatin changes in plant iPSC ancestor cultures

(A) PCA of chromatin features in cells cultured either in a nutrient rich (Gamborg) or in a nutrient poor (W5) medium, each with (+H) or without (-H) hormones. The cultures stem from the same, original pool of protoplasts partitioned in the different media and imaged at day 0 and day 2 in two or three replicate wells (number of datapoint with the same colour). Datasets: HTI004 and HTI005. (B) Morphological features of nuclei from cultures either in Gamborg or W5 medium, at day 0, 3, 5 and 7 (Dataset: HTI001), each square unit is a replicate well. Median values are normalised (centred by rows) and the colour scale shows the fold change. (C) Representative nuclei of the same experiment, day 7. (D) Chromatin texture features (LBP method, H2B-RFP signal) of the same culture as in B showing comparatively stronger changes between day 0 and day 2 in Gamborg compared to in W5.

382

383 **Trichostatin A (TSA), an inhibitor of histone deacetylation increases heterogeneity of**
384 **chromatin patterns.**

385 Next, we tested the influence of Trichostatin A, a compound known to inhibit histone deacetylases
386 and increase histone acetylation (Yoshida et al., 1995). TSA treatment was shown to enhance
387 the regenerative competence of lettuce and *nicotiana* protoplast cultures, notably inducing a
388 higher rate of division starting from day 5 (Choi et al., 2023). We rationalised that this drug could
389 possibly accelerate chromatin decondensation or create changes in chromatin features
390 detectable with our approach. First, a global analysis using PCA did not reveal a major influence
391 of TSA (**Fig.S7A**). Also, TSA did not prevent nor accelerate H1.2 reduction, a typical event of the
392 first culturing day, yet maintained a small fraction of cells with a high H1.2:H2B ratio at day 5
393 (**Fig.S7B**). The treatment also moderately influenced nuclei size (**Fig.S7C**) but not shape.
394 Possibly, chromatin acetylation as described earlier in tobacco protoplasts (Williams et al., 2003)
395 is so rapid that TSA may act redundantly. However, when we measured the entropy of chromatin
396 features, and more specifically the differential entropy between day 5 and day 0, we observed a
397 strong effect of the treatment. Indeed, TSA abolished or strongly diminished the differential entropy
398 for most features (**Figure 7A**), indicating that TSA-treated cultures maintained a high level of
399 heterogeneity at day 5. Hence, histone deacetylation may contribute to channel chromatin
400 reorganisation during the first days of culturing.

401

402 **Figure 7. TSA prevents entropy reduction of chromatin features**

403 Differential entropy (ΔH_0) between day 5 and day 0 for families of chromatin features as indicated, comparing cells
404 cultured in the Mock medium (Gamborg complemented with 2% DMSO) or in the same medium supplemented with
405 200nM TSA in DMSO. Dataset HTI004. P values: Wilcoxon signed-rank test.

406 **Discussion**

407 Protoplast cultures offer numerous applications in plant sciences, covering both fundamental and
408 applied research, from the elucidation of molecular and biochemical processes in plant cells to
409 the deployment of new molecular plant breeding approaches, respectively (Xu et al., 2022). They
410 also provide an attractive model to study cellular reprogramming in plant model systems: following
411 release, protoplasts undergo a phase of dedifferentiation (5-7 days) prior re-entering a phase of
412 cell division, which, under an appropriate culturing medium containing phytohormones, can lead
413 to the formation of pluripotent cell masses competent for tissue and plant regeneration (M. Ikeuchi
414 et al., 2019) (Figure 8). Protoplasts, proposed to share a “stem-cell like state” (Grafi et al., 2011)
415 can be considered as *plant iPSC ancestors*, a term conveniently offering a conceptual parallel
416 with animal cells reprogrammed towards iPSC fate. Yet, not all cells are competent for
417 transdifferentiation and regeneration (Pasternak et al., 2020; Sugimoto et al., 2011). In fact,
418 similarly to the low efficiency of animal iPSC production (e.g. 0.01 to 0.1% for human iPSC,
419 Ghaedi & Niklason, 2019), the frequency of cells with regenerative potential was estimated at
420 about 0.5% in an *Arabidopsis*, leaf-derived protoplast culture (Xu et al., 2022).

421 In the initial dedifferentiation phase, protoplasts – plant iPSC ancestors - undergo extensive
422 transcriptome reprogramming and large-scale chromatin reorganisation (Chupeau et al., 2013;
423 Moricova et al., 2013; Tessadori et al., 2007; Williams et al., 2003; Xu et al., 2021; Zhao et al.,
424 2001). Surprisingly, even in a relatively homogenous culture composed of 85% leaf mesophyll-
425 derived cells, gene expression changes appear largely stochastic (Xu et al., 2022), raising the
426 question of the level of heterogeneity of cellular states in the plant iPSC ancestor cultures.

427 We established and validated a semi-automated pipeline for high-throughput quantitative analysis
428 of chromatin reporters at the single cell level, allowing a detailed analysis of the level of
429 heterogeneity of chromatin patterns in plant iPSC ancestor cultures and their dynamic changes
430 during the dedifferentiation phase.

431 **Harnessing the informative potential of image features provide a new perspective on plant**
432 **cell’s chromatin organisation.**

433 Semi-automated high throughput imaging, followed by supervised image segmentation allowed
434 to record several hundreds of nuclei per day of observation, in 2-4 replicate cultures per
435 experiment. Image analysis computed by Tissue Maps (<http://tissuemaps.org/index.html>)
436 returned three family of features describing chromatin organisation: Morphology descriptors of
437 nucleus size and shape (the nucleus is the segmented object based on the H2B-RFP signal);

438 Intensity variables for each of the two, jointly expressed, chromatin markers consisting of
439 fluorescently labelled histones H2B and H1.2, respectively; and texture descriptors of the
440 chromatin markers' distribution.

441 Morphology and intensity features are commonly used to describe characteristics of segmented
442 cells or nuclei because they are intuitive. Beyond the size, shape descriptors inform here on the
443 roundness, elongation, convexity or solidity of the nuclei, which can be apprehended collectively
444 in a multivariate analysis. Intensity features, in addition, inform on the absolute levels of each
445 chromatin markers (intensity sum), their global compactness or density in the nucleus (intensity
446 mean) and their intensity variability in the segmented object (standard deviation, minima and
447 maxima). By contrast, texture features give abstract representations of signal distribution that
448 cannot intuitively be assigned to a particular distribution pattern, *i.e.* a chromatin phenotype in our
449 case. Yet, those are useful to identify structured and repeated patterns (Depeursinge et al.,
450 2017b; Di Cataldo & Ficarra, 2017). Here, we focused on the LBP method (Local Binary Pattern)
451 that compute a local representation of signal distribution, based on pixel neighbourhood analysis,
452 along circles of incrementally bigger radius, and scanning a growing number of positions along
453 each circle (Ojala et al., 2001). The higher the LBP values at a given radius the more
454 heterogeneous the signal distribution, hence informing on chromatin structures with contrasted
455 density, at different length scales. This approach was reported to be powerful to classify the
456 chromatin types from healthy vs carcinogenic cells presenting different aggregation phenotypes
457 (Priyanka Rana et al., 2021; Venkatachalapathy et al., 2021). Texture analysis indirectly informs
458 on the homogeneity vs aggregation of chromatin at the mesoscale (determined by the LBP
459 method scanning along window of different pixel size) and conceivably also capture the relative
460 proportions of chromatin masses vs interchromatin compartment (Cremer et al., 2020). This
461 approach thus nicely complements former cytological observations describing the disaggregation
462 of the relatively large-scale heterochromatin domains at day 0 of protoplast cultures and their
463 progressive reassembly (Ondřej et al., 2009; Tessadori et al., 2007; Williams et al., 2003; Zhao
464 et al., 2001). We confirmed here that texture features allowed to capture changes in chromatin
465 organisation, at different length scales (see below).

466 **A rapid, multiscale reorganisation of chromatin which trajectory depends on nutrient
467 availability and less on phytohormones.**

468 The release of protoplasts from plant tissues induces dramatic chromatin disorganisation, with
469 the disassembly of heterochromatin domains being a landmark confirmed in different species
470 (Ondřej et al., 2009; Ondřej et al., 2010; Tessadori et al., 2007; Williams et al., 2003; Xu et al.,

471 2021; Zhao et al., 2001). Culturing induces a progressive reassembly of heterochromatin domains
472 and re-entry in the cell cycle (starting day 4 and beyond) in the presence of phytohormones
473 (Tessadori et al., 2007; Williams et al., 2003; Xu et al., 2021; Zhao et al., 2001). Here, high
474 throughput imaging allowed to capture additional characteristics of chromatin dynamics in
475 particularly heterogenous cultures and the role of culturing media. Multivariate analysis identified
476 a clear shift in chromatin features between day 0 and day 2-3, both when considering all family of
477 features (morphology, intensity and textures) or each separately. This indicates that chromatin
478 reorganisation occurs rapidly, early during the dedifferentiation phase, and is detectable at
479 multiple scale. Specifically, changes were most prominent for nuclear morphology, for the
480 intensity level and distribution of H1.2 and H2B and for chromatin texture.

481 Strikingly, nutrients availability, more than the phytohormones had an influence on the trajectory
482 of chromatin changes. Nutrient mostly affected nuclear morphology and chromatin textures, with
483 H1.2 reduction being largely unaffected. Low nutrient availability prevents protoplasts to re-enter
484 the cell cycle and eventually lead to cell death upon prolonged culturing (Zhao et al., 2001). Here
485 we show that low nutrient availability has an immediate effect and led to larger, rounder nuclei
486 with a less structured chromatin, *i.e.* displaying low textures, even until day 5-7. This is reminiscent
487 of the situation in animal iPSC ancestors where nutrients have a profound impact on chromatin
488 dynamics during cellular reprogramming (Apostolou & Hochedlinger, 2013; Lu et al., 2021).
489 Metabolic fluxes are thought to influence the availability of metabolites used in epigenomic
490 modifications both in plant and animal cells (Apostolou & Hochedlinger, 2013; Lindermayr et al.,
491 2020; Lu et al., 2021; Lu et al., 2023), up to the point where energy metabolism was shown to
492 influence cell fate decisions (Ly et al., 2020). Here, the nutrient rich and nutrient poor media
493 differed not only in the amount of micro- and macronutrients but also in sugar availability. Glucose
494 levels have been shown to control, via the TOR signalling pathway, the cytoplasmic-to-nuclear
495 ratio of *Polycomb*-group repressive complex 2 (PRC2) components influencing H3K27me3
496 deposition in plants (Ye et al., 2022). H3K27me3 reprogramming is essential for the acquisition
497 of pluripotency in tissue explants primed for callus development *in vitro* (He et al., 2012). Given
498 the ground role of H3K27me3 in cell identity and pluripotency in multicellular organisms, it is
499 tempting to speculate that plant iPSC ancestors may undergo H3K27me3 reprogramming within
500 the first culturing days, corresponding to the dedifferentiation phase (Grafi et al., 2011), under the
501 joint influence of H1 linker histones (Rutowicz et al., 2019; She et al., 2013; Teano et al., 2023)
502 and sugar/nutrient availability (Lu et al., 2023; Ye et al., 2022). Whether other nutrients influence

503 chromatin reorganisation is nevertheless likely given the dramatic impact of nutrient availability
504 on the trajectories of chromatin features.

505 **A role of linker histone in plant cell dedifferentiation?**

506 The pronounced, decreased abundance of both linker histone variants H1.1 and H1.2 within the
507 first culture days suggests large-scale changes in chromatin composition which may explain the
508 enhanced chromatin accessibility previously measured (Xu et al., 2021; Zhao et al., 2001). Yet,
509 interestingly, while reduced H1 levels correlated with chromatin decompaction and increased
510 nuclear size in differentiated tissues (Rutowicz et al., 2019), this was not the case here, in leaf-
511 derived protoplasts. This suggests mechanisms controlling nuclear size counteracting chromatin
512 decondensation in protoplasts. In *Arabidopsis*, H1 abundance largely influence the levels and
513 genomic distribution of DNA methylation, the levels of epigenetic marks such as H3K27me3,
514 H3K4me3 and histone acetylation, heterochromatin domains and genome topology (Bourguet et
515 al., 2021; Choi et al., 2020; He et al., 2024; Rutowicz et al., 2019; Rutowicz et al., 2015; Teano et
516 al., 2023; Wierzbicki & Jerzmanowski, 2005; Zemach et al., 2013). Whether the decrease of H1
517 levels observed here during dedifferentiation *in vitro*, triggers vast epigenomic changes could
518 therefore be expected but remains to be explored.

519 A link between linker histones, chromatin reprogramming and pluripotency is established in
520 animal cells. On the one hand, gradual and vast changes are observed in the epigenetic
521 landscape, chromatin accessibility and genome topology of animal cells undergoing iPSC
522 reprogramming *in vitro* (Pelham-Webb et al., 2020). Besides, the abundance and type of linker
523 histone variants clearly contribute to several epigenomic and topological features of the genome
524 (Fyodorov et al., 2018). On the other hand, depletion in somatic H1 variants is necessary to *in*
525 *vivo* pluripotency acquisition in mouse primordial germ cells (Christophorou et al., 2014), and *in*
526 *vitro* iPSC reprogramming is enhanced when an oocyte-specific H1 variant (H1^{foo}) is expressed
527 together with the traditional Oct4, Sox2, Klf4 reprogramming factors (Kunitomi et al., 2016). Thus,
528 it would be interesting to determine in the future whether depletion of canonical linker histone
529 variants plays a role in the reprogramming competence of plant iPSC ancestor cultures and
530 whether non-canonical variants exist that may facilitate, like H1^{foo}, this process. In addition, a
531 comprehensive overview of epigenome reprogramming and topological reorganisation covering

532 the entire process of plant cell dedifferentiation and pluripotency acquisition remains to be
533 established, with single cell resolution to account for the high cellular heterogeneity.

534

535 **Chromatin features of plant iPSC ancestors show a high entropy which reduces over time**
536 **and is antagonistically modulated by phytohormones and histone deacetylation.**

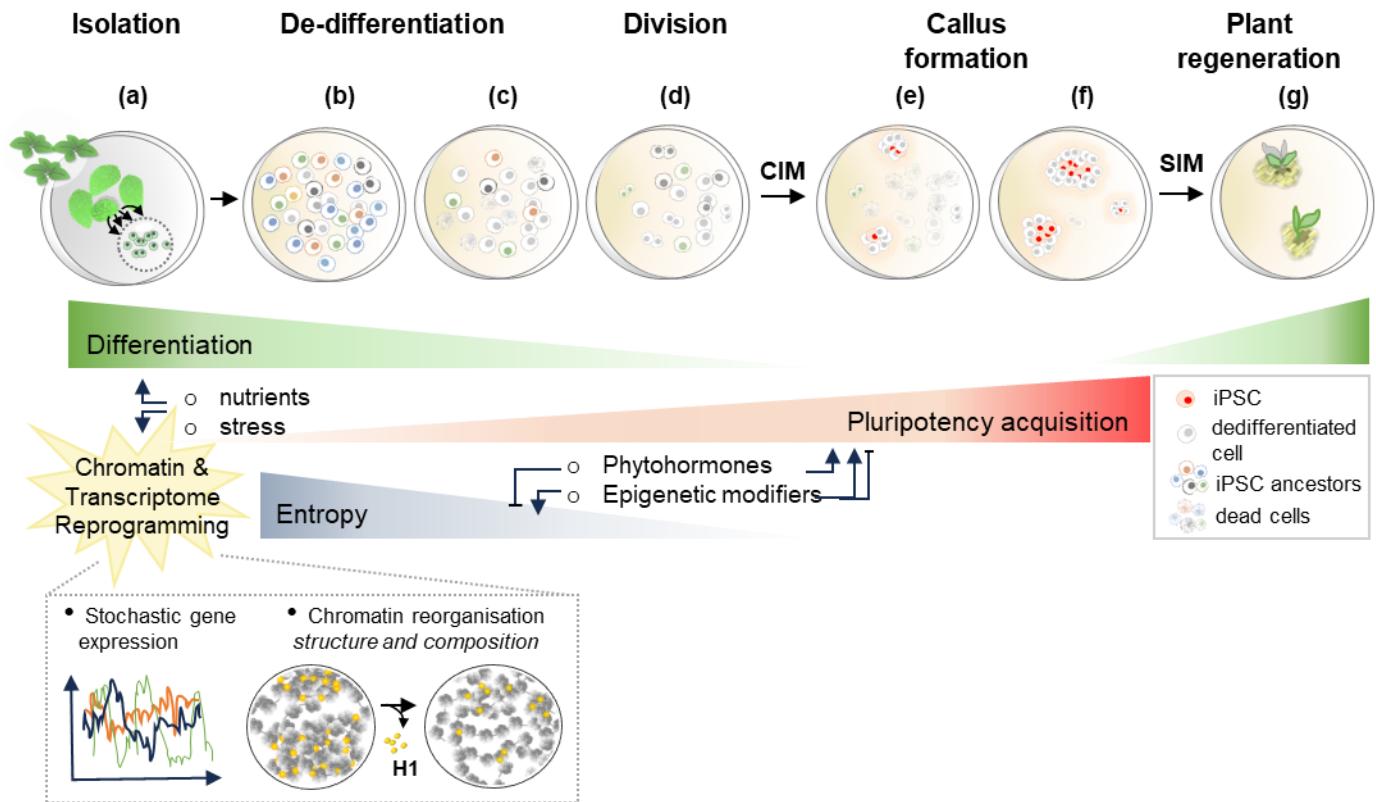
537 Transcriptome analyses of protoplast cultures from different plant species, have shown extensive
538 reprogramming compared to their source tissue (Cápal & Ondřej, 2014; Chupeau et al., 2013; Xu
539 et al., 2021). Yet recently, single cell-based reconstructions demonstrated a high heterogeneity
540 of transcriptome patterns even in a relatively homogenous protoplast culture composed of 85%
541 mesophyll cells (Xu et al., 2021). Cell-to-cell variability, particularly in animal system, has been
542 recognized as an important factor controlling the inherent properties of a cellular system
543 prompting investigations to understand its origin and regulation (Eldar & Elowitz, 2010; Eling et
544 al., 2019; Guillemin & Stumpf, 2021; Huang, 2009; Mitchell & Hoffmann, 2018; Mojtabahedi et al.,
545 2016; Pelkmans, 2012; Richard & Yvert, 2014; Safdari et al., 2020). One approach to measure
546 the heterogeneity, or information content, of biological systems is based on the calculation of the
547 Shannon entropy borrowed from statistical mechanics (Gandrillon et al., 2021; MacArthur &
548 Lemischka, 2013). It has been successfully applied to measure variability vs robustness of gene
549 expression during cell differentiation (Dussiau et al., 2022; Richard et al., 2016; Stumpf et al.,
550 2017; Wiesner et al., 2018) and reprogramming (Guillemin et al., 2019; Ye et al., 2020). Recently
551 as well, entropy analysis was used to describe heterogeneity of chromatin states at
552 developmentally regulated loci, as an effective information content predicting local genome
553 topology and the competence to binding transcription factors (D'Oliveira Albanus et al., 2021).
554 Here, consistent with stochastic gene expression (Xu et al., 2021), we identified a high entropy of
555 chromatin features among plant iPSC ancestors. This is reminiscent of mouse and human iPSC
556 cultures displaying a high level of transcriptome and epigenetic heterogeneity, thought to correlate
557 with functional heterogeneity (Cahan & Daley, 2013; Yokobayashi et al., 2021).

558 Interestingly, entropy decreases over culturing time (5-40% depending on features) suggesting a
559 canalization process during this reprogramming phase, towards homogenization, although
560 entropy remains largely positive after 5-7 days culturing. We found that entropy reduction is
561 attenuated in the absence of phytohormones. Although it cannot be excluded that it is a result of
562 higher cell viability in the presence of hormones, it is conceivable that phytohormone-based
563 signalling directly influence chromatin modifiers and remodelers, with an effect on cell identity
564 maintenance and cellular plasticity (Maury et al., 2019).

565 and promoted when cells are exposed to an inhibitor of histone deacetylation. In contrast, nutrient
566 availability did not influence the heterogeneity of chromatin features. Interestingly, during erythroid
567 cells differentiation stochasticity in gene expression was increased in the presence of a drug
568 inhibiting histone acetylation (Guillemin et al., 2019), rather than deacetylation as in our case.
569 Possibly, the heterogeneity of chromatin patterns and that of transcription profiles are uncoupled
570 to some extent, but more studies on the control of gene expression stochasticity in both animal
571 and plant iPSC ancestor cultures remain necessary.

572 **Is chromatin entropy as functional determinant of pluripotency acquisition?**

573 A link between chromatin dynamics and chromatin pattern heterogeneity with the actual ability of
574 plant iPSC ancestors to reprogramme remains to be established. Indeed, only a small fraction of
575 cells from a plant iPSC ancestor culture will further develop in a pluripotent cell mass with
576 regenerative ability (Pasternak et al., 2020; Sugimoto et al., 2011). Interestingly, in an
577 Arabidopsis, leaf-derived protoplast culture consisting in 85% mesophyll cells, hence a priori
578 relatively homogenous, only 5% cells seem to contribute an effective regeneration process (Xu et
579 al., 2021). This is reminiscent from the situation in animal iPSC cultures showing variable levels
580 of cellular reprogramming (0.5-10%) depending on the tissue source and inductive method (Kalra
581 et al., 2021; Romanazzo et al., 2020).


582 Pluripotency in animal iPSC has been proposed to be an emerging property of an intrinsically
583 entropic cellular system, rather than from a unique property at the single cell level (MacArthur &
584 Lemischka, 2013). In this conceptual framework, where pluripotency is a statistical property of a
585 microstate system, uncommitted PSCs undergo weak regulatory constraints leading to a high
586 entropy and stochasticity in gene expression and chromatin states (MacArthur & Lemischka,
587 2013). As differentiation progresses, more regulatory constraints apply and the heterogeneity of
588 the cellular system diminishes (MacArthur & Lemischka, 2013). Our findings suggest a similar
589 conceptual framework to explain plant iPSC ancestor properties (Figure 8): the release of cell-
590 wall free cells away from the tissue context may abolish regulatory constraints stabilising cellular
591 identity and leading to a high heterogeneity in gene expression and chromatin organisation;
592 appropriate culturing conditions may progressively restore regulatory signals in the culture that
593 may reduce entropy, *ie* canalize gene expression and chromatin organisation patterns (Figure 8).
594 Interestingly in this process, we found that phytohormones, at least the specific ratio and
595 concentration used in our conditions, are dampening this process and nutrient availability does

596 not affect entropy reduction. This suggests intrinsic properties of plant iPSC ancestor cultures to
597 re-establish regulatory constraints reducing the entropy of the cellular system.

598 In addition, the multiscale heterogeneity of chromatin patterns (as captured by textures) is
599 reminiscent from the finding that variations in local chromatin density underscore the
600 differentiation competence of hESC (human embryonic stem cells, Golkaram et al., 2017). This
601 heterogeneity, which is influenced by genomic contacts but also by DNA free space in the nucleus
602 -a variable intrinsically captured by textures in our cytological analysis - is proposed to reflect
603 variable states of molecular crowding, which in turn controls transcriptional bursts and noise
604 underlying cellular reprogramming (Golkaram et al., 2016; Golkaram et al., 2017).

605 **Conclusive remarks**

606 Our work opens new perspectives to understand *in vitro* cellular reprogramming and pluripotency
607 in plants. Notably, it is interesting to consider a conceptual framework where cellular variability
608 and the associated chromatin and transcription entropy act as possible driving forces during
609 reprogramming (Figure 8), and where dedifferentiation and pluripotency acquisition result from
610 the property of a cellular system rather than that of single cells as this has been proposed for
611 animal iPSC reprogramming (MacArthur & Lemischka, 2013). Furthermore, whether the regulated
612 abundance, and type of linker histones variants in plant cells also drive chromatin reorganisation
613 and epigenome reprogramming during dedifferentiation and pluripotency acquisition *in vitro* like
614 in animal cells (Figure 8) is an exciting question to investigate.

615

616 **Figure 8. Plant iPSC ancestor cultures are highly heterogenous, with entropy decreasing**
617 **during early reprogramming**

618 Working model proposing a role for heterogeneity, at the gene expression and chromatin
619 organisation level, in pluripotency acquisition during *in vitro* plant cell reprogramming. This model
620 is proposed based on this work and that of others cited in the main text. Hypothetical
621 extrapolations are made to offer a conceptual framework for future investigations. **(a)** Plant cells
622 devoid of cell walls, called protoplasts, are isolated for instance from shoot tissues (or from other
623 plant organs, not shown here). Protoplasts undergo a phase of dedifferentiation in culture
624 associated with massive transcriptome reprogramming and chromatin reorganisation occurring at
625 multiple scale. Notably, depletion in linker histones (H1) likely impacts structural et epigenetic
626 rearrangement of chromatin domains; H1 depletion affects a large fraction of cells, but not all. **(b)**
627 The initial cell cultures are highly heterogenous (represented with cells of different colours),
628 characterised by a high entropy in chromatin patterns (this work) and stochastic gene expression
629 (Xu et al., 2021), likely induced by the culturing conditions where nutrients and induced stressed
630 contribute. **(c)** In the first culturing days, during the dedifferentiation phase, cellular heterogeneity
631 progressively decreases, and the trajectory depends on nutrient availability, while some cells

632 undergo reprogramming other perish (cells in dashed lines). Entropy (heterogeneity) is influenced
633 by both extrinsic and intrinsic factors, antagonistically: phytohormones have a positive influence
634 on cellular heterogeneity in the culture (the absence of phytohormones accelerate entropy
635 decrease); by contrast, histone deacetylation enables the decrease in cellular heterogeneity, ie
636 may contribute to canalize chromatin (and gene expression) patterns. Whether other epigenetic
637 modifiers act as negative or positive regulators of heterogeneity remains to be investigated. **(d)**
638 After 6-7 days, cells progressively re-enter the cell cycle and **(e-f)** form upon transfer on a callus
639 induction medium (CIM) pluripotent cell masses. Callus cells expressing typical markers of shoot
640 (or root) stem cells, correspond to induced pluripotent stem cells (iPSC) by analogy to animal
641 iPSCs. **(g)** Transfer on a shoot inducing medium (SIM) allow shoot regeneration initiated by the
642 plant iPSC (similarly, roots can be produced from iPSC upon transfer on a root inducing medium,
643 not shown here).
644 In a broad sense, protoplasts can be considered the ancestors of plant iPSCs, following
645 reprogramming induced by the culturing conditions, similarly to animal somatic cell cultures that
646 are the ancestors of animal iPSC following reprogramming induced by specific molecular factors.
647 The process of induced cell pluripotency share some common principles in both plant and animal
648 model systems: pluripotency acquisition is largely inefficient (<0.5%) and starting cultures are
649 characterised by a high cellular heterogeneity decreasing over time. This collectively suggest that
650 pluripotency may arise from a population-based, statistical property rather than a single-cell
651 competence (MacArthur & Lemischka, 2013).

652 **Materials & Methods**

653 **Plant material and growth conditions**

654 The *Arabidopsis thaliana* plant lines expressing fluorescently tagged H1 variants under their
655 native promoters were formerly described (Rutowicz et al., 2019; Rutowicz et al., 2015). To
656 generate the dual chromatin reporter line H1.2-GFP/H2B-RFP the line *promH1.2::H1.2-GFP*
657 (Rutowicz et al., 2015) was crossed with *promUBQ10::H2B-RFP* (von Wangenheim et al., 2016).

658 Seeds were surface sterilized and rinsed in sterile water before transferring on the sterile
659 germination medium (0.5 × MS medium, 1% agar). Seeds were placed on the medium with ca 1
660 cm distance using toothpicks, stratified 2 days at 4°C and grown 3 weeks in long day photoperiod
661 (16 h, 22 °C day/8 h, 18 °C night) and light flux around 100 µM s⁻¹ m⁻².

662 **Protoplast preparation and culture**

663 Protoplasts were isolated from *Arabidopsis* leaves based on published protocols (Li et al., 2014;
664 Yoo et al., 2007) with some modifications to ensure sterile conditions during isolation and
665 protoplast culturing as described thereafter. The whole procedure was performed under the
666 laminar hood. All solutions were filter sterilized using 0.22- µm filters. Blades, forceps, white
667 pieces of paper, tubes were autoclaved. For pipetting the sterile filter tips were used. After leaf
668 tissue digestion protoplasts were filtered with sterile single-use cell strainers with 70 µm pores.
669 After isolation cells were suspended in intended media (**Table S3**) and distributed into coverglass-
670 bottom, 96-well plates Greiner Bio-One, Ref: 655087 in 100 µl culture per well. The outer wells of
671 the plate were excluded due to the limited field of view and travel range at imaging. Each plate
672 was sealed with 3M tape to avoid drying, wrapped into a layer of aluminium foil and placed in the
673 growth chamber for 5 to 7 days depending on the experiment.

674 For the Trichostatin A (TSA) treatment, 100 nM or 200 nM TSA in DMSO was added at day 0 in
675 the culture or the equivalent amount of DMSO (2% or 4%, Mock).

676 To assess cell viability, fluorescein diacetate (FDA) was added at either day 0, day 2 or day 5
677 before imaging.

678 **Microscopy imaging**

679 Microscopy images shown in Figure 1 were taken with a laser scanning confocal microscope
680 (Leica SP5, Leica microsystems, Germany). For scoring (graphs Figure 1) the percentage of cells

681 expressing the chromatin markers were scored manually under an epi-fluorescence microscope
682 (Leica DM6000 Leica microsystems, Germany).

683 For all other figures: leaf protoplasts cultured in coverglass-bottom 96-well plates were imaged
684 using a confocal microscope Cell Voyager (CV7000, Yokogawa), equipped with a 60x water
685 immersion objective (Nikon, NA1.2) using a illumination by 100-200 mW lasers from Coherent
686 (depending on the channel) and filters from Chroma. Images were acquired as 16-bit images
687 using two Neo sCMOS cameras (Andor), pixel size 6.5 $\mu\text{m}/\text{M}$.

688 For each well, six regions of interest (ROI) corresponding to a field of view of 277 $\mu\text{m} \times 234 \mu\text{m}$
689 with an image format of 2560 x 2160 pixels over 16 z planes with a step of 1 μm . ROIs were
690 randomly chosen without overlap. Imaging time for one well = 90 seconds; Imaging time for one
691 plate (60 wells) = 90 minutes.

692 **Image analysis**

693 Images were loaded into TissueMAPS (www.tissuemaps.org, code available at
694 <https://github.com/pelkmanslab/TissueMAPS>) where ROIs were grouped as 2x3 grids per well.
695 Illumination correction based on averaged intensity statistics across all images and maximum
696 intensity projection along the Z dimension was performed in TissueMaps.

697 Image processing – was done in TissueMaps v0.6.3 for the following steps: (i) gaussian
698 smoothing with a filter-size of 5 pixels; (ii) Otsu-thresholding in a user-defined range using the red
699 (H2B-RFP) channel, followed by binary mask filling and filtering objects < 200 pixels in area to
700 get segmentation; (iii) feature measurements using the measure_morphology, measure_intensity
701 and measure_texture modules in TissueMaps for both channels without the smoothing applied
702 (see Table S2); (iv) classification of mis-segmentations by interactive training of SVMs (Support
703 Vector Machine) in TissueMAPS. For the training, two classes of objects were annotated and
704 created: A, correctly-segmented and B, non-correctly segmented. Then for each class around 40-
705 50 objects were labelled manually. Object morphology and RFP/GFP intensity features were
706 chosen for training the classifier. In particular the following parameters: area, circularity,
707 roundness, elongation, convexity, mean intensity in RFP channel and mean intensity in GFP
708 channel. In total, 100 objects in 10 images (total=1000) were used for training and resulted in 95%
709 segmentation accuracy (n=417), with 4 of the 5% false positive being truncated nuclei at the edge
710 of the image and 1% corresponding to undersegmented nuclei (**Fig.S8**). The description of the
711 SVM algorithm which was used here is available at <https://scikit-learn.org/stable/modules/svm.html>). Features measurements and object classification were then

713 downloaded from *TissueMaps* for further analysis. In R (Rproject.org), we further filtered away
714 outlier nuclei with an area >5000 pixels (“giant nuclei”, 1-5% per dataset, possibly from trichomes,
715 Walker et al., 2000).

716 **Principal Component Analysis (PCA)**

717 PCA were computed using *Clustvis* (Metsalu & Vilo, 2015). The original dataset exported from
718 *Tissue Maps* (HTI001, HTI002, HTI004 or HTI005, see Table S4) was subset to remove non
719 informative columns such as redundant identifier codes (related to the plate, experiment and
720 objects), position information (such as Morphology_local centroid_X and _Y, well_position,
721 is_border) and features or experiment description not relevant for the analysis. If too big for
722 upload, the subset data was entered using the input type “paste data”; the data matrix was
723 transposed (“Data matrix Reshape / Transpose Matrix”) and the option “detect column and row
724 annotations” was unchecked to be adjusted manually. Columns with similar annotations were
725 collapsed by taking the median inside each group. Unit variance scaling was applied to rows. SVD
726 with imputation was used to calculate the principal components. X and Y axis show principal
727 component 1 and principal component 2 that explain the given % of the total variance,
728 respectively. Prediction ellipses depict a 95% confidence interval (a new observation from the
729 same group will fall inside the ellipse with probability $p=0.95$).

730 **Entropy analysis**

731 The initial script for computing Shannon Entropy is described in DOI: 10.1186/s12915-022-01264-
732 9 and is available at <https://osf.io/9mcwq/>. The adapted script for computing entropy of chromatin
733 features is provided as supplementary information in **SI_File1**. When all cells (segmented nuclei)
734 express the same value for a given feature, this feature’s entropy will be null. The more cell-to-
735 cell variability for a given chromatin feature, the higher value of entropy.

736 **Plots and statistical tests**

737 Box plots, violin plots, scatter plots, 2D contours and histograms were created using the online
738 tools <https://chart-studio.plotly.com/>, <http://shiny.chemgrid.org/boxplotr/> (Spitzer et al., 2014) or

739 own R scripts (Fig.S1 only). Statistical tests indicated in the figure legends were done using R
740 package or using the online tool <https://www.statskingdom.com/mean-tests.html>.

741 **Acknowledgements**

742 We thank Alexis Maizel (COS Heidelberg, Germany) for the Arabidopsis lines expressing the
743 UBQ10::H2B-RFP reporter (von Wangenheim et al., 2016), Alejandro Fonseca for computational
744 help in running entropy analysis, Prof. Ueli Grossniklaus and group members for insightful
745 discussions and Prof Grossniklaus department lab managers and technicians for daily support.

746 **Funding sources**

747 This work was supported by grants from the Swiss National Science Foundation to CB
748 (310030_185186, IZCOZ0_182949) and to LP (310030_192622), from the European Research
749 Council to LP (ERC-2019-AdG-885579), from the University of Zurich (CB, LP and a postoc grant
750 to KR, K-74502-03-01).

751 **Data availability**

752 Images used for this study are deposited at DRYAD (doi to be confirmed). The software used for
753 image analysis, Tissue Map, is available at <http://tissuemaps.org>. The image data used for this
754 study (HTI001-HTI005) are described in Table S4 and available at DOI:
755 10.5061/dryad.pnvx0k6wp.

756

757 **References**

758 Apostolou, E., & Hochedlinger, K. (2013). Chromatin dynamics during cellular reprogramming. *Nature*,
759 502(7472), 462-471. doi:10.1038/nature12749
760 Birnbaum, K. D., & Roudier, F. (2017). Epigenetic memory and cell fate reprogramming in plants.
761 *Regeneration (Oxf)*, 4(1), 15-20. doi:10.1002/reg2.73
762 Bourguet, P., Picard, C. L., Yelagandula, R., Pelissier, T., Lorkovic, Z. J., Feng, S., Pouch-Pelissier, M. N.,
763 Schmucker, A., Jacobsen, S. E., Berger, F., & Mathieu, O. (2021). The histone variant H2A.W and
764 linker histone H1 co-regulate heterochromatin accessibility and DNA methylation. *Nat Commun*,
765 12(1), 2683. doi:10.1038/s41467-021-22993-5
766 Cahan, P., & Daley, G. Q. (2013). Origins and implications of pluripotent stem cell variability and
767 heterogeneity. *Nature Reviews Molecular Cell Biology*, 14(6), 357-368. doi:10.1038/nrm3584

768 Cápál, P., & Ondřej, V. (2014). Expression and epigenetic profile of protoplast cultures (*Cucumis sativus*
769 L.). *In Vitro Cellular & Developmental Biology - Plant*, 50(6), 789-794. doi:10.1007/s11627-014-
770 9638-9

771 Choi, J., Lyons, D. B., Kim, M. Y., Moore, J. D., & Zilberman, D. (2020). DNA Methylation and Histone H1
772 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. *Mol Cell*, 77(2), 310-
773 323 e317. doi:10.1016/j.molcel.2019.10.011

774 Choi, S. H., Ahn, W. S., Lee, M. H., Jin, D. M., Lee, A., Jie, E. Y., Ju, S. J., Ahn, S. J., & Kim, S. W. (2023).
775 Effects of TSA, NaB, Aza in *Lactuca sativa* L. protoplasts and effect of TSA in *Nicotiana*
776 *benthamiana* protoplasts on cell division and callus formation. *PLoS One*, 18(2), e0279627.
777 doi:10.1371/journal.pone.0279627

778 Christophorou, M. A., Castelo-Branco, G., Halley-Stott, R. P., Oliveira, C. S., Loos, R., Radzisheuskaya, A.,
779 Mowen, K. A., Bertone, P., Silva, J. C., Zernicka-Goetz, M., Nielsen, M. L., Gurdon, J. B., &
780 Kouzarides, T. (2014). Citrullination regulates pluripotency and histone H1 binding to chromatin.
781 *Nature*, 507(7490), 104-108. doi:10.1038/nature12942

782 Chupeau, M. C., Granier, F., Pichon, O., Renou, J. P., Gaudin, V., & Chupeau, Y. (2013). Characterization
783 of the early events leading to totipotency in an *Arabidopsis* protoplast liquid culture by temporal
784 transcript profiling. *Plant Cell*, 25(7), 2444-2463. doi:10.1105/tpc.113.109538

785 Cremer, T., Cremer, M., Hubner, B., Silahtaroglu, A., Hendzel, M., Lanctot, C., Strickfaden, H., & Cremer,
786 C. (2020). The Interchromatin Compartment Participates in the Structural and Functional
787 Organization of the Cell Nucleus. *Bioessays*, 42(2), e1900132. doi:10.1002/bies.201900132

788 D'Oliveira Albanus, R., Kyono, Y., Hensley, J., Varshney, A., Orchard, P., Kitzman, J. O., & Parker, S. C. J.
789 (2021). Chromatin information content landscapes inform transcription factor and DNA
790 interactions. *Nat Commun*, 12(1), 1307. doi:10.1038/s41467-021-21534-4

791 Dawson, J., Pandey, S., Yu, Q., Schaub, P., Wüst, F., Moradi, A. B., Dovzhenko, O., Palme, K., & Welsch, R.
792 (2022). Determination of protoplast growth properties using quantitative single-cell tracking
793 analysis. *Plant Methods*, 18(1), 64. doi:10.1186/s13007-022-00895-x

794 Depeursinge, A., Fageot, J., & Al-Kadi, O. S. (2017a). Chapter 1 - Fundamentals of Texture Processing for
795 Biomedical Image Analysis: A General Definition and Problem Formulation. In A. Depeursinge, O.
796 S. Al-Kadi, & J. R. Mitchell (Eds.), *Biomedical Texture Analysis* (pp. 1-27): Academic Press.

797 Depeursinge, A., Fageot, J., & Al-Kadi, O. S. (2017b). Fundamentals of Texture Processing for Biomedical
798 Image Analysis. 1-27. doi:10.1016/b978-0-12-812133-7.00001-6

799 Desvoyes, B., Arana-Echarri, A., Barea, M. D., & Gutierrez, C. (2020). A comprehensive fluorescent sensor
800 for spatiotemporal cell cycle analysis in *Arabidopsis*. *Nat Plants*, 6(11), 1330-1334.
801 doi:10.1038/s41477-020-00770-4

802 Di Cataldo, S., & Ficarra, E. (2017). Mining textural knowledge in biological images: Applications,
803 methods and trends. *Comput Struct Biotechnol J*, 15, 56-67. doi:10.1016/j.csbj.2016.11.002

804 Dussiau, C., Boussaroque, A., Gaillard, M., Bravetti, C., Zaroili, L., Knosp, C., Friedrich, C., Asquier, P.,
805 Willems, L., Quint, L., Bouscary, D., Fontenay, M., Espinasse, T., Plesa, A., Sujobert, P.,
806 Gandrillon, O., & Kosmider, O. (2022). Hematopoietic differentiation is characterized by a
807 transient peak of entropy at a single-cell level. *BMC Biol*, 20(1), 60. doi:10.1186/s12915-022-
808 01264-9

809 Eldar, A., & Elowitz, M. B. (2010). Functional roles for noise in genetic circuits. *Nature*, 467(7312), 167-
810 173. doi:10.1038/nature09326

811 Eling, N., Morgan, M. D., & Marioni, J. C. (2019). Challenges in measuring and understanding biological
812 noise. *Nat Rev Genet*, 20(9), 536-548. doi:10.1038/s41576-019-0130-6

813 Fyodorov, D. V., Zhou, B. R., Skoultschi, A. I., & Bai, Y. (2018). Emerging roles of linker histones in
814 regulating chromatin structure and function. *Nat Rev Mol Cell Biol*, 19(3), 192-206.
815 doi:10.1038/nrm.2017.94

816 Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of
817 soybean root cells. *Exp Cell Res*, 50(1), 151-158. doi:10.1016/0014-4827(68)90403-5

818 Gandrillon, O., Gaillard, M., Espinasse, T., Garnier, N. B., Dussiau, C., Kosmider, O., & Sujobert, P. (2021).
819 Entropy as a measure of variability and stemness in single-cell transcriptomics. *Current Opinion*
820 *in Systems Biology*, 27, 100348. doi:<https://doi.org/10.1016/j.coisb.2021.05.009>

821 Ghaedi, M., & Niklason, L. E. (2019). Human Pluripotent Stem Cells (iPSC) Generation, Culture, and
822 Differentiation to Lung Progenitor Cells. *Methods Mol Biol*, 1576, 55-92.
823 doi:10.1007/7651_2016_11

824 Golkaram, M., Hellander, S., Drawert, B., & Petzold, L. R. (2016). Macromolecular Crowding Regulates
825 the Gene Expression Profile by Limiting Diffusion. *PLoS Comput Biol*, 12(11), e1005122.
826 doi:10.1371/journal.pcbi.1005122

827 Golkaram, M., Jang, J., Hellander, S., Kosik, K. S., & Petzold, L. R. (2017). The Role of Chromatin Density in
828 Cell Population Heterogeneity during Stem Cell Differentiation. *Sci Rep*, 7(1), 13307.
829 doi:10.1038/s41598-017-13731-3

830 Grafi, G., Florentin, A., Ransbotyn, V., & Morgenstern, Y. (2011). The stem cell state in plant
831 development and in response to stress. *Front Plant Sci*, 2, 53. doi:10.3389/fpls.2011.00053

832 Guillemin, A., Duchesne, R., Crauste, F., Gonin-Giraud, S., & Gandrillon, O. (2019). Drugs modulating
833 stochastic gene expression affect the erythroid differentiation process. *PLoS One*, 14(11),
834 e0225166. doi:10.1371/journal.pone.0225166

835 Guillemin, A., & Stumpf, M. P. H. (2021). Noise and the molecular processes underlying cell fate
836 decision-making. *Phys Biol*, 18(1), 011002. doi:10.1088/1478-3975/abc9d1

837 Hamilton, N. A., Pantelic, R. S., Hanson, K., & Teasdale, R. D. (2007). Fast automated cell phenotype
838 image classification. *BMC Bioinformatics*, 8, 110. doi:10.1186/1471-2105-8-110

839 He, C., Chen, X., Huang, H., & Xu, L. (2012). Reprogramming of H3K27me3 is critical for acquisition of
840 pluripotency from cultured Arabidopsis tissues. *PLoS Genet*, 8(8), e1002911.
841 doi:10.1371/journal.pgen.1002911

842 He, S., Yu, Y., Wang, L., Zhang, J., Bai, Z., Li, G., Li, P., & Feng, X. (2024). Linker histone H1 drives
843 heterochromatin condensation via phase separation in Arabidopsis. *Plant Cell*.
844 doi:10.1093/plcell/koae034

845 Holstein, T. W., Hobmayer, E., & Technau, U. (2003). Cnidarians: an evolutionarily conserved model
846 system for regeneration? *Dev Dyn*, 226(2), 257-267. doi:10.1002/dvdy.10227

847 Huang, S. (2009). Non-genetic heterogeneity of cells in development: more than just noise.
848 *Development*, 136(23), 3853-3862. doi:10.1242/dev.035139

849 Ibanez, S., Carneros, E., Testillano, P. S., & Perez-Perez, J. M. (2020). Advances in Plant Regeneration:
850 Shake, Rattle and Roll. *Plants (Basel)*, 9(7). doi:10.3390/plants9070897

851 Ikeuchi, M., Favero, D. S., Sakamoto, Y., Iwase, A., Coleman, D., Rymen, B., & Sugimoto, K. (2019).
852 Molecular Mechanisms of Plant Regeneration. *Annu Rev Plant Biol*, 70, 377-406.
853 doi:10.1146/annurev-arplant-050718-100434

854 Ikeuchi, M., Favero, D. S., Sakamoto, Y., Iwase, A., Coleman, D., Rymen, B., & Sugimoto, K. (2019).
855 Molecular Mechanisms of Plant Regeneration. *Annual Review of Plant Biology*, 70(1), 377-406.
856 doi:10.1146/annurev-arplant-050718-100434

857 Ishihara, H., Sugimoto, K., Tarr, P. T., Temman, H., Kadokura, S., Inui, Y., Sakamoto, T., Sasaki, T., Aida,
858 M., Suzuki, T., Inagaki, S., Morohashi, K., Seki, M., Kakutani, T., Meyerowitz, E. M., & Matsunaga,
859 S. (2019). Primed histone demethylation regulates shoot regenerative competency. *Nat*
860 *Commun*, 10(1), 1786. doi:10.1038/s41467-019-09386-5

861 Iwafuchi-Doi, M., & Zaret, K. S. (2014). Pioneer transcription factors in cell reprogramming. *Genes Dev*,
862 28(24), 2679-2692. doi:10.1101/gad.253443.114

863 Iwase, A., Harashima, H., Ikeuchi, M., Rymen, B., Ohnuma, M., Komaki, S., Morohashi, K., Kurata, T.,
864 Nakata, M., Ohme-Takagi, M., Grotewold, E., & Sugimoto, K. (2017). WIND1 Promotes Shoot
865 Regeneration through Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in
866 Arabidopsis. *Plant Cell*, 29(1), 54-69. doi:10.1105/tpc.16.00623

867 Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M., Sakakibara, H.,
868 Sugimoto, K., & Ohme-Takagi, M. (2011). The AP2/ERF transcription factor WIND1 controls cell
869 dedifferentiation in Arabidopsis. *Curr Biol*, 21(6), 508-514. doi:10.1016/j.cub.2011.02.020

870 Jin, R., Klasfeld, S., Zhu, Y., Fernandez Garcia, M., Xiao, J., Han, S. K., Konkol, A., & Wagner, D. (2021).
871 LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. *Nat
872 Commun*, 12(1), 626. doi:10.1038/s41467-020-20883-w

873 Jing, T., Ardiansyah, R., Xu, Q., Xing, Q., & Muller-Xing, R. (2020). Reprogramming of Cell Fate During
874 Root Regeneration by Transcriptional and Epigenetic Networks. *Front Plant Sci*, 11, 317.
875 doi:10.3389/fpls.2020.00317

876 Kalra, R. S., Dhanjal, J. K., Das, M., Singh, B., & Naithani, R. (2021). Cell Transdifferentiation and
877 Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models
878 and Current Translational Strategies. *Cells*, 10(10). doi:10.3390/cells10102558

879 Kerr, E., Kiyuna, T., Boyle, S., Saito, A., Thomas, J. S., & Bickmore, W. A. (2010). Changes in chromatin
880 structure during processing of wax-embedded tissue sections. *Chromosome Res*, 18(6), 677-688.
881 doi:10.1007/s10577-010-9147-6

882 Kotlinski, M., Rutowicz, K., Knizewski, L., Palusinski, A., Oledzki, J., Fogtman, A., Rubel, T., Koblowska, M.,
883 Dadlez, M., Ginalski, K., & Jerzmanowski, A. (2016). Histone H1 Variants in Arabidopsis Are
884 Subject to Numerous Post-Translational Modifications, Both Conserved and Previously Unknown
885 in Histones, Suggesting Complex Functions of H1 in Plants. *PLoS One*, 11(1), e0147908.
886 doi:10.1371/journal.pone.0147908

887 Kunitomi, A., Yuasa, S., Sugiyama, F., Saito, Y., Seki, T., Kusumoto, D., Kashimura, S., Takei, M., Tohyama,
888 S., Hashimoto, H., Egashira, T., Tanimoto, Y., Mizuno, S., Tanaka, S., Okuno, H., Yamazawa, K.,
889 Watanabe, H., Oda, M., Kaneda, R., Matsuzaki, Y., Nagai, T., Okano, H., Yagami, K. I., Tanaka, M.,
890 & Fukuda, K. (2016). H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells. *Stem
891 Cell Reports*, 6(6), 825-833. doi:10.1016/j.stemcr.2016.04.015

892 Lee, H. K., Kim, C. H., Bhattacharjee, S., Park, H. G., Prakash, D., & Choi, H. K. (2021). A Paradigm Shift in
893 Nuclear Chromatin Interpretation: From Qualitative Intuitive Recognition to Quantitative
894 Texture Analysis of Breast Cancer Cell Nuclei. *Cytometry A*, 99(7), 698-706.
895 doi:10.1002/cyto.a.24260

896 Lee, K., & Seo, P. J. (2018). Dynamic Epigenetic Changes during Plant Regeneration. *Trends Plant Sci*,
897 23(3), 235-247. doi:10.1016/j.tplants.2017.11.009

898 Li, J. F., Zhang, D., & Sheen, J. (2014). Epitope-tagged protein-based artificial miRNA screens for
899 optimized gene silencing in plants. *Nat Protoc*, 9(4), 939-949. doi:10.1038/nprot.2014.061

900 Lindermayr, C., Rudolf, E. E., Durner, J., & Groth, M. (2020). Interactions between metabolism and
901 chromatin in plant models. *Mol Metab*, 38, 100951. doi:10.1016/j.molmet.2020.01.015

902 Lu, V., Roy, I. J., & Teitel, M. A. (2021). Nutrients in the fate of pluripotent stem cells. *Cell Metabolism*,
903 33(11), 2108-2121. doi:<https://doi.org/10.1016/j.cmet.2021.09.013>

904 Lu, Y., Bu, Q., Chuan, M., Cui, X., Zhao, Y., & Zhou, D. X. (2023). Metabolic regulation of the plant
905 epigenome. *Plant J*. doi:10.1111/tpj.16122

906 Ly, C. H., Lynch, G. S., & Ryall, J. G. (2020). A Metabolic Roadmap for Somatic Stem Cell Fate. *Cell Metab*,
907 31(6), 1052-1067. doi:10.1016/j.cmet.2020.04.022

908 MacArthur, B. D., & Lemischka, I. R. (2013). Statistical mechanics of pluripotency. *Cell*, 154(3), 484-489.
909 doi:10.1016/j.cell.2013.07.024

910 Maury, S., Sow, M. D., Le Gac, A. L., Genitoni, J., Lafon-Placette, C., & Mozgova, I. (2019). Phytohormone
911 and Chromatin Crosstalk: The Missing Link For Developmental Plasticity? *Front Plant Sci*, 10, 395.
912 doi:10.3389/fpls.2019.00395

913 Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using
914 Principal Component Analysis and heatmap. *Nucleic Acids Res*, 43(W1), W566-570.
915 doi:10.1093/nar/gkv468

916 Mitchell, S., & Hoffmann, A. (2018). Identifying Noise Sources governing cell-to-cell variability. *Curr Opin
917 Syst Biol*, 8, 39-45. doi:10.1016/j.coisb.2017.11.013

918 Mojtahedi, M., Skupin, A., Zhou, J., Castano, I. G., Leong-Quong, R. Y., Chang, H., Trachana, K., Giuliani,
919 A., & Huang, S. (2016). Cell Fate Decision as High-Dimensional Critical State Transition. *PLoS Biol*,
920 14(12), e2000640. doi:10.1371/journal.pbio.2000640

921 Moricova, P., Ondrej, V., Navratilova, B., & Luhova, L. (2013). Changes of DNA methylation and
922 hydroxymethylation in plant protoplast cultures. *Acta Biochim Pol*, 60(1), 33-36.

923 Muller-Xing, R., & Xing, Q. (2022). The plant stem-cell niche and pluripotency: 15 years of an epigenetic
924 perspective. *Front Plant Sci*, 13, 1018559. doi:10.3389/fpls.2022.1018559

925 Ojala, T., Pietikäinen, M., & Mäenpää, T. (2001, 2001//). *A Generalized Local Binary Pattern Operator for
926 Multiresolution Gray Scale and Rotation Invariant Texture Classification*. Paper presented at the
927 Advances in Pattern Recognition — ICAPR 2001, Berlin, Heidelberg.

928 Ondřej, V., Kitner, M., Doležalová, I., Nádvorník, P., Navrátilová, B., & Lebeda, A. (2009). Chromatin
929 structural rearrangement during dedifferentiation of protoplasts of *Cucumis sativus* L. *Molecules
930 and Cells*, 27(4), 443-447. doi:10.1007/s10059-009-0057-4

931 Ondřej, V., Navrátilová, B., Protivánková, I., Piterková, J., Sedlářová, M., Luhová, L., & Lebeda, A. (2010).
932 Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by
933 oxidative stress. *J Exp Bot*, 61(9), 2395-2401. doi:10.1093/jxb/erq067

934 Pasternak, T., Lystvan, K., Betekhtin, A., & Hasterok, R. (2020). From Single Cell to Plants: Mesophyll
935 Protoplasts as a Versatile System for Investigating Plant Cell Reprogramming. *International
936 Journal of Molecular Sciences*, 21(12). Retrieved from doi:10.3390/ijms21124195

937 Pelham-Webb, B., Murphy, D., & Apostolou, E. (2020). Dynamic 3D Chromatin Reorganization during
938 Establishment and Maintenance of Pluripotency. *Stem Cell Reports*, 15(6), 1176-1195.
939 doi:10.1016/j.stemcr.2020.10.012

940 Pelkmans, L. (2012). Cell Biology. Using cell-to-cell variability--a new era in molecular biology. *Science*,
941 336(6080), 425-426. doi:10.1126/science.1222161

942 Rana, P., Sowmya, A., Meijering, E., & Song, Y. (2021). Estimation of three-dimensional chromatin
943 morphology for nuclear classification and characterisation. *Sci Rep*, 11(1), 3364.
944 doi:10.1038/s41598-021-82985-9

945 Rana, P., Sowmya, A., Meijering, E., & Song, Y. (2021). Estimation of three-dimensional chromatin
946 morphology for nuclear classification and characterisation. *Sci Rep*, 11(1), 3364.
947 doi:10.1038/s41598-021-82985-9

948 Reddy, P., Memczak, S., & Izpisua Belmonte, J. C. (2021). Unlocking Tissue Regenerative Potential by
949 Epigenetic Reprogramming. *Cell Stem Cell*, 28(1), 5-7. doi:10.1016/j.stem.2020.12.006

950 Reed, K. M., & Bargmann, B. O. R. (2021). Protoplast Regeneration and Its Use in New Plant Breeding
951 Technologies. *Front Genome Ed*, 3, 734951. doi:10.3389/fgeed.2021.734951

952 Richard, A., Boullu, L., Herbach, U., Bonnafoux, A., Morin, V., Vallin, E., Guillemin, A., Papili Gao, N.,
953 Gunawan, R., Cosette, J., Arnaud, O., Kupiec, J. J., Espinasse, T., Gonin-Giraud, S., & Gandrillon,
954 O. (2016). Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability
955 Preceding Irreversible Commitment in a Differentiation Process. *PLoS Biol*, 14(12), e1002585.
956 doi:10.1371/journal.pbio.1002585

957 Richard, M., & Yvert, G. (2014). How does evolution tune biological noise? *Front Genet*, 5, 374.
958 doi:10.3389/fgene.2014.00374

959 Romanazzo, S., Lin, K., Srivastava, P., & Kilian, K. A. (2020). Targeting cell plasticity for regeneration:
960 From in vitro to in vivo reprogramming. *Advanced Drug Delivery Reviews*, 161-162, 124-144.
961 doi:<https://doi.org/10.1016/j.addr.2020.08.007>

962 Rutowicz, K., Lirska, M., Mermaz, B., Teano, G., Schubert, J., Mestiri, I., Kroten, M. A., Fabrice, T. N., Fritz,
963 S., Grob, S., Ringli, C., Cherkezyan, L., Barneche, F., Jerzmanowski, A., & Baroux, C. (2019). Linker
964 histones are fine-scale chromatin architects modulating developmental decisions in *Arabidopsis*.
965 *Genome Biol*, 20(1), 157. doi:10.1186/s13059-019-1767-3

966 Rutowicz, K., Puzio, M., Halibart-Puzio, J., Lirska, M., Kotlinski, M., Kroten, M. A., Knizewski, L., Lange, B.,
967 Muszewska, A., Sniegowska-Swierk, K., Koscielniak, J., Iwanicka-Nowicka, R., Buza, K., Janowiak,
968 F., Zmuda, K., Joesaar, I., Laskowska-Kaszub, K., Fogtman, A., Kollist, H., Zielenkiewicz, P., Tiurny,
969 J., Siedlecki, P., Swiezewski, S., Ginalski, K., Koblowska, M., Archacki, R., Wilczynski, B., Rapacz,
970 M., & Jerzmanowski, A. (2015). A Specialized Histone H1 Variant Is Required for Adaptive
971 Responses to Complex Abiotic Stress and Related DNA Methylation in *Arabidopsis*. *Plant Physiol*,
972 169(3), 2080-2101. doi:10.1104/pp.15.00493

973 Safdari, H., Kalirad, A., Picioreanu, C., Tusserkani, R., Goliae, B., & Sadeghi, M. (2020). Noise-driven cell
974 differentiation and the emergence of spatiotemporal patterns. *PLoS One*, 15(4), e0232060.
975 doi:10.1371/journal.pone.0232060

976 Sang, Y. L., Cheng, Z. J., & Zhang, X. S. (2018). iPSCs: A Comparison between Animals and Plants. *Trends
977 in Plant Science*, 23(8), 660-666. doi:<https://doi.org/10.1016/j.tplants.2018.05.008>

978 Saruyama, N., Sakakura, Y., Asano, T., Nishiuchi, T., Sasamoto, H., & Kodama, H. (2013). Quantification of
979 metabolic activity of cultured plant cells by vital staining with fluorescein diacetate. *Anal
980 Biochem*, 441(1), 58-62. doi:10.1016/j.ab.2013.06.005

981 She, W., Grimanelli, D., Rutowicz, K., Whitehead, M. W., Puzio, M., Kotlinski, M., Jerzmanowski, A., &
982 Baroux, C. (2013). Chromatin reprogramming during the somatic-to-reproductive cell fate
983 transition in plants. *Development*, 140(19), 4008-4019. doi:10.1242/dev.095034

984 Shemer, O., Landau, U., Candela, H., Zemach, A., & Eshed Williams, L. (2015). Competency for shoot
985 regeneration from *Arabidopsis* root explants is regulated by DNA methylation. *Plant Sci*, 238,
986 251-261. doi:10.1016/j.plantsci.2015.06.015

987 Special Issue "New Frontiers in Micropropagation". (2021).
988 https://www.mdpi.com/journal/agronomy/special_issues/micropropagation.

989 Spitzer, M., Wildenhain, J., Rappaport, J., & Tyers, M. (2014). BoxPlotR: a web tool for generation of box
990 plots. *Nat Methods*, 11(2), 121-122. doi:10.1038/nmeth.2811

991 Stumpf, P. S., Smith, R. C. G., Lenz, M., Schuppert, A., Muller, F. J., Babtie, A., Chan, T. E., Stumpf, M. P.
992 H., Please, C. P., Howison, S. D., Arai, F., & MacArthur, B. D. (2017). Stem Cell Differentiation as a
993 Non-Markov Stochastic Process. *Cell Syst*, 5(3), 268-282 e267. doi:10.1016/j.cels.2017.08.009

994 Sugimoto, K., Gordon, S. P., & Meyerowitz, E. M. (2011). Regeneration in plants and animals:
995 dedifferentiation, transdifferentiation, or just differentiation? *Trends in Cell Biology*, 21(4), 212-
996 218. doi:<https://doi.org/10.1016/j.tcb.2010.12.004>

997 Teano, G., Concia, L., Carron, L., Wolff, L., Adamusová, K., Fojtová, M., Bourge, M., Kramdi, A., Colot, V.,
998 Grossniklaus, U., Bowler, C., Baroux, C., Carbone, A., Probst, A. V., Procházková Schrumpfová, P.,
999 Fajkus, J., Amiard, S., Grob, S., Bourbousse, C., & Barneche, F. (2023). Histone H1 protects
1000 telomeric repeats from H3K27me3 invasion in *Arabidopsis*. *Cell Reports*, In press.
1001 doi:10.1101/2020.11.28.402172

1002 Tessadori, F., Chupeau, M. C., Chupeau, Y., Knip, M., Germann, S., van Driel, R., Fransz, P., & Gaudin, V.
1003 (2007). Large-scale dissociation and sequential reassembly of pericentric heterochromatin in
1004 dedifferentiated *Arabidopsis* cells. *J Cell Sci*, 120(Pt 7), 1200-1208. doi:10.1242/jcs.000026

1005 Venkatachalamathy, S., Jokhun, D. S., Andhari, M., & Shivashankar, G. V. (2021). Single cell imaging-based
1006 chromatin biomarkers for tumor progression. *Sci Rep*, 11(1), 23041. doi:10.1038/s41598-021-
1007 02441-6

1008 von Wangenheim, D., Fangerau, J., Schmitz, A., Smith, R. S., Leitte, H., Stelzer, E. H., & Maizel, A. (2016).
1009 Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns. *Curr
1010 Biol*, 26(4), 439-449. doi:10.1016/j.cub.2015.12.047

1011 Walker, J., Oppenheimer, D., Concienne, J., & Larkin, J. (2000). SIAMESE, a gene controlling the
1012 endoreduplication cell cycle in *Arabidopsis thaliana* trichomes. *Development (Cambridge,
1013 England)*, 127, 3931-3940. doi:10.1242/dev.127.18.3931

1014 Wierzbicki, A. T., & Jerzmanowski, A. (2005). Suppression of histone H1 genes in *Arabidopsis* results in
1015 heritable developmental defects and stochastic changes in DNA methylation. *Genetics*, 169(2),
1016 997-1008. doi:10.1534/genetics.104.031997

1017 Wiesner, K., Teles, J., Hartnor, M., & Peterson, C. (2018). Haematopoietic stem cells: entropic landscapes
1018 of differentiation. *Interface Focus*, 8(6), 20180040. doi:10.1098/rsfs.2018.0040

1019 Williams, L., Zhao, J., Morozova, N., Li, Y., Avivi, Y., & Grafi, G. (2003). Chromatin reorganization
1020 accompanying cellular dedifferentiation is associated with modifications of histone H3,
1021 redistribution of HP1, and activation of E2F-target genes. *Dev Dyn*, 228(1), 113-120.
1022 doi:10.1002/dvdy.10348

1023 Xu, M., Du, Q., Tian, C., Wang, Y., & Jiao, Y. (2021). Stochastic gene expression drives mesophyll
1024 protoplast regeneration. *Sci Adv*, 7(33). doi:10.1126/sciadv.abg8466

1025 Xu, Y., Li, R., Luo, H., Wang, Z., Li, M.-W., Lam, H.-M., & Huang, C. (2022). Protoplasts: small cells with big
1026 roles in plant biology. *Trends in Plant Science*, 27(8), 828-829.
1027 doi:<https://doi.org/10.1016/j.tplants.2022.03.010>

1028 Ye, R., Wang, M., Du, H., Chhajed, S., Koh, J., Liu, K. H., Shin, J., Wu, Y., Shi, L., Xu, L., Chen, S., Zhang, Y.,
1029 & Sheen, J. (2022). Glucose-driven TOR-FIE-PRC2 signalling controls plant development. *Nature*,
1030 609(7929), 986-993. doi:10.1038/s41586-022-05171-5

1031 Ye, Y., Yang, Z., Zhu, M., & Lei, J. (2020). Using single-cell entropy to describe the dynamics of
1032 reprogramming and differentiation of induced pluripotent stem cells. *International Journal of
1033 Modern Physics B*, 34(30), 2050288. doi:10.1142/S0217979220502884

1034 Yokobayashi, S., Yabuta, Y., Nakagawa, M., Okita, K., Hu, B., Murase, Y., Nakamura, T., Bourque, G.,
1035 Majewski, J., Yamamoto, T., & Saitou, M. (2021). Inherent genomic properties underlie the
1036 epigenomic heterogeneity of human induced pluripotent stem cells. *Cell Reports*, 37(5), 109909.
1037 doi:<https://doi.org/10.1016/j.celrep.2021.109909>

1038 Yoo, S. D., Cho, Y. H., & Sheen, J. (2007). *Arabidopsis* mesophyll protoplasts: a versatile cell system for
1039 transient gene expression analysis. *Nat Protoc*, 2(7), 1565-1572. doi:10.1038/nprot.2007.199

1040 Yoshida, M., Horinouchi, S., & Beppu, T. (1995). Trichostatin A and trapoxin: novel chemical probes for
1041 the role of histone acetylation in chromatin structure and function. *Bioessays*, 17(5), 423-430.
1042 doi:10.1002/bies.950170510

1043 Zemach, A., Kim, M. Y., Hsieh, P. H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S. L., &
1044 Zilberman, D. (2013). The *Arabidopsis* nucleosome remodeler DDM1 allows DNA
1045 methyltransferases to access H1-containing heterochromatin. *Cell*, 153(1), 193-205.
1046 doi:10.1016/j.cell.2013.02.033

1047 Zhao, J., Morozova, N., Williams, L., Libs, L., Avivi, Y., & Grafi, G. (2001). Two phases of chromatin
1048 decondensation during dedifferentiation of plant cells: distinction between competence for cell
1049 fate switch and a commitment for S phase. *J Biol Chem*, 276(25), 22772-22778.
1050 doi:10.1074/jbc.M101756200