

1 Working together to control mutation:
2 how collective peroxide detoxification
3 determines microbial mutation rate
4 plasticity.

5
6
7 **Rowan Green¹, Hejie Wang², Carol Botchey², Nancy Zhang², Charles Wadsworth²,**
8 **Andrew J McBain³, Paweł Paszek^{2,4}, Rok Krašovec^{2†}, Christopher G Knight^{1†}**

9
10
11 **1. School of Natural Sciences, Faculty of Science & Engineering, University of Manchester**
12 **2. School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester**
13 **3. School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester**
14 **4. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland**
15 **† Corresponding Author**

16
17 **Email: chris.knight@manchester.ac.uk (CGK); rok.krasovec@manchester.ac.uk (RK)**

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44 **Abstract**

45

46 Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the
47 environment not only for selection but also in determining the variation available in a population. One
48 such environmental dependency is the inverse relationship between mutation rates and population
49 density in many microbial species. Here we determine the mechanism responsible for this mutation
50 rate plasticity. Using dynamical computational modelling and *in vivo* mutation rate estimation we
51 show that the negative relationship between mutation rate and population density arises from the
52 collective ability of microbial populations to control concentrations of hydrogen peroxide. We
53 demonstrate a loss of this density-associated mutation rate plasticity when *Escherichia coli*
54 populations are deficient in the degradation of hydrogen peroxide. We further show that the
55 reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by
56 the presence of wild-type cells in a mixed population. Together, these model-guided experiments
57 provide a mechanistic explanation for density-associated mutation rate plasticity, applicable across all
58 domains of life, and frames mutation rate as a dynamic trait shaped by microbial community
59 composition.

60

61 **Introduction**

62

63 Uncovering the mechanisms behind environmentally responsive mutagenesis informs our
64 understanding of evolution, notably antimicrobial resistance, where mutation supply can be critical
65 (1, 2). Microbial mutation rates are responsive to a wide variety of environmental factors including
66 population density (3), temperature (4), growth rate (5, 6), stress (7, 8), growth phase (9) and
67 nutritional state (10). Such mutation rate plasticity inspires the idea of “anti-evolution drugs”, able
68 to slow the evolution of antimicrobial resistance during the treatment of an infection (2, 11-13).
69 Even small reductions in the mutation rate (2-5-fold) can have dramatic effects on the capacity of
70 bacterial populations to adapt to antibiotic treatment, particularly when evolution is limited by
71 mutation supply, as is the case for small pathogen populations (2).

72

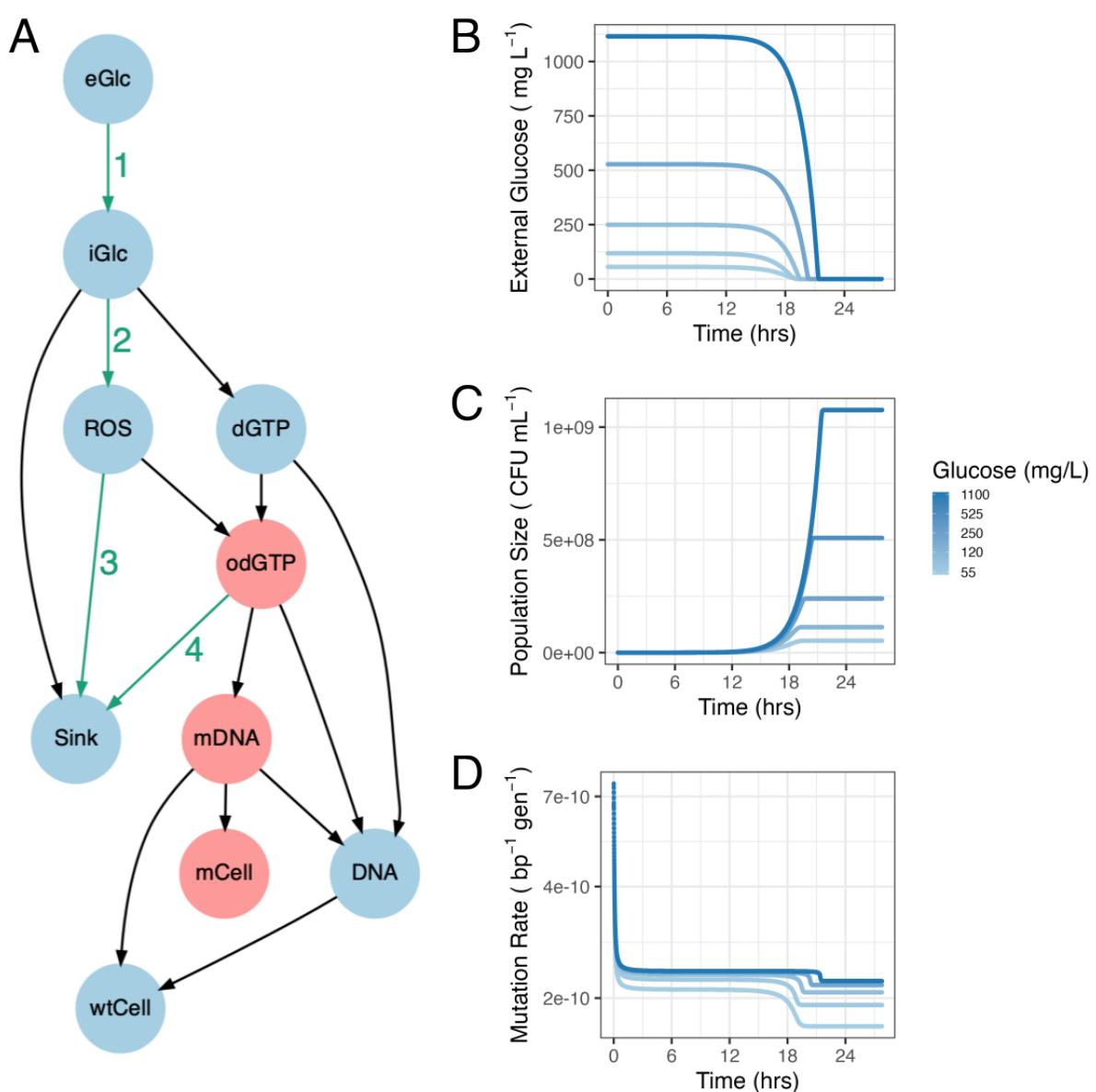
73 Microbial mutation rates have an inverse association with population density across all
74 domains of life, we have previously shown that 93% of otherwise unexplained variation in published
75 mutation rate estimates is explained by the final population density (3). This density-associated
76 mutation rate plasticity (DAMP) is a distinct phenotype from stress-induced mutagenesis, which acts
77 via independent genetic mechanisms (14). Population density alters not only the rate but also the
78 spectrum of mutations, with significantly higher rates of AT>GC transitions seen in low density
79 populations (15). Density effects are likely relevant to natural populations given that population sizes
80 and densities vary greatly, for example, *Escherichia coli* populations in host faeces can range in
81 density by 5 orders of magnitude (16), and infections can be established by populations as small as
82 6×10^3 cells (17). We therefore aim to mechanistically describe the widespread phenotype of DAMP.

83

84 In order to test potential mechanisms generating DAMP, we developed and systematically
85 assessed a computational model connecting metabolism and mutagenesis in a growing *E. coli*
86 population. This model generates the hypothesis that the key determinants of DAMP are the
87 production and degradation rates of reactive oxygen species (ROS). Though molecular oxygen is
88 relatively stable it can be reduced to superoxide ($\cdot\text{O}_2^-$), hydrogen peroxide (H_2O_2) and hydroxyl
89 radicals (HO^\bullet). These “reactive oxygen species” are strong oxidants able to damage multiple
90 biological molecules including nucleotides and DNA (18). We tested the role of ROS in controlling
91 DAMP by estimating mutation rate plasticity under different conditions of environmental oxygen
92 and with genetic manipulations known to alter ROS dynamics. We find that the reduction in

93 mutation rate at increased population density results from the population's increased ability to
94 degrade H₂O₂, resulting in reduced ROS-associated mutagenesis. We show that this density effect is
95 also experienced by cells deficient in H₂O₂ degradation when cocultured with wild-type cells able to
96 detoxify the environment. Mutation rates therefore depend not only on the genotype of the
97 individual but also on the community's capacity to degrade H₂O₂.
98

99 **Results**


100

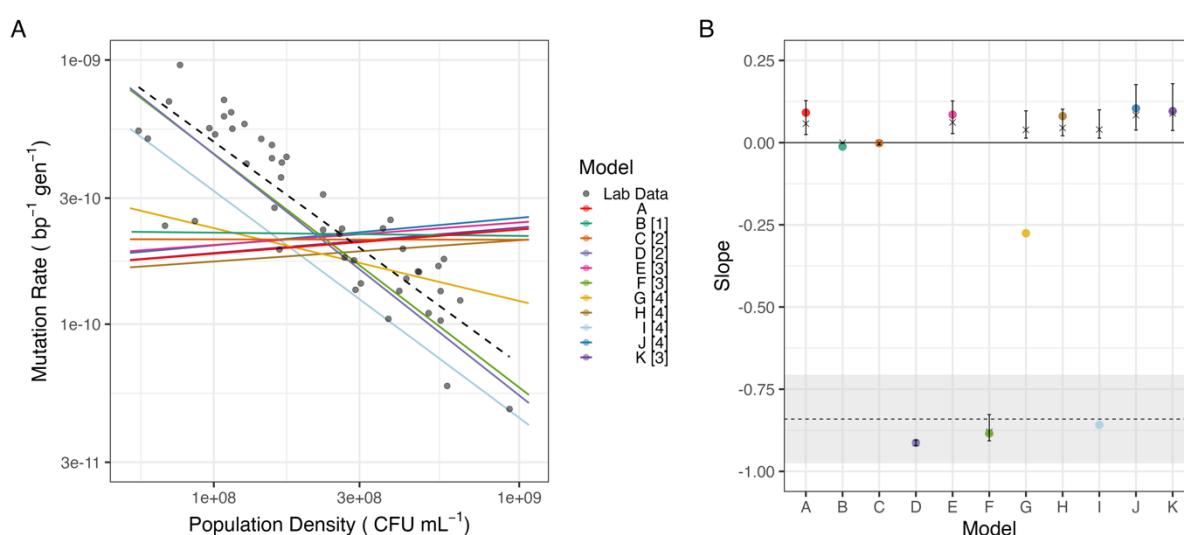
101 **Initial computational model of nucleotide metabolism in a growing microbial** 102 **population fails to reproduce mutation rate plasticity**

103

104 To generate hypotheses for the mechanisms of density-associated mutation rate plasticity
105 we constructed a system of ordinary differential equations (ODEs) that recapitulates the dynamics of
106 metabolism, growth and mutagenesis in a 1mL batch culture of *E. coli* (Fig. 1). The enzyme MutT,
107 responsible for degrading mutagenic oxidised GTP (19), is essential in DAMP (3); the ODE model is
108 therefore focussed on guanine bases. In the model external glucose (**eGlc**) is taken up by a small
109 initial *E. coli* population (**wtCell**). Internal glucose (**iGlc**) is then metabolised to produce **ROS**, **dGTP**
110 and, largely, 'other' molecules ('Sink' in Fig. 1). **dGTP** is then either integrated into a newly
111 synthesised DNA molecule (**DNA**) or it reacts with **ROS** to produce 8-oxo-2'-deoxyguanosine
112 triphosphate (**odGTP**). In this model, non-oxidised **dGTP** always pairs correctly with cytosine,
113 producing non-mutant DNA (**DNA**). In a second round of DNA replication the guanine base is now on
114 the template strand, cytosine is correctly inserted opposite producing new chromosomes (**wtCell**).
115 **odGTP**, if it is not dephosphorylated by MutT into **dGMP** (Sink), can either pair correctly with
116 cytosine (becoming **DNA**) or mis-pair with adenine (becoming **mDNA**). When **odGTP** is inserted
117 opposite adenine into DNA (**mDNA**) it may be repaired by the MutS or MutY proteins, converting the
118 **mDNA** back to **DNA**. The key output of interest is the mutation rate, which is defined as the number
119 of mutant base pairs (**mCell**) divided by the number of non-mutant base pairs (**wtCell**). The model
120 comprises 10 ordinary differential equations (ODEs), one for each substance variable in Fig.1
121 (excluding 'Sink'), plus **cytVol**, the total population cytoplasmic volume within which all the reactions
122 occur (Table 1, Eq. 1-10, Methods). These equations require 14 parameters (some of them
123 composite, Table 2); the structure and parameter values are largely taken from the existing
124 literature (for details see Methods). Un-measurable parameters (notably the rate of **dGTP** oxidation
125 to **odGTP** by **ROS**, '**O2**') were set to give the observed mutation rate (2×10^{-10} mutations per base
126 pair per generation, (20)) at a final population density of 3×10^8 CFU ml⁻¹, typical of 250 mg L⁻¹
127 glucose in minimal media. As with most experiments demonstrating density-associated mutation
128 rate plasticity (3, 21), final population density is controlled by varying initial external glucose. We
129 initiated 28h simulations of 1ml cultures with 2175 cells (a small number, typical of fluctuation
130 assays estimating mutation rate, Fig. S10), no internal metabolites and external glucose
131 concentrations relevant to wet-lab experiments – across a log scale from 55 to 1100 mg L⁻¹ (Table 1).
132 The dynamics of external glucose, population size and mutation rate for these simulations are shown
133 in Fig.1B-D.

134

125
136
137
138
139
140
141
142


Figure 1: Dynamical computational model of growth, metabolism and mutagenesis in *E. coli*. A: Model structure connecting variables. Red variables indicate the pathway to mutagenesis; green numbered arrows indicate pathways targeted by model variants. This structure was represented in ODEs, parameterised from the literature (Methods), and simulated to give output shown in B-D. B: Kinetics of external glucose concentration (eGlc), C: population size (wtCell divided by G nucleotides in the *E. coli* genome) and D: mutation rate (mCell/wtCell). Note log scale on y-axis in panel D. Panels B-D are plotted for 5 initial glucose concentrations (range 55 – 1100 mg L^{-1} as shown in legend), initial glucose concentration indicated by line colour.

143 This initial model (Fig 1, referred to as model A) creates an approximately linear log-log slope
144 of 0.09 ± 0.06 (95% CI) between final population and mutation rate (Red line, Fig.2A, Regression 1
145 (SI)). We can compare the slope directly to *in vivo* estimates of mutation rates in *E. coli*, which show
146 strong DAMP, with a slope of -0.84 ± 0.13 (95% CI, grey dots and dashed line, Fig. 2A, Regression 2
147 (SI)). Model A is therefore not describing the processes causing DAMP – the structure and/or the
148 parameters used are either incomplete or fail to replicate biology for some other reason. To test
149 whether inappropriate parameter values could be responsible for the lack of DAMP in model A, we
150 simulated 50,000 parameter sets simultaneously varying all parameters randomly across 10% –
151 1,000% of their original value. These results were filtered as described in Methods and are plotted in

152 Fig. 2B. This global sensitivity analysis showed the mutation rate plasticity, i.e., slope of model A to
153 be very robust, with an interquartile range of 0.02-0.13 as shown by error bars in Fig.2B. All tested
154 parameter sets gave a log-log linear slope of > - 0.05, suggesting that DAMP requires processes not
155 represented in this initial model.
156

157 **ROS production and degradation are central to density-associated mutation rate**
158 **(DAMP) plasticity in silico**

159
160 While there was only limited variation in the relationship between mutation rate and
161 population density, defining the slope of DAMP, in model A (Fig. 2B) we can ask which model
162 parameters are associated either with this variation or with variation in mutation rate itself (Fig. S1).
163 The affinity of importers for glucose (K_s , part of reaction 1 in Fig. 1A) had by far the closest
164 association with the slope (Spearman's Rho $(DF = 3583) = 0.91$, $P < 2.2 \times 10^{-16}$, Fig. S1), whereas a group
165 of parameters, including parameters controlling the rates of both **ROS** production (r , reaction 2 in
166 Fig. 1A) and **ROS** degradation (parameters O_2 and O_3 , corresponding to reaction 3 in Fig. 1A) had the
167 closest association with the mutation rate (Spearman's Rho $(DF = 3583) = 0.22$, 0.21 and -0.21
168 respectively, all $P < 2.2 \times 10^{-16}$ Fig. S1). The parameter representing MutT activity (parameter C_1 ,
169 reaction 4, Fig. 1A), found to be relevant in previous work on DAMP (3), was also in this group of
170 parameters controlling mutation rate and so was also considered as candidate processes for further
171 exploration. We hypothesise that the additional processes required to reproduce DAMP as observed
172 in the lab are associated with these reactions (numbered 1-4 in Fig. 1A). We systematically tested
173 each of these processes using structural variants to the model, explicitly modifying density
174 dependence in biologically plausible ways. We thus use these models as a method of hypothesis
175 generation, to determine which mechanisms may plausibly cause DAMP, with a view to testing these
176 candidate mechanisms in the lab.
177
178

179 **Figure 2: Mutation rates in model variants.** A) Solid coloured lines show fitted log-log linear relationship
180 between final population density and mutation rate for models A to K (Regression 1 (S1)); numbers [1] – [4] in legend
181 indicate the pathway targeted from Fig. 1A. Black points and dashed line show lab data for *E. coli* wild-type BW25113 in
182 glucose minimal media with a log-log linear regression fitted (Regression 2 (S1)). B) Global sensitivity analysis; coloured
183 points show slopes from baseline parameters (as in 2A), and crosses and error bars show median and interquartile range of
184 slope across 5×10^5 randomly perturbed parameter sets, models are coloured as in Fig. 2A. Dashed line shows slope of lab
185 data in Fig. 2A (Regression 2), and grey area shows 95% CI on this slope.

186 The slight increase in mutation rates seen as density increases in model A (a reversal of the
187 negative association seen in the DAMP phenotype, therefore referred to as 'reverse DAMP') is the

188 result of increased external glucose leading to increased internal glucose concentrations (Fig. S2),
189 creating an increased rate of **ROS** production and therefore higher mutation rates. It is therefore
190 plausible that if glucose importer proteins are more expressed under low external glucose
191 conditions, increasing the rate of reaction 1 (Fig. 1A) at low glucose concentrations may increase
192 mutation rates at low density. Introducing this model variant (model B, using Eq. 1_B) does indeed
193 remove model A's positive association between mutation rate and density but does not give the
194 negative association observed *in vivo* (model B slope = -0.01 ± 0.06 (95% CI), Fig. 2, Regression 1 (SI)).
195

196 In model A, **ROS** are produced only by cellular metabolism, however lab media also
197 accumulates significant concentrations of H₂O₂ through photochemistry (22). This is represented in
198 model C by replacing reaction 2 (Fig. 1A) with a constant **ROS** concentration in the system (using Eq.
199 8_C rather than Eq. 8) and in model D by a constant rate of **ROS** production (using Eq. 7_D rather than
200 Eq. 7). Both models abolish model A's positive slope. However, while model C removes DAMP (slope
201 = -0.001 ± 0.06 (95% CI), Regression 1 (SI)), model D introduces a strong negative slope similar to the
202 laboratory data (slope = -0.91 ± 0.06 (95% CI), Regression 1 (SI)).
203

204 Decreasing mutation rates at higher population densities could also be the result of changes
205 in cellular ROS degradation rates (reaction 3). We therefore created models where degradation is
206 determined by the internal glucose concentration (model E) and by the population density (model
207 F), replacing Eq. 7 with Eq. 7_E and 7_F respectively. Of these two, the first had very little effect (model
208 E, slope = 0.09 ± 0.06 (95% CI), Regression 1 (SI)) whereas the second had a large effect, giving a
209 strong slope similar to the laboratory data (model F, slope = -0.89 ± 0.06 (95% CI), Regression 1 (SI)).
210

211 Given that previous work has shown the action of MutT in degrading ROS-damaged dGTP
212 (**odGTP**, Fig. 1A) to be essential to DAMP (3), we explored models in which the rate of **odGTP**
213 degradation by MutT (reaction 4, Fig. 1A) is determined by the internal glucose (model G, using Eq.
214 8_G rather than Eq. 8), **odGTP** (model H, using Eq. 8_H rather than Eq. 8) or **ROS** concentration (model I,
215 using Eq. 8_I rather than Eq. 8). None of these models consistently resulted in DAMP (Fig. 2B): making
216 MutT activity dependent on **odGTP** had very little effect at all (model H, slope = 0.08 ± 0.06 (95% CI),
217 Regression 1 (SI)) whereas making MutT activity directly responsive to internal glucose or ROS
218 concentration did reproduce some degree of DAMP slope (models G and I slopes -0.28 ± 0.06 and -
219 0.86 ± 0.06 respectively (95% CI), Regression 1 (SI)). However, the DAMP slopes of models G and I
220 are highly parameter dependent with the majority of parameter combinations in the global
221 sensitivity analysis giving very little slope at all (Fig. 2B).
222

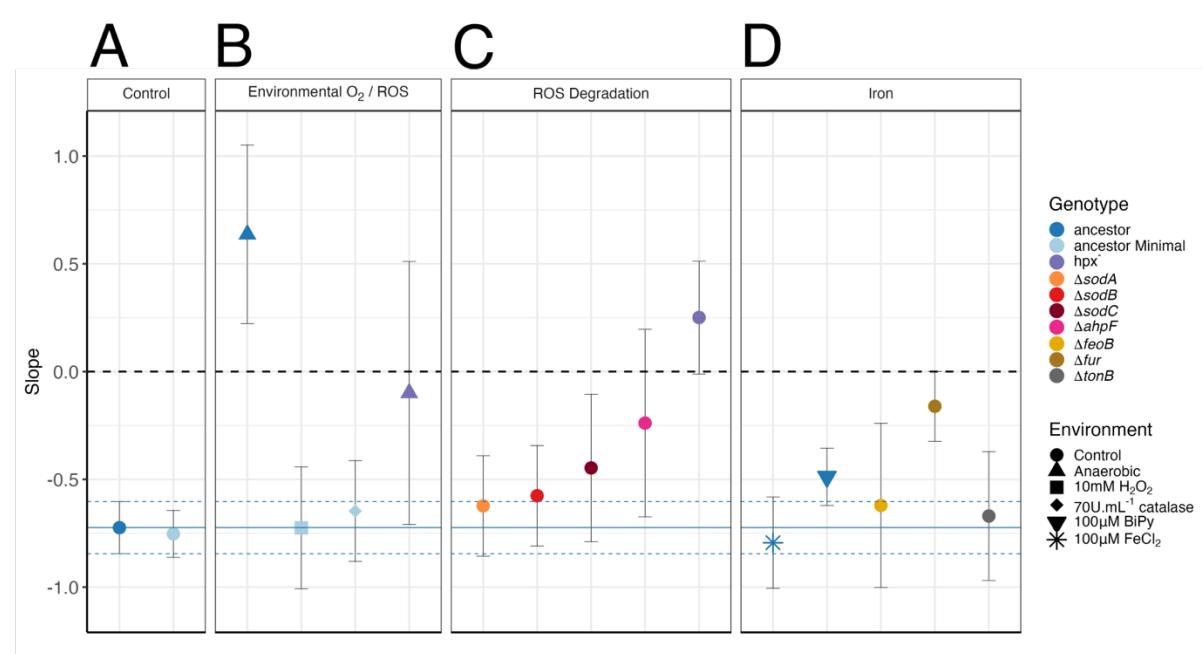
223 Finally, we replaced model A's mass action dynamics with saturating Michaelis-Menten
224 kinetics for MutT activity (reaction 4, model J using Eq. 7_J rather than Eq. 7 (19)) and enzymatic
225 degradation of H₂O₂ (reaction 3, model K using Eq. 7_{KA} and Eq. 7_{KB} rather than Eq. 7, (23)). Neither of
226 these modifications greatly affected the mutation rate response of the model to population density
227 (slope = 0.104 ± 0.06 and 0.096 ± 0.06 respectively, (95% CI), Regression 1 (SI), Fig. 2). Thus, across
228 11 biologically plausible model structures only two, D and F, affecting reactions 2 and 3 respectively
229 in specific ways, produced DAMP comparable to that observed in the laboratory (Fig. 2A) and robust
230 to parameter variations (Fig. 2B).
231

232 We can use these model findings for hypothesis generation: Model A (without DAMP) only
233 describes ROS production from metabolism, whereas Model D (with DAMP) modifies the initial
234 model to have a constant rate of ROS generation, independent of the cell density. Model D is
235 consistent with ROS production in the system being dominated by environmental sources at a
236 constant rate. If DAMP is a result of such environmental ROS production, we would expect this
237 phenotype to be absent under anaerobic conditions where external H₂O₂ production is negligible
238 (22).

239
240
241
242
243
244
245
246
247

Model F, which gains DAMP relative to model A, describes an increased rate of ROS detoxification dependent on the population density. This reflects a system in which ROS detoxification is primarily occurring within cells. Here ROS diffusion into cells from the environment is significant and therefore the environment is more efficiently detoxified by larger populations. If DAMP is a result of an increased environmental detoxification capacity in dense populations in this way, we expect strains deficient in ROS degradation not to show DAMP. We would further expect dense populations to show greater removal of environmental ROS than low-density populations.

248
249


We therefore go on to test these predictions *in vivo* using fluctuation assays to estimate the mutation rate in batch cultures of *E. coli*.

250

Environmental oxygen is necessary for DAMP *in vivo*

252
253
254
255
256
257
258
259
260
261
262
263
264
265

To test the hypothesis (from model D) that DAMP is dependent on external oxygen (from model D) we estimated mutation rates of *E. coli* under anaerobiosis across a range of nutrient-determined final population densities, analysing the results using a linear mixed effects model (Regression 4 (SI)). We find that anaerobic growth results in a loss of the negative relationship between density and mutation rate, indeed mutation rates significantly increased with density (slope = 0.6 ± 0.42 (95% CI), Fig. 3B, statistical tests in Table S1, Regression 4 (SI)). We further test this relationship using a second wild-type strain (*E. coli* MG1655). Again, we see a loss of DAMP under anaerobiosis (slope = 0.12 ± 0.7 (95% CI), cf. slope = -0.43 ± 0.25 (95%CI), anaerobic and aerobic respectively, Regression 4 (SI), Fig. S3). This supports the hypothesis arising from model D that, when external ROS production is substantial (model D / aerobiosis) mutation rates fall with increasing final population size, whilst when external ROS production is not included (model A / anaerobiosis) mutation rates remain similar or increase slightly with higher cell densities.

266
267
268
269
270
271
272

Figure 3: Mutation rate responses to population density *in vivo* under environmental and genetic manipulations. Points show the slope of a log-log relationship between final population size and mutation rate (raw data shown in Fig. S4, Regression 4 (SI)), error bars show 95% CI on slope. Treatments shown are BW25113 ancestor (1106 parallel cultures (pc) across 69 fluctuation assays (fa)); ancestor minimal media (942 pc, 59 fa); Δ ahpF (266 pc, 17 fa); hpx (402 pc, 26 fa); ancestor anaerobic (168 pc, 11 fa); ancestor 10mM H_2O_2 (179 pc, 12 fa); ancestor 70U mL⁻¹ catalase (167 pc, 11 fa); hpx anaerobic (105 pc, 7 fa); ancestor + chelator 2,2'BiPyridyl 100 μ M (382 pc, 24 fa); ancestor + FeCl₃ 100 μ M

273 (210 pc, 13 fa); $\Delta feoB$ (192 pc, 12 fa); Δfur (504 pc, 31 fa); $\Delta tonB$ (113 pc, 7 fa). Dashed line shows a slope of 0 (no DAMP);
274 solid blue line shows the slope of BW25113 ancestor in rich media with dashed blue lines showing 95% CI on this estimate
275 (Regression 4 (SI)). All experiments were conducted in dilute LB media unless stated 'Minimal', in which case glucose
276 minimal media was used.

277

278 **Endogenous ROS degradation is necessary for DAMP *in vivo***

279

280 The second ODE model able to reproduce DAMP (model F) introduces increased rates of ROS
281 degradation with increasing population density. If DAMP is the result of active cellular ROS
282 degradation, we would expect strains deficient in this trait to lack DAMP. The two alkyl
283 hydroperoxide reductase subunits AhpC and AhpF are together responsible for the majority of H₂O₂
284 scavenging in aerobically growing *E. coli* (24). The remaining H₂O₂ is degraded by the catalase
285 enzymes HPI (*katG*) and HPII (*katE*) (25). The role of catalases in H₂O₂ scavenging is much more
286 significant at high H₂O₂ concentrations due to the higher Michaelis constants of these enzymes,
287 whereas AhpCF is saturated at ~20μM (25). We therefore estimated DAMP in a version of the *E. coli*
288 MG1655 strain lacking *ahpC*, *ahpF*, *katG* and *katE* (*hpx*⁻, (26)). This quadruple deletion results in a
289 complete loss of DAMP with no significant change in the mutation rate across densities (slope = 0.25
290 ± 0.26 (95% CI), Fig. 3C, Regression 4 (SI)). Enzymatic degradation of H₂O₂ is thus essential to the
291 DAMP phenotype, consistent with model F. Deleting only *ahpF* gives an intermediate DAMP
292 phenotype (slope = -0.24 ± 0.44 (95% CI), Fig. 3C, Regression 4 (SI)) with significantly weaker DAMP
293 than the wild-type (LR = 4.9, *P* = 0.028, Regression 4 (SI)), but still retaining stronger DAMP than *hpx*⁻
294 (LR = 4.1, *P* = 0.043, Regression 4 (SI)), indicating that DAMP requires both catalase and alkyl-
295 hydroperoxide reductase activity. In contrast, individual knockouts affecting superoxide rather than
296 H₂O₂ (the superoxide dismutase genes *sodA*, *sodB* and *sodC*, slope = -0.62 ± 0.23, -0.58 ± 0.23, and -
297 0.45 ± 0.34, respectively (95% CI), Fig. 3C, Regression 4 (SI)), or adding environmental H₂O₂ or
298 catalase (slope = -0.73 ± 0.28, -0.65 ± 0.23, respectively (95% CI), Fig. 3B, Regression 4 (SI)) do not
299 significantly disrupt the wild-type negative relationship between population density and mutation
300 rate (Table S1).

301

302 If the DAMP reproduced by model F is biologically realistic in this way, it requires that high-
303 density populations, exhibiting reduced mutation rates, show greater efficiency at removing H₂O₂
304 from their environment than low-density populations. We measured external H₂O₂ in cultures after
305 24 hours of growth in rich or minimal media and found high-density populations to achieve
306 significantly lower H₂O₂ concentrations ($F_{28} = 24.3$, *P*=3.3x10⁻⁵, Regression 7B (SI), Fig. S6); there was
307 no significant effect of rich versus minimal media ($F_{26} = 0.77$, *P*=0.39, Regression 7A (SI)). The reverse
308 pattern is seen in sterile media where increasing nutrient provision leads to increased H₂O₂
309 concentration ($F_{46} = 9.8$, *P* = 3x10⁻³, Regression 6 (SI)). This supports the hypothesis that, as required
310 by model F, high-density populations detoxify external H₂O₂ better than low-density populations.
311 However, while they are necessary, it does not require that all external H₂O₂ present in sterile media
312 is degraded by alkyl-hydroperoxidase and catalase – other molecules, notably pyruvate, are excreted
313 by *E. coli* with a substantial capacity for H₂O₂ degradation (27-29).

314

315 **Cellular iron regulation is required for DAMP**

316

317 Our model-guided hypothesis testing has shown that DAMP requires H₂O₂. Our models
318 involve the direct effect of ROS on DNA, however, it's the reaction of free Fe(II) with H₂O₂ to produce
319 mutagenic OH· radicals, Fenton chemistry, which is a major source of oxidative stress in *E. coli* (30,
320 31). These radicals are far more reactive and damaging to DNA than H₂O₂ itself, making iron critical
321 to determining the amount of damage H₂O₂ causes (32). If DAMP's dependence on H₂O₂ is the result
322 of variable oxidative damage to DNA and nucleotides, we would expect this mutation rate plasticity
323 to be perturbed by changes in cellular iron homeostasis. We first tested this using environmental

324 manipulations of iron. However, the provision of FeCl_2 or starving cells of iron with a chelator (2,2-
325 bipyridyl), has little effect on DAMP (Fig. 3D). Nonetheless we find that a deletant of *fur*, the master
326 regulator of intracellular iron, results in an almost constant mutation rate across cell densities, with
327 a significant reduction in DAMP compared to the BW25113 wild-type (slope = -0.16 ± 0.16 (95% CI);
328 wt slope comparison: $LR = 30.2$, $P = 3.9 \times 10^{-8}$, Regression 4 (SI)). *Fur* is a negative regulator of multiple
329 iron importers (33), therefore in Δfur strains the internal redox-active iron pool is elevated (34)
330 leading to increased oxidative stress and DNA damage (35). Knockouts of the iron importer genes
331 *feoB* and *tonB*, which, if anything, reduce intracellular iron (36, 37), do not lead to any change in
332 mutation rate plasticity (Fig. 3D, Table S1), likely because regulators such as *Fur* are able to maintain
333 iron homeostasis in the absence of these individual importers.

334

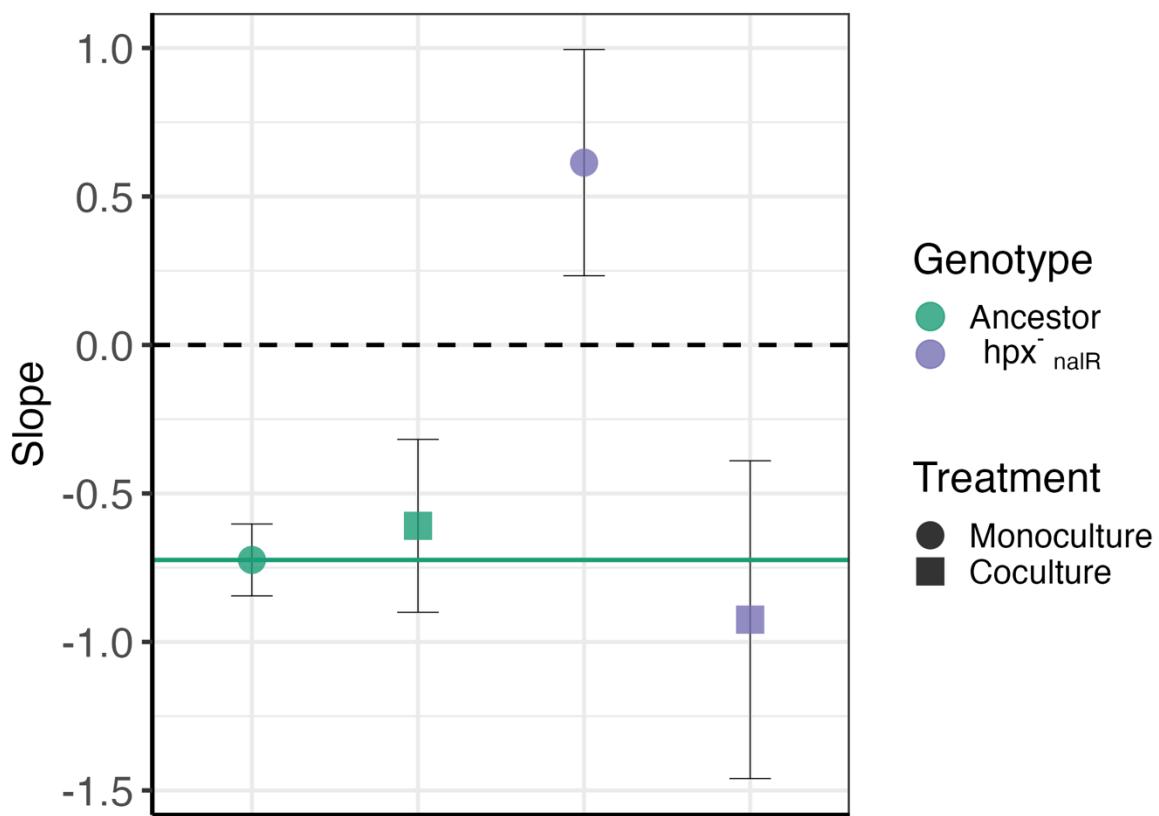
335 The critical contribution of iron to H_2O_2 stress is further demonstrated through whole
336 genome sequencing of the *hpx*⁻ and strain used here. We find a 190bp loss-of-function mutation in
337 the iron importer *fecD* (all mutations listed in Table. S2). This may have allowed this *hpx*⁻ strain to
338 escape the positive feedback cycle that *hpx*⁻ cells experience, in which higher H_2O_2 concentrations
339 prevent *Fur* from effectively limiting iron uptake, more intracellular free iron then further
340 exacerbates the damage done by the excess H_2O_2 (38, 39). It is likely that this loss-of-function
341 mutation is an adaptation, during laboratory culture, to the loss of *Fur* functionality caused by the
342 oxidation of intracellular iron.

343

344 **Wild-type cells restore DAMP in cells deficient in peroxide degradation**

345

346 We have identified DAMP as requiring environmental H_2O_2 and iron regulation, where, with
347 wild-type iron regulation, less H_2O_2 leads to lower mutation rates at higher final cell densities. This
348 understanding leads us to predict that the presence of wild-type cells should restore DAMP in the
349 peroxidase and catalase deficient *hpx*⁻ strain. It has previously been shown that a wild-type
350 population can provide protection against environmental H_2O_2 to cocultured *hpx*⁻ cells, or similarly
351 H_2O_2 sensitive ΔoxyR cells, through decreasing the peroxide concentration of the external
352 environment (24, 40). To better distinguish *hpx*⁻ and wild-type strains in a coculture, two nalidixic
353 acid (Nal) resistant strains of *hpx*⁻ were independently created with the resistance conferred by point
354 mutations in *gyrA* (D87G & D87Y). Coculturing these *hpx*⁻_{nalR} strains with wild-type BW25113 cells,
355 the loss of DAMP via the *hpx*⁻ mutation (Fig. 3C) is phenotypically complemented by the wild-type
356 cells. That is, *hpx*⁻_{nalR} mutation rate is significantly decreased in coculture with increasing population
357 density either of the *hpx*⁻ strain (Fig. 4, Fig. S7, slope = -0.93 ± 0.54 (95% CI), $\chi^2_{(DF=1)} = 10.9$, $P = 9.8 \times 10^{-4}$,
358 Regression 4 (SI)), or total population density (Fig. S8, Slope = -1.4 ± 0.98 (95% CI), $t_{29} = -2.8$, $P = 9 \times 10^{-3}$,
359 Regression 8 (SI)). This supports the hypothesis that DAMP is the result of reduced
360 environmental H_2O_2 concentrations achieved by the local wild-type population.


361

362 Such mutation rate estimates in coculture could potentially be confounded by differential
363 survival of rifampicin-resistant (RifR) mutants of *hpx*⁻_{nalR} when plated in a monoculture or a coculture.
364 In order to test for any differences in mutant survival we conducted a 'reconstruction test' (as in Fig.
365 S13 of (21)); plating a predetermined number of *hpx*⁻_{nalR&rifR} cells with a population of rifampicin
366 susceptible *hpx*⁻ or wild-type cells on the selective rifampicin agar. No significant difference in plating
367 efficiency was seen between plating with *hpx*⁻ vs. low, medium or high density of wild-type cells (Fig.
368 S7; $LR_7 = 0.3$, $P = 0.96$, Regression 9 (SI)). Some difference in plating efficiency between the two *hpx*⁻
369 _{nalR&rifR} strains was observed (Fig. S9), this is likely due to the pleiotropic effects of RifR resistance
370 mutations in the *rpoB* gene (41, 42).

371

372 Although the wild-type strain reintroduces a negative dependence of mutation rates on
373 population density in *hpx*⁻_{nalR} we also observe an increase in total *hpx*⁻_{nalR} mutation rates (Fig. S8).
374 This is potentially the result of out-competition by the wild-type strain leading *hpx*⁻_{nalR} growth to stop

375 earlier in the culture cycle where, consistent with previous fluctuation results ((43), Chapter 5.4.3),
376 our modelling leads us to expect higher mutation rates (Fig. 1D).
377

278
279
280 *Figure 4: Coculture with wild-type cells restores DAMP in cells deficient in peroxide degradation: points show*
281 *log-log relationship between final population density of the focal strain and mutation rate fitted by regression 4 (SI) (raw*
282 *data shown in Fig. S7), error bars show 95% CI on slope. We found no significant differences between independent* *hpx*_{nalR}
283 *strains, therefore* *hpx* *strains D87Y & D87G are combined in* *hpx*_{nalR}*. Treatments shown are: BW25113 ancestor (1106 pc,*
284 *69 fa); BW25113 in coculture with* *hpx* *(498 pc, 31 fa);* *hpx*_{nalR} *(388 pc, 24 fa);* *hpx*_{nalR} *in coculture with BW25113 (319 pc,*
285 *20 fa).*

385

386 Discussion

387
388 Using ODE modelling (Fig. 1-2) to guide *in vivo* experiments in *E. coli* we have been able to
389 predict and demonstrate the mechanisms behind the widespread phenomenon of reduced mutation
390 rates at high microbial population densities (density-associated mutation rate plasticity, DAMP (3)).
391 Genetic and environmental manipulations show that DAMP results from the improved degradation
392 of H₂O₂ as the population density is increased (Fig. 3). The reintroduction of DAMP in
393 catalase/peroxidase deficient cells by coculture with wild-type cells (Fig. 4) demonstrates the
394 importance not only of a microbe's own population density in determining the mutation rate but
395 also the density and genotype of coexisting populations. Our results demonstrate that mutation
396 rates can be context dependent, through the degradation capacity of a community for mutagens
397 including, but perhaps not limited to, H₂O₂. This collective protection from harmful molecules
398 mirrors studies such as (44), demonstrating the importance of population structure in microbial
399 ecology.
400

401 Increased population density provides protection against high levels of external H₂O₂ stress
402 (40, 45, 46). However, the concentrations of 100μM-1mM applied in such studies is far beyond the
403 range of known environmental concentrations, which is typically up to only 4μM (47). Here we show
404 that without any external input of H₂O₂ higher density populations detoxify environmental H₂O₂
405 more effectively over 24 hours than low-density populations (Fig. S6). As well as improving survival
406 under extreme H₂O₂ stress, previous work also finds mutation rates to decrease in cells protected by
407 a higher density of neighbours able to detoxify the environment (40). Here we find that this
408 mutation protection holds in the absence of external H₂O₂ application with the presence of higher
409 density wild-type rescuers able to modify mutation rates in catalase/peroxidase deficient cells (Fig.
410 4). This interaction between two *E. coli* strains raises the question of whether similar effects will be
411 seen in mixed species communities such as human microbiomes where mutations can be critical for
412 medically important traits, such as antimicrobial resistance (48, 49). This study, and previous work
413 on DAMP (3, 14, 21), considers *E. coli* batch culture in which there is no renewal of media, meaning
414 that peroxide detoxification is permanent. As media inflow and outflow increase in a system, the
415 ability of individual cells to detoxify ROS is decreased (50), it therefore seems possible that,
416 increasing flow will be similar to transitioning from model D (fixed supply of environmental ROS,
417 resulting in DAMP, Fig. 2) to model C (fixed level of environmental ROS, resulting in no DAMP, Fig. 2).
418 That would mean that the spatial structuring and resulting fluid dynamics of flow, which can be
419 critical for bacterial competition (44, 51), are also critical for mutation supply. Such factors vary
420 greatly among natural environments, meaning that the effect of DAMP could be very different in low
421 versus high through-flow environments (e.g. soil rather than water or lung rather than bladder).
422 Tracing mutagenesis in single cells of spatially structured populations (52) has the potential to define
423 the spatial scales and through flow conditions under which benefits from mutagen degradation are
424 shared.

425
426 Our finding that oxygen is key to mutation rate plasticity is supported by mutation
427 accumulation experiments showing that increased oxygen uptake is correlated with increased
428 mutation rates (4). However, existing literature is not agreed on this point – anaerobic fluctuation
429 assay-like experiments also report reduced mutation frequencies for resistance to multiple
430 antibiotics (53), while anaerobic mutation accumulation experiments instead report increased
431 mutation rates (54, 55). Work assessing mutation rate by the accumulation of resistance mutants in
432 chemostats also shows oxygen limitation to reduce mutation rates relative to carbon limitation (10).
433 This discrepancy is likely due to the change in mutational spectra caused by anaerobiosis: although
434 overall mutation rates increase, base pair substitutions (BPS) fall in frequency by 6.4 times (54) and it
435 is such BPS which we modelled computationally and are often responsible for antibiotic resistance
436 (56-58), particularly to rifampicin, the drug we used for our mutation rate estimates (57). In line with
437 our finding that iron and oxygen disruption are similarly able to abolish DAMP, iron and oxygen
438 limitation produce similar mutational spectra (10). The loss of DAMP in the Δfur strain is perhaps due
439 to higher intracellular iron levels producing a greater rate of H₂O₂ breakdown into DNA-damaging
440 radicals before it can be detoxified, reflective of ODE model C in which a constant ROS burden is
441 applied and no DAMP seen.

442
443 Mutation supply is a key evolutionary hurdle often limiting the adaptation of populations (1,
444 59-61). As mutation supply depends on population size, one might expect the supply of mutations,
445 for instance to AMR, to be severely limited in small populations, such as the small number of cells
446 forming an infectious propagule of *E. coli* (17). Even when population size is sufficient to enable
447 adaptation, mutation supply may have more subtle effects on the course of evolution, as
448 demonstrated by the pervasive effects of mutational biases (62-64). However, due to the action of
449 DAMP in elevating mutation rates at low density, small populations can experience a very similar
450 supply of mutations to large populations (as demonstrated in our data, Fig. S4). For *E. coli* at least,

451 there is a limit to this effect as beyond intermediate densities ($\sim 7 \times 10^8$ CFU ml $^{-1}$) the action of stress-
452 induced mutagenesis causes mutation rates to rise, rather than fall, with increased density (14).
453

454 The dependence of DAMP on active cellular control of H₂O₂ concentrations, uncovered here,
455 helps explain it's highly conserved nature. The evolution of cellular systems in an anaerobic world for
456 ~ 1 billion years (65) means that all branches of life are similarly vulnerable to damage by ROS,
457 leading to parallel effects of ROS damage across life (66), potentially including its population level
458 control in DAMP. Although DAMP is highly conserved, it is notably not seen in *Pseudomonas*
459 *aeruginosa* (3), despite this species being a close relative of *E. coli*. How DAMP is lost between close
460 evolutionary relatives remains an interesting question and is perhaps linked to the formation of
461 multicellular aggregates by *P. aeruginosa* (67). Population associations with mutation rate are
462 widespread, including a significant negative relationship between the effective population size and
463 mutation rates across vertebrates (68) as well as microbes (69). Such patterns seem likely to be
464 driven by the increased efficiency of natural selection against the deleterious effects of mutation in
465 large populations (the drift barrier hypothesis, (70)), rather than any adaptive benefit. The broad
466 reach of such non-adaptive explanations and the fact that the evolutionary effects of DAMP are yet
467 to be explored means that any adaptive explanations should be approached with great caution.
468 Nonetheless, in strains with DAMP, the mutation rate decreases as the absolute fitness increases,
469 providing the greatest mutation supply to the most poorly performing populations (21). Mutation
470 supply also rises in the most nutrient rich environments (14), perhaps providing greater evolutionary
471 potential where competition is most intense. Such plausible evolutionary benefits of DAMP could
472 exist, even if the ultimate origins of its conserved mechanism lie not in selection for its indirect
473 effects via mutation, but in the legacy, across domains of life, of the chemistry of the Great
474 Oxidation Event (71).
475

476 **Materials & Methods**

477

478 **Ordinary differential equations: Model A**

479
480 All variables (Fig. 1A, Table. 1) are measured in molar concentration within the cytoplasm,
481 aside from the volume of that cytoplasm (***cytVol***), measured in mL, and external glucose (***eGlc***) and
482 number of growing cells (***wtCell*** & ***mCell***) which are measured as molar concentrations within the
483 1ml batch culture. It is possible to convert between cytoplasmic and total metabolite concentrations
484 through scaling by the cytoplasmic volume; this is calculated as the number of cells multiplied by a
485 volume of 1.03×10^{-9} μ l per cell (72). The reaction of ***dGTP*** with ***ROS*** creates oxidised dGTP (***odGTP***)
486 which is then incorporated into DNA, creating AT > CG base pair substitution mutations (20).
487 Mutations caused by ***odGTP*** may be avoided or repaired by the action of MutT, MutY and MutS
488 enzymes (73). By dividing the number of mutant cells (***mCell***) by the total cell number (***mCell*** +
489 ***WtCell***) at any point during the simulation, a mutation rate (bp $^{-1}$ generation $^{-1}$) across the simulation
490 up to that point, can be calculated.
491
492
493

Variable	Definition	Starting Value	Units	Region
<i>eGlc</i>	External glucose	3.1×10^{-4} to 6.2×10^{-3}	M	1mL culture
<i>iGlc</i>	Internal glucose	0	M	Cytoplasm
<i>dGTP</i>	Deoxyguanosine triphosphate	0	M	Cytoplasm

DNA	Guanine nucleotides in the newly synthesised strand	0	M	Cytoplasm
WtCell	Guanine nucleotides in the template strand	8.5×10^{-12}	M	1 mL culture
ROS	Reactive oxygen species (H_2O_2)	0	M	Cytoplasm
odGTP	8-oxo-2'-deoxyguanosine triphosphate	0	M	Cytoplasm
mDNA	odGTP nucleotides in the newly synthesised DNA strand	0	M	Cytoplasm
mCell	odGTP nucleotides in the template DNA strand	0	M	1 mL culture
cytVol	Total cytoplasmic volume	2.25×10^{-9}	mL	NA

494
495
496
497
498

Table 1: Definitions and starting values for the 10 variables in ODE model A. For variables measured as a concentration, the volume within which this is calculated is given in the 'region' column. **wtCell** and **cytVol** starting values equate to 2175 cells (assuming 2357528 GC bp in the *E. coli* genome (strain MG1655, EBI Accession U00096.3) and cell volume of 1.03×10^{-12} mL (72)).

499
500
501
502
503
504
505
506

The uptake of glucose is described by saturating Michaelis Menten kinetics whilst the oxidation of **dGTP** is described as a bimolecular reaction dependent on the cytoplasmic concentrations of **dGTP** and **ROS**. All other steps are described by 1st order mass action kinetics in which the rate equals the concentration of the reactant multiplied by a rate constant (Eq. 1-10). The model is parameterised from published enzymatic and culture data alongside our own wet lab data (Table. 1).

507
508
509
510
511
512
513
514
515

R code to recreate all models and analysis is available as a supplementary file. All models were simulated in R (V4.3.1) (74) using package deSolve (V1.36) (75), logarithmic sequences were produced with emdbook (V1.3.13) (76), data handling and plotting was done using the tidyverse (V2.0.0) (77) and magrittr (V2.0.3) and parallel computing was done using parallel (V4.3.0), doParallel (V1.0.17) and foreach (V1.5.2). Linear mixed models were fitted to lab data with nlme (V3.1-162) (78), and plots formatted and coloured using cowplot (V1.1.1), gridExtra (V2.3), ggeffects (V1.3.1) (79) and RColorBrewer (V1.1-3). The flow diagram (Fig. 1A) was made using R package DiagrammeR (V1.0.10).

Parameter	Value	Units	Description	Source
U1	2.66E-01	$M^{-1}s^{-1}$	Maximum uptake rate (V_{max}) of eGlc	Fitted from a known value of K_s (80) and data on <i>E. coli</i> growth dynamics (81) (Fig. S14).
M1	2.69E-04	s^{-1}	Rate of dGTP synthesis from iGlc	This value was fitted to published data on <i>E. coli</i> growth dynamics (81) (Fig. S14).

K_s	3.97E-05 M	Michaelis Menten constant K _s : Concentration of glucose at which glucose uptake rate of 1/2 Vmax is achieved	K _s measured as 7.16 µg/ml by (80).
I1	6.90E-03 s ⁻¹	Rate of dGTP incorporation into DNA opposite C	Fitted to give known cytoplasmic concentration dGTP in exponential growth phase <i>E. coli</i> of 92 µM in 0.4% glucose (82).
D1	6.90E-03 s ⁻¹	Rate of C pairing opposite incorporated G	Given the same value as I1 as the synthesis of new DNA (DNA) and new genomes (wtCell) should generally proceed at equal rates (this is violated during rapid exponential growth (83) but not included in this model).
O2	12.0 M ⁻¹ s ⁻¹	Rate of dGTP oxidation to odGTP by ROS	Selected to give a mutation rate of 1.94x10 ⁻¹⁰ base pair substitutions per nucleotide in 0.2% glucose minimal media (20).
I2	2.53E-04 s ⁻¹	Rate of odGTP incorporation into DNA opposite adenine	The relative efficiency of odGTP binding to A (I2) compared to G binding to C (I1) is 7.7x10 ⁻⁸ : 2.1x10 ⁻⁶ (19) therefore I2 = I1 * (7.7x10 ⁻⁸ /2.1x10 ⁻⁶).
D2	2.00E-04 s ⁻¹	Rate of C pairing opposite incorporated oG causing an AT>CG mutation	Rate of C pairing opposite an odGTP (D2) relative to CG (I1 & D1) is 6x10 ⁻⁸ :2.1x10 ⁻⁶ (19).
C1	2.8 s ⁻¹	Rate of odGTP hydrolysis to odGMP by nudix hydrolase enzyme MutT (NudA)	Value taken from Kcat of MutT measured <i>in vitro</i> (84).
C2	3.50E-04 s ⁻¹	Rate of removal of adenine base incorporated opposite 8- oxodG in the genome by enzyme MutY	Value taken from Kcat of MutY measured <i>in vitro</i> as 0.021 min ⁻¹ = 3.5x10 ⁻⁴ sec ⁻¹ (85).

R1	2.00E-04 s^{-1}	Rate of oG insertion into DNA opposite cytosine	Relative incorporation efficiency opposite C of odGTP:dGTP (R1) is 0.029 (19), therefore $R1 = I1 * 0.029$.
S	2.58E-02 s^{-1}	Rate of removal of adenine base incorporated opposite 8-oxodG in the genome by enzyme MutS	Fitted to known rate of mutation in <i>mutS</i> knockout of 40x wild-type (86).
r	17.3 s^{-1}	Rate of ROS production from iGlc relative to dGTP production rate	Selected to a known H_2O_2 production rate of 14 $\mu\text{M}/\text{second}$ in 0.2% glucose minimal media normalised to cell volume (24).
03	5.60E+01 s^{-1}	Rate of ROS degradation through reactions other than dGTP oxidation	Fitted to give a standing ROS concentration of $1.9 \times 10^{-7} \text{ M}$, midpoint of known $1.3 \times 10^{-7} - 2.5 \times 10^{-7} \text{ M}$ in LB (87).
R2	2.53E-04 s^{-1}	Rate of adenine pairing opposite incorporated oG	The relative efficiency of odGTP binding to A (R2) compared to G binding to C (I1) is $7.7 \times 10^{-8} : 2.1 \times 10^{-6}$ (19) therefore $R2 = I1 * (7.7 \times 10^{-8} / 2.1 \times 10^{-6})$.
Met1	1545 s^{-1}	Stoichiometry of glucose conversion to dGTP for genome building (i.e. how many molecules of glucose are needed to produce 1 molecule of dGTP)	Fitted to published data from (3) of cell density as a product of glucose concentration (Fig. S15).
CellVol	1.03E-12 mL	Volume of one <i>E. coli</i> cell in minimal media growing in	Mean value of 4 estimates of cell volume in exponential phase cells grown in minimal M9 media (72).

exponential phase				
molML	6.02E+20	molecule s	Number of molecules per mL in a 1M solution.	One thousandth of Avogadro's constant (N_A).
GCperGen	2357528	GC basepairs	Number of GC basepairs per genome.	<i>E. coli</i> Strain MG1655, EBI Accession U00096.3

516
517

Table 2. Parameter values and descriptions for all parameters used in model A.

518

519 [Eq. 1]
$$\frac{deGlc}{dt} = -U1 \ Gcell \ \frac{eGlc}{eGlc + Ks}$$

520

521 [Eq. 2]
$$\frac{diGlc}{dt} = \frac{U1 \ Gcell \ \frac{eGlc}{eGlc + Ks}}{cytVol} - Met1 \ M1 \ iGlc$$

522

523 [Eq. 3]
$$\frac{ddGTP}{dt} = M1 \ iGlc - I1 \ dGTP - dGTP \times ROS \times O2$$

524

525 [Eq. 4]
$$\frac{dDNA}{dt} = I1 \ dGTP + C2 \ mDNA + S \ mDNA + R1 \ odGTP - D1 \ DNA$$

526

527 [Eq. 5]
$$\frac{dGcell}{dt} = (D1 \ DNA \ cytVol + R2 \ mDNA) \times cytVol$$

528

529 [Eq. 6]
$$\frac{dcytVol}{dt} = (D1 \ DNA \ cytVol + R2 \ mDNA) \times cytVol \times \frac{molML}{GCperGen} \ CellVol$$

530

531 [Eq. 7]
$$\frac{dROS}{dt} = M1 \ r \ iGlc - dGTP \ ROS \ O2 - O3 \ ROS$$

532

533 [Eq. 8]
$$\frac{dodGTP}{dt} = dGTP \ ROS \ O2 - C1 \ odGTP - I2 \ odGTP - R1 \ odGTP$$

534

535 [Eq. 9]
$$\frac{dmDNA}{dt} = I2 \ odGTP - D2 \ mDNA - C2 \ mDNA - S \ mDNA - R2 \ mDNA$$

536

537 [Eq. 10]
$$\frac{dmGcell}{dt} = D2 \ mDNA \ cytVol$$

538

539 *Equations 1-10: ODE equations for initial model (A)*

540

541

Model Variants

542

Model B - Glucose uptake increases at low eGlc

543

544 Original Michaelis Menten kinetics are removed as this reverses the intended effect.

545

546

$$[Eq. 1_B] \frac{deGlc}{dt} = -U1 \ Gcell \ \frac{U2 - eGlc}{U2 - eGlc + K2}$$

$$U2 = 6.7e - 3$$

$$K2 = 1.82e - 4$$

Both U2 and K2 are in Molar units.

6.7×10^{-3} is chosen as a value slightly higher than maximum eGlc so that the value of $\frac{lc}{lc + K2}$ can cover almost a full range of 0 to 1. This means that glucose uptake rate will increase most 0 to 100% of the measured uptake rate as the external glucose concentration falls. $K2$ is 1.82×10^{-4} as this value produces the most negative DAMP slope achievable within the range; values were tested from 1.82×10^{-6} to 1.82×10^{-2} (SI code file).

Model C - Constant ROS concentration uncoupled from metabolism

By decoupling ROS concentration from metabolism there is no extra production of ROS in cells grown to higher density, we expect this to prevent a positive DAMP slope.

$$[Eq.8_c] \frac{dodGTP}{dt} = dGTP \text{ } ROSC \text{ } O2 - C1 \text{ } odGTP - I2 \text{ } odGTP - R1 \text{ } odGTP$$

$$ROSC = 1.8e-7$$

ROSC in Molar units

ROS is removed as a variable and replaced with a constant concentration of 1.8×10^{-7} , this is within the known internal ROS concentration of 1.3×10^{-7} - 2.5×10^{-7} M (87) and produces mutation rate of 1.93×10^{-10} based on lab data and (20).

Model D - Constant ROS production regardless of population density

By creating a situation in which ROS is produced in the media at a constant rate (e.g. (22)) and then taken up among all present cells, higher density populations will expose each individual cell to less ROS. We expect this to create negative a DAMP slope as more mutagenic ROS exists inside the cells of low-density populations. This structure may be reflective of a situation in which iron is limited and so higher density populations have less iron per cell. Because of the role of iron in the Fenton reaction it may be expected that less iron leads to less ROS damage in the cells, as observed by (88).

$$[Eq. 7_D] \frac{dROS}{dt} = \frac{ROSC2}{cytVol} - dGTP \text{ } ROS \text{ } O2 - O3 \text{ } ROS$$

$$ROSC2 = 2e - 10$$

ROSC2 in Molar units

ROSC2 defines the number of millimoles of hydrogen peroxide produced in the system each second, this is split between the cytoplasm of all cells. The chosen value of 2×10^{-10} creates a H_2O_2 production rate at 76% of that expected from (24) and a mutation rate 96.8% of that expected from (20).

597 **Model E - ROS removal dependent on internal glucose**

598

599 We expect greater rates of ROS removal to lead to lower rates of GTP oxidation, and
600 therefore lower mutation rates. If ROS is more able to be degraded when resources are abundant
601 this may produce DAMP.

602

$$603 [Eq. 7_E] \frac{dROS}{dt} = M1 \ r \ iGlc - dGTP \ ROS \ O2 - O3 \ ROS \frac{iGlc}{iGlc + C3}$$

604

$$605 \quad C3 = 1.5e - 4$$

606

607 C3 is in Molar units

608

609 C3 is adjusted to produce known mutation rate of 1.98×10^{-10} base pair substitutions per
610 nucleotide in 0.2% glucose minimal media (20).

611

612 **Model F - ROS removal dependent on population density**

613

614 We expect direct control of ROS degradation by population density to allow cells in higher
615 density populations to avoid mutations more efficiently.

616

$$617 [Eq. 7_F] \frac{dROS}{dt} = M1 \ r \ iGlc - dGTP \ ROS \ O2 - ROS \frac{MolML}{GCperGen} Gcell C3a$$

618

$$619 \quad C3a = 3.5e - 6$$

620

621 C3a is in Sec^{-1} units.

622

623 C3a of 3.5×10^{-6} is chosen to reproduce the mutation rate of 2.05×10^{-10} base pair substitutions
624 per nucleotide.

625

626 **Model G - MutT activity upregulated by internal glucose**

627

628 MutT activity is known to be essential to DAMP and so density dependent MutT activity is a
629 candidate DAMP mechanism. iGlc accumulates at higher levels in cells growing to high density, we
630 expect high MutT activity in these cells to lead to a reduced mutation rate due to MutT cleaning of
631 odGTP.

632

633

$$634 [Eq. 8_G] \frac{dodGTP}{dt} = dGTP \ ROS \ O2 - C1 \frac{odGTP}{1 - \frac{iGlc}{C3G}} - I2 \ odGTP$$

635

$$636 \quad C3G = 2.6e - 3$$

$$638 \quad O2 = 70$$

637

639 C3G is in Molar units.

640

641 2.6×10^{-3} is selected as a number slightly higher than the maximum iGlc achieved (~ 0.0023),
642 this prevents MutT activity levels from falling below 0. O2 is refitted to 70 to restore desired
643 mutation rate.

644

645 **Model H - MutT activity upregulated by odGTP**

646

647 If MutT activity is actively upregulated to degrade odGTP at a higher rate upon exposure to
648 higher odGTP concentrations, then we expect cells grown in higher glucose, with higher internal
649 metabolite concentrations, to have a greater ability to evade mutations caused by odGTP.

650

651
$$[Eq. 8_H] \frac{dodGTP}{dt} = dGTP \cdot ROS \cdot O2 - C1 \frac{odGTP}{1 - \frac{odGTP}{C3b}} - I2 \cdot odGTP$$

652

653
$$C3b = 8e - 10$$

654

655 C3b is in Molar units.

656

657 8×10^{-10} is selected as a number slightly higher than the maximum odGTP achieved, this
658 prevents MutT activity levels from falling below 0.

659

660 **Model I - MutT activity upregulated by ROS**

661

662 Reasoning and value selection as in Models G/H

663

664
$$[Eq. 8_I] \frac{dodGTP}{dt} = dGTP \cdot ROS \cdot O2 - C1 \frac{odGTP}{1 - \frac{ROS}{C3c}} - I2 \cdot odGTP$$

665

666
$$C3c = 1.98e - 7$$

667

668
$$O2 = 130$$

669 C3c is in Molar units.

670

671 **Model J - Michaelis Menten MutT kinetics**

672

673 Michaelis Menten kinetics describe saturating, enzyme catalysed reactions. In this situation
674 reaction rates proceed slower at low substrate concentrations rising to an asymptote at maximum
675 reaction rate. As with models G/H/I we expect this to reduce mutation rates by increasing MutT
676 activity in high density populations with greater internal metabolite concentrations.

677

678
$$[Eq. 8_J] \frac{dodGTP}{dt} = dGTP \cdot ROS \cdot O2 - C1 \cdot odGTP \cdot \frac{odGTP}{odGTP + Kt} - I2 \cdot odGTP$$

679

680
$$Kt = 0.48$$

681

682
$$O2 = 6.97e - 4$$

683 Kt is in Molar units.

684

685 Kt value given by (19), O2 is then titrated to restore mutation rate as in (20).

686

687 **Model K – Separated activity of ahpCF and katEG genes + limited diffusion of ROS
688 across the plasma membrane**

690
$$[Eq. 7_{KA}] \frac{dROS_{internal}}{dt}$$

691
$$= M1 \cdot r \cdot iGlc - dGTP \cdot ROS \cdot O2 - \frac{kAhp \cdot ROS}{ROS + kmAhp} - \frac{kKat \cdot ROS}{ROS + kmKat}$$

692
$$- kdiff (ROS_{internal} - ROS_{external})$$

693
694
$$[Eq. 7_{KB}] \frac{dROS_{external}}{dt} = kdiff (ROS_{internal} - ROS_{external}) \left(\frac{cytVol}{1 - cytVol} \right)$$

695

696 As in (23) the activity of alkylhydoperoxidase and catalase proteins are separated to allow
697 for their specialisations to low and high H_2O_2 concentrations respectively. Michaelis Menten
698 constants are as follows:

699
700 $kAhp = 6.6e - 4$
701 $kmAhp = 1.2e - 6$
702 $kKat = 4.9e - 1$
703 $kmKat = 5.9e - 3$
704

705 All in Molar units.

706
707 Permeability coefficient, diffusion coefficient and cell surface area are taken from (23) to
708 calculate the diffusion coefficient as follows:

709
710 $kdiff = \frac{permeability \times surface\ area}{volume} = \frac{1.6 \times 10^{-3} cm\ s^{-1} \times 1.41 \times 10^{-7} cm^2}{3.2 \times 10^{-12} cm^3} = 70$
711

712 $kdiff$ is in $cm^2\ s^{-1}$ units

713
714 H_2O_2 production rate and standing concentration are restored to expected values by
715 altering the value of r :

716 $r = 175$
717
718

719 Global Sensitivity Analysis

720

721 For each parameter within each model, 50,000 values between 10% to 1000% of the
722 baseline value (Table. 2), spaced evenly along a log scale were tested. The set of values for each
723 individual parameter were then independently shuffled so that no parameters were correlated with
724 one another; allowing for substantial exploration of the available parameter space. Of these 50,000
725 parameter sets some encountered fatal errors in the ODE solver and so did not produce a DAMP
726 slope estimate, the number of parameter sets run without fatal error is shown in Table 3 as
727 'complete'. Results were filtered for the following criteria: 1) Stationary phase is reached in all
728 glucose conditions (defined as an average increase of less than 1 cell per 10 second time step across
729 the last 1000 time steps (2.7 hours) of the simulation), 2) final population size $>1 \times 10^7$ & $<1 \times 10^{10}$ at
730 every glucose condition, 3) final population size increases with each increase in glucose
731 concentration, 4) mutation rate $>2 \times 10^{-12}$ & $<2 \times 10^{-8}$ at all glucose conditions and 5) log-log
732 relationship between mutation rate and final population size is substantially linear (defined by R-
733 squared > 0.5). After this filtering the following number of parameter sets were retained for each
734 model (Table 3).

735

Model	Complete	Filtered
A	49971	12261

B	33274	5444
C	49988	13496
D	49990	7128
E	49555	10267
F	49982	10115
G	23311	2730
H	49900	2210
I	22832	3334
J	49994	11741
K	45558	7365

736 *Table 3: Counts of completed and filtered simulations from 50,000 parameter sets produced for global*
737 *sensitivity analysis for each model variant. 'Complete' column lists the number of these parameter sets that were able to*
738 *be simulated without fatal error from the ODE solver. 'Filtered' column lists how many parameter sets remained after*
739 *filtering as described above.*

740

741 Strains used in this study

742

743 The parent of the Keio collection is *E. coli* strain BW25113 (F-, Δ (araD-araB)567, Δ lacZ4787
744 (::rrnB-3), λ -, rph-1, Δ (rhaD-rhaB)568, hsdR514). *E. coli* hpx⁻ LC106 mutant is Δ ahpCF' kan:: Δ ahpF Δ
745 (katG17::Tn10)1 Δ (katE12::Tn10)1 (26). *E. coli* single gene knockouts Δ fur, Δ feoB, Δ tonB and Δ ahpF
746 are sourced from the Keio collection (89). *E. coli* K-12 strain MG1655 is from Karina B. Xavier.
747 Nalidixic acid resistant strains hpx⁻ (gyrA D87Y) & hpx⁻ (gyrA D87G) were isolated from independent
748 fluctuation assays of the original hpx⁻ strains on 30 mg L⁻¹ nalidixic acid selective plating.
749

750 Strains Δ fur, Δ feoB, Δ tonB, Δ ahpF, hpx⁻, hpx⁻_{nalR}(D87Y) and hpx⁻_{nalR}(D87G) were sequenced to
751 30x depth by MicrobesNG to verify gene deletions. Lack of KatE activity in hpx⁻ was verified by
752 covering a colony on TA agar with 30% H₂O₂ with no bubbles of oxygen observed (as in (25)), the
753 MG1655 wild-type was used as a positive control. Mutations were identified using breseq version
754 0.36.0 (90, 91) with bowtie2 version 2.4.1 and R version 4.2.0 and are listed in Table. S2. For hpx⁻
755 strains the reference genome used was the *E. coli* K-12 MG1655 genome [(92), NCBI accession
756 U00096.3]. For Keio knockout strains the reference genome used was the *E. coli* K-12 BW25113
757 genome [(93), NCBI accession CP009273.1], with additional annotations for insertion (IS) element
758 regions to improve the calling of mutations related to IS insertion (modified Genbank format file as
759 file S1 in (1)).
760

761

Media

762

763 We used Milli-Q water for all media, all chemicals are supplied by Sigma-Aldrich unless
764 stated otherwise. LB medium contained: 10 g of NaCl (Thermo Fisher Scientific), 5 g of yeast extract
765 (Thermo Fisher Scientific) and 10 g of tryptone (Thermo Fisher Scientific) per litre. DM medium
766 contained 0.5 g of C₆H₅Na₃O₇ · 2H₂O, 1 g of (NH₄)₂SO₄ (Thermo Fisher Scientific), 2 g of H₂KO₄P and 7
767 g of HK₂O₄P · 3H₂O per litre; 100 mg L⁻¹ MgSO₄ · 7H₂O (406 μ mol) and 4.4 μ g L⁻¹ thiamine
768 hydrochloride were added to DM after autoclaving. Selective tetrazolium arabinose agar (TA)
769 medium contained 10 g of tryptone, 1 g of yeast extract, 3.75 g of NaCl and 15 g bacto agar per litre;
770 after autoclaving 3 g of arabinose and 0.05 g of 2,3,5-triphenyl-tetrazolium chloride were added per
771 litre, this was supplemented with freshly prepared rifampicin (50 μ g ml⁻¹) or nalidixic acid (30 μ g
772 ml⁻¹) dissolved in 1mL of methanol or 1M NaOH respectively when required. For all cell dilutions
773 sterile saline (8.5 g L⁻¹ NaCl) was used.

774

775 **Fluctuation Assays**

776

777 Fluctuation tests were conducted as described in (94). Briefly; initial growth of glycerol
778 stocks in LB was carried out for 4 hrs for all strains aside from *hpx*⁻ which was grown for 7 hrs due to
779 its reduced growth rate. A dilution factor of 1000x was then used for transfer to overnight cultures.
780 Overnight acclimatisation was carried out in DM supplemented with 3.5% LB or 250mg L⁻¹ glucose
781 with nutrient type matching that of the fluctuation assay. The density achieved in the assay was
782 manipulated by growth in varying nutrient conditions, either 2 - 5% LB diluted in DM or 80 - 1000 mg
783 glucose L⁻¹. Selective plates were prepared 48 hours before use and stored for 24 hours at room
784 temperature followed by 24 hours at 4°C. All strains were plated on rifampicin selective media.
785

786

787 Anaerobic conditions were produced by incubating the 96 deep well plates in an airtight 2.6L
788 container with one Anaerogen 2.5L sachet (Thermo Scientific). The Anaerogen sachet rapidly
789 absorbs oxygen and releases CO₂ creating anaerobic conditions. Aerobic plates of matching design
790 were grown in an identical container ventilated with 8 x 4mm diameter holes without Anaerogen
791 sachet. In these plates 2-4 wells in each 96 well plate contained DM supplemented with 2.5% LB,
792 resazurin and *E. coli* MG1655, leaving space for fluctuation assays of 15-16 parallel cultures. On
793 removing the 96 well plates from incubation the resazurin absorbance at 670 nm was measured; this
794 quantifies the change from pink resorufin (aerobic cell growth) to clear dihydro resorufin (anaerobic
795 cell growth) thus providing an objective measure of anaerobiosis (Fig. S12).

796

797 During coculture fluctuation assays between BW25113 wild-type and *hpx*⁻ both strains were
798 grown up in LB, diluted LB overnight and diluted into cultures of ~1x10³ CFU mL⁻¹ as above. Some
799 combination of these 2 initial cultures was then mixed in each parallel culture ranging from an *hpx*⁻
800 :wild-type ratio of 1:1 to 124:1 (recorded in the supplementary data file as 'Mut_to_WT_ratio').
801 Plating of these cultures on TA or TA+Rif agar enabled the Ara+ (white) *hpx*⁻ colonies and the Ara-
802 (red) wild-type colonies to be distinguished. For assays using NalR *hpx*⁻ strains, selective plating was
803 done on TA+Rif+Nal plates and so only *hpx*⁻ mutants and not wild-type mutants were counted, Nt
804 was determined for both strains using plating on both TA+Nal and TA. Due to amino acid synthesis
805 defects, *hpx*⁻ cells cannot be cultured in glucose minimal media and so all cocultures were conducted
806 in dilute LB media (30).

807

808 In order to test for any differences in survival of *hpx*⁻ (NalR) grown in monoculture VS with
809 differing densities of BW25113 wild-type cells we conducted a reconstruction test (Fig. S9). A known
810 quantity of *hpx*⁻ (NalR + RifR) cells were plated with one of the following treatments: wild-type
811 supernatant (3.5%LB overnight growth), sterile DM, 80U mL⁻¹ catalase, *hpx*⁻ (5%LB overnight growth),
812 wild-type (2.5%LB overnight growth), wild-type (3.5%LB overnight growth), wild-type (5% overnight
813 growth). Raw data from the reconstruction test is available in the supplementary R code file.

814

815 Though fluctuation assays allow for high-throughput and low-cost estimates of mutation
816 rate, they classically come with some important assumptions to consider (95). For example, the
817 assumption that resistance markers will be selectively neutral is not reasonable in practice (42).
818 Fortunately, this can be accounted for with the estimation of fitness cost which can then be
819 accounted for in the estimation of mutational events using R package flan (V0.9). We find
820 estimations of DAMP with the co-estimation of the individual fitness cost in each assay or with the
821 application of the median mutant:wild-type fitness ratio estimation (median = 0.57, Fig. S3) to have
822 no effect on our conclusions. In regression 4 (SI), re-running the model using either of these
823 approaches to account for genotypes having different competitive fitness makes no difference to
824 whether DAMP is inferred (i.e. categorising each treatment as DAMP, no DAMP or reverse DAMP,
Table S1) for all treatments. In this study we allow flan to co-estimate fitness along with mutational

825 events (m) for each assay. Occasionally this model failed to converge on estimates, in these cases
826 average fitness effects were estimated from a model fitted to all successful estimates (Regression 3
827 (SI)) and then used to estimate m from the data with this pre-determined fitness effect of mutation.
828 It is also possible to avoid issues of mutant fitness effects by using the p_0 method of estimation (95,
829 96) in which parallel cultures are simply divided into those with or without any viable mutants.
830 However, this method is more restrictive as only assays in which parallel cultures both with and
831 without growth have been observed can the method be applied, it is also subject to more error on
832 estimates than maximum-likelihood methods. Reanalysing our data with the p_0 method shows
833 DAMP to exist in the same set of treatments as in the original analysis (Fig. S11), discounting any
834 effect of mutant fitness costs on our conclusions. Another potentially unrealistic assumption of the
835 fluctuation assay is that there will be no death, this too is possible to account for using the tools
836 provided in 'flan'. We find that death rates as high as 10%, well beyond what would be expected
837 under our conditions which lack added stressors, cause no changes in DAMP category (Fig. S13).
838

839 Hydrogen Peroxide Measurement

840
841 External hydrogen peroxide is measured using the Amplex UltraRed (AUR)/Peroxidase assay
842 as described in (22). All reagents were dissolved in 50 mM dibasic potassium phosphate.
843 Diethylenetriaminepentaacetic acid (DTPA) and AUR solutions were corrected to pH 7.8 with HCl
844 or NaOH. Reactions containing 660 μ L 1mM DTPA, 80 μ L filter sterilised sample solution and 20 μ L
845 0.25 mM AUR were mixed by vortexing before transferring 141 μ L to three wells of a clear bottomed
846 black 96-well plate. Fluorescence was measured at 580 nm excitation, 610 nm emission before and
847 after the injection of 7.5 μ L horseradish peroxidase (0.25 mg mL⁻¹) to each well, net fluorescence was
848 calculated as initial fluorescence subtracted from final fluorescence. H_2O_2 concentration was
849 estimated by calibration to standard solutions of 5 & 20 μ M H_2O_2 (Regression 5 (SI)). Because of
850 background levels of fluorescence, some predicted concentrations were negative, this was
851 accounted for by taking the absolute value of the lowest prediction and adding this to all predictions.
852 The range of H_2O_2 concentrations we observed is in good agreement with similar measurements in
853 the literature (e.g. Fig. 6B in (22)).
854

855 Statistical Analysis

856
857 All statistical analysis was executed in R (V4.3.1) (74) using the nlme (V3.1-162) package for
858 linear mixed effects modelling (78). This enabled the inclusion within the same regression of
859 experimental factors (fixed effects), blocking effects (random effects) and factors affecting variance
860 (giving heteroscedasticity). R package car (V3.1.2) (97) was used to carry out Chi-squared tests
861 comparing slope to a null-hypothesis of 1 (Table. S1). In all cases \log_2 mutation rates were used.
862 Details of all regression models are given supplementary statistical methods along with diagnostic
863 plots and ANOVA tables for each model. The code and data to reproduce the main text figures are
864 given in the accompanying R script, and supplementary data files, respectively. The content of the
865 supplementary data files is explained in Table. S3. Standard deviation on estimates of m is calculated
866 as in (98). The same R packages were used for parallel computing, data handling and plotting as for
867 the ODE modelling, with the addition of plyr (V1.8.8), ggbeeswarm (V0.7.2) and gridExtra (V2.3).
868

869 Acknowledgements

870
871 Thanks to Danna Gifford for many insightful discussions during this study and for the
872 improved BW25113 reference genome. Thanks also to The University of Manchester Research IT for
873 their assistance and the use of the Computational Shared Facility. Thanks to MicrobesNG

874 (<http://www.microbesng.com>) for their genome sequencing services. Thanks to Simon C. Andrews
875 for providing the hpx strain and to Karina B. Xavier for providing the MG1655 wild-type strain.
876

877 **References**

- 878 1. Gifford DR, Berrios-Caro E, Joerres C, Sune M, Forsyth JH, Bhattacharyya A, et al. Mutators
879 can drive the evolution of multi-resistance to antibiotics. *PLoS Genet.* 2023;19(6):e1010791.
- 880 2. Ragheb MN, Thomason MK, Hsu C, Nugent P, Gage J, Samadpour AN, et al. Inhibiting the
881 Evolution of Antibiotic Resistance. *Mol Cell.* 2019;73(1):157-65 e5.
- 882 3. Krašovec R, Richards H, Gifford DR, Hatcher C, Faulkner KJ, Belavkin RV, et al. Spontaneous
883 mutation rate is a plastic trait associated with population density across domains of life. *PLoS Biol.*
884 2017;15(8):e2002731.
- 885 4. Chu XL, Zhang BW, Zhang QG, Zhu BR, Lin K, Zhang DY. Temperature responses of mutation
886 rate and mutational spectrum in an *Escherichia coli* strain and the correlation with metabolic rate.
887 *BMC Evol Biol.* 2018;18(1):126.
- 888 5. Maharjan RP, Ferenci T. The impact of growth rate and environmental factors on mutation
889 rates and spectra in *Escherichia coli*. *Environ Microbiol Rep.* 2018;10(6):626-33.
- 890 6. Liu H, Zhang J. Yeast Spontaneous Mutation Rate and Spectrum Vary with Environment. *Curr
891 Biol.* 2019;29(10):1584-91 e3.
- 892 7. MacLean RC, Torres-Barcelo C, Moxon R. Evaluating evolutionary models of stress-induced
893 mutagenesis in bacteria. *Nat Rev Genet.* 2013;14(3):221-7.
- 894 8. Foster PL. Stress-induced mutagenesis in bacteria. *Crit Rev Biochem Mol Biol.*
895 2007;42(5):373-97.
- 896 9. Loewe L, Textor V, Scherer S. High Deleterious Genomic Mutation Rate in Stationary Phase
897 of *Escherichia coli*. *Science.* 2003;302(5650):1558-60.
- 898 10. Maharjan RP, Ferenci T. A shifting mutational landscape in 6 nutritional states: Stress-
899 induced mutagenesis as a series of distinct stress input–mutation output relationships. *PLoS Biol.*
900 2017;15(6):e2001477.
- 901 11. Cirz RT, Chin JK, Andes DR, de Crecy-Lagard V, Craig WA, Romesberg FE. Inhibition of
902 mutation and combating the evolution of antibiotic resistance. *PLoS Biol.* 2005;3(6):e176.
- 903 12. Domenech A, Brochado AR, Sender V, Henrich K, Henriques-Normark B, Typas A, et al.
904 Proton Motive Force Disruptors Block Bacterial Competence and Horizontal Gene Transfer. *Cell Host
905 & Microbe.* 2020;27(4):544-55.e3.
- 906 13. Alam MK, Alhhazmi A, DeCoteau JF, Luo Y, Geyer CR. RecA Inhibitors Potentiate Antibiotic
907 Activity and Block Evolution of Antibiotic Resistance. *Cell Chem Biol.* 2016;23(3):381-91.
- 908 14. Krašovec R, Richards H, Gifford DR, Belavkin RV, Channon A, Aston E, et al. Opposing effects
909 of final population density and stress on *Escherichia coli* mutation rate. *ISME J.* 2018;12(12):2981-7.
- 910 15. Gifford DR, Bhattacharyya A, Geim A, Marshall E, Krašovec R, Knight CG. Environmental and
911 genetic influence on rate and spectrum of spontaneous mutations in *Escherichia coli*
912 biorXiv:10.1101/2023.04.06.535897v3 [Preprint]. 2023 [cited 2023 September 06]. Available from:
913 <https://www.biorxiv.org/content/10.1101/2023.04.06.535897v3>.
- 914 16. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal
915 *Escherichia coli*. *Nat Rev Microbiol.* 2010;8(3):207-17.
- 916 17. Cornick NA, Helgerson AF. Transmission and Infectious Dose of *Escherichia coli* O157:H7 in
917 Swine. *Applied and Environmental Microbiology.* 2004;70(9):5331-5.
- 918 18. Imlay JA. Pathways of Oxidative Damage. *Annual Review of Microbiology.* 2003;57(1):395-
919 418.
- 920 19. Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for
921 DNA synthesis. *Nature.* 1992;355(6357):273-5.
- 922 20. Foster PL, Lee H, Popodi E, Townes JP, Tang H. Determinants of spontaneous mutation in the
923 bacterium *Escherichia coli* as revealed by whole-genome sequencing. *Proc Natl Acad Sci U S A.*
924 2015;112(44):E5990-9.

925 21. Krašovec R, Belavkin RV, Aston JA, Channon A, Aston E, Rash BM, et al. Mutation rate
926 plasticity in rifampicin resistance depends on *Escherichia coli* cell-cell interactions. *Nat Commun.*
927 2014;5:3742.

928 22. Li X, Imlay JA. Improved measurements of scant hydrogen peroxide enable experiments that
929 define its threshold of toxicity for *Escherichia coli*. *Free Radic Biol Med.* 2018;120:217-27.

930 23. Uhl L, Dukan S. Hydrogen Peroxide Induced Cell Death: The Major Defences Relative Roles
931 and Consequences in *E. coli*. *PLOS ONE.* 2016;11(8):e0159706.

932 24. Seaver LC, Imlay JA. Hydrogen peroxide fluxes and compartmentalization inside growing
933 *Escherichia coli*. *J Bacteriol.* 2001;183(24):7182-9.

934 25. Seaver LC, Imlay JA. Alkyl Hydroperoxide Reductase Is the Primary Scavenger of Endogenous
935 Hydrogen Peroxide in *Escherichia coli*. *J Bacteriol.* 2001;183(24):7173-81.

936 26. Seaver LC, Imlay JA. Are Respiratory Enzymes the Primary Sources of Intracellular Hydrogen
937 Peroxide? *J Biol Chem.* 2004;279(47):48742-50.

938 27. Korshunov S, Imlay JA. Two sources of endogenous hydrogen peroxide in *Escherichia coli*.
939 *Mol Microbiol.* 2010;75(6):1389-401.

940 28. O'Donnell-Tormey J, Nathan CF, Lanks K, DeBoer CJ, de la Harpe J. Secretion of pyruvate. An
941 antioxidant defense of mammalian cells. *J Exp Med.* 1987;165(2):500-14.

942 29. Kreth J, Lengeler JW, Jahreis K. Characterization of pyruvate uptake in *Escherichia coli* K-12.
943 *PLOS ONE.* 2013;8(6):e67125.

944 30. Jang S, Imlay JA. Micromolar Intracellular Hydrogen Peroxide Disrupts Metabolism by
945 Damaging Iron-Sulfur Enzymes. *J Biol Chem.* 2007;282(2):929-37.

946 31. Imlay JA, Chin SM, Linn S. Toxic DNA Damage by Hydrogen Peroxide through the Fenton
947 Reaction in vivo and in vitro. *Science.* 1988;240(4852):640-2.

948 32. Park S, You X, Imlay JA. Substantial DNA damage from submicromolar intracellular hydrogen
949 peroxide detected in *Hpx*⁻ mutants of *Escherichia coli*. *Proc Natl Acad Sci U S A.* 2005;102(26):9317-
950 22.

951 33. Seo SW, Kim D, Latif H, O'Brien EJ, Szubin R, Palsson BO. Deciphering Fur transcriptional
952 regulatory network highlights its complex role beyond iron metabolism in *Escherichia coli*. *Nat
953 Commun.* 2014;5(1):4910.

954 34. Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free-iron levels. *Proc
955 Natl Acad Sci U S A.* 1996;93(24):13635-40.

956 35. Touati D, Jacques M, Tardat B, Bouchard L, Despied S. Lethal oxidative damage and
957 mutagenesis are generated by iron in delta *fur* mutants of *Escherichia coli*: protective role of
958 superoxide dismutase. *J Bacteriol.* 1995;177(9):2305-14.

959 36. Gerken H, Vuong P, Soparkar K, Misra R. Roles of the EnvZ/OmpR Two-Component System
960 and Porins in Iron Acquisition in *Escherichia coli*. *mBio.* 2020;11(3).

961 37. Qiu N, Misra R. Overcoming Iron Deficiency of an *Escherichia coli* *tonB* Mutant by Increasing
962 Outer Membrane Permeability. *J Bacteriol.* 2019;201(17).

963 38. Varghese S, Wu A, Park S, Imlay KRC, Imlay JA. Submicromolar hydrogen peroxide disrupts
964 the ability of Fur protein to control free-iron levels in *Escherichia coli*. *Mol Microbiol.* 2007;64(3):822-
965 30.

966 39. Guyet A, Dade-Robertson M, Wipat A, Casement J, Smith W, Mitrani H, et al. Mild
967 hydrostatic pressure triggers oxidative responses in *Escherichia coli*. *PLOS ONE.*
968 2018;13(7):e0200660.

969 40. Choudhary D, Lagage V, Foster KR, Uphoff S. Phenotypic heterogeneity in the bacterial
970 oxidative stress response is driven by cell-cell interactions. *Cell Reports.* 2023;42(3):112168.

971 41. Maharjan R, Ferenci T. The fitness costs and benefits of antibiotic resistance in drug-free
972 microenvironments encountered in the human body. *Environ Microbiol Rep.* 2017;9(5):635-41.

973 42. Soley JK, Jago M, Walsh CJ, Khomarbaghi Z, Howden BP, Lagator M. Pervasive genotype-by-
974 environment interactions shape the fitness effects of antibiotic resistance mutations. *Proc R Soc B
975 Biol Sci.* 2023;290(2005):20231030.

976 43. Richards H. Evolution of Evolvability? Understanding Mutation Rate Plasticity [Doctoral
977 Thesis]. [https://www.research.manchester.ac.uk/portal/en/theses/evolution-of-evolvability-
978 understanding-mutation-rate-plasticity\(2d8e5e78-dcd7-4d8c-b37e-07da62592644\).html](https://www.research.manchester.ac.uk/portal/en/theses/evolution-of-evolvability-understanding-mutation-rate-plasticity(2d8e5e78-dcd7-4d8c-b37e-07da62592644).html): The
979 University of Manchester; 2018.

980 44. Krishna Kumar R, Meiller-Legrand TA, Alcinesio A, Gonzalez D, Mavridou DAI, Meacock OJ, et
981 al. Droplet printing reveals the importance of micron-scale structure for bacterial ecology. *Nat
982 Commun.* 2021;12(1):857.

983 45. Ma M, Eaton JW. Multicellular oxidant defense in unicellular organisms. *Proc Natl Acad Sci U
984 S A.* 1992;89(17):7924-8.

985 46. Holland M, Farinella DN, Cruz-Lorenzo E, Laubscher MI, Doakes DA, Ramos MA, et al. *L.
986 pneumophila* resists its self-harming metabolite HGA via secreted factors and collective peroxide
987 scavenging. *mBio.* 2023:e0120723.

988 47. Sen A, Imlay JA. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. *Front
989 Immunol.* 2021;12:667343.

990 48. Denamur E, Matic I. Evolution of mutation rates in bacteria. *Mol Microbiol.* 2006;60(4):820-
991 7.

992 49. Frapwell CJ, Howlin RP, Soren O, McDonagh BT, Duignan CM, Allan RN, et al. Increased rates
993 of genomic mutation in a biofilm co-culture model of *Pseudomonas aeruginosa* and *Staphylococcus
994 aureus* biorXiv:10.1101/387233v1 [Preprint]. 2018 [cited 2023 September 06]. Available from:
995 <https://www.biorxiv.org/content/10.1101/387233v1.full>.

996 50. Padron GC, Shuppara AM, Sharma A, Koch MD, Palalay J-JS, Radin JN, et al. Shear rate
997 sensitizes bacterial pathogens to H₂O₂ stress. *Proc Natl Acad Sci U S A.* 2023;120(11).

998 51. Coyte KZ, Tabuteau H, Gaffney EA, Foster KR, Durham WM. Microbial competition in porous
999 environments can select against rapid biofilm growth. *Proc Natl Acad Sci U S A.* 2017;114(2):E161-
1000 E70.

1001 52. Woo AC, Faure L, Dapa T, Matic I. Heterogeneity of spontaneous DNA replication errors in
1002 single isogenic *Escherichia coli* cells. *Sci Adv.* 2018;4(6):eaat1608.

1003 53. Fowler RG, Erickson JA, Isbell RJ. Activity of the *Escherichia coli* *mutT* mutator allele in an
1004 anaerobic environment. *J Bacteriol.* 1994;176(24):7727-9.

1005 54. Sakai A, Nakanishi M, Yoshiyama K, Maki H. Impact of reactive oxygen species on
1006 spontaneous mutagenesis in *Escherichia coli*. *Genes to Cells.* 2006;11(7):767-78.

1007 55. Shewaramani S, Finn TJ, Leahy SC, Kassen R, Rainey PB, Moon CD. Anaerobically Grown
1008 *Escherichia coli* Has an Enhanced Mutation Rate and Distinct Mutational Spectra. *PLoS Genet.*
1009 2017;13(1):e1006570.

1010 56. Becket E, Tse L, Yung M, Cosico A, Miller JH. Polynucleotide Phosphorylase Plays an
1011 Important Role in the Generation of Spontaneous Mutations in *Escherichia coli*. *J Bacteriol.*
1012 2012;194(20):5613-20.

1013 57. Garibyan L, Huang T, Kim M, Wolff E, Nguyen A, Nguyen T, et al. Use of the *rpoB* gene to
1014 determine the specificity of base substitution mutations on the *Escherichia coli* chromosome. *DNA
1015 Repair (Amst).* 2003;2(5):593-608.

1016 58. Yamagishi J, Yoshida H, Yamayoshi M, Nakamura S. Nalidixic acid-resistant mutations of the
1017 *gyrB* gene of *Escherichia coli*. *Mol Gen Genet.* 1986;204(3):367-73.

1018 59. Hall AR, Griffiths VF, Maclean RC, Colegrave N. Mutational neighbourhood and mutation
1019 supply rate constrain adaptation in *Pseudomonas aeruginosa*. *Proc R Soc B Biol Sci.*
1020 2010;277(1681):643-50.

1021 60. Arjan JA, Visser M, Zeyl CW, Gerrish PJ, Blanchard JL, Lenski RE. Diminishing returns from
1022 mutation supply rate in asexual populations. *Science.* 1999;283(5400):404-6.

1023 61. Sprouffske K, Aguilar-Rodriguez J, Sniegowski P, Wagner A. High mutation rates limit
1024 evolutionary adaptation in *Escherichia coli*. *PLoS Genet.* 2018;14(4):e1007324.

1025 62. Sane M, Diwan GD, Bhat BA, Wahl LM, Agashe D. Shifts in mutation spectra enhance access
1026 to beneficial mutations. *Proc Natl Acad Sci U S A.* 2023;120(22):e2207355120.

1027 63. Cano AV, Rozhoňová H, Stoltzfus A, McCandlish DM, Payne JL. Mutation bias shapes the
1028 spectrum of adaptive substitutions. *Proc Natl Acad Sci U S A.* 2022;119(7):e2119720119.

1029 64. Agashe D, Sane M, Singhal S. Revisiting the role of genetic variation in adaptation. *The
1030 American Naturalist.* 2023.

1031 65. Javaux EJ. Challenges in evidencing the earliest traces of life. *Nature.* 2019;572(7770):451-
1032 60.

1033 66. Imlay JA. Cellular Defenses against Superoxide and Hydrogen Peroxide. *Annual Review of
1034 Biochemistry.* 2008;77(1):755-76.

1035 67. Melaugh G, Martinez VA, Baker P, Hill PJ, Howell PL, Wozniak DJ, et al. Distinct types of
1036 multicellular aggregates in *Pseudomonas aeruginosa* liquid cultures. *npj Biofilms and Microbiomes.*
1037 2023;9(1):52.

1038 68. Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B, et al. Evolution of the
1039 germline mutation rate across vertebrates. *Nature.* 2023;615(7951):285-91.

1040 69. Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. Drift-barrier hypothesis and mutation-
1041 rate evolution. *Proc Natl Acad Sci U S A.* 2012;109(45):18488-92.

1042 70. Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, et al. Genetic drift, selection
1043 and the evolution of the mutation rate. *Nat Rev Genet.* 2016;17(11):704-14.

1044 71. Khademian M, Imlay JA. How Microbes Evolved to Tolerate Oxygen. *Trends Microbiol.*
1045 2021;29(5):428-40.

1046 72. Kubitschek HE, Friske JA. Determination of bacterial cell volume with the Coulter Counter. *J
1047 Bacteriol.* 1986;168(3):1466-7.

1048 73. Sekiguchi M, Tsuzuki T. Oxidative nucleotide damage: consequences and prevention.
1049 *Oncogene.* 2002;21(58):8895-904.

1050 74. R Core Team. R: A Language and Environment for Statistical Computing. 4.3.1 ed. Vienna,
1051 Austria: R Foundation for Statistical Computing; 2023.

1052 75. Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in R: Package deSolve.
1053 *Journal of Statistical Software.* 2010;33(1):1-25.

1054 76. Bolker BM. Ecological models and data in R: Princeton University Press; 2008.

1055 77. Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, et al. Welcome to the
1056 Tidyverse. *Journal of Open Source Software.* 2019;4(43):1686.

1057 78. Pinheiro J, Bates D. Mixed-Effects Models in S and S-PLUS. Springer, New York.2000.

1058 79. Lüdecke D. ggeffects: Tidy data frames of marginal effects from regression models. *Journal
1059 of Open Source Software.* 2018;3(26):772.

1060 80. Dykhuizen D. Selection for Tryptophan Auxotrophs of *Escherichia coli* in Glucose-Limited
1061 Chemostats as a Test of the Energy Conservation Hypothesis of Evolution. *Evolution.* 1978;32(1):125-
1062 50.

1063 81. Jain R, Srivastava R. Metabolic investigation of host/pathogen interaction using MS2-
1064 infected *Escherichia coli*. *BMC Systems Biology.* 2009;3(1):121.

1065 82. Buckstein MH, He J, Rubin H. Characterization of Nucleotide Pools as a Function of
1066 Physiological State in *Escherichia coli*. *J Bacteriol.* 2008;190(2):718-26.

1067 83. Bipatnath M, Dennis PP, Bremer H. Initiation and velocity of chromosome replication in
1068 *Escherichia coli* B/r and K-12. *J Bacteriol.* 1998;180(2):265-73.

1069 84. Xia Z, Azurmendi HF, Mildvan AS. Transient State Kinetic Studies of the MutT-Catalyzed
1070 Nucleoside Triphosphate Pyrophosphohydrolase Reaction. *Biochemistry.* 2005;44(46):15334-44.

1071 85. Lu AL, Yuen DS, Cillo J. Catalytic mechanism and DNA substrate recognition of *Escherichia
1072 coli* MutY protein. *J Biol Chem.* 1996;271(39):24138-43.

1073 86. Kang M, Kim K, Choe D, Cho S, Kim SC, Palsson B, et al. Inactivation of a Mismatch-Repair
1074 System Diversifies Genotypic Landscape of *Escherichia coli* During Adaptive Laboratory Evolution.
1075 *Front Microbiol.* 2019;10:1845.

1076 87. González-Flecha B, Demple B. Homeostatic regulation of intracellular hydrogen peroxide
1077 concentration in aerobically growing *Escherichia coli*. *J Bacteriol.* 1997;179(2):382-8.

1078 88. Rodríguez-Rojas A, Makarova O, Müller U, Rolff J. Cationic Peptides Facilitate Iron-induced
1079 Mutagenesis in Bacteria. PLOS Genetics. 2015;11(10):e1005546.

1080 89. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of *Escherichia*
1081 *coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology.
1082 2006;2:2006.0008.

1083 90. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from
1084 next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:165-88.

1085 91. Barrick JE, Colburn G, Deatherage DE, Traverse CC, Strand MD, Borges JJ, et al. Identifying
1086 structural variation in haploid microbial genomes from short-read resequencing data using breseq.
1087 BMC Genomics. 2014;15(1):1039.

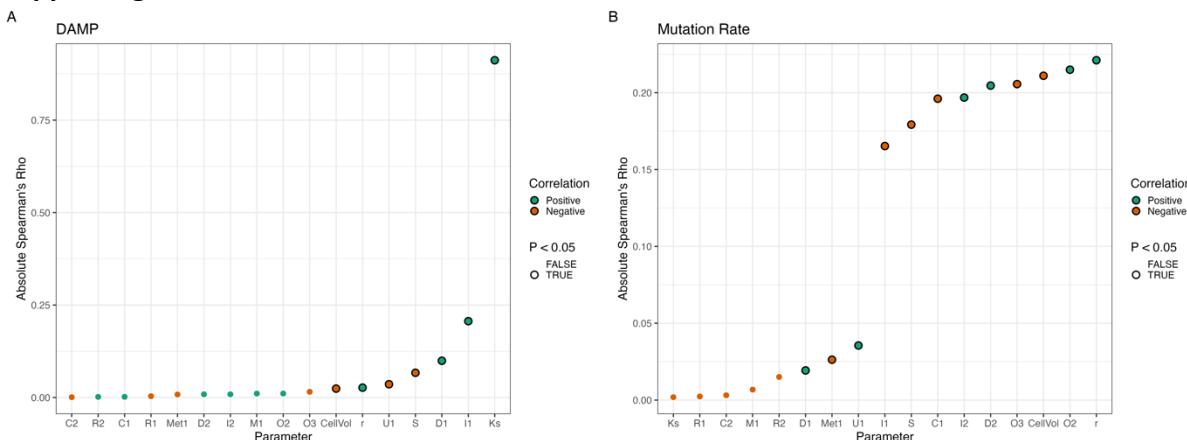
1088 92. Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete
1089 genome sequence of *Escherichia coli* K-12. Science. 1997;277(5331):1453-62.

1090 93. Grenier F, Matteau D, Baby V, Rodrigue S. Complete Genome Sequence of *Escherichia coli*
1091 BW25113. Genome Announc. 2014;2(5).

1092 94. Krasovec R, Richards H, Gomez G, Gifford DR, Mazoyer A, Knight CG. Measuring Microbial
1093 Mutation Rates with the Fluctuation Assay. J Vis Exp. 2019(153).

1094 95. Rosche WA, Foster PL. Determining mutation rates in bacterial populations. Methods.
1095 2000;20(1):4-17.

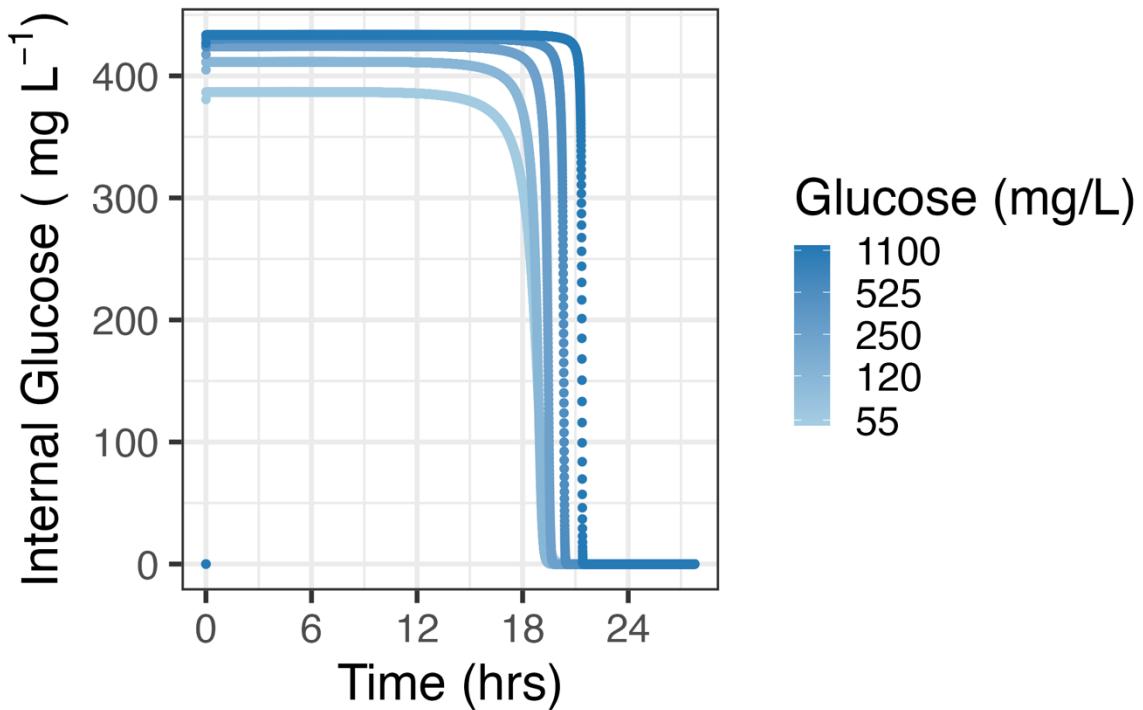
1096 96. Luria SE, Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance.
1097 Genetics. 1943;28(6):491-511.


1098 97. Fox J, Weisberg S. An R companion to applied regression: Sage publications; 2018.

1099 98. Stewart FM. Fluctuation Tests: How Reliable Are the Estimates of Mutation Rates? Genetics.
1100 1994;137(4):1139-46.

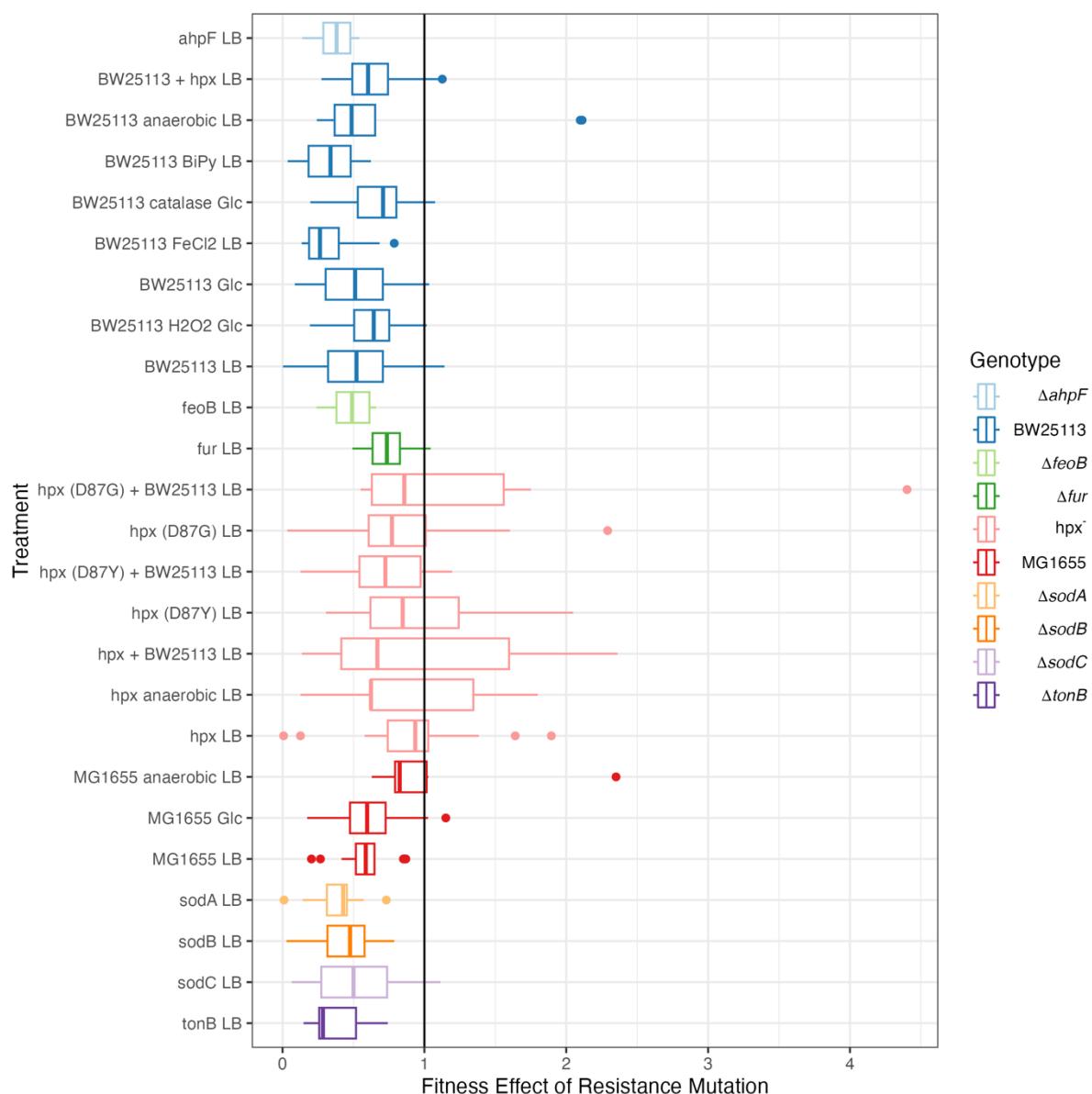
1101

1102


1103 **Supporting Information**

1104
1105 *Figure S1. Global Sensitivity Analysis of Model A:* Left Hand Side (A) shows the rank correlation, as quantified by
1106 Spearman's Rank Correlation Coefficient, between each parameter and the slope of DAMP, parameters are ordered from
1107 least to most correlation from left to right. Right Hand Side (B) shows the equivalent information for the correlation
1108 between parameter values and mutation rate (at 250 mg L⁻¹). Positive correlations are shown in green whilst negatively
1109 correlated parameters are shown in orange. Black borders show significant rank correlation (P < 0.05). Note the different y
1110 axis limits and x axis order on the left VS right hand side.

1111


1112

1113
1114
1115

Figure S2. **Dynamics of internal glucose over time in model A** simulated at 5 log-spaced glucose concentrations from 55 to 1100 mg L⁻¹. Higher levels of initial external glucose provision (point colour) lead to higher levels of internal glucose (y-axis).

1116

1117
1118
1119
1120

Figure S3. **Fitness effects of resistance mutations** where fitness is coestimated with mutational events. Boxplots shown for each treatment with colour representing genotype. Vertical lines inside boxes represent the median for that treatment, with the boxes depicting the interquartile range. The black vertical line at a fitness effect size of 1 represents neutral fitness effects.

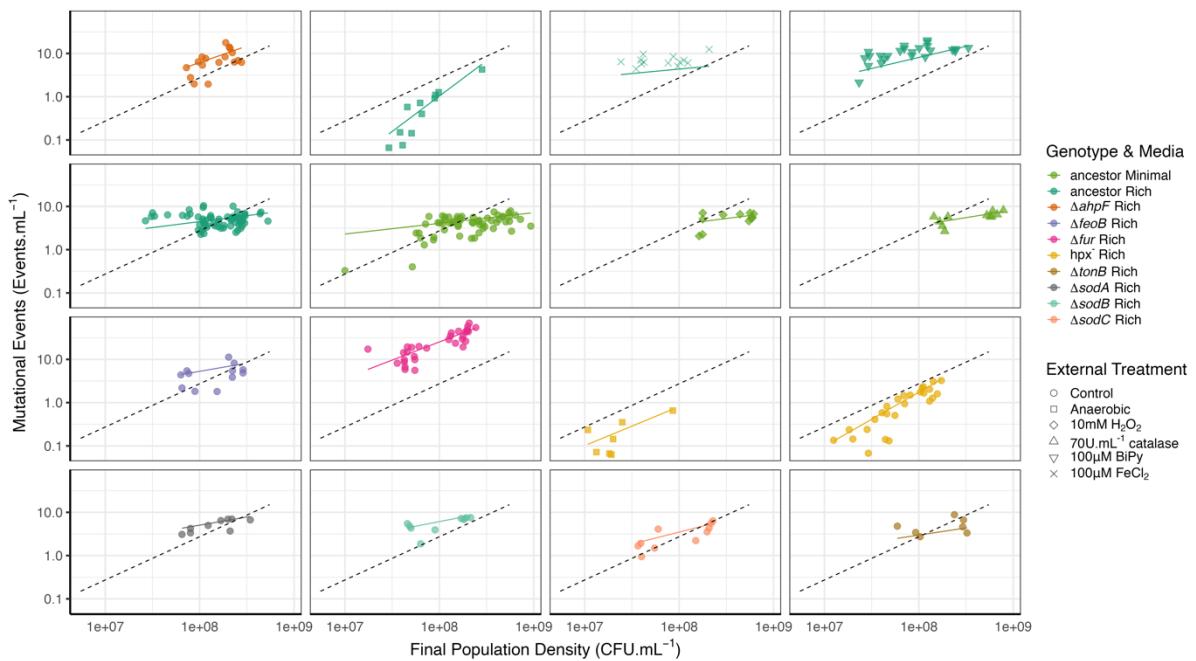
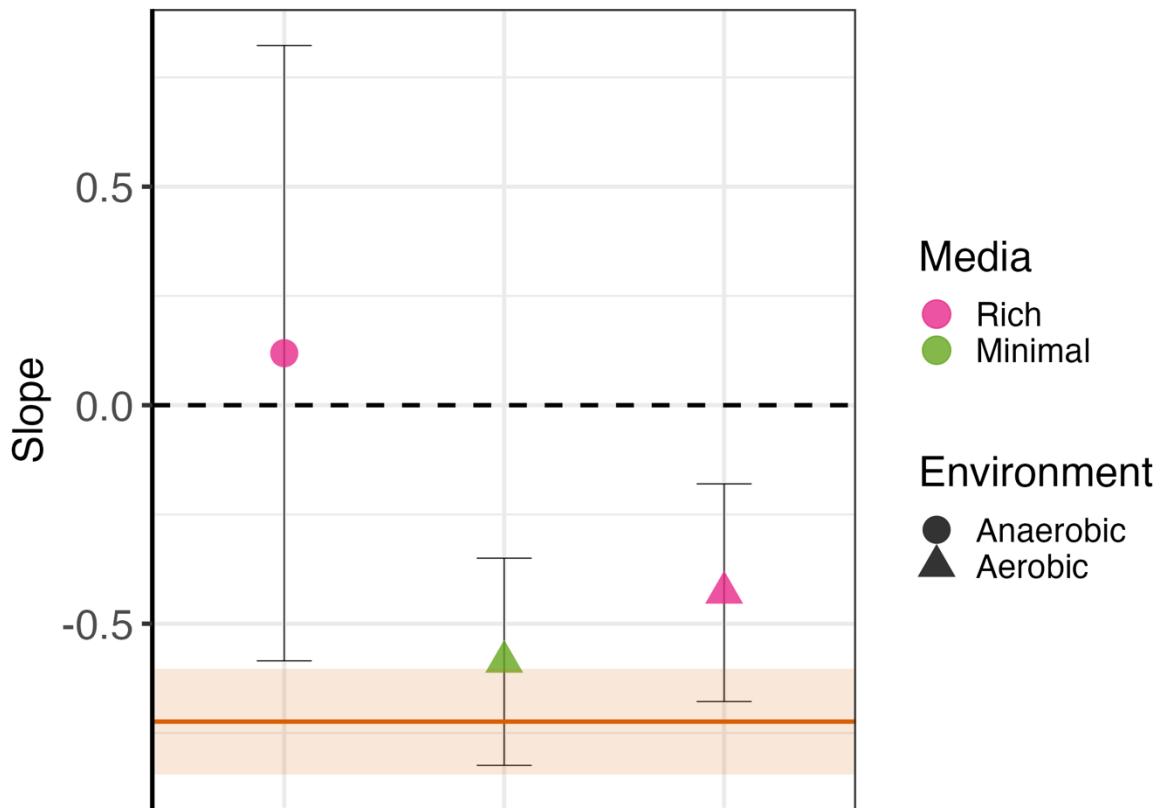
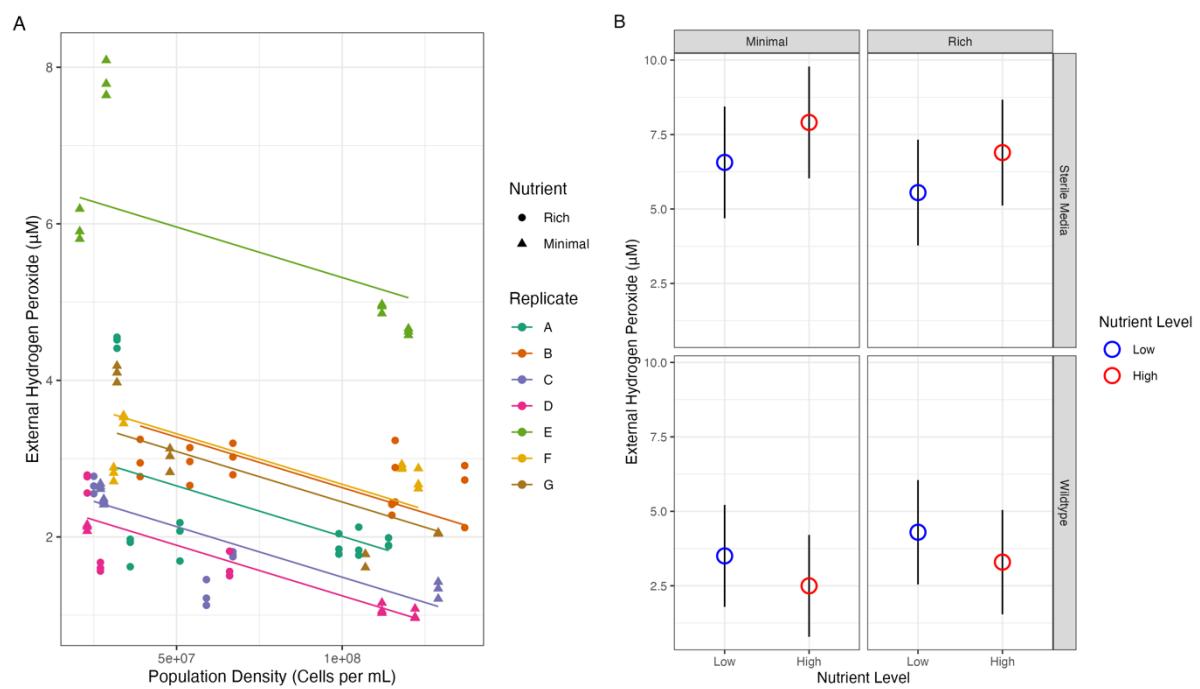
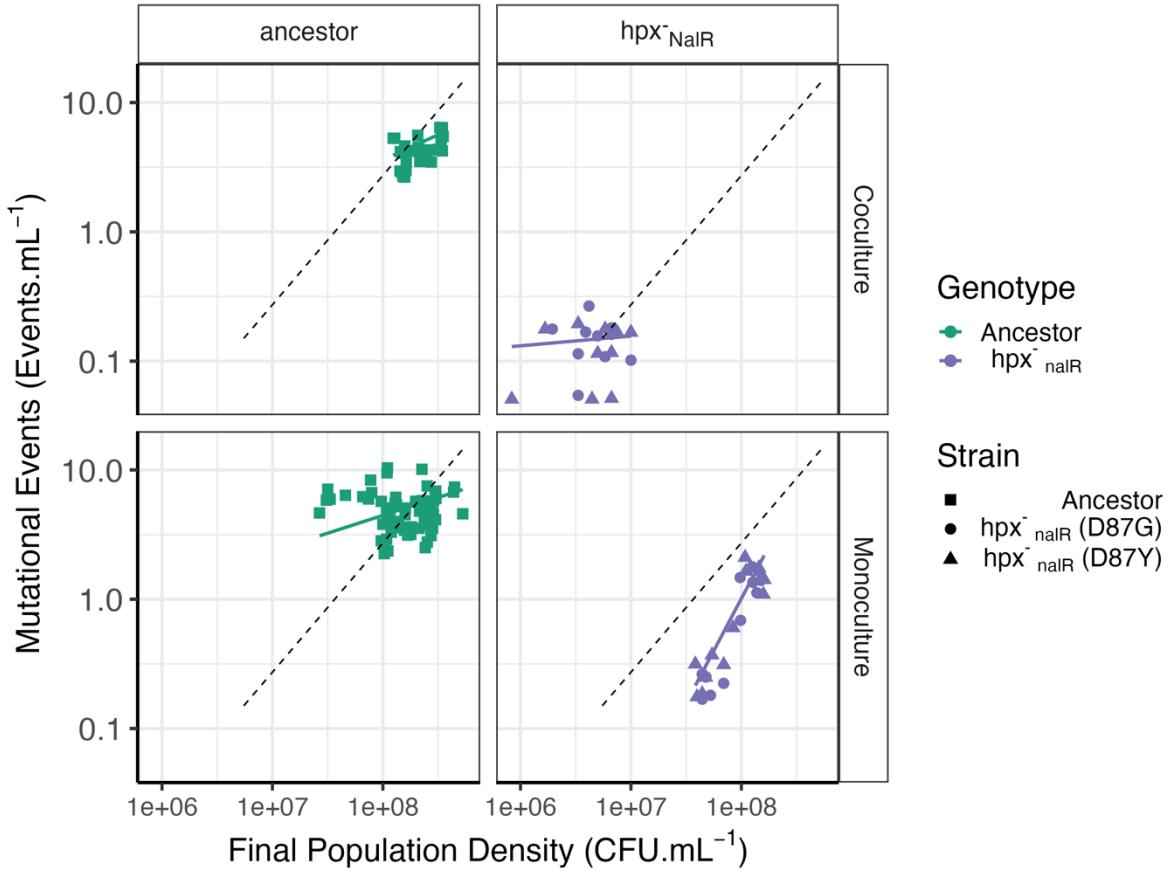
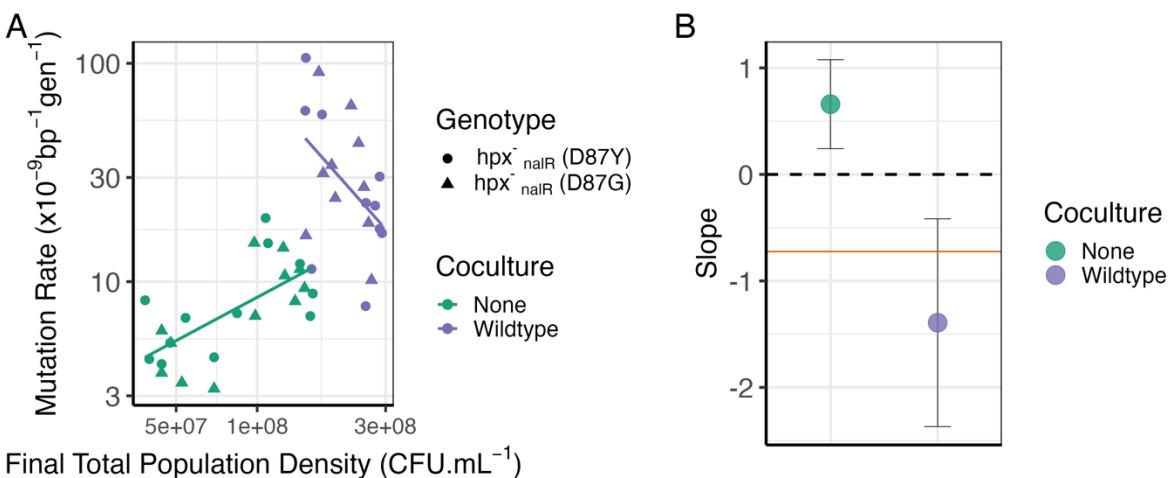
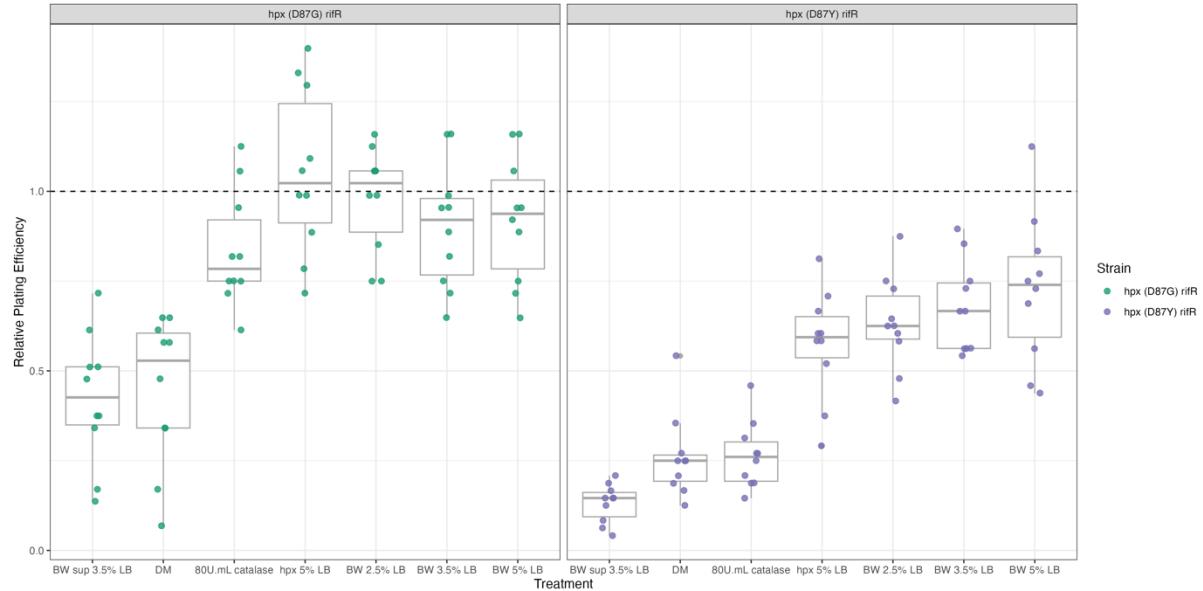




Figure S4. **Raw data used in figure 3:** Final population density is plotted against mutational events per mL on a log-log scale. Dashed lines show the null expectation of a constant mutation rate (i.e. slope=1) y intercept for dashed line is arbitrary. Coloured lines are fitted slopes from mod3 (Supplementary Statistics file), line gradients with 95% CI shown in figure 3. Treatments shown are BW25113 ancestor (1106 parallel cultures (pc) across 69 fluctuation assays (fa)); ancestor minimal media (942 pc, 59 fa); *ΔahpF* (266 pc, 17 fa); *hpx* (402 pc, 26 fa); ancestor anaerobic (168 pc, 11 fa); ancestor 10mM H₂O₂ (179 pc, 12 fa); ancestor 70U mL⁻¹ catalase (167 pc, 11 fa); *hpx* anaerobic (105 pc, 7 fa); ancestor + chelator 2,2-Bipyridyl 100μM (382 pc, 24 fa); ancestor + FeCl₂ 100μM (210 pc, 13 fa); *ΔfeoB* (192 pc, 12 fa); *Δfur* (504 pc, 31 fa); *ΔtonB* (113 pc, 7 fa).

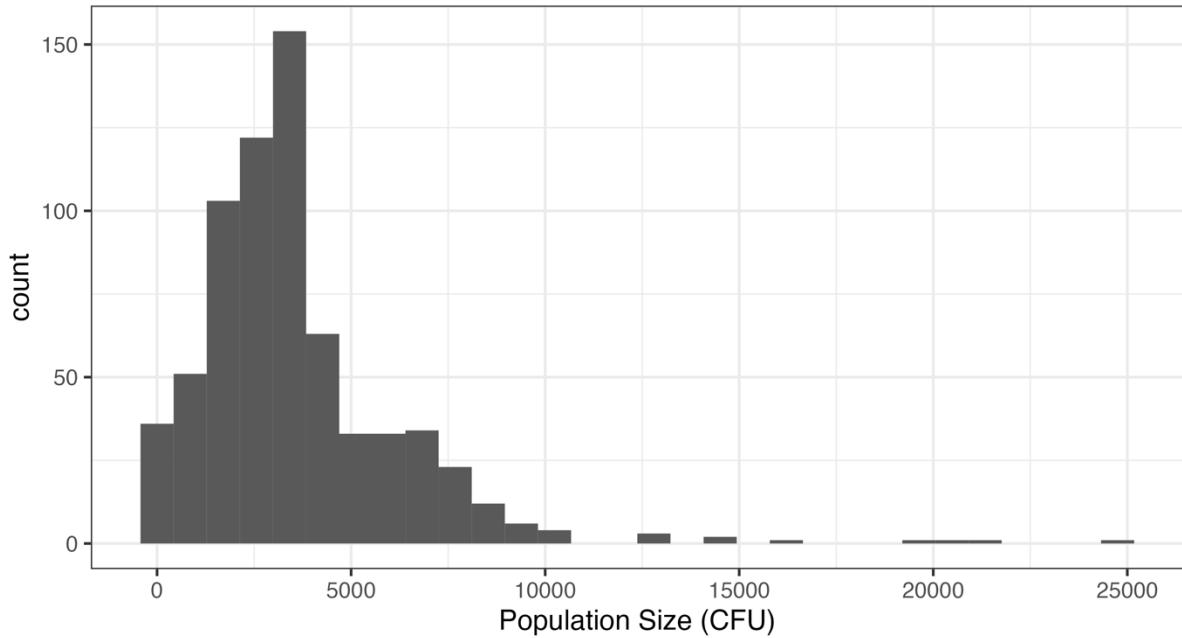


1130

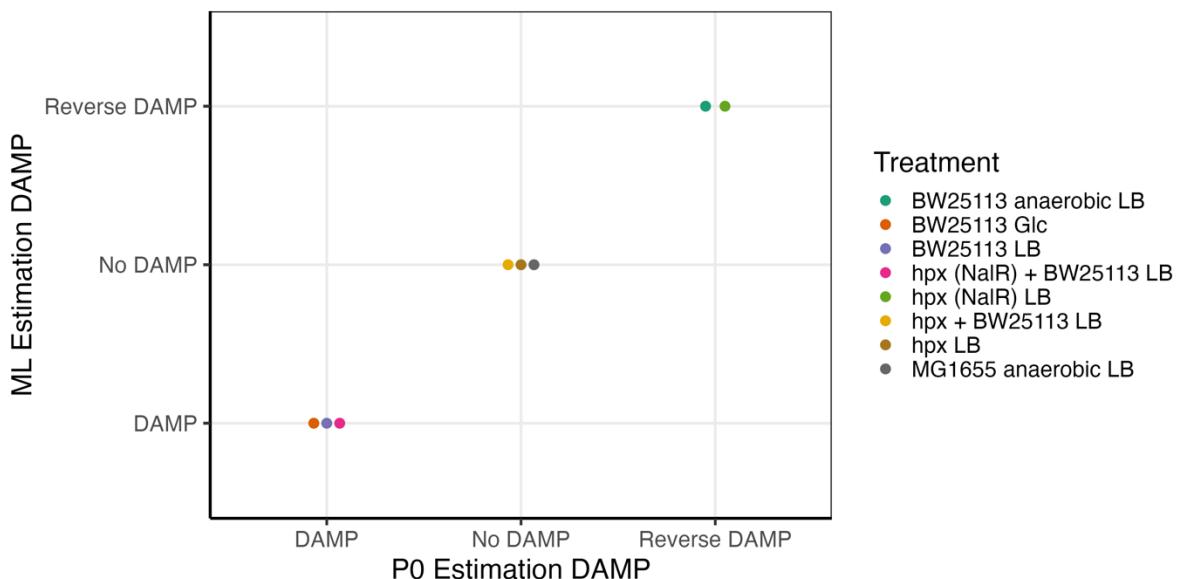

1131 **Figure S5. log-log relationship between population density (CFU mL⁻¹) and mutational events (mL⁻¹) in wild-type**
 1132 **strain MG1655 under aerobic and anaerobic conditions.** Pink circle = MG1655 rich media anaerobic (173 pc, 11 fa); Green
 1133 triangle = MG1655 minimal media aerobic (273 pc, 17 fa); Pink Triangle = MG1655 rich media aerobic (285 pc, 18 fa).
 1134 Orange line and shaded area shows DAMP for BW25113 in rich media as in Fig. 3 with 95% CI.


1135 **Figure S6. Effects of Population Density and Nutrient Level on H₂O₂** Left Hand Side (A) shows the relationship
 1136 between population density and external H₂O₂ in cultures of MG1655 after 24 hours of incubation. Rich media is 2/5% LB
 1137 diluted in DM, minimal media is 80/1000 mg L⁻¹ glucose in DM. Population density is estimated from the optical density
 1138 given the assumption that OD 1 = 1 x 10⁹ cells mL⁻¹. Lines are from regression 7B (SI). Right Hand Side (B) shows the H₂O₂
 1139 concentration after 24 hours incubation in rich or minimal media; sterile or with wild-type MG1655, Regression 6 (SI); error
 1140 bars show 95% CI. The interaction effect between nutrient level (Low versus High) and presence of a culture (Sterile Media
 1141 versus Wild-type), where external peroxide decreases with nutrients increases in the presence of a culture but increases
 1142 without one, is highly significant ($F_{DF=46} = 9.8$, $P = 3 \times 10^{-3}$, Regression 6 (SI)).

1144
1145 *Figure S7. Raw data used in figure 4:* Final population density of the focal strain is plotted against mutational
1146 events per mL on a log-log scale. Dashed lines show the null expectation of a constant mutation rate with a slope of 1.
1147 Ancestor coculture measurements are taken in coculture with hpx-, hpx D87Y & D87G are cocultured with ancestor
1148 BW25113. Lines are fitted slopes shown in fig. 4. BW25113 ancestor (1106 pc, 69 fa); BW25113 in coculture with hpx- (498
1149 pc, 31 fa); hpx_{nalR} (388 pc, 24 fa); hpx_{nalR} in coculture with BW25113 (319 pc, 20 fa).

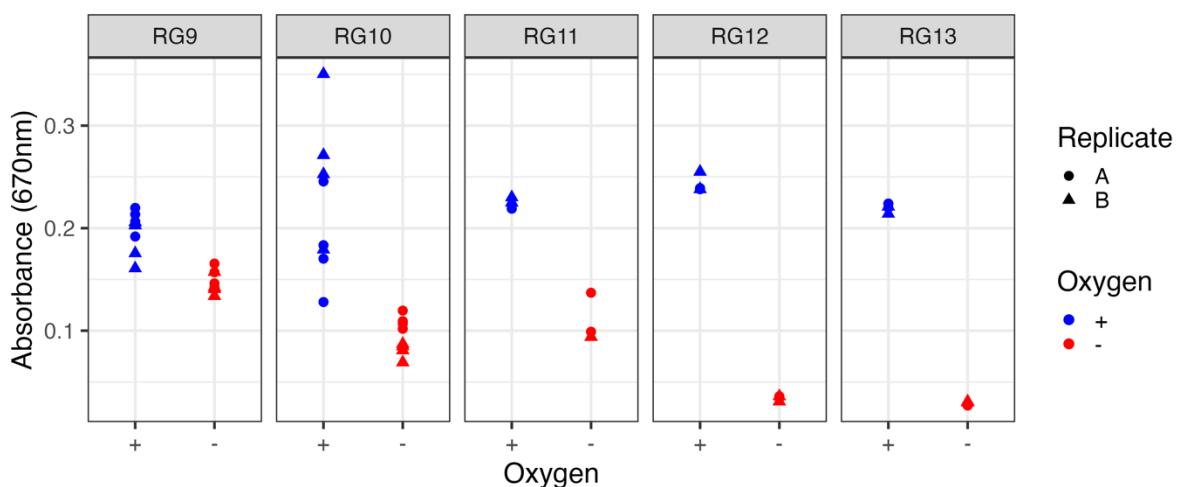


1150
1151 *Figure S8. Relationship between total population density and mutation rate in hpx- with cocultured wild-type*
1152 *BW25113.* A: Final population density (focal + coculture strain where relevant) is plotted against mutation rate on a log-log
1153 scale. hpx_{nalR} monoculture (388 pc, 24 fa); hpx_{nalR} in coculture with BW25113 (319 pc, 20 fa). Lines are fitted slopes shown
1154 from Regression 8 (SI). B: Slope and 95% CI on the lines shown in LHS graph. Horizontal orange line shows the slope of the
1155 BW25113 ancestor in rich media (Regression 4 (SI), Fig. 3). In monoculture hpx- mutation rates increase with total
1156 population density whilst in coculture the wild-type restores a negative association between density and mutation rates
1157 (DAMP).

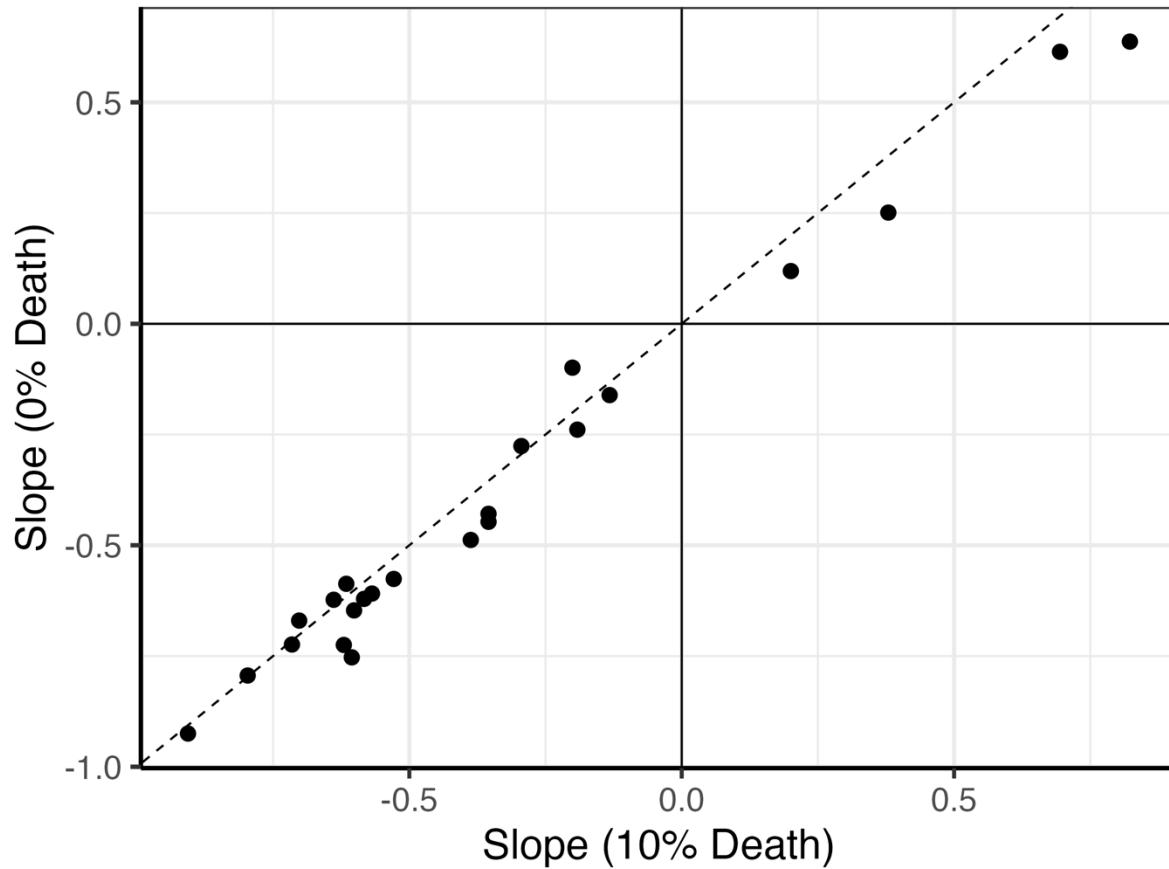


1158
1159 **Figure S9. Reconstruction test showing the plating efficiency of rifampicin resistant hpx (D87Y) and hpx (D87G)**
1160 when combined and plated in 1.25mL with: supernatant from mid-density BW25113, sterile DM media, DM media with
1161 800U mL⁻¹ catalase, hpx low-density, BW25113 low-density, BW25113 mid-density, BW25113 high-density. Plating
1162 efficiency is calculated as the number of colonies counted divided by the number of colonies counted on non-selective TA
1163 agar plates without any additional treatment.

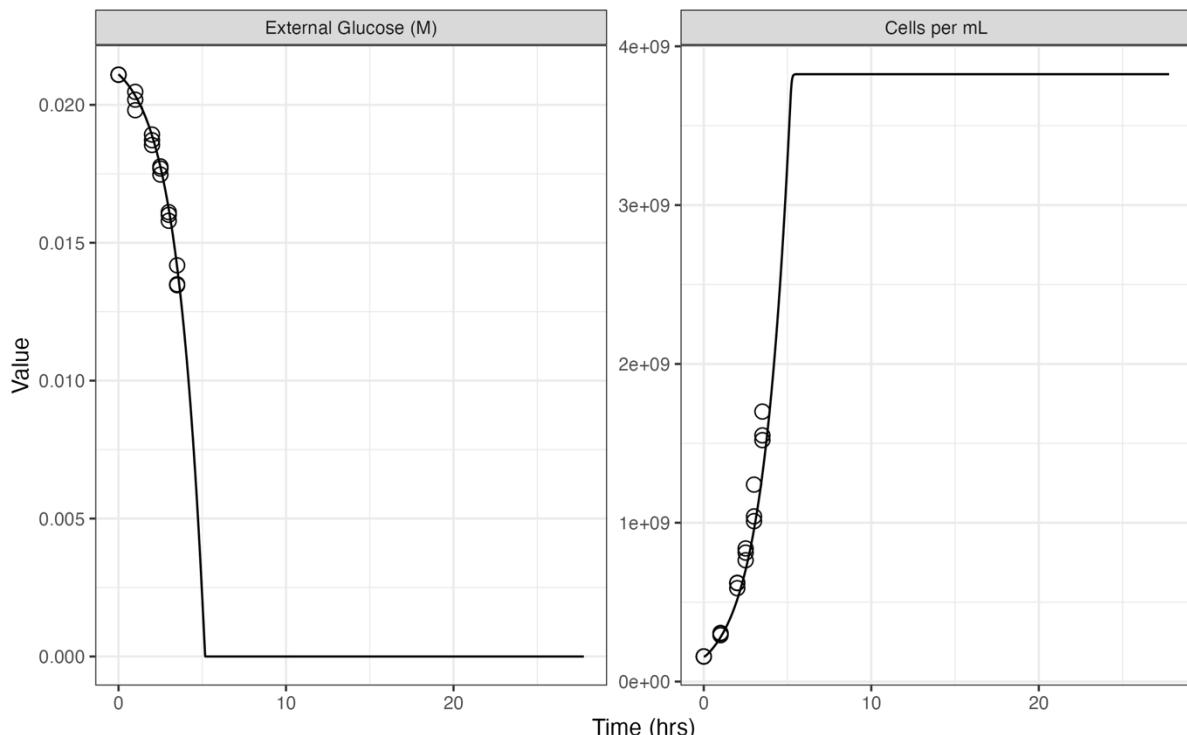
Histogram of initial population size across all fluctuation assays



1164
1165 **Figure S10. Distribution of initial population size across all fluctuation assays.** Mean = 3397, median = 3000. Low
1166 population size is desirable in order to reduce the chances of resistant mutants being present in the starting population
1167 ('jackpot cultures').



1168
1169 **Figure S11. DAMP is seen in the same set of treatments using Maximum Likelihood or p_0 estimation methods.**


1170 Treatments in which $8<$ fluctuation assays can be analysed by the p_0 method are shown. Colour indicates treatment
1171 identity. Treatments without DAMP in both methods (No DAMP:No DAMP) are: hpx + BW25113, hpx and MG1655
1172 anaerobic. Treatments with DAMP in both methods (DAMP:DAMP) are: BW25113 glucose, BW25113 LB and $hpx_{NaLR} +$
1173 BW25113. Treatments with reverse DAMP (a significantly positive association between mutation rate and population
1174 density; Reverse DAMP:Reverse DAMP) are BW25113 anaerobic LB and hpx_{NaLR} LB. No treatments show a change in
1175 conclusions between methods.

1176
1177 **Figure S12. Reduction of resorufin to dihydro resorufin by anaerobic respiration** results in reductions in
1178 absorbance at 670nm verifying the anaerobic conditions during anaerobic fluctuation assays. Each of 5 blocks is shown as a
1179 separate facet; within each block 2 sets of paired fluctuation assays (A&B) were conducted in aerobic and anaerobic
1180 conditions, for each of these sets 2-4 measurements of resorufin/dihydro resorufin absorbance were taken after 24 hours of
1181 growth.

1182
1183 *Figure S13. An assumption of 10% death has little effect on the estimation of DAMP slope. Solid lines indicate a*
1184 *slope of 0 (no DAMP), dashed line shows identical slope values for both estimates. All treatments remain in the same*
1185 *category (DAMP, no DAMP or reverse DAMP).*

1186
1187 *Figure S14. Fit of model variant A to published data. Lines show results of ODE model A and circles show data*
1188 *from (81) used to fit parameters U1 and M1. Left-hand panel shows the molar concentration of external glucose over time*
1189 *and right-hand panel shows E. coli cells per mL over time.*

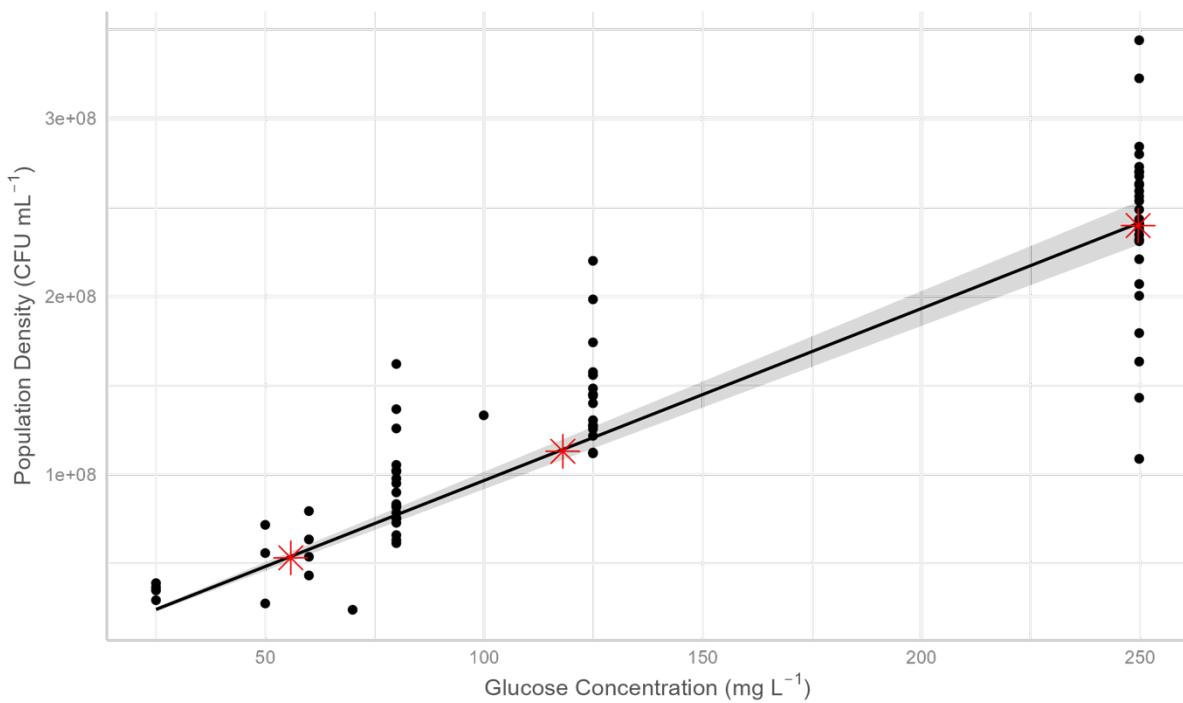


Figure S15. Fit of linear mixed effects model relating final population density to initial glucose concentration.

Used to fit parameter Met1 in ODE models. Black points show published lab data from (3) on population density and glucose provision in *E. coli* MG1655 used to fit this regression. Black line and shaded area show fitted relationship and 95% confidence interval respectively of a mixed effects model accounting for random effects of experimental block and plate. Red stars show output, in final population density, from initial ODE model A under differing initial glucose concentrations.

1190
1191
1192
1193
1194
1195

Treatment	Slope	Slope_CI95	pValue	ChiSq	FA	PC	Plasticity
ahpF LB	-0.239	0.435	0.281	1.16	17	266	Constant
BW25113 + hpx LB	-0.609	0.291	4.03E-05	16.9	31	498	DAMP
BW25113 anaerobic LB	0.637	0.414	0.00256	9.1	11	168	Reverse DAMP
BW25113 FeCl₂ LB	-0.794	0.212	2.36E-13	53.7	13	210	DAMP
BW25113 BiPy LB	-0.488	0.133	6.39E-13	51.7	24	382	DAMP
BW25113 LB	-0.724	0.121	8.17E-32	138	69	1106	DAMP
BW25113 Glc	-0.753	0.109	1.02E-41	183	59	942	DAMP
BW25113 H₂O₂ Glc	-0.725	0.283	4.98E-07	25.3	12	179	DAMP
BW25113 catalase Glc	-0.647	0.234	5.97E-08	29.4	11	167	DAMP
feoB LB	-0.621	0.381	0.00138	10.2	12	192	DAMP
fur LB	-0.161	0.162	0.0512	3.8	31	504	Constant
hpx + BW25113 LB	-0.276	0.493	0.272	1.2	13	207	Constant
hpx anaerobic LB	-0.0991	0.61	0.75	0.101	7	105	Constant
hpx LB	0.251	0.262	0.0603	3.53	26	402	Constant
hpx (NalR) + BW25113 LB	-0.925	0.535	7.04E-04	11.5	20	319	DAMP
hpx (NalR) LB	0.614	0.381	0.00159	9.97	24	388	Reverse DAMP
MG1655 anaerobic LB	0.119	0.704	0.74	0.11	11	173	Constant
MG1655 LB	-0.429	0.249	7.31E-04	11.4	18	285	DAMP
MG1655 Glc	-0.587	0.237	1.22E-06	23.5	17	273	DAMP

sodA LB	-0.623	0.233	1.55E-07	27.5	9	134	DAMP
sodB LB	-0.576	0.233	1.32E-06	23.4	10	151	DAMP
sodC LB	-0.447	0.342	0.0103	6.58	10	150	DAMP
tonB LB	-0.67	0.299	1.14E-05	19.3	7	113	DAMP

1198

1199 **Table S1: Slope estimates with associated Chi-Squared tests from Regression 4 (SI).** Slope indicates the log-log
 1200 relationship between population density and mutational events per mL minus 1 (1 is subtracted to make interpretation
 1201 simpler as a constant mutation rate is now defined by a slope of 0 rather than a slope of 1). Slope_CI95 indicates that a 95%
 1202 confidence interval on the slope estimate will be slope \pm slope_CI95. pValue is calculated from a Chi-Squared test (DF=1)
 1203 comparing the original slope value to the Null Hypothesis that the slope of the given treatment = 1 (slope = 1 when
 1204 mutation rate is constant with respect to population density); therefore in treatments in which the slope significantly differs
 1205 from 1 we have observed density associated mutation rate plasticity. FA and PC list the number of fluctuation assays and
 1206 parallel cultures used in the analysis respectively. Plasticity shows if the treatment shows a constant mutation rate, DAMP
 1207 (a significant inverse relationship between population density and mutation rate) or reverse DAMP (a significant direct
 1208 relationship between population density and mutation rate).

Genotype	Mutations	Missing Coverage
ahpF knockout (BW25113)	(gene: <i>lrhA</i> \leftarrow , position: 2399603, mutation: C to T, annotation: W173* (TGG \rightarrow TAG))	(gene: <i>ahpF</i> , position: 635078-636851)
feoB knockout (BW25113)	(gene: <i>lrhA</i> \leftarrow / \rightarrow <i>alaA</i> intergenic, position = 2400193, mutation: IS2 (+) +5bp, annotation: intergenic (-73/-843)) (gene: <i>fimE</i> \rightarrow , position = 2,400,193, mutation = IS1 (-) +9 bp, annotation = coding (12-20/597 nt))	(gene: <i>feoA-feoB-feoC</i> , position: 3533735-3536122)
fur knockout (BW25113)	(gene: <i>ynjl</i> \leftarrow / \leftarrow <i>topB</i> intergenic, position: 1,839,184, mutation: (A) ₈ \rightarrow (A) ₇ , annotation: intergenic (-56/+72)) (gene: <i>kgtP</i> \leftarrow / \leftarrow <i>rrfG</i> , position: 2,719,426, mutation: T \rightarrow C, annotation: intergenic (-321/+2)) (gene: <i>ytfT</i> \rightarrow , position: 4,442,904, mutation: G \rightarrow A, annotation: G173R (GGA \rightarrow AGA))	(gene: <i>fur-uof</i> , position: 705581-706177)
hpx⁻ (MG1655)	(gene: <i>insB9-[crl]</i> , position: 257,908, mutation: Δ 776 bp) (gene: <i>ybiT</i> \rightarrow / \leftarrow <i>ybiU</i> , position: 857,609, mutation: C \rightarrow A, annotation: intergenic (+54/+187)) (gene: <i>ymfE</i> \leftarrow / \rightarrow <i>lit</i> , position: 1,198,505, mutation: (AATGATGA) ₆ \rightarrow (AATGATGA) ₇ , annotation: intergenic (-268/-190)) (gene: <i>insH21</i> , position: 1,299,499, mutation: Δ 1,199 bp) (gene: <i>insB5-insA5</i> , position: 1,978,503, mutation: Δ 776 bp) (gene: <i>gatD</i> \leftarrow / \leftarrow <i>gatB</i> , position: 2,173,363, mutation: Δ 2 bp, annotation: intergenic (-490/+918))	(gene: <i>ahpC-ahpF</i> , position: 638661-641020) (gene: <i>rrlD</i> , position: 3423791-3424238) (gene: <i>fecD</i> , position: 4511728-4511917)

	(gene: <i>rtcR</i> → / ← <i>glpG</i> , position: 3,560,455, mutation: +G, annotation: intergenic (+589/+167)) (gene: <i>frwC</i> →, position: 4,143,377, mutation: C→T, annotation: S283L (TCA→TTA)) (gene: <i>gltP</i> → / ← <i>yjcO</i> , position: 4,296,381, mutation: +GC, annotation: intergenic (+587/+55))	
hpx⁻nalR (D87Y) (MG1655)	(gene: <i>rrfH</i> →, position: 228,796, mutation: G→A, annotation: noncoding (41/120 nt)) (gene: <i>insB9-[crl]</i> , position: 257,908, mutation: Δ776 bp) (gene: <i>ybiT</i> → / ← <i>ybiU</i> , position: 857,609, mutation: C→A, annotation: intergenic (+54/+187)) (gene: <i>insH21</i> , position: 1,299,499, mutation: Δ1,199 bp) (gene: <i>azoR</i> ←, position: 1,482,580, mutation: G→A, annotation: A94V (GCA→GTA)) (gene: <i>motB</i> ←, position: 1,976,012, mutation: G→A, annotation: P82S (CCA→TCA)) (gene: <i>insB5-insA5</i> , position: 1,978,503, mutation: Δ776 bp) (gene: <i>gatD</i> ← / ← <i>gatB</i> , position: 2,173,363, mutation: Δ2 bp, annotation: intergenic (-490/+918)) (gene: <i>gyrA</i> ←, position: 2,339,162, mutation: C→A, annotation: D87Y (GAC→TAC)) (gene: <i>ygdQ</i> →, position: 2,970,579, mutation: Δ1 bp, annotation: coding (160/714 nt)) (gene: <i>rtcR</i> → / ← <i>glpG</i> , position: 3,560,455, mutation: +G, annotation: intergenic (+589/+167)) (gene: <i>frwC</i> →, position: 4,143,377, mutation: C→T, annotation: S283L (TCA→TTA)) (gene: <i>gltP</i> → / ← <i>yjcO</i> , position: 4,296,381, mutation: +GC, annotation: intergenic (+587/+55))	(gene: <i>ahpC-ahpF</i> , position: 638630-641000) (gene: <i>rrlD</i> , position: 3423717-3424239)

hpx⁻nalR (D87G) (MG1655)	(gene: insB9-[crl], position: 257,908, mutation: Δ776 bp) (gene: ybiT → / ← ybiU, position: 857,609, mutation: C→A, annotation: intergenic (+54/+187)) (gene: ymfE ← / → lit, position: 1,198,505, mutation: (AATGATGA) ₆ →(AATGATGA) ₇ , annotation: intergenic (-268/-190)) (gene: insH21, position: 1,299,499, mutation: Δ1,199 bp) (gene: insB5–insA5, position: 1,978,503, mutation: Δ776 bp) (gene: gatD ← / ← gatB, position: 2,173,363, mutation: Δ2 bp, annotation: intergenic (-490/+918)) (gene: gyrA ←, position: 2,339,162, mutation: T→C, annotation: D87G (GAC→GGC)) (gene: rtcR → / ← glpG, position: 3,560,455, mutation: +G, annotation: intergenic (+589/+167)) (gene: waaU ←, position: 3,799,310, mutation: C→A, annotation: M1M (ATG→ATT)) (gene: frwC →, position: 4,143,377, mutation: C→T, annotation: S283L (TCA→TTA)) (gene: gltP → / ← yjcO, position: 4,296,381, mutation: +GC, annotation: intergenic (+587/+55))	(gene: <i>ahpC-ahpF</i> , position: 638651-641053) (gene: <i>rrlD</i> , position: 3423755-3424238)
tonB knockout (BW25113)	(gene: <i>fhhD</i> ← / → <i>uspC</i> , position: 1,972,749, mutation: IS5 (+) +3 bp :: +C, annotation: intergenic (-295/-483))	(gene: <i>tonB-yciA</i> , position: 1305230-1306150)

1209
1210
1211

Table. S2: Mutations, missing coverage and new junction evidence for key strains in this study as predicted by variant calling with breseq.

1212
1213

Data Table Name	Column Name	Description
SupData1_Fluctuation Assays.csv	assay_ID	Unique identifier for the fluctuation assay
	block	Experimental block
	date	Date of assay start
	plate_ID	Experimental plate
	External_Treatment	Any additions made to the growth media
	genotype	Identifier for the focal strain genotype
	Selective_marker	Antibiotic used as a selective marker (rif for rifampicin; nal for nalidixic acid)
	stock	Identifier for the glycerol stock used

coculture_strain	Identifier for the genotype of a cocultured strain
coculture_ID	Identifier for the coculture giving the two strains in a fixed order
genotype2	Identifier for the coculture giving the focal strain first
Media	Basic growth media used (DM = Davis Minimal Media)
LB_perc	Percentage LB added to the media (i.e. 2% = 440 µL in 22mL)
GlcMedia	Was glucose used as the nutrient source (y for yes; n for no)
Mut_to_WT_ratio	Ratio of the volume of mutant cell culture to wild-type in the parallel cultures (i.e. in a 1.25mL culture if 1.24mL of mutant culture is added to 10µL wt culture the ratio will be 24)
glucose	The initial glucose concentration in mg per L
N0_ul	The volume of the initial culture plated to calculate the N0 (initial population size) in µL .
N0_CFU_nx	CFU on the N0 plate containing nalidixic acid
N0	Initial population size (N0_CFU multiplied by fluctuation_volume_t0 divided by the N0_ul)
N0_culture	Initial population size of the coculture strain
N0_gen_to_co_ratio	N0 of the focal strain divided by the N0 of the coculture strain
Nt1_CFU_nx	CFU on the 1 st Nt plate containing nalidixic acid
Nt2_CFU_nx	CFU on the 2 nd Nt plate containing nalidixic acid
Nt3_CFU_nx	CFU on the 3 rd Nt plate containing nalidixic acid
Nt1_CFU	CFU on the 1 st Nt plate
Nt2_CFU	CFU on the 2 nd Nt plate
Nt3_CFU	CFU on the 3 rd Nt plate
N0_CFU	CFU on the N0 plate
Nt1_nx	Estimated final population size from Nt1_CFU_nx (Nt1_CFU_nx multiplied by Nt_dilution_nx multiplied by the final culture volume divided by 40µL (the Nt plating volume)).
Nt2_nx	Estimated final population size from Nt2_CFU_nx (Nt2_CFU_nx multiplied by Nt_dilution_nx multiplied by the

	final culture volume divided by 40 μ L (the Nt plating volume).
Nt3_nx	Estimated final population size from Nt3_CFU_nx (Nt3_CFU_nx multiplied by Nt_dilution_nx multiplied by the final culture volume divided by 40 μ L (the Nt plating volume).
Nt1	Estimated final population size from Nt1_CFU (Nt1_CFU multiplied by Nt_dilution multiplied by the final culture volume divided by 40 μ L (the Nt plating volume).
Nt2	Estimated final population size from Nt2_CFU (Nt2_CFU multiplied by Nt_dilution multiplied by the final culture volume divided by 40 μ L (the Nt plating volume).
Nt3	Estimated final population size from Nt3_CFU (Nt3_CFU multiplied by Nt_dilution multiplied by the final culture volume divided by 40 μ L (the Nt plating volume).
environment	The glucose concentration of LB percentage used as nutrient source.
CI_range_coculture_strain	Upper bound of the estimated m for the coculture strain minus the lower bound of the m estimate for the coculture strain
CI_range_genotype	Upper bound of the estimated m for the focal strain minus the lower bound of the m estimate for the focal strain
fluctuation_volume_t0	Initial fluctuation assay volume for each parallel culture (in μ L)
culture_volume_final	Final volume for each parallel culture calculated as fluctuation_volume_t0 minus the difference between initial and final weight of the plate divided by the 96 wells. This accounts for evaporation during the incubation.
coculture	Is this a coculture of two strains (y for yes; n for no)
D_gen_nx	The CFU density per mL as calculated from Nt plates containing nalidixic acid. The mean of the Nt_nx estimates multiplied and by the ratio of the plated volume (40 μ L) to the scaled volume (1000 μ L).
D_gen_all	The CFU per mL as calculated from Nt plates with and without nalidixic acid. The mean of the Nt_nx estimates and

	Nt estimates multiplied by the ratio of the plated volume (40 μ L) to the scaled volume (1000 μ L) (40/1000=25).
D_genotype	The CFU per mL as calculated from Nt plates not containing nalidixic acid. The mean of the Nt estimates multiplied by the ratio of the plated volume (40 μ L) to the scaled volume (1000 μ L).
D_coculture_strain	The density of the coculture strain in CFU per mL.
D_total	The total CFU density per mL (focal + coculture strain).
generations	The estimated number of generations as the log of the final population size minus the log of the initial population size all divided by the log of 2
generations_coculture_strain	Estimated generations of the coculture strain
incubation_mins	Incubation time for the fluctuation assay parallel cultures.
m_coculture_strain	Estimated average number of mutational events in each parallel culture of the coculture strain
m_genotype	Estimated average number of mutational events in each parallel culture of the focal strain
m_lower_genotype	Lower bound of 95% CI on the estimate of m
m_upper_genotype	Upper bound of 95% CI on the estimate of m
mut_fitness_genotype	Estimated fitness ratio of the wild-type strain to the mutants with rif or nal resistance.
FlanWarnings	Any warnings given by the 'flan' r package in estimating m
m_lower_coculture_strain	Lower bound of 95% CI on the estimate of m for the coculture strain
m_upper_coculture_strain	Upper bound of 95% CI on the estimate of m for the coculture strain
mutation_rate_coculture_strain	Mutation rate of the coculture strain calculated as the estimated m divided by Nt_genotype and then multiplied by 1x10 ⁹
mutation_rate_gen_all	Mutation rate of the coculture strain calculated as the estimated m divided by Nt_gen_all and then multiplied by 1x10 ⁹
mutation_rate_gen_allL	Lower bound of the mutation rate of the coculture strain calculated as the estimated lower bound of m divided

	by Nt_gen_all and then multiplied by 1×10^9
mutation_rate_gen_allU	Upper bound of the mutation rate of the coculture strain calculated as the estimated upper bound of m divided by Nt_gen_all and then multiplied by 1×10^9
mutation_rate_gen_nx	Mutation rate of the coculture strain calculated as the estimated m divided by Nt_gen_nx and then multiplied by 1×10^9
mutation_rate_gen_nxL	Lower bound of the mutation rate of the coculture strain calculated as the estimated lower bound of m divided by Nt_gen_nx and then multiplied by 1×10^9
mutation_rate_gen_nxU	Upper bound of the mutation rate of the coculture strain calculated as the estimated upper bound of m divided by Nt_gen_nx and then multiplied by 1×10^9
mutation_rate_genotype	Mutation rate of the coculture strain calculated as the estimated m divided by Nt_genotype and then multiplied by 1×10^9
mutation_rate_genotype_lowr	Lower bound of the mutation rate of the coculture strain calculated as the estimated lower bound of m divided by Nt_genotype and then multiplied by 1×10^9
mutation_rate_genotype_uppr	Upper bound of the mutation rate of the coculture strain calculated as the estimated upper bound of m divided by Nt_genotype and then multiplied by 1×10^9
Mutations_per_generation	m_genotype divided by generations
N_cultures	Number of parallel cultures plated on selective (rif or nal) agar
Nt_gen_all	The mean of Nt1,Nt2,Nt3,Nt_nx_1,Nt_nx_2,Nt_nx_3
Nt_gen_nx	The mean of Nt_nx_1,Nt_nx_2,Nt_nx_3
Nt_genotype	The mean of Nt1,Nt2,Nt3
Nt_coculture_strain	The estimated final population size for the coculture strain
Nt_CV	The coefficient of variability between Nt1, Nt2 and Nt3 (Standard deviation divided by mean value)

Nt_dilution_nx	Dilution factor for Nt plates on nalidixic acid
Nt_dilution	Dilution factor for Nt plates on non-selective agar
Nt_N0_ratio	Ratio of final to initial population size
Nt_SD	Standard deviation between the 3 estimates of Nt1,2 and 3
Nt_total	Nt_genotype plus Nt_coculture_strain
sd_m_coculture_strain	Calculated as in (98): $\frac{1.225 \times m^{0.315}}{\sqrt[2]{N_cultures}}$ for the coculture strain
sd_m_genotype	Calculated as in (98): $\frac{1.225 \times m^{0.315}}{\sqrt[2]{N_cultures}}$ for the focal strain
Sel_CFU1-19	Number of mutant colonies counted in each parallel culture.
Treatment	Concatenation of: genotype2, Oxygen, External_treatment, GlcMedia
Weight0	Initial weight of the deep-96 well plate in grams
Weight24	Final weight of the deep-96 well plate in grams
Abs_670_res	Mean of Abs_670_res1-4
Abs_670_res1-4	Measurements of absorbance at 670nm of resazurin, MG cultures at the end of the fluctuation assay growth. Used as an indicator of anaerobiosis.
Layout	Plate layout used (for anaerobic assays a parallel aerobic assay plate was carried out with an identical layout, aside from this all layouts are randomly generated and unique).
MutationFrequency	Mean of Sel-1-19 divided by Nt_genotype multiplied by 1×10^9
Oxygen	Presence of oxygen (+ for aerobic; - for anaerobic)
Notes	Any notes, e.g. on contamination, for the given assay.
w_relative	Relative fitness of the focal strain to the coculture strain
Experimenter	Initials of the experimenter
N0_rep1-3	CFU counts on 3 N0 plates. (For some coculture repeats N0 was plated 3 times and a mean used rather than a single plating. This was done for more accurate relative fitness estimations in some cocultures.)
D_perc_gen	D_genotype divided by D_total multiplied by 100 to give a percentage

		of the final density made up by the focal strain
	NO_mean_of_3	Mean of N0_rep1-3
SupData2_Peroxide.cs	Well	Location of the sample in the 96 well plate
v	Sample	Arbitrary identifier for the 3 repeats from a single sample+AUR reaction
	PriorAvg	Measurement of background fluorescence prior to HRP addition to the reaction averaged across the 3 replicates
	PostAvg	Measurement of fluorescence immediately after HRP addition to the reaction averaged across the 3 replicates
	Post2Avg	Measurement of fluorescence ~1 minute after HRP addition to the reaction averaged across the 3 replicates
	PriorRaw	Measurement of background fluorescence prior to HRP addition to the reaction for the individual well
	PostRaw	Measurement of fluorescence immediately after HRP addition to the reaction for the individual well
	Post2Raw	Measurement of fluorescence ~1 minute after HRP addition to the reaction for the individual well
	OD_bc	Optical density of the sample prior to filter sterilisation for H ₂ O ₂ measurement
	time	Time in hours from the start of the cultures growth at which the samples were taken for measurement
	AddH2O2	Additional H ₂ O ₂ in the standards from diluted 3% H ₂ O ₂
	Strain	Identity of the bacterial strain used
	Glucose	Concentration of glucose in mg per L
	LB	Percentage of LB i.e. 2% would equate to 440µL in 22mL of davis minimal media
	Catalase	Units per mL of catalase added
	RepNum	Repeat number where the same treatment was included twice in the same experimental plate from independent cultures
	Week	Identifier for the start date of the experiment
	Block	Identifier for the experimental block

CellRemovalMethod	Method of cell removal (syringe is filtration through a 0.22 μ m PES filter)
GAIN	The set gain on the plate reader for fluorescence readings
Treatment	Concatenation of Strain, LB, Catalase, Glucose
NetAvg	PostAvg – PriorAvg
NetFU	PostRaw – PriorRaw
Repeat	Concatenation of Treatment, RepNum
Nutrient	Nutrient source (LB for lysogeny broth or Glc for glucose)

1214
1215
1216

Table. S3: Descriptions for columns in supplementary data tables SupData2_Peroxide.csv and SupData1_FluctuationAssays.csv .

1217
1218

Supplementary Files:

1219 **00_SupCode1.R:** R code necessary to recreate ODE modelling (Fig. 1, 2, S1, S2, S14, S15)
1220 **00_SupCode2.R:** R code necessary to recreate lab work analysis (Fig. 3, 4, S3, S4, S5, S6, S7, S8, S9,
1221 S10, S11, S12, S13)
1222 **SupplementaryStats.docx:** Details of statistical models used in this study.
1223 **SupData1_FluctuationAssays.csv:** Data from fluctuation assays needed to run 00_SupCode2.R
1224 **SupData2_Peroxide.csv:** Data from amplex ultra-red peroxide assays needed to run 00_SupCode2.R
1225 **SupData3_Jain09.txt:** Data available from (81) used to fit U1 parameter in 00_SupCode1.R
1226 **SupData4_Krasovec2017.txt:** Data available from (3) used to fit Met1 parameter in 00_SupCode1.R
1227