

1 **Integrative Transcriptomic Analysis of Anterior and Posterior IOP-Controlling**
2 **Tissues in Glaucoma Reveals Enrichment of MHC-II Pathway and T-Cell**
3 **Infiltration Signatures**
4

5 Shuxin Liang^{a,c}, Shichen Zhang^{a,c}, Hongqiu Wang^a, Shaojun Tang^{a,b*}

6 a. The Hong Kong University of Science and Technology (Guangzhou)
7 b. The Hong Kong University of Science and Technology
8 c. The authors wish it to be known that the first two authors should be regarded as co-
9 first authors

10 **Abstract**

11 **Background** Glaucoma is a multifactorial neurodegenerative disease indicating by
12 abnormalities in the whole eye, apart from optic neuropathy, and is often associated
13 with abnormal intraocular pressure (IOP). However, the underlying pathological
14 mechanisms of glaucoma and the management of IOP remain largely unaddressed.
15 Emerging evidence suggests the involvement of immune changes in glaucoma.
16 Therefore, characterizations of immune alternations by molecular profiling of IOP-
17 controlling tissues from both anterior and posterior eye segments including trabecular
18 meshwork (TM) and choroid may provide insights to the disease mechanism.

19 **Methods** Bulk TM microarray data (GSE138125 and GSE27276) from primary open-
20 angle glaucoma (POAG) and choroid single-cell transcriptome data (GSE203499) from
21 glaucoma were downloaded from Gene Expression Omnibus (GEO) database. The two
22 qualified TM datasets were integrated. Analyses of differential expression genes
23 (DEGs), functional and pathway annotations, immune infiltration, and disease-related
24 modules were performed using the POAG bulk data. Similarly, DEGs and pathway
25 annotations, single-cell trajectory and switch gene analysis, and cell-cell
26 communications were conducted using the choroid single-cell RNA-sequencing data.
27 Finally, integrated analyses from the two studies were conducted to determine the
28 glaucomatous changes between anterior and posterior IOP-controlling eye tissues.
29

30 **Results** A total of 102 DEGs between POAG and healthy tissues were identified from
31 the TM data. Gene set enrichment analysis revealed five glaucoma-enriched pathways:
32 ATP generation and metabolism, cornification and keratinization, metabolism of
33 reactive oxygen species (ROS), humoral immune response, and platelet aggregation.
34 Significant immune infiltrations were observed in POAG tissue, including total T cells
35 (excluding CD8⁺ T cells), NK cells, monocytic lineage, endothelial cells, and
36 fibroblasts. Furthermore, the POAG enriched pathways are primarily from T-cell
37 infiltrations. On the other hand, fourteen distinct cell clusters were identified from the
38 TM data.

39 choroid single-cell data. The most evident findings were fibrosis, represented by
40 extracellular matrix (ECM), the actin-binding pathways enrichment in pericyte-
41 fibroblast transition, reduction in light sensitivity of melanocytes, and complex immune
42 changes among all cell types in the pathological conditions compared to control. Taken
43 together, an integrated analyses between the TM microarray and choroid single-cell
44 data result in 111 significantly dysregulated genes in the disease state. These key genes
45 participated in immune and inflammatory reactions (DUSP1, ADM, CD74, CEBPD,
46 HLA-DPA1, ZNF331), served as potential biomarkers for neurodegenerative and
47 autoimmune diseases (such as NR4A2), or regulated membrane integrity, vasculature
48 calcification, ECM interactions, and cell morphology (PTP4A1, MGP, and RASD1).
49 Overall, our integrated data analyses might provide insight to the understanding of the
50 disease mechanism.

51

52 **Conclusion** By integrating bulk microarray data from TM and single-cell transcriptome
53 data from the choroid, we systematically evaluated the glaucomatous transcriptomic
54 changes between the anterior and posterior IOP-controlling tissue from ocular. Results
55 indicated there was a significantly enrichment of genes belonging to the MHC-II
56 pathway and T-cell infiltration in the disease state, opening new avenues for biomarkers
57 discovery and therapeutic interventions to glaucoma.

58

59

60 **Background**

61 Glaucoma, a neurodegenerative eye disease, stands as the leading cause of irreversible
62 blindness worldwide, with primary open-angle glaucoma (POAG) being the most
63 prevalent subtype ^{1,2}. Despite extensive research efforts dedicated to understanding this
64 disease, its underlying pathological mechanisms remain elusive, impeding the
65 development of effective strategies for early screening, diagnosis, and treatment
66 ³. Notably, glaucoma is recognized as a multifactorial condition, with pathological
67 changes detectable throughout the entire eye, beyond optic neuropathy ⁴. This suggests
68 that glaucomatous pathologies manifest across various structures, ranging from the
69 anterior chamber and trabecular meshwork to the choroid, retina, and optic nerves ^{2,4-6}.
70 Among the multiple factors contributing to glaucoma, elevated or fluctuating
71 intraocular pressure (IOP) emerges as the most significant characteristic in the majority
72 of POAG cases, surpassing factors such as age, race, and family history ⁷. Excessive
73 production or impaired drainage of aqueous humor (AH) in the anterior chamber of the
74 eye serves as the primary cause of abnormal IOP ⁸.

75

76 The trabecular meshwork (TM), situated in the anterior segment of the eye, serves as
77 the primary pathway for AH outflow, distinct from the uveoscleral outflow route,
78 commonly referred to as the conventional pathway. In the context of POAG, where
79 there are no obstructions narrowing or closing the anterior chamber angle, the TM plays
80 a crucial role ^{9,10}. Extensive evidence supports the presence of pathological changes
81 within the TM in POAG, including increased resistance, thickening, and a reduction in

82 TM surface area. However, the molecular mechanisms underlying these abnormalities
83 are not yet fully understood¹¹⁻¹⁴.

84

85 As depicted in **Fig. 1**, the human TM (hTM) is composed of three distinct regions: the
86 corneoscleral, uveal, and juxtacanalicular portions, extending from the iris to the
87 Schlemm's canal¹⁵. The TM cells (TMCs) in the first two regions establish direct
88 communication with the AH, forming a single layer and resting on a basement
89 membrane. These cells cover an area constructed by collagen and elastin fibers and
90 exhibit characteristics of both endothelial cells and macrophages. On the other hand,
91 TMCs in the juxtacanalicular portion are dispersed within the extracellular matrix
92 (ECM) and exhibit fibroblast and smooth muscle cell-like properties^{11,16}. Therefore, it
93 is highly plausible that the pathological changes in the TM and their impact are
94 multifaceted. Notably, the endothelial cell and macrophage characteristics of TMCs
95 suggest their potential involvement in regulating oxidative stress and immune
96 mediation.

97

98 Apart from the TM, it is important to acknowledge the significance of the choroid,
99 which contribute to the uveoscleral outflow of the AH. The choroid is a vascular
100 tissue layer that located between the retina and the sclera. It serves as a supplier of
101 oxygen and nutrients to the outer layer of the retina and plays a crucial role in regulating
102 IOP¹⁷⁻²⁰. Similar to other blood vessels, the choroid is immunocompetent and
103 composed of endothelial cells, pericytes, fibroblasts, melanocytes, and macrophages¹⁷.
104 As the nourishing tissue of the posterior segment of the ocular adjacent to the blood-
105 retina barrier, it has an important role in glaucoma.

106

107 The immune aspects of glaucoma research deserve attention. The ocular system is
108 immunoprivileged and maintains a state of immunosuppression. However, the
109 influence of immune activation or disorders in glaucoma cannot be overlooked^{21,22}.
110 Immunotherapy holds promise for the management and treatment of glaucoma.
111 Evidence suggests the presence of activated innate and adaptive immune responses in
112 glaucoma²². For instance, glial cells such as microglia, astrocytes, and Müller cells,
113 which contribute to immune surveillance in the retina, have been found to be activated
114 in the early stages of glaucoma²³. Moreover, a correlation has been observed between
115 elevated IOP and T cell-mediated autoimmunity, particularly in relation to HSP-
116 specific responses²⁴. However, the specific HSP antigen and its interaction with distinct
117 subtypes of T cells, leading to dominant roles in cross-immune reactions, remain
118 unknown²⁵. Furthermore, the evidence is limited to the presence of autoantibodies in
119 peripheral blood and relative changes in the neural retina. Given the
120 immunomodulatory capabilities of the TM and choroid, it is worth investigating their
121 roles in glaucoma, particularly in relation to immune-related changes.

122

123 In this study, our focus was on investigating gene expression patterns in the TM of
124 patients with POAG. To ensure robust results and analyze a larger sample, we selected
125 and integrated two qualified microarray datasets from the Gene Expression Omnibus

126 (GEO) database. We employed gene set enrichment analysis (GSEA) and identified
127 differentially expressed genes (DEGs) between the TM of POAG patients and control
128 subjects. To gain further insights into the biological changes associated with POAG,
129 we performed Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and
130 Genomes (KEGG) pathway analysis on the DEGs, confirming the presence of
131 abnormalities in the identified genes.

132

133 To explore potential hub genes related to POAG, we constructed a protein-protein
134 interaction (PPI) network using the Search Tool for the Retrieval of Interacting Genes
135 (STRING) database and Cytoscape. Through this analysis, we identified thirty
136 suspected hub genes. Additionally, we performed immune cell type deconvolution
137 analysis to study the infiltration of primary immune cells, endothelium, and fibroblasts.
138 The results of this analysis were incorporated as clinical traits in weighted correlation
139 network analysis (WGCNA) to identify POAG-related gene modules and their
140 association with immune changes.

141

142 To compare changes in the anterior and posterior segments of the glaucomatous eye,
143 we analyzed single-cell transcriptome data from the choroid of patients with glaucoma,
144 which has not been published previously. We performed DEGs analysis, pathway
145 annotations, trajectory and switch gene analyses, and assessed cell communication. By
146 comparing these findings with the results obtained from the integrated TM datasets, we
147 aimed to obtain a comprehensive understanding of tissue abnormalities related to AH
148 drainage and IOP regulation. Our analyses also shed light on the role of these
149 abnormalities in immune disorders and the pathology of glaucoma.

150

151 **Methods**

152 **TM datasets**

153 **Dataset selection and data preprocessing**

154 Data from the GEO (<https://www.ncbi.nlm.nih.gov/geo/>)²⁶ consisting of TM subjects
155 with and without POAG, was downloaded. The search using keywords: primary open-
156 angle glaucoma, POAG, trabecular meshwork, TM, Homo sapienS, and human, yielded
157 three datasets: GSE138125, GSE27276, and GSE4316. However, GSE4316 was
158 excluded due to its small sample size and suspiciously low-quality data²⁷.

159

160 After removing the lncRNA probes in GSE138125 and transforming the gene IDs, the
161 mRNA data from the two log2-transformed datasets were merged into a single file.
162 Only reads that were detected in both datasets were retained. Then, lowly expressed
163 genes were filtered based on their counts per million values, ensuring that they were
164 greater than 1 in over half of the samples.

165

166 To address batch effects, Combat normalization was performed using the SVA package
167 ²⁸ in R (Version 4.1.1). Finally, the distribution of samples based on gene expression
168 profiles from different groups and datasets was visualized through principal component
169 analysis (PCA) using the R packages FactoMineR ²⁹ and factoextra ³⁰.

170

171 **Differential expression and pathway enrichment analysis**

172 The limma R package ³¹ was employed to identify DEGs between POAG and control
173 (normal) participants. DEGs were determined based on the criteria of $|\log_2\text{FC}| > 1$ with
174 an adjusted P value (*adj.P*) < 0.05 . Subsequently, a volcano plot was generated using
175 the ggplot2 package ³², and a heatmap illustrating all the DEGs was created using the
176 pheatmap package ³³. To gain a deeper understanding of the biological functions
177 associated with the DEGs, a hierarchical clustering of genes into three levels was
178 performed for GO-based biological processes (BP) annotation analysis. Additionally,
179 both GO ³⁴ term and KEGG ³⁵ pathway analyses were conducted using the
180 clusterProfiler R package ³⁶ to provide further pathway information related to the DEGs.
181 The obtained information was visualized using the enrichplot ³⁷ and ggplot2 R packages.
182 Furthermore, GSEA was conducted using the clusterProfiler R package with a
183 significance threshold of *P.Val* < 0.05 , and the results were visualized using the
184 enrichplot R package.

185

186 **STRING and PPI network analysis and hub gene identification**

187 Protein-protein interaction (PPI) networks of the DEGs were constructed using the
188 STRING database (<https://string-db.org/>) ³⁸. In the PPI network, each pair of interactors
189 among the DEGs possessed a combined confidence score of at least 0.4. To identify
190 hub genes within the PPI networks, the cytoNCA ³⁹ and CytoHubba ⁴⁰ plugins of the
191 Cytoscape software (version 3.9.1) ⁴¹ were utilized to analyze the level of connectivity.
192 Based on the Maximal Clique Centrality (MCC) scores ⁴⁰, the top 30 potential hub
193 genes were selected, and the PPI networks were visualized using the Cytoscape
194 software. Furthermore, the gene expression profiles of the 30 potential hub genes were
195 plotted using the ggplot2 package after undergoing the Wilcoxon test. To evaluate the
196 predictive efficiency for POAG, receiver operating characteristic (ROC) analysis was
197 performed using the pROC R package ⁴².

198

199 **Immune cell type deconvolution analysis**

200 The MCP-counter R package, which quantifies the abundance of distinct immune cells
201 utilizing specific molecular markers ⁴³, was employed to assess immune infiltration in
202 each sample. Moreover, Wilcoxon tests were conducted to compare the infiltration
203 levels of individual immune and stromal cell types between the POAG and control
204 groups.

205

206 **WGCNA analysis**

207 A gene co-expression network was constructed using the WGCNA R package ⁴⁴.
208 Initially, the pickSoftThreshold function was utilized to determine the optimal power
209 value for aligning the gene distribution with a connection-based scale-free network.
210 Subsequently, the adjacencies were transformed into a topological overlap matrix
211 (TOM), enabling the grouping of genes with similar expression patterns into distinct
212 modules. A minimum genome of 30 was employed for the gene tree, and a tangent of

213 0.25 was utilized for the module tree, resulting in the formation of diverse modules.
214 Modules exhibiting similar gene distribution were merged to form new modules.

215
216 Following the WGCNA analysis, a correlation analysis was conducted between the
217 outcomes of the immune infiltration analysis and the co-expression modules enriched
218 by WGCNA. Consequently, it was observed that the two most POAG-related modules
219 exhibited a strong correlation with immune infiltration. Subsequently, the module
220 eigengene-based connectivity was calculated to identify hub genes for further
221 investigation. Hub genes were selected based on an absolute eigengene-based
222 connectivities (kME) value higher than 0.8 for the two modules.

223
224 **Functional analysis of POAG-related module genes from WGCNA**

225 The PPI networks of the hub genes of the two modules were constructed using STRING
226 and high-resolution bitmaps were downloaded (each pair of interactors in the hub genes
227 had a combined confidence score of no less than 0.4). GO analysis was performed using
228 R software to study the main biological functions of the genes.

229
230 **Choroid Dataset**

231 **Dataset selection and data preprocessing**

232 Single-cell RNA sequencing data were obtained from the GEO dataset GSE203499,
233 which does not have any previously reported articles associated with it. The dataset
234 comprised of 11 patients with varying degrees of age-related macular degeneration
235 (AMD), along with individuals suffering from cataracts, glaucoma, or hypertension.
236 Choroidal samples were collected from patients diagnosed with early AMD and
237 glaucoma, as well as from a control group with early AMD and a normal phenotype.
238 This sampling strategy was employed to minimize the confounding effects of early
239 AMD disease.

240
241 To analyze the data at the single-cell level, we utilized R (version 4.1.2) and Seurat
242 (version 4.1.0) software ⁴⁵. We initially applied the emptyDrop and
243 PercentageFeatureSet functions to remove empty droplets and calculate mitochondrial
244 gene percentages, respectively. Subsequently, we filtered out cells with feature counts >
245 4600, < 200, and > 25% mitochondrial transcripts to eliminate the effects of empty
246 droplets, multiple droplets, and dead cells. Following this filtering step, we retained
247 27,686 cells containing 31,679 genes for downstream analysis.

248
249 For cell cycle analysis, we selected genes from the GO:0007049, GO:0044843, and
250 GO:1902749 pathways, and then scored the cell cycles using the CellCycleScoring
251 function. Next, log normalization was performed, and highly variable expression genes
252 were selected using the VariableFeatures function for PCA downscaling. The top ten
253 principal components were identified and used for clustering with a resolution of 0.6,
254 determined via the ScoreJackStraw function and elbow plot. To visualize the results,
255 we employed t-SNE and UMAP visualization techniques. Furthermore, specific marker
256 genes in each cell cluster were identified using the FindAllMarkers function in the

257 Seurat package.. Subsequently, we classified all choroidal cells into 14 distinct cell
258 types using the marker genes provided in the cellmarker2.0 database.

259

260 **Differential gene expression and pathway enrichment analyses**

261 To identify DEGs between patients with and without glaucoma, we performed
262 differential gene expression analysis using the FindMarkers function in the Seurat
263 package. DEGs between normal and glaucomatous tissues were selected based on an
264 *adj.P* < 0.05 and *logFC* > 0.58. Furthermore, we also identified DEGs in specific cell
265 types. The up- and down-regulated DEGs were subjected to GO, KEGG, and Reactome
266 ⁴⁶ pathway enrichment analyses using the clusterProfiler package. Pathways with a
267 *P.Val* < 0.05 were considered statistically significant.

268

269 **Trajectory analysis and switch gene analysis**

270 Pseudotime analysis was employed to infer the developmental trajectories of individual
271 cells using transcriptomic data collected at different time points.
272 This analysis provides valuable insights into cellular lineage trajectories and the role of
273 specific genes in this process. For pseudotime analysis, we utilized the monocle2 and
274 monocle3 packages ⁴⁷⁻⁴⁹ with default parameters. Separate analyses were performed on
275 immune cells, melanocytes, and fibroblast-epithelial-peripheral cell populations.

276

277 Gene switch analysis is a method employed to identify genes that exhibit differential
278 expression during cell differentiation or transformation, thereby potentially playing
279 crucial roles in cellular development and differentiation. In this study, we utilized the
280 GeneSwitches package ⁵⁰ in R to identify transcription factors and cell surface proteins
281 associated with gene switches, as well as their enriched pathways (GO, KEGG), using
282 the results obtained from the pseudotime analysis of different developmental pathways.
283 The findings obtained from this analysis provided valuable insights into the regulatory
284 mechanisms underlying cell differentiation and highlighted potential targets for further
285 investigation.

286

287 **Cell communication analysis**

288 Cell-to-cell communication is critical in various biological phenomena, including the
289 pathogenesis of glaucoma. In this study, we utilized CellChat package ⁵¹ in R to
290 investigate the communication between immune cells from patients with and without
291 glaucoma. The computeCommunProb function was employed to identify ligand-
292 receptor pairs involved in cell communication, while the
293 computeCommunProbPathway function was used to summarize the communication
294 patterns of these ligand-receptor pairs and their associated pathways. Moreover, to
295 examine the differences in communication patterns between normal and glaucomatous
296 samples, we integrated and compared the results using the mergeCellChat function. We
297 also calculated the up- or down-regulated cellular communications across different
298 sample types. Additionally, communication and pathway analyses were separately
299 performed on fibroblasts, epithelial cells, and peripheral cells isolated from glaucoma

300 patients, as the fibroblast-epithelial-peripheral cell populations primarily consisted of
301 cells from patients with glaucoma.

302

303 **Results**

304 **Results from TM datasets**

305 **Datasets Preprocessing**

306 A total of 14,635 genes from 8 samples (normal n = 4, POAG n = 4) from GSE138125 ,
307 and 36 samples (normal n = 19, POAG n = 17) from GSE27276, were analyzed
308 respectively . As shown in the PCA plot (**Suppl. Fig. 1C**), POAG and healthy control
309 samples were separated into four distinct clusters (**Suppl. Fig. 1A**), indicating that there
310 are differentially expressed genes among the four clusters.

311

312 **GSEA for Potential Molecular Mechanisms**

313 To gain a comprehensive understanding of pathologically enriched pathways of POAG
314 within the hTM, we initially conducted GSEA analysis utilizing the GO and KEGG
315 pathway databases (**Suppl. Fig. 2**). Enrichment maps were constructed to visualize the
316 significantly enriched biological processes (BP) (**Fig. 2A**), molecular functions (MF)
317 (**Fig. 2B**), cellular components (CC) (**Fig. 2C**), and KEGG pathways (**Fig. 3A**) that
318 exhibited a strong association with POAG and interconnectedness with existing
319 connections.

320 First and foremost, we identified five significantly enriched clusters utilizing the BP
321 database. These clusters were associated with ATP generation and metabolism,
322 cornification and keratinization, metabolism of reactive oxygen species (ROS),
323 humoral immune response, and platelet aggregation. Subsequently, the enriched CC
324 and MF terms revealed similar information. The annotated CC terms included
325 components related to energy balance, ROS metabolism, and immune mediation such
326 as mitochondria, vesicles, endoplasmic reticulum (ER) and Golgi complex, major
327 histocompatibility complex (MHC) protein complex, ribosome, as well as ECM
328 structures such as the collagen network and filament cytoskeleton. Furthermore,
329 hemocyte fragments like blood microparticles and the haptoglobin-hemoglobin
330 complex were also part of the enriched CC terms.

331

332 The enriched KEGG pathways primarily encompassed disease-related pathways,
333 falling into two main categories: neurodegenerative diseases (e.g., Parkinson's disease,
334 Huntington's disease) with associated alterations in oxidative phosphorylation and
335 oxidative stress, and pathway implicated in multiple autoimmune diseases. As depicted
336 in the GSEA plot of enriched immune-related KEGG pathways (**Fig. 3B**), these
337 pathways were predominantly enriched in genes exhibiting relatively high expression
338 levels in POAG.

339

340 **Identification and functional analysis of DEGs**

341 To conduct a more detailed examination of abnormalities, we identified 102 gene
342 expression variations from the integrated dataset, 36 and 66 of which were upregulated
343 and downregulated, respectively (Fig. 4). The heatmap of DEGs (Fig. 4B)
344 demonstrated distinct classification of samples from the POAG and control groups
345 although the PCA results (Suppl. Fig. 1C) indicated the existence of differences in the
346 gene expression profiles between the two datasets.

347

348 To further investigate the biological implications of these DEGs, GO-BP annotations
349 were performed for the row-scaled clusters at level 3. The analysis revealed that
350 upregulated genes were associated with immune mediation, gas transport, and
351 antioxidant activities. On the other hand, the downregulated genes were potentially
352 involved in cell shape regulation, cytoskeleton and ECM organization, and neutrophil
353 aggregation.

354

355 Furthermore, functional analyses encompassing GO-BP, CC, MF, and KEGG pathway
356 functional analyses of all DEGs were conducted for all DEGs, yielding results
357 consistent with the GSEA findings (Fig. 3 and 5). Notably, the majority of enriched
358 KEGG pathways were related to autoimmunity, suggesting that changes in immune
359 mediation play a significant role in POAG cases (Fig. 5B). For more
360 detailed information, please refer to **Supplementary Tables 1** and **2**, which provide the
361 results of GO enrichment and KEGG pathway analyses.

362

363 **PPI network and hub genes**

364 To investigate the associations among DEGs in POAG, we uploaded all DEGs to the
365 STRING database and constructed a PPI network ($P.Val < 1.0^{e-16}$) comprising 102
366 nodes and 144 edges. The resulting network is presented in **Figure 6A**, where nodes
367 with larger sizes and thicker lines indicate potentially key genes. In a PPI network,
368 genes with more edges usually have a more critical role. Given the identification of
369 approximately five categories of abnormalities through the GSEA and GO-KEGG
370 pathway analyses of DEGs in the TM of patients with POAG, we selected the 30 most
371 intersecting genes as potential hub genes to gain a relatively comprehensive
372 understanding of the underlying pathology of POAG (Fig. 6B). The expression and
373 function profiles of these hub genes are displayed in **Figure 7** and **Supplementary**
374 **Table 3**.

375

376 To study the importance of these 30 potential hub genes, we conducted ROC analyses
377 to evaluate their predictive efficiency in separating disease from control using gene
378 expression level. As shown in **Figure 8**, all of these genes showed high accuracy on
379 separating POAG cases from control groups, with area under the curve (AUC) values
380 exceeding 0.75. This suggests their potential use as RNA biomarkers for POAG disease
381 diagnosis. Notably, HBB (AUC = 1, 95% CI [1.000, 1.000]), HBD (AUC = 0.998, 95%
382 CI [0.957, 1.000]), HBA2 (AUC = 0.992, 95% CI [0.957, 1.000]), and HLA-DPA1
383 (AUC = 0.979, 95% CI [0.913, 1.000]) displayed the highest AUC values. The first
384 three genes are components of hemoglobin while the last one is a part of the MHC II

385 complex, which plays a vital role in antigen presentation on the cell surface for
386 recognition by CD4 T-cells⁵².

387

388 **Immune infiltration in POAG hTM**

389 Next, MCP-counter analysis was employed to assess the differences among eight
390 immune cell populations (T cells, CD8 T cells, NK cells, cytotoxic lymphocytes, B
391 lineage, monocytic lineage, myeloid dendritic cells, and neutrophils) and two stromal
392 cell populations (endothelial cells and fibroblasts) in POAG and normal samples (**Fig.**
393 **9**). Interesting, results revealed a higher proportion of T cells, but not CD8⁺ T cells, NK
394 cells, monocytic lineage, endothelial cells, and fibroblasts in POAG compared with
395 normal hTM (all *P.Val* < 0.05) (**Fig. 9B**). This suggests a certain level of immune
396 activation and tissue hyperplasia in POAG. Furthermore, the increased proportion of
397 monocytic lineage cells, but not myeloid dendritic cells, in POAG samples indicates
398 the infiltration of macrophages. It is worth noting that although not statistically
399 significant, there was a tendency towards decreased neutrophil infiltration in the POAG
400 group, which aligns with the findings obtained from the GO-BP annotations of row-
401 scaled clusters of the down-regulated DEGs (**Fig. 4B**).

402

403 **Identification of POAG-associated WGCNA modules and their relationship with** 404 **immune infiltration**

405 To identify genes closely associated with POAG, we performed WGCNA and set the
406 soft threshold to 4 to ensure the network exhibited a scale-free characteristic. An outlier
407 control sample (GSM674419) from the GSE27276 dataset was removed, and the
408 remaining samples were used to construct the weighted network (**Fig. 10AB**).
409 Subsequently, average linkage hierarchical clustering based on topological overlap
410 matrix (TOM) differences and dynamic tree pruning yielded nineteen modules, denoted
411 by various colors (**Fig. 10C**). Among the five robust POAG-related WGCNA modules
412 ($|\text{Cor}| > 0.5$, *P.Val* < 0.05), the midnightblue module (77 genes; $r = 0.62$, *P.Val* < 0.001)
413 and the lightcyan module (50 genes; $r = 0.64$, *P.Val* < 0.001) exhibited the strongest
414 positive and negative correlations with POAG, respectively (**Fig. 10D**).

415

416 Next, we assessed the correlation between all identified WGCNA modules and the
417 immune cell scores obtained from the MCP-counter analysis (**Fig. 11**). Interestingly,
418 both the top POAG-related WGCNA modules, midnightblue ($r = 0.35$, *P.Val* = 0.02)
419 and lightcyan ($r = -0.59$, *P.Val* < 0.001), showed the closest relationship with T-cell
420 infiltrations. Additionally, they demonstrated statistically significant associations with
421 monocytic lineage and fibroblasts infiltrations (all *P.Val* < 0.05). Module eigengene-
422 based connectivity was then calculated to identify hub genes within these two modules,
423 considering their absolute kME value higher than 0.8. Subsequently, the 14 hub genes
424 from the midnightblue module (**Fig. 12A**) and the 10 hub genes from the lightcyan
425 module (**Fig. 13A**) were uploaded to the STRING database to construct PPI network.
426 The overlapping genes primarily involved immune regulation (**Suppl. Table 4 and 5**).
427 GO annotations for the hub genes of the positively POAG-related module revealed
428 enrichment in biological processes related to the positive regulation of lymphocyte

429 proliferation and chemokine production. The cellular components included the MHC II
430 complex, components of endocytic vesicles, ER, and Golgi apparatus, while the
431 molecular function annotation was associated with MHC II protein complex binding
432 (**Fig. 12B**). Conversely, hub genes from the negatively POAG-related module were
433 mainly involved in the inactivation of MAPK activity (**Fig. 13B**). Therefore, it can be
434 inferred that genes from both the top POAG-related WGCNA modules potentially
435 contribute to immune activation.

436

437 **Single-cell RNA-sequencing data analysis using choroid dataset**

438

439 **Cell atlas of global glaucoma cells in the choroid**

440

441 We conducted a single-cell RNA-sequencing data analysis of choroidal tissues from
442 patients with glaucoma to investigate the expression profiles of different cells. Our
443 study included disease samples from glaucoma and AMD, whereas controls consisted
444 of individuals with early-stage AMD only. Using marker genes provided by the
445 cellmarker2.0 database ⁴⁷, we classified all cells in the global single-cell view of
446 glaucoma into 14 distinct cell types (**Fig. 14F**). These cell types encompassed five
447 immune cell types: B cells, leukocytes, macrophages, mast cells, and natural killer T
448 cells (NKT cells); and three types of epithelial cells: choriocapillaris, vein endothelial
449 cells, artery endothelial cells; two types of Schwann cells, two types of peripheral cells,
450 fibroblastic cells, and melanocytes, respectively (**Fig. 14A**). Each cell type exhibited
451 unique expression patterns specific to its respective cell cluster (**Fig. 14D**).

452

453 During our analysis of the descending results, we made an intriguing observation of a
454 previously unidentified cell type positioned between fibroblasts and peripheral cells.
455 This particular cell type exhibited high expression levels of both fibroblast marker
456 (FBLN1) and peripheral cell marker (RGS5) (**Fig. 14F**). Recognizing the potential
457 implications of pericyte-fibroblast transformation (PFT) on the inflammatory response
458 and disease-related enrichment pathways ⁵³, we redefined this cell type as FBLN1⁺
459 peripheral cells. Our analysis indicated that these cells represented transitional state
460 cells undergoing PFT with some degree of proliferation in glaucoma choroid tissue (**Fig.**
461 **14B**).

462

463 Furthermore, we conducted a comparison of the cellular composition between control
464 and glaucomatous patients (**Fig. 14C**). We observed that the largest fraction of cells in
465 patients with glaucoma originated from peripheral cells, fibroblasts, and FBLN1⁺
466 pericytes, while melanocytes were the most abundant in the control group. The analysis
467 of cell proportion revealed significant differences in cellular composition between the
468 control and glaucoma groups (**Fig. 14E**).

469

470 In conclusion, our single-cell profiling of the choroid tissues in glaucoma patients has
471 provided valuable insights into the variations in cellular components within the
472 microenvironment. These findings enhance our understanding of glaucoma's

473 pathophysiology and have the potential to drive the development of novel diagnostic
474 and therapeutic strategies in the future.

475

476 **Trajectory analysis and identification of switch genes for melanocytes**

477 Loss of vision is a typical symptom in glaucoma, and melanocytes, which are light-
478 sensitive cells in the human eye, may contribute to vision loss ⁵⁴. In our study, we
479 observed a significantly lower percentage of melanocytes relative to the total cell
480 population in glaucoma patients (0.137) compared to control individuals (0.538). This
481 finding aligns with previous observations of reduced light sensitivity in glaucoma
482 patients. To unravel the molecular mechanisms underlying melanocyte-related vision
483 loss in glaucoma, we focused on the melanocyte cell clusters and performed trajectory
484 analysis ⁴⁸. Our analyses revealed a trajectory from normal cells to glaucoma cells, with
485 a concentration of cells in the pseudotime fraction greater than 8 (**Fig. 15AB**).

486

487 Moreover, we identified 45 switch genes, including 35 differentially expressed genes
488 ($\log FC > 0.58$), 5 transcription factors (NR2F1, DDIT3, NME2, KLF2, MAFB), and 2
489 cell surface proteins (TNFRSF14, TYRP1) (**Fig. 15C** and E). Additionally, we found
490 significant enrichment of NF- κ B, MAPK, and protein folding processes (**Fig. 15D**),
491 which have been previously associated with melanin synthesis in melanocytes ⁵⁵⁻⁵⁷.
492 However, their relationship with glaucoma in melanocytes remains unclear. We
493 postulate that the downregulation of these pathways in glaucoma patients may lead to
494 decreased melanin synthesis, resulting in reduced light sensitivity of melanocytes and
495 subsequent vision loss, including symptoms of blindness. Furthermore, we identified
496 two pathways related to the heat response (GO:0009408 and GO:0034605) (**Fig. 15D**),
497 which have not been previously reported in the context of glaucomatous melanocyte
498 lesions. These findings suggest that these biological processes may be involved in the
499 pathogenesis of glaucoma and warrant further investigation.

500

501 **ECM-related pathways in pericyte fibroblast transfer**

502 Choroidal thickening has been commonly observed in glaucoma patients, and choroidal
503 thickness (CT) is often considered an essential indicator of choroidal health ⁵⁸. However,
504 the molecular mechanisms underlying this process at both the single-cell and genetic
505 levels remain unclear. To address this gap, we conducted temporal sequence and
506 cellular communication analyses focusing on peripheral, fibrotic, and endothelial cells.
507 Our analysis revealed an evolutionary pathway consistent with pericyte-fibroblast
508 transition (PFT) (**Fig. 16AB**), characterized by high expression levels of both FBLN1
509 and RGS5 marker genes. In our study, we defined these cells as $FBLN1^+$ fibroblasts
510 (**Fig. 14A** and **16AB**).

511

512 In this work, we identified 105 differentially expressed genes ($\log FC > 0.58$), including
513 6 transcription factors and 24 cell surface proteins. Enrichment analysis of these genes
514 revealed a concentration on extracellular matrix (ECM) and actin-binding pathways
515 (**Fig. 16C**). Furthermore, the switch genes and surface proteins intersecting with the
516 ECM pathway were COL1A1 and COL1A2 (**Fig. 16D**), which encode collagen type I,

517 an important component of the ECM⁵⁹. To further explore and validate the role of the
518 ECM pathways, we analyzed cell communication related to collagen type I in the
519 collagen pathway. Our analysis showed that fibroblasts acted as ligands, peripheral cells
520 as receptors, and FBLN1⁺ peripheral cells as intermediate transmitters in the
521 communication network, which coincided with the development of PFT (**Fig. 16E-H**).
522 Therefore, our findings suggest that the increased expression of COL1A1 and COL1A2
523 in fibroblasts may modify the physical properties of the ECM (**Fig. 16F**) by
524 synthesizing collagen I, thereby influencing the PFT process and leading to choroidal
525 thickening.

526
527 These results provide novel insights into the molecular mechanisms underlying
528 choroidal thickening in glaucoma patients and have the potential to contribute to the
529 development of new diagnostic and therapeutic strategies for this condition.

530
531 **Intersection genes between the TM and choroid datasets**
532 To investigate the relationship between changes in the anterior and posterior IOP-
533 controlling eye segments with glaucoma, we combined the findings from the TM and
534 choroid datasets. As shown in **Table 1**, 111 changed genes overlapped between the TM
535 and choroid datasets and were referred to as intersection genes. These genes were either
536 DEGs in the TM dataset or module genes related to POAG. Furthermore, they may be
537 DEGs (markers) in any cell cluster (immune cells, endothelial-fibroblast-pericytes, and
538 melanocytes) in the choroid single-cell dataset, switch genes of cell types, or ligands or
539 receptors of cell communication. The number of plus signs (TRUE count) assigned to
540 each gene in the table indicates the gene's potential importance in the glaucoma context.
541 To gain further insights into these highly significant genes, we utilized gene-integrated
542 information from reputable databases such as NCBI (<https://www.ncbi.nlm.nih.gov/gene/>) and GeneCard (<https://www.genecards.org/>).

543
544
545 Among the identified genes, DUSP1 exhibited the highest TRUE count and served as
546 a marker for all three major cell clusters. It also emerged as a hub gene in the negatively
547 associated WGCNA module specific to POAG in the TM dataset. Known for its role as
548 a negative regulator of the MAPK pathway, DUSP1 acts as a phosphatase for tyrosine
549 and threonine residues^{60,61}. The second-highest TRUE count was attributed to ADM,
550 which has been implicated in hemodynamics and may have antibacterial properties⁶².
551 It is a switch gene in all three major cell clusters, indicating the transition from a normal
552 to glaucoma state in melanocytes. In immune cells, it may have influenced the impact
553 of NKT cell on mast and B cells, while in the endothelial-fibroblast-pericyte cluster, it
554 may have played a role in the transition from fibroblast to pericyte (refer to **Table 1**).

555
556 Other genes with a TRUE count equal to or greater than 6 included CD74, CEBPD,
557 HLA-DPA1, JUN, MGP, NR4A2, PTP4A1, RASD1, and ZNF331. According to
558 information from NCBI and GeneCard, many of these genes are involved in immune
559 and inflammatory responses, with some being implicated as biomarkers for
560 neurodegenerative and autoimmune diseases. For example, JUN can induce

561 inflammation, while CD74, CEBPD, HLA-DPA1, and ZNF331 are associated with
562 immune and inflammatory responses. NR4A2 has been recognized as a biomarker for
563 neurodegenerative and autoimmune disorders. PTP4A1, MGP, and RASD1,
564 respectively, play roles in maintaining plasma membrane integrity, regulating
565 vasculature calcification, and influencing ECM interactions, and cell morphology.

566

567 **Enhancement of cell communication represented by the MHCII pathway**

568 In the immune cell cluster, the intersection genes with high TRUE counts were mainly
569 the same as those mentioned above with high total TRUE counts (refer to **Table 1**),
570 further emphasizing the significant impact of immune response changes in glaucoma
571 pathogenesis. Notably, the majority of genes with the highest TRUE counts were
572 constituents of MHCII, including CD74, HLA-DPA1, HLA-DMA, HLA-DPB1, and
573 HLA-DMB, indicating substantial alterations in the MHCII pathway within the
574 immune cell cluster under glaucoma conditions (refer to **Fig. 17 A-B**). The HLA-D
575 family acts as ligands in this pathway, whereas CD4, which is also an intersecting gene,
576 is the receptor. As shown in **Figure 17 C-D**, the expression levels of both the HLA-D
577 family members and CD4 increased.

578

579 Pseudotime analysis of the immune cell cluster of the choroid data revealed trajectories
580 from NKT cells to mast and B cells, as well as to macrophage (see **Figure 18 A-B**).
581 Consistently, there was enhanced cell communication among immune cells,
582 particularly the impact of NKT cells, with their role as influencers being the most
583 significant (refer to **Figure 18 C-F**). Apart from their involvement in the MHCII
584 signaling pathway network, several intersection genes served as ligands or receptors for
585 intercellular communication, contributing to complex changes in communication
586 among immune cells. These genes included CDH2, CCL3, HLA-C, CD74, CSF1R,
587 CD4, ITGAM, HAVCR, and others (refer to **Table 1**). These genes may affect cell-cell
588 contact or secreted signaling pathways such as CDH, MIF-CD74-CXCR4, CCL, MHCI,
589 CSF, IL16, CD40LG-ITGAM-ITGB2, C3-ITGAM-ITGB2 (complement),
590 GALECTIN, APP, FCER2-ITGAM-ITGB2 (CD23), and ICAM1-ITGAM-TIGB2
591 (ICAM).

592

593 In the endothelial-fibroblast-pericyte cell cluster, ZFP36 exhibited the highest TRUE
594 count and served as both a marker for this cell cluster and a switch gene involved in the
595 transformation of fibroblasts into pericytes or endothelial cells. Additionally, it was
596 found to affect heat shock protein binding activity and cellular response to cytokine
597 stimulus. Furthermore, ZFP36 was identified as a DEG in the negatively associated
598 module specific to POAG in the TM dataset. Notably, several genes with immune-
599 related functions, such as CD74, DUSP1, and HLA-DPA1, which significantly affect
600 the immune cell cluster, are also crucial in this endothelial-fibroblast-pericyte cell
601 cluster. Furthermore, some biomarkers for neurodegenerative diseases (CSRNP1 and
602 SERPINA3) and genes associated with membrane integrity, barrier construction,
603 extracellular matrix, and fibrosis (PTP4A1, RASD1, ADH1B, FMOD, MXRA8,
604 PCOLCE, and SLPI) were also essential intersection genes. Changes in the expression

605 of these genes affect the immune barrier. Complex changes in cell communication have
606 also been observed in this cluster. Moreover, the MHCII pathway involving the HLA-
607 D family (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DMA, and HLA-DRB5) and
608 CD4 receptor-ligand pairs were also involved, similar to what was observed in the
609 immune cell cluster. Additionally, several other intersection genes, including TNXB,
610 CDH2, ADM, CCL3, HLA-C, CD74, ITGB5, and ITGAM, served as ligands or
611 receptors for intercellular communication. These interactions could impact ECM
612 receptors, cell-cell contact, and secreted signaling pathways involved in processes such
613 as TENASCIN, CDH, CALCR, CCL, MHCI, MIF, VTN, APP, CD40, complement,
614 CD23, GP1BA, ICAM, JAM, and THY1.

615

616 In the melanocyte cell cluster, numerous intersection genes emerged as both marker
617 genes and participants in the transition from a normal to glaucoma state. Alongside the
618 previously mentioned genes (DUSP1, RASD1, CEBPD, and ADM), the following
619 genes exhibited high TRUE counts: LDLR, TYRP1, RPS12, DDIT4, and GADD45B.

620 .

621

622 **Discussion**

623 As one of the most extensively studied sight-threaten ocular diseases, glaucoma often
624 manifests as abnormal IOP. Unfortunately, despite significant research efforts, there is
625 currently no standardized treatment available to effectively control IOP or slow the
626 disease progression^{3,7}. Additionally, the molecular mechanisms underlying the
627 development of glaucoma remain poorly understood, primarily due to the complex
628 nature of the IOP regulation system, which involves multiple tissue types and intricate
629 microenvironments. In this study, we conducted a systematic molecular profiling of
630 both POAG bulk microarray datasets from TM and single-cell RNA sequencing data
631 from the choroid of AMD patients with glaucoma. Our objective was to elucidate
632 potential pathomechanisms contributing to the glaucoma development. The TM, as the
633 primary pathway for AH outflow, is expected to have the most direct and critical impact
634 on IOP regulation. However, the choroid, which is part of the uveoscleral outflow
635 pathway for AH, also plays an unnegelectable role in IOP regulation, albeit being less
636 explored in the context of glaucoma.

637

638 The possible pathomechanisms in the TM of POAG patients are summarized in **Figure**
639 **19**, which highlights the DEGs and the hub genes from two WGCNA modules
640 (midnightblue and lightcyan) most strongly associated with POAG. Additionally,
641 important genes enriched by functional analysis were also shown. Among the top five
642 most significantly enriched pathways, two are from morphological alterations of TMCs
643 and the ECM imbalance pathways. These changes have been widely discussed in
644 previous research papers ^{12,63}. The dysregulation of cell morphology and its functional
645 imbalance mutually reinforces each other. Together with ECM disorder pathway,
646 characterized by excessive matrix deposition, these alterations result in decreased TM
647 elasticity and narrowing of the AH outflow channel, causing the obstruction in the
648 flowing of ocular fluid ¹⁴. Similar findings were highlighted in the glaucomatous

649 choroid, where pathways enriched in the endothelial cell-fibroblast-pericyte cluster
650 were concentrated on ECM and actin-binding activities during the transition from
651 pericytes to fibroblasts. Taking all together, our work suggest thickening of the vascular
652 wall has a direct effect on the IOP regulation ^{58,64}.

653

654 Next, we systematically examine the most differentially expressed genes in glaucoma
655 patients compared to control. The DEGs with the highest degree of differential
656 expression in the TM datasets compared to control were HBB, HBD, and HBA2, all of
657 which are hemoglobin components. According to histopathological studies, the
658 nutrients and oxygen of the TM are supplied by the AH flowing through it rather than
659 through the blood vessel ¹⁵. Therefore, we hypothesize that the increased expression of
660 hemoglobin-related genes could be the result of hemolysis, and the increased
661 expression may have come from platelet-derived microparticles. We further speculated
662 that an elevation of hemoglobin-related genes may lead to an increase in iron and zinc
663 ions ⁶⁵. In line with this hypothesis, studies have reported elevated levels of zinc and
664 iron ions in the AH of glaucoma patients, and laboratory experiments have validated
665 similar results ^{66,67}. The increased levels of free hemoglobin fragments and free metal
666 ions are essential sources of ROS and cause serious damage to mitochondria ^{68,69}. In
667 addition, some antioxidant-related genes like MT1A and GPX3 were found to be
668 downregulated (refer to **Fig. 19**), which further explained the fact that oxidative stress
669 was significantly enriched in the functional analysis. Notably, genes involved in zinc
670 ion chelation, such as S100A8, S100A9, and MT1A, were also downregulated in this
671 study (see **Fig. 19**), potentially impacting the neutralization of excess zinc ions and
672 contributing to oxidative stress. Excessive oxidative stress can lead to mitochondrial
673 structural disruption and affect oxidative phosphorylation ⁶⁸, which aligns with the
674 findings of this study.

675

676 Interestingly, oxidative stress-induced immune alterations have been increasingly
677 recognized as important factors in glaucoma development. The immune system's role
678 in glaucoma, similar to other neurodegenerative diseases, is not yet fully understood,
679 and effective biomarkers for disease progression and chronic inflammation are lacking
70. Therefore, this study focused on investigating immune alterations in the
681 glaucomatous microenvironments and found significant abnormalities:

682

683 Multiple DEGs with immune or inflammatory functions were identified in both TM
684 and choroid data, and the intersecting genes with the highest TRUE counts were
685 immune-related. In addition, the enrichment of the MHCII pathway, indicating
686 potential activation of CD4⁺ T cell-mediated immune response ⁷¹, was particularly
687 evident. Consistently, infiltration of non-CD8⁺ T cells was identified in the TM of
688 POAG samples, and both top POAG-related WGCNA modules had the closest
689 relationship with T cell infiltration. Similar enrichment of the MHCII pathway was
690 observed in the choroid of glaucoma samples, with NKT cells being significantly
691 enriched as influencers. These results were in line with the findings of increased T cell-
692 mediated immunity in the peripheral blood of glaucoma patients and the retina of

693 glaucomatous animal models ⁷²⁻⁷⁵, indicating a similar important role of T cell
694 immunity in both the glaucomatous TM and choroid. hTM cells can express class II
695 antigens of the MHC ⁷⁶, while macrophages, which were found to infiltrate
696 glaucomatous TM in this study, were also able to trigger T cell aggregation and
697 activation. Therefore, a more precise study, such as a single-cell transcriptome analysis
698 of glaucomatous TM, is needed to distinguish the specific cells involved in activated
699 immunity.

700
701 The switch from NKT cells to macrophages observed in the immune cell cluster of the
702 choroid single-cell transcriptome data is intriguing. Previous studies have highlighted
703 the importance of retinal glia, including microglia, astrocytes, and Müller cells, in the
704 initiation and progression of glaucoma ⁷⁷. Microglia have been shown to trigger
705 immune-inflammatory T-cell infiltration into the inner side of the blood-retina barrier,
706 although the exact patterns of blood-retina barrier impairment are yet to be fully
707 understood ^{78,79}. As the retina, especially the optic nerve head, is the direct and possibly
708 initial site of glaucomatous damage ⁷⁷, it is inferred that activated T cells within the
709 blood-retina barrier cross back to its outer side to the choroid, influencing the
710 infiltration of macrophages and exacerbating immune abnormalities in the choroid
711 microenvironment. This suggests a complex interplay between various immune cell
712 types and glial cells in the pathogenesis of glaucoma. Further investigations that
713 consider changes occurring both within and outside the blood-retina barrier, are
714 necessary to elucidate the specific mechanisms and interactions involved in this process.

715

716

717 **Conclusion**

718 By integrating bulk microarray data from the TM and single-cell transcriptomic data
719 from the choroid, we were able to examine and correlate glaucomatous abnormalities
720 between the anterior and posterior ocular tissues involved in IOP regulation. Both
721 studies showed immune alterations, particularly the enrichment of the MHCII pathway
722 and T-cell infiltration, hold promise for the development of biomarkers and targeted
723 treatments for glaucoma.

724

725 However, it should be noted that the specific cell types within the TM that contributed
726 to these alterations could not be distinguished solely from the bulk microarray data.
727 Moreover, limited by the availability of public data, the single-cell transcriptome data
728 from the choroid utilized were from AMD patients, and the subtypes of glaucoma cases
729 were not clarified. Therefore, it is crucial to conduct further experiments that investigate
730 the specific cell types and corresponding molecular changes associated with different
731 subtypes of glaucoma by single-cell RNA-sequencing or other platforms. This will
732 provide a more comprehensive understanding of the disease and facilitate the
733 realization of the aforementioned goals, including the identification of biomarkers and
734 the development of targeted treatments for glaucoma.

735

736 **Reference**

737 1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. *Br J*
738 *Ophthalmol.* 2012;96(5):614-618. doi:10.1136/bjophthalmol-2011-300539

739 2. Wang HW, Sun P, Chen Y, et al. Research progress on human genes involved in
740 the pathogenesis of glaucoma (Review). *Mol Med Rep.* 2018;18(1):656-674.
741 doi:10.3892/mmr.2018.9071

742 3. Terminology and guidelines for glaucoma (the 5th edition). European Glaucoma
743 Society. Accessed September 25, 2022. <https://www.eugs.org/eng/guidelines.asp>

744 4. Cueto AFV, Álvarez L, García M, et al. Candidate Glaucoma Biomarkers: From
745 Proteins to Metabolites, and the Pitfalls to Clinical Applications. *Biology.*
746 2021;10(8):763. doi:10.3390/biology10080763

747 5. Wawrzyniak O, Zarębska Ż, Rolle K, Gotz-Więckowska A. Circular and long
748 non-coding RNAs and their role in ophthalmologic diseases. *Acta Biochim Pol.*
749 2018;65(4):497-508. doi:10.18388/abp.2018_2639

750 6. Youngblood H, Hauser MA, Liu Y. Update on the genetics of primary open-angle
751 glaucoma. *Exp Eye Res.* 2019;188:107795. doi:10.1016/j.exer.2019.107795

752 7. Chan MPY, Broadway DC, Khawaja AP, et al. Glaucoma and intraocular
753 pressure in EPIC-Norfolk Eye Study: cross sectional study. *BMJ.* 2017;358:j3889.
754 doi:10.1136/bmj.j3889

755 8. Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous Humor Dynamics: A
756 Review. *Open Ophthalmol J.* 2010;4:52-59. doi:10.2174/1874364101004010052

757 9. Hollands H, Johnson D, Hollands S, Simel DL, Jinapriya D, Sharma S. Do
758 findings on routine examination identify patients at risk for primary open-angle
759 glaucoma? The rational clinical examination systematic review. *JAMA.*
760 2013;309(19):2035-2042. doi:10.1001/jama.2013.5099

761 10. Li H, Ye Z, Li Z. Identification of the potential biological target molecules
762 related to primary open-angle glaucoma. *BMC Ophthalmol.* 2022;22:188.
763 doi:10.1186/s12886-022-02368-0

764 11. Stamer WD, Clark AF. The many faces of the trabecular meshwork cell. *Exp Eye*
765 *Res.* 2017;158:112-123. doi:10.1016/j.exer.2016.07.009

766 12. Saccà SC, Izzotti A. Focus on molecular events in the anterior chamber leading to
767 glaucoma. *Cell Mol Life Sci CMLS.* 2014;71(12):2197-2218. doi:10.1007/s00018-
768 013-1493-z

769 13. Saccà SC, Gandolfi S, Bagnis A, et al. The Outflow Pathway: A Tissue With
770 Morphological and Functional Unity. *J Cell Physiol.* 2016;231(9):1876-1893.
771 doi:10.1002/jcp.25305

772 14. Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the
773 trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma.
774 *Exp Eye Res.* 2015;133:112-125. doi:10.1016/j.exer.2014.07.014

775 15. Tamm ER. The trabecular meshwork outflow pathways: Structural and functional
776 aspects. *Exp Eye Res.* 2009;88(4):648-655. doi:10.1016/j.exer.2009.02.007

777 16. Buffault J, Labbé A, Hamard P, Brignole-Baudouin F, Baudouin C. The
778 trabecular meshwork: Structure, function and clinical implications. A review of the
779 literature. *J Fr Ophthalmol.* 2020;43(7):e217-e230. doi:10.1016/j.jfo.2020.05.002

780 17. Nickla DL, Wallman J. The multifunctional choroid. *Prog Retin Eye Res.*

781 2010;29(2):144-168. doi:10.1016/j.preteyeres.2009.12.002

782 18. Lam K, Lawlor M. Anatomy of the Aqueous Outflow Drainage Pathways. In:

783 Sng CCA, Barton K, eds. *Minimally Invasive Glaucoma Surgery*. Springer Singapore;

784 2021:11-19. doi:10.1007/978-981-15-5632-6_2

785 19. Huang AS, Francis BA, Weinreb RN. Structural and functional imaging of

786 aqueous humour outflow: a review: Review of aqueous humour outflow imaging. *Clin*

787 *Experiment Ophthalmol.* 2018;46(2):158-168. doi:10.1111/ceo.13064

788 20. Zhang X, Cole E, Pillar A, et al. The Effect of Change in Intraocular Pressure on

789 Choroidal Structure in Glaucomatous Eyes. *Invest Ophthalmol Vis Sci.*

790 2017;58(7):3278-3285. doi:10.1167/iovs.17-21598

791 21. Stein-Streilein J. Immune regulation and the eye. *Trends Immunol.*

792 2008;29(11):548-554. doi:10.1016/j.it.2008.08.002

793 22. Perez VL, Caspi RR. Immune mechanisms in inflammatory and degenerative eye

794 disease. *Trends Immunol.* 2015;36(6):354-363. doi:10.1016/j.it.2015.04.003

795 23. Wei X, Cho KS, Thee EF, Jager MJ, Chen DF. Neuroinflammation and microglia

796 in glaucoma: time for a paradigm shift. *J Neurosci Res.* 2019;97(1):70-76.

797 doi:10.1002/jnr.24256

798 24. Chen H, Cho KS, Vu THK, et al. Commensal microflora-induced T cell

799 responses mediate progressive neurodegeneration in glaucoma. *Nat Commun.*

800 2018;9(1):3209. doi:10.1038/s41467-018-05681-9

801 25. Stepp MA, Menko AS. Immune responses to injury and their links to eye disease.

802 *Transl Res J Lab Clin Med.* 2021;236:52-71. doi:10.1016/j.trsl.2021.05.005

803 26. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional

804 genomics data sets--update. *Nucleic Acids Res.* 2013;41(Database issue):D991-995.

805 doi:10.1093/nar/gks1193

806 27. Liesenborghs I, Eijssen LMT, Kutmon M, et al. Comprehensive bioinformatics

807 analysis of trabecular meshwork gene expression data to unravel the molecular

808 pathogenesis of primary open-angle glaucoma. *Acta Ophthalmol (Copenh).*

809 2020;98(1):48-57. doi:10.1111/aos.14154

810 28. JT L, WE J, HS P, et al. sva: Surrogate Variable Analysis. Published online 2022.

811 10.18129/B9.bioc.sva

812 29. Husson F, Josse J, Le S, Mazet J. FactoMineR: Multivariate Exploratory Data

813 Analysis and Data Mining. Published online March 27, 2023. Accessed April 26,

814 2023. <https://cran.r-project.org/web/packages/FactoMineR/index.html>

815 30. Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of

816 Multivariate Data Analyses. Published online April 1, 2020. Accessed April 26, 2023.

817 <https://cran.r-project.org/web/packages/factoextra/index.html>

818 31. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression

819 analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.*

820 2015;43(7):e47. doi:10.1093/nar/gkv007

821 32. Wickham H, Chang W, Henry L, et al. ggplot2: Create Elegant Data

822 Visualisations Using the Grammar of Graphics. Published online April 3, 2023.

823 Accessed April 26, 2023. <https://cran.r-project.org/web/packages/ggplot2/index.html>

824 33. Kolde R. Pretty Heatmaps. Published online 2022. <https://cran.r-project.org/web/packages/prettyHeatmaps/index.html>

825 project.org/web/packages/pheatmap/pheatmap.pdf

826 34. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still
827 GOing strong. *Nucleic Acids Res.* 2019;47(D1):D330-D338. doi:10.1093/nar/gky1055

828 35. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: 829
integrating viruses and cellular organisms. *Nucleic Acids Res.* 2021;49(D1):D545-
830 D551. doi:10.1093/nar/gkaa970

831 36. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R Package for Comparing
832 Biological Themes Among Gene Clusters. *OMICS J Integr Biol.* 2012;16(5):284-287.
833 doi:10.1089/omi.2011.0118

834 37. YU G, HU E, GAO CH. enrichplot: Visualization of Functional Enrichment
835 Result. Published online 2023. 10.18129/B9.bioc.enrichplot

836 38. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021:
837 customizable protein-protein networks, and functional characterization of user-
838 uploaded gene/measurement sets. *Nucleic Acids Res.* 2021;49(D1):D605-D612.
839 doi:10.1093/nar/gkaa1074

840 39. Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for
841 centrality analysis and evaluation of protein interaction networks. *Biosystems.*
842 2015;127:67-72. doi:10.1016/j.biosystems.2014.11.005

843 40. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying
844 hub objects and sub-networks from complex interactome. *BMC Syst Biol.*
845 2014;8(Suppl 4):S11. doi:10.1186/1752-0509-8-S4-S11

846 41. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for
847 integrated models of biomolecular interaction networks. *Genome Res.*
848 2003;13(11):2498-2504. doi:10.1101/gr.1239303

849 42. Robin X, Turck N, Hainard A, et al. pROC: Display and Analyze ROC Curves.
850 Published online September 3, 2021. Accessed April 26, 2023. <https://cran.r-project.org/web/packages/pROC/index.html>

851 43. Becht E, Giraldo NA, Lacroix L, et al. Estimating the population abundance of
852 tissue-infiltrating immune and stromal cell populations using gene expression.
853 *Genome Biol.* 2016;17(1):218. doi:10.1186/s13059-016-1070-5

854 44. WGCNA: an R package for weighted correlation network analysis | BMC
855 Bioinformatics | Full Text. Accessed February 12, 2023.
856 <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559>

857 45. Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell
858 Data. *Cell.* 2019;177(7):1888-1902.e21. doi:10.1016/j.cell.2019.05.031

859 46. Gillespie M, Jassal B, Stephan R, et al. The reactome pathway knowledgebase
860 2022. *Nucleic Acids Res.* 2022;50(D1):D687-D692. doi:10.1093/nar/gkab1028

861 47. Cao J, Spielmann M, Qiu X, et al. The single-cell transcriptional landscape of
862 mammalian organogenesis. *Nature.* 2019;566(7745):496-502. doi:10.1038/s41586-
863 019-0969-x

864 48. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA
865 quantification and differential analysis with Census. *Nat Methods.* 2017;14(3):309-
866 315. doi:10.1038/nmeth.4150

867 49. Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex
868

869 single-cell trajectories. *Nat Methods*. 2017;14(10):979-982. doi:10.1038/nmeth.4402

870 50. Cao EY, Ouyang JF, Rackham OJL. GeneSwitches: ordering gene expression and
871 functional events in single-cell experiments. *Bioinformatics*. 2020;36(10):3273-3275.
872 doi:10.1093/bioinformatics/btaa099

873 51. Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell
874 communication using CellChat. *Nat Commun*. 2021;12:1088. doi:10.1038/s41467-
875 021-21246-9

876 52. Owen JA, Punt J, Stranford SA, Jones PP, Kuby J. *Kuby Immunology*. 7th ed.
877 W.H. Freeman; 2013. Accessed May 2, 2023.
878 <http://catdir.loc.gov/catdir/enhancements/fy1502/2012950797-t.html>

879 53. Hosaka K, Yang Y, Seki T, et al. Pericyte–fibroblast transition promotes tumor
880 growth and metastasis. *Proc Natl Acad Sci*. 2016;113(38):E5618-E5627.
881 doi:10.1073/pnas.1608384113

882 54. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of
883 glaucoma: a review. *JAMA*. 2014;311(18):1901-1911. doi:10.1001/jama.2014.3192

884 55. Manga P, Bis S, Knoll K, Perez B, Orlow SJ. The unfolded protein response in
885 melanocytes: activation in response to chemical stressors of the endoplasmic
886 reticulum and tyrosinase misfolding. *Pigment Cell Melanoma Res*. 2010;23(5):627-
887 634. doi:10.1111/j.1755-148X.2010.00718.x

888 56. Kim KH, Choi H, Kim HJ, Lee TR. TNFSF14 inhibits melanogenesis via NF- κ B
889 signaling in melanocytes. *Cytokine*. 2018;110:126-130.
890 doi:10.1016/j.cyto.2018.04.034

891 57. Ostojić J, Yoon YS, Sonntag T, et al. Transcriptional co-activator regulates
892 melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK
893 pathways. *Cell Rep*. 2021;35(7). doi:10.1016/j.celrep.2021.109136

894 58. Verticchio Vercellin A, Harris A, Stoner AM, Oddone F, Mendoza KA, Siesky B.
895 Choroidal Thickness and Primary Open-Angle Glaucoma—A Narrative Review. *J
896 Clin Med*. 2022;11(5):1209. doi:10.3390/jcm11051209

897 59. Sun B. The mechanics of fibrillar collagen extracellular matrix. *Cell Rep Phys
898 Sci*. 2021;2(8):100515. doi:10.1016/j.xcrp.2021.100515

899 60. Goel S, Saheb Sharif-Askari F, Saheb Sharif Askari N, et al. SARS-CoV-2
900 Switches ‘on’ MAPK and NF κ B Signaling via the Reduction of Nuclear DUSP1 and
901 DUSP5 Expression. *Front Pharmacol*. 2021;12:631879.
902 doi:10.3389/fphar.2021.631879

903 61. Zhang T tao, Wang Y, Zhang X wen, Yang K yu, Miao X qin, Zhao G hua. MiR-
904 200c-3p Regulates DUSP1/MAPK Pathway in the Nonalcoholic Fatty Liver After
905 Laparoscopic Sleeve Gastrectomy. *Front Endocrinol*. 2022;13:792439.
906 doi:10.3389/fendo.2022.792439

907 62. Alieva AM, Магомедовна AA, Teplova NV, et al. Adrenomedullin is a
908 biological marker of heart failure: review of modern literature Amina M. Alieva*1,
909 Natalia. *CardioSomatics*. 2022;13(1):64-69. doi:10.17816/22217185.2022.1.201472

910 63. Greatbatch CJ, Lu Q, Hung S, et al. Deep Learning-based Identification of
911 Intraocular Pressure-Associated Genes Influencing Trabecular Meshwork Cell and
912 Organelle Morphology. Published online February 2, 2023:2023.02.01.526555.

913 doi:10.1101/2023.02.01.526555

914 64. Arora KS, Jefferys JL, Maul EA, Quigley HA. Choroidal thickness change after
915 water drinking is greater in angle closure than in open angle eyes. *Invest Ophthalmol*
916 *Vis Sci.* 2012;53(10):6393-6402. doi:10.1167/iovs.12-10224

917 65. Kuhn V, Diederich L, Keller TCS, et al. Red Blood Cell Function and
918 Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. *Antioxid Redox*
919 *Signal.* 2017;26(13):718-742. doi:10.1089/ars.2016.6954

920 66. Li Y, Li Y, Liang S, Zhuo Y. Abnormal Levels of Zinc in the Aqueous Humor:
921 Implications of Primary Glaucoma. *Invest Ophthalmol Vis Sci.* 2020;61(7):3427.

922 67. Li Y, Andereggen L, Yuki K, et al. Mobile zinc increases rapidly in the retina
923 after optic nerve injury and regulates ganglion cell survival and optic nerve
924 regeneration. *Proc Natl Acad Sci U S A.* 2017;114(2):E209-E218.
925 doi:10.1073/pnas.1616811114

926 68. Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential
927 Mechanisms of Glaucomatous Injury. *Front Cell Dev Biol.* 2021;9. Accessed May 8,
928 2023. <https://www.frontiersin.org/articles/10.3389/fcell.2021.720288>

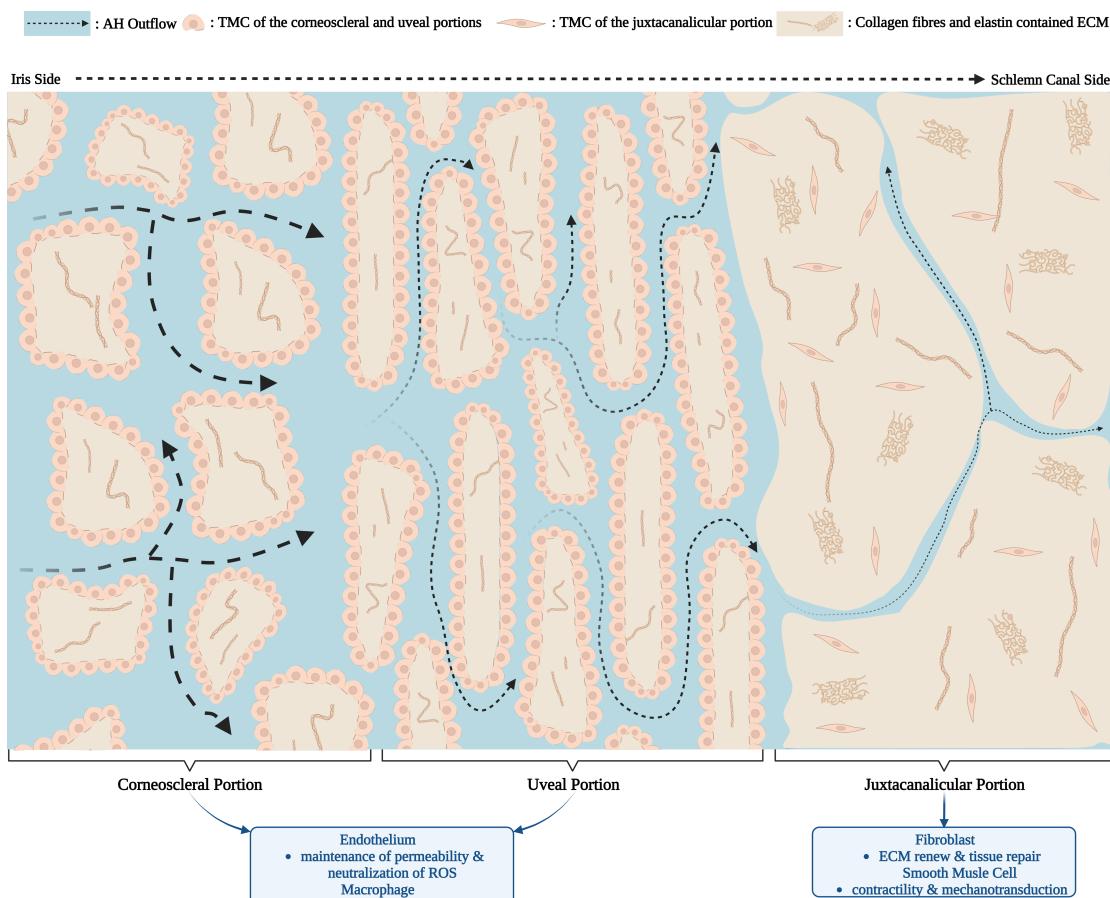
929 69. Tang J, Liu Z, Han J, et al. Increased Mobile Zinc Regulates Retinal Ganglion
930 Cell Survival via Activating Mitochondrial OMA1 and Integrated Stress Response.
931 *Antioxidants.* 2022;11(10):2001. doi:10.3390/antiox11102001

932 70. Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in
933 Glaucoma: From the back to the front of the eye, and beyond. *Prog Retin Eye Res.*
934 2021;83:100916. doi:10.1016/j.preteyeres.2020.100916

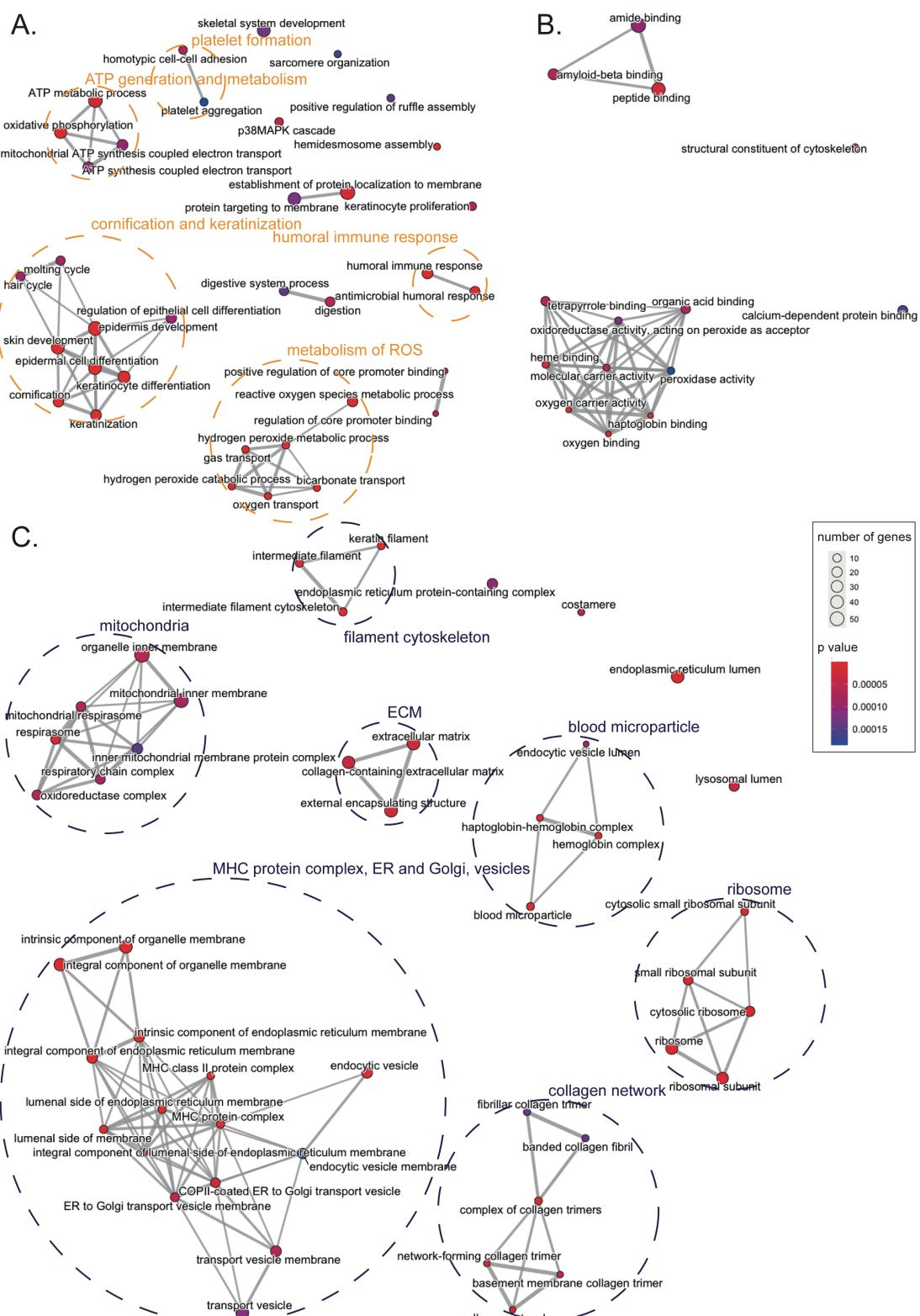
935 71. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen
936 processing and presentation. *Nat Rev Immunol.* 2015;15(4):203-216.
937 doi:10.1038/nri3818

938 72. Yang J, Patil RV, Yu H, Gordon M, Wax MB. T cell subsets and sIL-2R/IL-2
939 levels in patients with glaucoma. *Am J Ophthalmol.* 2001;131(4):421-426.
940 doi:10.1016/s0002-9394(00)00862-x

941 73. Huang Y, Li Z, van Rooijen N, Wang N, Pang CP, Cui Q. Different responses of
942 macrophages in retinal ganglion cell survival after acute ocular hypertension in rats
943 with different autoimmune backgrounds. *Exp Eye Res.* 2007;85(5):659-666.
944 doi:10.1016/j.exer.2007.07.020


945 74. Bell K, Holz A, Ludwig K, Pfeiffer N, Grus FH. Elevated Regulatory T Cell
946 Levels in Glaucoma Patients in Comparison to Healthy Controls. *Curr Eye Res.*
947 2017;42(4):562-567. doi:10.1080/02713683.2016.1205629

948 75. Yang X, Zeng Q, Göktas E, et al. T-Lymphocyte Subset Distribution and Activity
949 in Patients With Glaucoma. *Invest Ophthalmol Vis Sci.* 2019;60(4):877-888.
950 doi:10.1167/iovs.18-26129


951 76. Lynch MG, Peeler JS, Brown RH, Niederkorn JY. Expression of HLA class I and
952 II antigens on cells of the human trabecular meshwork. *Ophthalmology.*
953 1987;94(7):851-857. doi:10.1016/s0161-6420(87)33539-0

954 77. Zhao X, Sun R, Luo X, Wang F, Sun X. The Interaction Between Microglia and
955 Macrophages in Glaucoma. *Front Neurosci.* 2021;15. Accessed May 8, 2023.
956 <https://www.frontiersin.org/articles/10.3389/fnins.2021.610788>

957 78. Yang X, Yu XW, Zhang DD, Fan ZG. Blood-retinal barrier as a converging pivot
958 in understanding the initiation and development of retinal diseases. *Chin Med J*
959 (*Engl*). 2020;133(21):2586-2594. doi:10.1097/CM9.0000000000001015
960 79. Wang L, Wei X. T Cell-Mediated Autoimmunity in Glaucoma
961 Neurodegeneration. *Front Immunol*. 2021;12:803485.
962 doi:10.3389/fimmu.2021.803485
963
964

965
966 **Figure 1: Schematic Representation of the Microscopic Structure of Normal Human Trabecular Meshwork (TM).**

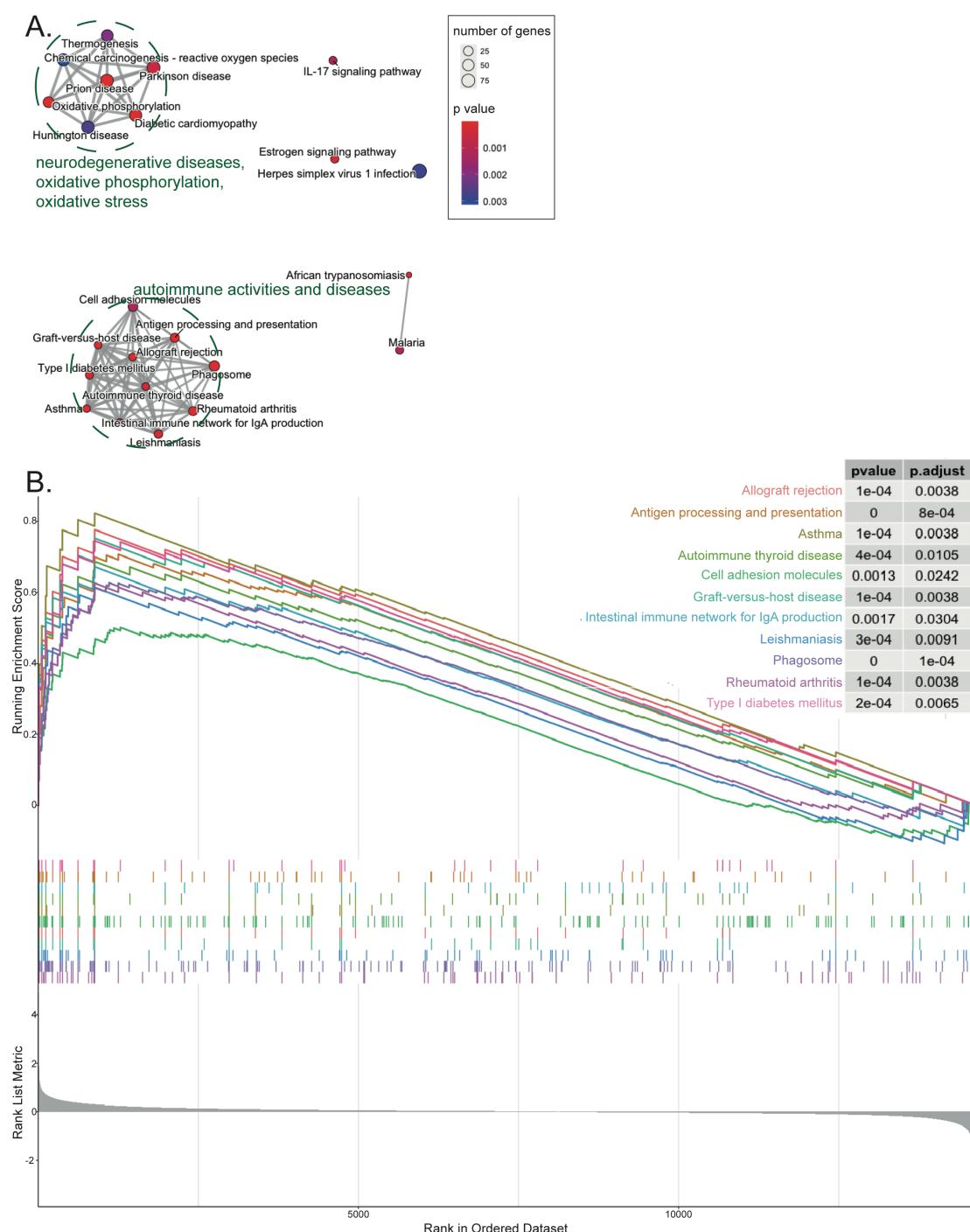
967

968

Figure 2: Gene Sets Enrichment Analysis (GSEA) Using Gene Ontology (GO) Database

969

(A) Enrichment map of GO annotations (BP: biological process). (B) Enrichment map of GO annotations (MF: Molecular function).

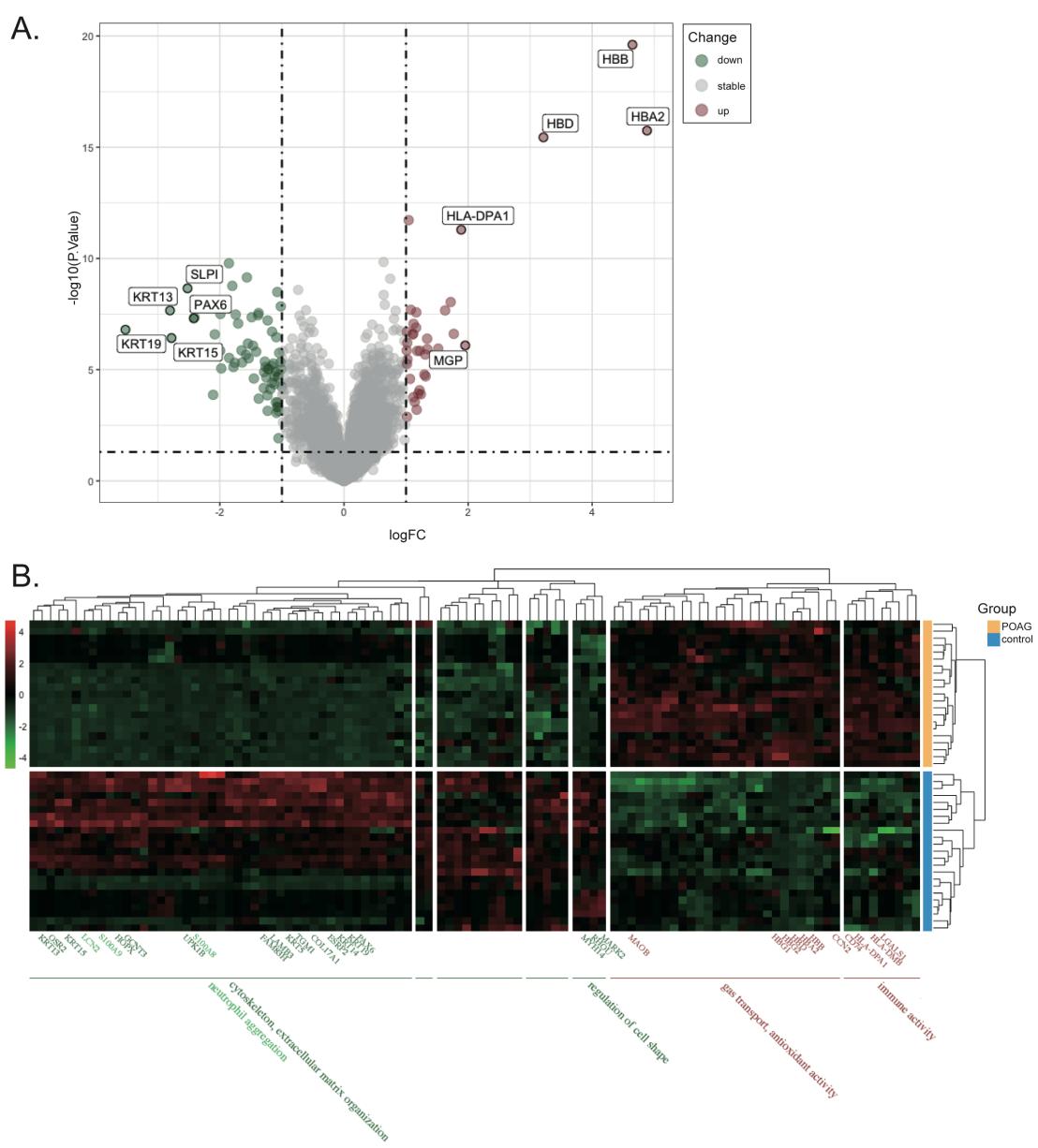

970

(C) Enrichment map of GO annotations (CC: cellular component). Nodes represent enriched gene sets, grouped by similarity. Node size corresponds to the gene count in each set, and line thickness indicates shared genes between sets.

971

972

973

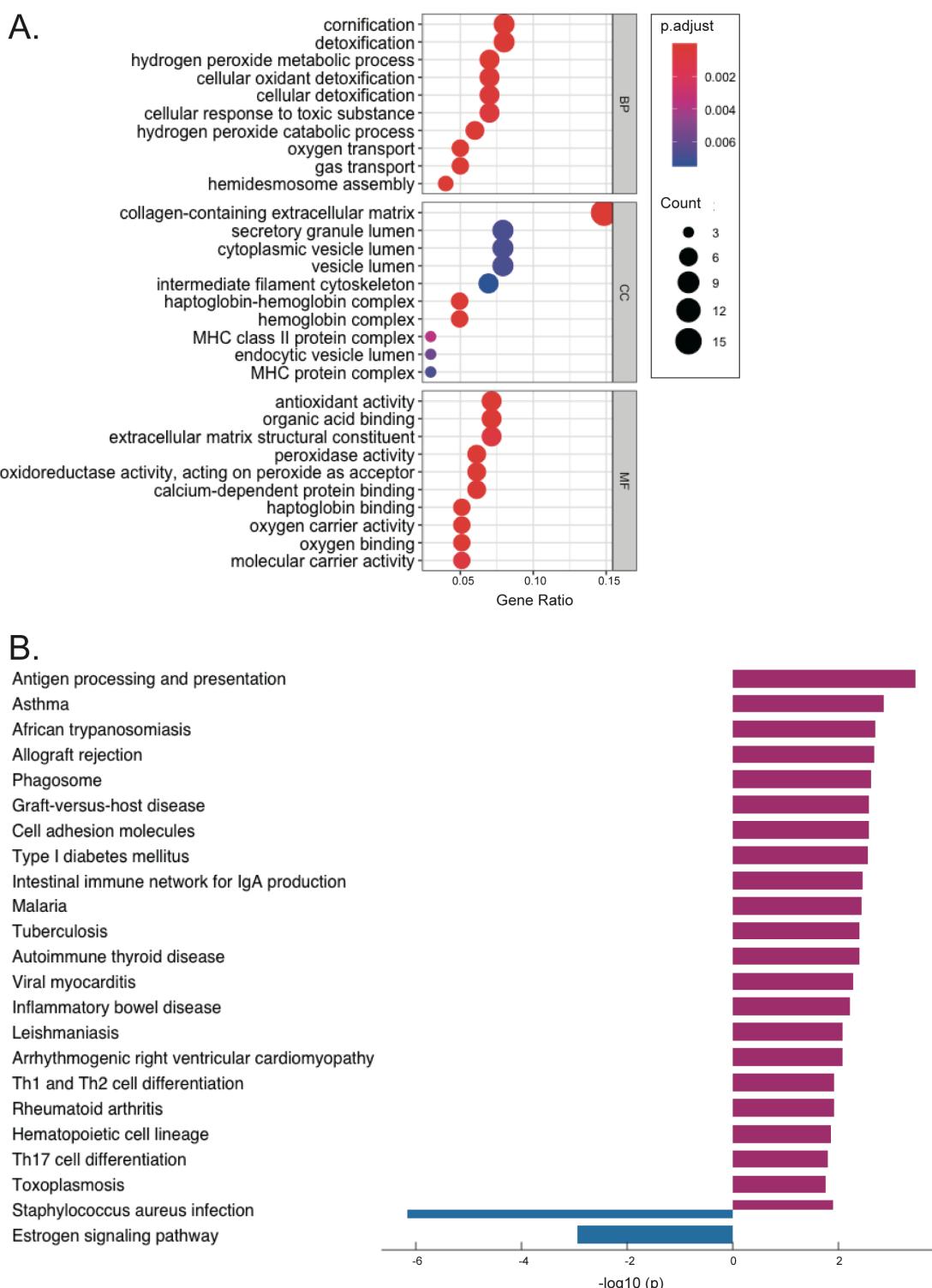


974

975 **Figure 3: Gene Sets Enrichment Analysis (GSEA) Using Kyoto Encyclopedia of Genes and Genomes (KEGG) Database**

976 (A) Enrichment map of KEGG pathways. (B) GSEA plot of immune-related KEGG pathways. In the enrichment map, nodes
 977 represent enriched gene sets grouped by similarity. Node size indicates gene set size, and line thickness represents shared genes
 978 between sets. In the GSEA plot, the top curves show running enrichment scores for each pathway, quantifying gene enrichment
 979 relative to a ranked list of all genes ordered by $\log_2 FC$ (bottom). Vertical lines denote the positions of pathway genes in the ranked
 980 list.

981

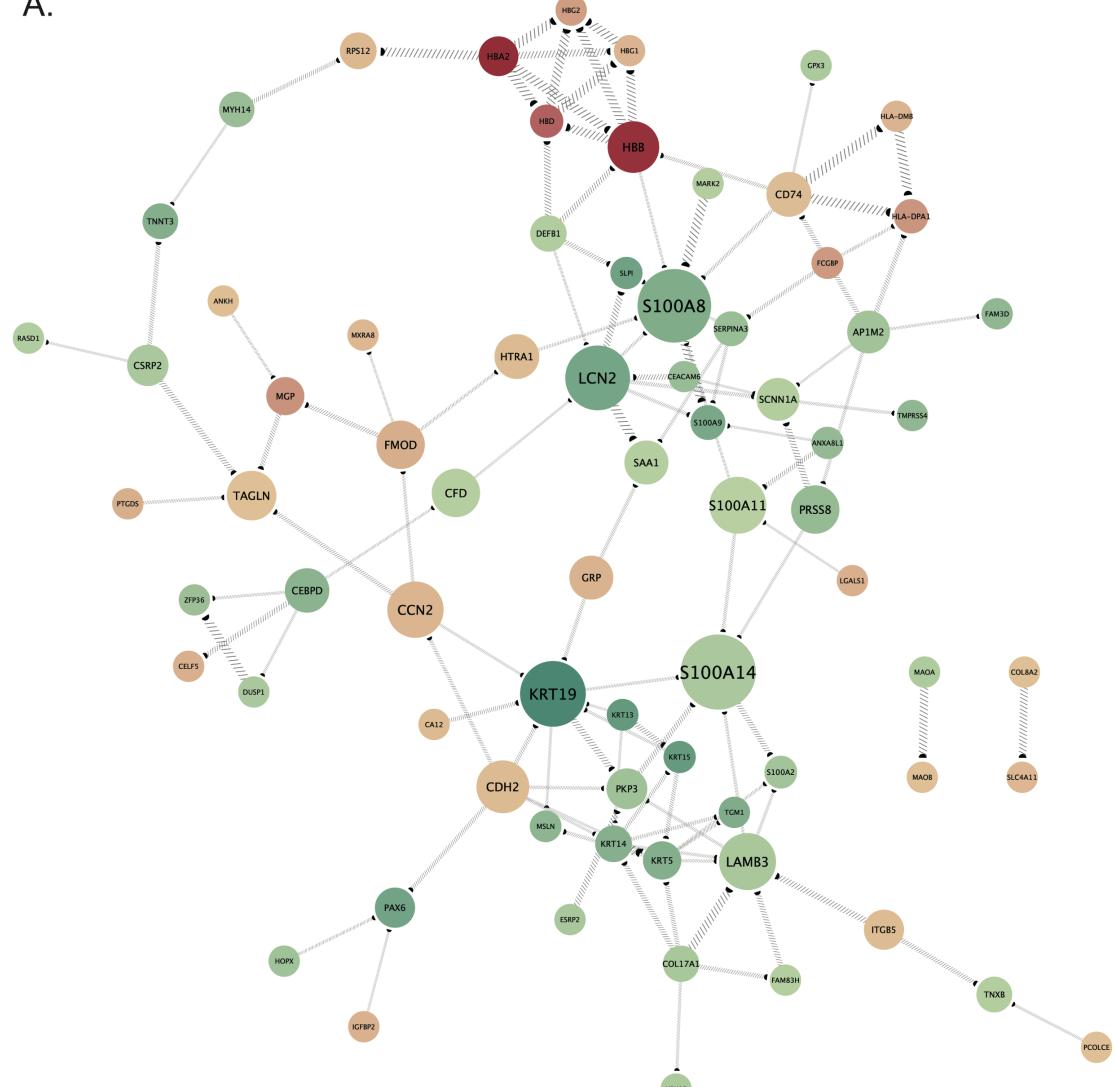

982

983

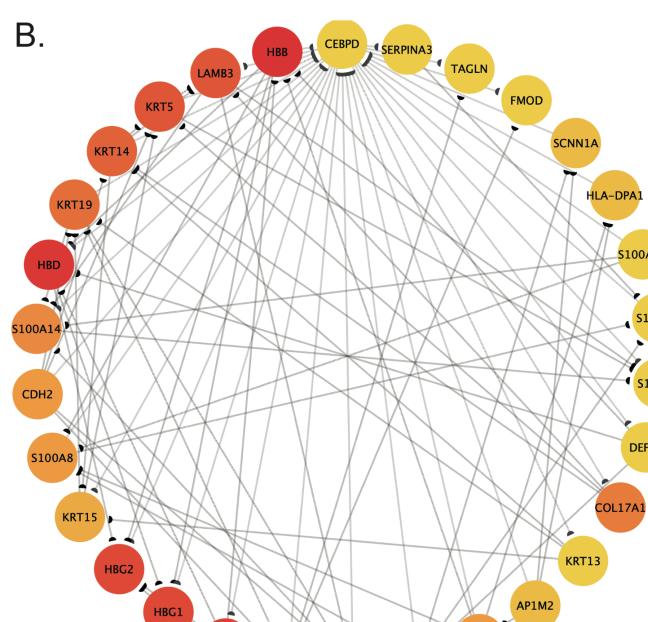
Figure 4: Differentially Expressed Genes (DEGs) in the Integrated Dataset

984 **(A)** Volcano plot of DEGs (cut-off values: $adj.P < 0.05$, $|log2FC| > 1$). **(B)** Heatmap of DEGs with GO-BP annotations, row-scaled
 985 at level 3. Red labels indicate upregulated genes, and green labels indicate downregulated genes in POAG.

986

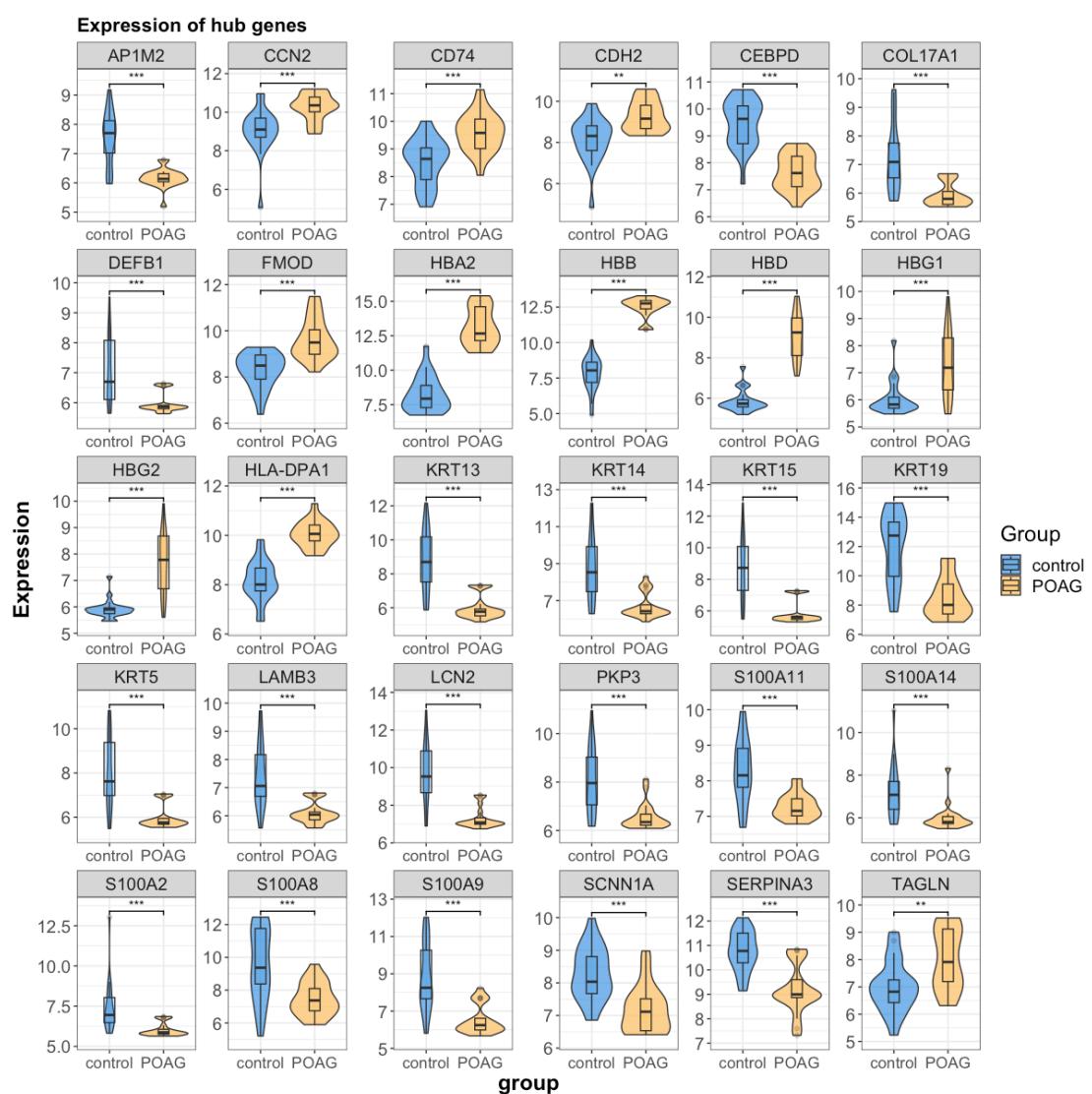

987

988 **Figure 5: Enriched GO Annotations and KEGG Pathways of DEGs in POAG**

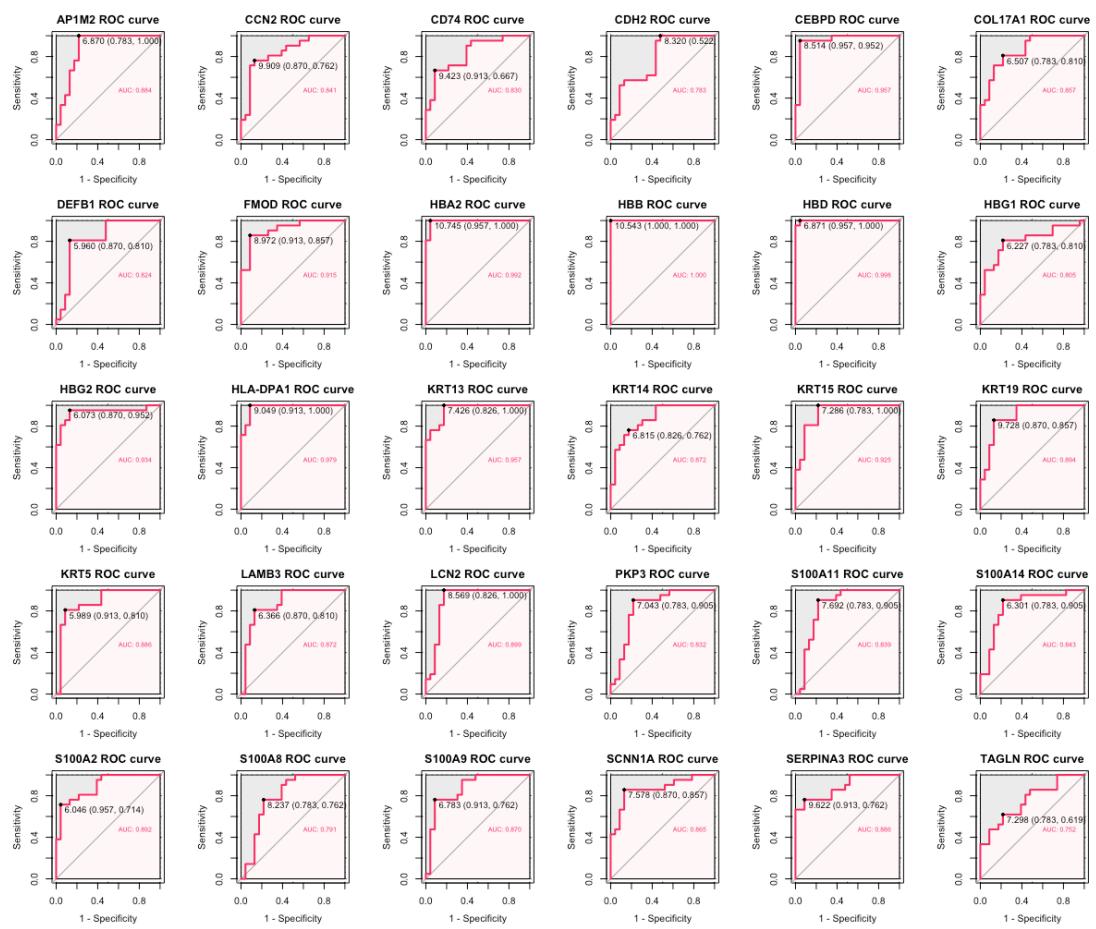

989

990 (A) Top ten significantly enriched GO terms grouped into BP, CC, and MF functional categories. (B) Significantly enriched KEGG
991 pathways.

A.

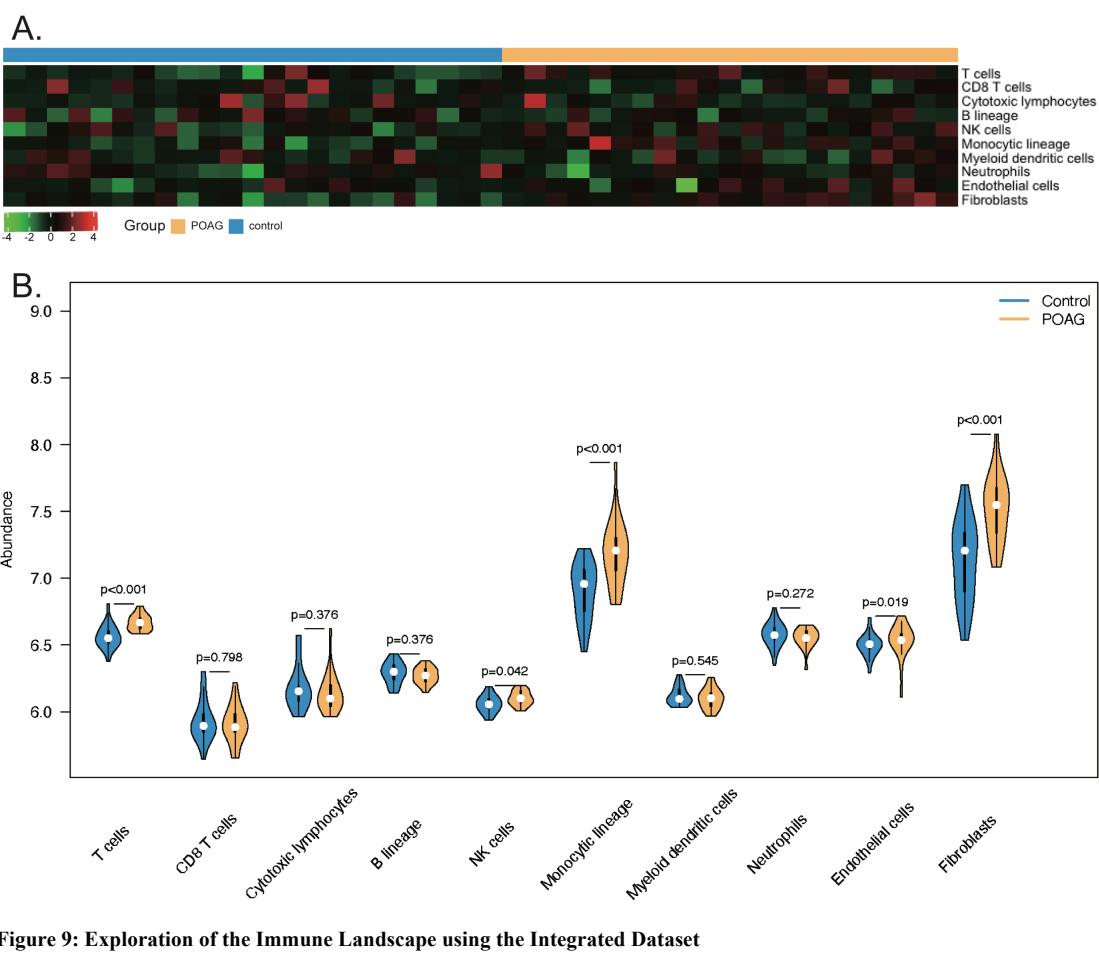


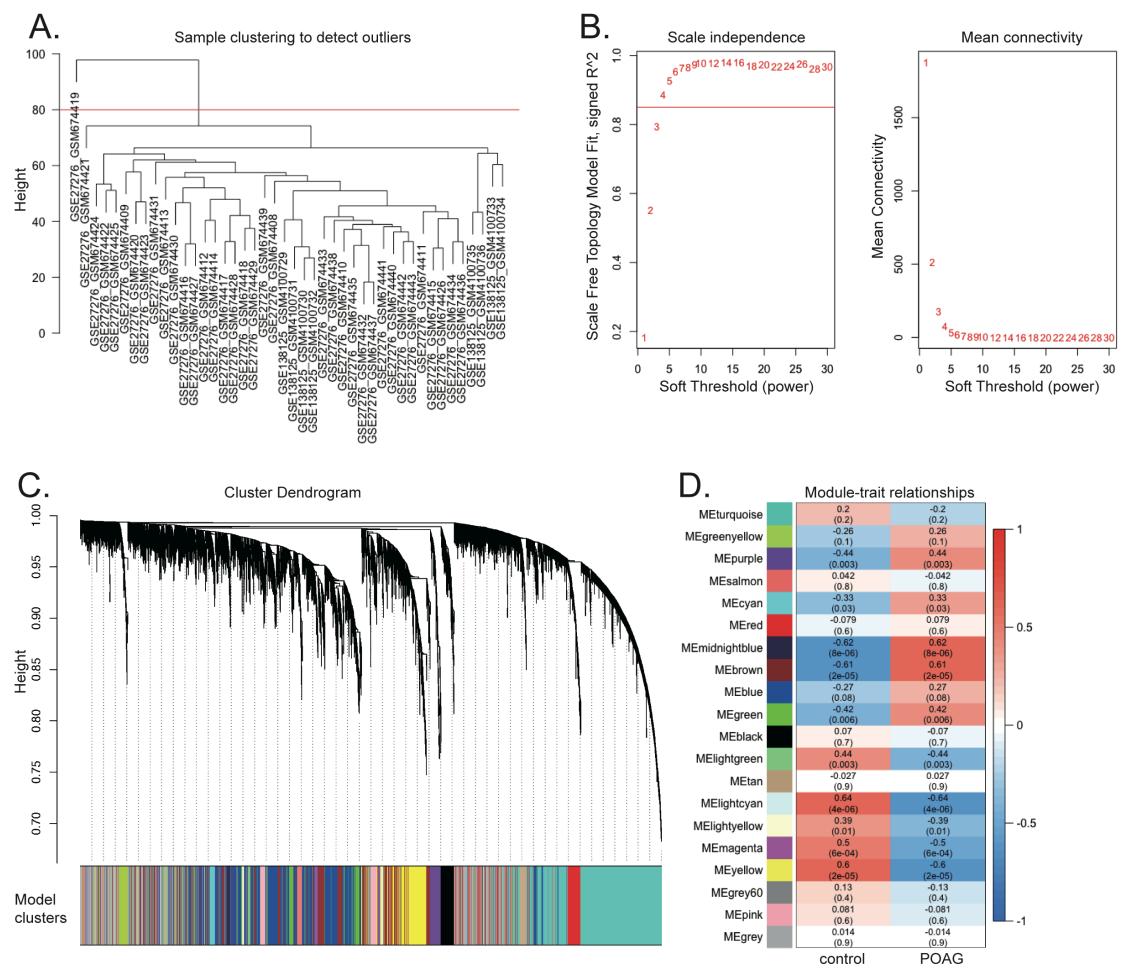
B.


993 **Figure 6: STRING and PPI Network of DEGs**

994 **(A)** STRING interactions of DEGs, with node color representing \log_2FC , node size indicating cytoCNA betweenness, edge width
995 reflecting cytoCNA combined score, and arrows indicating direction. **(B)** Hub genes: Top thirty genes ranked by MCC scores.
996 Colors denote MCC score rank, and their arrangement is based on degrees (cytohubba), counterclockwise.
997

Figure 7: Expression Profiles of Hub Genes Among DEGs

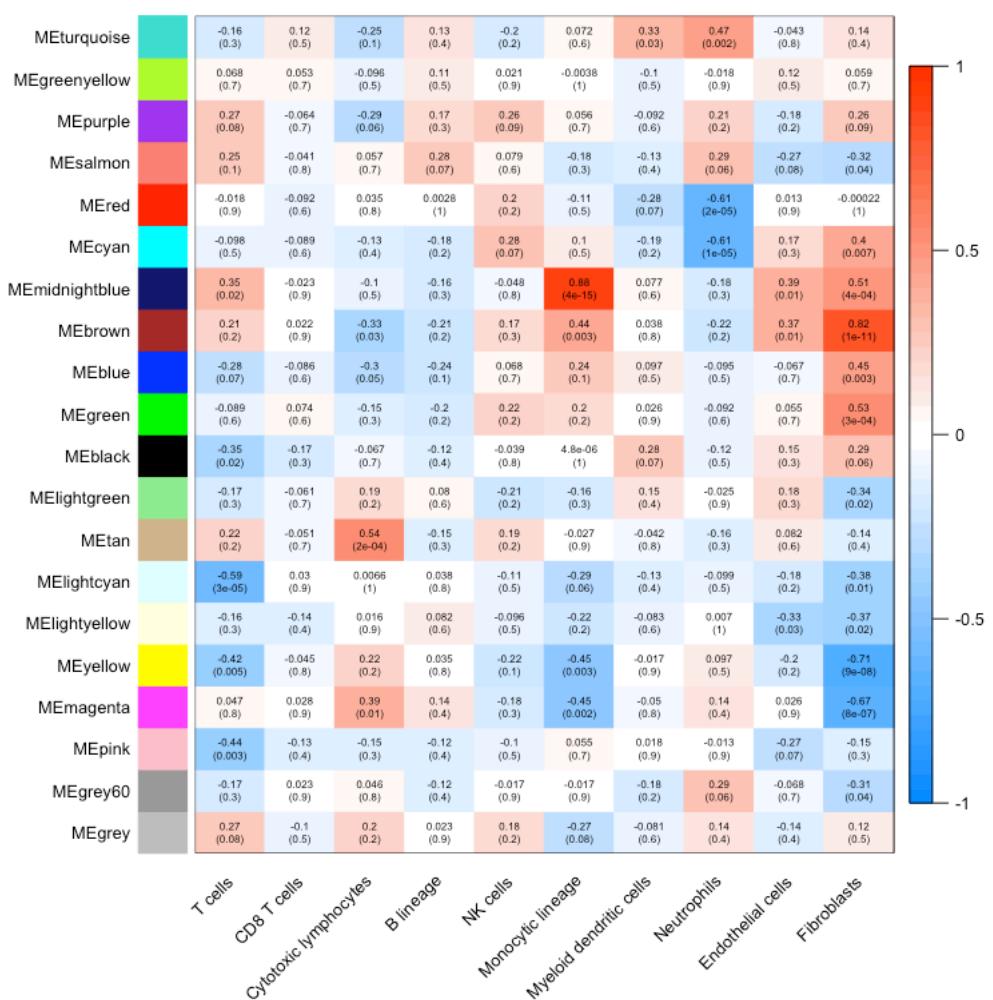

Wilcoxon tests were conducted to assess the significance of expression differences.



1002

1003

Figure 8: Diagnostic Accuracy of Hub Genes Among DEGs Assessed via ROC Curve Analysis.



1009

Figure 10: Weighted Gene Co-Expression Network Analysis (WGCNA) using the Integrated Dataset

1010 (A) Sample clustering to identify outliers. (B) Scale-free fitting index of soft threshold power and mean connectivity. (C) Gene
1011 dendrogram obtained through average linkage hierarchical clustering, with each color representing a gene module. (D) Correlation
1012 between gene modules and POAG, with numbers indicating correlation coefficients (p-values) on the horizontal and vertical axes.
1013
1014

Module-immune-infiltration relationships

1015

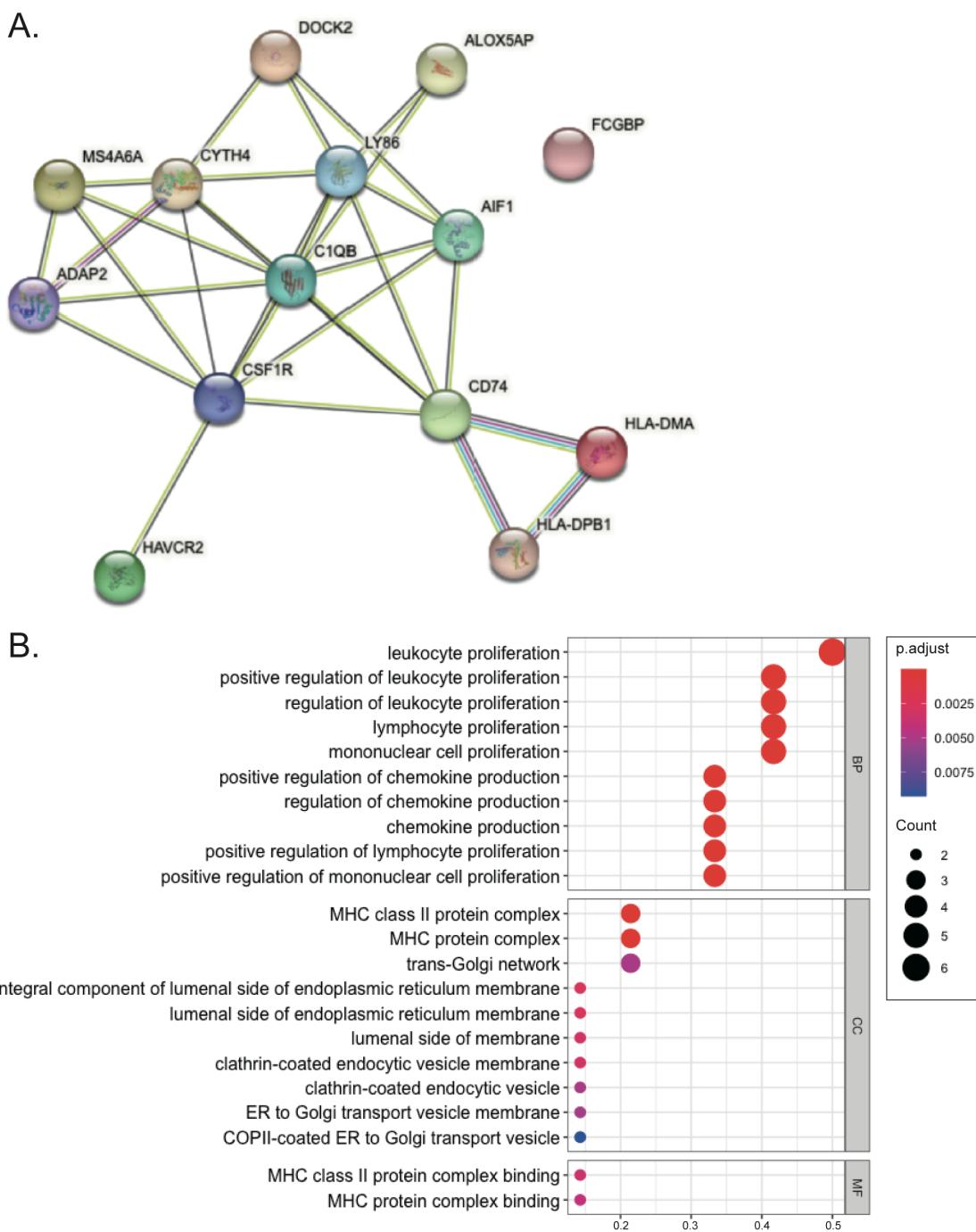
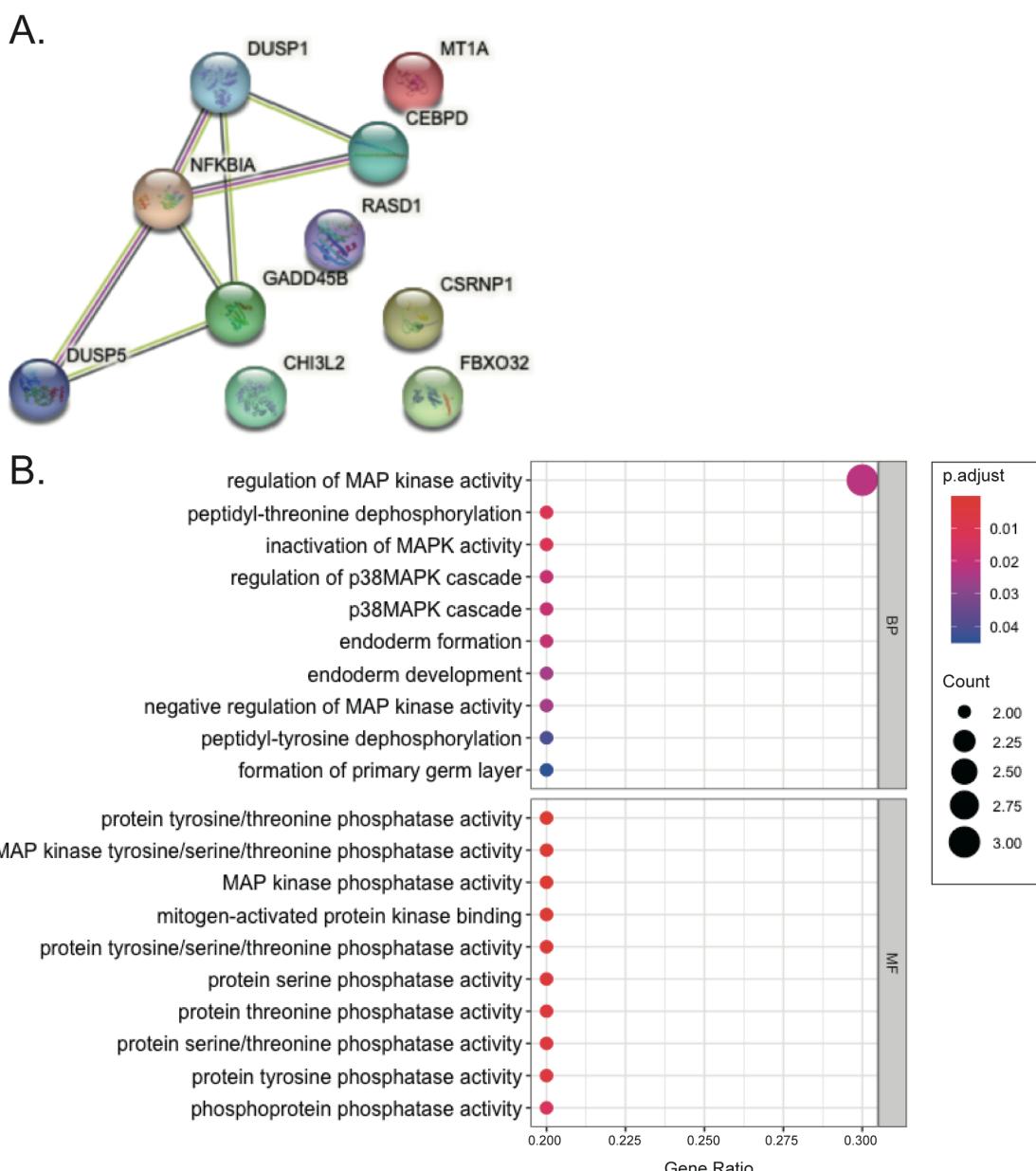

1016

Figure 11: Correlation between Gene Modules and POAG-Related Immune Infiltrates

1017 Numbers represent correlation coefficients (p-values) on the horizontal and vertical axes, indicating the strength and significance

1018 of the correlation between gene modules and immune infiltrates in the context of POAG.

1019

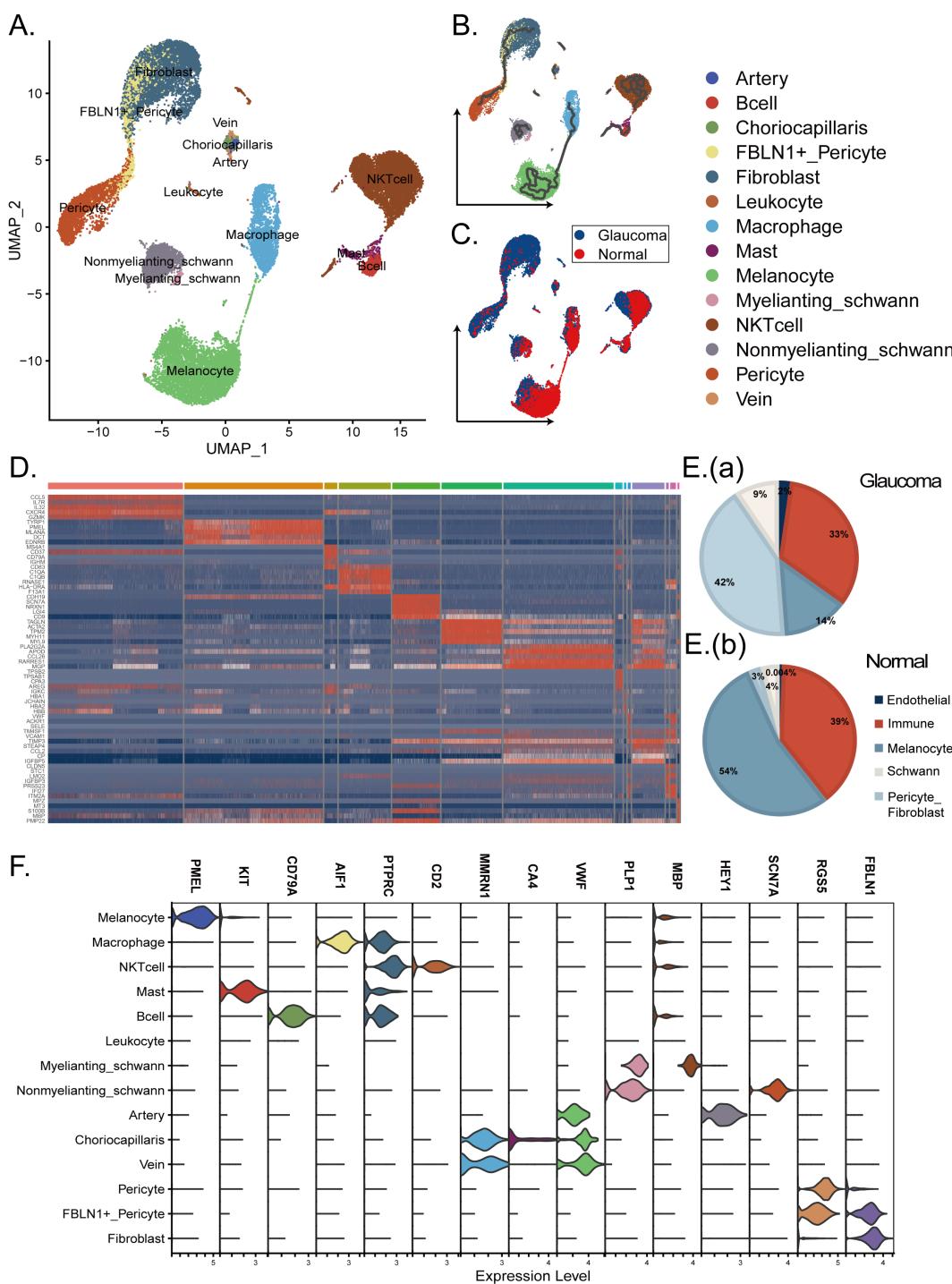

1020

1021 **Figure 12: STRING Interactions and GO Annotations for Hub Genes in Positively POAG-Related Modules**

1022 (A) STRING interactions of hub genes from the "midnightblue" module. (B) GO annotations of hub genes from the "midnightblue" module.

1023

1024

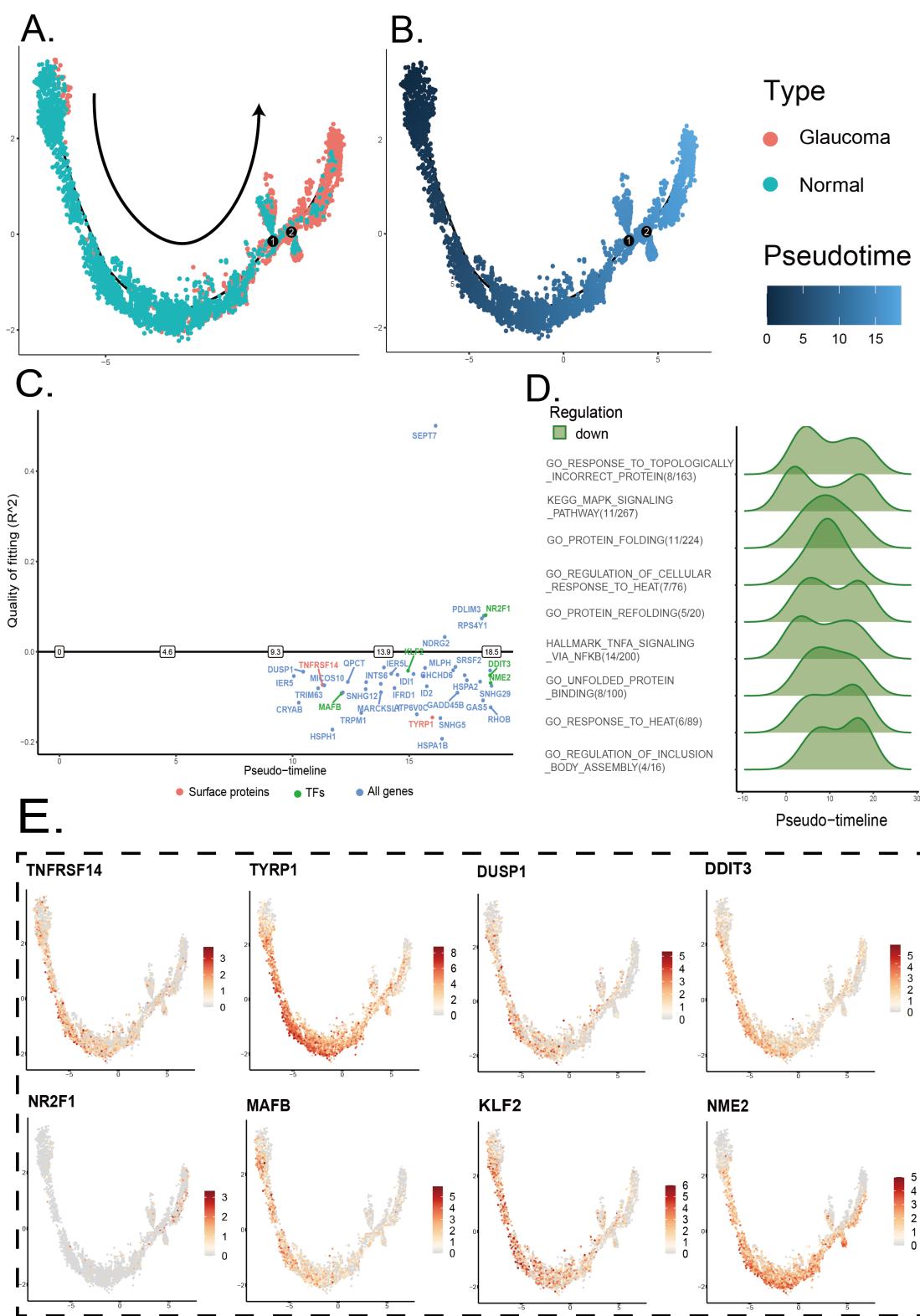


1025

1026 **Figure 13: STRING Interactions and GO Annotations for Hub Genes in Negatively POAG-Related Modules**

1027 (A) STRING interactions of hub genes from the "lightcyan" module. (B) GO annotations of hub genes from the "lightcyan" module.

1028



1029

1030 **Figure 14: Single-Cell Analysis of Glaucoma and AMD Patients**

1031 (A) The cell annotation results of single cells mapping glaucoma by UMAP including melanocyte, immune cells (macrophage,
 1032 NKT cell, B cell, leukocyte and mast cell), schwann cells (nonmyelinating schwann cells and myelinating schwann cells), pericyte
 1033 cells (pericyte and FBLN1+ pericyte), fibroblast, endothelial cells (choriocapillaris, artery endothelial cells and vein endothelial
 1034 cells). (B) The UMAP visualization with cell pseudotime reconstruction by monocle3. (C) The UMAP visualization of different
 1035 diagnosis type, including glaucoma group (patients who have glaucoma and early AMD) and normal group (patients who only
 1036 have early AMD). (D) Heatmap of marker genes in different cell types. (E) Pie charts of the cell proportion of glaucoma group (a)
 1037 and normal group (b), in which pericyte fibroblast mixed up as one type. (F) Volcano plot of marker genes from CellMarker2.0 in
 1038 different cell types.

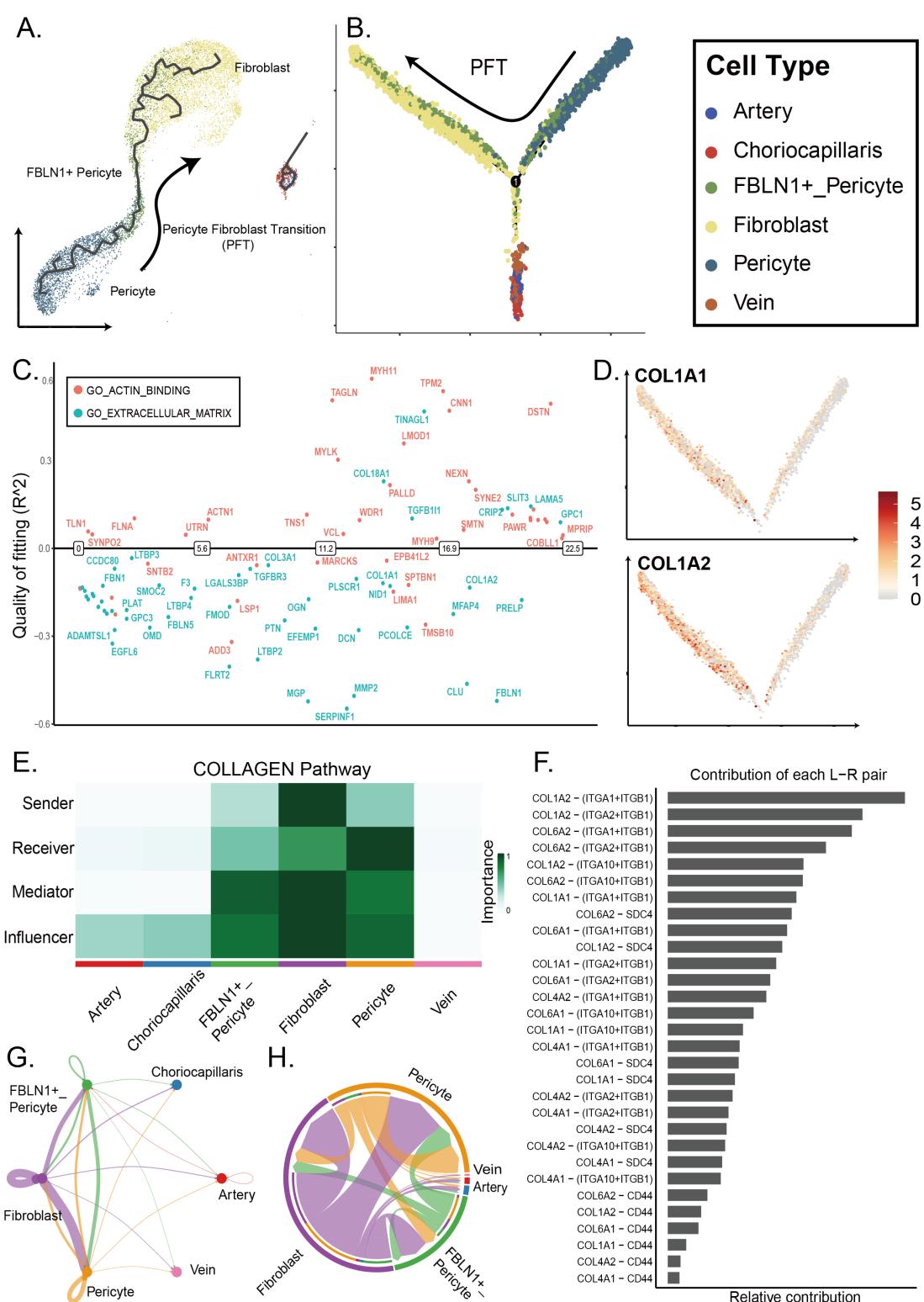
1039

1040

Figure 15: The Pseudotime Result and Switch Gene Detection Result of Melanocyte in Choroid

1042

1043

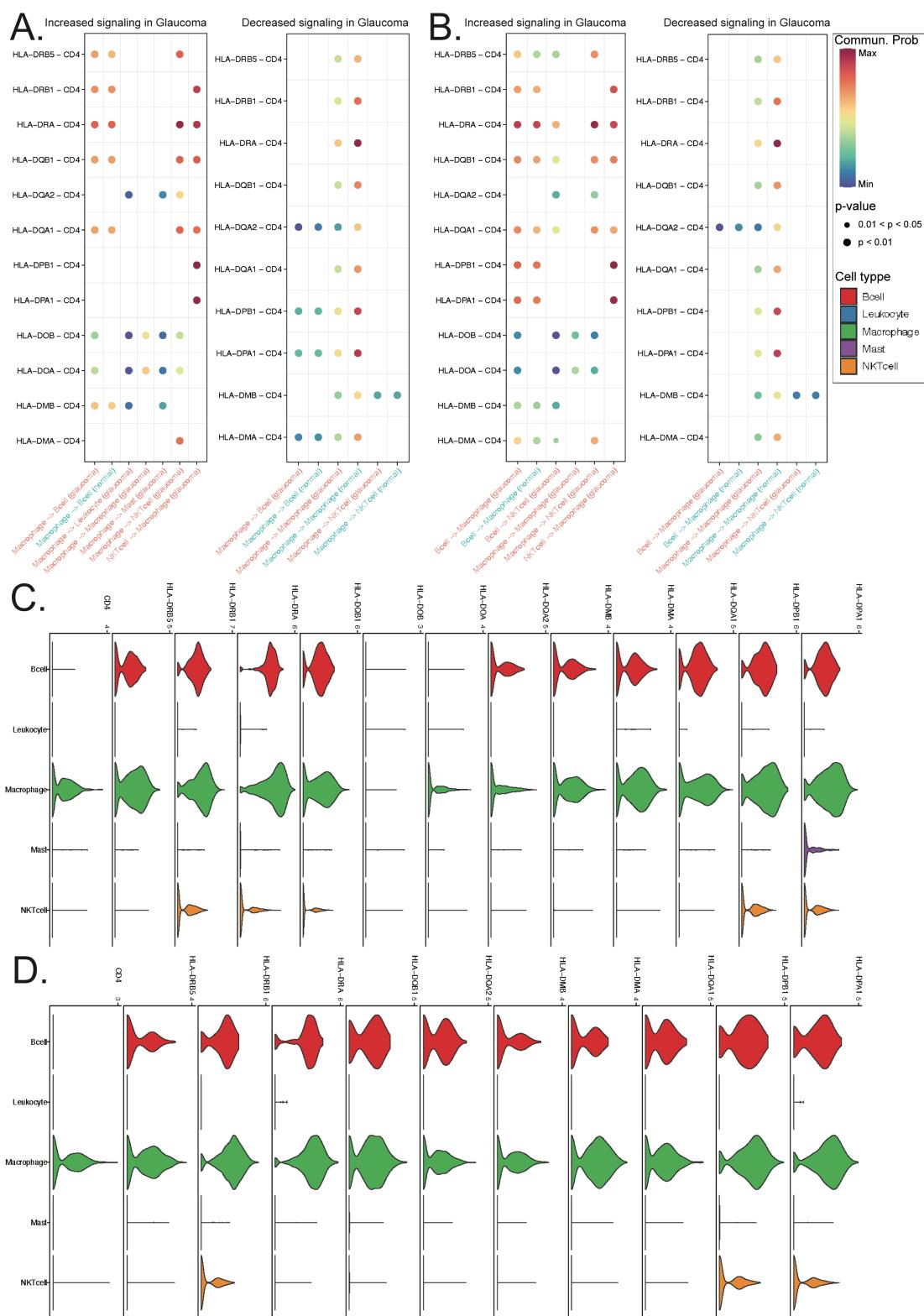

1043

1044

1045

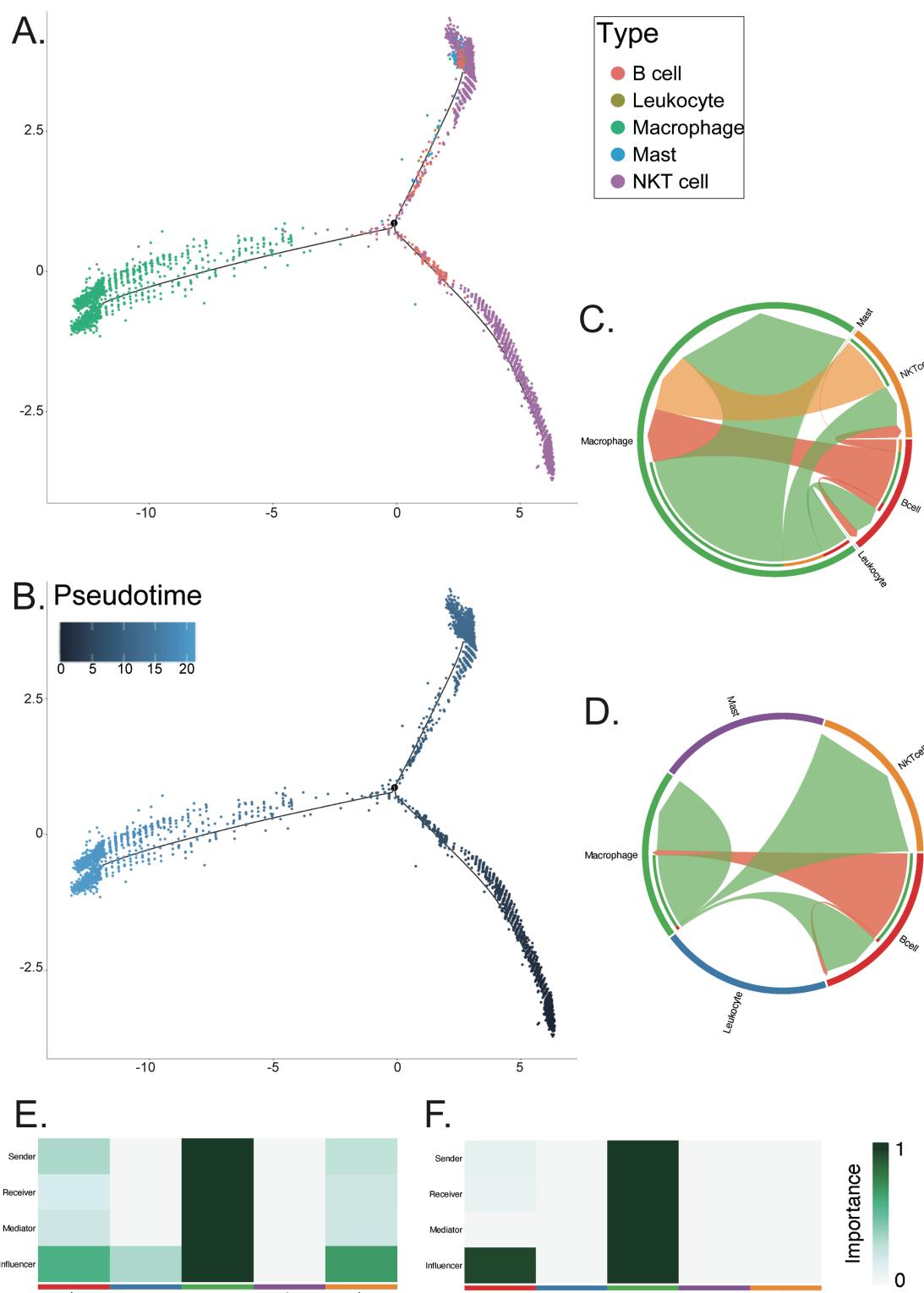
(A) The cell trajectories of melanocyte analyzed by monocle2, labeled by the diagnosis result of samples. **(B)** The cell trajectories labeled by the pseudotime analyzed by monocle2. **(C)** The switch genes with pseudotime greater than 8 in the process of transferring from normal to glaucoma melanocytes. **(D)** The cell enrichment abundance analysis based on the switch genes in the melanocyte. **(E)** The expression level of switch genes in melanocyte, including 5 transcription factors (NR2F1, DDT3, NME2,

1046 KLF2, MAFB), and 2 cell surface proteins (TNFRSF14, TYRP1) and DUSP1.

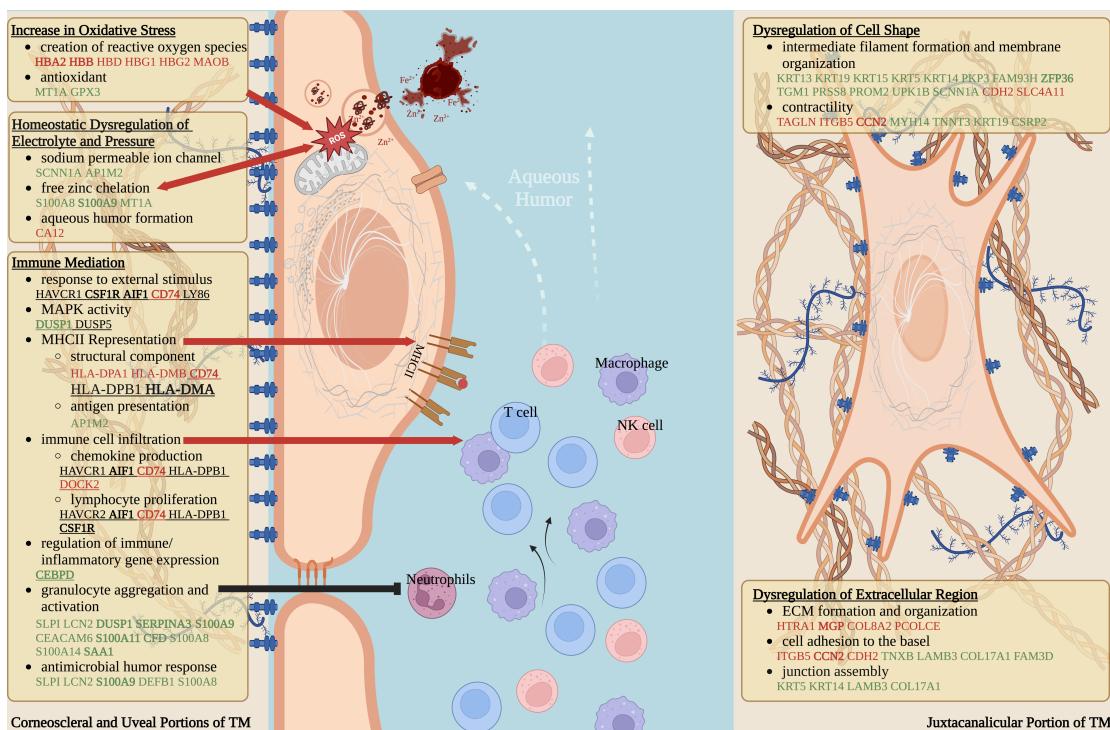


1047

1048 **Figure 16: Analysis of Pericyte Fibroblast Transfer and Cell Communication in the Collagen Pathway**


1049 **(A)** The cell trajectories of pericyte fibroblast transfer in UMAP visualization based on monocle3. **(B)** The pseudotime analysis of
 1050 PFT and endothelial cells based on monocle2. **(C)** The dot plot of switch genes in the extracellular matrix pathway and actin
 1051 binding pathway in the PFT development process. **(D)** The cell expression abundance of COL1A1 and COL1A2 in the PFT process,

1052 COL1A1 and COL1A2 are the surface proteins in switch genes. **(E)** The heatmap with the role of different cell types in the cell
 1053 communication of collagen related pathway base on CellChat. **(F)** The contribution of each ligand-receptor pair in the
 1054 communication of collagen pathway. **(G, H)** The circle plot and net plot of the strength of cell-to-cell communication in collagen
 1055 related pathway.
 1056


1057
 1058 **Figure 17: Comparison of Cell Chat in the MHCII Signaling Pathway Network Between Glaucoma and Normal Samples**

1059 (A, B) Differential cell communication regulated by the ligand and receptor, respectively. (C, D) Expression profiles of the cell
1060 chat genes in glaucoma and normal samples, respectively.
1061

1062
1063 **Figure 18: Analysis of Immune Cells and Cell Communication in the MHCII Signaling Pathway Network**
1064 (A) The cell trajectories of immune cells analyzed by monocle2, labeled by the diagnosis result of samples. (B) The cell trajectories
1065 labeled by the pseudotime analyzed by monocle2. (C, D) The circle plot of the strength of cell-to-cell communication in the MHCII

1066 signaling pathway network of glaucoma and normal samples, respectively. **(E, F)** The heatmap with the role of different immune
 1067 cell types in the cell communication of the MHCII signaling pathway network of glaucoma and normal samples base on CellChat.
 1068

Figure 19: Suspected Pathological Changes in TM of POAG

Genes color-coded in red are upregulated, in green are downregulated, and in black are stable in POAG as compared to the control group (cut-off: $adj.P < 0.05$, $|log_2FC| > 1$). Genes with underline indicate that they are hub genes from the POAG-related modules assessed by WGCNA. Genes in bold were hub genes of DEGs.

1069

1070

1071

1072

1073

1074

Table 1. Gene intersection of TM and choroid datasets (continued on the next page)

Gene Name	DEGs	WGCNA		Immune Cell				Endothelial Cell-Fibroblast-Pericyte				Melanocyte		Total TRUE Count	Immune Cells TRUE Count	Endothelial cells-Fibroblasts-Pericytes TRUE Count	Melanocytes TRUE Count	
				Switch Genes		Cell Chat		Switch Genes		Cell Chat		Switch Genes						
		Marker	Marker	NKT Cell → Mast and B Cell	NKT Cell → Macrophage	Ligand	Receptor	Marker	Fibroblasts → Pericyte	Fibroblasts → Endothelial Cell	Ligand	Receptor	Marker	Normal → glaucoma				
DUSP1	+							+					+		8	4	4	4
ADM				+	+				+				+	+	7	3	3	3
<u>CD74</u>	+	+				+		+					+		7	5	4	2
<u>CEBPD</u>	+		+	+	+								+		6	4	3	3
<u>HLA-DPA1</u>	+	+				+							+		6	4	4	2
JUN				+	+			+					+		6	3	3	2
MGP	+				+	+		+		+					6	4	3	1
NR4A2			+	+				+					+		6	3	3	2
PTP4A1			+	+				+		+					6	3	4	1
RASD1	+		+										+	+	6	2	4	4
ZNF331			+	+	+	+									6	4	3	1
CCL3	+			+	+			+					+		5	4	2	1
<u>CDH2</u>	+					+	+						+	+	5	3	3	1
DDIT4			+	+	+								+	+	5	3	1	3
<u>GADD4</u>			+	+	+								+	+	5	3	1	3
<u>SB</u>																		
<u>HLA-DMA</u>	+			+	+								+		5	4	2	1
<u>HLA-DPB1</u>	+					+	+	+					+		5	4	2	1
LDLR			+	+					+				+	+	5	2	2	3
PTGDS	+			+					+	+			+		5	2	3	2
<u>S100A11</u>	+			+	+				+				+		5	3	2	2
TYRP1	+								+				+	+	5	2	2	3
VCP			+	+	+				+				+		5	3	2	2
ZFP36	+		+						+	+	+				5	2	5	2
ADH1B			+						+	+	+				4	1	4	1
ARL4D	+								+	+					4	1	3	2
<u>C1QB</u>	+			+	+										4	3	1	2
CANX			+	+	+								+		4	3	2	1
CD4	+				+				+						4	3	2	1
CFD	+			+	+				+						4	3	2	1
<u>CSF1R</u>	+			+	+				+						4	4	1	1
<u>CSRNPs</u>	+			+											4	2	4	2
<u>1</u>																		
<u>FCGBP</u>	+	+		+	+										4	4	2	2
<u>FMOD</u>	+														4	1	4	1
<u>GPX3</u>	+		+		+										4	3	3	2
<u>HLA-C</u>	+							+					+		4	2	2	2
<u>HLA-DMB</u>	+	+						+							4	4	2	2
<u>HLA-DQA1</u>	+							+					+		4	3	2	1
<u>HLA-DRB5</u>	+							+					+		4	3	2	1
ITGAM	+			+	+										4	3	2	1
KLF9			+						+						4	2	2	2
LAP3	+			+	+					+					4	3	2	1
LGALS1	+				+				+						4	2	2	2
MNDA	+			+	+					+					4	3	2	1
MT2A			+	+						+	+				4	2	3	1
MXRA8	+								+	+	+				4	1	4	1
<u>NFKB1</u>			+	+	+										4	3	1	2
<u>A</u>																		
<u>PCOLCE</u>	+														4	1	4	1
RGS16			+		+										4	2	3	1
RPS12	+														4	1	2	3
<u>SERPINAs3</u>	+														4	2	4	2
<u>SLPI</u>	+														4	1	4	1
<u>TAGLN</u>	+														4	2	3	1
<u>ADAP2</u>	+			+	+										3	3	1	1
<u>AIF1</u>	+			+	+										3	3	1	1

Continued on the Table 1

ALOX5	+	+	+					3	3	1	1
AP											
ANKH	+				+	+		3	1	3	1
CCDC71		+				+	+	3	1	3	1
L											
CCN2	+				+			3	1	2	2
COL8A2	+				+	+		3	1	3	1
CYBB	+	+	+	+				3	3	1	1
CYTH4	+	+	+	+				3	3	1	1
DDX17	+		+				+	3	2	1	2
DHRS3		+				+	+	3	1	3	1
FBXO3		+				+	+	3	1	3	1
2											
FCGR2		+	+	+				3	3	1	1
A											
FOLR2	+		+	+				3	3	1	1
HAVCR		+		+		+		3	3	1	1
2											
HBB	+			+			+	3	2	2	1
HEXB	+			+				3	2	1	2
HILPDA	+		+			+		3	2	3	2
ITGB5	+			+			+	3	2	2	1
LGI4	+					+		3	1	2	2
LTC4S	+		+	+				3	3	1	1
LY96	+		+	+				3	3	1	1
MS4A6		+		+				3	3	1	1
A											
NNMT		+				+	+	3	1	3	1
PLEK	+		+	+				3	3	1	1
PMAIP1		+	+					3	2	1	2
RHOU	+			+		+		3	2	2	1
S100A8	+			+	+			3	3	1	1
S100A9	+			+	+			3	3	1	1
TLR2	+		+	+				3	3	1	1
VSIG4	+		+	+				3	3	1	1
ZFAND		+		+				3	2	2	1
5											
CASP8	+		+					2	2	1	1
CSRP2	+					+		2	1	2	1
DUSP5		+					+	2	1	2	1
ECRG4	+					+		2	1	2	1
GMFG	+		+					2	2	1	1
GUSB1	+			+				2	2	1	1
HBA2	+			+				2	2	1	1
HCST	+		+					2	2	1	1
IGFBP2	+					+		2	1	2	1
KDM5B	+					+		2	1	2	1
LILRB2	+			+				2	2	1	1
LY86	+			+				2	2	1	1
MT1M		+					+	2	1	2	1
P2RX4	+			+				2	2	1	1
PLCB2	+			+				2	2	1	1
SAMD9	+		+					2	2	1	1
SH2B3	+			+				2	2	1	1
TGAM	+				+			2	2	1	1
TNXB	+						+	2	1	2	1
SLC2A5	+		+					2	2	1	1
TREM2	+		+					2	2	1	1
MARCO	+		+					2	2	1	1
HOPX	+		+					2	2	1	1
JMY		+	+					2	2	1	1
GRP	+				+			2	1	2	1
HOPX	+				+			2	1	2	1
CHI3L1	+				+			2	1	2	1

Genes with underline were hub genes of DEGs from the integrated TM dataset, and those in bold were hub genes of the POAG-related modules from WGCNA. "+" : the presence of character