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SUMMARY 46 

The molecular mechanisms by which the gut microbiome influences human health remain 47 

largely unknown. Pseudomonadota is the third most abundant phylum in normal gut 48 

microbiomes. Several pathogens in this phylum can inject so-called virulence effector proteins 49 

into host cells. We report the identification of intact type 3 secretion systems (T3SS) in 5 - 20% 50 

of commensal Pseudomonadota in normal human gut microbiomes. To understand their 51 

functions, we experimentally generated a high-quality protein-protein meta-interactome map 52 

consisting of 1,263 interactions between 289 bacterial effectors and 430 human proteins. 53 

Effector targets are enriched for metabolic and immune functions and for genetic variation of 54 

microbiome-influenced traits including autoimmune diseases. We demonstrate that effectors 55 

modulate NF-κB signaling, cytokine secretion, and adhesion molecule expression. Finally, 56 

effectors are enriched in metagenomes of Crohn’s disease, but not ulcerative colitis patients 57 

pointing toward complex contributions to the etiology of inflammatory bowel diseases. Our 58 

results suggest that effector-host protein interactions are an important regulatory layer by 59 

which the microbiome impacts human health.  60 
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MAIN 61 

The host-associated microbiota influences human health in complex host genetics-dependent 62 

ways1,2. Especially intestinal microbes positively and negatively affect the risk for several 63 

complex diseases ranging from inflammatory bowel disease (IBD)1 and asthma3 to metabolic4 64 

and neurodegenerative diseases5. Members of the bacterial phylum Pseudomonadota 65 

(previously: Proteobacteria6) are prevalent in the human gut microbiome and their occurrence 66 

is influenced by dietary ingredients such as fat and artificial sweeteners7. Unique features of 67 

this phylum are the type-3, type-4, and type-6 secretion systems (TxSS) that enable the 68 

injection of bacterial proteins directly into the host cytosol. The presence of T3SS has been 69 

classically associated with pathogen virulence8. In the plant kingdom, however, important 70 

mutualistic microbes also communicate with the host via effector proteins to establish 71 

cohabitation and elicit host-beneficial effects9. We therefore wondered if commensal 72 

Pseudomonadota in the healthy human gut microbiome possess host-directed secretion 73 

systems. 74 

T3SS are common in the normal human gut microbiome 75 

Because of the higher quality and completeness of genome assemblies from cultured strains 76 

compared to metagenome-assembled genomes (MAGs), we first evaluated Pseudomonadota 77 

strains from gut and stool samples that were collected, among others, by the human 78 

microbiome project and were available from culture collections. Using EffectiveDB10, a widely 79 

used tool for secretion system identification, we detected complete T3SS in 44 of the 77 80 

reference strain genomes (Extended Data Table 1). To expand the scope, we analyzed 81 

genomes of 4,752 distinct strains, representing all major phyla from the human gut that had 82 

been isolated by the human gastrointestinal bacteria genome collection (HBC)11, and the 83 

Unified Human Gastrointestinal Genome (UHGG) collection12,13. Of the 2,272 Gram-negative 84 

strains, 478 (21%) had complete T3SS (Fig. 1a); similar proportions have T4SS (527) and 85 

T6SS (719), both of which can also deliver effectors into host cells but also have other functions 86 

(Extended Data Fig. 1 and Extended Data Table 1)14. Together 729 of the 2,272 Gram-negative 87 

strains, i.e., 34%, have at least one host-directed secretion system. Because culturing can bias 88 

the relative proportions of taxa, we sought to confirm the presence of T3SS in commensal 89 

microbiota using metagenome datasets. From 16,179 Pseudomonadota MAG bins with high 90 

or intermediate genome quality15,16, 770, i.e., 5%, encoded complete T3SS (Fig. 1a and 91 

Extended Data Table 1). Notably, we only identified T3SS in Gammaproteobacteria, whereas 92 

no secretion systems were found in the Beta- or Epsilonproteobacteria in the datasets, except 93 

for a few Helicobacter strains. It is unclear if gut commensal strains in these orders lack T3SS, 94 

or if the systems differ from those of the better-characterized Gammaproteobacteria and they 95 

were missed by the algorithm. Across the analyses, T3SS were identified in strains of multiple 96 
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genera and were especially common among Escherichia (Fig. 1b and Extended Data Table 97 

1). Notably, a recent in vivo profiling study of human digestive tracts using in situ sampling 98 

found Escherichia as the genus that was most significantly enriched in intestinal over stool 99 

samples17. Of the T3SS-positive (T3SS+) species, 24 matched representatives in two cohorts 100 

of a dataset provided by the Weizmann Institute of Science (WIS cohorts)18. 59.4% of 101 

individuals in the Israeli cohort and 47.1% in the Dutch cohort had potentially T3SS+ species 102 

in their gut microbiome, with relative abundances of 0.80% and 0.48%, respectively (Fig. 1c). 103 

The most common T3SS+ species in both cohorts was Escherichia coli, appearing within 54% 104 

and 45% of individuals, respectively. Overall, T3SS+ strains constitute a substantial proportion 105 

of commensal Pseudomonadota and are common in normal human gut microbiomes. We 106 

therefore aimed to understand the functions of T3SS-delivered effector proteins of commensal 107 

strains. 108 

Commensal effectors are unrelated to known pathogen effectors 109 

To identify gut microbiome-encoded effectors we used a combination of three complementary 110 

machine learning models19-21 and considered 3,002 effector candidates from the 44 reference 111 

strains that were most confidently predicted by all tools (Extended Data Table 2). In addition, 112 

we identified 186 putative effectors in the 770 T3SS+ MAGs (Extended Data Table 2). As T3SS 113 

and substrate effectors are best known for their role in supporting a pathogenic lifestyle, we 114 

investigated if the commensal bacterial effectors share sequence similarity with 1,638 known 115 

T3SS effectors from pathogens22. Only 17 of 3,002 (0.5%) effectors from strains and 6 of 186 116 

(3%) from MAGs, respectively, showed extended high sequence similarity (≥ 90% sequence 117 

similarity across ≥ 90% length) to known pathogen effectors; lowering the thresholds to 50% 118 

similarity across 75% length only marginally increased the numbers to 34 (1%) and 7 (4%), 119 

respectively (Fig. 1d and Extended Data Table 2). The largest number of commensal effectors 120 

with similarity to pathogenic effectors were found in the genomes of Escherichia albertii (12 121 

effectors with 67% to 98% identity) and Yersinia enterocolitica (10 effectors at > 98% identity). 122 

The fact that all such pathogen-similar commensal effectors were found in different species, 123 

of which some even belong to a different order than the respective pathogen, suggests that 124 

non-pathogenic microbes participate in the horizontal gene transfer of effectors23,24. This is 125 

supported by the observation that only a few pathogen-similar effectors were found among the 126 

approximately 20 - 80 effectors of each strain. Of the six pathogen-similar effectors found in 127 

MAGs, all but one matched the identified family of the pathogen from which they were initially 128 

identified (Extended Data Fig. 2 and Extended Data Table 2). Plausibly, these effectors 129 

originate from pathogens, or their relatives that were likely present in some samples. Jointly, 130 

the data show that effector complements of commensal bacteria are distinct from those of 131 

pathogens, thereby suggesting functions outside of the pathogen lifestyle. 132 
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A microbiome-host protein-protein meta-interactome map 133 

To investigate the functions of commensal effectors, we cloned effector ORFs for experimental 134 

studies from 18 bacterial strains with diverse effector complements (Fig. 1e and Extended Data 135 

Fig. 1). We successfully PCR-cloned 786 ORFs for the 1,300 encoded effectors (60.2%) and 136 

173 of 186 effector ORFs from MAG bins (meta-effectors) following chemical synthesis (Fig. 137 

2a). Thus, 959 sequence-verified full-length effector ORFs were assembled as the human 138 

microbiome effector ORFeome (HuMEOme_v1) (Extended Data Table 2). With these, we 139 

conducted binary interactome (contactome) network mapping against the human 140 

ORFeome9.1 collection encoding 18,000 human gene products using a stringent multi-assay 141 

mapping pipeline25. In the main screen by yeast-2-hybrid (Y2H), we identified 1,071 142 

interactions constituting the human-microbiome meta-interactome main dataset (HuMMIMAIN) 143 

(Fig. 2b,c). To assess sampling sensitivity26, i.e., saturation of the screen, we conducted three 144 

additional repeats of 290 randomly picked effectors and 1,440 human proteins, which yielded 145 

39 verifiable interactions constituting the HuMMI repeat subset (HuMMIRPT). The saturation 146 

curve indicates that the single main screen has a sampling sensitivity of ~32% (Fig. 2d). Last, 147 

to address how effector sequence similarity affects their interaction profiles we conducted a 148 

homolog screen. Effectors were grouped if they shared ≥ 30% sequence identity (Extended 149 

Data Table 2) and all effectors of one group were experimentally tested against the union of 150 

their human interactors. The resulting dataset (HuMMIHOM) contains 398 verified interactions, 151 

of which 179 were not found in the other screens. Altogether, HuMMI contains 1,263 unique 152 

verified interactions between 289 effectors and 430 human proteins (Fig. 2b,c and Extended 153 

Data Table 3).  154 

To assess data quality, we assembled a positive control set of 67 well-documented manually 155 

curated binary interactions of bacterial (pathogen-) effectors with human proteins from the 156 

literature (bacterial human literature binary multiple – bhLit_BM-v1, Extended Data Table 3) 157 

and a corresponding negative control set of random bacterial and human protein pairs 158 

(bacterial host random reference set - bhRRS-v1). Benchmarking our Y2H assay in a single 159 

orientation with these and with the established human positive reference set (hsPRS-v2) and 160 

hsRRS-v2 indicated an assay sensitivity of ~13% and 17.5%, respectively, which is consistent 161 

with previous observations27,28 (Fig. 2e and Extended Data Table 3). No negative control pair 162 

in either reference set scored positive, demonstrating the reliability of our system. In addition, 163 

we assessed the biophysical quality of HuMMI using the yeast nanoluciferase-2-hybrid assay 164 

(yN2H), which we benchmarked using the same four reference sets25. Notably, the retest rates 165 

of all sets involving bacterial proteins were lower than those of the human hsPRS-v2 and 166 

hsRRS-v2 across most of the scoring spectrum (Extended Data Fig. 2). Partly, this could be 167 

due to the nature of hsPRS-v2 pairs, which consist of very well-documented interaction pairs, 168 
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which may have been selected for good detectability. In addition, the fact that the RRS sets 169 

exhibit the same overall trend indicates that interactions with prokaryotic proteins are more 170 

challenging to reproduce in this eukaryotic assay system, which reinforces the necessity for 171 

bacterial protein-specific reference sets (Fig. 2f, Extended Data Fig. 2, and Extended Data 172 

Table 3). At thresholds where the control sets were well separated, the retest rate of 173 173 

randomly selected HuMMI interactions was statistically indistinguishable from the positive 174 

control sets, and significantly different from those of the negative controls (Fig. 2f, Extended 175 

Data Fig. 2, and Extended Data Table 3), indicating that the biophysical quality of our dataset 176 

is comparable to those of well-documented interactions in the curated literature.  177 

The degree distribution of HuMMIMAIN shows that numerous human proteins are targeted by 178 

multiple effectors (Fig. 2g and Extended Data Table 3), often from different species. Indeed, 179 

sampling analysis demonstrates that commensal effectors significantly converge on fewer host 180 

proteins than expected from a random process (Fig. 2h), thus suggesting selection for 181 

interactions with these targets. We had previously observed convergence of effectors from 182 

phylogenetically diverse pathogenic microbes on common proteins of their plant host29,30. In 183 

that system, we demonstrated with infection assays on genetic null mutant plant lines that the 184 

extent of convergence correlates with the importance of the respective host proteins for the 185 

outcome of the microbe-host interaction29. We therefore identified the human host proteins 186 

onto which commensal effectors converge. To this end, we sampled random effector targets 187 

for each strain and analyzed the distribution of repeatedly targeted proteins (Fig. 2i). While 188 

host proteins interacting with effectors from two strains are expected at high frequency by 189 

chance, targeting by four bacterial strains is unlikely to emerge by chance (Fig. 2i and 190 

Extended Data Table 3). Thus, the 60 human proteins targeted by effectors from four or even 191 

more commensal strains are subject to effector convergence and may be of general 192 

importance for human microbe-host interactions. Together with our recently published plant-193 

symbiont interaction data31, these data suggest that convergence has evolved as a universal 194 

feature of effector-host interactions independent of the microbial lifestyle and kingdom of the 195 

host organism.  196 

Sequence features mediating effector-host interactions 197 

The function of unknown proteins can often be inferred from better-studied orthologues, but 198 

convergence could also result from high sequence similarity among effectors. We therefore 199 

compared sequence- to interaction-similarity as a proxy for their function in host cells (Fig. 3a). 200 

Within the systematically retested HuMMIHOM clusters, both are poorly correlated and 201 

sequence similarity merely defines the upper limit for interaction similarity but does not imply 202 

it. This is illustrated by cluster 3, in which all seven effectors share over 90% mutual sequence 203 
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similarity while their pairwise interaction profile similarities range from identical to 204 

complementary (Fig. 3b and Extended Data Table 3).  205 

Using HuMMIMAIN we also investigated if effectors without substantial sequence similarity share 206 

interaction similarity, which might indicate shared functions. In fact, clustering effectors by their 207 

pairwise interaction similarity identified substantial overlap outside the homology clusters 208 

(Extended Data Fig. 3), indicating that dissimilar effectors may have similar functions in the 209 

host. Both analyses indicate that effector function as measured by protein-interaction profiles 210 

is largely independent of overall sequence similarity.  211 

Looking for structural correlates for interaction specificity, we wondered whether domain-212 

domain or domain-short linear motif (SLiM) interfaces mediating the interactions can be 213 

identified (Fig. 3c). Using experimentally identified interaction templates32, a putative interface 214 

was found for 52 interactions in the HuMMIMAIN screen (Extended Data Table 4). Of these, 43 215 

interactions matched motif-domain templates passing one (Fig. 3d), and 22 passing two 216 

stringency criteria (Extended Data Fig. 3). Among the former, 23 interactions involve PDZ 217 

domains in the human protein, which recognize PDZ-binding motifs (PBM) in the C-terminus 218 

of interacting bacterial proteins. PDZ domain-containing proteins commonly mediate cell-cell 219 

adhesion, cellular protein trafficking, tissue integrity, as well as neuronal and immune 220 

signaling33. To experimentally validate these interfaces, individual and tandem PDZ domains 221 

from 13 human proteins and C-terminal peptides from 16 interacting bacterial effectors were 222 

tested via Holdup, a quantitative chromatographic in vitro interaction assay34,35. For 16 of 23 223 

Y2H pairs (70%) at least one PDZ-peptide interaction was identified, all with affinities between 224 

1 and 200 µM (Fig. 3e and Extended Data Table 4). In three instances two PDZ domains 225 

arranged in tandem were required to detect the interaction by Holdup, indicating that some 226 

Y2H pairs might have been missed because not all PDZ combinations of the proteins were 227 

tested. For human proteins with multiple PDZ domains, often different domains were the target 228 

for different effectors demonstrating both specificity and functional specialization of the 229 

effectors (Fig. 3e).  230 

Because of their functioning in immune signaling and cell shape, PDZ domains are frequently 231 

targeted by viruses36. This opens the possibility that bacterial effectors and viral proteins 232 

compete for PDZ-binding and thus mutually influence their respective impact on the host. To 233 

gather support for this possibility, we identified viruses that can cause infections in the digestive 234 

tract, namely SARS-CoV-237, HPV16 and 18, which have a high prevalence in human guts and 235 

have been linked to colorectal cancer38, and norovirus, a globally common cause of 236 

gastroenteritis and diarrhea39. We selected two hitherto unpublished interactions of Norovirus 237 

VP2 C-terminal peptide with DLG1 (domain 2) and MAGI1 (domain 4), and previously 238 

observed interactions between the C-terminal peptides of SARS-CoV-2 E with SHANK3, and 239 
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of HPV16 and 18 E6 with the PDZ domains of PICK1 and MAGI4 (domain 1), respectively34. 240 

Indeed, in fluorescent polarization assays the viral PBM peptides competed with those of the 241 

effectors Vfu_12, met_32, met_31, and met_46 (Fig. 3f and Extended Data Fig. 3). Similarly, 242 

the functionally well-characterized interaction of the C-terminus of HTLV1 Tax1 with DLG140 243 

was competed off by the met_32 PBM peptide. Thus, viral and bacterial proteins may compete 244 

in the intracellular environment for binding partners and hence for influence on human cell 245 

function. Such competition could contribute to the previously observed mutual influence of 246 

microbiome and viral infection on each other41.  247 

Thus, while the overall sequence similarity of effectors does not correlate with their host-protein 248 

interaction profiles, several interfaces mediating the interactions can be identified. How these 249 

interactions compete with human and viral proteins to modulate the host network is an 250 

important question for future studies. 251 

Effector-targeted functions and disease modules 252 

To explore the potential roles of commensal effectors in the host we analyzed the functions of 253 

the targeted human proteins through gene ontology (GO) enrichment analysis (Fig. 4a, 254 

Extended Data Fig. 4, and Extended Data Table 5). Redundant parent-child GO-term pairs 255 

were grouped and are displayed by a representative term. Intriguingly, “response to muramyl-256 

dipeptide (MDP)”, a bacterial cell wall-derived peptide that can be perceived by human cells, 257 

was among the most enriched functions, thus not only supporting the relevance of our 258 

interactions but indicating that effectors modulate cellular responses to their detection. 259 

Moreover, a key component of the MDP signaling pathway is NOD2, which is encoded by a 260 

major susceptibility gene for Crohn’s disease (CD)42, an autoimmune disease with a strong 261 

etiological microbiome contribution43. In addition, several central immune signaling pathways 262 

are enriched among the targets, namely the NF-κB and the stress-activated protein kinase and 263 

Jun-N-terminal kinase (SAPK/JNK) pathways, supporting the notion that modulation of 264 

immune signaling is an important function of commensal effectors. Remarkably, five of the 265 

significantly targeted convergence-proteins belong to the NF-κB module (Extended Data Fig. 266 

4), one of the evolutionarily oldest immune signaling pathways in animals that is already 267 

present in sponges44. This may reflect the long co-evolution between microbial effectors and 268 

this ancient immune coordinator. Relating to human disease, anti-TNF biologicals, which 269 

dampen NF-κB-driven immunity, are an important therapeutic for diverse autoimmune 270 

diseases including CD, psoriasis, and rheumatoid arthritis. Another highly enriched group of 271 

five terms relates to collagen production, which suggests that effectors may modulate the 272 

extracellular environment that hosts the microbes. Inflammation-independent fibrotic collagen 273 

production is an important clinical feature of CD, and the gut microbiota has been found to be 274 

a main driver45. As several metabolism-related terms were identified, we also tested directly 275 
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whether enzymes in the Recon3D46 model of human metabolism were targeted. Indeed, we 276 

detected a significant enrichment of metabolic enzymes (P = 0.0001, Fisher’s exact test) and 277 

nominally significant targeting of bile acid and glycerophospholipid metabolism, and fatty acid 278 

oxidation (Extended Data Table 5). Overall, however, despite the strong overall signal and 279 

general targeting of fatty acid metabolism, no individual metabolic subsystem stood out as 280 

being targeted by effectors from more than two strains or having more than two targeted 281 

proteins.  282 

From a network perspective, proteins encoded by disease-genes (disease proteins) constitute 283 

nodes and form disease modules47, whose functional perturbation promotes pathogenesis. 284 

Importantly, viruses can contribute to non-infectious disease etiology by binding to and 285 

similarly perturbing these disease proteins and modules48. Therefore, we wondered if bacterial 286 

effectors also target such network elements and may thereby influence human traits. We 287 

started with “causal genes/proteins” identified from genome-wide-association studies (GWAS) 288 

by the Open Targets initiative49, and merged gene sets for traits identified as identical by their 289 

experimental factor ontology (EFO) terms (Extended Data Table 5). We first investigated direct 290 

effector targets. The strong enrichment of the “immunoglobulin isotype switching” trait among 291 

these is intriguing as the evolutionarily older IgA antibodies are emerging as having an 292 

important role in shaping the gut microbiome50,51. Effector-targeted proteins are further 293 

associated with diverse cancers and with diseases that have a strong immunological 294 

component, including asthma, psoriasis, allergies, and systemic lupus erythematosus (Fig. 4b, 295 

cutoff nominal P = 0.05, Fisher’s exact test, Extended Data Table 5). While none of the 296 

identified diseases is currently known as an ailment of the gut it has emerged that the gut 297 

microbiome shapes immune homeostasis and contributes to lung and skin diseases like 298 

asthma52 and psoriasis53. In addition, some of the disease-associated genes encode 299 

convergence proteins for effectors from multiple bacterial species (Fig. 2g). As such, it is 300 

plausible that proteins like REL or TCF4 are similarly targeted by effectors from 301 

Pseudomonadota in skin or lung microbiome communities and contribute to the identified 302 

diseases. Moreover, 26% of the effectors in HuMMI are also detectable in skin microbiome 303 

samples (Extended Data Table 5), indicating that commensal effectors are shared between 304 

different ecological niches. 305 

A partly complementary explanation emerges from our previous studies of human and plant 306 

pathogen-host systems. In these evolutionary distant systems, we showed that genetic 307 

variation affecting the severity of infection does not reside in genes encoding direct targets but 308 

in interacting, i.e., neighboring proteins in the host network25,29. We, therefore, explored the 309 

network neighborhood of all effector-targets using short random walks in the human reference 310 

interactome (HuRI)54. We identified proteins that were significantly more often visited in HuRI 311 
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compared to degree-preserved randomly rewired networks, which we considered the 312 

‘neighborhood’. For each effector-targeted neighborhood, we assessed the enrichment of gene 313 

products associated with diverse human traits using Open Targets causal genes. Nominally 314 

significant associations were aggregated on a strain level and summarized for disease groups 315 

(Fig. 4c and Extended Data Table 5). Intriguingly, most disease groups for which susceptibility-316 

gene products are enriched in the target neighborhoods represent traits that have been linked 317 

to the gut microbiome55. Apart from immunological traits, these include cardiovascular, 318 

metabolic, and neurological traits as well as multiple cancers, including colorectal cancer. 319 

Among the target neighborhoods for immunological diseases, we identified associations to CD 320 

(nominal P = 8.5 * 10-5, Fisher’s exact test) and inflammatory bowel disease (nominal P = 321 

0.0008, Fisher’s exact test) but not to ulcerative colitis (UC) (Fig. 4d and Extended Data Table 322 

5). Neighborhoods harboring genetic susceptibility associated with psoriatic arthritis, asthma, 323 

and allergies were also significantly targeted, which recapitulates the observations for direct 324 

targets. Considering the importance of the microbiome for human metabolic disorders55 it is 325 

noteworthy that network modules important for HDL and LDL cholesterol levels (nominal P = 326 

0.006 and P = 0.008, respectively, Fisher’s exact test), and several diabetes traits were 327 

significantly targeted albeit less recurrently than inflammatory diseases and cancers (Extended 328 

Data Table 5). Together, these results suggest that commensal effectors modulate their host’s 329 

immune system and local metabolic and structural microenvironment. As genetic variation 330 

affecting the targeted proteins and their network neighborhood is linked to several human 331 

diseases, functional modulation of the same network neighborhoods by commensal effectors 332 

may contribute to disease etiology. The fact that the risk for several of the identified diseases 333 

is known to be modulated by the microbiome strengthens this hypothesis. We therefore 334 

investigated if commensal effectors, indeed, perturb some of the identified pathways and 335 

functions. 336 

Effector function in human cells and disease 337 

The NF-κB signaling module is enriched among the convergence proteins and all targets of 338 

commensal effectors (Fig. 4a and Extended Data Fig. 4). Because of its important role in many 339 

diseases, we chose a cell-based dual-luciferase assay25 to test whether commensal effectors 340 

modulate NF-κB pathway activity in human cells. Indeed, five of 26 commensal effectors 341 

caused a significant increase in NF-κB pathway activity in the absence of exogenous 342 

stimulation suggesting pathway activation (Fig. 5a and Extended Data Table 6). Conversely, 343 

three effectors significantly reduced relative transcriptional NF-κB activity even in the presence 344 

of strong TNF stimulation (Fig. 5b, Extended Data Fig. 5, and Extended Data Table 6). Since 345 

some bacterial effectors also modulate NF-κB-independent induction of the thymidine kinase 346 

control promoter, we assessed the impact of selected effectors on endogenous expression of 347 
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NF-κB controlled human adhesion factor ICAM1 and cytokine secretion. We focused these 348 

experiments on two NF-κB activating (Kpn_9, met_7) and two NF-κB inhibiting (Pst_11, 349 

Cyo_12) bacterial effectors. ICAM1/CD54 is a glycoprotein that mediates intercellular epithelial 350 

adhesion and interactions with immune cells, specifically neutrophils. Epidemiologically, 351 

ICAM1 has been linked to CD such that increased ICAM1 expression is associated with higher 352 

disease risk56 likely by facilitating recruitment and retention of inflammatory immune cells57,58. 353 

Interference with ICAM1-mediated neutrophil trafficking is currently being tested as a 354 

therapeutic approach to treat CD59. In colon carcinoma Caco-2 cells, expression of met_7 355 

caused a significant increase of ICAM1 expression (P = 0.05, one-way ANOVA with Dunnett’s 356 

multiple hypothesis correction, Extended Data Table 6) following stimulation with a pro-357 

inflammatory cocktail. Expression of the inhibitory effectors Pst_11 and Cyo_12 did not 358 

significantly alter the induction of ICAM1 cell surface expression (Fig. 5c). We also investigated 359 

the effect of met_7 and Cyo_12 on cytokine secretion in unstimulated Caco-2 cells or following 360 

pro-inflammatory stimulation. In basal conditions, Cyo_12 reduced the secretion of several 361 

cytokines especially IL6 and IL8, whereas met_7 caused an increase in IL8 secretion in these 362 

conditions (Fig. 5d and Extended Data Table 6). Following proinflammatory stimulation, 363 

expression of Cyo_12 further reduced cytokine secretion. This effect was most pronounced for 364 

IL8, but also significant for IL6 and the pro-inflammatory IL1beta, IL18, and IL23. These 365 

cytokines are noteworthy as they are linked to IBD pathogenesis. IL23R has been associated 366 

to CD, and IL6 and IL23 stimulate the differentiation of Th17 cells, which have emerged as key 367 

players in CD60,61. IL8 is overexpressed in colonic tissue of IBD patients and has been 368 

suggested as a chemoattractant triggering neutrophil invasion62,63. In contrast, no significant 369 

impact of met_7 on cytokine secretion was detectable in the context of stimulation (Fig. 5e and 370 

Extended Data Fig. 5). Thus, commensal effectors can both stimulate and dampen intracellular 371 

immune signaling and this modulation can impact immune and tissue homeostasis via cell-cell 372 

adhesion and cytokine secretion.  373 

As we identified both genetic and functional links between commensal effectors and IBD-374 

related processes, we sought clinical evidence for a potential role of effectors in these 375 

diseases. We hypothesized that a potential role of effectors in IBD etiology may be reflected 376 

in altered effector prevalence in the microbiota of patients versus healthy controls. Analyzing 377 

a large dataset with > 800 IBD patient-derived and > 300 healthy control-derived 378 

metagenomes64 we found 64 effectors that were significantly more prevalent in the 379 

metagenomes of CD patients compared to healthy controls (Fig. 5f and Extended Data Table 380 

6). In metagenomes of UC patients only three effectors had a significantly different prevalence, 381 

and, intriguingly, these were less common compared to healthy controls (Extended Data Table 382 

6). This trend was recapitulated when the prevalence distributions of all detected effectors 383 
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were analyzed. Whereas CD patients had a significantly higher load of effectors, the overall 384 

effector prevalence was lower in UC patients compared to healthy subjects (Fig. 5g and 385 

Extended Data Table 6). These opposing findings were unexpected as an increased 386 

abundance of Pseudomonadota has been reported both for CD and UC patients65. At the same 387 

time, many clinical features such as affected tissues and response to anti-TNF therapy differ 388 

between these two forms of IBD, rendering it plausible that effectors contribute differently to 389 

their etiology. Whether commensal effectors indeed causally contribute to disease etiology or 390 

acute flairs is an important question with potential therapeutic implications. 391 

Discussion 392 

The presence of T3SS in human commensal microbes has been noticed previously and was 393 

speculated to mediate crosstalk between the intestinal microbiota and the human host66,67. 394 

Here, we provide evidence that, analogous to the plant kingdom31,68, also in the human gut 395 

T3SS and effectors function in commensal microbe-host interactions and modulate immune 396 

signaling. Thus, effector secretion appears to be used universally by Pseudomonadota to 397 

mediate interactions with multicellular eukaryotes independently of the lifestyle of the microbe. 398 

Since, as we show, commensal effectors modulate immune signaling we hypothesized that 399 

this may affect the manifestation of human diseases, especially those involving the immune 400 

system. The influence of the microbiome on IBD etiology is well documented1. Therefore, it is 401 

noteworthy that IBD, especially CD, emerged in several of our analyses. Effectors target the 402 

“response to the muramyl-dipeptide” pathway which includes NOD2, a major CD-associated 403 

gene product69. Further, effectors target and regulate the NF-κB pathway, which is strongly 404 

activated by TNF, a key therapeutic target in CD70. Likewise, ICAM1 is a susceptibility gene 405 

for CD whereby high expression increases disease risk56. Secretion of IL6, IL8, and IL23 is 406 

significantly altered by effectors, and all have previously been linked to CD61,63. Thus, 407 

commensal effectors regulate several IBD-relevant pathways and can thus influence the 408 

establishment or maintenance of feedback loops during disease development71. This 409 

conclusion is strengthened by the observation that effectors are enriched in metagenomes of 410 

a CD patient cohort. Thus, multiple lines of evidence suggest that by modulating immune 411 

signaling, commensal effectors contribute to the etiology of CD. 412 

Likely other microbial habitats of the human body, such as skin or lung, also host T3SS+ 413 

strains, and we identified effectors in a skin metagenome. It will be important to investigate this 414 

in the future to understand if those effectors have similar targets and effects on local cells. 415 

ICAM1, e.g., is the entry receptor for rhinovirus A72, and an increased expression due to 416 

microbial effectors could increase the risk for infections and thus to develop asthma73,74.  417 
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The broader question of how effectors influence the pathogenesis of IBD and other diseases 418 

will be important to address in further detailed studies. Our molecular data show that different 419 

effectors can have opposing impacts on immune pathways, analogous to genetic variants. 420 

Thus, host genetics and effectors jointly impact on the molecular networks, and pathogenic 421 

developments emerge from the interplay of protective and disease enhancing factors. For CD 422 

specifically, however, our analyses suggest that effectors promote disease development.  423 

In summary, we demonstrate that bacterial effector proteins constitute a hitherto unrecognized 424 

regulatory layer by which the commensal microbiota communicates with host cells and 425 

modulates human physiology. We anticipate that our findings and resources will open new 426 

research directions towards understanding the host-genetics dependent mechanisms by which 427 

the microbiome influences human health and exploring the potential of effectors for therapy 428 

and prevention.  429 
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METHODS 430 

Identification of T3SS+ strains in culture collections and MAGs 431 

To collect reference genomes for strains available from culture collections, three large culture 432 

collections were queried for all Pseudomonadota strains: DSMZ via BacDive75, ATCC 433 

(atcc.org) and BEI (beiresources.org). The strain numbers were looked up in GenBank 434 

(Release 229) from which 77 strains could be identified as perfect match.  435 

MAGs that were at least 50% complete and less than 5% contaminated (as estimated by 436 

CheckM76 from two different meta-studies were selected. 92,143 MAGs of Almeida et al.15 and 437 

9,367 Pseudomonadota MAGs from Pasolli et al.16 were used as input for T3SS prediction 438 

scaled via massive parallel computing. The computational predictions presented have been 439 

achieved in part using the Vienna Scientific Cluster (VSC). The prediction performance of 440 

EffectiveDB10 on incomplete and contaminated MAGs was assessed by 5-fold cross-validation 441 

with 5 repeats using 0 - 100% completeness and 0 - 50% contamination in 5% steps of 442 

simulated incompleteness/contamination, randomly sampling genes from test-set. In addition, 443 

T3SS were predicted for 4,753 strains isolated by the human gastrointestinal bacteria genome 444 

collection (HBC)11, and the unified gastrointestinal genome (UHGG) collection12,13. A 445 

performance-improved re-implementation of the EffectiveDB classifier 446 

(https://github.com/univieCUBE/phenotrex, trained on EggNOG 4 annotations77) was used to 447 

predict functional T3SS present in MAGs and genomes of isolated strains. Threshold for 448 

positive prediction was defined as > 0.7. 449 

Protein sequences were predicted from 44 T3SS-positive reference strains and MAGs using 450 

prodigal v2.6.376. Of 770 MAGs a total of 474,871 representative protein sequences were 451 

identified using CD-HIT78 (v4.8.1, parameters: ̀ -c 1.0`). The identical procedure was performed 452 

for 44 genomes from culture collections resulting in 161,115 proteins. Machine-learning based 453 

tools were used to predict T3SS signals (EffectiveT3 v.2.0.1 and DeepT3 2.019) or effector 454 

homology using pEffect21 to extract potential effector proteins. The results of all three tools 455 

were combined using a 0 - 2 scoring scheme: 2 for perfect score (pEffect > 90, EffectiveT3 > 456 

0.9999, DeepT3: both classifiers positive prediction), 1 for positive prediction as defined by 457 

default settings (pEffect > 50, EffetiveT3 > 0.95, DeepT3: one classifier) and 0 for negative 458 

prediction. Sequences with a sum score above 4 were regarded as potential effectors. Further, 459 

all sequences without start/stop-codon or trans-membrane region containing proteins (> 0 460 

regions; predicted with TMHMM version 2.0) were excluded. Proteins were clustered using 461 

90% sequence identity threshold (CD-HIT parameters `-c 0.9 -s 0.9`) to reduce redundancy. 462 

Effector-clusters with great diversity regarding T3SE-prediction scores were removed from the 463 

final set. Full data in Extended Data Table 1. 464 
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Identification of effector similarities and homology groups 465 

Based on a mutual sequence identity of ≥ 30% over 90% of the common sequence length 466 

effectors were considered ‘homologous’ and included in the HuMMIHOM experiment to 467 

investigate the impact of sequence similarity on interaction similarity. Protein sequences were 468 

analyzed by global alignment using Needleman Wunsch algorithm implemented in the emboss 469 

package (Extended Data Table 2).  470 

Commensal vs pathogen effector similarity 471 

We gathered the sequences of 1,195 known pathogenic T3 effectors from the BastionHub 472 

database79 (August 29th, 2022). We assessed the similarity between commensal and 473 

pathogenic effector sequences using BLAST (stand-alone, version 2.1080). For each 474 

commensal effector, the pathogen effector with the highest sequence similarity was considered 475 

as best match. Subsequently, we computed the alignment coverage over the pathogenic 476 

effector sequence. Full data in Extended Data Table 2. 477 

Cohort analyses 478 

Genomes of bacterial isolates from the human gut were gathered from multiple published 479 

datasets11-13. The presence of T3SS was predicted for each of these genomes as described 480 

above. GTDB-Tk (v2.1)81 was used to assign the taxonomy to each of the genomes, and the 481 

concatenated bac120 marker proteins from this were used to generate a phylogenomic tree of 482 

the isolates, visualized in iTOL82. FastANI was used to match the T3SS positive genomes to 483 

the WIS representative genomes of the human gut18 based on ANI values > 95%83. The relative 484 

abundance of the 10 matching representative genomes was then identified across 3,096 485 

Israeli, and 1,528 Dutch patients18. 486 

Effector cloning 487 

Bacterial strains from the ATCC collection were ordered from LGS Standard Standard (Wesel, 488 

Germany) or ATCC in the US (Manassas, Virginia). Bacterial strains from the DSMZ collection 489 

were obtained from the Leibniz-Institut DSMZ (Braunschweig, Germany) and strains from the 490 

BEI collection were ordered at BEI resources (Manassas, Virginia, USA) (Extended Data Table 491 

2). Effectors identified from MAGs and effectors for the PRS were ordered at Twist Bioscience 492 

(San Francisco, CA, 660 USA). If no genomic DNA could be obtained strains were cultured 493 

according to the manufacturer’s protocol and DNA was extracted using the NucleosSpin 494 

Plasmid (NoLid) Mini kit (Macherey-Nagel cat. No. 740499) with vortexing after addition of 495 

BufferA2 and BufferA3. A nested PCR was performed to add Sfi sites, the DNA was purified 496 

using magnetic beads (magtivio cat. no. MDKT00010075), followed by an Sfi digestion and 497 

another clean-up with magnetic beads. Digested PCR products were cloned into pENTR223.1 498 
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using T4 DNA Ligase (ThermoFisher ca. no. EL0011). Plasmids were propagated in DH5α E. 499 

coli and the plasmid DNA was extracted using the pipetting Bio Robot Universal System 500 

(Qiagen cat. no. 9001094) and the QIAprep 96 plus BioRobot kit (Qiagen cat. no. 962241). 501 

ORFs were verified by Sanger Sequencing. Effectors were cloned into the Y2H destination 502 

plasmid pDEST-DB (pPC97, Cen origin), the pDEST-N2H-N1 and -N2, or the mammalian 503 

expression vector pMH-FLAG-HA by an LR reaction of the Gateway System. After propagation 504 

in DH5α E. coli and DNA extraction plasmids were transformed into S. cerevisiae Y8930 505 

(MATα mating type) as DB-X ORFs as described84. 506 

Meta-interactome mapping 507 

A state-of-the-art high-quality Y2H screening pipeline was followed as previously 508 

described25,85. DB-X ORFs were tested for autoactivation by mating against AD-empty 509 

plasmids in Y8800 (MATa). 45 ORFs of the strains and 14 meta effectors tested positive and 510 

were excluded from subsequent steps. The remaining 900 ORFs were individually mated 511 

against pools of ~188 AD-Y human ORFs from the human ORFeome collection v9.1 including 512 

17,472 ORFs86. During primary screening, haploid AD-Y and DB-X yeast cultures were spotted 513 

on top of each other and grown on yeast extract peptone dextrose (YEPD) agar (1%) plates. 514 

After incubation for 24 h, the clones were replica plated onto selective synthetic complete 515 

media lacking leucine, tryptophan and histidine (SC-Leu-Trp-His) + 1 mM 3-AT (3-amino-1,2,4-516 

triazole) (3-AT plates) and replica cleaned after 24 h. 48 h later, three colonies were picked 517 

per spot and grown for 72h in SC-Leu-Trp liquid medium. For the secondary phenotyping, 518 

yeasts were spotted on SC-Leu-Trp plates and after incubation for 48 h replica plated and 519 

cleaned on 3-AT-plates and SC-Leu-His + 1 mM 3-AT + 1 mg per litre cycloheximide plates to 520 

identify spontaneous DB-X autoactivators. Clones growing on 3-AT plates, but not on 521 

cycloheximide plates were picked into yeast lysis and processed to generate a library for pair 522 

identification by Next Generation Sequencing using a modified KiloSeq procedure as 523 

previously described25. Identified DB-X and AD-Y pairs were mated individually during the 524 

fourfold verification, replica plated and cleaned after 24 hours and picked after another 48 h 525 

incubation. Growth scoring was performed using a custom dilated convolutional neural network 526 

as described25. Pairs scoring positive at least three out of the four repeats qualified as bona 527 

fide Y2H interactors. The AD-Y and DB-X constructs were identified once more by NGS. All 528 

interaction data are in Extended Data Table 3. 529 

Assembling reference sets 530 

To identify additional reliably documented interactions between bacterial effectors and human 531 

proteins for the positive control set (bhLit_BM-v1), we queried the IMEx consortium protein 532 

interaction databases87 through the PSICQUIC webservice88 (May 10th, 2021) using the T3 533 
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effectors UniprotKB accession numbers and fetched all the PubMed identifiers of the articles 534 

describing additional interactions. In total, we gathered 67 interactions between 29 T3 effectors 535 

and 64 human proteins, described in 13 distinct publications that underwent the manual 536 

curation step for inclusion in the PRS (Extended Data Table 3). 537 

Y2H assay sensitivity 538 

Effector ORFs from bhLit_BM-v1 and bhRRS-v1 (Extended Data Table 3) were transferred 539 

into pDEST-DB (DB-X) and transformed into Saccharomyces cerevisiae Y8930 (MATα). Yeast 540 

strains containing the corresponding AD-Y human ORF were picked from hORFeome9.186 and 541 

ORF identity verified by end-read Sanger sequencing of PCR products. Yeast strains harboring 542 

plasmids containing ORFs from hsPRS-v2/hsRRS-v289 were provided by the Center for 543 

Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA. DB-X and AD-Y were 544 

mated fourfold with each other, as well as against yeast strains containing the corresponding 545 

DB-empty or AD-empty plasmid. Growth scoring was performed as described above for the 546 

fourfold verification. Pairs scoring positive at least three out of the four repeats qualified as 547 

bona fide Y2H interactors. 548 

Interactome validation by yN2H 549 

200 interactions were randomly picked from HuMMI and all ORFs from the indicated datasets 550 

(Extended Data Table 3) were transferred by Gateway LR reactions into pDEST-N2H-N1 and 551 

pDEST-N2H-N2 plasmids containing a LEU2 or TRP1 auxotrophy marker, respectively89. 552 

Successful cloning was monitored by PCR-mediated evaluation of insert size, and positive 553 

clones transformed into haploid Saccharomyces cerevisiae Y8930 (MATα) and Y8800 (MATa) 554 

strains, respectively. Protein pairs from all datasets were randomly distributed across matching 555 

96-well plates. 556 

5 µL of each haploid culture of opposite mating type grown to saturation was mated in 160 µL 557 

YEPD medium and incubated overnight. Additionally, each position was mated with yeast 558 

stains containing empty N1 or N2 plasmids, to measure background. 10 µL mated culture was 559 

inoculated in 160 µL SC-Leu-Trp and grown overnight. 50 µL of this overnight culture was 560 

reinoculated in 1.2 ml SC-Leu-Trp and incubated for 24 h at 1000 rpm. Cells were harvested 561 

15 min at 3000 rpm, the supernatant discarded, and each cell pellet was fully resuspended in 562 

100 µl NanoLuc Assay solution (Promega corp. Madison, WI, USA, cat# 1120). Homogenized 563 

solutions were transferred to white flat-bottom 96-well plates (Greiner Bio-One, Frickenhausen, 564 

Germany, cat# 655904) and incubated in the dark for 1 h at room temperature. Luminescence 565 

for each sample was measured on a SpectraMax ID3 (Molecular Devices, San Jose, CA, USA) 566 

with 2 s integration time. The normalized luminescence ratio (NLR) was calculated by dividing 567 

the raw luminescence of each pair (N1-X N2-Y) by the maximum luminescence value of one 568 
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of the two background measurements. All obtained NLR values were log2 transformed and the 569 

positive fraction for each dataset was determined at log2 NLR thresholds between –2 and 2, in 570 

0.01 increments. Statistical results were robust across a wide range of stringency thresholds. 571 

Extended Data Table 3 reports the results at log2 NLR = 0. Reported P values were calculated 572 

by Fisher’s exact test. 573 

Interactome framework parameter calculation 574 

Assay sensitivity (Sa), i.e., the fraction of detectable interactions was assessed employing the 575 

effector bhLit_BM-v1 (54 pairs) and bhRRS-v1 (73 pairs) as well as the human hsPRS-v2 (60 576 

pairs) and hsRRS-v2 (78 pairs) for benchmarking. All reference sets were tested 4 times using 577 

the Y2H screening pipeline. To assess sampling sensitivity (Ss) a repeat screen was 578 

conducted. 288 bacterial effectors were screened 4 times against 5 pools comprising 1,475 579 

human proteins. A saturation curve was calculated as described85. Briefly, all combinations of 580 

the number of interactions of the 4 repeats were assembled and the reciprocal values 581 

calculated. From these a linear regression was determined to obtain the slope and the 582 

intercept. Reciprocal parameters were calculated to find Vmax and Km and using the Michaelis-583 

Menten-formula a saturation curve was predicted. Overall sensitivity emerges from both 584 

sampling and assay limitations and is calculated as So = SA * SS. 585 

Sequence similarity and interaction profile 586 

To investigate the relationship between the similarity of effector sequences and the similarity 587 

of their interaction profiles we calculated the pairwise Jaccard index, which measures the 588 

overlap between two effectors’ interaction profiles. We calculated the Jaccard index of all 589 

possible effector pairs within a homology cluster. This index represents the ratio of number of 590 

human proteins targeted by both effectors to the total number of human proteins targeted by 591 

either of them. For our analysis, we only considered effector pairs where the total number of 592 

human proteins that are targeted by either effector was at least 3. We implemented the 593 

calculations described here as commands in R version 4.2.1. 594 

Interface predictions 595 

We used as input a representative set of effectors identified in isolated strains (2300 596 

sequences clustered at 90% sequence identity) and all effectors identified in MAGs (186). We 597 

ran mimicINT as described in32 and available at [https://github.com/TAGC-598 

NetworkBiology/mimicINT]. Briefly, mimicINT performs domain searches in effector sequences 599 

with InterProScan90 using the domain signatures from the InterPro database91 retaining 600 

matches with an E-value below 10-5. For host-like motif detection, mimicINT uses the SLiMProb 601 

tool from the SLiMSuite software package92 by exploiting the motif definitions available in the 602 

ELM database93. Motifs are detected in disordered regions as defined by the IUPred 603 
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algorithm94 using both short and long models (motif disorder propensity = 0.2, minimum size 604 

of the disordered region = 5). The interface inference step relies on the 3did database95 (ii) the 605 

ELM database93. The workflow checks whether any of the effector proteins contains at least 606 

one domain or motif for which an interaction template is available. In this case, it infers the 607 

interaction between the given protein and all the host proteins containing the cognate domain 608 

(i.e., the interacting domain in the template). To control for false positive inference using motif-609 

domain templates, mimicINT provides two scoring strategies. First, considering binding 610 

specificity of domains belonging to the same group (as PDZ or SH3)96 an HMM-based domain 611 

score97 is computed used to rank or filter the inferred interactions. Second, given the 612 

degenerate nature of motifs98, mimicINT, using Monte-Carlo simulations, assesses the 613 

probability of a given SLiM to occur by chance in query sequences and, thus, can be used to 614 

filter false positives99. This statistical approach randomly shuffles the disordered regions of the 615 

input sequences to generate a large set of N randomized proteins.  616 

Here, we first grouped effectors sequences by strain and effectors from MAGs were assigned 617 

to the closest strain. In the first experiment, disordered regions were shuffled 100,000 times 618 

using as background the effector sequences from the same strain (within-strain shuffling). In 619 

the second, regions were shuffled 100,000 times using as disorder background the full set of 620 

effector sequences (inter-strain shuffling). Subsequently, the occurrences of each detected 621 

motif in each effector sequence were compared to the occurrences observed in the 622 

corresponding set of shuffled sequences. We considered as significant all the motif 623 

occurrences having an empirical P value lower than 0.1. To evaluate whether the number of 624 

interface-resolved interactions inferred by mimicINT is significantly different from chance, we 625 

generated 10,000 random networks by sampling human proteins from the interaction search 626 

space in a degree-controlled manner. We then counted how many randomly generated 627 

networks mimicINT inferred a higher number of interfaces than for the one observed in the 628 

main screen network. Results and statistical details are in Extended Data Table 3.  629 

Holdup assay 630 

Domain production: 54 human PDZ domains and the 11 tandem constructs were 631 

recombinantly expressed as His6-MBP-PDZ constructs in E. coli BL21(DE3) pLysS in NZY 632 

auto-induction LB medium (nzytech, MB17901)100. PDZ domains were purified by Ni2+-affinity 633 

with a 96-tip automated liquid-handling system (Tecan Freedom Evoware) using 800 µl of Ni2+ 634 

Beads (Chelating Sepharose Fast Flow immobilized metal affinity chromatography, Cytiva) for 635 

each target. The domains were eluted in 2.5 ml of elution buffer: 250 mM imidazole, 300 mM 636 

NaCl, 50 mM Tris, pH 8.0 buffer, and then desalted using PD10 columns (GE healthcare, 637 

17085101) into 3.5 ml of 50 mM Tris, pH 8.0, 300 mM NaCl, 10 mM Imidazole buffer. 638 

Concentration of desalted His6-MBP-PDZ was determined using absorption at 280 nm on a 639 
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PHERAstar FSX plate reader (BMG LABTECH). Stock solutions were diluted to 4 µM and 640 

frozen at -20°C. To assess purity and confirm the concentrations, proteins were further 641 

analyzed by SDS-PAGE (LabChip™ GXII, Perkin Elmer). Peptides: 10-mers corresponding to 642 

the C-terminal sequences of effectors were ordered as synthetic biotinylated peptides from 643 

GenicBio Limited (Shanghai, China); the N-terminal biotin was attached via a 6-aminohexanoic 644 

acid linker, which we showed does not alter the peptide’s binding or structural properties34. 645 

Purity was assessed by HPLC and mass spectrometry; all peptides were >95% pure. 646 

Depending on the amino acid composition and charge peptides were solubilized in dH2O, 1.4% 647 

ammonia or 5% acetic acid, aliquoted at 10 mM concentration and stored at -20°C.  648 

For the hold-up assay we followed published procedures34,35. Briefly, 2.5 µl of Streptavidin resin 649 

(Cytiva, 17511301) were incubated for 15 min with 20 µl of a 42 µM biotinylated peptide 650 

solution, in each well of a 384-well MultiScreenHTS™ filter plate (Millipore, MZHVN0W10). 651 

The resin was washed with 10 resin volumes (resvol) of hold-up buffer (50 mM Tris HCl, 300 652 

mM NaCl, 10 mM imidazole, 5 mM DTT), and depleted by incubation for 15 min with 5 resvol 653 

of a 1 mM biotin solution, and three washes with 10 resvol of hold-up buffer. A single PDZ 654 

domain was then added to each well, incubated for 15 min with the peptide bound to the resin 655 

and the unbound PDZ was recovered by centrifugation into 384-well black assay plates for 656 

fluorescence readout. The concentration is quantified by intrinsic Trp fluorescence, 657 

fluorescein/mCherry was used for peak normalization. Binding affinities and equilibrium 658 

dissociation constants (kD) were calculated as in34, using the mean PBM concentration for kD 659 

calculations. Raw values and statistical analysis are in Extended Data Table 3. 660 

Fluorescent polarization 661 

All FITC labelled peptides were synthesized as 10-mers by Biomatik, Canada, as acetate salts 662 

of >98% purity. The FP experiments were performed with the His6-MBP-PDZ proteins in 50 663 

mM Tris, 300 mM NaCl, 1 mM DTT, pH 7.5 buffer in 384-well plates (Corning 3544). For direct 664 

binding the His6-MBP fused PDZ domains were two-fold serially diluted with 12 dilutions, and 665 

a final volume of 10 µl. These were then incubated with 50 nM of the FITC labelled viral 666 

peptides and the plates were then read out after 1 h in FlexStation 3 (Molecular Devices) at 667 

23°C, using 485 nm excitation and 520 nm emission. For competition experiments, the PDZ 668 

domain and FITC peptide were kept constant at 6 µM and 50 mM, respectively. The bacterial 669 

effectors peptides in 1% ammonia buffer were added to the PDZ in a four-fold dilution, (5 670 

concentrations: 0 to 31.25 µM) and incubated at room temperature for 2 h. The FITC peptides 671 

were then added and further incubated for 1 h at RT. The plates were then read as above. 672 

Statistical analysis was performed using the Kruskal-Wallis test with Dunn’s test followed by 673 

an FDR-correction. Raw values and statistical analysis are in Extended Data Table 3. 674 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.25.559292doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.25.559292
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

22 

 

Effector convergence 675 

To estimate the significance of effector convergence, we performed a permutation test by 676 

randomly sampling ‘target’ nodes (n = 979) from Y2H identifiable proteins from the human 677 

reference interactome map, HuRI86, as the sampling space (n = 8,274). We used sampling 678 

with replacement to allow repeatedly picking a protein. In each iteration, the number of 679 

distinctly targeted proteins was counted. The resulting distribution from 10,000 random 680 

permutations was used to calculate the z-score of the experimentally observed targets (n = 681 

349). The P value is the area under the curve for the standard normal distribution up to a given 682 

z-score. We calculated the P value as implemented in the “pnorm()” R function using the z-683 

score as input. To account for the two-tailed test, the P value was multiplied by 2. To avoid 684 

artifacts due to differential sampling we only considered interactions in the HuMMIMAIN, 685 

excluding those human proteins targeted by effectors of the unknown strains and targets 686 

outside HuRI. The rationale for the latter is that a substantial proportion of proteins that are not 687 

in HuRI may not be suitable for Y2H analysis. Thus, restricting the analysis to the HuRI subset 688 

increases the stringency. 689 

To estimate the significance of the convergence of effectors from different strains (interspecies 690 

convergence), we used a conditional permutation test that preserves the strain contribution. 691 

For each iteration, we generated 18 samples, where for each sample, we randomly picked the 692 

number of proteins equivalent to the observed targets of each strain (Extended Data Table 3). 693 

From the full list of random picks that are assigned to all strains, the frequency of selecting a 694 

protein was recorded. This frequency is the convergence value which indicates the number of 695 

targeting strains. Using the convergence value distribution obtained from 10,000 iterations, we 696 

identified the statistically significant number of strains sharing a target. The observed 697 

convergence value ranges from 2 to 15 strains. We calculated the z-scores using the 698 

convergence value distribution obtained from the conditional permutation test and the 699 

associated P values as implemented in the “pnorm()” R function. The significant convergence 700 

value (P value < 0.004) starts at 4 strains. We considered any target that is in common between 701 

at least 4 strains to be subject to interspecies convergence.  702 

Function enrichment analysis  703 

We used the “gost()” function from the gprofiler2 version 0.2.1 R package101 to identify enriched 704 

functions in effector targets. This function implements a hypergeometric test to estimate the 705 

significance of the abundance of genes considering the frequency of the genes in the function 706 

annotation databases. The main input argument for this function is the gene list (“query”). The 707 

function allows the user to optionally set input arguments, including the background 708 

(“custom_bg”), evidence codes (“evcodes”), annotation databases (“sources”), methods for 709 
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correcting the hypergeometric test P values (“correction_method”), and other arguments that 710 

were set to their default options. We used the target official symbol identifiers as the “query” 711 

argument. The list of HuRI proteins was the “custom_bg” argument. The annotations inferred 712 

from electronic annotations were excluded by setting the “exclude_iea” argument to “TRUE”. 713 

The hypergeometric test P values were corrected using Benjamin-Hochberg method by setting 714 

the “correction_method” argument to ”fdr”. The argument (“sources”) was set to a vector 715 

(“GO:BP”, “KEGG”,”REAC”), which encodes the search space across three function annotation 716 

databases: gene ontology biological process terms (“GO:BP”)102, Kyoto encyclopedia of genes 717 

and genomes (“KEGG”) pathways103, and Reactome pathway database (“REAC”)104. After 718 

plugging in these inputs into the “gost()” function, the output is a named list where “result” is a 719 

data frame that tabulates the enrichment analysis results. We calculated the odds ratio and 720 

the fold enrichment to estimate the effect size of each tested function. The odds ratio was 721 

calculated for each function as the odds in the target set divided by the odds in the HuRI set. 722 

The odds in the target set are the number of function-annotated target proteins divided by that 723 

of the function-unannotated target proteins. Similarly, the odds in the HuRI set are the number 724 

of function-annotated HuRI proteins divided by that of function-unannotated HuRI proteins. 725 

The fold enrichment was calculated for each function by comparing the number of function-726 

annotated target proteins to that of the expected. The expected value represents the number 727 

of function-annotated target proteins that is expected randomly based on the HuRI 728 

background. It is the product of the total number of targets (n = 349) by the rarity. The rarity is 729 

the number of function annotated HuRI proteins divided by the sum of annotated HuRI proteins. 730 

The total HuRI proteins annotated for GO:BP, KEGG, and REAC, are 6988, 3250, and 4592, 731 

respectively. Statistical details are in Extended Data Table 5. 732 

Metabolic subsystem analysis 733 

Several metabolism-related functions were significantly enriched in target proteins; therefore, 734 

we tested the abundance of targeted enzymes in metabolic subsystems using the human 735 

genome-scale metabolic model Recon3D46. To focus on metabolic enzymes as opposed to 736 

signaling enzymes, we excluded ligases and kinases from Recon3D analyses. We performed 737 

the hypergeometric test using the R function “phyper()” for each subsystem annotated in 738 

Recon3D (n = 95). The inputs to this function are: the number of subsystem-annotated targeted 739 

enzymes, the number of subsystem-annotated Recon3D enzymes, the number of subsystem-740 

unannotated Recon3D enzymes, and the number of targeted enzymes (n = 16). The nominal 741 

P values were corrected using Benjamin-Hochberg. We calculated the odds ratio and the fold 742 

enrichment using the same calculations described above for functional enrichments.  743 

Random walk-based determination of commensal effector network neighborhoods  744 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.25.559292doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.25.559292
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

24 

 

We have implemented a network propagation protocol based on a Random Walk with Restart 745 

(RWR) algorithm RWR-MH105 to explore the network vicinity of the commensal effectors in 746 

HuRI54, which contains 338 target proteins (HuMMIMAIN screen) of 243 commensal effectors. 747 

We used the human effector targets as seeds for the random walk and set the restart 748 

probability to the default value of 0.7. In this way, we obtained a ranked list of proteins in the 749 

network: the ones with the higher scores are more proximal to the seeds than those with lower 750 

scores. To assign statistical significance to the computed RWR scores, we implemented a 751 

normalization strategy based on degree-preserving network randomizations106. We thus 752 

generated 1,000 random networks from HuRI and ran the RWR algorithm to compute 1,000 753 

scores for each network protein. We then computed an empirical P value for each protein in 754 

the network keeping as neighbor proteins only those with an empirical P value < 0.01.  755 

Disease enrichment analysis 756 

We tested the association of all target proteins, or those subject to convergence, with human 757 

diseases by performing a two-sided Fisher’s exact test. We used the disease-causal genes 758 

identified by the Open Targets genetic portal, which prioritizes genes at GWAS loci based on 759 

variant-to-gene distance, molecular QTL colocalization, chromatin interaction, and variant 760 

pathogenicity107. This machine-learning approach assigns a locus to gene (l2g) score to 761 

identify the most likely causal gene for the genetic variation signal of any marker SNP. We 762 

considered a score of 0.5 or more as a threshold, as recommended by the authors108. The 763 

Fisher’s exact test was performed using the function “fisher.test()” from “stats” R package 764 

version 4.2.2 with its default inputs whenever applicable. The input to this function is a 2 x 2 765 

contingency table, where columns represent the query set and the background set, and rows 766 

denote the absence or presence of causal genes in the respective set. HuRI proteins were 767 

used as the background set, and the query set was either the target proteins or those subject 768 

to convergence. The calculated nominal P values from this function were then corrected using 769 

the Benjamin-Hochberg method as implemented in the “p.adjust()” function. The odds ratio 770 

and fold enrichment values were calculated as described in the functional enrichment section. 771 

Statistical details are in Extended Data Table 5. 772 

Association with human traits and phenotype in network neighborhoods 773 

For each set of significant neighborhood-proteins we tested for enrichment of Open Targets 774 

causal genes for human traits that had been investigated by 3 or more studies and for which 775 

the Open Targets initiative identified 3 or more causal genes (l2g ≥ 0.5). We used a two-sided 776 

Fisher's exact test to assess whether a given strain neighborhood is enriched in protein 777 

associated with a human trait or phenotype followed by Benjamini-Hochberg multiple testing 778 

correction. This yielded no significant association (FDR < 0.05). We therefore focused on 400 779 
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associations with a nominal P value < 0.01 and an OR > 3. Some disease categorizations were 780 

adjusted to better reflect etiology. Thus, Sjogren syndrome, eczema and psoriasis were 781 

considered an ‘immunological’ rather than eye or skin traits, and osteoarthritis was labeled as 782 

a disease of “musculoskeletal or connective tissue” rather than metabolic. For Fig. 4d some 783 

closely related traits were merged, i.e., three asthma terms and three psoriasis terms. 784 

Statistical details are in Extended Data Table 5. 785 

NF-κB activation assay 786 

HEK 293 (RRID: CVCL_0045, DSMZ) were maintained in DMEM with 10% FBS and 100 U/mL 787 

penicillin and 100 U/mL streptomycin at 37°C and 5% CO2. IKKβ (in pRK5 with a Flag-tag) 788 

served as positive control whereas A20 (in pEF4 with a Flag-tag) as the negative control. In a 789 

60 mm cell culture dish 1 x 106 cells were seeded in 3 ml Medium. After 24 h cells were 790 

transfected using 10 ng NF-κB reporter plasmid (6 × NF-κB firefly luciferase pGL2), 50 ng pTK 791 

reporter (renilla luciferase) and 2 µg bacterial ORF in pMH-FLAG-HA. The DNA was added to 792 

200 µl 250 mM CaCl2 solution (Carl Roth cat. no. 5239.1), vortexed and added dropwise to 793 

200 μl 2 × HBS (50 mM HEPES (pH 7.0) (Carl Roth cat. no. 9105.4), 280 mM NaCl (Carl Roth 794 

cat. no. 3957.2), 1.5 mM Na2HPO4 × 2 H2O (Carl Roth cat. no. 4984.1, pH 6.93) which was 795 

vortexed. After 15 min incubation, the mixture was added dropwise to the cells. Medium was 796 

changed after 6 h incubation. To assess NF-κB inhibition, cells were treated for 4 h with 20 797 

ng/ml TNF (Sigma-Aldrich cat. no. SRP3177) 24 h after transfection. Samples were washed, 798 

lysed, centrifuged and the supernatant was measured using the dual luciferase reporter kit 799 

(Promega, E1980) with a luminometer (Berthold Centro LB960 microplate reader, Software: 800 

MikroWin 2010). NF-κB induction was determined as Firefly luminescence to Renilla 801 

luminescence. P values were calculated using the Kruskal-Wallis test with Dunn’s correction 802 

followed by an FDR-correction. Raw values and statistical analysis are in Extended Data Table 803 

6. 804 

Protein expression levels were checked by Western Blots. Proteins were separated by SDS-805 

PAGE and transferred on polyvinylidene fluoride membranes, and after transfer blocked with 806 

5% milk in 1 × PBS + 0.1% Tween-20 (PBST) for 1 h at room temperature. Primary antibodies 807 

were added in 2.5% BSA in PBS-T buffer at 4°C overnight. After 3 x 15min washes with PBS-808 

T anti-mouse secondary antibody was added at a 1:10,000 dilution for 1 h at RT (Jackson 809 

ImmunoResearch Labs cat. no. 715-035-150, RRID:AB_2340770). Primary antibodies: anti-810 

Actin beta (SCBT cat. no. sc-47778, RRID:AB_626632) at a 1:10,000 dilution, anti-FLAG M2 811 

(Sigma Aldrich cat. no. F3165, RRID:AB_259529) at a 1:500 dilution and anti-HA (Sigma-812 

Aldrich cat. no. 11583816001, RRID:AB_514505) at a 1:1,000 dilution. For detection the 813 

LumiGlo reagent (CST cat. no. 7003S) and a chemiluminescence film (Sigma-Aldrich cat. no. 814 

GE28-9068-36) were used. 815 
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ICAM1 assay 816 

Caco-2 cells were maintained in DMEM Glutamax medium (Gibco) supplemented with 10% 817 

FBS, 1% Pen/Strep at 37°C in a humidified 5% CO2 incubator. Medium was refreshed twice 818 

a week. Caco-2 cells were plated in both 24- and 96-well plates 24 h before transfection. Six 819 

hours prior to transfection, culture medium was replaced with supplement-free DMEM. Co-820 

transfections were performed using 40,000 MW linear polyethylenimine (PEI MAX®) 821 

(Polysciences, Warrington, USA) at a ratio of 1:5 pDNA:PEI. Equimolar ratios of the eGFP-822 

plasmid and effector-plasmid were used to ensure equimolar representation of relevant ORFs. 823 

In total, 250 ng and 1 µg pDNA was added per well of the 96- and 24-well plates, respectively. 824 

pDNA-PEI complexes were formed by incubating pDNA and PEI at RT for 15 minutes, followed 825 

by the addition of supplement-free DMEM and another incubation of 15 minutes at RT. Cells 826 

were then exposed to the transfection mixture for 16 h, washed, and rested for 6 h in complete 827 

DMEM. Subsequently, cells were stimulated using an activation mix containing 200 ng/ml PMA 828 

(P8139-1MG, Sigma-Aldrich), 100 ng/ml LPS (L6529-1MG, Sigma-Aldrich), and 100 ng/ml 829 

TNF (130-094-014, Miltenyi Biotec). In 24-well plates, cells were stimulated for 24 h and 830 

detached from the plate using ice-cold PBS. In the 96-well plate, cells were stimulated for 48 831 

h, treated with BD GolgiStop™ (554724, BD Biosciences) in the final 6 h of stimulation, and 832 

detached using trypsin/EDTA. Cells were washed twice and ICAM1 was stained using an anti-833 

ICAM1 PE (#MHCD5404-4, Invitrogen) antibody. The mean fluorescent intensity of the GFP+ 834 

cell population was measured on a FACSFortessa™ flow cytometer (BD) and the data was 835 

analyzed using FlowJo V10.8.1 (BD). After positive tests for normal data distribution, 836 

significance was assessed using a one-way ANOVA with Dunnett’s multiple comparisons test. 837 

Raw values and statistical analysis are in Extended Data Table 6. 838 

Cytokine assays  839 

Caco-2 cells were plated in 100 mm cell culture dishes three days prior to transfection. The 840 

transfection protocol was identical to that described above, however, a total of 20 µg pDNA 841 

was used per dish. Upon overnight transfection, cells were detached using Trypsin/EDTA and 842 

resuspended in cell sorting buffer (PBS + 2% FBS + 2mM EDTA). GFP+ cells were sorted into 843 

ice-cold FBS using a BD FACSAria III cell sorter (BD) and transferred to a 96-well plate at 844 

30,000 cells per well. Upon a 24 h rest-period, cells were activated for 48 h using the activation 845 

mix described above. During cell stimulation, cell proliferation was monitored through 846 

longitudinal imaging of cell confluency in the Incucyte S3 Live cell analysis system (Essen 847 

BioScience). Cytokine levels were determined using the human inflammation panel 1 848 

LEGENDplex™ kit (Biolegend) following the manufacturer's instructions. Cell culture 849 

supernatant of the above samples was used to analyze IL1beta. To this end, IL1beta ELISAs 850 

were performed using the ELISA MAX™ Deluxe Set Human IL1beta kit (437015, Biolegend) 851 
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following the protocol provided by the manufacturer. Statistical significance was evaluated 852 

using Kruskal-Wallis test with uncorrected Dunn’s test. Raw values and statistical analysis are 853 

in Extended Data Table 6. 854 

Protein ecology 855 

Metagenomic assemblies from the Inflammatory Bowel Disease Multi’omics DataBases 856 

(IBDMBD)64 and from the skin metagenome109 were downloaded, and each samples protein 857 

repertoire predicted using Prodigal (options; -p meta)110. Effector proteins were compared to 858 

the metagenomic protein repertoires using DIAMOND (options; >90% query length, >80% 859 

identity). For analyses in Fig. 5, samples were grouped into patients with UC (n = 304), CD (n 860 

= 508), and controls without IBD (n = 334). The annotations were then converted into binarised 861 

vectors of presence and absence of each effector across the sample and the Fischer exact 862 

test, implemented within scipy python module, was used to determine if the prevalence of each 863 

effector occurring within CD or UC patient metagenomes compared to controls. Significance 864 

was then corrected using the Benjamini-Hochberg method. The significance of differences in 865 

prevalence distributions between healthy and either patient cohort were estimated by Wilcoxon 866 

rank-sum test, implemented in the “wilcox.test()” R function. Statistical details in Extended Data 867 

Table 6. 868 

Statistics and reproducibility 869 

Data were subjected to statistical analysis and plotted to Microsoft Excel 2010 or python or R 870 

scripts. For comparison of normally distributed values we used one-way ANOVA, for 871 

assessment of overlap for comparison of values not passing the normality tests we used 872 

Kruskal-Wallis test with Dunn’s corrected as appropriate and indicated in the figure legends 873 

and methods. Enrichments were calculated using Fisher’s exact test with Bonferroni FDR 874 

correction. All statistical evaluations were done as two-sided tests. Generally, a corrected P 875 

value < 0.05 was considered significant. GO, KEGG, and Reactome functional enrichments 876 

were calculated using profiler with the respectively indicated background gene sets. For the 877 

disease target enrichments and neighborhood associations no associations were significant 878 

after multiple hypothesis correction, which is why nominally significant associations calculated 879 

by Fisher’s exact tests were used for Fig. 4c,d. All raw values, n, and statistical details are 880 

presented in supplementary tables as indicated in the Figure legends and methods sections.  881 
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FIGURES  882 

 883 

Fig. 1 | T3SS in commensal bacterial species in the gut microbiome. a, Proportion of 884 

Pseudomonadota genomes encoding complete T3SS among 77 reference strains of human 885 

intestinal and stool samples, in a collection of 4,475 strains isolated from normal human guts, 886 

and in meta-assembled genomes (MAG) of normal human guts. b, Most abundant genera and 887 

identified number of species and genomes encoding complete T3SS from the samples in a. c, 888 

Proportion of individuals in two human cohorts containing T3SS encoding microbial species. 889 

d, Similarity of 3,002 candidate effector-substrates for T3SS identified from commensal 890 

reference strains with 1,195 effectors from pathogenic microbes across the range of alignment 891 

coverages. e, Selection of 18 commensal Pseudomonadota strains with dissimilar effector 892 

complements used for subsequent functional analyses. Numbers indicate the count of shared 893 

effectors at >90% mutual sequence similarity across 90% common sequence length among 894 

the indicated strains. Full data for all panels in Extended Data Table 1.  895 
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  896 

Fig. 2 | Meta-interactome network map of bacterial effectors with human proteins. a, 897 

Success rates of effector ORF cloning for each strain, and number of sequence verified ORFs 898 

(right). b, Number of interactions and involved proteins in the HuMMI subsets. c, Verified 899 

human microbiome meta-interactome (HuMMI) map. Grey nodes: human proteins; outer layer 900 

human proteins targeted only by the nearest strain; central human proteins by effectors from 901 

multiple strains. d, Sampling sensitivity: saturation curve calculated from the repeat 902 

experiment: red dots represent average of verifiable interactions found in any combination of 903 

indicated number of repeat screens; black dots and line: modeled saturation curve. e, Assay 904 

sensitivity: percentage of identified interactions from bhLit_BM-v1 (n = 54 pairs), bhRRS-v1 (n 905 

= 73 pairs), hsPRS-v2 (n = 60 pairs), hrRRS-v2 (n = 78 pairs) in our Y2H. Error bars present 906 

the standard error (SE) of proportion. f, Validation rate of a random sample of HuMMI 907 

interactions (n = 295 pair configurations) compared to four reference sets in the yN2H 908 

validation assay: bhLit_BM-v1 (n = 94 pair configurations), bhRRS-v1 (n = 145 pair 909 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.25.559292doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.25.559292
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

32 

 

configurations), hsPRS-v2 (n = 44 pair configurations), hrRRS-v2 (n = 51 pair configurations). 910 

* P = 0.04; *** P = 0.0006; ns “no significant difference” (Fisher exact test; Extended Data 911 

Table 3). Error bars present SE of proportion. g, Left: degree distribution for the most 912 

connected effectors; right: effector-degree distribution for most targeted human proteins. 913 

Colors represent strains according to legend. h, Observed number of total effector targets in 914 

the human reference interactome (HuRI), compared to random expectation (exp. P < 0.0001; 915 

n = 10,000 randomizations). (I) Frequency distribution of human proteins targeted by effectors 916 

from the indicated number of different strains (red), compared to random expectation (black; n 917 

= 10,000). Targeting by effectors from four strains or more occurs significantly more often than 918 

expected by chance (exp. P = 0.004; n = 10,000).  919 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.25.559292doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.25.559292
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

33 

 

 920 

Fig. 3 | Interaction specificity and interaction motifs. a, Scatter plot of sequence- and 921 

Jaccard-interaction similarity for all effector pairs within indicated homology groups of 922 

HuMMIHOM with ≥ 3 interactors and effectors. Node size indicates union of human proteins 923 

targeted by effector-pair according to legend. b, Y2H data for one of four repeats for homology 924 

cluster 3. c, Schematic of interaction motif-domain interface identification in the effector-host 925 

interaction. d, Count of motif-domain pairs matching at least one stringency criteria identified 926 

in HuMMIMAIN (arrow) compared to random expectation (experimental P value, n = 10,000). e, 927 

Interaction strength of PDZ domains of human proteins with C-terminal 10 amino acid peptides 928 

of the effectors indicated on top. Calculated KD according to legend. Overlap between HU and 929 

Y2H is indicated by colored frames. f, Competition of the interaction between human PDZ 930 

domains and viral PBM peptides by the indicated effector peptides. * P < 0.05 (Kruskal Wallis 931 

with Dunn’s correction, n = 3). Boxes represent interquartile range (IQR), with the bold black 932 

line representing mean; whiskers indicate highest and lowest data point within 1.5 IQR.  933 
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 934 

Fig. 4 | Function and disease association of microbially targeted human proteins. a, 935 

Odds ratios (OR) of representative functional annotations enriched among effector targeted 936 

human proteins (FDR < 0,05, Fisher’s exact test with Bonferroni FDR correction). The number 937 

of represented terms is shown by terms (#). The lowest and highest OR observed for the 938 

represented group are indicated by light shaded area in each bar. Black line indicates OR for 939 

representative term. Full data and precise FDR and OR values in Extended Data Table 5. b, 940 

Genetic predisposition for traits and diseases enriched among human genes encoding effector 941 

targets in HuRI (cutoff FDR = 0.05, Fisher’s exact test, n = 349). c, Disease groups for which 942 

genetic predisposition is enriched in network neighborhoods of effectors from the indicated 943 

strains. Trait node size corresponds to number of significantly targeted traits in that group 944 

according to legend. Stroke of strain-group edge reflects number of underlying significant 945 

effector-trait links (α < 0.01 and OR > 3, Fisher’s exact test). d, Specific diseases underlying 946 

the ‘immunological’ group in c. Node size reflects the number of underlying effector-trait 947 

associations according to legend.   948 
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 949 

Fig. 5 | Effector impact on human cell function and clinical prevalence in IBDs. a, Relative 950 

NF-κB transcriptional reporter activity of HEK293 cells expressing the indicated effectors or 951 

empty vector (EV) in unstimulated conditions (Kruskal-Wallis test with Dunn’s correction, * P < 952 

0.05, ** P < 0.01, n = 4). Boxes represent IQR, black line indicates the mean, whiskers indicate 953 

highest and lowest data point within 1.5 IQR. b, Summary of significant impact of effectors on 954 

normalized NF-κB transcriptional reporter activity in baseline conditions and after TNF 955 

stimulation (Kruskal-Wallis test with Dunn’s correction, * P < 0.05, ** P < 0.01, n = 4). c, Fold-956 

induction of ICAM1 expression following pro-inflammatory stimulation of Caco-2 cells 957 

transfected with the indicated effectors (one-way ANOVA with Dunnett’s multiple comparison 958 

test, n = 10). d, Concentration of cytokines secreted by Caco-2 cells in basal conditions 959 

transfected with the indicated effectors. EV indicates empty vector mock control. P values 960 

calculated by Kruskal-Wallis test (n = 11). Dashed line indicates detection limit of assay. e, 961 

Concentration of cytokines secreted by Caco-2 cells stimulated by a pro-inflammatory cocktail 962 

transfected with the indicated effectors. EV indicates empty vector mock control. Indicated P 963 
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values calculated by Kruskal-Wallis test (n = 11). Dashed line: detection limit of assay. C – E 964 

Boxes represent IQR, black line indicates the mean, whiskers indicate highest and lowest data 965 

point. f, Effector prevalence in metagenomes of CD (n = 504), and UC patients (n = 302) 966 

compared to healthy controls. Effectors are significantly more prevalent in CD patient 967 

metagenomes (FDR < 0.01; Fisher exact test, Benjamini-Hochberg correction). g, Effector 968 

prevalence distribution among the indicated cohorts. P values calculated by Wilcoxon rank-969 

sum test, n as in f.   970 
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EXTENDED DATA FIGURES 971 

 972 

Extended Data Fig. 1 | T3SS in strains of the commensal gut microbiome. a, Effector-973 

complement comparison of the 44 T3SS+ Pseudomonadota reference strains. Numbers 974 

indicate the count of shared effectors at >90% mutual sequence similarity across 90% common 975 

sequence length among the indicated strains. b, Abundance of secretion systems in 976 

Pseudomonadota genomes among the 77 reference strains of human intestinal and stool 977 

samples, in a collection of 4,475 strains isolated from normal human guts (HBC/UHGG strains) 978 

and in meta-assembled genomes (MAG) of normal human guts. c, Similarity of identified 186 979 

candidate effectors from the 770 T3SS+ MAGs with 1,195 effectors from pathogenic microbes 980 

across the range of alignment coverages. Full data for all panels in Extended Data Table 1.   981 
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 982 

Extended Data Fig. 2 | Detection rates of protein pairs in different sets across varying 983 

thresholds in yN2H. Fractions scoring positive of the HuMMI dataset and benchmarking 984 

datasets (hsPRS-v2, bhLit_BM-v1, hsRRS-v2, bhRRS-v1) depending on the threshold of the 985 

normalized luminescence ratio (NLR). Full data in Extended Data Table 3.   986 
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 987 

Extended Data Fig. 3 | Interaction specificity and interaction motifs. a, Jaccard-interaction 988 

similarity of all interacting effector-pairs with at least 3 shared human interactors. Color-989 

intensity correlates with Jaccard-index. Effector pairs marked with “H” share the same 990 

homology cluster. Clusters are color-coded according to legend. b, Count of motif-domain pairs 991 

matching at least two stringency criteria identified in HuMMIMAIN (arrow) compared to n = 10,000 992 

randomized control networks (empirical P = 0.0003). c, Competition of the interaction between 993 

human PDZ domain and viral PBM peptide by indicated C-terminal effector peptides. * P < 994 

0.05 (Kruskal Wallis with Dunn’s correction, n = 3). Boxes indicate IQR, black line represents 995 

mean, whiskers indicate highest and lowest data point within 1.5 IQR. Precise P values and n 996 

for each test are shown in Extended Data Table 4.  997 
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 998 

Extended Data Fig. 4 | GO enrichment for convergence proteins. OR for functional 999 

annotations enriched among effector-targeted human proteins that are subject of convergence 1000 

(FDR < 0.05, Fisher’s exact test with Bonferroni FDR correction). Full data and precise FDR 1001 

and OR values in Extended Data Table 5.  1002 
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 1003 

Extended Figure 5 | Effector impact on human cell function. a. Relative NF-κB 1004 

transcriptional reporter activity of HEK293 cells expressing the indicated effectors under TNF-1005 

stimulated conditions (Kruskal-Wallis test with Dunn’s correction, * P < 0.05, ** P = 0.01, n = 1006 

4). Boxes represent IQR, with the bold black line representing the mean; whiskers indicate 1007 

highest and lowest data point within 1.5 IQR. b, Representative anti-Hemagglutinin (HA) and 1008 

anti-Flag (FLAG) western blots showing expression of transfected effector proteins relative to 1009 

actin control (ACT). Empty pMH-Flag-HA (pMH), empty pEF4 (pEF). c. Titration of met_7 1010 

shows a concentration dependent specific increase of NF-κB reporter activity. Yellow line 1011 

represents the empty vector value. (Kruskal-Wallis test with Dunn’s correction, * P < 0.05, error 1012 

bars: standard deviation of the mean, n = 5). Boxes represent IQR, with the bold black line 1013 

representing the mean; whiskers indicate highest and lowest data point within 1.5 IQR. d, 1014 
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Representative anti-Hemagglutinin (HA) and anti-Flag (FLAG) western blots for experiment in 1015 

c showing expression of transfected effector proteins relative to actin control (ACT). e, 1016 

Representative proliferation curves of Caco-2 cells transfected with empty vector (EV), Cyo_12 1017 

or met_7 in basal conditions (unstim) or following pro-inflammatory stimulation (stim) over 72 1018 

h after sorting. f, Concentration of cytokines secreted by Caco-2 cells transfected with the 1019 

indicated effectors in basal conditions (Unstim) or following pro-inflammatory stimulation 1020 

(Stim). EV indicates empty vector mock control. Indicated P values calculated by Kruskal-1021 

Wallis test with Dunn’s multiple hypothesis correction (n = 11). Boxes represent IQR, with the 1022 

bold black line representing the mean; whiskers indicate highest and lowest data point. Raw 1023 

measurements, n, and precise P values for all panels in Extended Data Table 6.  1024 

 1025 

  1026 
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