

The effects of queen mandibular pheromone on nurse-aged honey bee (*Apis mellifera*) hypopharyngeal gland size and lipid metabolism

Angela Oreshkova^{1*}, Sebastian Scofield¹, Gro V. Amdam^{1,2}

¹School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA

²Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway

*Corresponding author

E-mail: aoreshko@asu.edu (AO)

28

29 Abstract

30 Queen honey bees (*Apis mellifera*) release Queen Mandibular Pheromone (QMP) to
31 regulate traits in the caste of female helpers called workers. QMP signals the queen's presence
32 and suppresses worker reproduction. In the absence of reproduction, young workers take care of
33 the queen and her larvae (nurse tasks), while older workers forage. In nurses, QMP increases
34 lipid stores in abdominal fat tissue (fat body) and protein content in hypopharyngeal glands
35 (HPG). HPG are worker-specific head glands that can synthesize royal jelly used in colony
36 nourishment. Larger HPG signifies ability to secrete royal jelly, while shrunken glands
37 characterize foragers that do not make jelly. While it is known that QMP increases abdominal
38 lipid stores, the mechanism is unclear: Does QMP make workers consume more pollen which
39 provides lipids, or does QMP increase lipogenic capacity? Here, we measure abdominal
40 lipogenic capacity as fatty acid synthase (FAS) activity while monitoring abdominal protein
41 content and HPG size in caged workers. Cages allow us to rigorously control worker age,
42 pheromone exposure, and diet. In our 2-factorial design, 3- vs. 8-day-old workers (age factor)
43 were exposed to synthetic QMP or not (pheromone factor) while consuming a lipid deficient
44 diet. We found that QMP did not influence abdominal FAS activity or protein content, but QMP
45 still increased HPG size in the absence of dietary lipids. Our data revealed a positive correlation
46 between abdominal protein content and HPG size. Our findings show that QMP is not a strong
47 modulator of lipogenic capacity in caged worker bees. However, our data may reflect that QMP
48 mobilizes abdominal protein for production of jelly, in line with previous findings on effects of
49 honey bee Brood Pheromone. Overall, our study expands the understanding of how QMP can
50 affect honey bee workers. Such insights are important beyond regulatory biology, as QMP is
51 used in various aspects of beekeeping.

52 1. Introduction

53 Pheromones are chemical signals used for communication between members of the same
54 species [1]. In insects, some of the extensively studied roles of pheromones include attraction of
55 mates, signaling of reproductive status, maintenance of social hierarchy, and recognition of kin
56 [1]. Insect pheromones are categorized as releaser and/or primer pheromones. Releasers elicit
57 immediate behavioral responses within seconds or minutes, while primers produce long-term
58 endocrine or reproductive changes that may take days to operate in full effect [2, 3]. The long-
59 term physiological effects that primer pheromones exhibit largely influence insect colony
60 organization, caste structure, and the division of labor [4]. One of the most intricate and highly
61 studied insect pheromonal systems is that of honey bees (*A. mellifera*), with approximately 50
62 substances that have a biologically relevant role in colony life [5].

63 Each honey bee colony consists of a reproductive queen, non-reproductive females
64 known as workers, and males known as drones [6]. Adult worker honey bees show a division of
65 labor called age polyethism, in which individuals perform different social tasks as they age.
66 Young workers (first 2-3 weeks after emerging from pupation) work inside the nest to groom and
67 nourish all colony members, while older workers venture outside to collect pollen, nectar, water
68 and propolis [7, 8]. This age polyethism is accompanied by physiological specializations, such as
69 the young workers (nurses) having larger abdominal lipid stores and hypopharyngeal glands
70 (HPGs) to support their role in colony nourishment, while foragers are leaner and rely on sugars
71 to fuel their flights [7, 8, 9].

72 Queen mandibular pheromone (QMP), released by the queen bee, influences worker
73 division of labor and physiology [4]. QMP signals the presence of a queen and is categorized as

74 both a releaser and a primer. As a releaser, QMP prompts young worker bees to groom the queen
75 through a retinue response and further spread the pheromone in the colony [3, 5]. As a primer,
76 QMP suppresses genes associated with foraging while activating genes associated with nursing
77 [10]. These are a few examples of the well-known functions of QMP. Past studies show that
78 QMP can increase abdominal lipid stores and the size of HPGs in nurse-aged workers [11, 12,
79 13, 14]. HPGs are paired head glands that can produce royal jelly [4]. They contain a higher
80 concentration of lipids than other tissues in the head, and bees fed diets high in lipids develop
81 larger HPGs [15, 16]. In some research on QMP, however, the diet of workers contained pollen
82 that provides both lipids and amino acids [15, 16]. This natural food composition makes it
83 difficult to tease apart how QMP acts to influence physiology. Are the changes in lipid stores and
84 HPG size a simple function of increased pollen consumption, just due to the lipid fraction of the
85 diet, or potentially also relying on lipogenic capacity? These are some of many possibilities.

86 To assess a possible increase in lipogenic capacity in the fat body of workers exposed to
87 QMP, we measured the activity of fatty acid synthase (FAS), an enzyme that catalyzes a rate-
88 limiting step of *de novo* lipogenic capacity that combines malonyl-CoA with acetyl-CoA to
89 produce long-chain fatty acids, thus serving as a measure of lipogenic capacity [17]. These long-
90 chain fatty acids are stored as triglycerides in honey bees and most other animals [18]. Thus, in
91 this study we use a FAS activity assay to test whether QMP influences lipogenic capacity in
92 nurse-aged worker bees. We fed the bees a lipid-deficient diet to eliminate the confounding
93 aspects of their natural, pollen-containing food on HPG size. We hypothesized that QMP
94 increases lipogenic capacity in nurses' abdominal fat bodies (functionally homologous to liver
95 and white adipose tissue), resulting in larger lipid stores and HPGs.

96 Our specific design was a 2 factorial cage experiment with an age factor and a
97 pheromone factor: 3-day-old (representing developing bees not yet physiologically competent to
98 become nurses or foragers) or 8-day-old (representing bees at peak nursing age) were exposed to
99 synthetic QMP, or not. FAS activity in the fat body was normalized by measuring the amount of
100 abdominal protein per nurse-aged bee. We monitored HPG size by measuring the area of the
101 glands' acini. For each cage, we also monitored the depletion of the lipid-deficient diet as a
102 function of worker mass, to control for whether QMP influenced food consumption.

103 **2. Materials and Methods**

104 **2.1 Honey bees**

105 The experiments were performed in September through November of 2023 at Arizona
106 State University Campus, Tempe. Three frames from 3 different hives were collected, sealed in a
107 mesh cage, placed in an incubator at 33 °C, and kept humidified using an open dish of water at
108 the bottom of the incubator. After 24 h, newly emerged bees were collected and placed in small
109 (5 × 12 × 16 cm) Plexiglass and mesh cages (30 bees/cage). Bees were fed 30% w/v sucrose
110 solution *ad libitum* in 20 ml syringes with their tips cut off and placed at the top of the cage as
111 described previously [19]. To feed the bees sufficient protein for development of HPGs without
112 feeding them lipids, we also fed the bees artificial diets using soy as a protein source as described
113 previously [20]. A paste containing 20% total protein was made with 21.47% soy protein isolate
114 (MP Biomedical) and 78.26% honey and fed to the bees using 1.5 mL Eppendorf feeders placed
115 at the bottom of each cage (Fig. 1). Consumption of sucrose solution and protein paste was
116 calculated by weighing the feeders every 24 hours.

117 **Fig 1. Cage design used for the queen mandibular pheromone treatments.** The dimensions
118 measured were 90 mm × 120 nm × 158 mm. Because approximately half the cage was used, the
119 effective depth was 55 mm.

120 A 2 × 2 factorial experimental design was used, and each cage was assigned to an age-
121 group (3 and 8-day-old bees) and a treatment group of QMP+ or QMP-. One cage was
122 constructed for each combination of age and presence/absence of QMP and replicated 3 times,
123 yielding a total of 12 cages (1 cage × 4 treatment groups × 3 replicates; Fig. 2). To produce bees
124 of specific ages, cages were set up either 3 or 8 days prior to each sampling day. The cages were
125 maintained at 33 °C in a dark, humidified incubator and mortality was recorded every day in
126 each cage. Cages also received the QMP treatment for the duration of those 3 or 8 days.
127 Synthetic QMP (“TempQueen”; Betterbee Inc.) was presented as a slow-release strip placed at
128 the bottom of the QMP+ cages, while QMP- cages did not receive a QMP strip, as in an earlier
129 study [21]. The strip was used according to the manufacture instructions and contained an
130 equivalent of the 5-component blend of QMP. It mimics exposure to natural QMP, a mixture of
131 9-keto-2-(E)-decenoic acid, the enantiomers of 9-hydroxy-2-(E)-decenoic acid (88% R-(-) and
132 12% S-(+)), methyl p-hydroxybenzoate, and 4-hydroxy-3-methoxyphenylethanol [2]. QMP is
133 not volatile as it is spread by honey bee workers via trophallaxis, antennation, and cuticular
134 contact [21]. Thus, all cages were kept in the same incubator. During sampling, bees were
135 anesthetized on ice, euthanized, and dissected for subsequent analyses.

136 **Fig 2. Pictorial depiction of the 2-factorial design used in the study.** The 2-factorial design
137 that represented all combinations of the presence vs absence of synthetic queen mandibular
138 pheromone ('QMP') and 3 vs 8-day-old nurse-aged honey bees ('age'). This resulted in 4
139 experimental treatments, each applied to one cage of bees. The design was replicated three times,

140 resulting in three replicates. The small boxes labelled inside each large box represent the cage
141 identity (12 total cages used).

142 **2.2 Fatty acid synthase (FAS) activity measurements**

143 Fat body fatty acid synthase (FAS) activity was measured using a previously described
144 method with minor modifications [22]. Briefly, the abdominal carcass (complete abdominal
145 cuticle with adhering fat body tissue minus the stinger, ovaries, gut, and crop) was isolated from
146 workers, pooled in pairs of two, homogenized in phosphate-buffered saline containing protease
147 inhibitors (11697498001; Roche Applied Science; Indianapolis; IN; USA), sonicated for 30
148 seconds, and centrifuged at 10,000 $\times g$ for 5 minutes at 4°C. The resulting supernatant was
149 collected and assayed immediately in a 96-well microplate. In each well, 33.3 μ L of supernatant
150 was mixed with 163.3 μ L of 2.0 M potassium phosphate buffer, pH 7.1, 16.7 μ L of 20 mM
151 dithiothreitol, 20 μ L of 0.25 mM acetyl-CoA, 16.7 μ L of 60 mM EDTA. To initiate the reaction,
152 33.3 μ L of 0.39 mM malonyl-CoA was added to each well. FAS activity was measured as the
153 oxidation of NADPH at 340 nm and 37 °C using a UV/VIS spectrophotometer (Synergy H1
154 Multimode Reader, BioTek). A background correction was made for the oxidation of NADPH in
155 the absence of malonyl-CoA. Background and sample wells were both measured in duplicate.
156 This assay was replicated 3 times with a total of 144 abdomens sampled. FAS activity was
157 calculated as nmol of NADPH oxidized/min/abdomen. Additionally, FAS activity was
158 normalized by the amount of total soluble protein in each sample, measured with a BCA Assay
159 Kit (Thermo Scientific) according to manufacturer's instructions, giving FAS activity in
160 nmol/min/mg.

161 **2.3 Hypopharyngeal gland measurements**

162 To determine whether QMP affects HPG acini size, honey bee heads from the same bees
163 used for FAS activity were flash frozen in liquid nitrogen and kept in a -80 °C freezer until they
164 were dissected. 18 heads per treatment group were dissected, resulting in a total of 72 heads. For
165 each head, the HPGs were first dissected into a glass plate with concave deep wells containing
166 40 µl of 10x Giemsa for 7 min. They were then transferred into a flat microscope slide that
167 contained 60 µl of 1x PBS buffer (37 mM NaCl, 2.7 mM KCl, and 10 mM PO₄, pH 7.4) and
168 visualized at 60 to 80x magnification, as previously described [23]. The glands were visualized
169 under a Leica M205C stereoscope with a Leica DFC450 camera using the Leica Applications
170 Suite v4.5 software. A blind observer was then told to select 10 acini per bee with the criteria
171 that the acini were in focus, had clear attachment points to the collecting duct, and were average
172 relative to all the acini in the photo. The area (mm) of those 10 selected acini per bee was
173 measured using ImageJ by the researcher. The areas were then averaged per bee and analyzed as
174 a pooled sample in which the heads that were pooled together corresponded to the abdomens that
175 were pooled together during the FAS analysis.

176 **2.4 Statistical analysis**

177 The effects of age and QMP on abdominal FAS activity, abdominal protein, and HPG
178 acini area were preferentially processed with an ANOVA test using three variables: age,
179 treatment, and replicate. Datasets that were analyzed with ANOVA adhered to its assumptions of
180 normality, estimated by normal probability plots of the datasets and a Shapiro-Wilks test, and
181 homogeneity of variances, determined by a Levene's test. The minimum p value for a significant
182 dataset was 0.05. When assumptions were not met, in the case of normalized FAS activity
183 dataset and protein/sucrose consumption, a non-parametric test was used, specifically, a Kruskal-

184 Wallis test. The non-parametric test was followed by a Dunn's Post hoc test if needed. Replicates
185 were included in the ANOVA to control for differences between replicates. Three replicates were
186 performed for the study and each replicate reflects a combination of cage/day and FAS assay
187 plate variation. The relationships between HPG acini size and abdominal protein and abdominal
188 FAS activity were analyzed using linear regression. Because the data deviated significantly from
189 the assumptions of normality, the relationship between abdominal protein and FAS activity was
190 analyzed using a Kendall-Theil Sen Siegel non-parametric linear regression. All statistics were
191 analyzed with R version 4.3.1, Rstudio, and the packages 'FSA', 'performance', 'mblm', and
192 'rcompanion' [24, 25, 26, 27, 28]. The sample size used for measuring protein paste and sucrose
193 consumption was $n = 3$. The sample size for measuring abdominal FAS activity, normalized FAS
194 activity, abdominal protein, and HPG acini area was $n = 18$ pooled samples per treatment group.
195 The sample size for the regression analyses was $n = 35$, except for the case of abdominal protein
196 and abdominal FAS which was $n = 72$.

197 **3. Results**

198 **3.1 Food Consumption**

199 Protein paste consumption did not significantly differ between any of the four treatment
200 groups (Kruskal-Wallis, chi-squared = 2.6923, df = 3, $P = 0.4415$; Fig 3). Furthermore, sucrose
201 consumption did not significantly differ between any of the four treatment groups (Kruskal-
202 Wallis, chi-squared = 0.63041, df = 3, $P = 0.8894$; Fig 4). Protein consumption did not differ
203 significantly between replicates (chi-squared = 3.7308, df = 2, $P = 0.1548$) but sucrose
204 consumption did differ significantly between replicates (chi-squared = 7.4974, df = 2, $P =$
205 0.02355).

206 **Fig 3. The relationship between age/QMP and protein consumption in mg/bee/day.** A non-
207 parametric Kruskal-Wallis test showed that there were no statistical differences between each
208 treatment's protein consumption ($P = 0.4415$). Each point represents the average protein paste
209 consumption for one cage ($n = 3$ cages). The boxplot shows the mean (middle black line of box),
210 the interquartile range (box boundaries), and the minimum and maximum values of the
211 distribution. Outliers are points outside the maximum and minimum of the distribution.

212 **Fig 4. The relationship between age/QMP and sucrose consumption in mg/bee/day.** A non-
213 parametric Kruskal-Wallis test showed that there were no statistical differences between each
214 treatment's sucrose solution consumption ($P = 0.8894$). Each point represents the average
215 sucrose consumption for one cage ($n = 3$ cages). The boxplot shows the mean (middle black line
216 of box), the interquartile range (box boundaries), and the minimum and maximum values of the
217 distribution. Outliers are points outside the maximum and minimum of the distribution.

218 **3.2 Abdominal FAS activity and abdominal protein**

219 Age ($F_{1,60} = 2.010, P = 0.16140$) and QMP treatment ($F_{1,60} = 0.698, P = 0.40668$) had no
220 significant effect on abdominal FAS activity in nmol NADPH oxidized per minute per abdomen
221 (Fig 5). Furthermore, there was no interaction effect between age \times QMP treatment ($F_{1,60} =$
222 $0.484, P = 0.48931$), QMP treatment \times replicate ($F_{2,60} = 0.962, P = 0.29039$), or age \times QMP
223 treatment \times replicate ($F_{2,60} = 0.726, P = 0.48796$). However, there were significant differences in
224 abdominal FAS activity between the three replicates ($F_{2,60} = 29.323, P < 0.001$; S1 Fig) and a
225 significant interaction effect between age \times replicate ($F_{2,60} = 5.152, P = 0.00862$). To normalize
226 the FAS activity assay, the abdominal protein (in mg) of each pooled sample was measured.
227 Abdominal protein was significantly higher in 8-day-old than 3-day-old bees ($F_{1,60} = 35.693, P <$

228 0.001; Fig 6) and significantly different between replicates ($F_{2,60} = 36.000, P < 0.001$; S2 Fig); it
229 was not significantly affected by QMP treatment ($F_{1,60} = 0.032, P = 0.8596$), age \times QMP
230 treatment ($F_{1,60} = 1.057, P = 0.3081$), age \times replicate ($F_{2,60} = 2.809, P = 0.0682$), treatment \times
231 replicate ($F_{2,60} = 0.717, P = 0.4925$), or age \times treatment \times replicate ($F_{2,60} = 1.240, P = 0.2968$).

232 **Fig 5. The relationship between age/QMP treatment and abdominal FAS activity (NADPH
233 oxidized) in nmol/min.** Age ($F_{1,60} = 2.010, P = 0.16140$) and QMP treatment ($F_{1,60} = 0.698, P =$
234 0.40668) had no significant effect on abdominal FAS activity in nmol NADPH oxidized per
235 minute per abdomen. Furthermore, there was no interaction effect between age \times QMP treatment
236 ($F_{1,60} = 0.484, P = 0.48931$), QMP treatment \times replicate ($F_{2,60} = 0.962, P = 0.29039$), or age \times
237 QMP treatment \times replicate ($F_{2,60} = 0.726, P = 0.48796$). Each point represents the average
238 abdominal FAS activity for each pooled sample of two bees ($n = 18$ pooled samples). The
239 boxplot shows the mean (middle black line of box), the interquartile range (box boundaries), and
240 the minimum and maximum values of the distribution. Outliers are points outside the maximum
241 and minimum of the distribution.

242 **Fig 6. The effect of age/QMP treatment and abdominal protein quantity in mg.** Abdominal
243 protein was significantly higher in 8-day-old than 3-day-old bees ($F_{1,60} = 35.693, P < 0.001$). It
244 was not significantly affected by QMP treatment ($F_{1,60} = 0.032, P = 0.8596$), age \times QMP
245 treatment ($F_{1,60} = 1.057, P = 0.3081$), age \times replicate ($F_{2,60} = 2.809, P = 0.0682$), treatment \times
246 replicate ($F_{2,60} = 0.717, P = 0.4925$), or age \times treatment \times replicate ($F_{2,60} = 1.240, P = 0.2968$).
247 Each point represents the average abdominal protein for each pooled sample of two bees ($n = 18$
248 pooled samples). The boxplot shows the mean (middle black line of box), the interquartile range
249 (box boundaries), and the minimum and maximum values of the distribution. Outliers are points
250 outside the maximum and minimum of the distribution.

251 **3.3 FAS activity normalized to abdominal protein**

252 Using the abdominal protein quantity, FAS activity was normalized per pooled sample in
253 nmol of NADPH oxidized per min per mg of protein. Normalized FAS activity significantly
254 differed between the three replicates (chi-squared = 23.87, df = 2, $P < 0.001$; S3 Fig) and the
255 four treatment groups (Kruskal-Wallis, chi-squared = 9.3498, df = 3, $P = 0.02498$; Fig 7).
256 Comparisons between the four treatment groups showed that only the 3-day-old QMP + and 8-
257 day-old QMP – groups differed significantly from each other (Dunn's *post-hoc* test, $P_{adj} =$
258 0.0397).

259 **Fig 7. The effect of age/QMP treatment and normalized FAS activity in**
260 **nmol/min/mg.** Normalized FAS activity significantly differed between the four treatment
261 groups (Kruskal-Wallis, chi-squared = 9.3498, df = 3, $P = 0.02498$). Comparisons between the
262 four treatment groups showed that only the 3-day-old QMP + and 8-day-old QMP – groups
263 differed significantly from each other (Dunn's *post-hoc* test, $P_{adj} = 0.0397$). No other treatment
264 groups were significantly different from one another. Each point represents the average
265 normalized FAS activity for each pooled sample of two bees ($n = 18$ pooled samples). The
266 boxplot shows the mean (middle black line of box), the interquartile range (box boundaries), and
267 the minimum and maximum values of the distribution. Outliers are points outside the maximum
268 and minimum of the distribution.

269 **3.4 Average HPG acini area**

270 Mean HPG acini area was significantly higher in 8-day-old than 3-day-old bees ($F_{1,60} =$
271 27.780, $P < 0.001$; Fig 8) and in bees treated with QMP ($F_{1,60} = 29.156$, $P < 0.001$) and was
272 significantly different between replicates ($F_{2,60} = 6.853$, $P = 0.00209$; S4 Fig). The interaction
273 effect age \times treatment \times replicate was significant ($F_{2,60} = 4.457$, $P = 0.01568$); the other
274 interaction effects of age \times QMP treatment ($F_{1,60} = 0.568$, $P = 0.45392$), age \times replicate ($F_{2,60} =$
275 1.338, $P = 0.27004$), and treatment \times replicate ($F_{2,60} = 2.369$, $P = 0.10226$) did not significantly
276 affect mean HPG acini area.

277 **Fig 8. The effect of age/QMP treatment and average HPG acini area in mm².** Mean HPG
278 acini area was significantly higher in 8-day-old than 3-day-old bees ($F_{1,60} = 27.780, P < 0.001$)
279 and in bees treated with QMP ($F_{1,60} = 29.156, P < 0.001$). The interaction effect age \times treatment
280 \times replicate was significant ($F_{2,60} = 4.457, P = 0.01568$); the other interaction effects of age \times
281 QMP treatment ($F_{1,60} = 0.568, P = 0.45392$), age \times replicate ($F_{2,60} = 1.338, P = 0.27004$), and
282 treatment \times replicate ($F_{2,60} = 2.369, P = 0.10226$) did not significantly affect mean HPG acini
283 area. Each point represents the average HPG acini area for each pooled sample of two bees ($n =$
284 18 pooled samples). The boxplot shows the mean (middle black line of box), the interquartile
285 range (box boundaries), and the minimum and maximum values of the distribution. Outliers are
286 points outside the maximum and minimum of the distribution.

287 **3.5 Relationship between HPG size and abdominal metrics**

288 Mean HPG acini size was significantly positively predicted by abdominal protein
289 quantity ($F_{1,33} = 12.66$, adjusted $R^2 = 0.2382, P = 0.00116$; Fig 9) and by abdominal FAS
290 activity ($F_{1,33} = 5.819$, adjusted $R^2 = 0.1181, P = 0.02123$; Fig 10) but not by normalized FAS
291 activity ($F_{1,33} = 0.944$, adjusted $R^2 = -0.001558, P = 0.3379$). Abdominal FAS activity
292 significantly increased with an increase in abdominal protein quantity (Kendall-Theil Sen Siegel
293 linear regression: estimate = $1.5049 \pm 1.4016, V = 2265$, Efron's pseudo $R^2 = 0.0498, P < 0.001$;
294 Fig 11).

295 **Fig 9. Regression scatter plot between abdominal protein (mg) and HPG acini area (mm²).**
296 Mean HPG acini size was significantly predicted by abdominal protein quantity ($F_{1,33} = 12.66$,
297 adjusted $R^2 = 0.2382, P = 0.00116$). Each point represents the correlation between the pooled
298 sample's (2 bees per) abdominal protein and HPG acini area ($n = 35$).

299 **Fig 10. Regression scatter plot between abdominal FAS (nmol NADPH oxidized/min) and**
300 **HPG acini area (mm²).** Mean HPG acini size was significantly predicted by abdominal FAS
301 activity ($F_{1,33} = 5.819$, adjusted $R^2 = 0.1181$, $P = 0.02123$). Each point represents the correlation
302 between the pooled sample's (2 bees per) abdominal FAS activity and HPG acini area ($n = 35$).

303 **Fig 11. Non-parametric linear regression scatter plot between abdominal protein (mg) and**
304 **abdominal FAS (nmol oxidized NADPH/min).** Abdominal FAS activity was significantly
305 predicted by abdominal protein quantity (Kendall-Theil Sen Siegel linear regression: estimate =
306 1.5049 ± 1.4016 , $V = 2265$, Efron's pseudo $R^2 = 0.0498$, $P < 0.001$). Each point represents the
307 correlation between the pooled sample's (2 bees per) abdominal protein and abdominal FAS
308 activity ($n = 72$).

309 **Table 1: Regression analysis *P* values between all combinations of abdominal protein,**
310 **abdominal FAS activity and HPG acini area.**

	Abdominal protein	Abdominal FAS activity	HPG acini area
Abdominal protein		$9.61 \times 10^{-8} ***$	0.00116**
Abdominal FAS activity	$9.61 \times 10^{-8} ***$		0.02123*
HPG acini area	0.00116**	0.02123*	

311 Asterisks represent significant differences (* denotes $P < 0.05$; ** denotes $P < 0.01$, *** denotes
312 $P < 0.001$) for each correlation. The sample size taken for each regression analysis was $N = 35$,
313 except for abdominal protein and abdominal FAS which was $N = 72$. The full regression analysis
314 statistics can be found in S1 File.

315 **4. Discussion**

316 In this study, we explored if QMP can increase fat body lipids and HPG size in nurse-
317 aged worker bees fed a lipid-deficient diet. We show that workers exposed to synthetic QMP
318 have larger HPGs on average, but we did not detect a change in the bees' lipogenic
319 capacity. Although there were significant replicate effects present, these results simply indicate
320 that there is some non-treatment group variation that causes noise in the data. Thus, for this
321 study, replicate effects are irrelevant to the rest of our results.

322 During the experiment, we monitored food consumption to determine whether QMP
323 increases HPG size through affecting worker lipogenic capacity or through simply increasing the
324 workers' food consumption. Overall, QMP did not influence the depletion of sucrose solution or
325 protein paste in our cages. This finding is consistent with a previous study in which the sucrose
326 and pollen consumption of nurse-aged bees did not differ between queenright-like treatments
327 (QMP) and queenless-like treatments (no QMP) [14]. However, other work has shown that QMP
328 exposure can increase food consumption in nurse-aged bees fed rich diets that contained pollen,
329 as well as in nurse-aged bees fed with poor diets consisting of just sucrose solution [13]. Our
330 results may have differed from these latter results because we used synthetic QMP strips while
331 Ament and colleagues [13] used 0.1 equivalents of QMP dissolved with isopropanol and water
332 on a microscope over slip. Furthermore, there may be mixed results on whether QMP affects

333 food consumption due to the varying sample sizes in all three studies. While our study had a
334 sample size of 3 cages for consumption, Ament and colleagues [13] had a sample size ranging
335 from 6 to 8 cages and Peters and colleagues [14] had a sample size ranging from around 150 to
336 300 bees, depending on the treatment group. Because our study had the smallest sample size, our
337 data should be interpreted cautiously.

338 Age and QMP treatment did not significantly affect FAS activity analyzed per bee, and
339 only age significantly affected FAS activity analyzed per mg of extracted protein. This suggests
340 that QMP does not significantly affect the *de novo* synthesis of lipids in nurse-aged honey bee fat
341 bodies, but caged bees can increase their abdominal protein content as they age. In contrast,
342 recent data from our group show that FAS activity does not differ significantly between 3d and
343 8d bees collected from natural colonies (Sebastian et. al – manuscript in preparation). Our results
344 may have differed due to the environment of both treatments. While the past study experimented
345 on bees within natural hives who were receiving optimal nutrition from being fed by other nurse
346 bees, our study experimented on bees within cages that received less nutrition. Contrary to our
347 findings, it was previously reported that QMP can increase abdominal lipid stores in bees
348 provided pollen-containing diets, as well as diets consisting only of sucrose solution [11, 12, 13].
349 How can this diversity of results be explained? One possibility is that QMP reduces the activity
350 levels of young workers as shown before [30]. The mechanism underlying the larger lipid stores
351 is then, simply, reduced energy expenditure.

352 In our experiment, caged 8-day-old worker bees had larger amounts of abdominal protein
353 than 3-day-old bees, while QMP had no effect on this protein level. Protein levels generally
354 increase in young workers after they emerge from pupation [7], suggesting that our caged
355 workers were able to obtain adequate nutrition. More specifically, abdominal protein levels are

356 correlated with the amount of Vitellogenin (Vg) protein in colony-living worker bees [31]. Vg is
357 an important indicator of nutrition and health in honey bees, and the protein influences several
358 aspects of worker physiology and behavior, including the function of the HPGs [31]. We did not
359 measure Vg in our experiment, but the positive correlation we find between total protein levels
360 and HPG size might be influenced by this protein.

361 Our experiment detected a significantly increased HPG acini size in both 3d and 8d
362 nurse-aged bees exposed to QMP. This increase was not associated with measurable changes in
363 food consumption or FAS activity but correlated with the abdominal protein content. One
364 possible explanation for this result is that QMP plays a role in mobilizing the abdominal protein,
365 such as Vg, to the HPGs to increase their size. Furthermore, QMP was also previously shown to
366 suppress levels of circulating juvenile hormone (JH) [4, 32]. JH can suppress Vg and treatment
367 with JH analog will reduce HPG size [33, 34]. Thus, an alternative explanation is that QMP
368 allowed HPGs to develop because JH was suppressed in this treatment group. However, previous
369 research shows that JH is generally controlled at lower levels in cages with 20 workers or more
370 [20], which suggests that this is not the best explanation for the findings.

371 It is known that lipids found within the HPG are essential to produce royal jelly and lipids
372 found within the fat body are important for nursing behavior in general. Our study aimed to
373 determine if these two pathways are connected in the presence of QMP and whether the
374 functioning of one is necessary for the other. Using a lipid-deficient diet to eliminate the
375 possibility of QMP increasing nurse-aged bees' consumption of lipids, we found that QMP
376 significantly increased HPG size without affecting nurse-aged lipogenic capacity, suggesting that
377 the fat body lipids levels are not as important for the development of HPGs compared to
378 abdominal protein levels. Overall, this study emphasized the importance of how pheromonal

379 regulation can influence adaptive physiology and nutrient storage in worker honey bees. This
380 knowledge provides further insight into basic bee biology and to queen pheromone, which is
381 commercially used in apiculture.

382 **Supporting Information**

383 **S1 Fig. The effect of replicates on abdominal FAS activity measured in**
384 **nmol/min/abdomen.** Abdominal FAS activity significantly differed between the three replicates
385 ($F_{2,60} = 29.323, P < 0.001$)

386 **S2 Fig. The effect of replicates on abdominal protein measured in mg.** Abdominal protein
387 significantly differed between the three replicates ($F_{2,60} = 36, P < 0.001$).

388 **S3 Fig. The effect of replicates on normalized FAS activity measured in nmol/min/mg.**
389 Normalized FAS activity significantly differed between the three replicates (chi-squared = 23.87,
390 $P < 0.001$, df = 2).

391 **S4 Fig. The effect of replicates on HPG acini area measured in mm².** Mean HPG acini area
392 significantly differed between the three replicates ($F_{2,60} = 6.853, P = 0.00209$).

393 **S1 File. The full regression plot analysis statistics between abdominal protein and HPG**
394 **acini area, abdominal FAS and HPG acini area, and abdominal protein and abdominal**
395 **FAS.**

396 **Acknowledgements**

397 We would like to thank Cahit Ozturk for providing us with the honeybees for this
398 experiment, Amalie Strange for assisting us on how to perform the bee head dissections, Jenna

399 Dobson for blindly choosing the acini, and Matthew Prebus for his training on how to use the
400 Leica microscope. This research was supported by the Barrett Thesis Funding Grant from the
401 Barrett College at Arizona State University. Special thanks to Christine Fleetwood from the
402 Barrett College and Maricel Scalzo from the School of Life Sciences Business Office for
403 assisting with the Thesis funding and reimbursement.

404 **References**

- 405 1. Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery.
406 Progress in Lipid Research. 2015;59: 88 - 105. pmid:26080085
- 407 2. Slessor KN, Winston ML, Le Conte Y. Pheromone Communication in the Honeybee
408 (*Apis mellifera L.*). Journal of Chemical Ecology. 2005;31(11): 2731 – 2745. pmid:
409 16273438
- 410 3. Grozinger CM, Fischer P, Hampton JE. Uncoupling primer and releaser responses to
411 pheromone in honey bees. Naturwissenschaften. 2007;94(5): 375 – 379. pmid:17187255
- 412 4. Traynor KS, Conte YL, Page Jr RE. Queen and young larval pheromones impact nursing
413 and reproductive physiology of honey bee (*Apis mellifera*) workers. Behavioral Ecology
414 and Sociobiology. 2014;68(12): 2059 - 2071. pmid:25395721
- 415 5. Pankiw T. Cued in: honey bee pheromones as information flow and collective decision-
416 making. Apidologie. 2004;35: 217 - 226. doi: 10.1051/apido:2004009
- 417 6. Cervoni MS, Hartfelder K. Caste Differentiation: Honey Bees. In: Starr CK, editor.
418 Encyclopedia of Social Insects. Springer, Cham; 2021. pp. 117 – 184.
- 419 7. Toth AL, Robinson GE. Worker nutrition and division of labour in honeybees. Animal
420 Behaviour. 2005;69(2): 427 - 435. doi: 10.1016/j.anbehav.2004.03.017

421 8. Whitford F, Steeger T, Feken M, Krupke C, Hunt G, Johnson R, et. al. The Complex Life
422 of the Honey Bee. 1st ed. Purdue University; 2017.

423 9. Crailsheim K, Stolberg E. Influence of diet, age and colony condition upon intestinal
424 proteolytic activity and size of the hypopharyngeal glands in the honeybee (*Apis*
425 *mellifera*). *Journal of Insect Physiology*. 1989;35(8): 595 – 602. doi: 10.1016/0022-
426 1910(89)90121-2

427 10. Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE. Pheromone-mediated gene
428 expression in the honey bee brain. *Proceedings of the National Academy of Sciences*.
429 2003;100(2): 14519 – 14525. pmid:14573707

430 11. Corby-Harris V, Snyder L, Meador C, Watkins-DeJong E, Obernesser BT, Brown N, et. al.
431 Diet and pheromones interact to shape honey bee (*Apis mellifera*) worker physiology.
432 *Journal of Insect Physiology*. 2022: 143. pmid:32139471

433 12. Fischer P, Grozinger CM. Pheromonal regulation of starvation resistance in honey bee
434 workers (*Apis mellifera*). *Naturwissenschaften*. 2008;95: 723 - 729. pmid:18414825

435 13. Ament SA, Chan QW, Wheeler MM, Nixon SE, Johnson SP, Rodriguez-Zas SL, et. al.
436 Mechanisms of stable lipid loss in a social insect. *Journal of Experimental Biology*.
437 2011;214(22): 3808 - 3821. pmid:22031746

438 14. Peters L, Zhu-Salzman K, Pankiw T. Effect of primer pheromones and pollen diet on the
439 food producing glands of worker honey bees (*Apis mellifera L.*). *Journal of Insect
440 Physiology*. 2010;56(2): 132 - 137. pmid:19799907

441 15. Corby-Harris V, Deeter ME, Snyder L, Meador C, Welchert AC, Hoffman A, et. al.
442 Octopamine mobilizes lipids from honey bee (*Apis mellifera*) hypopharyngeal glands.
443 *Journal of Experimental Biology*. 2020: 223. pmid:32139471

444 16. Stabler, D, Al-Esawy M, Chennells JA, Giorgia P, Robinson A, Wright GA. Regulation
445 of dietary intake of protein and lipid by nurse-age adult worker honeybees. *Journal of*
446 *Experimental Biology*. 2021; 224. pmid:33443043

447 17. Alabaster A, Isoe J, Zhou G, Lee A, Murphy A, Day WA, et. al. Deficiencies in acetyl-
448 CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and
449 blood meal digestion in *Aedes aegypti*. *Insect Biochemistry and Molecular Biology*.
450 2011;41(12): 946 – 955. pmid:21971482

451 18. Heier C, Kühnlein C. Triacylglycerol Metabolism in *Drosophila melanogaster*. *Genetics*.
452 2018;210(4): 1163 – 1184. pmid:30523167

453 19. Huang SK, Csaki T, Doublet V, Dussaubat C, Evans JD, Gajda AM, et. al. Evaluation of
454 Cage Designs and Feeding Regimes for Honey Bee (*Hymenoptera: Apidae*) Laboratory
455 Experiments. *Journal of Economic Entomology*. 2014;107(1): 54 – 62. doi:
456 10.1603/EC13213

457 20. Arien Y, Dag A, Shafir S. Omega – 6:3 Ratio More Than Absolute Lipid Level in Diet
458 Affects Associative Learning in Honey Bees. *Frontier Psychology*. 2018;9: 1001. doi:
459 10.3389/fpsyg.2018.01001

460 21. Trawinski AM, Fahrbach SE. Queen mandibular pheromone modulates hemolymph
461 ecdysteroid titers in adult *Apis mellifera* workers. *Apidologie*. 2018;49(3): 346 – 358.
462 doi: 10.1007/s13592-018-0562-6

463 22. Lu C, Chuang Y, Hsu C. Aging results in a decline in cellular energy metabolism in the
464 trophocytes and oenocytes of worker honeybees (*Apis mellifera*). *Apidologie*. 2017;48:
465 761 - 775. doi: 10.1007/s13592-017-0521-7

466 23. Corby-Harris V, Snyder L, Meador C. Fat body lipolysis connects poor nutrition to
467 hypopharyngeal gland degradation in *Apis mellifera*. *Journal of Insect Physiology*.
468 2019;116: 1 - 9. pmid:30953617

469 24. R Core Team. *R: A Language and Environment for Statistical Computing*. R
470 Foundation for Statistical Computing, Vienna, Austria. 2023. url: [https://www.R-
471 project.org/](https://www.R-project.org/).

472 25. Posit team. RStudio: Integrated Development Environment for R. Posit Software, PBC,
473 Boston, MA. 2023. url: <http://www.posit.co/>.

474 26. Ogle DH, Doll JC, Wheeler AP, Dinno A. *FSA: Simple Fisheries Stock Assessment
475 Methods*. R package version 0.9.4. 2023. url: <https://CRAN.R-project.org/package=FSA>

476 27. Lüdecke D, Ben-Shachar M S, Patil I, Waggoner P, Makowski D. et al., (2021).
477 performance: An R Package for Assessment, Comparison and Testing of Statistical
478 Models. *Journal of Open Source Software*. 2021;6(60): 3139. doi: 10.21105/joss.03139

479 28. Komsta L. *mblm: Median-Based Linear Models*. R package version 0.12.1. 2019. url:
480 <https://CRAN.R-project.org/package=mblm>.

481 29. Mangiafico, Salvatore S. *rcompanion: Functions to Support Extension Education
482 Program Evaluation*. Version 2.4.30. Rutgers Cooperative Extension. New Brunswick,
483 New Jersey. 2023. url: <https://CRAN.R-project.org/package=rcompanion>

484 30. Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN, et. al.
485 Queen pheromone modulates brain dopamine function in worker honey bees.
486 *Proceedings of the National Academy of Science*. 2006;104(7): 2460 - 2464.
487 pmid:17287354

488 31. Amdam GV, Norberg K, Hagen A, Omholt SW. Social exploitation of vitellogenin.
489 Proceedings of the National Academy of Science. 2003;100(4): 1799 - 1802.
490 pmid:12566563

491 32. Pankiw T, Huang ZY, Winston ML, Robinson GE. Queen mandibular gland pheromone
492 influences worker honey bee (*Apis mellifera L.*) foraging ontogeny and juvenile hormone
493 titers. Journal of Insect Physiology. 1998;44(7-8): 685 - 692. pmid:12769952

494 33. Pinto LZ, Bitondi MMG, Simões ZLP. Inhibition of vitellogenin synthesis in *Apis*
495 *mellifera* workers by a juvenile hormone analogue, pyriproxyfen. Journal of Insect
496 Physiology. 2000;46(2): 153 – 160. doi: 10.1016/S0022-1910(99)00111-0

497 34. Amdam GV, Omholt SW. The hive bee to forager transition in honeybee colonies: the
498 double repressor hypothesis. Journal of Theoretical Biology. 2003;223(4): 451 - 464.
499 pmid:12875823

500

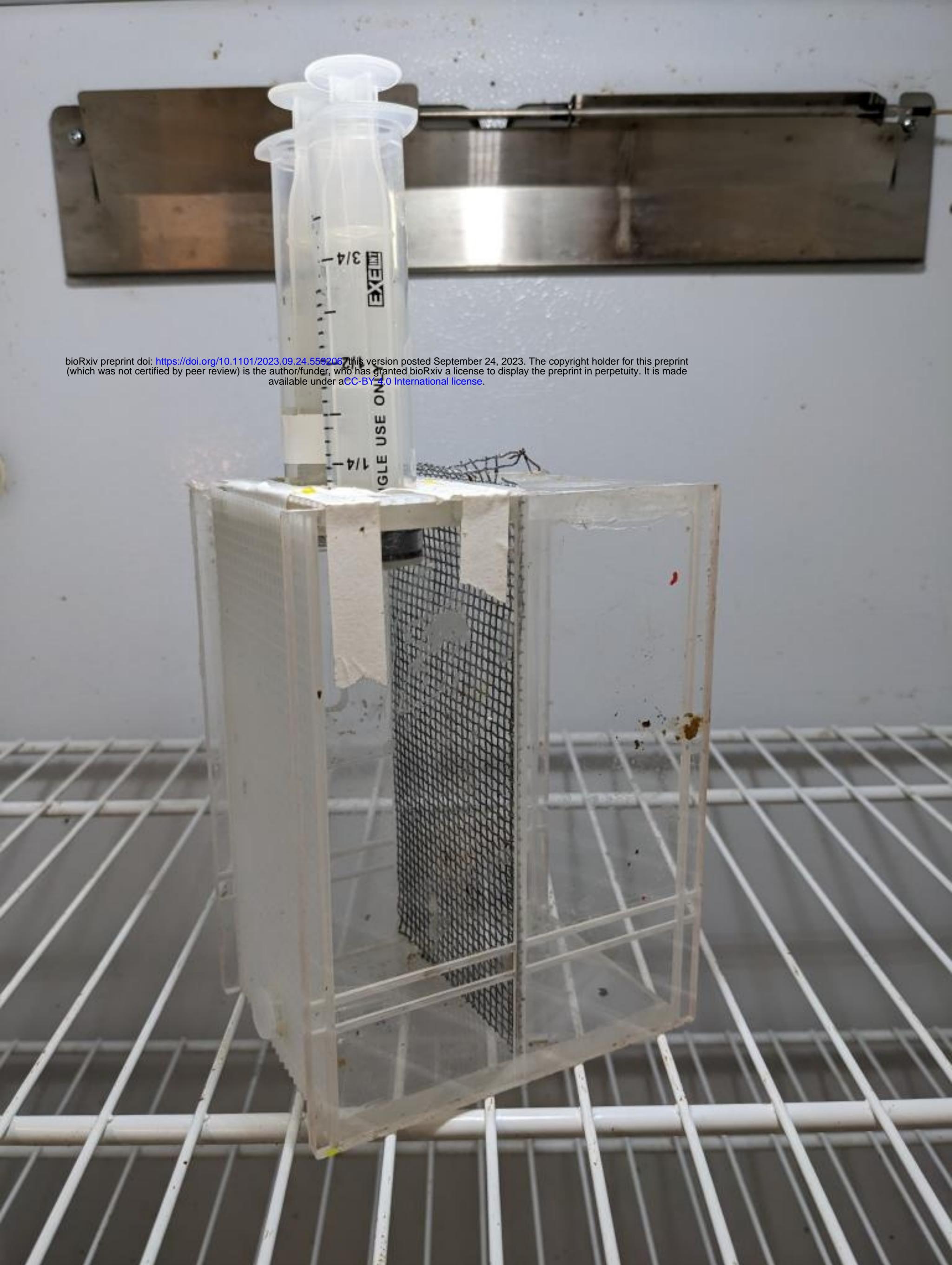
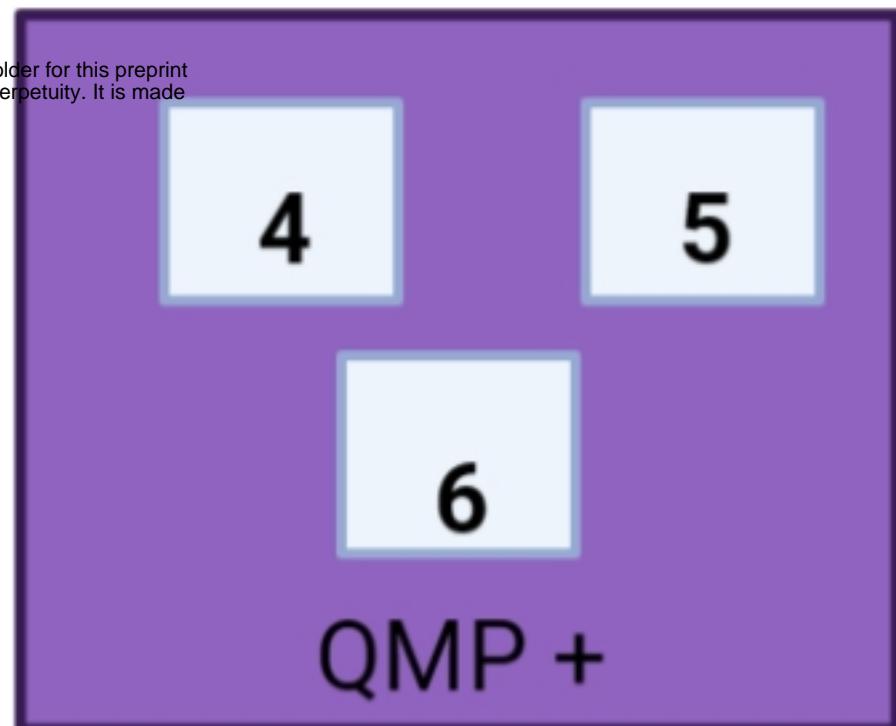
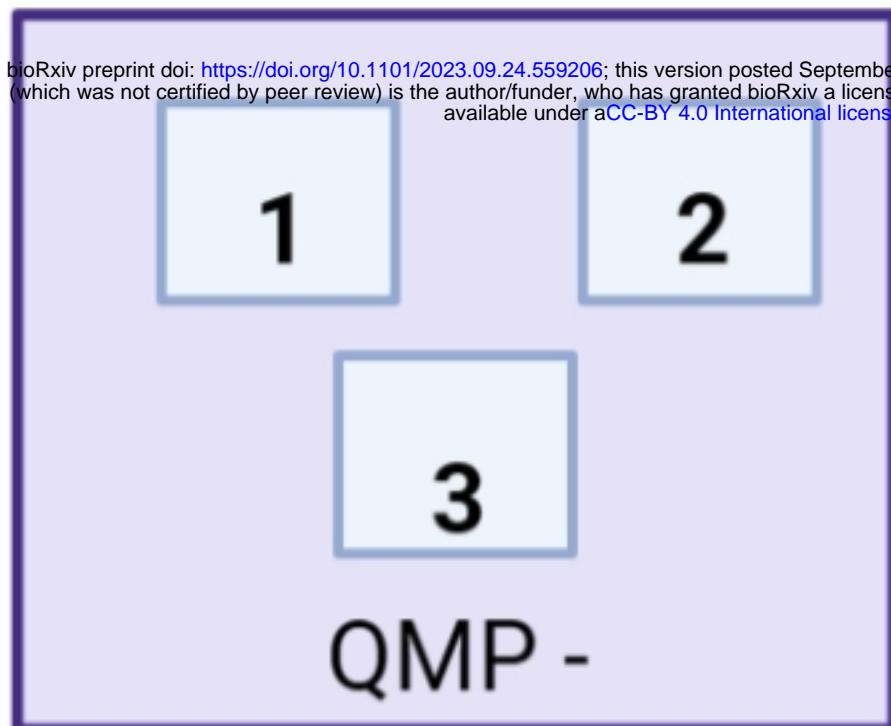
501

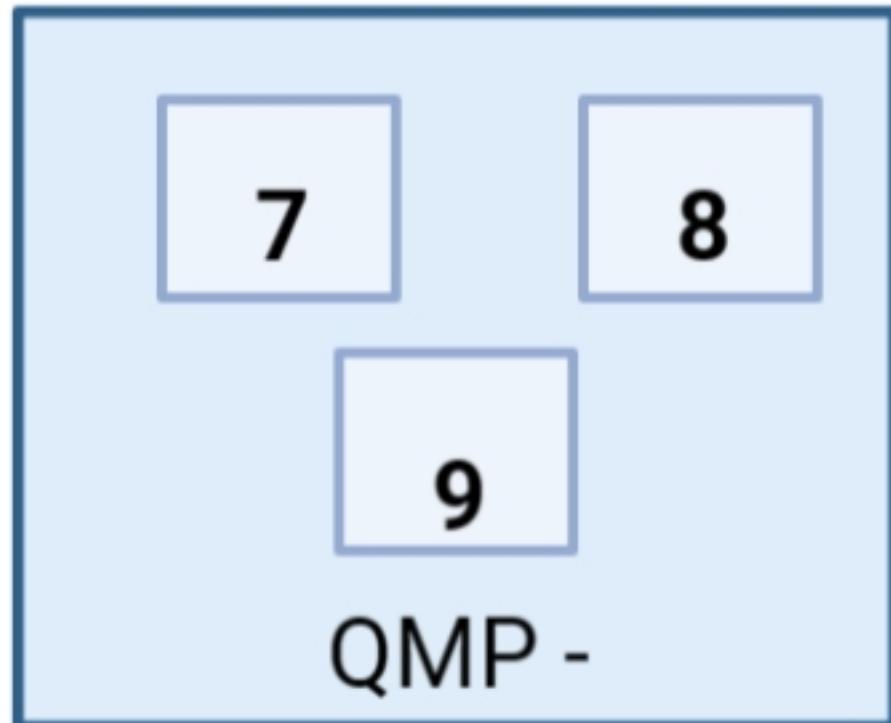
502

503

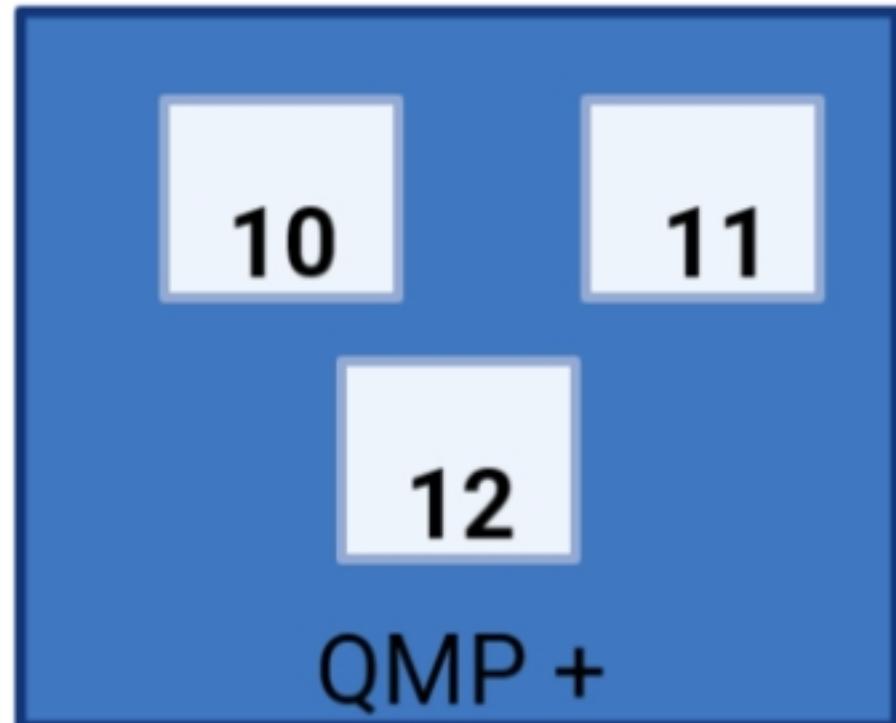
504

505


Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.24.559206>; this version posted September 24, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.



3d

3d

8d

8d

Figure 2

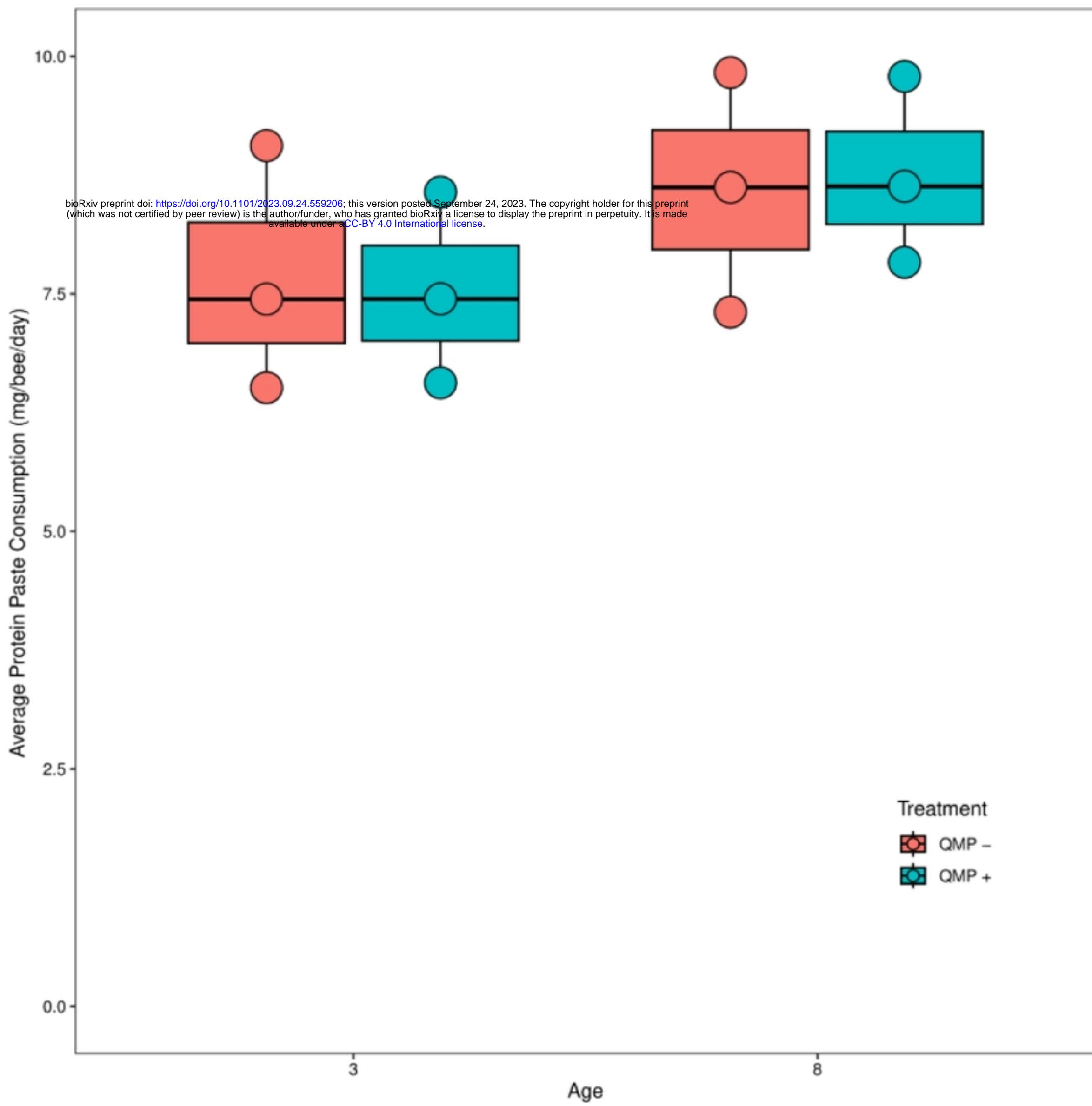


Figure 3

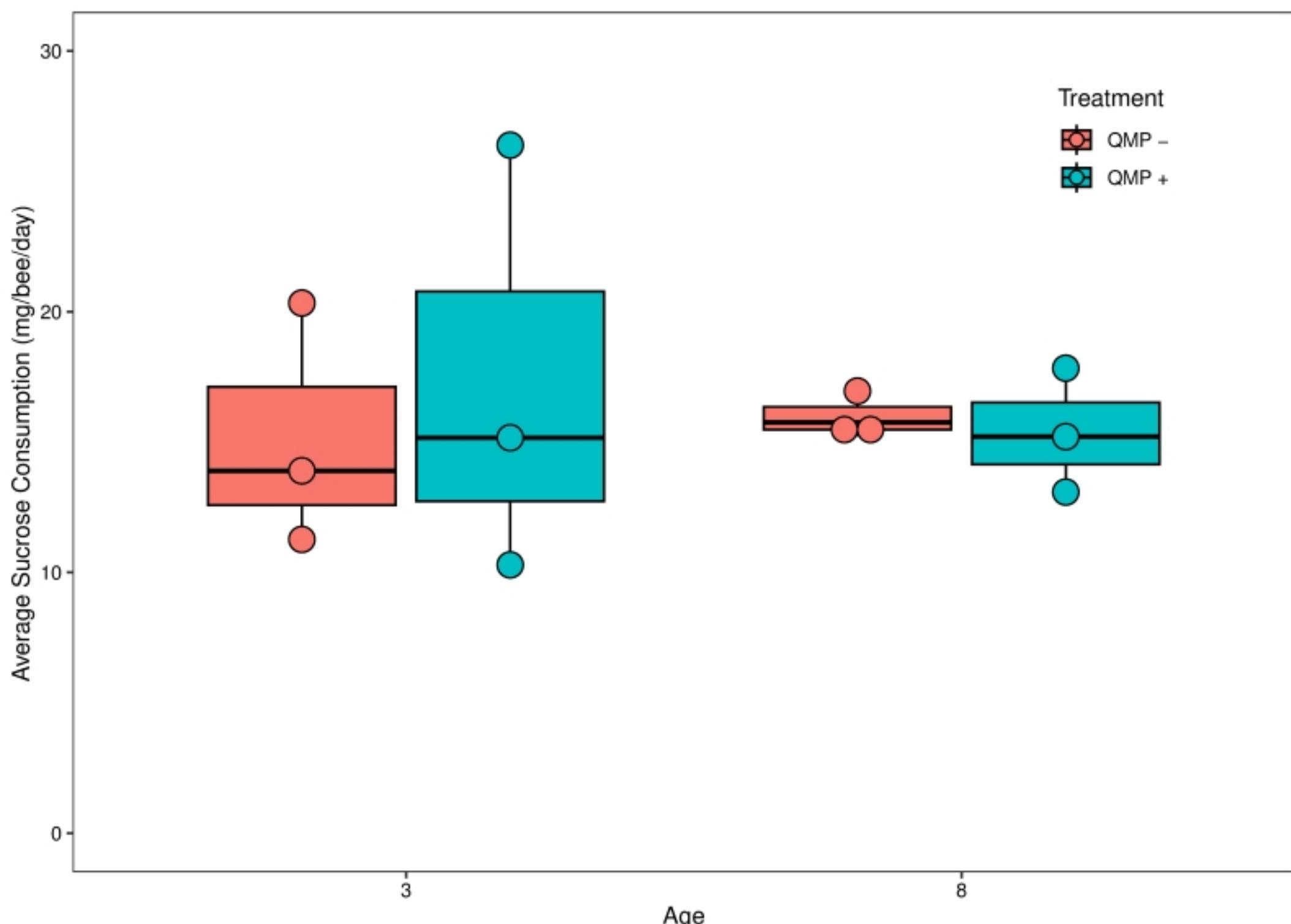


Figure 4

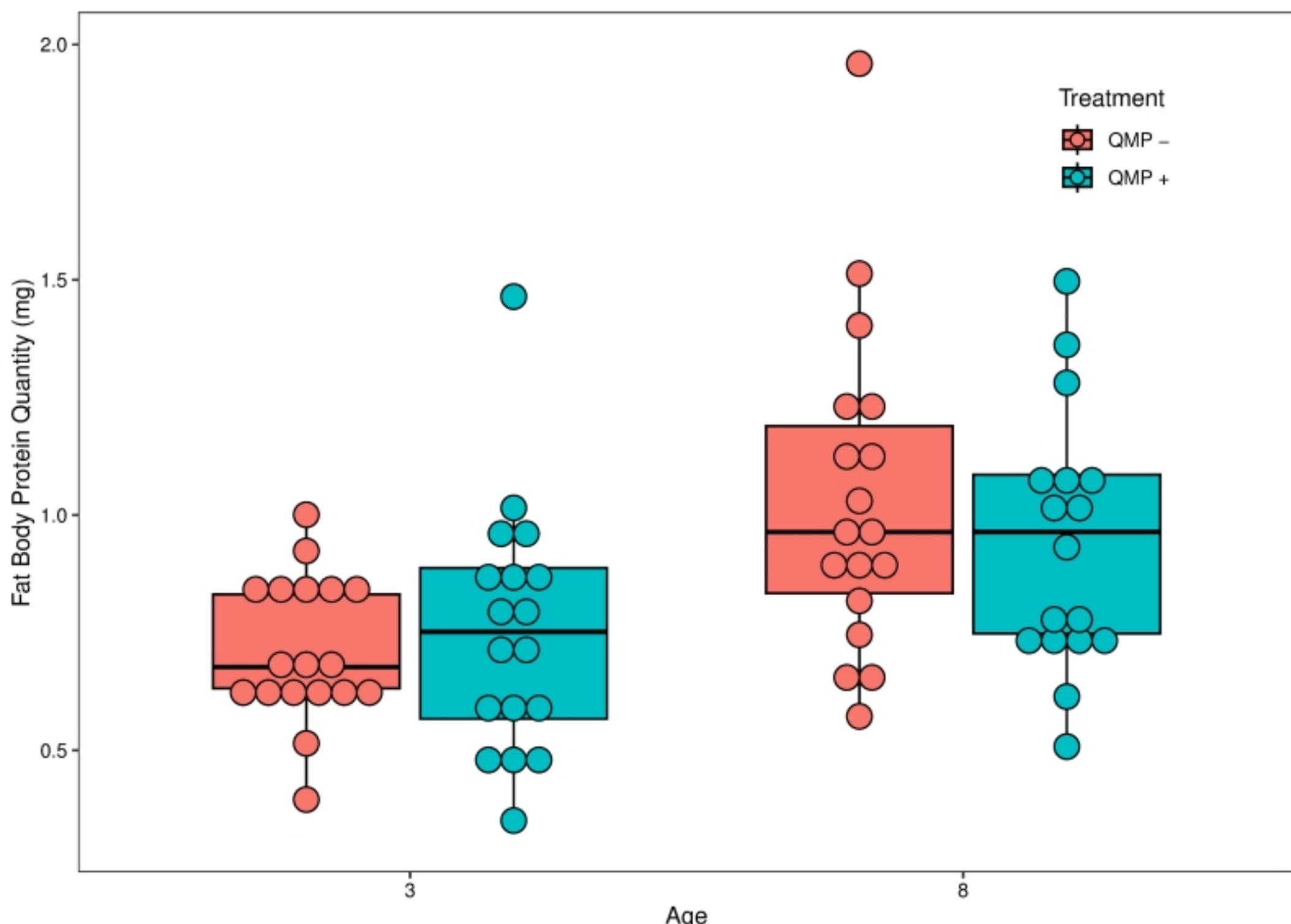


Figure 6

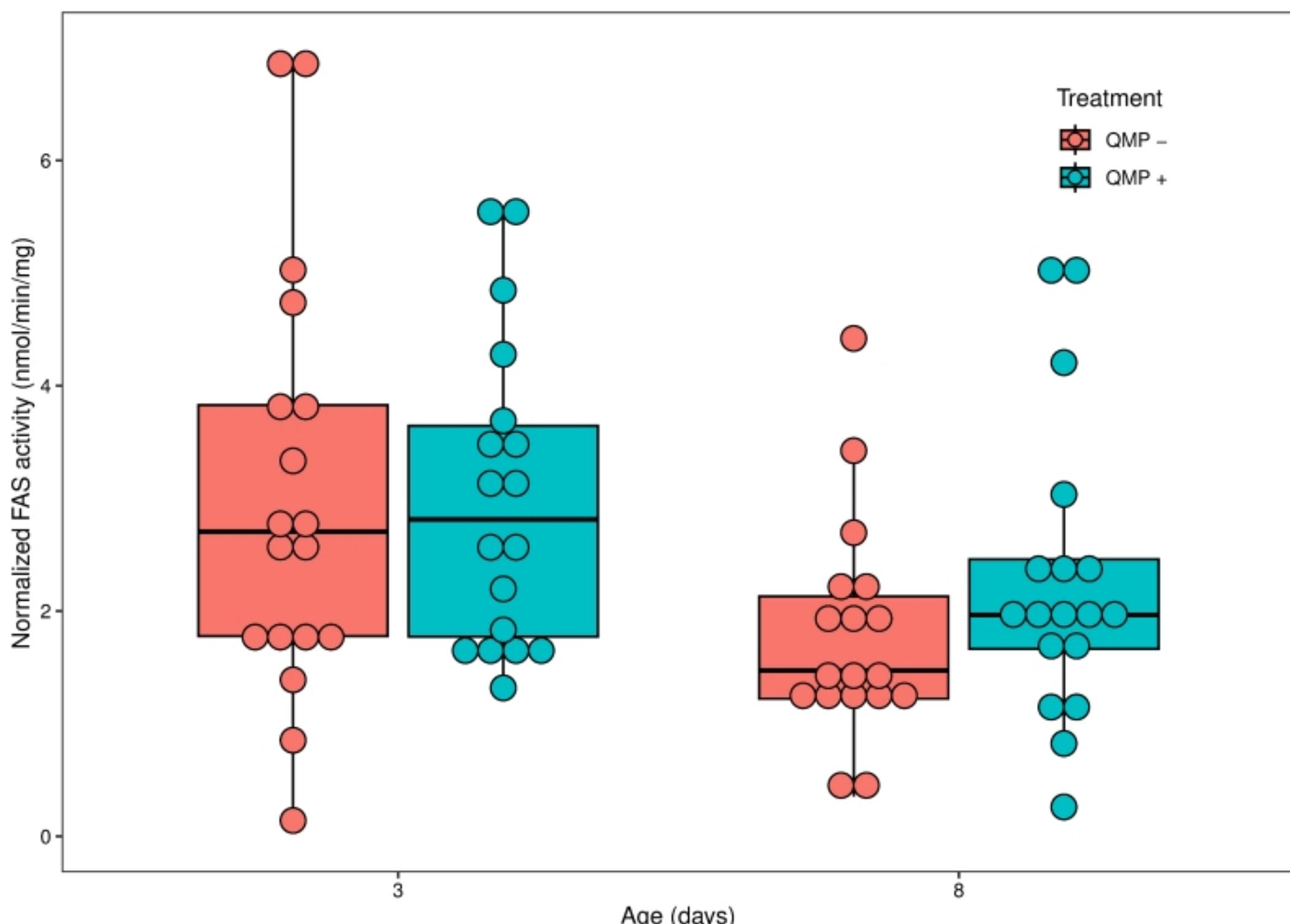


Figure 7

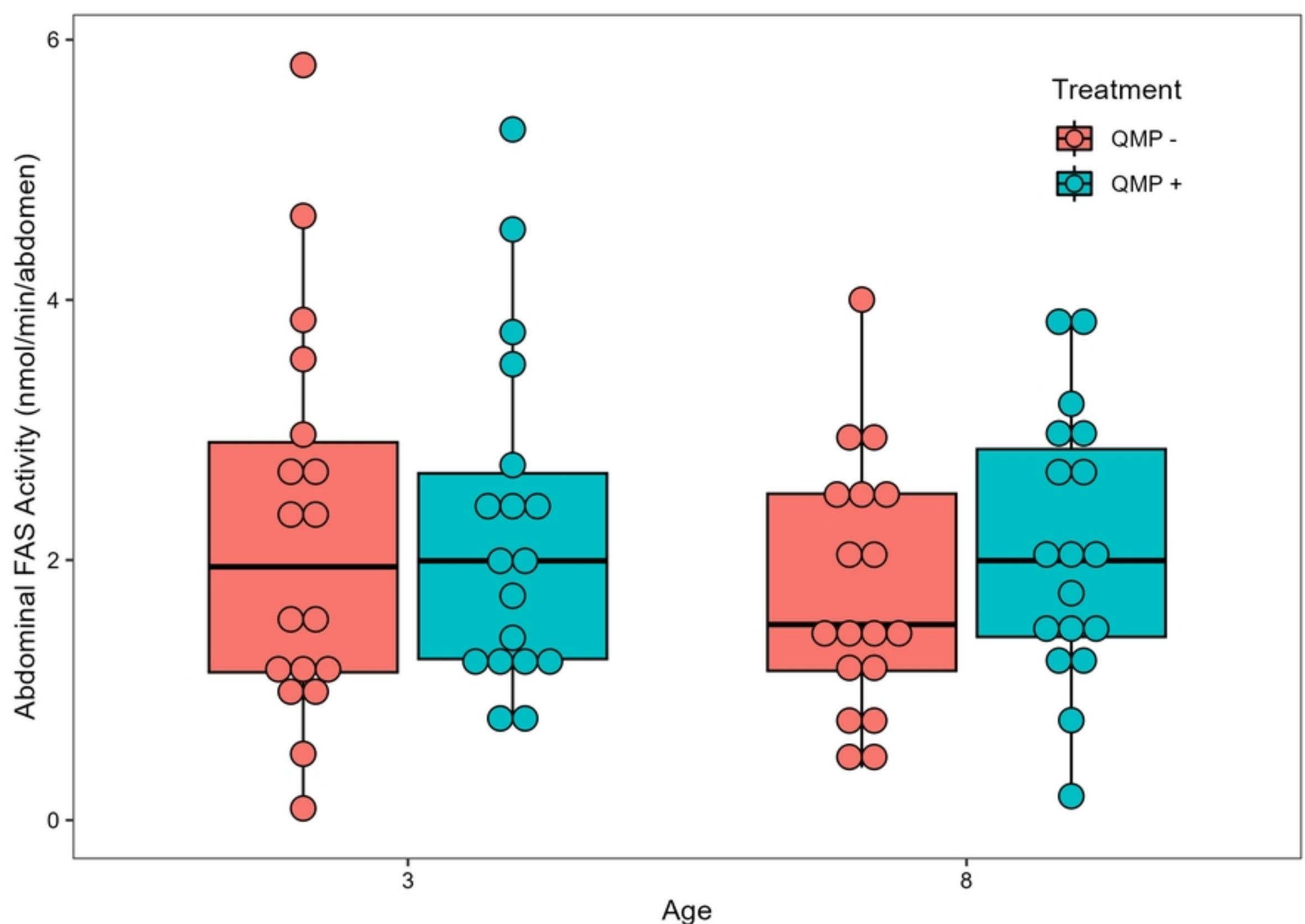


Figure 5

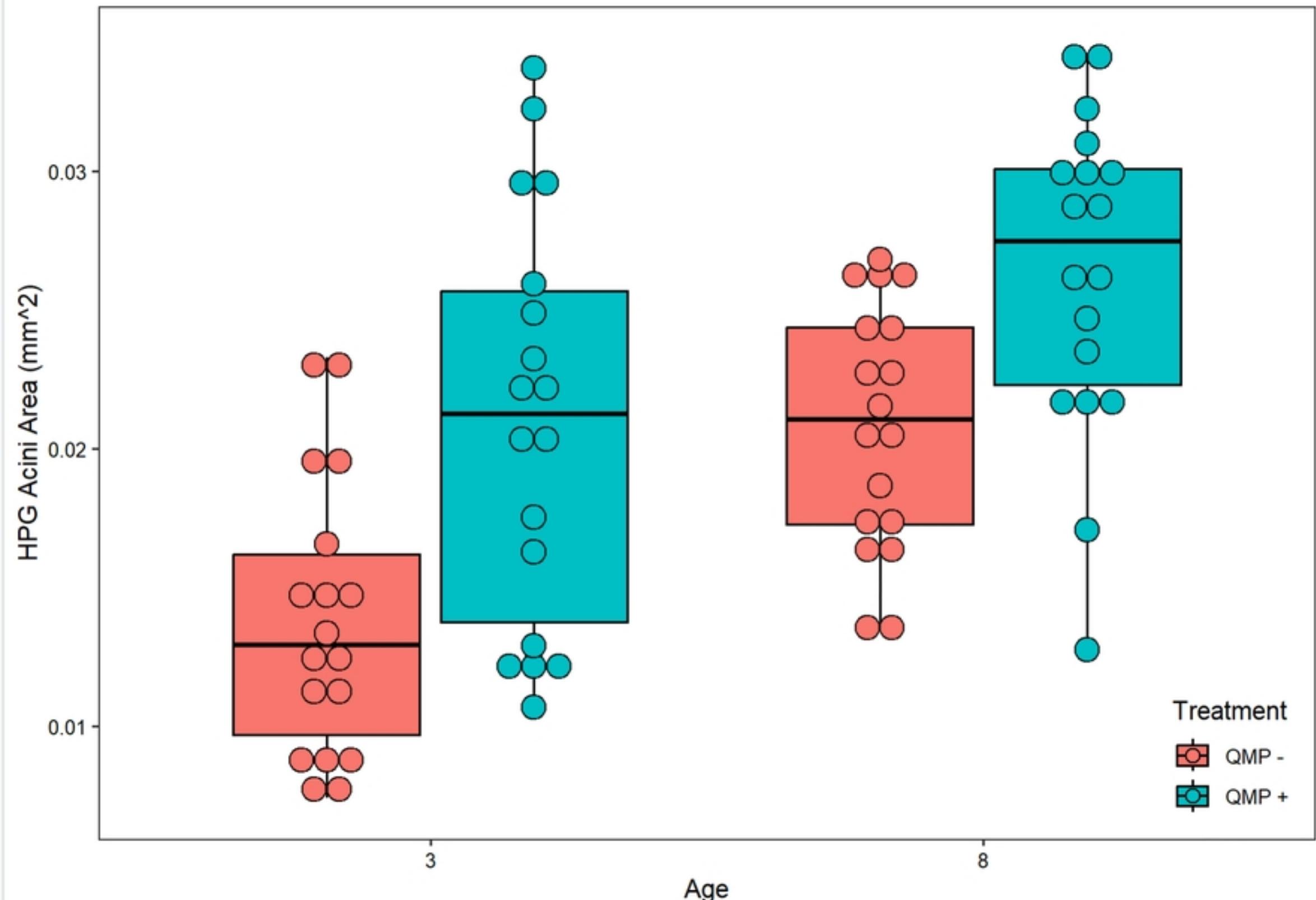


Figure 8

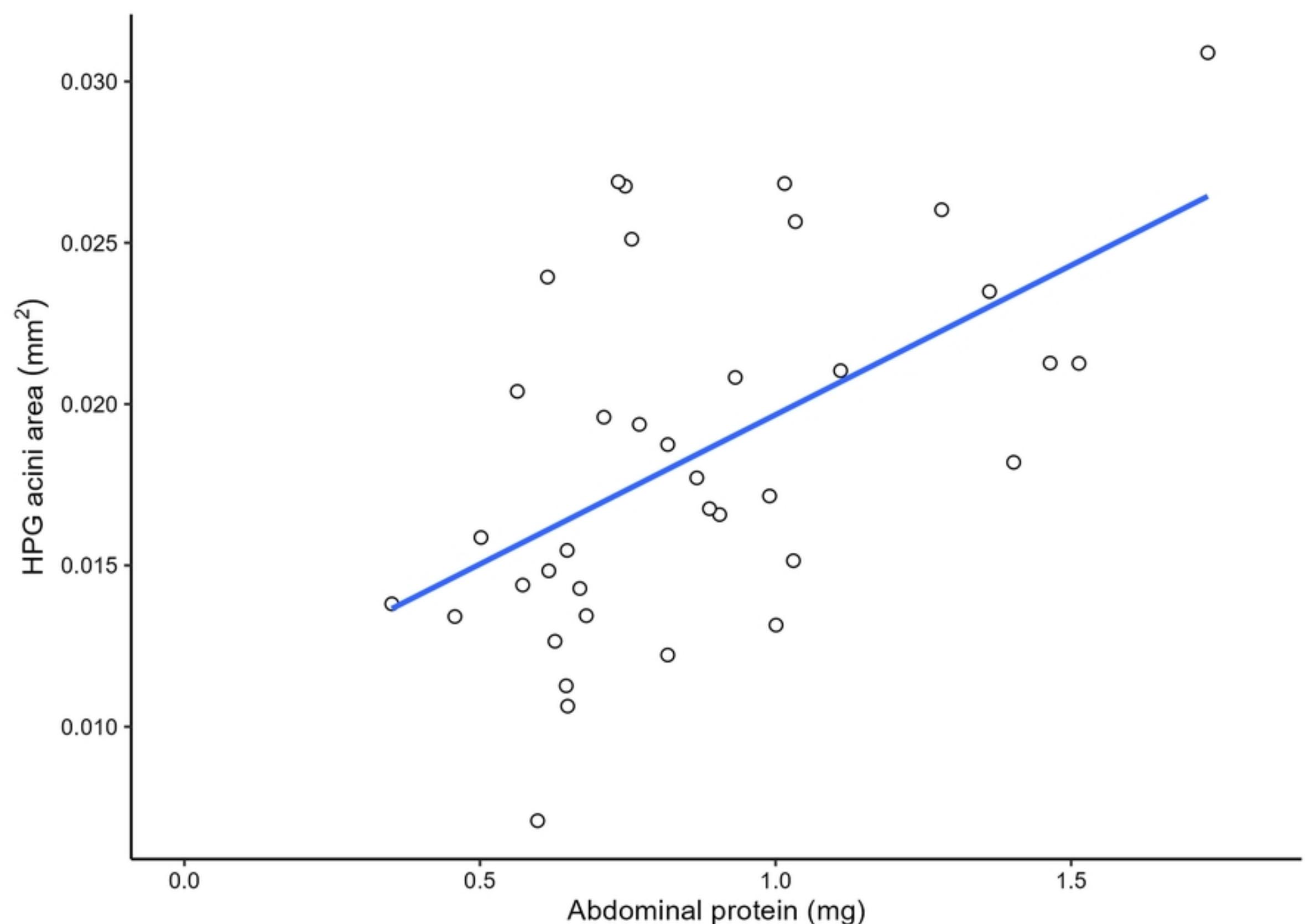


Figure 9

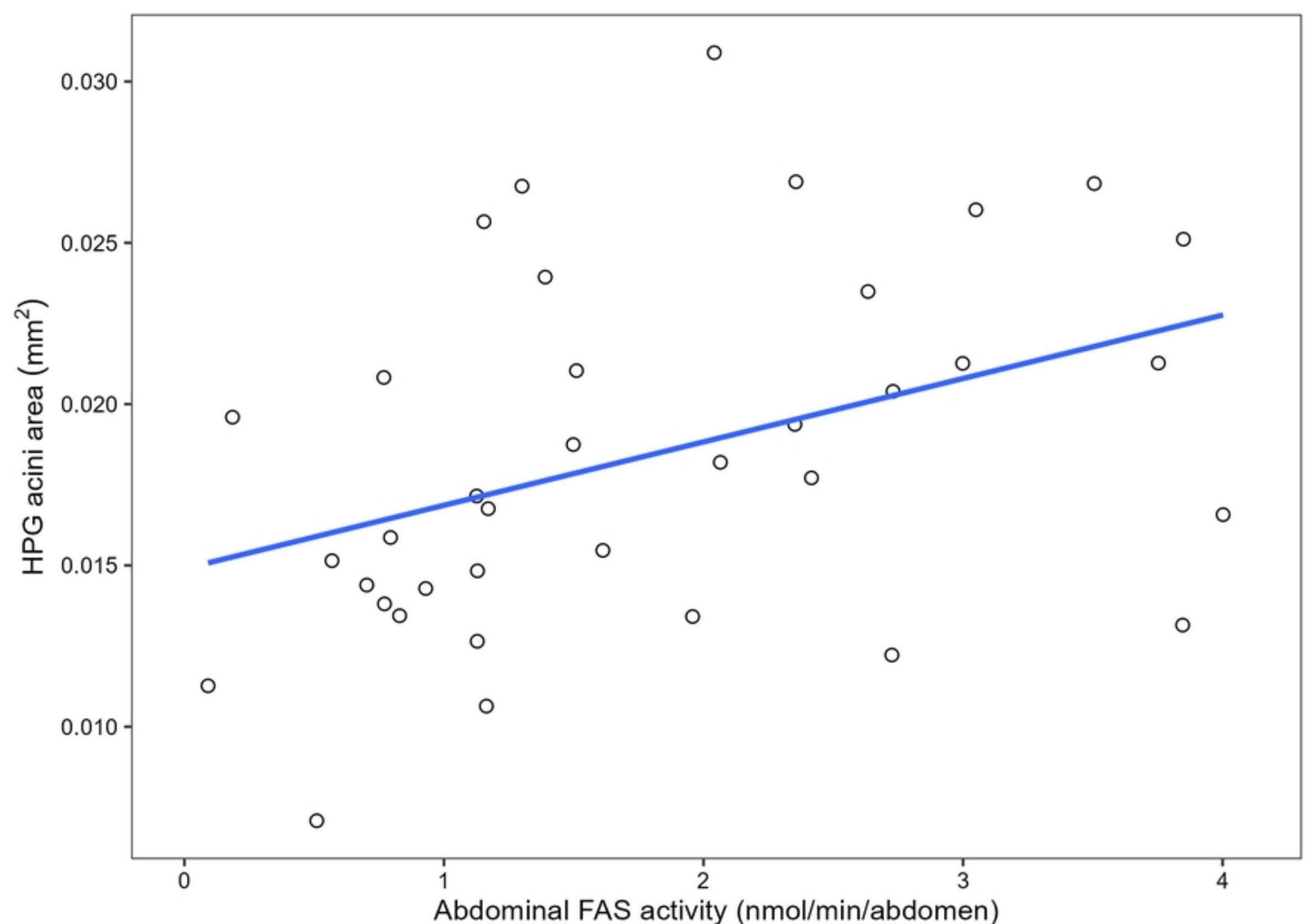


Figure 10

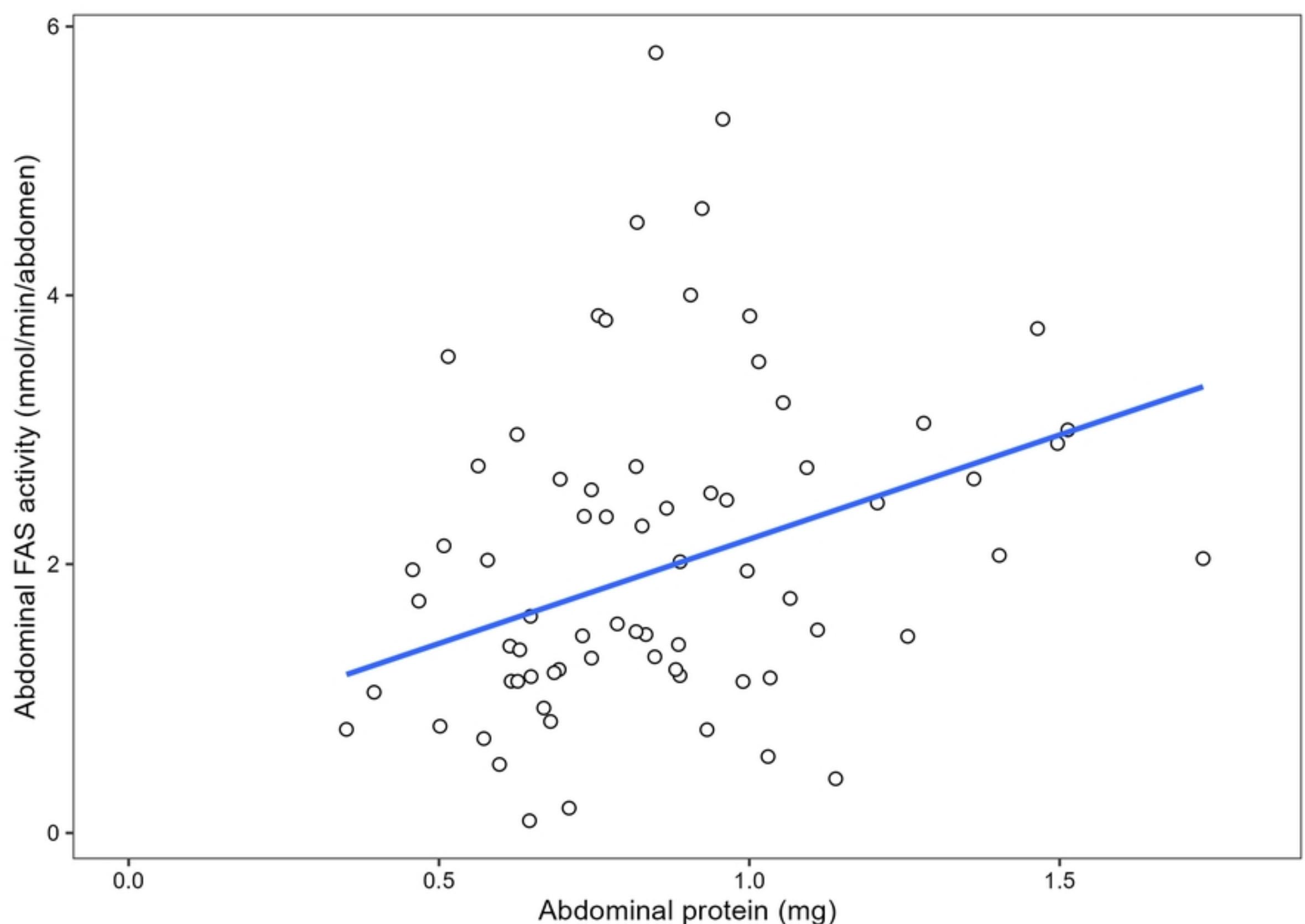


Figure 11