

1    **Activation of a cortical neurogenesis transcriptional program**  
2    **during NEUROD1-induced astrocyte-to-neuron conversion**

3    Wen Li<sup>2,4</sup>, Dan Su<sup>1,3,4</sup>, Xining Li<sup>1,3,4</sup>, Kang Lu<sup>2</sup>, Qingpei Huang<sup>1,3</sup>, Jiajun Zheng<sup>2</sup>,  
4    Xiaopeng Luo<sup>2</sup>, Gong Chen<sup>2,\*</sup>, Xiaoying Fan<sup>1,3,5,\*</sup>

5

6    <sup>1</sup>GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of  
7    Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou  
8    Medical University, Guangzhou 510005, China

9    <sup>2</sup>Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR),  
10    Jinan University, Guangzhou, China

11    <sup>3</sup>The Bioland Laboratory, Guangzhou 510700, China

12    <sup>4</sup>These authors contributed equally

13    <sup>5</sup>Lead contact

14

15    \*Corresponding authors: Xiaoying Fan (Fan\_xiaoying@gzlab.ac.cn), Gong  
16    Chen (gongchen@jnu.edu.cn)

17 **Abstract**

18 NEUROD1-induced astrocyte-to-neuron (AtN) conversion has garnered  
19 significant attention as a potential therapeutic intervention to neurological  
20 disorders. To gain insight into the molecular regulations underlying this neuronal  
21 reprogramming process, we applied single-cell multiomics analyses on *in vitro*  
22 ND1-induced AtN conversion to systematically investigate how ND1 changed  
23 the fate of astrocytes at transcriptomic and epigenetic levels. Our findings  
24 reveal that the initial immature astrocytes go through an intermediate state  
25 where both astrocytic and neuronal genes are activated at early stage of AtN  
26 conversion. ND1 directly reshapes the chromatin accessibility landscape of  
27 astrocytes to that of neurons, promoting expression of endogenous *Neurod1*  
28 and other neurogenic genes such as *Hes6*, *Insm1* etc. Interestingly, cell  
29 proliferation status is highly correlated with conversion rate, and inhibition of  
30 cell division significantly reduces the conversion ratio. Moreover, in comparison  
31 with another AtN reprogramming transcription factor, ASCL1, external ND1 can  
32 activate endogenous *Neurod1* and directly promote neuronal gene transcription;  
33 whereas external ASCL1 hardly activates endogenous *Ascl1*, leading to slower  
34 and inefficient conversion. Together, our studies demonstrate that *in vitro* AtN  
35 conversion mimics neurogenic transcriptional program in embryonic  
36 neurogenesis.

37 **Introduction**

38 Adult mammalian neurogenesis is limited in terms of the number and region of  
39 occurrence (Kempermann et al., 2018; Lei et al., 2019). Therefore, strategies  
40 that promote endogenous neurogenesis hold great potential for therapeutic  
41 interventions to neurological disorders (Bocchi et al., 2022; Lei et al., 2019;  
42 Vasan et al., 2021). Unlike neurons, macroglial cells, including astrocytes and  
43 oligodendrocyte progenitors (OPCs), can reactivate and proliferate under  
44 conditions of injury and disease (Burda and Sofroniew, 2014). These reactive  
45 glia exhibit characteristics similar to neural stem cells (NSCs) and can give rise  
46 to a few immature neurons under specific circumstances (Magnusson et al.,  
47 2014; Robel et al., 2011; Tai et al., 2021; Zamboni et al., 2020). The latent  
48 neurogenic capacity of these cells can be enhanced through ectopic expression  
49 of pro-neuronal transcription factors (TFs), microRNAs, PTBP1 knockdown, or  
50 small molecules, both *in vitro* and *in vivo* (Lei et al., 2019; Vasan et al., 2021).  
51 *In vivo* neuronal reprogramming from glial cells has shown therapeutic effects  
52 in animal models of various neurological diseases (Chen et al., 2020; Ge et al.,  
53 2020; Tai et al., 2021; Wu et al., 2020; Zheng et al., 2022).

54 NEUROD1 (ND1) is an important TF involved in embryonic and postnatal  
55 neuronal development (Gao et al., 2009; Hevner et al., 2006). It has been  
56 shown to rapidly and efficiently convert astrocytes into functional neurons, both  
57 *in vitro* and *in vivo* (Guo et al., 2014). ND1-mediated AtN conversion has proven  
58 effective in treating focal ischemic stroke in rodent and non-human primate  
59 models (Chen et al., 2020; Ge et al., 2020; Tang et al., 2021). The addition of  
60 another TF, DLX2, could regenerate GABAergic projection neurons in the  
61 mouse striatum, extending the lifespan of Huntingtons transgenic mice (Wu et  
62 al., 2020). However, the ND1-mediated AtN conversion has recently been  
63 challenged, as researchers claiming that most "converted" neurons were pre-  
64 existing neurons (Wang et al., 2021). One significant reason behind this  
65 controversy is the lack of full understanding regarding the dynamic process and

66 molecular regulations underlying the conversion of astrocytes into neurons by  
67 ND1.

68 Single-cell analyses are valuable tools for unraveling cellular heterogeneity  
69 and tracing intermediate cell states that may be masked in bulk analyses  
70 (Armand et al., 2021). They expand our knowledge of the dynamic processes  
71 involved in normal development and disease pathogenesis (Armand et al.,  
72 2021). However, the application of single-cell analyses to neuronal  
73 reprogramming, particularly *in vivo* reprogramming, is limited, partially due to  
74 technical difficulties in isolating target cells from adult brains (Giehrl-Schwab et  
75 al., 2022; Magnusson et al., 2020; Zhang et al., 2022). Nevertheless, the limited  
76 data from previous single-cell analyses have provided valuable insights into the  
77 potency of starting cells, intermediate states, and critical regulatory pathways  
78 in neuronal reprogramming (Magnusson et al., 2020; Zhang et al., 2022).  
79 Therefore, it is worthwhile to employ single-cell analyses to study ND1-  
80 mediated AtN conversion.

81 To achieve this objective, we have established an *in vitro* platform of ND1-  
82 induced neuronal reprogramming, which enables tracing the fate of starting  
83 cells and monitoring the entire conversion process without contamination of  
84 endogenous neurons. Then, single-cell multiomics sequencing, combined with  
85 time-lapse live imaging, is used to elucidate how astrocytes isolated from the  
86 young postnatal rat cortex are converted into neurons and unravel the  
87 underlying molecular regulations.

88

## 89 **Results**

### 90 **ScRNA-seq captures diverse intermediate cell states in ND1-induced 91 neuronal reprogramming**

92 To investigate the cellular mechanisms underlying ND1-induced neuronal  
93 reprogramming from astrocytes, we established an *in vitro* trans-differentiation

94 platform. Primary astrocytes were isolated from postnatal rat cerebral cortices  
95 and subcultured for 5 passages in the presence of 10% serum to reduce  
96 progenitor cells before transducing with a retrovirus carrying the  
97 *CAG::NeuroD1-IRES-EGFP* (ND1) construct (Figure 1A and S1). Retrovirus  
98 carrying the *CAG::EGFP* (GFP) construct acted as a control. The expression of  
99 ND1 was detected at 3 days post-infection (DPI, Figure S1E). Following ND1  
100 expression, the astrocytes gradually changed their morphology and started  
101 expressing TUJ1 from 3 DPI (Figure S1F). The proportion of TUJ1<sup>+</sup> cells  
102 increased over time (Figure 1B and S1F). By 14 DPI, approximately 80% of  
103 GFP<sup>+</sup> cells had become TUJ1 positive. In contrast, the control group transduced  
104 with GFP alone showed negligible TUJ1 expression at all time points examined  
105 (Figure 1B, S1C-S1E). In addition to TUJ1, other markers indicative of  
106 immature and mature neurons, including DCX, NEUN, MAP2, and SV2, were  
107 also observed following ND1 transduction (Figure S1G-S1J). Subtype analysis  
108 revealed that over 90% of the converted neurons were excitatory neurons  
109 expressing vGLUT1, and among them, 60% expressed TBR1 and CTIP2,  
110 markers representing deeper-layer cortical neurons (Figure S1H and S1K).  
111 Furthermore, the converted neurons at 30 DPI acquired electrophysiological  
112 features similar to those of primary neurons isolated from rat E16.5 cortices  
113 (Figure S2A-S2H). They predominantly formed functional excitatory neuronal  
114 circuits, exhibiting frequencies and amplitudes comparable to those of E16.5  
115 cortical primary neurons (Figure S2I-S2L). These results demonstrate a rapid  
116 and efficient *in vitro* ND1-induced neuronal reprogramming platform using rat  
117 astrocytes, similar to previous studies conducted with mouse or human primary  
118 astrocytes (Guo et al., 2014).

119 Then, we utilized this platform to investigate the reprogramming  
120 mechanism through single-cell multiomics analyses (Figure 1A). Firstly, we  
121 generated a scRNA-seq dataset from cells from 0 to 5 DPI, when apparent fate  
122 conversion to neurons occurs (Figure 1C), to capture the dynamic cell types

123 during the reprogramming process. After quality control, we retained 13,081  
124 cells from 0 DPI (initial cells), 32,741 cells from the GFP control group, and  
125 46,164 cells from the ND1 group for further clustering (Figure 1D, 1E). Based  
126 on a panel of known markers, we identified three main cell types: immature  
127 astrocytes (ImA), astrocytes, and neurons (Figure 1D, 1F, and Table S1). The  
128 immature astrocyte population could be further divided into three subtypes:  
129 ImA\_div, ImA, and ImA\_ND1\_hi. They all exhibited high expression of *Gfap* and  
130 *Tnc* (Figure 1F). ImA\_div cells showed high activity in the cell cycle, while  
131 ImA\_ND1\_hi shared many features with ImA\_div but expressed high levels of  
132 *Neurod1* (Figure 1F). The astrocyte population consisted of three subclusters  
133 (Ast\_1, Ast\_2, Ast\_3), with Ast\_1 expressing high level of *Gfap*, *Tnc*, and  
134 *Col11a1*, while Ast\_2 and Ast\_3 expressing high level of *Atp1a2* and *Aqp4*  
135 (Figure 1F). The neuronal lineage comprised four subclusters (Neu\_1, Neu\_2,  
136 Neu\_3, Neu\_4) that exhibited high expression of neuronal markers and genes  
137 enriched in gene ontology (GO) terms related to axonogenesis, dendrite  
138 development, neuron migration, and positive regulation of cell projection  
139 (Figure 1F and 1G).

140 Notably, the starting cells (0 DPI initial cells, Figure S1) were predominantly  
141 identified as ImA immature astrocytes (approximately 80%, Figure 1H). The  
142 GFP control cells were primarily classified as immature astrocytes and  
143 astrocytes (Figure 1E and 1H), while the majority of cells in the ND1 group were  
144 clustered into the neuronal lineage (Figure 1E). Among the *Egfp*<sup>+</sup> cells in the  
145 ND1 group, 32.2% were immature astrocytes and astrocytes, 13.7% were  
146 ImA\_ND1\_div, and 52.5% were neurons (Figure 1I). ImA\_ND1\_hi cells were  
147 exclusively found in the ND1 group, with the highest proportion observed at 1  
148 DPI (Figure 1H). These findings indicate that scRNA-seq analysis captured the  
149 dramatic switch in cell identities from immature astrocytes to neurons induced  
150 by ND1.

151 **An intermediate state expressing both astrocytic and neuronal genes at**

152 **early stage of ND1-induced neuronal reprogramming**

153 We then conducted pseudotime analysis to uncover the lineage relationships.  
154 There were two distinct developmental branches originating from the immature  
155 astrocytes (Figure 2A and S3A). Based on the expression patterns of the  
156 astrocyte gene *Aqp4* and the neuron gene *Tubb3*, we defined these two  
157 branches as the astrocyte branch and the neuron branch, respectively (Figure  
158 2B and S3A). Importantly, the sampled time points (0, 1, 2, 3, 5 DPI) aligned  
159 well with the pseudotemporal axis, indicating a high degree of consistency  
160 between the two (Figure 2A, 2C).

161 To gain further insights into the molecular programs driving the conversion  
162 process, we extracted pseudotime genes along both trajectory branches and  
163 performed clustering analysis (Figure 2D, Table S1). In the astrocyte branch,  
164 immature astrocytes initially downregulated mitotic cell cycle genes (e.g., *Mik67*  
165 and *Top2a*, Figure 2D-2F and S3B), and subsequently upregulated genes  
166 involved in glial differentiation, including gliogenesis-related genes like *Gfap*,  
167 *Aap4*, and *Apoe*. On the other hand, immature astrocytes in the neuron branch  
168 also initially downregulated cell cycle genes and then underwent an  
169 intermediate state simultaneously upregulating genes associated with glial  
170 differentiation and early neuronal development, such as early neurogenesis  
171 genes like *Pax6* and *Sox2* (Figure 2D-2F and S3B). As the conversion  
172 proceeded, the intermediate cells dramatically decreased genes related to  
173 gliogenesis, and concomitantly increased genes associated with neuronal  
174 development events, including neuron projection development and regulation  
175 of neurogenesis (Figure 2D-2F and S3B). These findings suggest an important  
176 intermediate state that simultaneously upregulates both astrocytic and neuronal  
177 genes during the early stages of ND1-induced neuronal reprogramming of  
178 immature astrocytes.

179 Previous studies have suggested that ND1-induced AtN conversion  
180 bypasses the NSC stage (Guo et al., 2014), so we examined the expression

181 levels of NSC markers *Sox2*, as well as markers of cortical neuronal progenitors,  
182 including *Pax6*, *Eomes* (*Tbr2*), and *Dcx* (Hevner *et al.*, 2006). Interestingly,  
183 *Sox2* and *Pax6* were transiently upregulated in the early stages of  
184 reprogramming and quickly downregulated (Figure 2F and S3B). Subsequently,  
185 *Eomes* and *Dcx* increased (Figure S3B). The immunostaining results supported  
186 the existence of PAX6<sup>+</sup> and TBR2<sup>+</sup> cells at 3 DPI in the GFP<sup>+</sup> population of ND1  
187 group (Figure 2G and 2H). These data suggest the presence of a transient  
188 stage of neuronal progenitor-like cells during the neuronal reprogramming of  
189 immature astrocytes.

190 To further elucidate the gene regulatory networks involved in the  
191 reprogramming process, we performed weighted correlation network analysis  
192 (WGCNA) based on all the cells and identified six gene modules closely  
193 associated with different cell types and states (Figure S3C, Table S1). The  
194 yellow module contains genes involved in cell division and exhibits a high score  
195 in the initial immature astrocytes (Figure S3D-S3F). The red module is shared  
196 by cells in the early stages of both astrocyte and neuronal lineages, enriched in  
197 genes participating in immune response (IL-7 response) and metabolism (ATP  
198 metabolic process and cell redox homeostasis). In contrast, the brown module  
199 is enriched in late-stage cells of both astrocyte and neuronal lineages,  
200 comprising genes involved in metabolic processes (response to nitrogen  
201 starvation and hormone metabolic process). The shift from the red module to  
202 the brown module along the pseudotemporal axis suggests a metabolic change  
203 during fate commitment and maturation (Figure S3D).

204 The astrocyte-associated network consists of two modules: the green  
205 module active along the astrocyte lineage and the turquoise module restricted  
206 to the late stage of astrocyte differentiation. Specifically, the green module is  
207 enriched in genes involved in regulating glial cell proliferation and the response  
208 to transforming growth factor beta (TGF $\beta$ ) pathway, while the turquoise module  
209 contains genes that promote astrocyte differentiation and suppress

210 neurogenesis processes (Figure S3D-S3F). The blue module comprises genes  
211 regulating neural progenitor proliferation and telencephalon development. The  
212 modules derived from WGCNA show high consistency with the previously  
213 identified gene clusters based on pseudotime analysis, further supporting the  
214 regulatory networks in ND1-induced neuronal reprogramming, which early  
215 activate the astrocyte and neuronal programs simultaneously, and then  
216 gradually shut down the astrocyte genes.

217

218 **Multiomics analysis identifies key downstream effectors in ND1-induced**  
219 **neuronal reprogramming**

220 To understand how ND1 triggers neuronal transformation from immature  
221 astrocytes, we investigated the initial targets of ND1 binding. We performed  
222 NEUROD1 ChIP-seq for ND1-transfected cells at 2 DPI and identified 19,681  
223 ND1 binding peaks (Figure S4A, Table S2). Most of the genes associated with  
224 these peaks were upregulated in the neuronal lineage (Figure S4B, Table S2),  
225 indicating that ND1 positively regulates these genes. Meanwhile, there were  
226 also some genes that were downregulated in the neuronal lineage upon ND1  
227 binding, reflecting negative regulation by ND1. Gene ontology (GO) analysis  
228 revealed that the upregulated ND1 targets, such as *Hes6*, *Insm1*, *Id2*, *Dcx*, and  
229 *Tubb3*, are associated with neuronal development and differentiation (Figure  
230 3A and S4C). On the other hand, the downregulated ND1 targets, including  
231 *Cebpd*, *Fos*, *Anxa1*, are mainly involved in the mitotic cell cycle and functions  
232 related to reactive astrocytes (such as response to wounding and extracellular  
233 matrix organization, Figure 3A, S4C). As expected, ND1 self-regulates its  
234 expression by directly binding to its own promoter (Pataskar et al., 2016). These  
235 findings suggest that ND1 can directly regulate gene expression in both positive  
236 and negative ways, driving immature astrocytes towards the neuronal lineage.

237 To investigate the chromatin remodeling promoted by ND1 during neuronal  
238 programming, we performed scATAC-seq on cells from the ND1 group (Figure

239 1A). All cell types and subtypes identified in the scRNA-seq data were classified,  
240 except for ImA\_div cells, as the cell cycle characteristics are masked in  
241 scATAC-seq data (Hsiung et al., 2015) (Figure 3B). Interestingly, the chromatin  
242 accessibility landscapes of immature astrocyte and astrocyte subtypes were  
243 highly similar to each other but distinct from the neuronal subtypes (Figure 3B).  
244 The gene scores of cell type marker genes validated the cell type annotation of  
245 the scATAC-seq data (Figure 3C and S4D). Importantly, Neu\_1 and Neu\_2  
246 clusters showed high gene scores of both astrocytic gene *Gfap* and neuronal  
247 gene *Dcx*, supporting the transitional stage of converting cells in-between  
248 astrocytes and neurons during conversion process (Figure 3C). Genome  
249 browser visualization confirmed the specific opening status of cell type marker  
250 regions (Figure S4E). For example, *Aqp4* peaks were highly detectable in  
251 astrocyte lineages, while *Dcx* peaks were only present in neuronal lineages.  
252 *Gfap* peaks were observed in astrocytes and early reprogrammed neuronal  
253 subtypes but were not detected in the late neuronal subtype (Neu\_4). When  
254 focusing on the chromatin accessibility of ND1-occupied loci, we found that  
255 these loci were more open in the neuronal subtypes (Figure S4F), indicating  
256 that ND1 enhances the accessibility of neuronal genes. Specifically, ND1-  
257 occupied and upregulated genes, such as *Neurod1*, *Insm1*, *Mesi2*, and *Hes6*,  
258 exhibited increased chromatin accessibility in neuronal cells (Figure 3D).  
259 Conversely, the downregulated ND1 targets, such as *Cebpd*, *Fos*, and *Anxa1*,  
260 gradually exhibited closed chromatin accessibility (Figure S4G). Collectively,  
261 these findings suggest that ND1 can directly bind to specific loci and rapidly  
262 induce chromatin remodeling, favoring the conversion from astrocytes to  
263 neurons.

264 To identify downstream regulators, we performed motif analysis of the  
265 scATAC-seq data and predicted regulatory TFs (Table S2). TFs associated with  
266 forebrain development and neuronal differentiation exhibited gradually  
267 increasing activity in the neuronal subtypes, while those associated with cell

268 proliferation and astrocyte metabolic processes displayed decreasing activity  
269 (Figure S4H). To further identify key regulators, we extracted the most  
270 significantly regulated TFs along the AtN trajectory based on the scRNA-seq  
271 data. Examples include *Hes6*, *Id2*, *Tead2*, and *Id4*, which were directly bound  
272 by ND1 and showed upregulation of both themselves and their putative target  
273 genes along the neuronal lineage (Figure 3A, 3E and 3F). Interestingly, we  
274 identified opposite regulations in certain TF families during AtN conversion,  
275 such as a downregulation of *Hes1* versus an upregulation of *Hes6*, and a  
276 downregulation of *Id4* versus an upregulation of *Id2* (Fig. 3F). These results  
277 suggest that different TFs within the same family may play opposite functions  
278 in cell fate conversion. The scATAC-seq results also revealed increased gene  
279 scores and motif activities for core TFs such as *Neurod1*, *Hes6*, and *Mesi2*  
280 along the cell fate transition (Figure 3D and 3G), further indicating their  
281 importance in ND1-induced neuronal reprogramming (Masserdotti et al., 2015;  
282 Matsuda et al., 2019).

283

284 **ND1-induced neuronal reprogramming partly resembles the cortical**  
285 **deeper-layer neurogenesis**

286 In the developing cortex, ND1 has been identified as a critical transcription  
287 factor involved in the specification of deeper-layer neurons (Hevner et al., 2006).  
288 In this study, the majority of ND1-reprogrammed neurons were identified as  
289 cortical excitatory neurons (Figure S1H and S1K). We wondered whether *in*  
290 *vitro* reprogramming and *in vivo* cortical development share similar cellular and  
291 molecular processes.

292 To address this question, we first profiled cells from E16.5 and P2 rat  
293 cerebral cortices using scRNA-seq (Figure 4A and S5A-S5D, Table S1). We  
294 found that deeper-layer neurons were predominantly captured from E16.5,  
295 while upper-layer neurons were mainly detected at P2. The cell composition  
296 was further confirmed by immunostaining (Figure S5C and S5D). We then

297 compared the *in vitro* reprogrammed cells with the cells from *in vivo* cortical  
298 development. As expected, the immature astrocytes and Ast\_1,2,3 cell  
299 populations were assigned to astrocytes *in vivo* (Figure 4B and S5E). The  
300 Neu\_1 cells were primarily aligned with astrocytes *in vivo*, and the subsequent  
301 neuronal subtypes exhibited a gradual transition from astrocytes to Ex\_DL\_3  
302 through the radial glia (RG) and intermediate progenitor cell (IPC) states (Figure  
303 4B and S5E). Immunostaining of the cells at 5 DPI indeed showed the presence  
304 of CTIP2<sup>+</sup> neurons (Figure 4C). These findings suggest that ND1 might induce  
305 a trans-differentiation program that mimics the neurogenic paradigms of *in vivo*  
306 neurogenesis, progressing from RG to IPCs and then to deeper-layer neurons  
307 (Figure 2G and 2H).

308 We further investigated whether the regulatory gene modules identified *in*  
309 *vitro* was also involved in *in vivo* neurogenesis. We found that the turquoise  
310 module, associated with astrocyte differentiation (Figure S3D-S3F), was highly  
311 active in astrocytes *in vivo* (Figure S5F), while the blue module, related to  
312 neurogenesis, was highly active in IPCs and migrating neurons (Figure S3D-  
313 S3F and S5F). The yellow module, associated with immature astrocytes, was  
314 highly active in dividing RG cells and IPCs. To examine this in more details, we  
315 performed pseudotime analysis of the *in vivo* cells and identified a  
316 neurogenesis trajectory originating from RG cells (Figure S5G and S5H). When  
317 extracting the neurogenesis trajectory genes from the *in vitro* and *in vivo*  
318 datasets (Figure 4D, Table S1), we found 358 genes were shared between the  
319 two systems, accounting for 64% of the pseudotime genes observed *in vivo*  
320 (Figure 4E, Table S1). Most of the shared genes were categorized into  
321 biological pathways related to neuronal development and differentiation (Figure  
322 4E). Among these 358 shared trajectory genes, 67% exhibited the same  
323 expression pattern along the pseudotime trajectory (Figure 4F and S5I). These  
324 findings suggest a high degree of similarity between the *in vitro* neuronal  
325 reprogramming and *in vivo* neurogenesis. Meanwhile, the *in vitro*

326 reprogramming also exhibited unique regulatory modes. For example, there  
327 were 1821 genes involved in response to innate immune and oxidative stress,  
328 which were absent in *in vivo* neurogenesis (Figure 4E), suggesting that those  
329 genes were likely induced by viral infection and cell fate switch from astrocytes  
330 to neurons. Notably, *Ascl1*, which is absent in *in vivo* cortical excitatory  
331 neurogenesis, was transiently upregulated in the early reprogrammed cells  
332 (Figure 4G). The temporal increase of *Ascl1* has also been reported in the  
333 conversion of glial cells to neuroblasts *in vivo*, suggesting some common  
334 regulatory pathways during AtN conversion (Magnusson et al., 2020; Niu et al.,  
335 2013; Zhang et al., 2022). In summary, the transcriptional regulation governing  
336 ND1-induced neuronal reprogramming of astrocytes is highly similar, but not  
337 completely identical, to that observed in *in vivo* cortical deeper-layer  
338 neurogenesis.

339

#### 340 **High correlation between cell proliferation and cell conversion**

341 A previous study found that cell division was not required for neuronal  
342 reprogramming induced by Neurogenin-2 (NGN2) (Heinrich et al., 2010). In the  
343 paradigm of cortical neuron development, ND1 acts downstream of NGN2 and  
344 participates in terminal neuronal differentiation (Hevner et al., 2006). Therefore,  
345 we hypothesized that ND1 might rapidly drive immature astrocytes to exit the  
346 cell cycle. However, we unexpectedly observed a higher rate of proliferation in  
347 Neu\_1 cells compared to Ast\_1 cells (Figure 5A), suggesting that cell division  
348 may be coupled with ND1-induced trans-differentiation. To investigate this  
349 hypothesis, we used time-lapse live imaging to trace cell fate and observed cell  
350 division during neuronal reprogramming (Figure 5B). Consistent with the  
351 sequencing results, over half of the start cells in the GFP and ND1 groups  
352 underwent at least one round of division (Figure 5C and S6A), indicating that  
353 the majority of start cells were mitotic. Additionally, we observed that higher  
354 proportion of cells underwent cell division in the ND1 group compared with the

355 GFP group (ND1 group: 83% vs. GFP group: 69%, Figure 5C).

356 When examining neuronal reprogramming based on morphological  
357 changes (see Experimental Procedure), we observed that the majority of  
358 converted neurons were derived from cells undergoing cell dividing (Figure 5D,  
359 SupMoive1). Furthermore, almost all infected cells in ND1 group without cell  
360 division were either died or not converted at the end of tracing (Figure 5E). we  
361 identified a robust time window for cell division, with the peak occurring within  
362 the first 48 hours after transduction. During this period, a higher number of cell  
363 division events was observed in the ND1 group (Figure 5F). Subsequently, cell  
364 division decreased in both groups, with a sharper decline in the ND1 group.  
365 Among the successfully converted cells, over 80% of them underwent one or  
366 two divisions, resulting in the generation of 1-2 neurons in most cases (Figure  
367 S6B and S6C). The occurrence of cell division in the early stage of neuronal  
368 reprogramming was further supported by Ki67 immunostaining (Figure S6D-  
369 S6G). More Ki67<sup>+</sup> signals were observed in cells transduced with ND1  
370 compared with those transduced with GFP at 2 and 3 DPI (Figure S6E). Taken  
371 together, these findings indicate that cell dividing is highly corelated to ND1-  
372 induced neuronal reprogramming in this *in vitro* conversion system.

373 To illuminate the importance of cell dividing for the ND1 induced neuronal  
374 reprogramming, we intercepted cell cycle using Aphidicolin, a reversible DNA  
375 polymerase inhibitor intercepting cell cycle in S phase (Figure 5G). When added  
376 to the robust cell dividing time window (1-3 DPI), Aphidicolin inhibited cell  
377 proliferation and significantly inhibited neuronal reprogramming (Figure 5H-J).  
378 Whereas, when Aphidicolin was added at 5-7 DPI, the conversion rate was not  
379 impaired (Figure 5H-J and S6H). Therefore, cell dividing might be an important  
380 factor for ND1-induced neuronal reprogramming from immature astrocytes in  
381 cell culture.

382  
383 **The cellular and molecular regulations of ASCL1-induced neuronal**

384 **reprogramming**

385 Besides ND1, ASCL1 is another popular TF to induce conversion from  
386 astrocytes to neurons, both *in vitro* and *in vivo* (Liu et al., 2015). To investigate  
387 the common and specific features of neuronal reprogramming induced by these  
388 diverse TFs, we also established *in vitro* AtN conversion system using ASCL1  
389 (Figure 6A and S7) and performed single-cell multiomics analysis (Figure S8A).  
390 We observed that ASCL1-induced neuronal reprogramming was slower and  
391 less efficient compared with ND1 (Figure 6B and S7). Even at 30 DPI, the  
392 neurons reprogrammed by ASCL1 remained in an immature state (Figure S7D,  
393 S7E). Furthermore, the subtypes of ASCL1-reprogrammed neurons were  
394 predominantly inhibitory neurons (Figure S7F). By analyzing the scRNA-seq  
395 data, we identified four distinct cell states along the ASCL1-induced neuronal  
396 reprogramming trajectory: ImA, Neu\_pre, Neu\_a, and Neu\_b (Figure 6C-6E).  
397 Neu\_pre cells exhibited co-expression of ImA genes and proneuronal genes  
398 such as *Hes6* and *Sox4* (Table S1). As the reprogramming progressed, ImA  
399 genes were down-regulated in Neu\_a and Neu\_b cells, while Neu\_b cells  
400 showed elevated expression of genes associated with neuronal development  
401 and differentiation, including *Tubb3* and *Stmn3* (Figure S8B-S8C, Table S1).  
402 Interestingly, the expression of endogenous *Ascl1* was less activated (Figure  
403 S8C). When mapping the ASCL1-induced cell clusters to *in vivo* cell types, we  
404 found that the converted cells were assigned to *Meis2*-positive inhibitory  
405 neurons (Figure 6F), representing a distinct cell fate compared to the ND1-  
406 converted neurons.

407 Then scATAC-seq analysis was performed to investigate the epigenetic  
408 changes underlying ASCL1-induced astrocyte fate transition (Figure 6G).  
409 Similar to the ND1-induced chromatin changes (Figure S4F), the accessibility  
410 landscape revealed distinct patterns for astrocyte-specific genes (*Gfap* and  
411 *Aqp4*) in all astrocyte subtypes, while proneuronal genes (such as *Hes6*) were  
412 accessible only in neurons (Figure S6H). A number of TFs in ASCL1 induced

413 AtN reprogramming were predicted, most of which were same with those in  
414 ND1 group (Figure S8D).

415 **Direct comparison of ND1 and ASCL1-induced neuronal reprogramming**

416 Direct comparison of cells from the ND1 and ASCL1 induced neuronal lineages  
417 revealed distinct trajectories and final cell fates (Figure 7A, 7C). Pseudotime  
418 analysis showed that neurons reprogrammed by ND1 were more mature  
419 compared to those reprogrammed by ASCL1 up to 5 DPI (Figure 7B), which  
420 was consistent with the observed differences in electrophysiological properties  
421 (Figure S7E). Moreover, a higher proportion of proliferative cells was observed  
422 in the ASCL1 group even at relatively late stages (5 and 7 DPI, Figure S9A-  
423 S9D). Both common and specific genes were identified between ND1 and  
424 ASCL1-induced conversions. Genes including *Hes6*, *Atoh8*, and *Sox11*, known  
425 as common core factors involved in AtN reprogramming (Masserdotti et al.,  
426 2015), were up-regulated in both groups. However, ND1 induced the  
427 expression of these common genes at higher levels compared with ASCL1  
428 (Figure 7B). Other reported factors such as *Neurod4* and *Insm1* were  
429 specifically expressed in the ND1 group (Figure 7B). The inefficient increase of  
430 these common factors critical for neuronal reprogramming may contribute to  
431 the slower and less efficient reprogramming induced by ASCL1. Furthermore,  
432 among *Klf10*, *Chd7*, and *Myt1*, previously reported as critical factors for ASCL1-  
433 induced neuronal reprogramming, *Cdh7* and *Myt1* were upregulated in both  
434 ND1 and ASCL1-induced conversion, whereas *Klf10* was only transiently  
435 upregulated in ASCL1-induced conversion. (Rao et al., 2021) (Figure 7B). The  
436 expression of neuronal subtype markers, including *Neurod2* and *Gad2*, was  
437 specifically increased in the later stages of reprogramming in the ND1 and  
438 ASCL1 groups, respectively (Figure 7B). Unlike ND1, exogenous ASCL1 only  
439 slightly promoted the expression of endogenous *Ascl1* at the early stage, and  
440 this transient expression of endogenous *Ascl1* was also observed in the ND1  
441 group. However, endogenous *Neurod1* was not promoted by ASCL1. Overall,

442 these findings highlight both common and distinct features of neuronal  
443 reprogramming induced by ND1 and ASCL1, providing insights into the different  
444 transcriptional programs and cellular outcomes mediated by these TFs.

445 According to the scATAC-seq results, both ND1 and ASCL1 were able to  
446 induce changes in the chromatin accessibility of ImAs, but ND1 induced more  
447 pronounced changes compared with ASCL1 as reflected by the distance  
448 between reprogrammed neurons and initial astrocytes (Figure 7C, 7D). The  
449 number of DARs between ND1-induced Neu\_1 cells and ImAs was over ten  
450 times higher than that between ASCL1-induced Neu\_pre cells and ImAs (Figure  
451 7E). More than half of the ASCL1-induced DARs were also observed in the ND1  
452 group. For example, *Dll3*, a known target of ASCL1, exhibited open chromatin  
453 accessibility in both groups of induced neural cells (Figure 7F). While common  
454 putative regulatory TFs were identified (Figure S4H, S8D), there were also TF-  
455 specific DARs. *Neurod1* and *Neurod2* peaks were exclusively detected in ND1-  
456 induced neurons, whereas *Dll1*, a known target of ASCL1, displayed increased  
457 accessibility in ASCL1-induced neural cells (Figure 7F). GO analysis of the DAR  
458 associate genes revealed distinct functional enrichment patterns. ND1 initially  
459 up-regulated genes involved in telencephalon development and neuron  
460 differentiation, while suppressing genes associated with cell migration (Figure  
461 S9E and S9F). On the other hand, ASCL1 initially up-regulated genes related  
462 to membrane assembly and suppressed genes involved in the ERK1/ERK2  
463 cascade and nervous system development (Figure S9G and S9H). These  
464 results suggest that ND1 more efficiently promotes chromatin remodeling  
465 favoring neuronal reprogramming compared with ASCL1. ND1 directly  
466 promotes neuronal differentiation, whereas ASCL1 initially prevents immature  
467 astrocyte from undergoing maturation. Overall, these findings highlight the  
468 differences in the reprogramming dynamics, maturation, and neuronal subtype  
469 specification between ND1 and ASCL1, underscoring the importance of specific  
470 TFs in driving neuronal reprogramming towards different cellular outcomes.

471

472 **Discussion**

473 The present study used multiomics combined with time-lapse live image to  
474 depict how astrocytes isolated from postnatal rat cortex were converted into  
475 functional neurons by ND1 and unravel the underline transcriptomic and  
476 epigenetic mechanisms. we discovered an interesting intermediate state co-  
477 expressing astrocytic and neuronal genes at the initial stage of neuronal  
478 reprogramming. The features of astrocytes were then gradually shut down while  
479 the neurogenic program continued. Importantly, the subsequent progress of  
480 neuronal conversion recapitulated the transcriptional program of cortical  
481 neurogenesis. Cell dividing is highly co-related to this indirect AtN conversion.  
482 Finally, the integrative multiomic analyses uncovered distinct epigenetic and  
483 transcriptional programs between the ND1 and ASCL1-induced neuronal  
484 reprogramming. Therefore, this work sheds light on the underline mechanisms  
485 of ND1-induced immature astrocyte to neuron conversion.

486 Previous studies have reported direct and indirect paths of neuronal  
487 reprogramming. The direct neuronal reprogramming bypasses the NSC stage,  
488 while in the indirect path, astrocytes undergo dedifferentiation into transiently  
489 amplifying cells that express ASCL1, which then further differentiate into  
490 neuroblasts (Heinrich et al., 2010; Niu et al., 2015). In our ND1-induced AtN  
491 conversion, we observed a different pattern to the previous two paths. Upon the  
492 stimulation of ND1, the astrocytes entered an intermediate state with  
493 simultaneous activation of both astrocytic and neuronal genes. The presence  
494 of such intermediate state might be partly due to the characteristics of the initial  
495 cells. The cultured astrocytes were isolated from postnatal brains. Although  
496 they have been sub-cultured for several passages, these cultured astrocytes  
497 still remained as immature astrocytes with high proliferation ability (Lattke et al.,  
498 2021). In the absence of pro-neuronal TFs, they would gradually mature under  
499 prolonged culture, as revealed by the astrocyte branch in our pseudotime

500 analysis. This default program of astrocyte maturation might not be immediately  
501 shut down by the exogenous ND1 and other downstream effectors could help  
502 to repress the astrocyte genes.

503 Multiomics analyses revealed larger number of pro-neuronal genes directly  
504 upregulated by ND1, suggesting that ND1 might predominantly play a role as  
505 activator of neurogenic program. As the pro-neuronal genes (e.g. *Hes6*)  
506 accumulated, the intermediate cells gradually shut down astrocytic genes and  
507 adopted a neurogenic program. An interesting observation is a transient  
508 activation of *Ascl1* during this stage. Activation of *Ascl1* is not involved in the  
509 development of cortical pyramidal neurons, but it has been reported transiently  
510 elevated in the indirect parenchymal AtN conversion (Magnusson et al., 2020;  
511 Zhang et al., 2022). So there might be some common regulations among the  
512 intermediate states induced by different methods. Once neurogenic program  
513 initiated, this ND1-induced AtN conversion recapitulates the transcriptional  
514 progress of cortical deeper-layer neuron genesis, passing through RGs, IPCs,  
515 and migrating neurons. Probably because of this high similarity between these  
516 two programs, ND1-converted neurons shared the characteristics of primary  
517 cortical deeper-layer neurons both in gene expression and electrophysiological  
518 features.

519 Another interesting finding in this study is that cell dividing is highly  
520 correlated to successful conversion. The time-lapse live image results show  
521 that over 99% converted neurons derived from cells underwent cell dividing,  
522 leading us to investigate whether cell dividing might have a relationship with  
523 cell conversion. Indeed, we discovered that during the conversion, cells  
524 undergoing cell dividing were more likely converted into neurons than those  
525 without cell dividing, suggesting that cell dividing might be a critical event to the  
526 complete AtN conversion in this study. This is consistent with previous studies  
527 reporting that dividing astrocytes infected by ND1 retroviruses are relatively  
528 easier converted into neurons(Guo et al., 2014) compared to postmitotic resting

529 astrocytes infected by AAV (Brulet et al., 2017). It is of great interest and  
530 scientific merit to investigate the dynamic progress and gene regulations in  
531 neuronal reprogramming of postmitotic astrocytes in the future.

532 Regarding ASCL1-induced neuronal conversion, we also found that it  
533 shared partial features with the *in vivo* neurogenic program of forebrain  
534 interneurons. But compared with ND1, the conversion induced by ASCL1 was  
535 lower and inefficient. Through comparison of the transcriptome and epigenome  
536 between the two TF infected cells, we discovered that the reported critical  
537 common neurogenic factors (*Hes6*, *Atoh8*, *Sox11*, *Neurod4*, and *Insm1*)  
538 (Masserdotti et al., 2015) were less or not elevated in ASCL1 group. In summary,  
539 our single-cell multiomic analyses discover fundamental mechanisms  
540 underlying the conversion from an astrocyte to a neuron after overexpressing  
541 a single neuronal TF, NEUROD1. The distinct transcriptomic pathways between  
542 ND1- and ASCL1-induced AtN conversion also provide a potential framework  
543 for future *in vivo* applications in neuroregeneration and neural repair.

544

## 545 **Acknowledgements**

546 We thank Prof. Minwei Min (Guangzhou National Laboratory) for the help in  
547 data collection of live cell imaging. This work is supported by grants from the  
548 National Key Research and Development Program of China (2020YFA0112201  
549 to X.F.), the Key Research and Development Program of Guangzhou  
550 (202206060002 to X.F., W.L. and G.C.), and the Guangdong Provincial Pearl  
551 River Talents Program (2021QN02Y747 to X.F.).

552

## 553 **Author Contributions**

554 X.F. , W.L. and G.C. conceived the ideas. X.F. and W.L. supervised the project.  
555 W.L., and K.L. established the *in vitro* neuronal reprogramming platform,  
556 collected the data and finished the analysis except sequencing experiments,  
557 with the assistant of D.S.. D.S. performed all the single-cell experiments and

558 X.Li. did the bioinformatics analyses. Q.P. did the RT-qPCR validation  
559 experiments. J.Z. collected the data of electrophysiology. X.Luo constructed the  
560 Retroviral vectors. X.F., W.L., D.S. wrote the manuscript, and all authors  
561 discussed the data. X.F., G.C., W.L. proofread the manuscript.

562

563 **Declaration of interests**

564 G.C. is a co-founder of NeuExcell Therapeutics Inc. All the other authors  
565 declare no competing interests.

566

567

568 **Data and code availability**

569 The raw data used in this paper have been deposited to the Genome Sequence  
570 Archive in National Genomics Data Center with the accession number  
571 PRJCA017801. No customized code is used in this study and code used  
572 throughout this study is available upon reasonable request from the authors.

573

## 574 Reference

575 Armand, E.J., Li, J., Xie, F., Luo, C., and Mukamel, E.A. (2021). Single-Cell Sequencing of Brain Cell  
576 Transcriptomes and Epigenomes. *Neuron* **109**, 11-26.

577 Bocchi, R., Masserdotti, G., and Gotz, M. (2022). Direct neuronal reprogramming: Fast forward from  
578 new concepts toward therapeutic approaches. *Neuron* **110**, 366-393.

579 Brulet, R., Matsuda, T., Zhang, L., Miranda, C., Giacca, M., Kaspar, B.K., Nakashima, K., and Hsieh, J.  
580 (2017). NEUROD1 Instructs Neuronal Conversion in Non-Reactive Astrocytes. *Stem Cell Reports* **8**, 1506-  
581 1515.

582 Burda, J.E., and Sofroniew, M.V. (2014). Reactive gliosis and the multicellular response to CNS damage  
583 and disease. *Neuron* **81**, 229-248.

584 Chen, Y.C., Ma, N.X., Pei, Z.F., Wu, Z., Do-Monte, F.H., Keefe, S., Yellin, E., Chen, M.S., Yin, J.C., Lee, G., *et*  
585 *al.* (2020). A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through  
586 In Vivo Astrocyte-to-Neuron Conversion. *Mol Ther* **28**, 217-234.

587 Gao, Z., Ure, K., Ables, J.L., Lagace, D.C., Nave, K.A., Goebels, S., Eisch, A.J., and Hsieh, J. (2009).  
588 Neurod1 is essential for the survival and maturation of adult-born neurons. *Nat Neurosci* **12**, 1090-1092.

589 Ge, L.J., Yang, F.H., Li, W., Wang, T., Lin, Y., Feng, J., Chen, N.H., Jiang, M., Wang, J.H., Hu, X.T., *et al.* (2020).  
590 In vivo Neuroregeneration to Treat Ischemic Stroke Through NeuroD1 AAV-Based Gene Therapy in Adult  
591 Non-human Primates. *Front Cell Dev Biol* **8**, 590008.

592 Giehrl-Schwab, J., Giesert, F., Rauser, B., Lao, C.L., Hembach, S., Lefort, S., Ibarra, I.L., Koupourtidou, C.,  
593 Luecken, M.D., Truong, D.J., *et al.* (2022). Parkinson's disease motor symptoms rescue by CRISPRa-  
594 reprogramming astrocytes into GABAergic neurons. *EMBO Mol Med* **14**, e14797.

595 Guo, Z., Zhang, L., Wu, Z., Chen, Y., Wang, F., and Chen, G. (2014). In vivo direct reprogramming of  
596 reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model. *Cell*  
597 *Stem Cell* **14**, 188-202.

598 Heinrich, C., Blum, R., Gascon, S., Masserdotti, G., Tripathi, P., Sanchez, R., Tiedt, S., Schroeder, T., Gotz,  
599 M., and Berninger, B. (2010). Directing astroglia from the cerebral cortex into subtype specific functional  
600 neurons. *PLoS Biol* **8**, e1000373.

601 Hevner, R.F., Hodge, R.D., Daza, R.A., and Englund, C. (2006). Transcription factors in glutamatergic  
602 neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. *Neuroscience*  
603 *research* **55**, 223-233.

604 Hsiung, C.C., Morrissey, C.S., Udagama, M., Frank, C.L., Keller, C.A., Baek, S., Giardine, B., Crawford, G.E.,  
605 Sung, M.H., Hardison, R.C., *et al.* (2015). Genome accessibility is widely preserved and locally modulated  
606 during mitosis. *Genome Res* **25**, 213-225.

607 Kempermann, G., Gage, F.H., Aigner, L., Song, H., Curtis, M.A., Thuret, S., Kuhn, H.G., Jessberger, S.,  
608 Frankland, P.W., Cameron, H.A., *et al.* (2018). Human Adult Neurogenesis: Evidence and Remaining  
609 Questions. *Cell Stem Cell*.

610 Lattke, M., Goldstone, R., Ellis, J.K., Boeing, S., Jurado-Arjona, J., Marichal, N., MacRae, J.I., Berninger,  
611 B., and Guillemot, F. (2021). Extensive transcriptional and chromatin changes underlie astrocyte  
612 maturation in vivo and in culture. *Nat Commun* **12**, 4335.

613 Lei, W., Li, W., Ge, L., and Chen, G. (2019). Non-engineered and Engineered Adult Neurogenesis in  
614 Mammalian Brains. *Front Neurosci* **13**, 131.

615 Liu, Y., Miao, Q., Yuan, J., Han, S., Zhang, P., Li, S., Rao, Z., Zhao, W., Ye, Q., Geng, J., *et al.* (2015). Ascl1  
616 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo. *J Neurosci* **35**, 9336-9355.

617 Magnusson, J.P., Goritz, C., Tatarishvili, J., Dias, D.O., Smith, E.M., Lindvall, O., Kokaia, Z., and Frisen, J.  
618 (2014). A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. *Science*  
619 *346*, 237-241.

620 Magnusson, J.P., Zamboni, M., Santopolo, G., Mold, J.E., Barrientos-Somarribas, M., Talavera-Lopez, C.,  
621 Andersson, B., and Frisen, J. (2020). Activation of a neural stem cell transcriptional program in  
622 parenchymal astrocytes. *Elife* *9*.

623 Masserdotti, G., Gillotin, S., Sutor, B., Drechsel, D., Irmler, M., Jorgensen, H.F., Sass, S., Theis, F.J., Beckers,  
624 J., Berninger, B., *et al.* (2015). Transcriptional Mechanisms of Proneural Factors and REST in Regulating  
625 Neuronal Reprogramming of Astrocytes. *Cell Stem Cell* *17*, 74-88.

626 Matsuda, T., Irie, T., Katsurabayashi, S., Hayashi, Y., Nagai, T., Hamazaki, N., Adefuin, A.M.D., Miura, F.,  
627 Ito, T., Kimura, H., *et al.* (2019). Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic  
628 Profiles to Execute Microglia-Neuron Conversion. *Neuron* *101*, 472-485 e477.

629 Niu, W., Zang, T., Smith, D.K., Vue, T.Y., Zou, Y., Bachoo, R., Johnson, J.E., and Zhang, C.L. (2015). SOX2  
630 reprograms resident astrocytes into neural progenitors in the adult brain. *Stem Cell Reports* *4*, 780-794.

631 Niu, W., Zang, T., Zou, Y., Fang, S., Smith, D.K., Bachoo, R., and Zhang, C.L. (2013). In vivo reprogramming  
632 of astrocytes to neuroblasts in the adult brain. *Nat Cell Biol* *15*, 1164-1175.

633 Pataskar, A., Jung, J., Smialowski, P., Noack, F., Calegari, F., Straub, T., and Tiwari, V.K. (2016). NeuroD1  
634 reprograms chromatin and transcription factor landscapes to induce the neuronal program. *EMBO J* *35*,  
635 24-45.

636 Rao, Z., Wang, R., Li, S., Shi, Y., Mo, L., Han, S., Yuan, J., Jing, N., and Cheng, L. (2021). Molecular  
637 Mechanisms Underlying Ascl1-Mediated Astrocyte-to-Neuron Conversion. *Stem Cell Reports* *16*, 534-  
638 547.

639 Robel, S., Berninger, B., and Gotz, M. (2011). The stem cell potential of glia: lessons from reactive gliosis.  
640 *Nat Rev Neurosci* *12*, 88-104.

641 Tai, W., Wu, W., Wang, L.L., Ni, H., Chen, C., Yang, J., Zang, T., Zou, Y., Xu, X.M., and Zhang, C.L. (2021). In  
642 vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal  
643 cord injury. *Cell stem cell* *28*, 923-937 e924.

644 Tang, Y., Wu, Q., Gao, M., Ryu, E., Pei, Z., Kissinger, S.T., Chen, Y., Rao, A.K., Xiang, Z., Wang, T., *et al.*  
645 (2021). Restoration of Visual Function and Cortical Connectivity After Ischemic Injury Through NeuroD1-  
646 Mediated Gene Therapy. *Front Cell Dev Biol* *9*, 720078.

647 Vasan, L., Park, E., David, L.A., Fleming, T., and Schuurmans, C. (2021). Direct Neuronal Reprogramming:  
648 Bridging the Gap Between Basic Science and Clinical Application. *Front Cell Dev Biol* *9*, 681087.

649 Wang, L.L., Serrano, C., Zhong, X., Ma, S., Zou, Y., and Zhang, C.L. (2021). Revisiting astrocyte to neuron  
650 conversion with lineage tracing *in vivo*. *Cell*.

651 Wu, Z., Parry, M., Hou, X.Y., Liu, M.H., Wang, H., Cain, R., Pei, Z.F., Chen, Y.C., Guo, Z.Y., Abhijeet, S., *et al.*  
652 (2020). Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of  
653 Huntington's disease. *Nat Commun* *11*, 1105.

654 Zamboni, M., Llorens-Bobadilla, E., Magnusson, J.P., and Frisen, J. (2020). A Widespread Neurogenic  
655 Potential of Neocortical Astrocytes Is Induced by Injury. *Cell Stem Cell*.

656 Zhang, Y., Li, B., Cananzi, S., Han, C., Wang, L.L., Zou, Y., Fu, Y.X., Hon, G.C., and Zhang, C.L. (2022). A  
657 single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. *Proc Natl  
658 Acad Sci U S A* *119*, e2107339119.

659 Zheng, J., Li, T., Qi, S., Qin, B., Yu, J., and Chen, G. (2022). Neuroregenerative gene therapy to treat  
660 temporal lobe epilepsy in a rat model. *Prog Neurobiol* *208*, 102198.

661

662

663 **Figure legends**

664 **Figure 1. Cell type diversity in ND1-induced astrocytes to neuron  
665 conversion**

666 (A) Schematic of setting up the *in vitro* AtN conversion system and sequencing  
667 strategies.

668 (B) Quantitation revealing the increase in the ratio of converted neurons in ND1  
669 group along time.

670 (C) Representative imaging showing TUJ1<sup>+</sup> (red) neurons at 5 DPI. Scale bar  
671 = 50  $\mu$ m.

672 (D) UMAP showing the cell types identified using scRNA-seq.

673 (E) The group information of each cell. The *Egfp*<sup>+</sup> cells in each group are shown  
674 on the right.

675 (F) The expression levels of classical markers in each cell type.

676 (G) Representative GO terms of cell type DEGs.

677 (H) The ratios of cell types in samples collected at indicated time points.

678 (I) The ratios of cell types within the *Egfp*<sup>+</sup> cells in ND1 and GFP group.

679

680 **Figure 2. The trajectories of ImA to neuron reprogramming and to  
681 astrocyte development**

682 (A) Pseudotime score of the cells on UMAP. Two branches are figured out. The  
683 real sampling time for the cells are shown in the right rectangle.

684 (B) The expression of *Aqp4* and *Tubb3* are plotted to confirm the branches.

685 (C) The density distribution of each cell type along the pseudotime.

686 (D) Heatmap showing the expression patterns of the pseudotime genes along  
687 the two branches. Genes are clustered into four groups with different colors on  
688 the dendrogram. Representative genes in each group are also shown.

689 (E) GO terms of genes corresponding to the groups in D.

690 (F) Relative expression of representative genes corresponding to the four  
691 groups in D.

692 (G-H) Representative images show the intermediate cells in the early stage of  
693 neuronal reprogramming (3 DPI), which co-express PAX6 (red) and GFAP  
694 (turquoise) (white arrows, G) or EOMES (red) and GFAP (turquoise) (white  
695 arrows, H). Scale bars = 50  $\mu$ m.

696

697 **Figure 3. Important ND1 target TFs in neural reprogramming**

698 (A) The top target genes of ND1 according to ChIP-seq results. The yellow line  
699 indicates ND1 positively regulated targets and the green line indicates ND1  
700 negatively regulated targets.

701 (B) UMAP showing the cell types identified using scATAC-seq.

702 (C) Gene score of the classical markers in each cell type.

703 (D) The genome browser view showing the NEUROD1 ChIP signal and  
704 chromatin accessibility signal.

705 (E) Top 10 transcription factors regulating the reprogramming from ImA to  
706 neuron. The blue sticks represent repressed targets while the red sticks  
707 represent the activated targets.

708 (F) The expression of the TFs indicated in E.

709 (G) Gene score and TF activity predicted using scATAC-seq data.

710

711 **Figure 4. Comparison of ND1-induced neuronal reprogramming to the in**  
712 **vivo neurogenesis**

713 (A) Expression levels of the markers in each cell type identified in the *in vivo*  
714 cortices by scRNA-seq

715 (B) The congruent relationship of *in vitro* and *in vivo* cell types. The unmatched  
716 *in vivo* cell types are not shown.

717 (C) Representative images showing the appearance of the deeper-layer marker  
718 CTIP2 (red) in converted neurons (GFP<sup>+</sup>DCX<sup>+</sup>) at 5 DPI in ND1 group. Scale  
719 bar = 50  $\mu$ m.

720 (D) The neuronal trajectories captured *in vitro* and *in vivo*. Relevant cell types  
721 are shown.

722 (E) Comparison of the two trajectories' genes. GO terms of the three group of  
723 genes are shown on the right.

724 (F) Consistency of expression patterns of the 358 genes between *in vivo* and  
725 *in vitro* trajectories.

726 (G) The expression level of endogenous *Ascl1* in *in vivo* and *in vitro* cells.

727

728 **Figure 5. Cell dividing is necessary for successful conversion from ImA**  
729 **to neuron**

730 (A) Ratios of cell cycling states in each cell type. *Ast\_1* and *Neu\_1* indicate the  
731 two initial differentiation states from ImA. The red dotted boxes indicate more  
732 cycling cells in *Neu\_1* than in *Ast\_1*.

733 (B) Captured pictures of live cell imaging tracing the cell diving during neuronal  
734 reprogramming. The arrows indicate the traced cells.

735 (C) Ratios of dividing cells for all the cells we traced in each group.

736 (D) The conversion rates of cell with and without dividing in ND1 group.

737 (E) Number of cells with different final fate for those went through dividing and  
738 non-dividing in each group. Two cells without dividing died after conversion  
739 were defined as "died" fate.

740 (F) The dividing rate (number of dividing events within the indicated time  
741 window/the total number of dividing events) of each group at different time  
742 windows after virus infection.

743 (G) Schematic of inhibiting cell cycle experiment.

744 (H-J) Representative images (H) and quantitation show that Aphidicolin  
745 abolished neuronal conversion (J) and induced cell death (I) when added at  
746 early stage of the reprogramming. Scale bar = 50  $\mu$ m. One-way ANOVA with  
747 Tukey's multiple comparison test.

748

749 **Figure 6. Ascl1-induced *in vitro* neuronal reprogramming**

750 (A) Representative images revealing the gradual morphology change and  
751 expression of neuronal marker TUJ1(red) in the *Ascl1* group. Scale bar = 50

752  $\mu$ m.

753 (B) Conversion rates of cells transfected with ND1 and ASCL1 along time. Two-  
754 way ANOVA with Sidak's multiple comparisons test.

755 (C) UMAP showing the cell types identified using scRNA-seq.

756 (D) The group information of the cells.

757 (E) Representative GO terms of cell type DEGs.

758 (F) The congruent relationship of ASCL1-induced cell types and *in vivo* cell  
759 types. The unmatched *in vivo* cell types are not shown.

760 (G) UMAP showing the cell types identified using scATAC-seq.

761 (H) Gene scores of cell type markers.

762

763 **Figure 7. Differences between ND1 and ASCL1-induced astrocyte to**  
764 **neuron reprogramming**

765 (A) UMAP of scRNA-seq data from both ND1 and ASCL1 reprogrammed cells  
766 (left). Pseudotime of the cells reveals two independent trajectories (right).

767 (B) Violin plot showing the expression levels of important genes in ND1 and  
768 ASCL1 relevant cell types.

769 (C) UMAP of scATAC-seq data including cells from both ND1 and ASCL1  
770 groups.

771 (D) Group information of the cells.

772 (E) Comparison of DARs between ND1-Neu\_1 and ImA with those between  
773 ASCL1-Neu\_pre and ImA.

774 (F) The genome browser view showing the chromatin accessibility signal in  
775 each cell type.

776

777 **EXPERIMENTAL PROCEDURES**

778 **Primary cell culture**

779 Astrocytes were cultured as previously described with several modifications [1]. Briefly, the  
780 cortices from postnatal day 2-3 Sprague Dawley rat were dissected and dissociated with  
781 0.15% trypsin-EDTA (a mixture of 0.05% Trypsin-EDTA:0.25% Trypsin-EDTA at 1:1 volume  
782 ratio) for 15 min. The cell suspension was then seeded in non-coated flasks for expansion  
783 with the medium containing DMEM/F12 (supplemented with 4.5 g/L glucose, 2 mM L-  
784 glutamine), 10% fetal bovine serum (FBS, Australia origin) and 1% penicillin/streptomycin  
785 in a 5% CO<sub>2</sub> and 37°C incubator (All reagents provided by Thermo Fisher scientific, Grand  
786 Islands, NY). After 7-9 days, cell confluence reached ~90%. Non-astrocytic cells, including  
787 microglia, neurons, oligodendrocytes and their progenitors, were vigorously shaken off and  
788 the attached cells were reseeded in astrocyte maintenance medium containing DMEM/F12  
789 (supplemented with 3.5 mM glucose, 2 mM L-glutamine), 2% B27, 10% FBS and 1%  
790 penicillin/streptomycin. The astrocyte culture was passaged 4 times to eliminate the neural  
791 stem cells before subsequent experiments.

792 Primary neurons were isolated from cortices of Sprague Dawley rat E16.5 pups as  
793 described previously [2]. Briefly, the cortices were dissected in ice cold artificial CSF (pre-  
794 bubbled with 95%O<sub>2</sub>::5%CO<sub>2</sub>), cut into fine pieces and incubated with 7.5 units/ml papain  
795 solution containing L-cysteine (1 mM), EDTA (0.5 mM) and DNase I (150 units/ml),  
796 dissolved in EBSS (equilibrated with 95%O<sub>2</sub>::5%CO<sub>2</sub>) at 34 °C for 30 min. Then, the tissue  
797 was triturated with 200 µL pipet tips and filtered through a 70 µm cell strainer (BD, Franklin  
798 Lakes, NJ). Cell pellet was collected by centrifuged at 300 g for 5 min and then  
799 resuspended in 3 mL Ovomucoid protease inhibitor with FBS (Inhibitor-BSA Vial  
800 [LK003182], Worthington, Lakewood, NJ). To remove the debris, the cell suspension was  
801 further centrifuged at 70 x g, 6min. The cell pellets were resuspended in the medium  
802 containing DMEM/F12 (supplemented with 3.5mM glucose, 2 mM L-glutamine), 2% B27,  
803 1% FBS and 1% penicillin/streptomycin and seeded at the density of 15,000-20,000  
804 cells/12mm poly-D-Lysine coated coverslip. 5 days later, when the neurites appeared, 200  
805 µg/mL L-ascorbic acid (Merck/Sigma-Aldrich), 1 µM cyclicadenosine monophosphate

806 (Merck/Sigma-Aldrich), 1  $\mu$ g/mL laminin (Merck/Sigma-Aldrich), 20 ng/mL brain-derived  
807 neurotrophic factor (Peprotech, Rocky Hill, NJ, USA), 10 ng/mL neurotrophin-3 (Peprotech),  
808 and 10 ng/mL insulin-like growth factor (Peprotech) were added and the medium was  
809 changed every 2-3 days.

810 All animal procedures have been approved by Jinan University Institutional Animal Care  
811 and Use Committee (Approval No. IACUC-20180330-06).

### 812 **Retrovirus production**

813 Retroviral vectors, CAG::GFP (GFP retrovirus), and CAG::NeuroD1-IRES-GFP  
814 (NEUROD1-GFP retrovirus) were obtained from the previous study [3]. Retroviral vector  
815 CAG::Ascl1-IRES-GFP (ASCL1-GFP retrovirus) was constructed by replacing NeuroD1  
816 with the open reading frame of mouse Ascl1. All viruses were packaged and concentrated  
817 as previously described[3] . The titer of viral particles was about  $1 \times 10^8$  transfer units/mL,  
818 which was determined after transduction of HEK293T cells.

### 819 ***In vitro* AtN conversion**

820 Primary astrocytes at passage 5 were seeded at the density of 10,000–12,000 cells on  
821 poly-D-lysine (Merk/Sigma-Aldrich)-coated glass coverslips (12 mm in diameter,  
822 Glaswarenfabrik Karl Hecht GmbH &Co., Sondheim, Germany) in astrocyte maintenance  
823 medium. After culturing for 24 hours, when the cell confluence reached 70-80%, the  
824 retrovirus was added at 5-10 MOI. Next day, the medium was switched to conversion  
825 medium containing DMEM/F12 supplemented with 3.5 mM glucose, 2 mM L-glutamine, 2%  
826 B27, 1% FBS, and 1% penicillin/streptomycin. Five days post-infection when neurite-like  
827 processes appeared, 200  $\mu$ g/mL L-ascorbic acid (Merck/Sigma-Aldrich), 1  $\mu$ M  
828 cyclicadenosine monophosphate (Merck/Sigma-Aldrich), 1  $\mu$ g/mL laminin (Merck/Sigma-  
829 Aldrich), 20 ng/mL brain-derived neurotrophic factor (Peprotech, Rocky Hill, NJ, USA), 10  
830 ng/mL neurotrophin-3 (Peprotech), and 10 ng/mL insulin-like growth factor (Peprotech)  
831 were added. During the conversion, half the medium was changed every other day.  
832 To inhibit the cell proliferation, Aphidicolin (5  $\mu$ M, Abcam) was added into the conversion  
833 medium at indicated time points.  
834 To investigate the mode of the cell death during AtN transdifferentitaion, Z-VAD-FMK (20

835  $\mu$ M, Selleckchem), Liproxstatin-1 (200 nM, Selleckchem), or Necrostatin-2 (10  $\mu$ M,  
836 Selleckchem) was added to the conversion medium from 2 DPI to 5 DPI.

837 **Reverse-transcription and real-time quantitative PCR**

838 Cells were harvested to extract RNA using ReliaPrep<sup>TM</sup> RNA Cell Miniprep System  
839 (Promega). CDNA was reverse-transcribed using PrimeScript<sup>TM</sup> RT reagent Kit (Takara).  
840 Real-time quantitative PCR was performed using QuantiNova<sup>®</sup> SYBR<sup>®</sup> Green RT-PCR  
841 Kit (Qiagen) according to the manuals on CFX Real-Time qPCR system (BioRad).

842 **Immunofluorescence**

843 Cells were fixed with 4% paraformaldehyde for 15 minutes and then incubated in 0.01%  
844 Triton X-100 in PBS for 10 minutes at room temperature. After three washes with PBS, 3%  
845 bovine serum albumin (BSA, Merck/Sigma-Aldrich) in PBS was added as blocking buffer  
846 and incubated for 1 hour. Then cells were incubated with the indicated primary antibodies  
847 diluted in 1% BSA at 4°C overnight. 0.2% PBST (Tween-20 in PBS) was used to wash  
848 away the unbound antibodies. Next, 1:1000 diluted secondary antibodies were added and  
849 incubated for 1 hour at room temperature. Finally, after washed by 0.2% PBST three times,  
850 0.5  $\mu$ g/mL DAPI (4,6 -diamidino-2-phenylindole, F. Hoffmann-La Roche, Natley, NJ, USA)  
851 was added to counterstain the nuclei. The coverslips were mounted on glass slides using  
852 anti-fading mounting medium (DAKO, Carpinteria, CA, USA).

853 Brains were collected and fixed with 4% paraformaldehyde at 4°C for 2-6 hour. After fixation,  
854 the tissues were washed in cold PBS three times and transferred to 30% sucrose at 4°C  
855 until sank. The tissues were then embedded with O.C.T. (Tissue-Tek<sup>®</sup>, Torrance, CA) and  
856 cryosection at 15  $\mu$ m thickness. The sections were washed 3 times with PBS before  
857 subjected to antigen retraval (in 95°C citrate buffer for 10 min). Sections were incubated in  
858 blocking buffer (5% normal donkey serum, 3% BSA, and 0.2% PBST) at room temperature  
859 for 1 hour and then incubated with primary antibodies for 24-48 hours at 4°C. Thereafter,  
860 brain sections were rinsed with 0.2% PBST and incubated with corresponding secondary  
861 antibodies and DAPI for 2 h at room temperature, followed by an extensive wash with 0.2%  
862 PBST. Finally, the immunofluorescence stained brain sections were mounted with  
863 mounting medium (VECTASHIELD<sup>®</sup>, VECTOR Laboratories, Burlingame, CA, USA) and

864 sealed with nail polish.

865 Images were collected with a fluorescence microscope (Axio Imager Z2, Zeiss) for  
866 quantification and with a confocal microscope (LSM880, Zeiss) for representative image  
867 display.

### 868 **Electrophysiological recording**

869 Whole-cell recordings were performed on transdifferentiated neurons at 30 DPI or primary  
870 neurons at 30 DIV (days *in vitro*) using Multiclamp 700A patch-clamp amplifier (Molecular  
871 Devices, Palo Alto, CA) as described before[4], and the chamber was constantly perfused  
872 with a bath solution consisting of 126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH<sub>2</sub>PO<sub>4</sub>, 26 mM  
873 NaHCO<sub>3</sub>, 2 mM MgCl<sub>2</sub>, 2 mM CaCl<sub>2</sub> and 10 mM glucose. The pH of bath solution was  
874 adjusted to 7.3 with NaOH, and osmolarity was at 310–320 mOsm/L (all reagents provided  
875 by Merck/Sigma-Aldrich). Patch pipettes were pulled from borosilicate glass (3–10 M<sub>w</sub>) and  
876 filled with a pipette solution consisting of 126 mM K-Gluconate, 4 mM KCl, 10 mM HEPES,  
877 4 mM Mg<sub>2</sub>ATP, 0.3 mM Na<sub>2</sub>GTP, 10 mM PO<sub>4</sub> Creatinine (pH 7.3 adjusted with KOH, 290  
878 mOsm/L). For voltage-clamp experiments, the membrane potential was typically held at -  
879 70 or -80 mV. Data was acquired using pClamp 10 software (Molecular Devices, Palo Alto,  
880 CA), sampled at 20 kHz, and filtered at 3 kHz. Na<sup>+</sup> and K<sup>+</sup> currents and action potentials  
881 were analyzed using pClamp 10 Clampfit software. Spontaneous synaptic events were  
882 analyzed using MiniAnalysis software (Synaptosoft, Decatur, GA). All experiments were  
883 conducted at room temperature.

### 884 **Time-lapse live cell image**

885 Time-lapse live cell image of AtN transdifferentiation was performed with Nikon Ti2E  
886 Inverted Microscope. Fluorescence images were acquired every 30 min from 1 DPI to 5  
887 DPI using a 20 x phase contrast objective. Videos were assembled using Image J 1.52p  
888 (National Institute of Health, USA) software and were played at speed of 6 frames per  
889 second.

### 890 **Single cell suspension acquisition**

891 For culture cells, the attached cells at the indicated time points were dissociated using 0.05%  
892 Trypsin-EDTA to get single cell suspension. The procedure for preparing the single cell

893 suspension from the cortices was similar to that for preparing primary neuron culture. The  
894 cell pellets were resuspended in sterile-filtered washing buffer (Dulbecco's PBS containing  
895 sodium pyruvate, streptomycin sulfate, kanamycin monosulfate, glucose and calcium  
896 chloride; Sigma-Aldrich, D4031) containing 0.5% BSA.

897 **NEUROD1 ChIP-seq**

898 GFP<sup>+</sup> cells were sorted with fluorescence-activated cell sorting (FACS) using BD FACSaria  
899 III cell sorter at 2 DPI. 10<sup>6</sup> cells per test were cross-linked 15min at room temperature by  
900 1% Formaldehyde. Cell pellets were sonicated for 10 min using a Covaris S220 instrument  
901 (duty factor 2%; Peak incident power:105w; cycles per burst:200). Chromatin was  
902 immunoprecipitated with 2ug of NEUROD1 antibody (Cell Signaling mAb #4373). After  
903 DNA purification, ChIP-seq libraries were constructed by KAPA HyperPrep Kit (KK8504).

904 **ScRNA-seq and scATAC-seq library preparation and sequencing**

905 For scRNA-seq, cells were barcoded through the Singleron Matrix instrument using the  
906 GEXSCOPE Single Cell RNA Library Kit contain GEXSCOPE microchip, barcoding beads,  
907 and reagents for transcriptome amplification and library construction (Singleron  
908 Biotechnologies, 4180012). The sequencing libraries were prepared according to the  
909 manufacturer's instructions and sequenced on Nova6000 of Illumina with PE150 reads.

910 For scATAC-seq, nuclei were isolated according to 10x genomics protocol CG000169  
911 (Demonstrated Protocol Nuclei Isolation ATAC Sequencing Rev E). ScATAC - seq libraries  
912 were generated using the Chromium Single Cell ATAC V1 Library & Gel Bead Kit. All  
913 libraries were sequenced using MGI2000 with PE100 reads.

914 **ScRNA-seq data analysis**

915 Raw reads were processed to generate gene expression profiles using CeleScope v1.6.0  
916 pipeline (<https://github.com/singleron-RD/CeleScope>) with default parameters. Briefly,  
917 Barcodes and UMIs were extracted from R1 reads and corrected. Adapter sequences and  
918 poly A tails were trimmed from R2 reads. The clean R2 reads were then aligned to the  
919 Rattus norvegicus genome (mRatBN7.2) using STAR (v2.6.1b) [5]. Uniquely mapped  
920 reads were assigned to exons with FeatureCounts (v2.0.1) [6]. Successfully assigned  
921 reads with the same cell barcode, UMI and gene were grouped together to generate the

922 gene expression matrix for further analysis.

923 Genes detected in less than 10 cells were removed. DoubletFinder (v2.0.3) [7] was used

924 to filter potential doublets for each sample. Cells were discarded if they met any of the

925 following conditions: 1) expressed less than 1000 genes; 2) detected with more than 10%

926 of mitochondrial genes; 3) contained reads number outside the range of

927  $10^{(\text{mean}(\log_{10}(\text{reads number})) \pm 2 * \text{sd}(\log_{10}(\text{reads number})))}$ .

928 After stringent quality control, remained cells were analyzed using Seurat package (v4.0.3)

929 [8]. The filtered count matrix was firstly log normalized using NormalizeData() function.

930 Next, top 2000 highly variable genes were extracted by FindVariableFeatures() function,

931 and scaled to compute principal components through ScaleData() and RunPCA(),

932 respectively. The mutual nearest neighbors (MNN) method was used to alleviate the batch

933 effect. Unsupervised clustering was performed on the scaled and batch corrected data by

934 FindNeighbour() and FindCluster() function using the top 20 PCs. Uniform Manifold

935 Approximation and Projection (UMAP) was employed to visualize the result of clustering.

936 Cellular state labels were assigned to each cluster based on marker genes reported by

937 FindAllMarkers() function, and we manually validated these cell state labels according to

938 previously reported marker genes, such as *Gfap* for astrocytes and *Dcx* for newborn

939 neuron. ClusterProfiler (v3.4.0) [9] was used to characterize each cellular states by Gene

940 Ontology (GO) terms.

#### 941 **Trajectory analysis**

942 A trajectory graph was constructed using Monocle3 (v3.0) [10] on UMAP coordinates from

943 Seurat. Cells from D0 were selected as root cells. Pseudotime inference was performed

944 using order\_cells() function. We also took advantages of Monocle2 [11] to describe the

945 cellular state divergences. To compare the gene expression between two paths, we used

946 branched expression analysis modeling (BEAM) [12] and visualized the results using the

947 plot\_genes\_branched\_heatmap() and plot\_genes\_branched\_pseudotime() function.

#### 948 **Key transcription factor analysis**

949 To identify the key regulators that drive the differentiation process, we first used ARACNe-

950 AP [13] (v1.0.0) to build transcriptional regulatory networks. In brief, *Rattus Norvegicus*

951 transcription factors in AnimalTFDB and gene expression matrix from Ast and Neu states,  
952 which were described by monocle2, were taken as input to the ARACNe-AP. Then,  
953 MARiNa algorithms, implemented by R package ssmarina (v1.01) was used to analyze the  
954 master regulatory for each differentiation route.

### 955 **WGCNA analysis**

956 HdWGCNA (v0.2.17) [14] was used to construct co-expression networks across different  
957 cellular states. Briefly, we aggregated similar cells into several small groups by running  
958 MetacellsByGroups() function on Seurat object. Soft power threshold was inferred using  
959 TestSoftPowers() function. The co-expression network was finally constructed by running  
960 ConstrucNetwork() function. The module eigengenes (MEs) were calculated with  
961 ModuleEigengenes() function. The hub genes for each module were identified using  
962 ModuleConnectivity() and ModuleExprScore() function.

### 963 **Mapping *in vitro* cells to *in vivo* references**

964 To annotate *in vitro* query datasets based on the *in vivo* cortical reference data, we first  
965 projected the PCA structures of a reference onto the query by running  
966 FindTransferAnchors() function. Then, *in vitro* cells were classified based on *in vivo* cell  
967 type labels using TransferData() function. To guarantee an accurate annotation, we  
968 removed predicted reference cell types in which less than 50 cells in a cell cluster were  
969 assigned to. Ggalluvial [15] was used to visualize the prediction results.

### 970 **ScATAC-seq data analysis**

971 **scATAC-seq data processing.** Raw sequencing data were converted to fastq format  
972 using 'cellranger-atac mkfastq' (10x Genomics, v.2.0.0). scATAC-seq reads were aligned  
973 to the *Rattus norvegicus* genome (mRatBN7.2) and quantified using 'cellranger-atac count'  
974 (10x Genomics, v.2.0.0). Fragment data was loaded into ArchR (v1.0.1) [16] for quality  
975 control and downstream analysis. In brief, fragments on Y chromosome and mitochondrial  
976 DNA were removed. Cells with less than 1,000 or more than 100,000 fragments were  
977 filtered. We additionally identified and discarded potential doublets by using add Doublet  
978 Scores () function. To guarantee a high signal-to-noise ratio, cells with a TSS enrichment  
979 score less than 4 were also excluded in subsequent analyses.

980 **scATAC-seq clustering and dimensionality reduction.** To cluster scATAC-seq data and  
981 visualize cell embedding in a reduced dimension space, such as UMAP, we first applied  
982 iterative latent semantic indexing (LSI) on the top 25,000 accessible 500-bp tiles by running  
983 addIterativeLSI() function. Clustering was performed using addClusters() function with  
984 'resolution' set as 0.8. An UMAP representation was obtained by running addUMAP()  
985 function with 'minDist' parameter set to 0.6.

986 **Label transfer.** To annotate scATAC-seq clusters, we first calculated gene score by  
987 running addGeneScoreMatrix() function to estimate gene expression level based on  
988 chromatin accessibility data. Then, we implemented canonical correlation analysis (CCA)  
989 by performing addGeneIntegrationMatrix() function for a preliminary unconstrained  
990 integration of scRNA-seq and scATAC-seq datasets. To further refine the integration results,  
991 we determined the most enriched scRNA-seq based cell labels in each of the scATAC-seq  
992 clusters, and then performed a second round integration by constraining the scATAC-seq  
993 clusters to the most corresponding scRNA-seq based cell types. We validated the label  
994 transferred results by known cell type marker genes.

995 **scATAC-seq peak identification.** Since the extreme sparsity in scATAC-seq dataset,  
996 which may hinder the peak identification, we created pseudo-bulk replicates by grouping  
997 cells from the same clusters using addGroupCovariates() function. Cluster specific peaks  
998 were called using those pseudo-bulk replicates with MACS2 (v2.2.7) [17] with '-g' parameter  
999 set to  $2.6+10e9$ . The peaks were visualized using plotBrowserTrack() function.

1000 **scATAC-seq motif accessibility deviations.** We used chromVAR [18] to predict the  
1001 enrichment of TFs for each cell type. The chromVAR deviation scores were calculated by  
1002 running addDeviationsMatrix() function. The position weight matrices (PWM) used in the  
1003 function were obtained from the JASPAR 2018 [19] and JASPAR 2020 database [20].

1004 **Identification of peak-to-gene links.** Peaks were linked to gene based on a correlation  
1005 approach, which was implemented in ArchR by running addPeak2GeneLinks() function.  
1006 Briefly, peaks were associated to the TSS of genes within a 250kb genomic distance, and  
1007 the Pearson correlation was calculated between scATAC-seq and scRNA-seq values. Only  
1008 peak-to-gene pairs with  $r > 0.35$  were retained.

1009 **ChIP-seq data processing**

1010 ChIP-seq reads were firstly quality controlled using Fastp (v0.21) [21]. Then, Bowtie2 (v  
1011 2.4.1) [22] was used to align the clean reads to *Rattus norvegicus* genome with default  
1012 parameter. Samtools (v1.15.1) [23] was used to convert SAM file into BAM format. BAM  
1013 file was then sorted and indexed. Duplicate reads in the bam file were identified and  
1014 removed by Picard (v3.0.0) [24] using MarkDuplicates function. The peaks were called  
1015 using MACS2 (v2.2.7) with the '-g' parameter set to 2.6e9. BedGraphToBigWig (v2.8) was  
1016 used to convert Bedgraph (bdg) file into bigwig format, which was then visualized using  
1017 Integrative Genomics Viewer (IGV v2.9.4). Homer (v4.11.1) was used for peak annotation.

1018 **Inferring ND1 target genes using ChIP-seq and scRNA-seq data**

1019 To obtain confident ND1 target genes, we first selected genes which were bound by  
1020 NEUROD1 in promoter or distal regions from ChIP-seq dataset. Then, we tested whether  
1021 the corresponded genes were differentially expressed in neuronal cells defined in scRNA-  
1022 seq data. Genes with adjusted p-values < 0.05 and |avg\_logFC| > 0.5 were considered as  
1023 potential ND1 targets.

1024 **Integration ND1 and ASCL1 datasets**

1025 To integrate scRNA-seq datasets, we first merge the raw gene expression matrices. Then,  
1026 we used Seurat (v4.0.3) package to normalize and centralize data on this merged dataset.  
1027 PCA was performed to reduce the dimensionality. Next, MNN was implemented to correct  
1028 the batch effect on the top PCs by the monocle3 package. UMAP was employed to  
1029 visualize the merged results.

1030 For the integration of scATAC-seq datasets, fragment data from ND1 and ASCL1 were  
1031 merged. Then, we took advantage of harmony, which was accomplished by ArchR, to  
1032 integrate two datasets.

1033 **Quantification and statistical analysis**

1034 **Cell number analysis.** For the analysis of cell number changes during AtN  
1035 transdifferentiation, fluorescent images of live cells were captured by an inverted  
1036 fluorescence microscope (Zeiss Axio Observer A1) at 100 $\times$  magnification (929.79  $\mu$ m  $\times$   
1037 929.79  $\mu$ m) at indicated time points. Five randomly chosen fields were calculated and three  
1038 cell batches were obtained.

1039 **Immunofluorescence analysis.** Quantification of immunostaining was performed by  
1040 Zeiss ZEN 2.3 software (blue edition, Göttingen, Germany) using images captured at 200×  
1041 magnification (464.9  $\mu\text{m}$  × 464.9  $\mu\text{m}$ ) by a fluorescence microscope (Axio Imager Z2,  
1042 Zeiss). Parameters for image capturing and post-analysis were adjusted to the same  
1043 values for each antigen tested. 15–20 random fields per coverslip were chosen and 3–4  
1044 coverslips were used per cell batch. Three cell batches isolated in three independent  
1045 experiments were used.

1046 **Time-lapse live imaging analysis.** Cells were tracked in every frame and proliferation,  
1047 neuronal conversion or cell death was analyzed for every single cell in each series of  
1048 images. To quantify the proportion of dead neurons or astrocytes, we counted cells dying  
1049 as positive events and classified them as neurons or astrocytes according to their  
1050 morphology described as [23].

1051 **Real-time qPCR analysis.** The data were plotted as means of 3 independent experiment  
1052 (using 3 batches of cells).

1053 All values were given as mean  $\pm$  SEM. The data were tested for significance using two-  
1054 tailed t-test and one, or two-way ANOVA with Tukey's or Sidak correction for multiple  
1055 comparisons (Prism 8, GraphPad).  $P < 0.05$  was considered statistically significant.

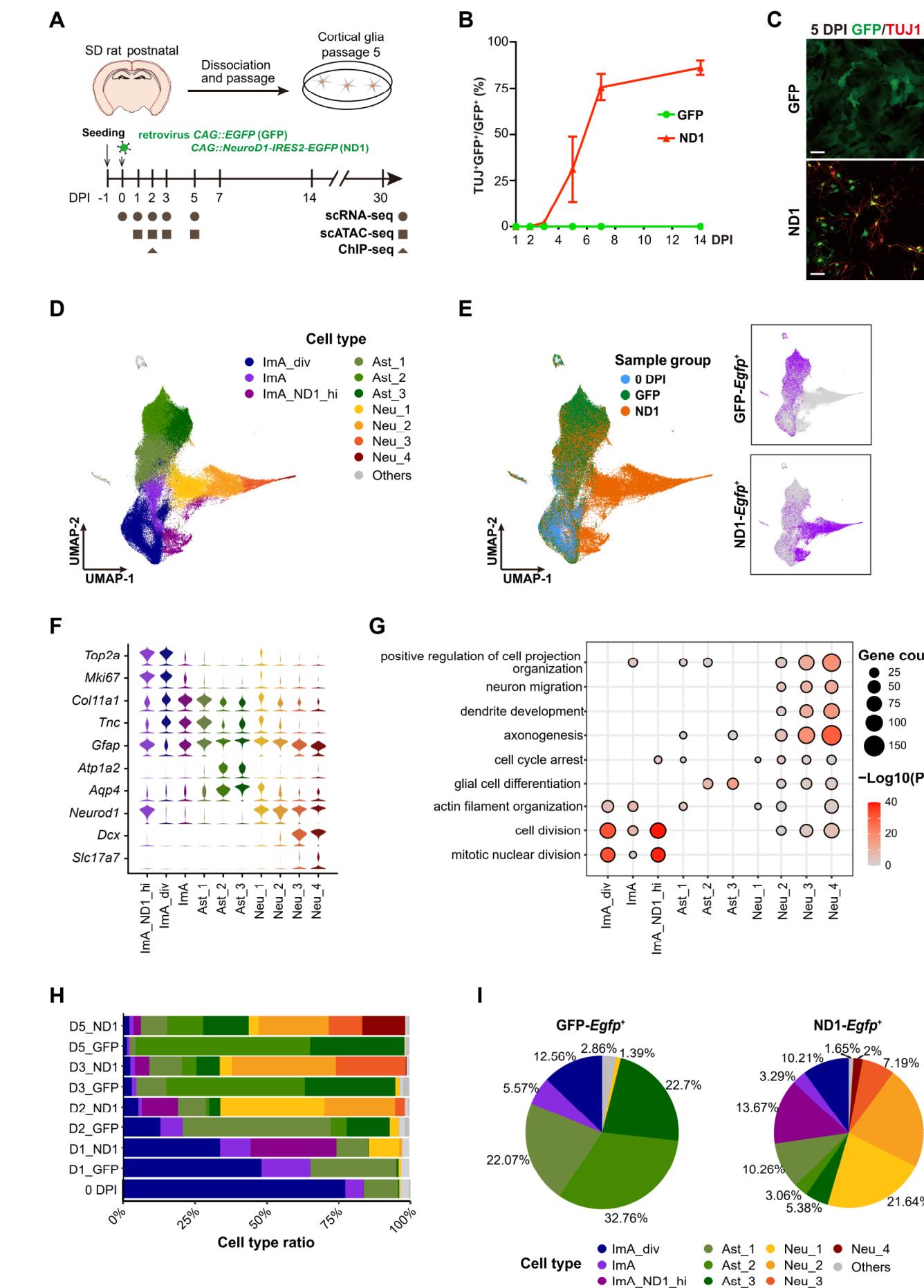
1056 **Reference**

- 1057 1. McCarthy, K.D. and J. de Vellis, *Preparation of separate astroglial and oligodendroglial cell*  
1058 *cultures from rat cerebral tissue*. *J Cell Biol*, 1980. **85**(3): p. 890-902.
- 1059 2. Zhang, Y., et al., *Purification and Characterization of Progenitor and Mature Human Astrocytes*  
1060 *Reveals Transcriptional and Functional Differences with Mouse*. *Neuron*, 2016. **89**(1): p. 37-53.
- 1061 3. Guo, Z., et al., *In vivo direct reprogramming of reactive glial cells into functional neurons after*  
1062 *brain injury and in an Alzheimer's disease model*. *Cell Stem Cell*, 2014. **14**(2): p. 188-202.
- 1063 4. Deng, L., et al., *Sequential postsynaptic maturation governs the temporal order of GABAergic*  
1064 *and glutamatergic synaptogenesis in rat embryonic cultures*. *J Neurosci*, 2007. **27**(40): p.  
1065 10860-9.
- 1066 5. Dobin, A., et al., *STAR: ultrafast universal RNA-seq aligner*. *Bioinformatics*, 2013. **29**(1): p. 15-  
1067 21.
- 1068 6. Liao, Y., G.K. Smyth, and W. Shi, *featureCounts: an efficient general purpose program for*  
1069 *assigning sequence reads to genomic features*. *Bioinformatics*, 2014. **30**(7): p. 923-30.
- 1070 7. McGinnis, C.S., L.M. Murrow, and Z.J. Gartner, *DoubletFinder: Doublet Detection in Single-Cell*  
1071 *RNA Sequencing Data Using Artificial Nearest Neighbors*. *Cell Syst*, 2019. **8**(4): p. 329-337 e4.
- 1072 8. Hao, Y., et al., *Integrated analysis of multimodal single-cell data*. *Cell*, 2021. **184**(13): p. 3573-  
1073 3587 e29.
- 1074 9. Yu, G., et al., *clusterProfiler: an R package for comparing biological themes among gene clusters*.  
1075 *OMICS*, 2012. **16**(5): p. 284-7.
- 1076 10. Cao, J., et al., *The single-cell transcriptional landscape of mammalian organogenesis*. *Nature*,  
1077 2019. **566**(7745): p. 496-502.
- 1078 11. Qiu, X., et al., *Reversed graph embedding resolves complex single-cell trajectories*. *Nat*  
1079 *Methods*, 2017. **14**(10): p. 979-982.
- 1080 12. Qiu, X., et al., *Single-cell mRNA quantification and differential analysis with Census*. *Nat*  
1081 *Methods*, 2017. **14**(3): p. 309-315.
- 1082 13. Lachmann, A., et al., *ARACNe-AP: gene network reverse engineering through adaptive*  
1083 *partitioning inference of mutual information*. *Bioinformatics*, 2016. **32**(14): p. 2233-5.
- 1084 14. Samuel Morabito, F.R., Negin Rahimzadeh, Emily Miyoshi, View ORCID ProfileVivek Swarup,  
1085 *High dimensional co-expression networks enable discovery of transcriptomic drivers in complex*  
1086 *biological systems*. *bioRxiv*, 2022.
- 1087 15. Brunson, J.C., *ggalluvial: Layered Grammar for Alluvial Plots*. *J Open Source Softw*, 2020. **5**(49).
- 1088 16. Granja, J.M., et al., *ArchR is a scalable software package for integrative single-cell chromatin*  
1089 *accessibility analysis*. *Nat Genet*, 2021. **53**(3): p. 403-411.
- 1090 17. Feng, J., T. Liu, and Y. Zhang, *Using MACS to identify peaks from ChIP-Seq data*. *Curr Protoc*  
1091 *Bioinformatics*, 2011. **Chapter 2**: p. 2 14 1-2 14 14.
- 1092 18. Schep, A.N., et al., *chromVAR: inferring transcription-factor-associated accessibility from*  
1093 *single-cell epigenomic data*. *Nat Methods*, 2017. **14**(10): p. 975-978.
- 1094 19. Khan, A., et al., *JASPAR 2018: update of the open-access database of transcription factor*  
1095 *binding profiles and its web framework*. *Nucleic Acids Res*, 2018. **46**(D1): p. D260-D266.
- 1096 20. Fornes, O., et al., *JASPAR 2020: update of the open-access database of transcription factor*  
1097 *binding profiles*. *Nucleic Acids Res*, 2020. **48**(D1): p. D87-D92.
- 1098 21. Chen, S., et al., *fastp: an ultra-fast all-in-one FASTQ preprocessor*. *Bioinformatics*, 2018. **34**(17):  
1099 p. i884-i890.

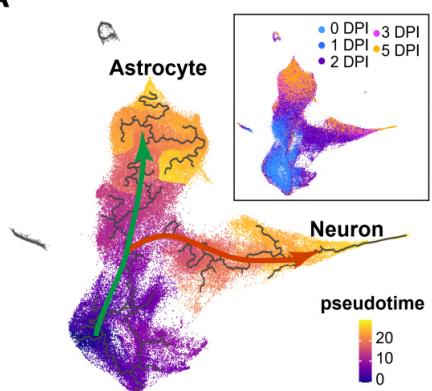
1100 22. Langmead, B. and S.L. Salzberg, *Fast gapped-read alignment with Bowtie 2*. Nat Methods, 2012.

1101 23. Li, H., et al., *The Sequence Alignment/Map format and SAMtools*. Bioinformatics, 2009. **25**(16):

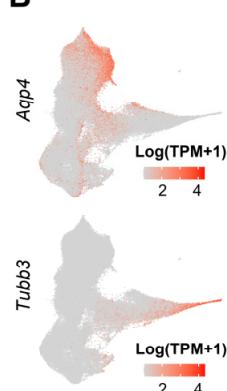
1102 p. 2078-9.


1103

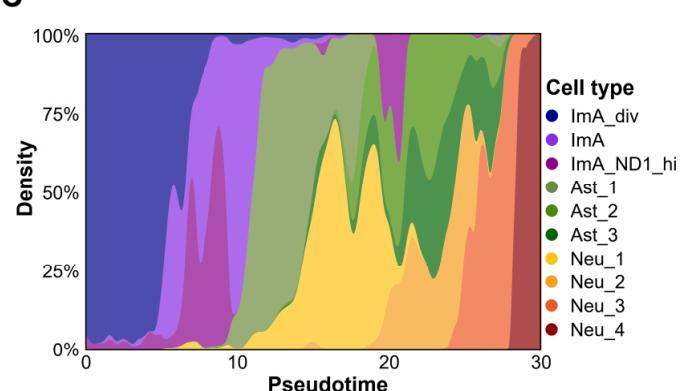
1104 24. Institute, B., *Picard toolkit*. Broad Institute, GitHub repository, 2019.


1105

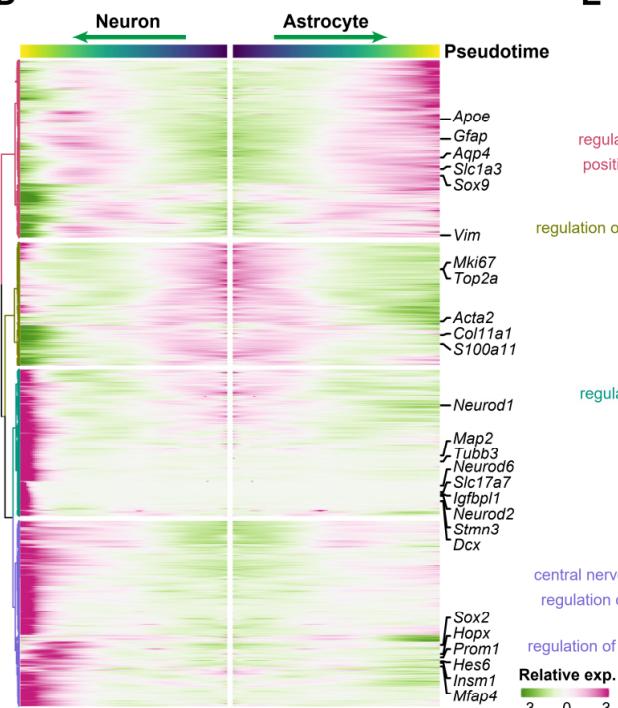
1106


1107

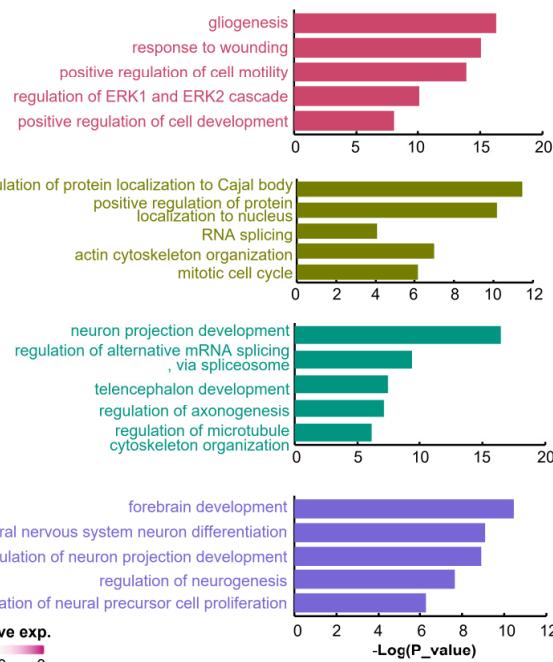



**A**

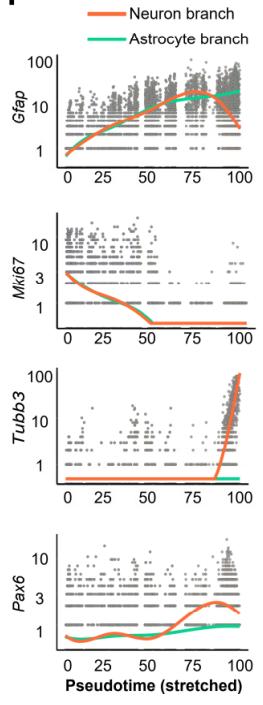



**B**

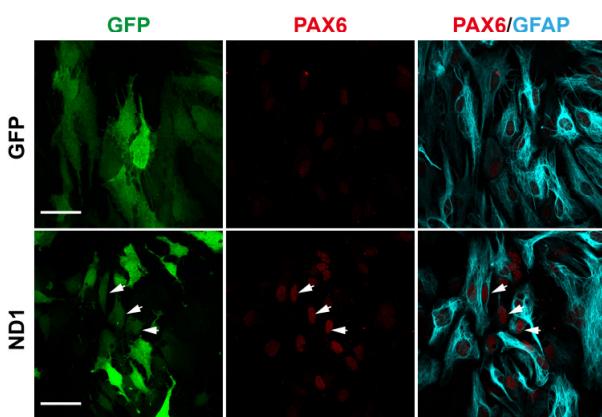



**C**

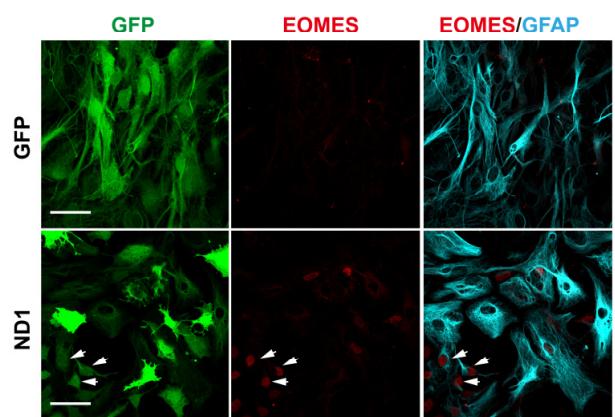



**D**

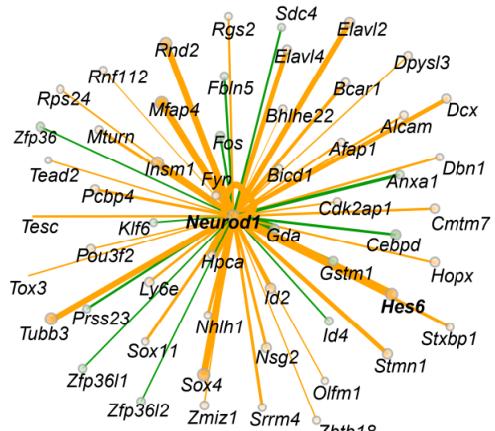



**E**

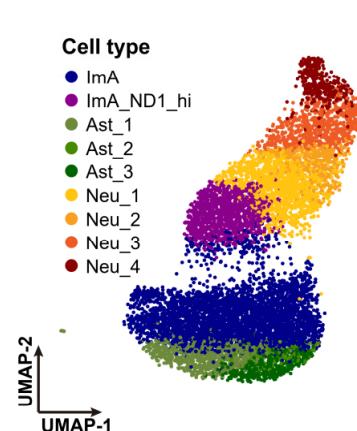



**F**

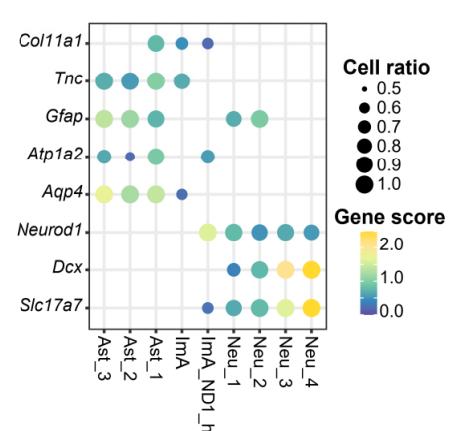



**G**

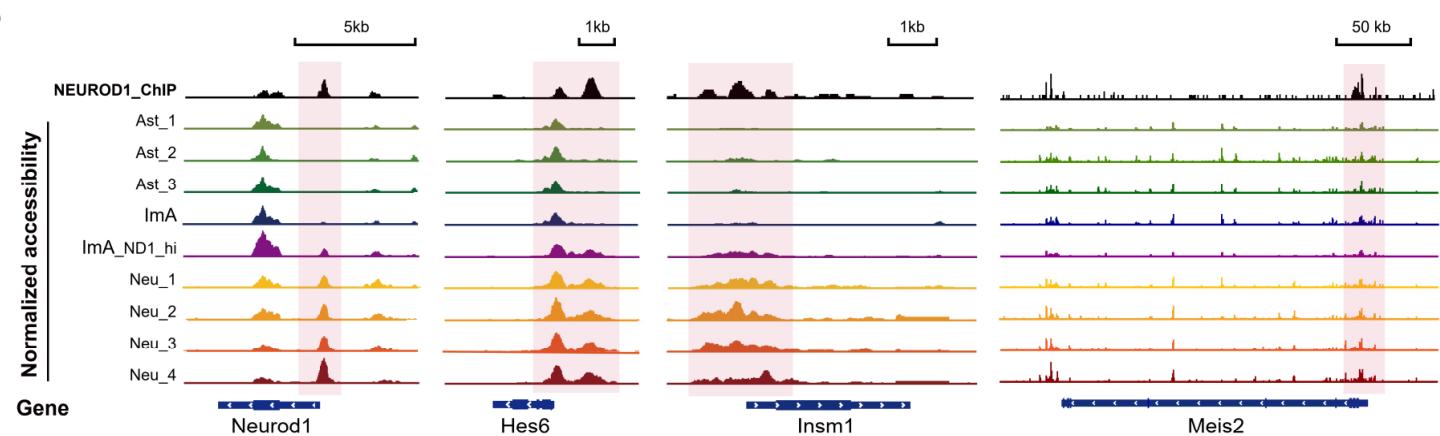



**H**

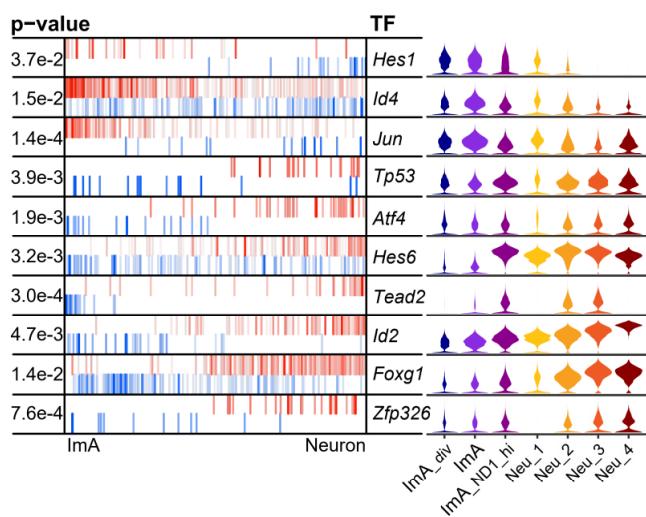



**A**




**B**




**C**



**D**



**E**



**F**

**G**

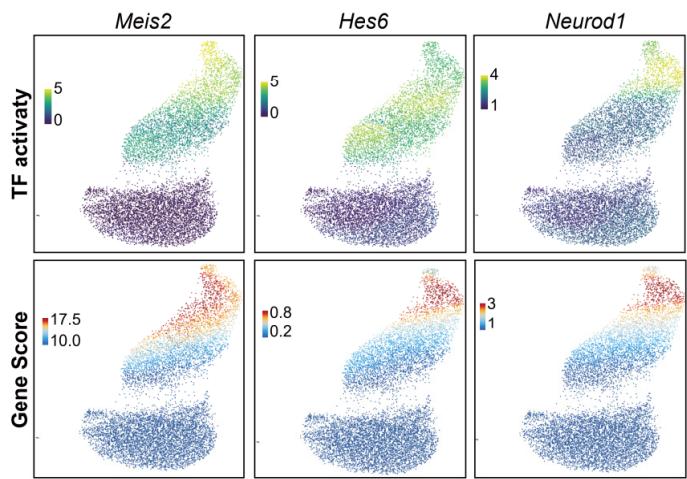
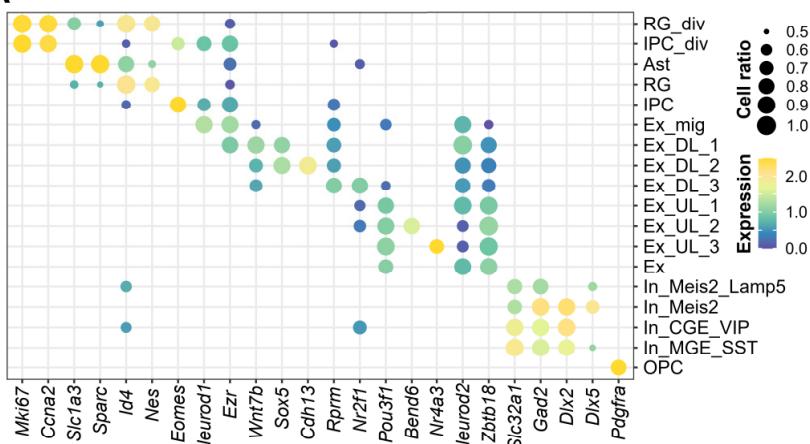
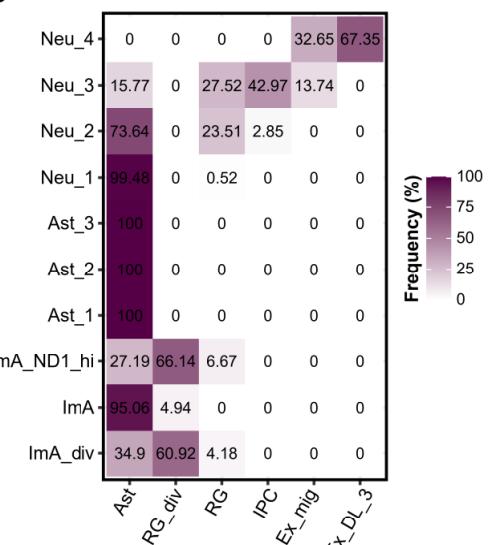
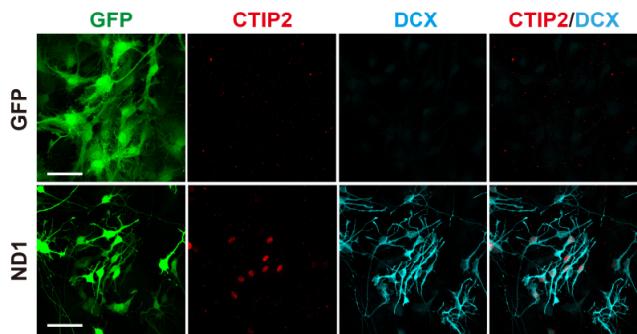
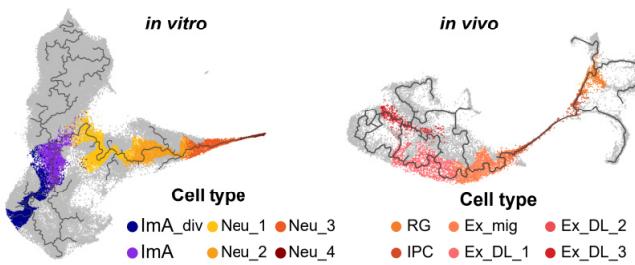




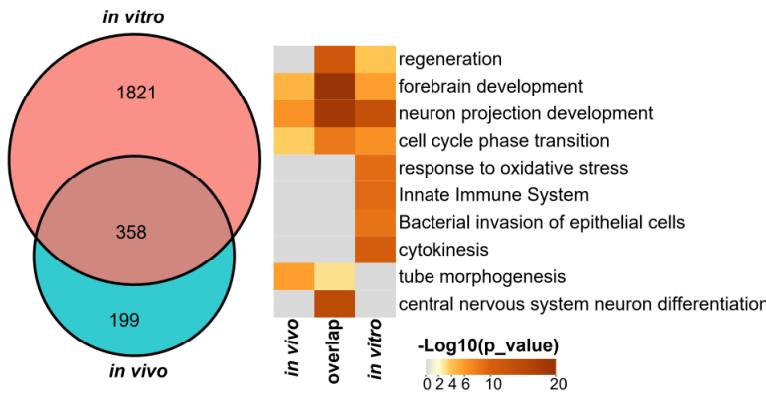

Figure 4


A

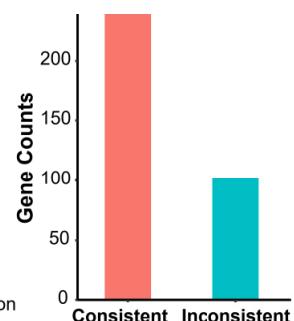



B

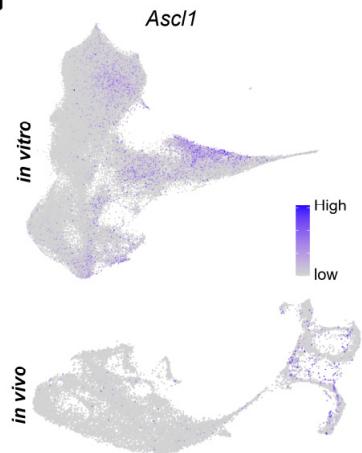



C

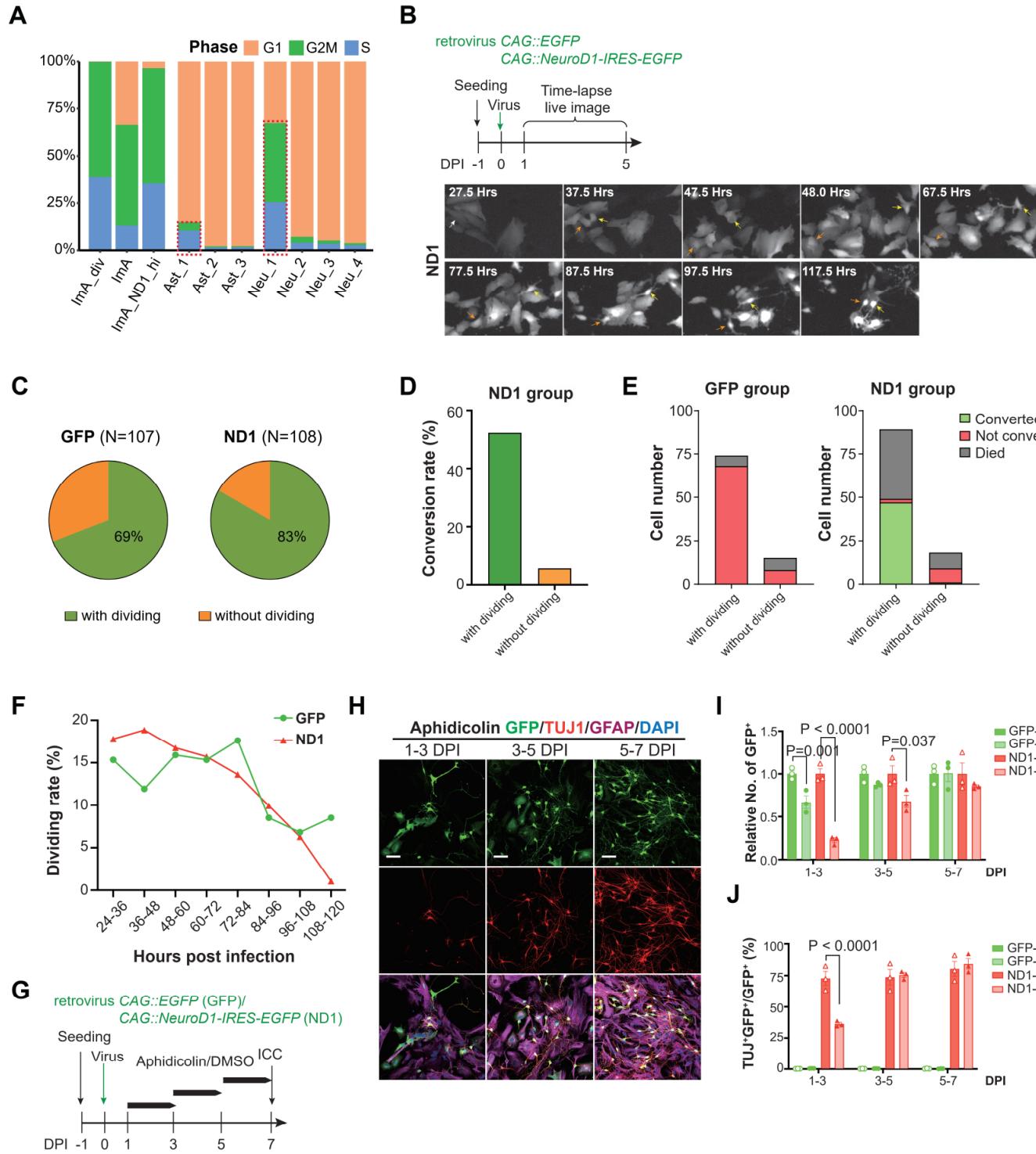



D

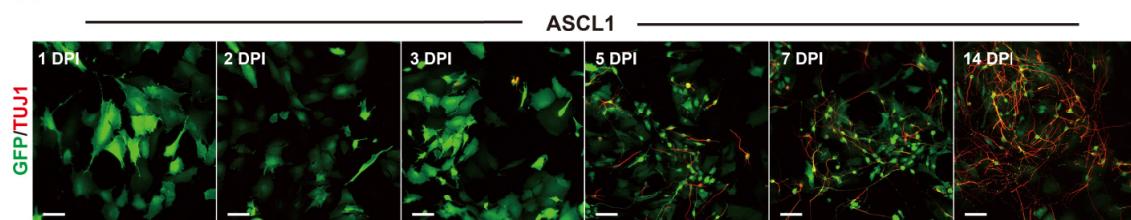



E

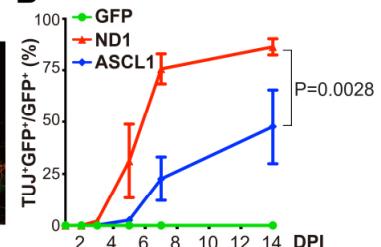



F

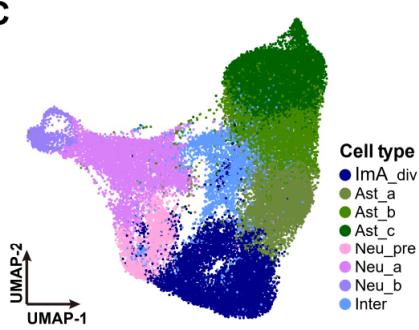



G

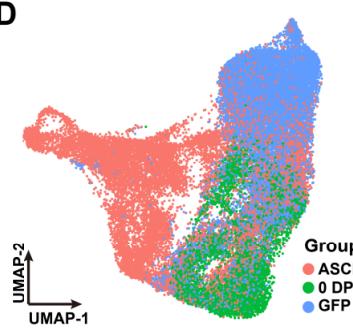



**Figure 5**

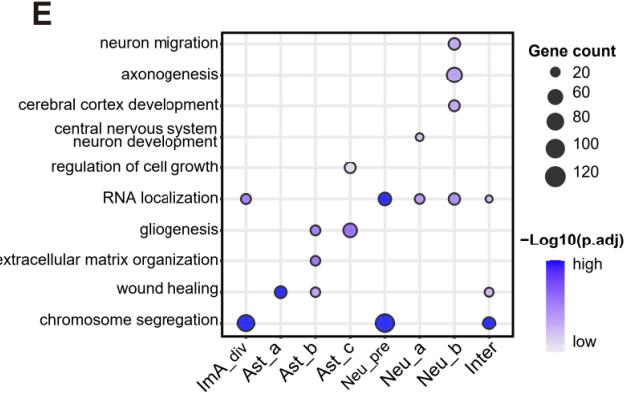



**A**

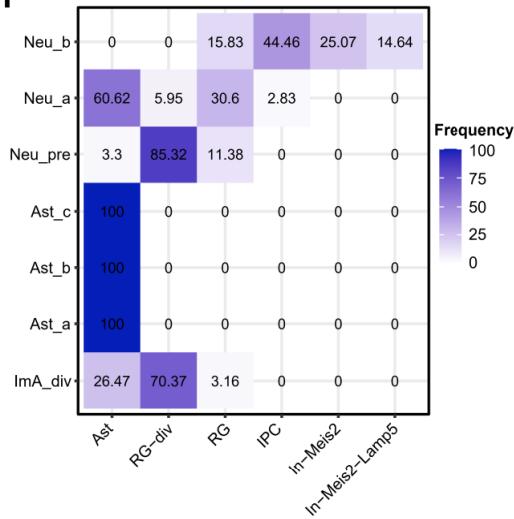



**B**

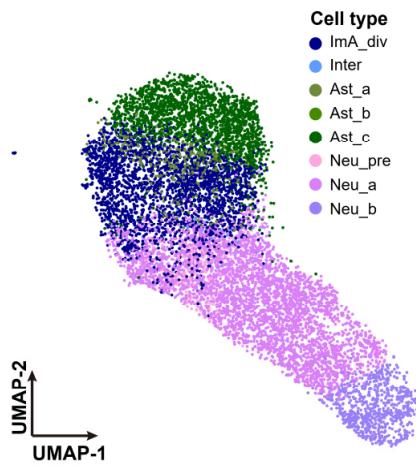



**C**




**D**




**E**



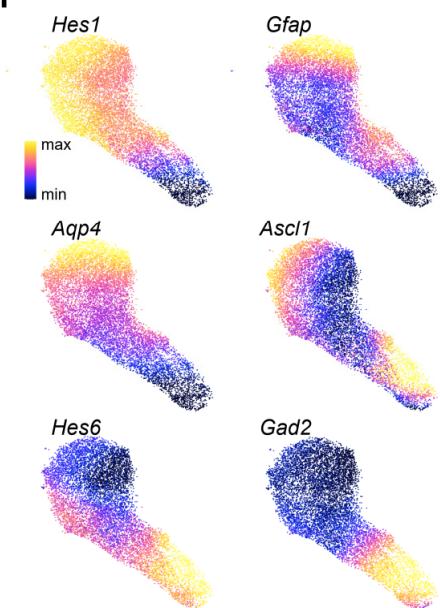
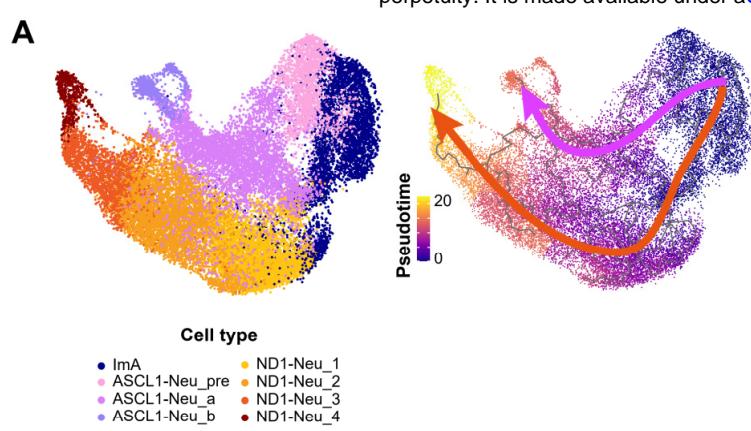
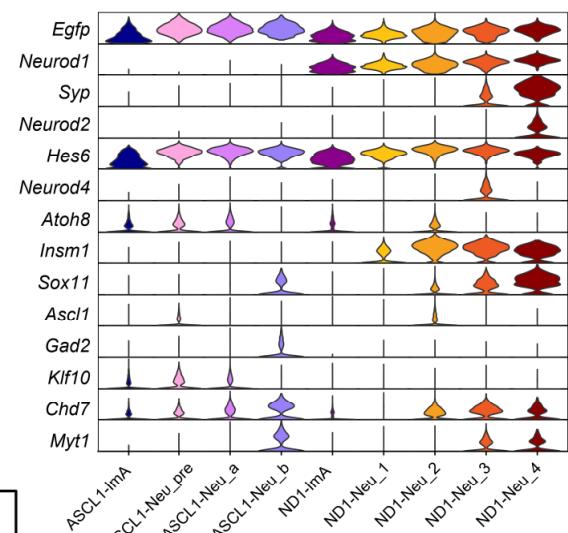
**F**

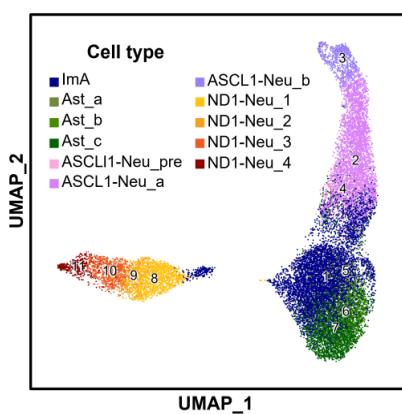


**G**

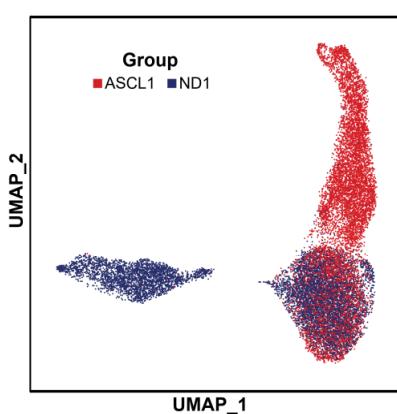


**H**

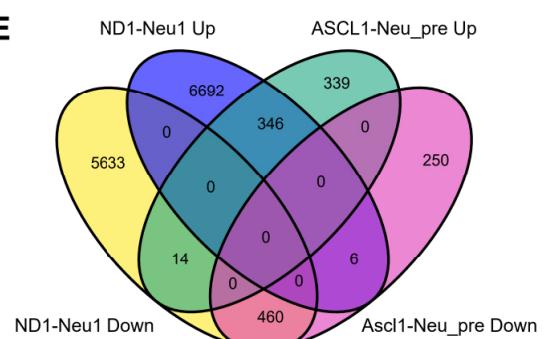






Figure 7

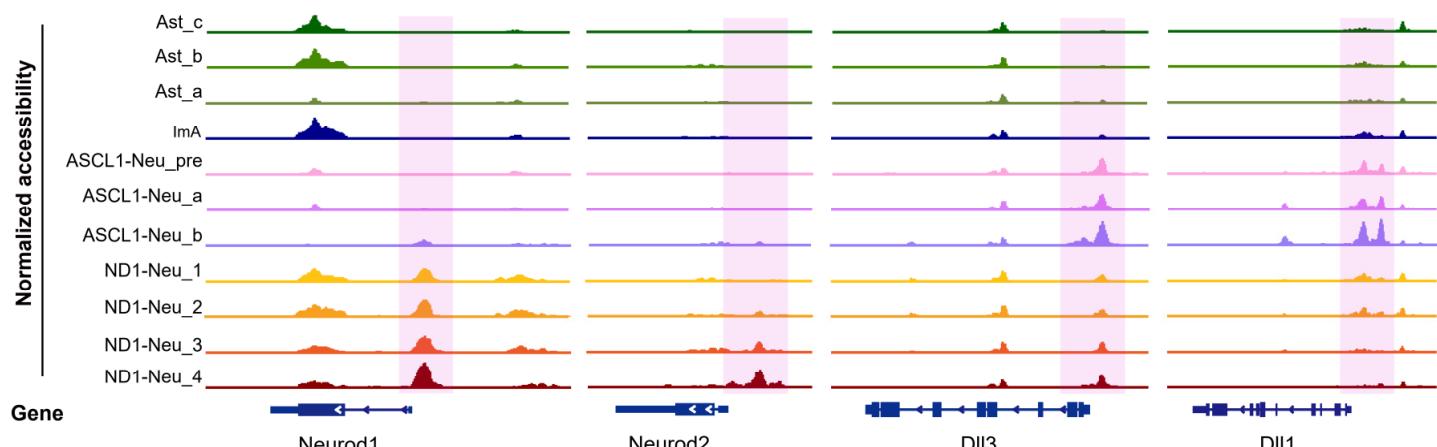



**B**




**C**




**D**



**E**



**F**

