

1 **Immune Correlates of Hyperglycemia and Vaccination in a Non-human Primate Model of Long-COVID**

2

3 Clovis S Palmer*^{1,2}, Chrysostomos Perdios*^{1,2}, Mohamed Abdel-Mohsen³, Joseph Mudd^{1,2}, Prasun
4 Datta^{1,2}, Nicholas J. Maness^{1,2}, Gabrielle Lehmicke¹, Nadia Golden¹, Lihn Hellmer¹, Carol Coyne¹, Kristyn
5 Moore Green¹, Cecily Midkiff¹, Kelsey Williams¹, Rafael Tiburcio⁴, Marissa Fahlberg¹, Kyndal Boykin¹,
6 Carys Kenway¹, Kasi Russell-Lodrigue¹, Angela Birnbaum¹, Rudolf Bohm¹, Robert Blair¹, Jason Dufour¹,
7 Tracy Fischer^{1,2}, Ahmed A Saied^{1,5}, Jay Rappaport^{1,2}

8

9 ¹Tulane National Primate Research Center, Covington, LA, USA; ²Department of Microbiology and
10 Immunology, Tulane University School of Medicine, New Orleans, LA, USA; ³The Wistar Institute,
11 Philadelphia, PA, USA; ⁴ Division of Experimental Medicine, Department of Medicine, University of
12 California, San Francisco. ⁵Department of Pathology and Laboratory Medicine, Tulane University School of
13 Medicine.

14

15

16 *These authors contributed equally: Clovis S. Palmer, Chrysostomos Perdios
17 Corresponding Authors:

18 Clovis S Palmer, cpalmer3@tulane.edu

19 Jay Rappaport, jrappaport@tulane.edu

20

21 **Key words:** SARS-CoV-2, Diabetes, Long-Covid, PACS, Vaccine, metabolism, immunometabolism.

22

23

24

25 **Abstract**

26 Hyperglycemia, and exacerbation of pre-existing deficits in glucose metabolism, are major manifestations
27 of the post-acute sequelae of SARS-CoV-2 (PASC). Our understanding of lasting glucometabolic disruptions
28 after acute COVID-19 remains unclear due to the lack of animal models for metabolic PASC. Here, we
29 report a non-human primate model of metabolic PASC using SARS-CoV-2 infected African green monkeys
30 (AGMs). Using this model, we have identified a dysregulated chemokine signature and hypersensitive T
31 cell population during acute COVID-19 that correlates with elevated and persistent hyperglycemia four
32 months post-infection. This persistent hyperglycemia correlates with elevated hepatic glycogen, but there
33 was no evidence of long-term SARS-CoV-2 replication in the liver and pancreas. Finally, we report a
34 favorable glycemic effect of the SARS-CoV-2 mRNA vaccine, administered on day 4 post-infection.
35 Together, these data suggest that the AGM metabolic PASC model exhibits important similarities to
36 human metabolic PASC and can be utilized to assess therapeutic candidates to combat this syndrome.

37

38

39

40

41

42

43

44

45

46 **1. Introduction**

47 Between 10-30% of people infected with SARS-CoV-2 develop long-term health complication, named
48 post-acute sequelae of SARS-CoV-2 (PASC) or Long-COVID ¹⁻⁴. Metabolic diseases, including type 2
49 diabetes (T2D)⁵, as well as conditions with less obvious metabolic undertones such as myalgic
50 encephalomyelitis/chronic fatigue syndrome (ME/CFS), thrombosis and neuropsychiatric sequelae (brain
51 fog) embody the broad spectrum of long-COVID symptoms or PASC ^{1,6-10}. In fact, a 30-50% elevated T2D
52 incidence following acute resolution of SARS-CoV-2 infection has been reported¹¹. Several lines of
53 evidence suggest a hyperinflammatory response against SARS-CoV-2 as being critical to the severity of
54 acute COVID-19¹², as well as development of metabolic PASC such as hyperglycaemia^{3,11}, metabolic
55 associated fatty liver disease (MAFLD)¹³, and cardiovascular diseases (CVD)^{14,15}.

56 An existing paradigm postulates that the balance between virus survival and effective host responses is
57 based on metabolic reprogramming of nutrients, primarily in immune cells¹⁶. However, the extent to
58 which early disruptions in systemic immune and metabolic homeostasis contribute to the evolution and
59 symptoms of metabolic PASC remains unclear. While pre-existing diabetes has been linked to more severe
60 COVID-19 outcomes and higher mortality^{17,18}, new-onset hyperglycemia and diabetic ketoacidosis is also
61 observed in SARS-CoV-2 infected individuals with no prior evidence of diabetes and have been associated
62 with poor COVID-19 outcomes^{19,20}.

63 Glucose homeostasis is maintained largely by hormonally-regulated glucose uptake by tissues, such as the
64 liver^{21,22}, as well as the gut microbiota²³. However, hepatic glucose production via gluconeogenesis and
65 glycogenolysis represents additional glucometabolic checkpoints²⁴. In addition, β -cell dysfunctions,
66 potentially due to early pancreatic infection by SARS-CoV-2, may partially contribute to altered glucose
67 homeostasis²⁵⁻²⁷. Increased levels of circulating inflammatory molecules, including chemokines, have been
68 shown to directly associate with impaired glucose homeostasis in non-infectious diseases²⁸. This includes
69 CCL25, a cytokine known to impair pancreatic β -cell insulin secretion and is capable of inducing

70 proinflammatory cytokine responses²⁹. Thus, a preponderance of evidence supports a key role for
71 inflammation in the pathogenesis of hyperglycemia and T2D³⁰⁻³². However, the mechanisms by which
72 SARS-CoV-2 infection promotes prolonged hyperglycemia are poorly understood due to the lack of
73 appropriate animal models for metabolic PASC. Here, we developed such a model and used it to
74 interrogate potential mechanism that underlie the development of metabolic PASC. We also investigated
75 whether administration of the BNT162b2 (Pfizer/BioNTech) vaccine during acute SARS-CoV-2 infection
76 could ameliorate immunometabolic dysregulation.

77 **2. Results**

78 **2.1. Study groups.**

79 African green monkeys (AGMs; *Chlorocebus aethiops sabaeus*) were followed up weekly for 18 weeks with
80 complete virologic, physical, clinical assessments, blood chemistry and immunometabolic profiling. Some
81 assessments were conducted biweekly after 4 weeks (Fig. 1a). One female (PB24), age 19.32 years (6.40
82 kg) was sent for necropsy at week 8 due to anorexia. There were no significant differences in the median
83 age and weight between the vaccinated and unvaccinated group (see Table 1 for detailed group
84 demographics).

85 **2.2. Dynamics of SARS-CoV-2 over time**

86 To confirm infection and study viral dynamics we assessed sub genomic viral RNA (sgRNA), a correlate of
87 actively replicating virus, and genomic RNA (gRNA) levels by quantitative real-time PCR in nasal and
88 pharyngeal swabs. All animals had detectable sgRNA ($>3.64 \times 10^6$) at day 3 in both nasal and pharyngeal
89 swabs. At week 5, only 2 animals had detectable sgRNA ($>1.15 \times 10^5$) in nasal swabs, and no detection in
90 pharyngeal swabs. At day 3, all animals had detectable gRNA ($> 2.05 \times 10^7$) in nasal swabs, while 14 had
91 detectable gRNA ($>1.71 \times 10^6$) in pharyngeal swabs. At week 5, seven animals had detectable gRNA ($1.47 \times 10^5 - 6.53 \times 10^6$) in nasal swabs, and seven detectable ($4.90 \times 10^4 - 1.51 \times 10^5$) in pharyngeal swabs. The
93 kinetics of gRNA were similar in vaccinated and unvaccinated, with virus peaking at day 3 and substantially

94 declining by week 5 (Fig. 1b). At week 5, 20% and 66% of the vaccinated and unvaccinated animals
95 respectively had detectable gRNA in pharyngeal swabs (Fig. 1b).

96 **2.3. Changes in immune compartments, antibody, and hypersensitive responses during long-term**
97 **follow-up**

98 To evaluate changes in systemic immune cell compartments over time, we assessed major immune
99 subsets which have previously been implicated in the severity of acute COVID-19 disease. On day 3 post
100 infection (p.i.), we observed a significant increase in monocyte percentage ($p=0.0004$) and absolute
101 number ($p=0.002$) in infected animals, returning to baseline levels by week two, followed by a modest
102 decline up to about week 7 (Fig. S1. a-b). The percentage and absolute counts of lymphocytes and
103 neutrophils remained relatively constant (Fig. S1 c-f) in both the vaccinated and unvaccinated groups. The
104 declining levels of circulating monocytes post-acute infection may signify potential infiltration of these
105 cells into tissues, consistent with elevated tissue inflammation during acute SARS-CoV-2 infection.

106 We observed a steep induction of IgG and IgA responses against SARS-CoV-2 Spike and S1RBD proteins,
107 peaking between 3-6 weeks (Fig. 1c-d), and maintained elevated up to 18 weeks p.i. in both the vaccinated
108 and unvaccinated groups. There was also an appreciable IgA and IgG response against SARS-CoV-2
109 nucleocapsid, with the IgG levels remaining elevated up to 15 weeks (Fig. 1e). The early IgM response
110 against SARS-CoV-2 was noticeable but of a lesser magnitude than the IgA and IgG responses, and sharply
111 declined towards baseline after 5-week p.i. (Fig. 1c-e). Although not reaching statistical significance,
112 cumulatively there was a substantially elevated IgG and IgA antibody responses against the Spike (Fig. 1f-
113 g) and S1RBD (Fig. 1h-i) proteins at week 3 p.i. relative to baseline (1.5 weeks pre-infection). These results
114 closely reflect the kinetics and preferential induction of anti-SARS-CoV-2 IgA, IgG, and IgM responses in
115 infected humans³³.

116 There were no significant differences in the magnitude of antibody responses between the vaccinated
117 and unvaccinated groups over time (PERMANOVA; $p>0.05$, data not shown). However, there was a slight
118 trend towards a higher induction of IgA response towards the spike protein, as well as IgG response
119 towards nucleocapsid protein (PERMANOVA; $p>0.05$, data not shown).

120 T-cell inflammatory response to polyclonal stimulation through phorbol 12-myristate 13-acetate (PMA)
121 and the calcium ionophore ionomycin (I) has been reported in severe COVID-19 cases¹². To examine
122 potential similarities, we exposed longitudinally collected PBMCs from SARS-CoV-2 infected AGMs to
123 PMA/I for 6 hours and examined activation markers and intracellular levels of cytokines in T cells subsets.
124 Naïve and memory populations were defined using CD95 and CD28 markers according to established
125 gating strategies (Fig. S3). Cumulatively, across groups, there was a significantly increased percentage of
126 memory CD4+ T cells expressing IL-2 (Fig. 1j; FDR< 0.01) between baseline and all following weeks p.i.
127 Cumulatively, across timepoints, there was a significantly lower percentage of memory CD4+ T cells
128 expressing TNF in the vaccinated group versus the unvaccinated one (Fig. 1k; PERMANOVA; $p=0.033$).
129 Except for week 1 (FDR> 0.05), cumulatively, the percentage of memory CD8+ T cells expressing TNF was
130 significantly increased relative to baseline (Fig. 1l; FDR< 0.01). Taken together, these data indicate that
131 the AGM SARS-CoV-2 infection model mirrors several immunologic similarities to those reported in SARS-
132 CoV-2 infected humans.

133 **2.4. Vaccination post SARS-CoV-2 infection improves long-term glycemic control**

134 Early metabolic changes during SARS-CoV-2 infection are likely to influence long-term manifestations of
135 COVID-19. We have previously shown in AGMs that SARS-CoV-2 infects pancreatic ductal, and endothelial
136 cells and associates with new-onset hyperglycemia³⁴, an observation that recapitulates findings in
137 humans, supporting pancreatic tropism of SARS-CoV-2^{26,27}. SARS-CoV-2 infection may also promote
138 hyperglycemia by inducing excess hepatic glucose production through gluconeogenesis or glycogenolysis

139 independent of pancreatic function or insulin effects³⁵. We therefore analyzed serum glucose levels over
140 time and found it to be significantly elevated (n=15, mean: 102.2 mg/dL, range: 76 -154, p<0.0001) as
141 early as three days post-infection relative to the latest baseline values (n=15, mean: 71.1 mg/dL, range:
142 51-86; Fig. 2a). This elevated blood glucose is well above the normal range independently reported for
143 male (mean: 81.7 ± 18.7 mg/dL) and female (mean: 80.3 ± 18.7 mg/dL) AGMs of Caribbean origin³⁶.
144 Composite longitudinal analysis showed significantly higher blood glucose in the unvaccinated group
145 (PERMANOVA; p=0.001) than the vaccinated group over time. This is supported by a higher percentage of
146 animals with glucose levels above 100 mg/dL in the unvaccinated group (Fig. 2b). Moreover, a statistically
147 significant persistence of hyperglycemia was maintained up to 12 weeks p.i. in the unvaccinated group
148 (Fig. 2c). We excluded glucose reading for weeks 10 and 18 due to in-house clinical procedures likely to
149 impact transient blood levels, namely the movement of animals from BSL3 to BSL2 (week 10) and return
150 to BSL3 at week 18. There was a modest positive but non statistically significant relationship between day
151 3 nasal viral sgRNA and gRNA, and blood glucose levels at week 17 across groups (Fig. 2d). Peak IgA
152 response (week 3) against nucleocapsid and S1RBD was lower in unvaccinated SARS-CoV-2 infected
153 animals with higher preceding blood glucose (week 2; Fig. 2e).

154 Although plasma triglyceride levels peaked around week 2, the levels were already significantly elevated
155 by week 1 in the unvaccinated group (Fig. 2f). Cumulatively, triglyceride levels were significantly higher in
156 the unvaccinated group over time (PERMANOVA; p=0.001). However, this elevation was not maintained
157 consistently beyond baseline over the study period (Fig. 2f). We recorded no significant difference in
158 cholesterol levels between the two groups over time (Fig. 2g). Taken together, we reveal a significant
159 induction and persistent hyperglycemia in SARS-CoV-2 infected AGMs, suggesting this experimental
160 design as a potential model of metabolic PASC. Furthermore, we found that vaccination during acute
161 infection could have a positive effect on glycemic control.

162

163 **2.5 Induction of early inflammatory disturbances in AGM long-COVID model**

164 We next undertook an unbiased approach to identify systemic cellular processes associated with SARS-
165 CoV-2 infection in AGMs. We utilized the OLINK Proximity Extension Assay (PEA) technology, which has
166 exceptional specificity requiring the binding of two matched-paired antibodies tagged with a unique DNA
167 sequence followed by PCR amplification and signal generation. We used a Target 96 Inflammation Panel
168 assessing proteins associated predominantly with apoptosis, immune activation and inflammatory
169 responses, MAPK cascade, chemotaxis, and chemokine secretion. Sixty-five analytes were analyzed
170 following stringent data QC of which 14 were significantly elevated, and one (IL-8) significantly reduced at
171 week 1 p.i. (Fig. 3a, Table S1). Principal component analysis of these differentially regulated analytes
172 expectedly showed a marked separation between baseline and week 1, corroborating the heatmap
173 analysis (Fig. 3a, Table S1). The 14 elevated analytes include some with known chemotaxis and other
174 inflammatory processes. Five analytes, C-C Motif Chemokine Ligand 25 (CCL25), CUB domain-containing
175 protein 1 (CDCP1), FMS-like tyrosine kinase 3 ligand (Flt3L), C-C Motif Chemokine Ligand 8 (CCL8) and
176 Stem Cell Factor (SCF) maintained significance (FDR <0.05) following Benjamini–Hochberg (BH) correction
177 (Table insert, Fig. 3a). We highlight representative chemokines (CCL25, CCL8, CCL19) and inflammatory
178 molecules (IL-18, TNF) showing significant elevation at week 1, normalizing by week 12 (Fig. 3b-c).

179 We next examined whether these 15 differentially regulated analytes were interrelated or shared
180 common pathways. We employed the STRING protein-protein analysis web-based tool using the default
181 settings. Except for CDCP1 and SULT1A1 (ST1A1) there were high confidence interconnections between
182 the regulated analytes, notably the chemokines CCL8, CCL19, CCL25, CXCL8, CX3CL1, and TNF and IL-18
183 (Fig. 3d). The top functional enriched networks revealed biological processes and molecular functions
184 associated with regulation of leukocyte migration and receptor ligand activity. The top ranked local
185 network clusters and KEGG pathways were related to chemokine receptors, macrophage proliferation,
186 and viral protein interaction with cytokines and cytokine receptors (Fig. 3e, Table S2). We validated these

187 networks using PANTHER v 17.0 revealing the protein class was dominated by intracellular signal
188 molecules (Fig. 3f), with top pathways associated with inflammation mediated by chemokine and cytokine
189 signaling, and apoptosis (Fig. 3g), supporting the STRING analysis. These data identify a specific
190 dysregulation in inflammatory markers in the AGM metabolic-PASC model.

191 **2.6 Glial cell line-derived neurotrophic factor (GDNF) remains persistently elevated following SARS-CoV-**

192 **2 infection of AGM and associates with hyperglycemia**

193 Increased serum concentrations of inflammatory cytokines correlate positively with fasting glucose levels
194 in individuals with features of the metabolic syndrome³⁷. We questioned whether early pathological
195 inflammatory processes may be associated with early-onset, or persistence of hyperglycemia in our SARS-
196 CoV-2 infected AGM long-COVID model. We conducted correlation analysis of blood glucose levels at
197 week 1, 4, 8 and 16 against all analytes that were significantly (unadjusted p value <0.05) differentially
198 regulated in the 10 unvaccinated animals at week 1 (Fig. 4a). We observed a modest but statistically
199 significant correlation (p<0.05) between week 1 plasma CDCP1 levels and week 4 and 16 glucose levels,
200 and a significant and strong positive correlation between week 1 plasma GDNF and week 4 glucose levels
201 (Fig. 4a, Fig. S2). We explored the overall relationship between total plasma analytes and changes in
202 plasma glucose concentrations over time in the unvaccinated group. We identified 8 analytes CCL25,
203 GDNF, ADA, ST1A1, CXCL9, IL-10RB, FGF-19 and CDCP1 that positively and significantly correlated with
204 plasma glucose across baseline, week 1, 4, and 12, and one analyte, IL-8, which had a significant negative
205 association with glucose. CCL25 ($r=0.57$; $p=0.0003$; FDR=0.004), GDNF ($r=0.55$; $p=0.0004$; FDR=0.006) and
206 ADA ($r=0.44$; $p=0.007$; FDR=0.049) maintained significance following BH correction (Table S3). The CCL25
207 and GDNF data are graphically represented (Fig. 4b). STRING functional protein interaction analysis of
208 these 9 analytes identified CXCR chemokine receptor binding (FDR=0.019), chemokine receptor
209 chemokines (FDR=0.009), and viral protein interaction with cytokines and cytokine receptors
210 (FDR<0.0001) as top functional enrichments networks.

211 Of these analytes GDNF levels remained persistently and significantly higher above baseline up to week
212 12 p.i. (Fig. 4c), and correlated positively and significantly with plasma CCL25 ($r=0.64$, $p<0.0001$), a
213 chemokine linked to T2D²⁹ (Fig. 4d). We employed a confirmatory dataset comprising of plasma from both
214 unvaccinated and vaccinated animals at baseline and 1-3 weeks and evaluated GDNF levels using the
215 OLINK panel indicated above. We confirmed significantly increased plasma GDNF following SARS-CoV-2
216 infection of AGMs. At the same time points, there was no significant elevation in plasma GDNF in the
217 vaccinated group (Fig. 4e). Interestingly, there was no significant correlation between blood insulin levels
218 and glucose (Fig. 4f).

219 To gain more insights into the functionality of GDNF, we conducted unbiased analysis by using GDNF as
220 the only search variable in STRING and set the interaction stringency to highest allowable confidence
221 (0.90). Based on experimental evidence, databases, and text mining the analysis map revealed a high
222 confidence interaction (0.999) between GDNF and its receptors GFRA1, and GFRA2, and the putative
223 receptor RET receptor tyrosine kinase, which is involved in neuronal navigation and cell migration. There
224 were also high confidence interactions between GDNF and neural cell adhesion molecule 1 (NCAM1;
225 0.936), a cell adhesion protein involved in neuron-neuron adhesion, and between GDNF and cyclic AMP-
226 responsive element-binding protein 1 (CREB1), a transcription factor activated upon binding to the DNA
227 cAMP response element (CRE) found in many viral promoters (Fig. 4g).

228 Finally, we used BioGRID, another protein-protein interaction database, to validate STRING's GDNF
229 interactions. The results confirmed our STRING analysis, showing high confidence interactions between
230 GDNF and its receptors (red arrows), as well as with WDR26 (evidence: affinity capture-MS; green arrow;
231 Fig. 4h), which serves as a scaffold to coordinate PI3K/AKT activation³⁸, as well as regulating leucocyte
232 migration³⁹. GDNF also interacts strongly with epidermal growth factor receptor (EGFR; evidence: affinity
233 capture-MS; green arrow) reported to regulate the severity of COVID-19 in patients⁴⁰. Together, these
234 results identify a potentially early and minimal host inflammatory signature dominated by elevation of

235 plasma chemokines and the neurotropic factor GDNF, associated with impaired glucose homeostasis, in
236 SARS-CoV-2 infected AGM.

237 **2.7. Polyfunctional inflammatory CD4+ T cells positively correlate with blood glucose levels in SARS-
238 CoV-2 infected AGMs**

239 As shown, T cell hypersensitivity is increased following SARS-CoV-2 infection in AGMs. We therefore
240 examined whether the degree of hypersensitive polyfunctional T cell responses correlate with blood
241 glucose levels in unvaccinated AGMs. PBMCs were exposed to PMA/I for 6 hours and the levels of T cell
242 activation and cytokine production were examined by flow cytometry. We imported data in FlowJo, and
243 gated on singlets, live cells and CD45+CD3+ T cells (Fig. S3) and exported CSV - Scale values. We used the
244 R package Spectre to identify unique polyfunctional/inflammatory populations (BL, week 1, 4, 8, 12, 18).
245 In the unstimulated samples we defined two major populations, CD4 (cluster A) and CD8 (cluster B) shown
246 by UMAPs (Fig. 5a-b, Fig. S4a). In the PMA/I treated PBMCs we defined nine populations (Fig. 5c),
247 described in detail in Fig. S4b. The high expression (deep red) of activation and inflammatory markers
248 confirmed activation status (Fig. 5d). There was a significant positive correlation between blood glucose
249 levels and the level of the early activation marker CD69 on IL-2 producing memory CD4 T cells (Fig 5c,
250 Population E; Fig. 5e), and a significant and positive correlation between blood glucose levels and the
251 number of polyfunctional (TNF+ IFNy+) naïve CD4 T cells (Fig. 5c, Population A; Fig. 5f). Plasma GDNF levels
252 were also significantly correlated with the number of IL-17-producing activated (CD69+ IL-17+ IL-2+ TNF+)
253 naïve CD4 T cells (Fig. 5c, Population C; Fig. 5g), as well as with the number of polyfunctional naïve CD4 T
254 cells (Fig. 5h). These data identify populations of hypersensitive T cells induced ex-vivo by PMA/I, that
255 correlates with hyperglycemia in SARS-CoV-2 infected AGMs.

256 **2.8. Analysis of SARS-CoV-2 persistence in tissues 18 weeks post infection**

257 Data suggest extrapulmonary presence of SARS-CoV-2 RNA in human tissues post-acute infection⁴¹, and
258 replicating virus has been isolated from human hepatocytes from postmortem COVID-19 patients²⁰. We
259 therefore took advantage of RNAscope using an anti-sense probe targeting SARS-CoV-2 spike protein RNA
260 (SARS-S) but observed no substantial percentage of cells containing spike RNA (SARS-S+ cells %) in
261 duodenum (mean= 0.018%), liver (mean=0.005%), and pancreas (mean =0.012%) at 18 weeks p.i., as well
262 as in historical sections (4 weeks p.i.) (mean: duodenum = 0.0037%, liver =0.0016%, pancreas =0.004%).
263 Substantial SARS-S signals from lung samples of a SAR-CoV-2 infected AGM (4 weeks p.i.; Fig. 6j-k) support
264 reliability of staining. For confirmatory study we conducted qPCR analysis on tissues collected 18 weeks
265 p.i. We found no SARS-CoV-2 subgenomic N nor subgenomic E signals in the liver, duodenum, or pancreas,
266 but low-levels of genomic N signals (Ct mean 30.4 and 31.6) in the duodenum of two of the 15 animals
267 (data not shown). We conducted SARS-CoV-2 immunohistochemistry on duodenum collected 18 weeks
268 p.i. but found no positive signals (Fig 6. l-m). Together these data suggest no significant long-term
269 persistence of replicating virus in the liver, pancreas or duodenum in our AGM PASC model.

270 **2.9. Absence of severe lung inflammation and injury during long-term follow-up in SARS-CoV-2 infected
271 AGM**

272 We previously reported two of four AGM (2/4) exposed to SARS-CoV-2 isolate USA-WA1/2020 progressed
273 to acute respiratory distress syndrome (ARDS) by day 8 and 22 p.i. and exhibited diffuse alveolar damage
274 and bronchointerstitial pneumonia²⁵. We therefore examined whether viral-induced high grade lung
275 inflammation is present at our 18 weeks study endpoint. We conducted histopathological analysis of lungs
276 from all study animals at necropsy (n=15, end point 18 weeks p.i.), and included 3 uninfected animals, and
277 four infected from a previous study with endpoint between 3 and 4 weeks p.i. The inflammation grades
278 were scored 1 to 4 (minimal to severe) based on indices of inflammation, utilizing the numbers of
279 inflammatory cells, the degree of fibrous connective tissue formation (Fig. S5a, Panels A-D), and the
280 presence of pneumocyte type II hyperplasia (Fig. S5b, Panels A-B). Analysis of the right lower lung shows

281 minimal inflammation in all except one animal in the long-COVID study group. Two of the four animals
282 from the short-term study group had severe inflammation. We generated a composite inflammation score
283 by pooling scores from the right anterior upper, right middle dorsal and right lower lung but found no
284 overall severe inflammation above that of the three uninfected AGM controls (Fig. S5c). There was no
285 evidence of aspirated pneumonia or euthanasia artifacts in the two AGMs from the short-term study, with
286 severe lung inflammation, suggesting this may be SARS-CoV-2-related. The data suggest that at least in
287 the animals examined by our inflammation measurements there was no general severe lung inflammation
288 at 18 weeks p.i.

289 **2.10. Absence of severe pancreatic inflammation and injury during long-term follow-up in SARS-CoV-2
290 infected AGM**

291 Extrapulmonary manifestations of SARS-CoV-2 infection includes infection of the human exocrine and
292 endocrine pancreas, causing morphological changes that may contribute to impaired glucose
293 homoeostasis^{26,27,34}. We examined the inflammation and fibrosis status of hematoxylin and eosin (H&E)
294 stained pancreatic cross sections, obtained at necropsy, and found none to minimal inflammation, like
295 the two uninfected historic samples. There was no evidence of pancreatic fibrosis in 13 animals, while 2
296 demonstrated mild fibrosis. Representative images are shown (Fig. S6). Taken together, we saw no
297 evidence to support significant long-term morphological defects of the pancreas.

298 **2.11 SARS-CoV-2 infection is associated with increased liver glycogen levels**

299 Although previous reports show SAR-CoV-2 infection of pancreatic β -cells in humans and AGMs, infection
300 in humans may be independently associated with hyperglycemia regardless of β -cell function²⁰. SARS-CoV-
301 2 infected hepatocytes have raised glucose production through increased gluconeogenesis, a potential
302 cause of hyperglycemia in infected humans²⁰. Regardless of the underlying source, elevated blood glucose
303 and hepatic glucose uptake may provide substrate for hepatic glycogen synthesis⁴² (Fig. 7a). We therefore

304 quantified liver glycogen in uninfected and 4-weeks p.i. SARS-CoV-2 (short term infection) infected
305 historical samples, as well as at necropsy (long-term infection) using Periodic acid–Schiff (PAS) staining.
306 Representative staining is shown without diastase (Fig. 8b, upper panel), and with diastase (Fig. 8b, lower
307 panel) to confirm staining specificity. A trend for increased liver glycogen in infected animals was observed
308 (Fig. 7c), reaching significance in the longer-term infected unvaccinated group. Liver glycogen levels
309 correlated positively with blood glucose levels at week 8 (Fig. 7d) and 12 (Fig. 7e-f) p.i. Of note, we saw
310 no evidence of hepatic steatosis or fibrosis at necropsy.

311 **3. Discussion**

312 Collateral damage by early host antiviral responses against SARS-CoV-2 may underlie the severity and
313 clinical presentation of acute COVID-19 symptoms. Pre-existing or virus-induced metabolic provocations
314 may promote or exacerbate these acute symptoms, as well as contribute to the development and long-
315 term phenotype of metabolic syndromes such as MAFLD¹³, and hyperglycemia³⁵. Here we describe the
316 first study to systemically evaluate, in non-human primates (NHPs), the temporal changes of
317 hyperglycemia (metabolic PASC) over an 18-week period. We observed, in SARS-CoV-2 infected AGMs, a
318 multitude of immunologic and metabolic changes that reflect those previously reported in humans in the
319 acute and post-acute phase of COVID-19.

320 Our data demonstrate that SARS-CoV-2 infection of AGMs is associated with early onset hyperglycemia,
321 which persisted for at least 18 weeks p.i. We have previously reported that early immune changes
322 contribute to adverse pathological events in SARS-CoV-2 infected NHPs⁴³. Here, we identified a set of
323 plasma analytes, many differentially increased at week 1 p.i., that correlated positively and significantly
324 with plasma glucose levels over time. The signature of these regulated analytes was defined by a
325 preponderance of chemokines and several inflammatory-related proteins. Using protein-protein
326 interaction tools and gene-ontology analyses we have discovered that the top functionally enriched

327 networks associated with these analytes are related to leukocyte migration, chemotaxis, macrophage
328 proliferation and viral protein interaction with cytokines. Amongst these analytes, we noted CCL25 and
329 GDNF to be significantly elevated at week 1 p.i. and beyond and correlated positively with blood glucose
330 levels across all timepoints evaluated. Thus, using the highly specific PEA technology we identified a set
331 of differentially regulated plasma proteins associated with early and persistent impairment of glucose
332 homeostasis in SARS-CoV-2 infected AGMs. Additionally, we report increased T cell hypersensitivity during
333 infection, with polyfunctional responses to ex-vivo PMA/I stimulation positively correlating with glucose
334 levels. Finally, while the magnitude of antibody responses was similar in the vaccinated and unvaccinated
335 groups, we show that the vaccination of five animals 4 days p.i. was associated with a consistent and
336 significantly lower blood glucose level over the study period.

337 Previous reports show that elevated glucose levels favor SARS-CoV-2 infection and monocyte pro-
338 inflammatory responses⁴⁴, as well as elevating the risks of severe COVID-19 progression and increased
339 fatality^{17,18}. In addition, T cell hypersensitivity towards polyclonal stimulation (PMA/I) is seen in severe
340 and extreme cases of COVID-19¹². Hyperglycemia may be caused by insulin resistance, dysfunctional
341 pancreatic β -cells, impaired glucose clearance or increased glucose disposal by the liver through
342 gluconeogenesis or glycogenolysis²⁰. We have previously shown in a short-term 4-week study, in two
343 AGMs with demonstrable SARS-CoV-2 infection of the pancreatic ductal and endothelial cells, that
344 infection was associated with pancreatic thrombofibrosis and new-onset diabetes³⁴. The focus of this
345 AGM PASC study precludes dissecting the specific mechanisms by which glucose homeostasis is regulated
346 during infection. Nonetheless, pathological elevation of blood glucose in moderate and severe COVID-19
347 patients has been linked to enhanced hepatic gluconeogenesis by the activity of the Golgi protein GP73,
348 which is found to be elevated in the plasma of infected patients³⁵. Although it remains controversial
349 whether SARS-CoV-2 can replicate in hepatocytes, data show that these cells express the chaperone
350 glucose-regulated protein 78 (GRP78), a putative SARS-CoV-2 entry factor, as well as low levels of ACE2

351 protein, which co-localized with spike protein. Moreover, the co-localization of spike protein with viral
352 RNA, and ex-vivo infection assays support the inference that SARS-CoV-2 can replicate in the liver²⁰.
353 Although the infection appears non-cytopathic, it was proposed that SARS-CoV-2, including the major
354 gamma, delta, and omicron variants, can stimulate hepatic glucose production and disposal through
355 increased activity of the rate limiting gluconeogenic enzyme phosphoenolpyruvate carboxykinase
356 (PEPCK)²⁰. The key focus of this work was to ascertain whether AGMs infected with SARS-CoV-2 are
357 feasible models to study metabolic PACS, so detailed mechanistic analyses are beyond this study.
358 However, we observed elevated glycogen levels in hepatocytes of infected AGMs at necropsy, which
359 positively correlated with blood glucose levels. On the contrary we saw no substantial amount of SARS-
360 CoV-2 nucleic acid or proteins in the liver or pancreas 18 weeks p.i. Glucagon, which can promote the
361 breakdown of stored hepatic glycogen to glucose, is increased in COVID-19 patients' plasma²⁰, but we
362 have not interrogated this connection in our model. Nonetheless this supports the idea that non-insulin,
363 and non-pancreatic related mechanisms may partially regulate glucometabolic control during SARS-CoV-
364 2 infection³⁵.

365 To gain insights into other potential processes driving COVID-19 related hyperglycemia, we assessed a
366 panel of blood inflammatory/metabolic analytes at baseline and at set study time points. The signature
367 of proteins differentially increased at week 1, and associated with plasma glucose levels over time, was
368 biased towards those involved in leukocyte migration and chemokine receptor binding. Some of these
369 include CCL8, CCL19, and the gut homing chemokine CCL25 that correlated strongly and positively with
370 blood glucose levels across multiple weeks.

371 Recent studies show plasma chemokines to be critical factors that control COVID-19 severity^{45,46}.
372 Accordingly, CCL25 has been found to be elevated in the plasma of COVID-19 patients⁴⁷, and a large-scale
373 genome wide association study, involving patients with severe COVID-19, identified mutations in several
374 chemokine receptors, including the CCL25 receptor CCR9 as a major risk factor for developing severe

375 COVID-19⁴⁸. We found no evidence of long-term pancreatic damage, however the elevation of CCL25
376 could potentially impair insulin secretion from the pancreas.

377 Intriguingly, while anti-SARS-CoV-2 antibodies may counter viral replication, antibodies against
378 inflammatory mediators such as CCL25, may be more effective at counteracting development of both
379 acute and long-COVID symptoms. We found our set of differentially regulated chemokines (CCL8, CCL19
380 and CCL25) intriguing because autoantibodies against CCL8 are augmented in long-term convalescent
381 COVID-19 individuals, and elevated antibodies against the COVID-19 signature chemokine CCL19⁴⁶ are
382 documented with high confidence in both acute and long-term COVID-19 phases compared to uninfected
383 controls⁴⁹. Interestingly, autoantibodies against CCL25 are augmented in mild COVID-19 patients
384 compared to those requiring hospitalization⁴⁹. Convalescents exhibiting PASC at 12 months have a
385 significantly lower cumulative level of anti-chemokine antibodies at six months compared to those who
386 reported no PASC⁴⁹. In our STRING protein-protein analysis of significantly regulated analytes at week 1,
387 we found strong interactions between CCL8, CCL19, CCL25, TNF and IL-18 confirming a link between this
388 chemokine signature and inflammatory responses in our infected AGM model, likely contributing to early
389 adverse and long-term pathological events.

390 Some evidence suggests a link between inflammatory processes and COVID-19 related metabolic diseases,
391 but our understanding of the underlying mechanisms remains limited. Chemokines are best known for
392 their role in immune cell trafficking to sites of infection and as mediators of inflammation and tissue
393 repair. However, recent reports have linked their activity to features of metabolic syndrome such as
394 insulin resistance and T2D. CCL25 acting via its receptor CCR9 impairs β -cell function and inhibits glucose-
395 induced insulin secretion²⁹. Moreover, CCR9 has been implicated in the pathogenesis of T2D by
396 modulating small intestine permeability and inflammation⁵⁰. Although we found a strong and significant
397 positive relationship between blood glucose and CCL25 levels, linking this causatively to glucose
398 homeostasis in COVID-19 requires further investigation.

399 Besides the classic chemokines, we discovered GDNF to positively associate with plasma glucose levels
400 over time. GDNF is a neurotrophic factor belonging to the transforming growth factor- β (TGF- β)
401 superfamily, which plays a key role in the nervous system, and the pathogenesis of mood disorders. GDNF
402 is a known canonical RET ligand, validated by our STRING analysis, which demonstrates a high confidence
403 interaction between GDNF and RET. While the role for GDNF in peripheral glucose metabolism is unclear,
404 another RET ligand GDF15, also belonging to the TGF- β superfamily, is known to regulate systemic
405 metabolic homeostasis, and is a correlative biomarker for metabolic syndrome^{51,52}. Moreover, GDF15
406 binds with high affinity to GDNF family receptor α -like (GFRAL), an interaction required for GDF15-RET
407 binding^{53,54} and may represent a compensatory checkpoint during conditions of high metabolic stress such
408 as SARS-CoV-2 infection. In fact, GDF15 levels are elevated in SARS-CoV-2-infected patients and are
409 significantly associated with worse clinical outcomes⁵⁵.

410 GDNF has been shown to reverse the pathological effects of hyperglycemia on enteric neuronal survival
411 via activation of the PI3K-Akt pathway⁵⁶, a signaling cascade that regulates Glut1 and Glut4 mediated
412 glucose uptake into cells^{57,58}. Recently, nutritional regulation of GDNF has been suggested, in which its
413 expression was enhanced by glucose⁵⁹. Interestingly, in protein-protein interaction analysis, besides its
414 receptors, GDNF also interacts with Neural Cell Adhesion Molecule 1 (NCAM1) with high confidence,
415 confirming its potential role as a chemotaxis factor, especially for epithelial and enteric neural cells
416 essential for maintaining gut wall integrity^{60,61}. Since GDNF levels correlate inversely with plasma glucose
417 in T2D patients⁶², and have been shown to improve glucose tolerance and increase β -cell mass in vitro
418 and in vivo⁶³. The increased GDNF in our studies is likely an adaptive response. The precise role of GDNF
419 in COVID-19 related pathologies is unknown but may represent a compensatory immunometabolic
420 adaptation related to changes in energy metabolism in infected AGMs. In conclusion, we show SARS-CoV-
421 2 infected AGMs exhibit many virologic, immunologic and metabolic features observed in infected
422 humans and may represent a useful model to interrogate early, and persistent factors associated with

423 metabolic PASC. We identify GDNF and several plasma analytes, dominated by chemokines, that are
424 associated with hyperglycemia over several months p.i. We provide leads involving inflammatory
425 processes, as well as potential dysregulated liver glucose homeostasis, that warrants further investigation
426 to improve our understanding of how early inflammatory and metabolic responses against SARS-CoV-2
427 infection influence its severity and long-term metabolic complications. Such understanding may provide
428 the basis for exploring autoantibodies of chemokines/metabolic-regulating factors to treat and prevent
429 long-COVID. Since mRNA vaccines may elicit an immune response within hours and induce humoral
430 immunity within 5 days of administration⁶⁴, it is plausible that such responses may offer favorable
431 immunometabolic benefits prior to multiorgan distribution of SARS-CoV-2 produced by viral shedding
432 from the lungs into body fluids. Intriguingly, in an observational cohort study of 15 million people COVID-
433 19 vaccination reduced the incidence of long-term diabetes significantly⁶⁵. Our observation of better
434 glycemic control in the vaccinated group requires further studies to evaluate the potential benefits of
435 vaccination during the acute phase of infection⁶⁶.

436 **4. Methods**

437 **4.1 Study approval**

438 This study was reviewed and approved by the institutional Animal Care and Use Committee of Tulane
439 University. Animals were cared for in accordance with the NIH's *Guide for the Care and Use of Laboratory*
440 *Animals*. Procedures for handling and BSL2, and BSL3 containment of animals were approved by the
441 Tulane University Institutional Biosafety Committee. The Tulane National Primate Research Center is fully
442 accredited by the Association for Assessment and Accreditation of Laboratory Animal Care.

443 **4.2 Animals and infection procedure**

444 Procedures are in accordance with those we have previously reported²⁵. Briefly, we exposed 15 African
445 green monkeys (*Chlorocebus aethiops sabaeus*; 13 females, 2 males) aged 7.92 to 19.32 years, to SARS-
446 CoV-2 strain 2019-nCoV/USA-WA1/2020 at ~1e6 TCID50 via intranasal (0.5mL/nares), and intratracheal

447 (1mL) routes. Except for one (PB24), obtained from the NIH via the Wake Forest breeding colony, all
448 animals were of Caribbean origin (wild-caught) purchased from Bioqual (MD, USA). Ten animals (9
449 females) were studied during the natural course of SARS-CoV-2 infection and 5 animals (4 females)
450 received the BNT162b2 Pfizer/BioNTech vaccine 4-days post infection. Animals were monitored daily for
451 18 weeks. Animals were anesthetized with telazol tiletamine hydrochloride and zolazepam hydrochloride
452 (5 to 8 mg/kg intramuscular; Tiletamine–zolazepam, Zoetis, Kalamazoo, MI) and buprenorphine
453 hydrochloride (0.03 mg/kg).

454 **4.3 Blood chemistry and hematological analysis**

455 A comprehensive biochemistry analysis on blood EDTA-collected serum was performed at the TNPRC
456 clinical lab, using the Beckman Coulter AU480, according to the manufacturer's instructions. The panel
457 included albumin, glucose, cholesterol, triglycerides, aspartate aminotransferase (AST), alanine
458 aminotransferase, (ALT), blood urea nitrogen (BUN), alkaline phosphatase (ALP), and lactate
459 dehydrogenase (LDH). Hematological analysis on whole blood, including absolute quantification, and
460 percentages of neutrophils, monocytes, lymphocytes, and eosinophils were performed on the Sysmex NX-
461 V-1000 Hematology Analyzer.

462 **4.4 Virological analysis: Genomic and subgenomic RNA quantitation**

463 Pre- and post-exposure samples of mucosal swabs (nasal and pharyngeal brush) were obtained for
464 virological analysis. For RNA extraction from swab samples 200µL of 1× DNA/RNA Shield (Zymo) was
465 added to each swab and RNA was extracted using the Zymo Quick RNA Viral Kit (Zymo) according to
466 manufacturer's instructions. Samples were eluted in 50µL volume. Subgenomic and genomic SARS-CoV-
467 2 mRNA were quantified as previously described using appropriate primers/probes, and cycling
468 conditions^{67,68}, with the exception that, the probe for detection of the subgenomic nucleocapsid RNA
469 was modified as described⁶⁹. Briefly, qPCR analysis was conducted on a QuantStudio 6 (Thermo

470 Scientific, USA) using TaqPath master mix (Thermo Scientific, USA). Signals were compared to a standard
471 curve generated using in vitro transcribed RNA of each sequence diluted from 10^8 down to 10 copies.
472 Positive controls consisted of SARS-CoV-2 infected VeroE6 cell lysate. Viral copies per swab were
473 calculated by multiplying mean copies per well by volume of swab extract.

474 **4.5 Vaccination**

475 10 animals were studied during the natural course of SARS-CoV-2 infection and 5 animals receive one
476 dose of the BNT162b2 (Pfizer/BioNTech) vaccine 4 days post infection.

477 **4.6 Antibody response analysis**

478 Detection of SARS-CoV-2 spike (S), spike S1 RBD (S1 RBD), and nucleocapsid (N) proteins were performed
479 using MSD S-PLEX CoV-2, MSD S-PLEX CoV-2 S1 RBD and MSD S-PLEX CoV-2 N assay kits for IgA, IgM, and
480 IgG antibodies (Meso Scale Discovery, Rockville, MD). The assays were done according to the
481 manufacturer's instructions. Plasma samples were diluted 1/500-fold in the assay buffer provided. The
482 plates were read using the MESO QuickPlex SQ 120MM reader. Sample quantitation was achieved using
483 a calibration curve generated using a recombinant antigen standard. During analysis, any concentrations
484 below the limit of detection (LOD) were assigned the LOD value, and any concentrations above the highest
485 calibration standard were assigned its value.

486 **4.7 Hypersensitive T cell response**

487 Cell Stimulation Cocktail (eBioscience) containing phorbol 12-myristate 13-acetate (PMA), ionomycin,
488 brefeldin A and monensin were used $\times 1$ to stimulate PBMCs. Briefly, PBMCs were thawed, stimulated,
489 and incubated for 6 hours in supplemented RPMI-1640 medium [10% human serum,
490 penicillin/streptomycin (Invitrogen), 2 mmol/l L-glutamine (Invitrogen, Carlsbad, California, USA)] at 37°C,
491 5% CO₂. PBMCs were stained with Zombie Aqua (Biolegend, San Diego, CA) for live/dead cell gating, and
492 surface stained using the following pre-titrated antibodies from BD Biosciences (San Jose, California, USA)

493 or BioLegend: CD45-PerCP (BD, clone D058-1283), CD3- BV650 (BD, clone SP34-2), CD4- BV786 (BD, clone
494 L200), CD8- BUV737 (BD, clone RPA-T8), CD28- BV605 (clone CD28.2), CD95- BV711 (clone DX2), CD69-
495 PE-CF594 (clone FN50) and CD107a- BUV395 (BD, clone H4A3). Except for CD45-PerCP (NHP), all
496 antibodies have verified reactivity to humans, and cross reactivity with NHPs. Cells were fixed and
497 permeabilized using BD Fixation/Permeabilization solution (BD Biosciences) and stained for intracellular
498 cytokines using the following antibodies from BioLegend: IL-2- BB700 (clone MQ1-17H12), TNF- APC (clone
499 MAb11), IFN γ - PE-Cy7 (clone 4S.B3), IL-4- BV421 (clone 8D4-8), IL-17A- PE (clone BL168). Cells were fixed
500 in 2% PFA and acquired on a BD FACSymphony™ by the Flow cytometry core (TNPRC). Data were analyzed
501 using FlowJo software, version 10.8.1 (Tree Star Inc., Ashland, Oregon, USA) or used for Spectre analysis
502 in R (v4.2.1).^{70,71}

503 **4.8 Plasma analyte (OLINK) analysis**

504 Plasma analytes were analyzed using a proximity extension assay (Olink, Proteomics)⁷². Plasma was
505 collected from freshly collected blood in EDTA anticoagulant tubes and centrifuged at 650 \times g for 10
506 minutes. The plasma was aliquoted to minimize freeze-thawing and stored at -80°C. Samples were
507 processed at the OLINK Analysis Services Lab in Waltham (MA, USA) or within the High Containment
508 Research Performance Core (TNPRC). The Olink® Target 96 inflammation panel (Olink Proteomics AB,
509 Uppsala, Sweden) was used to measure proteins following manufacturer's instructions. In brief, pairs of
510 oligonucleotide-labeled antibody probes are mixed with plasma to allow binding to their targeted protein.
511 Oligonucleotides will hybridize in a pair-wise manner if the two probes are brought in proximity. Reaction
512 mixture containing DNA polymerase allows proximity-dependent DNA polymerization and creating a
513 unique PCR target sequence. The amplified DNA sequence is quantified, quality controlled and normalized
514 using internal control and calibrators. Protein levels are expressed as arbitrary units NPX values.

515 **4.9 Insulin determination**

516 Insulin plasma levels were measured using the monkey insulin ELISA kit (AssayGenie, Dublin
517 Ireland). The essay was conducted according to manufacturer's instructions using 1/8 diluted samples.

518 **4.10 RNA Scope Analysis**

519 Formalin-fixed paraffin embedded (FFPE) tissues were collected at necropsy and sectioned at 5 μ m. In-
520 situ hybridization (ISH) was conducted using RNAscope[®] 2.5 High Definition (HD) RED Assay Kit (Advanced
521 Cell Diagnostics), according to the manufacturer's directions. Briefly, FFPE tissue sections were
522 deparaffinized in xylenes and dried, followed by incubation with hydrogen peroxide. Heat-mediated
523 antigen retrieval was carried out in a steamer with the provided kit buffer. Samples were treated with the
524 kit-provided protease and hybridized with the V-nCoV2019-S probe in a HybEZ oven (Advanced Cell
525 Diagnostics). All washes were performed with the kit wash buffer. Signal amplification was accomplished
526 with six successive AMP solutions and the kit-provided Fast Red dye. Slides were counterstained with
527 hematoxylin. Control slides were included in every run to confirm specificity of staining and assess
528 background.

529 For imaging and quantitation, brightfield images were acquired using the Axio Observer 7 (Zeiss),
530 equipped with ZEN blue edition software (v3.6.096.08000). Images were subjected to brightness and
531 contrast enhancement in Photoshop (Adobe, v24.4.0) applied to the entire image. Slides were scanned
532 with the Axio Scan.Z1 digital slide scanner (Zeiss). Scanned files were analyzed with HALO (Indica Labs,
533 v3.4.2986.151) algorithm ISH (v4.1.3) for a non-biased measurement of copies on a cell-by-cell basis. The
534 ISH algorithm was run in annotations specific to the tissue section of interest, using hematoxylin-stained
535 nuclei to quantify the number of cells and Fast Red intensity and size accounted for positivity of the probe
536 within the cell. Each resulting count was assessed individually, and all false positives were excluded.

537 **4.11 SARS-CoV-2 immunohistochemistry**

538 Formalin-fixed, paraffin-embedded tissue sections were deparaffined using standard procedures followed
539 by heat (microwave) induced antigen retrieval in a high pH solution (Vector Labs H-3301), rinsed in hot
540 water and placed in heated low pH solution (Vector Labs H-3300) and allowed to cool to room
541 temperature. Sections were washed in phosphate buffered saline, blocked with 10% normal goat serum
542 (NGS) for 40 minutes and incubated for 60 minutes with a 1:1000 dilution of guinea pig anti-SARS antibody
543 (BEI NR-10361). The slides were incubated with a 1:1000 diluted goat anti-guinea pig secondary Alexa
544 Fluor 488 conjugated antibody (Invitrogen A11073) for 40 minutes. Nuclei were labelled with DAPI (4',6-
545 diamidino-2-phenylindole). Images were taken with a Zeiss Axio.Z1 Slide Scanner and analyzed using HALO
546 HighPlex FL v4.1.3 (Indica Labs).

547

548 **4.12 Periodic Acid Schiff**

549 Slides were deparaffinized on an auto Stainer (Histology Core, TNRPC) and subjected to Periodic Acid Schiff
550 Hematoxylin stain (PASH) for glycogen. Briefly, slides were either treated with a 1% solution of diastase
551 (control) or not, and samples oxidized with 1% Periodic Acid (Poly Scientific) for 10 minutes, washed,
552 placed in Schiff's reagent for 10 minutes, counterstained with hematoxylin and eosin (H&E), and cover
553 slipped using standard procedures. Stain intensities were quantified using automated settings in
554 ImageJ1.53t (Fiji)⁷³.

555

556

557 **4.13 Histopathological scoring**

558 All relevant tissue samples were fixed, paraffin-embedded and stained with H&E for histopathological
559 analysis of inflammation, fibrosis, or other relevant pathologies by an experienced, board-certified
560 pathologist.

561 **4.14 Bioinformatics (Protein-Protein interactions & pathway analysis)**

562 Protein-protein interaction analysis was performed mainly using STRING (Search Tool for the Retrieval of
563 Interacting Genes/Proteins (v 11.5)⁷⁴. The *Homo sapiens* database was selected for the input data search.
564 Unless otherwise noted, the default settings were used, including 10 as the maximum number of
565 interactors to show, and a medium confidence of 0.400. The top 3 functional enriched networks with FDR
566 <0.05 are reported. Functional classification of proteins was determined using PANTHER (Protein Analysis
567 Through Evolutionary Relationships; v 17.0; <http://www.pantherdb.org/>) classification system^{75,76}.
568 BioGRID (v 4.4; <https://thebiogrid.org/>), a biomedical interaction repository, was also used to validate
569 interactions between entries.

570 **4.15 Spectre analysis**

571 Spectre analysis was conducted as previously published⁷⁰. The "CSV - Scale values" for each cell population
572 of interest were exported from FlowJo. The exported data were analyzed using the Spectre R package
573 workflow. Briefly, the flow cytometry standard (FCS) data were arcsinh transformed and clustered with
574 FlowSOM. The clustered data were down sampled, and dimensionality reduction was performed with
575 UMAP. The clusters were manually labelled as desired. Finally, the clusters were used to generate
576 summary statistics, which were used for further statistical analysis.

577 **4.16 Statistical analysis and packages**

578 R was used to perform statistical analysis, principal components analysis, and ggplot2 (v 3.3.3) was used
579 to create principal component plot, heat maps, and correlation matrices. To visualize the longitudinal
580 changes in antibody levels over time, the data were log10-transformed. We employed the LOESS (Locally

581 Estimated Scatterplot Smoothing) regression method of the ggplot2 package for its ability to create
582 smooth curves that effectively capture underlying trends and variations in the data. By utilizing ggplot2 in
583 R, we enhanced scatterplots with these smooth LOESS regression curves, providing a clear representation
584 of the evolving trends in both variables over time.

585 Additional graphs were created using GraphPad Prism (v 9.0). Wilcoxon matched pairs signed-rank test
586 was used for paired analysis, Spearman's rank correlation tests for correlation, and PERMANOVA (in R;
587 package vegan) for non-parametric ANOVA with permutations. Statistical significance is indicated by p<
588 0.05.

589 **Acknowledgements**

590 This study was supported by the NIH-funded base grant to the TNPRC (P51OD011104), and NIH
591 supplement (3P51OD011104-61S1). Additional support was provided by TUHS Auxiliary Endowment for
592 Excellence at TNRPC to C.S.P. NIH S10 OD026800, which was awarded to support the TNRPC Flow
593 Cytometry Core Facilities.

594

595 **Contributions**

596 J.R., J.D., R.B., T.F., R.V.B., A.B. and K.R.L. designed animal study. C.S.P. and J. R. designed laboratory study.
597 C.S.P., C.C., N.G., G.L., N. J. M., P. D., K.M.G., L. H., K. W., M.F., K. M. G. and K.B. participated in tissue
598 acquisition and processing and performed experiments. C.S.P., C.P., A.S. and T.F., M A-M., R. T., and P. D.
599 analyzed data. J. C. M. provided significant and substantive data analysis support. C.S.P., J.R., C.P., A.S.,
600 R.T., and T.F. interpreted data. C.S.P., J.R., C.P., M. A-M., A.S., C.M., and T.F. provided significant
601 intellectual input. C.S.P. wrote the manuscript. J.R., C.P. and M. A-M. provided critical, and substantive
602 intellectual editing. C.S.P., C.P., T.F., A.S., and M. A-M. prepared manuscript figures. C.K provides quality

603 assurance and data management tasks. P.D., N. J. M., C. C., R.T., and T.F edited manuscript. All authors
604 approved the manuscript.

605

606

607

608

609

610

611

612

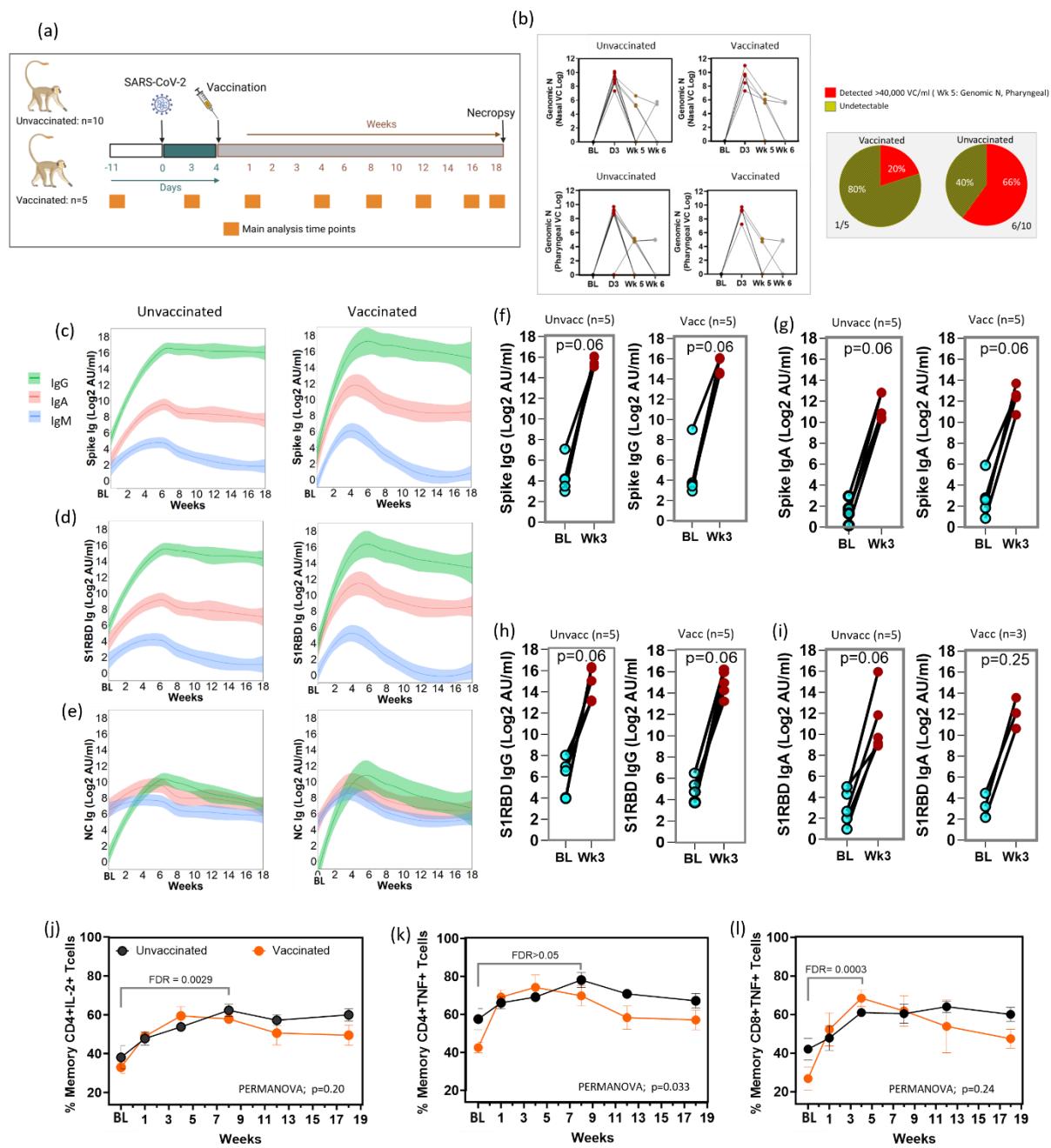
613

614

615

616

617

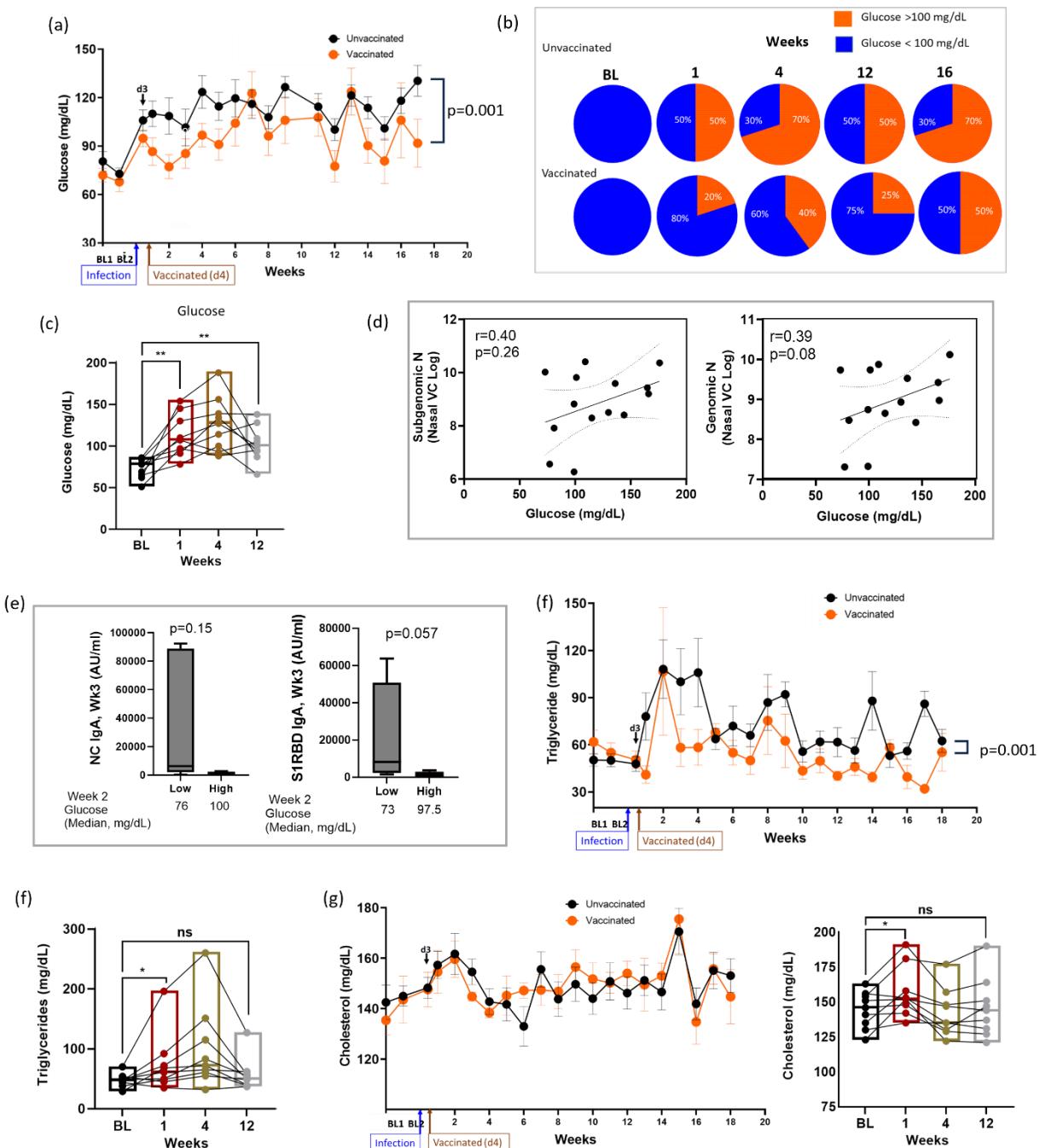

618

619

620

621

622 **Figures**

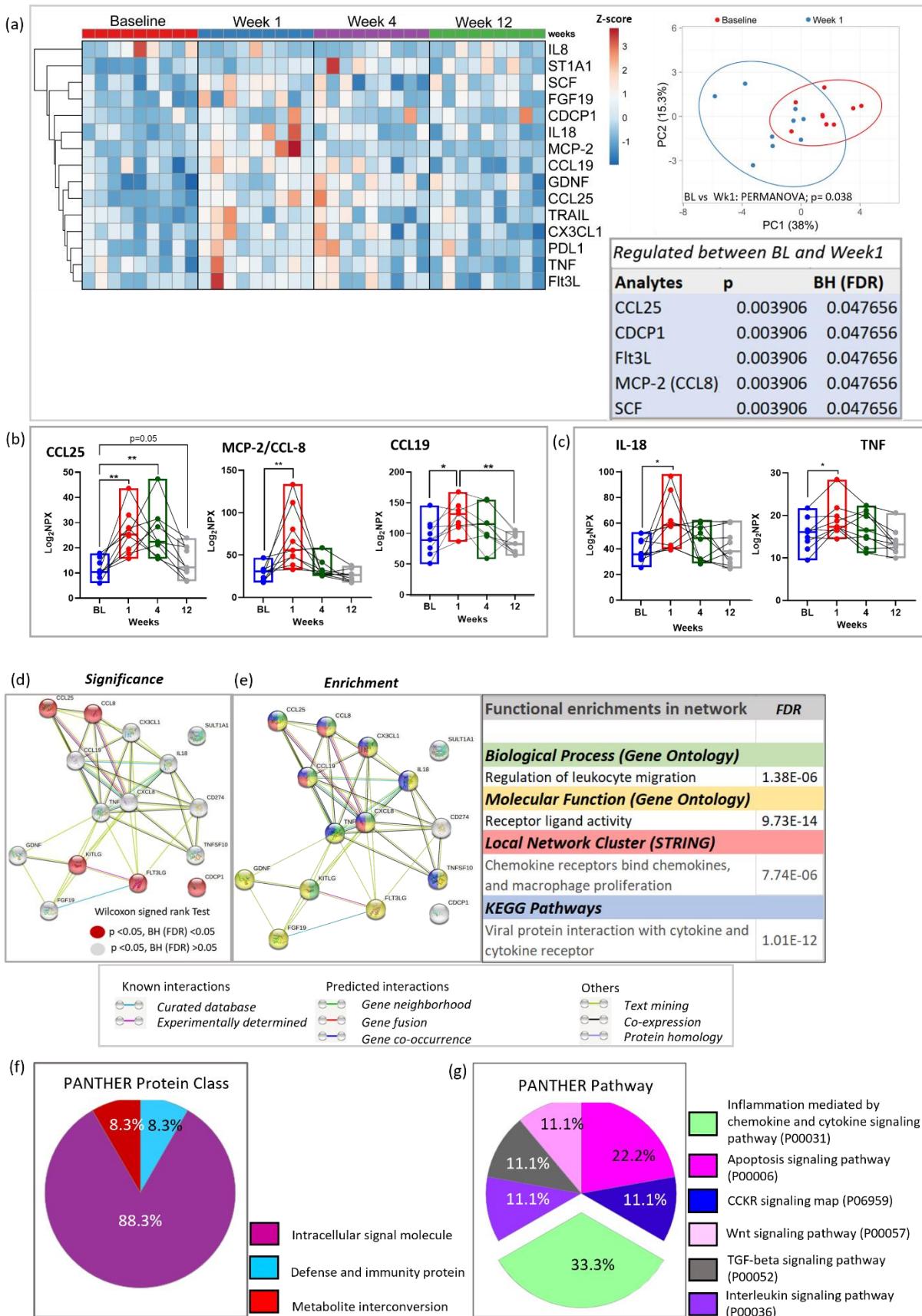


623

624 **Figure 1. SARS-CoV-2 infection of AGM is associated with a strong virologic, immunologic and**
 625 **hypersensitive response. (a) An overview of the study design and major analysis timepoints. (b) Kinetics**
 626 **of nasal and pharyngeal SARS-CoV-2 genomic nucleocapsid (N) RNA in unvaccinated and vaccinated**

627 animals (left), and pie charts showing the percentage of animals with detectable pharyngeal genomic RNA
628 in the vaccinated vs unvaccinated group at week 5 (right). (c) Temporal assessment of antibody responses
629 against spike, (d) S1RBD, and (e) nucleocapsid proteins in unvaccinated and vaccinated animals. (f)
630 Comparative time point analysis (Baseline, BL, vs week, Wk, 3) of IgG, and (g) IgA responses against Spike
631 protein. (h) Comparative time point analysis (Baseline, BL, vs week, Wk, 3) of IgG, and (i) IgA responses
632 against S1RBD protein in unvaccinated and vaccinated animals. (j) The percentage of memory CD4+ T cells
633 expressing IL-2, and (k) TNF α over time in response to PMA/ionomycin stimulation. (l) The percentage of
634 memory CD8+ T cells expressing TNF α over time in response to PMA/ionomycin stimulation. Wilcoxon
635 matched pairs signed rank test with Benjamini-Hochberg correction (FDR) was used to compare time
636 points. PERMANOVA was used for temporal comparisons between the unvaccinated and the vaccinated
637 group. Error bars represent SEM. BL: 1.5 weeks pre-infection.

638



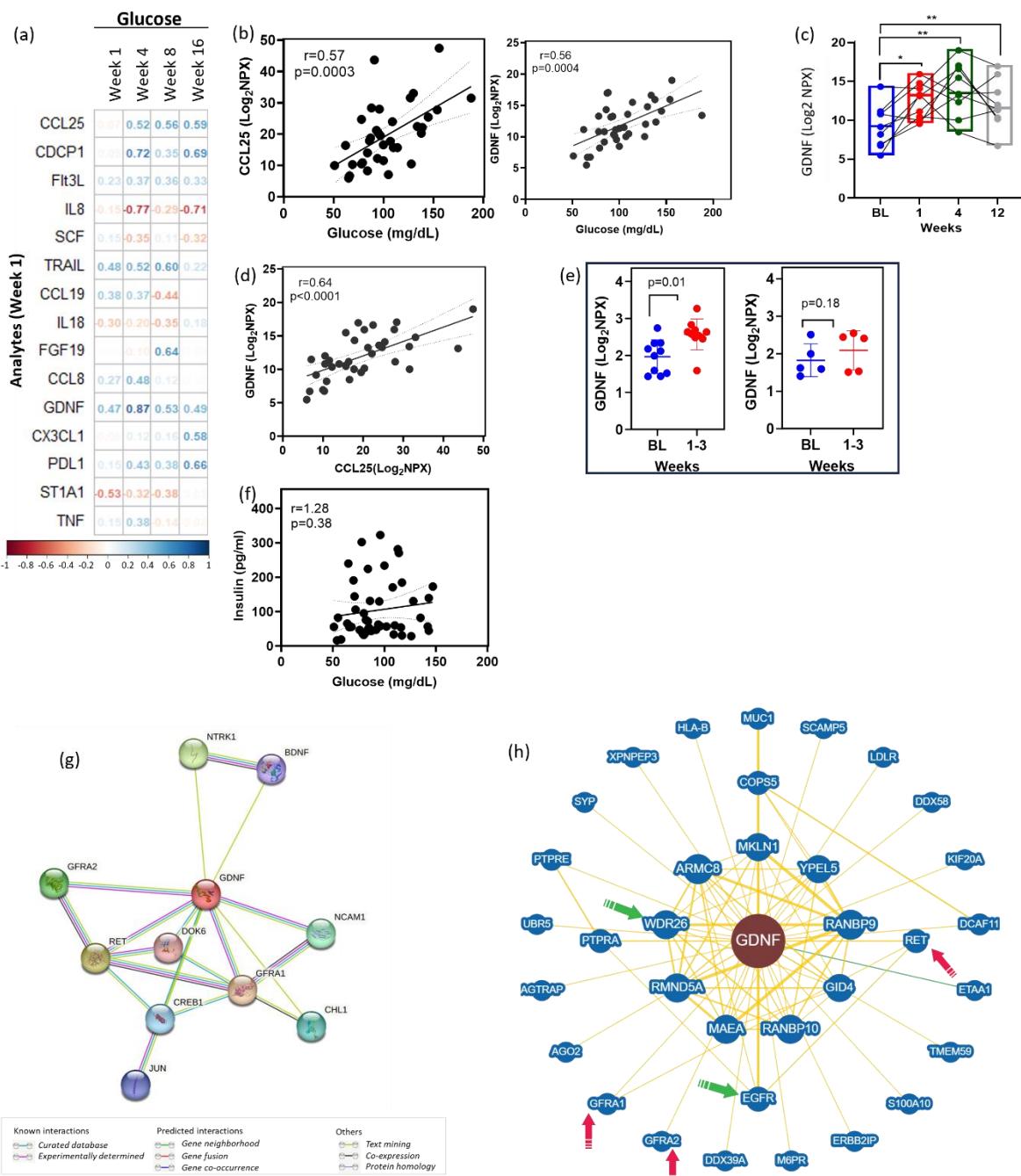
639

640 **Figure 2. SARS-CoV-2 infection of AGM is associated with elevation and persistence of blood glucose**
 641 **concentration even after undetectable virus.** (a) Levels of plasma glucose following infection over time.
 642 PERMANOVA analysis was used for statistical analysis to examine the cumulative difference between
 643 glucose levels in the two groups over time. (b) Pie charts showing the proportion of animals with glucose
 644 >100 mg/dL at baseline (BL) and week 1, 4, 12 and 16. (c) Glucose levels at BL and remained so at week

645 12 post-infection. Analysis conducted using Wilcoxon matched pairs signed rank test. (d) Pearson
646 correlation between glucose levels and sub genomic nucleocapsid (N) and genomic N at day 3 post
647 infection. (e) IgA response against N and S1RBD at week (Wk) 3 against unvaccinated animals with low
648 and high glucose in the preceding week (week 2). (f) Triglyceride levels over time between to the
649 vaccinated and unvaccinated group. PERMANOVA was used for statistical analysis (g) Total cholesterol
650 levels between the unvaccinated and vaccinated group. Key: BL1 = baseline 1 (6.5 weeks pre-infection);
651 BL2 = baseline 2 (1.5 weeks pre-infection); d3 = day 3; ns = non-significant; * = p<0.05; ** = p< 0.01. Error
652 bars represent SEM.

653

655 **Figure 3. Elevated inflammatory mediators during acute SARS-CoV-2 infection of AGM.** (a) Heat-map
656 depicts 15 plasma analytes dysregulated between baseline and week 1 during SARS-CoV-2 infection
657 ($p<0.05$). Heat colors show standardized Z-scores; red indicates highest levels of analytes, and blue
658 indicates lowest levels. Statistical significance was determined using the Wilcoxon signed rank test. PCA
659 plot confirms significant differences in analyte expression at baseline (red) and week 1 (blue). Box insert
660 shows 5 dysregulated analytes remaining significantly regulated after Benjamini-Hochberg (BH) correction
661 ($FDR<0.05$). (b) Selected chemokines and (c) inflammatory markers upregulated in plasma of AGMs
662 following SARS-CoV-2 infection. (d) STRING protein-protein interaction network based on the 15
663 significantly differentially regulated plasma proteins at week 1. Proteins significantly regulated at $p<0.05$
664 with $FDR >0.05$ are highlighted in gray. Those with $FDR<0.05$ are highlighted in red. (e) Top functionally
665 enriched networks associated with the 15 regulated plasma proteins in STRING. Proteins in biological
666 processes associated with regulation of leukocyte migration are highlighted in green. Proteins with
667 molecular functions associated with receptor ligand activities are highlighted in yellow. Proteins
668 associated with chemokine receptor binding, and macrophage proliferation are highlighted in red.
669 Proteins in KEGG pathways associated with regulation of leukocyte migration are highlighted in blue.
670 Proteins that entered the network based on close associations are denoted by gray. (f) PANTHER 17.0
671 classification of differentially regulated proteins based on protein class, and (g) pathway.

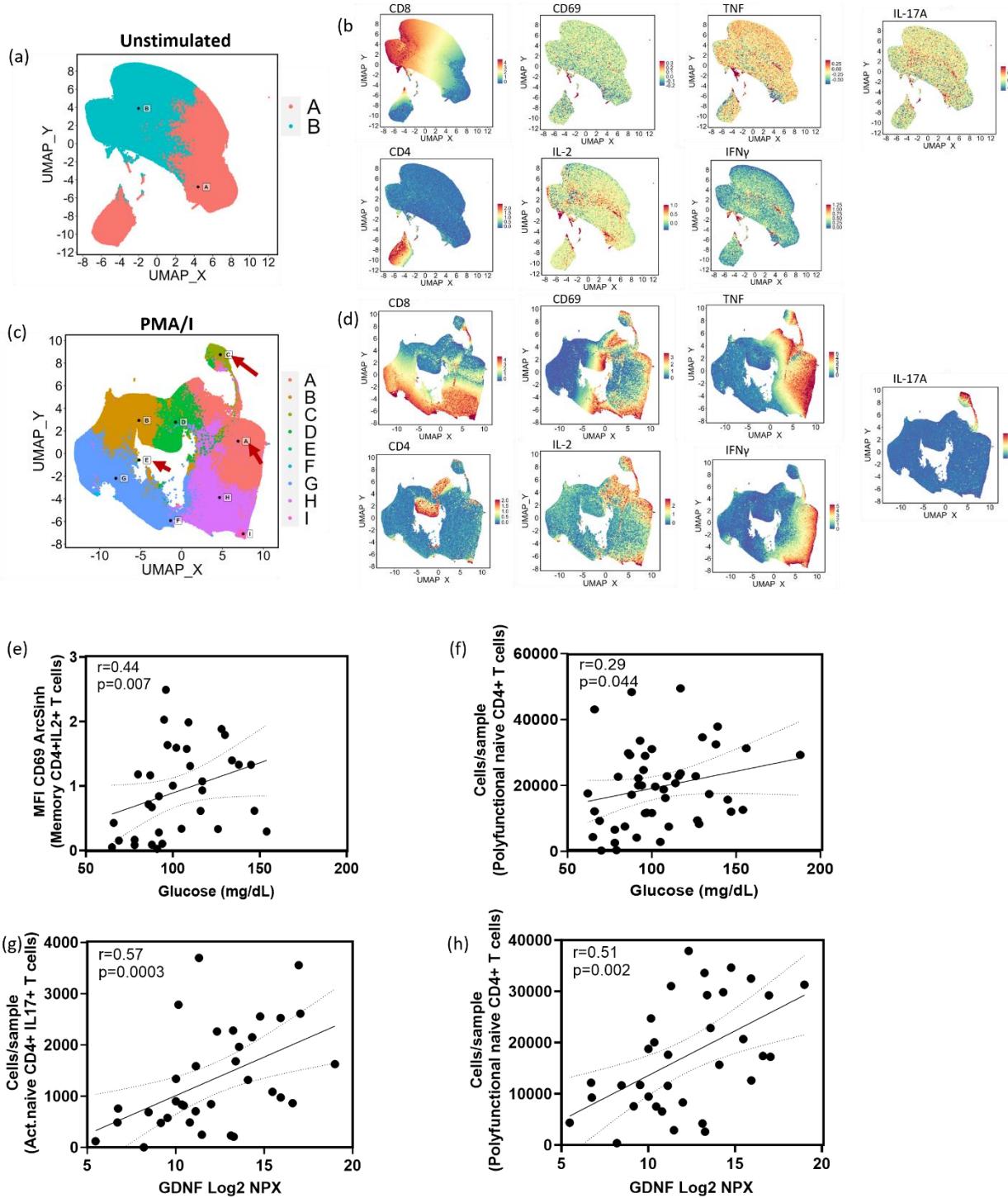

672

673

674

675

676

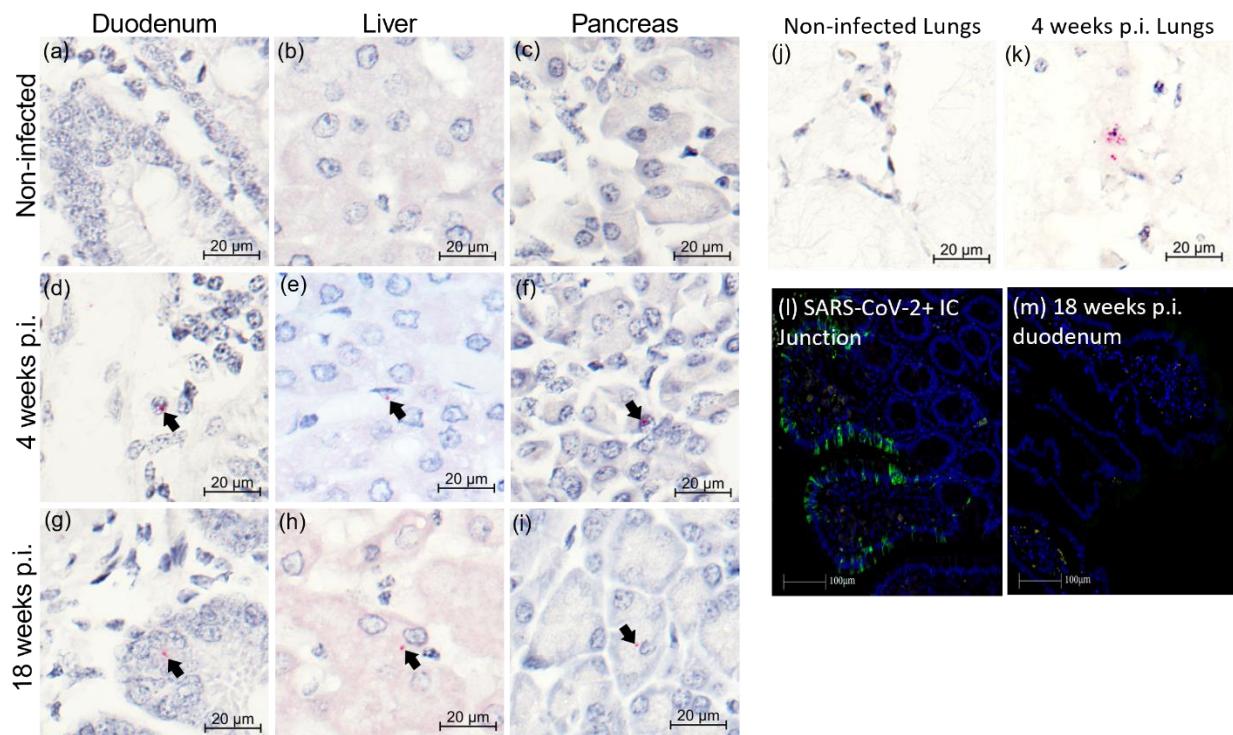


677

678 **Figure 4. Plasma levels of GDNF and CCL25 correlate with blood glucose.** (a) A correlation matrix
 679 depicting the r values between SARS-CoV-2-modulated analytes at week 1, and plasma glucose
 680 concentrations at various timepoints. Blue-colored correlations = positive correlations and red-colored
 681 correlations = negative correlations (raw p value correlation matrix in Fig. S2). Spearman's rank correlation
 682 was used for statistical analysis. (b) Spearman's correlations between plasma CCL19 or GDNF with glucose

683 across baseline, week 1, 4 and 12 in the unvaccinated group. (c) Plasma GDNF in AGMs at various
684 timepoints. Statistical significance was determined using the Wilcoxon signed rank test; * p<0.05, **
685 p<0.01. (d) Spearman's correlations between plasma CCL19 and GDNF across baseline, week 1, 4 and 12
686 in the unvaccinated group. (e) Comparative analysis showing plasma GDNF levels in unvaccinated (left
687 panel) and vaccinated (right panel) animals at baseline (BL) and weeks 1-3. (f) Spearman correlation
688 between blood glucose and insulin across baseline, week 1, 4, 8, 16 and 12 in the unvaccinated group. (g)
689 Unbiased STRING analysis, using custom setting with GDNF as the sole input. (h) BioGRID protein-protein
690 analysis tool using customs settings and *Homo sapiens* database used to validate GDNF interactions
691 (proteins of interest highlighted by arrows).

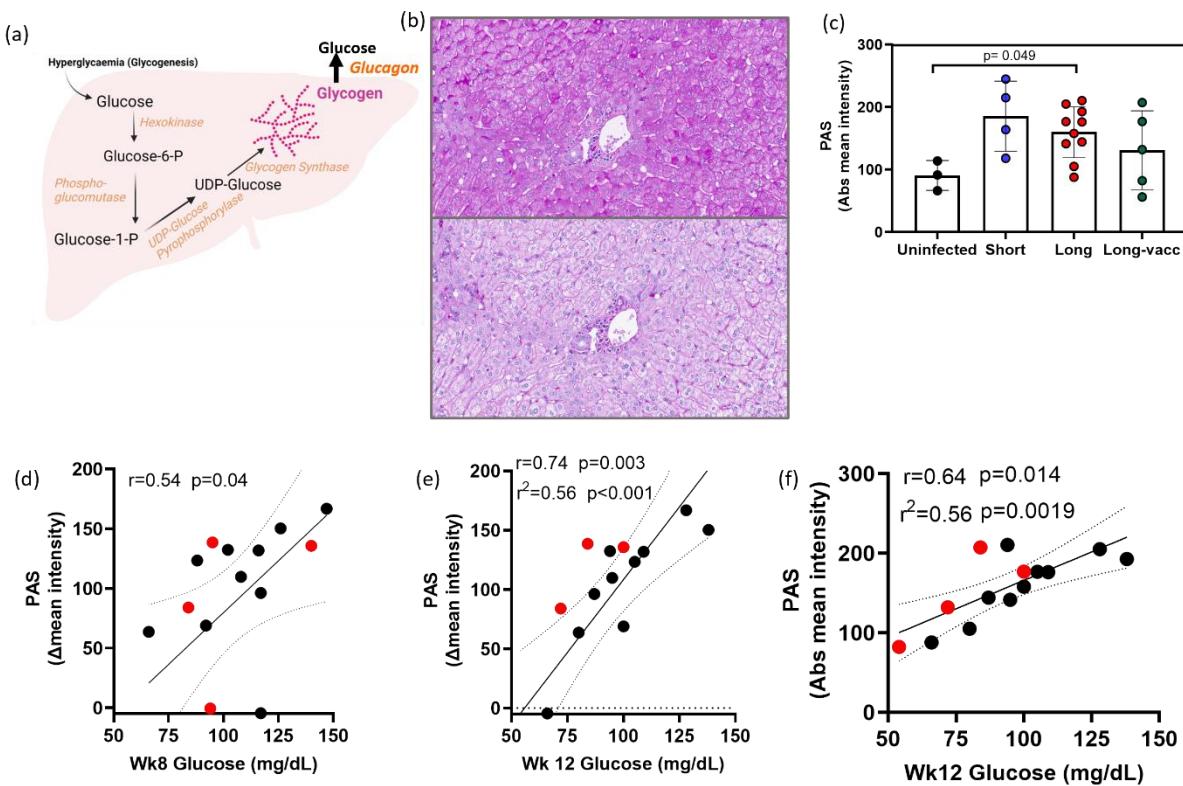
692



693

694 **Figure 5. Multi-level analysis by Spectre identifies invitro-generated polyfunctional CD4 T cell**
 695 **populations correlating with plasma glucose and GDNF levels. (a) UMAP plot showing total CD4 (cluster**
 696 **A) and CD8 (cluster B) T cells in unstimulated PBMCs. (b) UMAPS showing expression of selected cell**

697 surface phenotypic, and inflammatory markers in unstimulated PBMCs. (c) UMAP plot showing clusters
698 A-I (see cluster details in Fig. S4) within the CD4 and CD8 T cell populations of PMA/I treated PBMCs. (d)
699 UMAPS showing expression of selected cell surface phenotypic, and inflammatory markers in PMA/I
700 stimulated PBMCs. (e-f) Spearman correlations between blood glucose levels in unvaccinated animals
701 and polyfunctional populations. (g-h) Spearman correlations between plasma GDNF levels in unvaccinated
702 animals and polyfunctional populations.


703

705 **Figure 6. Persistence of SARS-CoV-2 RNA in tissues of AGMs up to 18 weeks post infection.** (a-c)
706 Representative images of RNAscope RED using the SARS-Spike (S) probe in duodenum, liver, and pancreas
707 in non-infected animals, (d-f) 4 weeks post infection (p.i.), and (g-i) 18 weeks p.i. RNAscope RED was used
708 to visualize the SARS-S expression frequency in the tissues, counterstained with hematoxylin. Black arrows
709 note the presence of SARS-S copies as red dots by colorimetric RNAscope. (j-k) Representative validation

710 images of RNAscope RED using the SARS-S probe in lungs of non-infected, and 4 weeks p.i. animals. Tissues
711 were counterstained with hematoxylin. (l-m) Fluorescent immunohistochemistry in a SARS-CoV-2 positive
712 control (l) and a representative animal 18 weeks p.i. (m). Blue = DAPI; Green = anti-SARS antibody.

713

714

715 **Figure 7. Liver glycogen levels and relationship with blood glucose.** (a) A model of liver glucose
716 homeostasis during SARS-CoV-2 infection. Elevated blood glucose triggers glycogenolysis, which stores
717 glucose into glycogen. Increased glucagon levels in SAR-CoV-2 infection stimulates the conversion of
718 stored liver glycogen back to glucose perpetuating a vicious cycle. (b) Representative image of Periodic
719 acid-Schiff staining of AGM liver at 18 weeks post infection (p.i.) without diastase (upper panel), and with
720 diastase (lower panel). (c) Glycogen levels in livers from uninfected AGMs, 4-week p.i (short term) and at
721 18-week p.i (long term unvaccinated or vaccinated). (d-f) Spearman's correlation between blood glucose
722 at various weeks and hepatic glycogen at 18 weeks p.i. in unvaccinated (black dots) or vaccinated (red

723 dots). Intensity of stain was quantified as either delta mean intensity (difference between diastase
724 treatment and untreated), or absolute intensity.

Characteristics	Study population	Unvaccinated	Vaccinated (Pfizer)	<i>p</i>
N	15	10	5	
Sex (F/M)	13/2	9/1	4/1	
Age (years), median (min-max)	8.970 (7.92 - 19.32)	8.97 (7.92 -17.92)	8.97 (7.92-19.32)	0.53
Weight (Kg) (min-max)	4.35 (3.75-6.55)	4.35 (3.75-5.45)	4.60 (4.15-6.55)	0.53

725

726 **Table 1.** Characteristics of the study population, and the vaccinated and unvaccinated subpopulations.

727

728

729

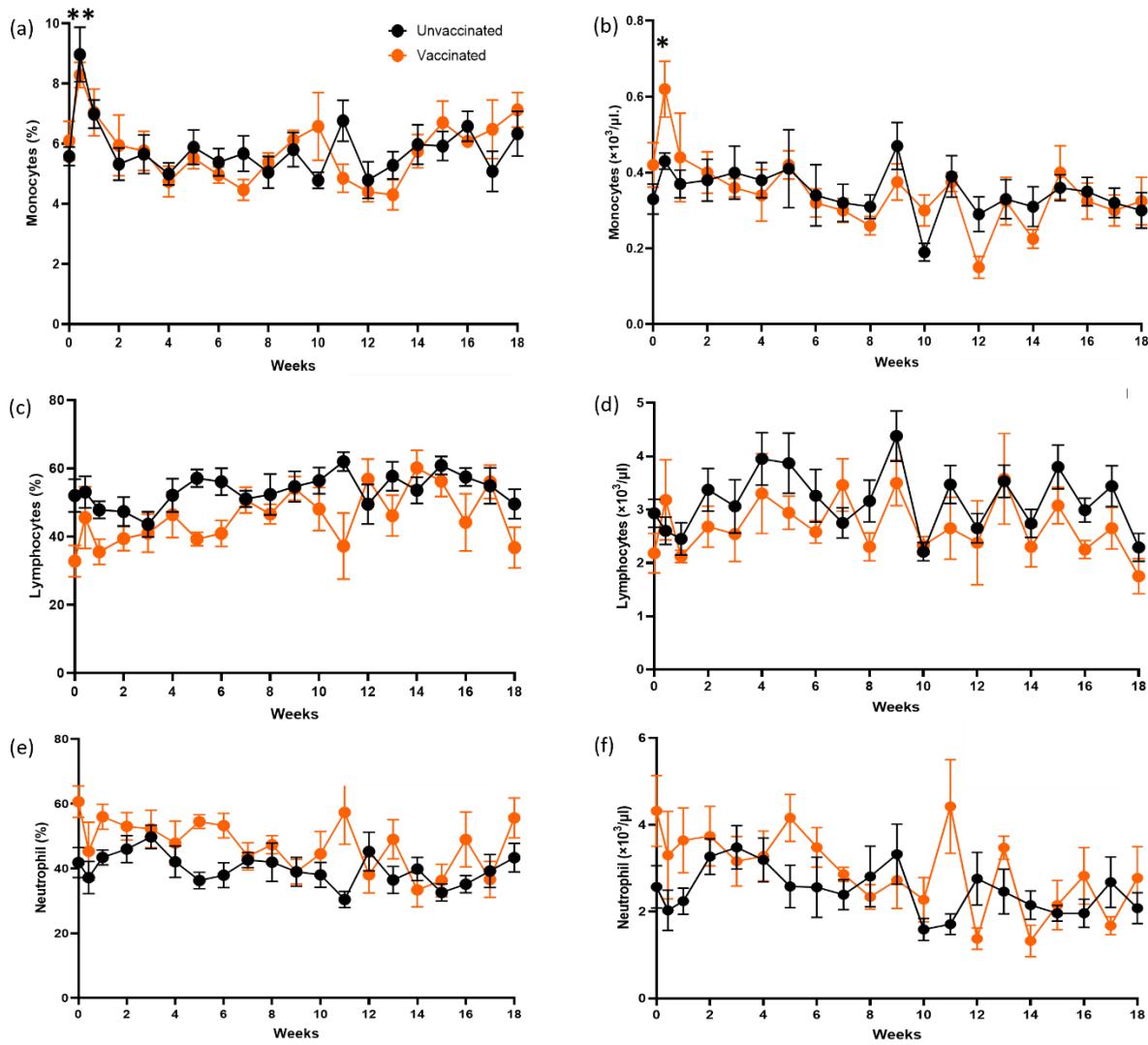
730

731

732

733

734

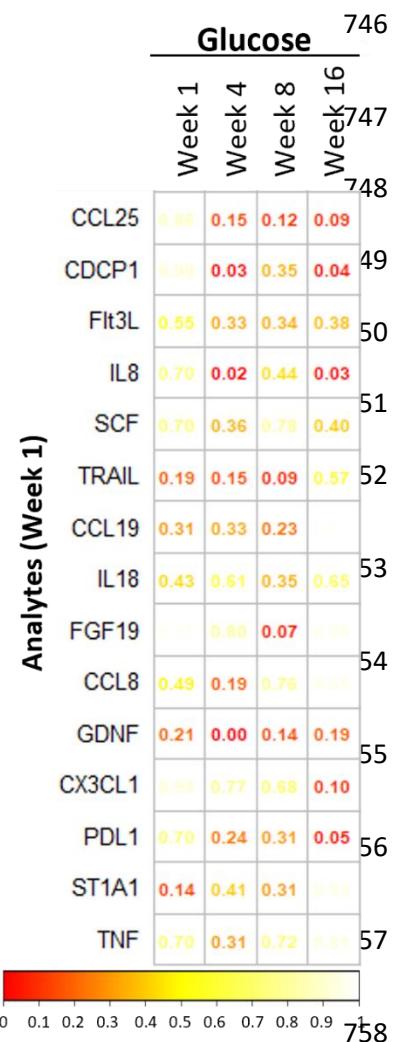

735

736

737

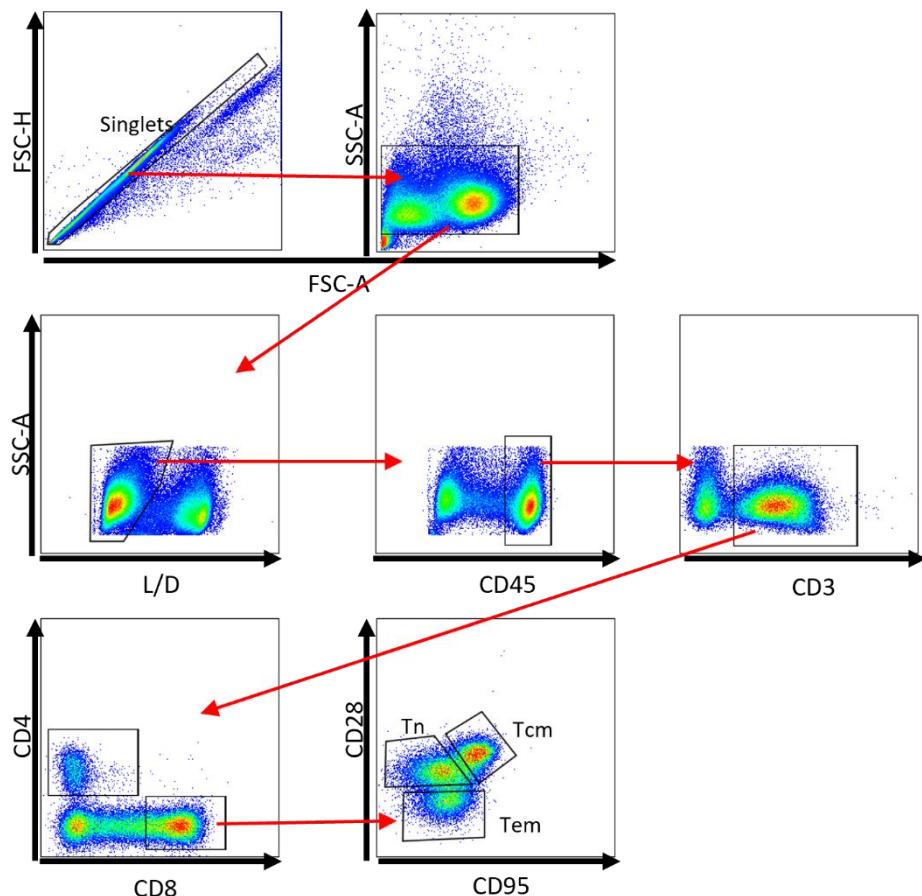
738 **Supplementary figures**

739



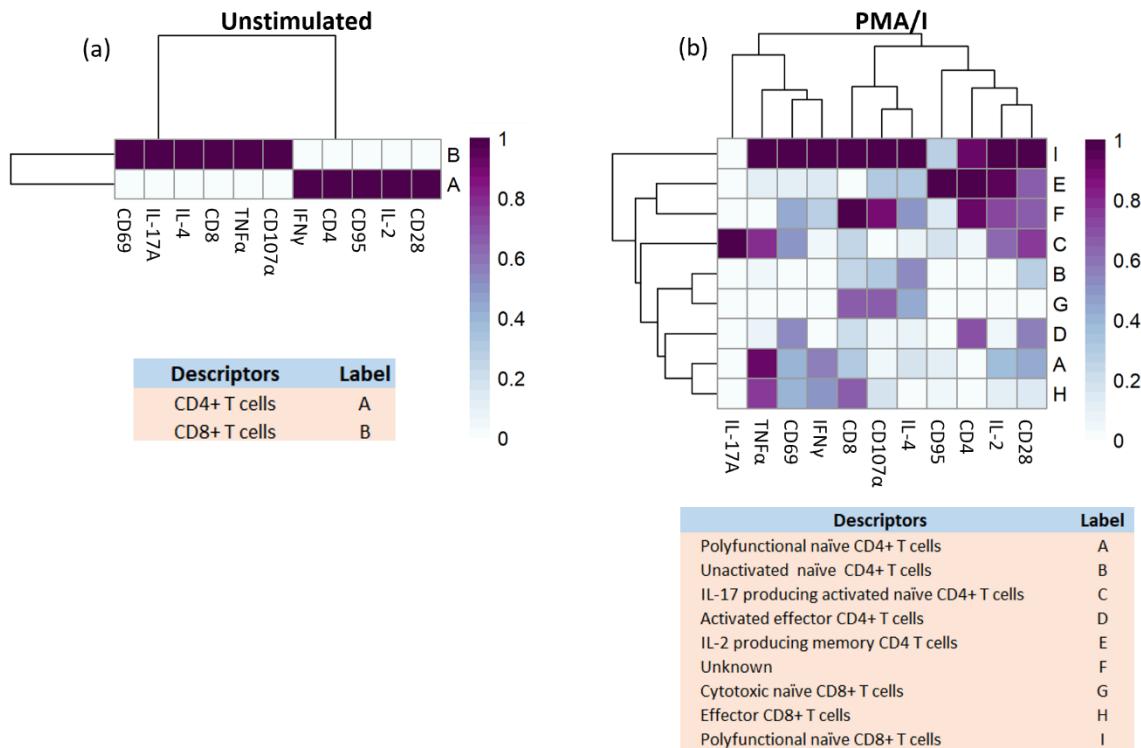
740

741 **Figure S1. Analysis of major immune cells in blood of infected AGMs over time.** (a-b) Changes in the
742 percentage and absolute counts of monocytes, (c-d) lymphocytes, and (e-f) neutrophils in SARS-CoV-
743 2infected vaccinated or unvaccinated AGMs. * $p<0.05$; ** $p<0.01$.


744

745

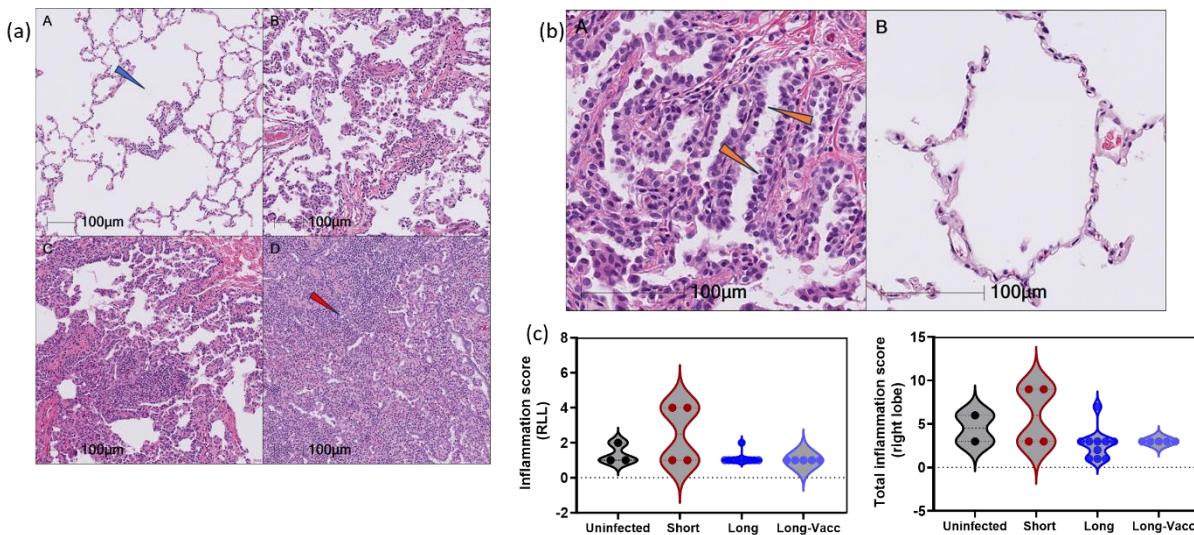
Figure S2. Correlation analysis between blood glucose and analytes regulated at week 1 in unvaccinated animals.


Correlation matrix depicting the correlations (p values) between SARS-CoV-2-modulated analytes at week 1, and plasma glucose concentrations at specific timepoints. Spearman's rank correlation was used for statistical analysis.

759

760 **Figure S3. Gating strategy for Spectre and T cell hypersensitivity analysis.** Red arrows show the gating
761 steps. Tn = T naive; Tcm = T central memory; Tem = T effector memory. Total memory was defined as Tcm
762 + Tem.

763

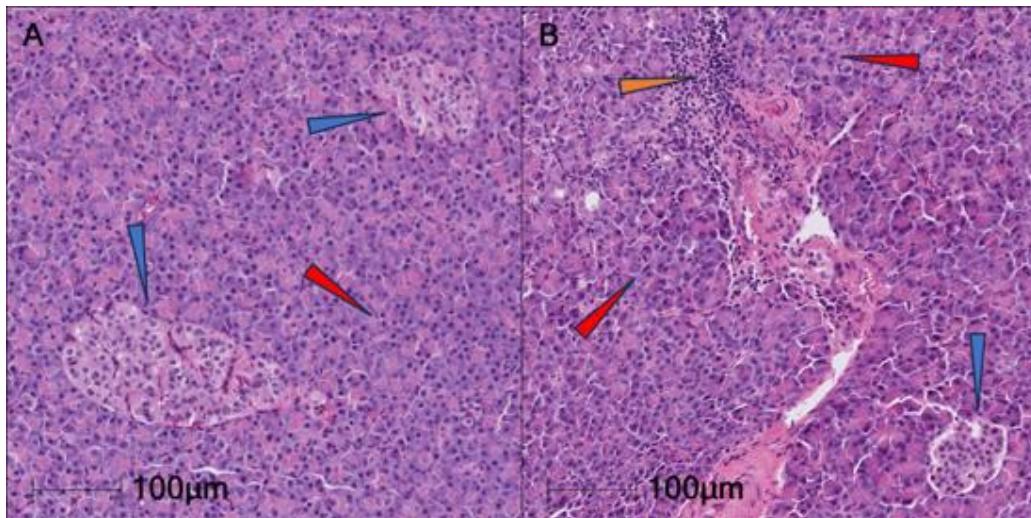


764

765 **Figure S4. Heat maps from Spectre analysis show populations in untreated PBMCs and PMA/I treated**
766 **cells.** The heatmaps used to analyse and identify the unstimulated (a) and PMA/I (b) cell populations
767 presented in Fig. 5a and 5b, respectively. CD4+ T cells are also defined as CD3+CD8- cells due to down
768 regulation of CD4 upon PMA/I activation.

769

770



771

772 **Figure S5. Histopathology of left anterior lungs showing representation of scoring scale used for**
773 **analysis.** Lung histopathology, hematoxylin & eosin stain. The histological changes in the lung were scored
774 on the scale of 0 to 4. The changes evaluated for scoring include inflammation, pneumocyte type II
775 hyperplasia, and fibrous connective tissue formation. (a) shows representative pictures of the histological
776 changes and the scores. Panel A Score 1; minimal changes. Blue arrow indicates expanded alveolar spaces.
777 Panel B. Score 2; mild changes. Panel C. Score 3; moderate changes. Panel D. Score 4; marked changes.
778 Red arrow indicates diminished alveolar spaces due to inflammation. (b) Panel A shows a representative
779 picture of pneumocyte type II hyperplasia from an animal infected with SARS-CoV-2. Orange arrows show
780 marked pneumocyte type II hyperplasia. Panel B shows relatively normal alveolar septa with no
781 pneumocyte type II hyperplasia for comparison. (c) Inflammation score of the right lower lungs (RLL, left),
782 and composite inflammation score of the RLL (right). The scores consider the numbers of noticeable
783 inflammatory cells present, pneumocyte type II hyperplasia, and the degree of fibrous connective tissue
784 formation. A. Score 1; minimal. B. Score 2; mild. C. Score 3; moderate. D. Score 4; marked.

785

786

788 **Figure S6. Representative H&E images of pancreas from SARS-CoV-2 infected AGMs.** (A) is given an
789 inflammation Score 0, no visible inflammation. The Islets of Langerhans (blue arrows), and exocrine
790 pancreas (red arrow) are within normal limits. (B) is given a Score 1, minimal inflammation. The blue arrow
791 shows an islet of Langerhans with no significant histological changes. Inflammation (orange arrow) is often
792 within the exocrine pancreas, and periductular tissue (not shown).

793 **Table S1. Significantly regulated plasma analytes between baseline and week 1 in SARS-CoV-2 infected**

Regulated between BL and Week 1 AGMs.		
Analytics	p	BH (FDR)
CCL25	0.003906	0.047656
CDCP1	0.003906	0.047656
Flt3L	0.003906	0.047656
MCP-2 (CCL8)	0.003906	0.047656
SCF	0.003906	0.047656
TRAIL	0.007813	0.079427
CCL19	0.011719	0.089355
IL18	0.011719	0.089355
FGF-19	0.019531	0.10831
GDNF	0.019531	0.10831
IL8	0.019531	0.10831
CX3CL1	0.027344	0.111198
PD-L1	0.027344	0.111198
ST1A1	0.027344	0.111198
TNF	0.027344	0.111198

Functional enrichments in network	FDR
Biological Process (Gene Ontology)	802
Regulation of leukocyte migration	1.38E-06
Positive regulation of leukocyte migration	5.55E-06
Regulation of cell population proliferation	6.39E-06
	804
Molecular Function (Gene Ontology)	
Receptor ligand activity	9.73E-14
	805
Cytokine activity	1.66E-13
Cytokine receptor binding	5.26E-11
	806
Local Network Cluster (STRING)	
Chemokine receptors bind chemokines, and macrophage proliferation	7.74E-06
	807
Mixed, incl. regulation of dendritic cell dendrite assembly, and l-selectin	0.00015
	808
Chemokine receptors bind chemokines	0.00015
KEGG Pathways	809
Viral protein interaction with cytokine and cytokine receptor	1.01E-12
Cytokine-cytokine receptor interaction	2.08E-09
Chemokine signaling pathway	2.60E-05
	810
WikiPathways	811
Allograft Rejection	0.00042
IL-18 signaling pathway	0.00012
COVID-19 adverse outcome pathway	0.0167
Tissue Expression (TISSUES)	813
Polymorphonuclear leukocyte	0.0063
Intestinal epithelial cell	0.0063
THP-1 cell	0.0063

Correlations across Weeks				
Analyte	Analyte	r	p	BH (FDR)
CCL25	Glucose	0.574	3E-04	0.00438
GDNF	Glucose	0.556	4E-04	0.0066
ADA	Glucose	0.445	0.007	0.04902
ST1A1	Glucose	0.432	0.009	0.05918
CXCL9	Glucose	0.431	0.009	0.05963
IL-10RB	Glucose	0.412	0.013	0.07639
IL8	Glucose	-0.41	0.014	0.08282
FGF-19	Glucose	0.388	0.019	0.10237
CDCP1	Glucose	0.354	0.034	0.14462

Table S2. Significantly functionally enriched networks based on significantly regulated plasma analytes between baseline and week 1 in SARS-CoV-2 infected AGMs.

Table S3. Spearman correlation analysis between blood glucose (week 0, 1, 4, 12) and plasma analytes (Olink data) in unvaccinated SARS-CoV2-infected AGMs.

821 **References:**

822 1 Nalbandian, A. *et al.* Post-acute COVID-19 syndrome. *Nat Med* **27**, 601-615, doi:10.1038/s41591-
823 021-01283-z (2021).

824 2 Blomberg, B. *et al.* Long COVID in a prospective cohort of home-isolated patients. *Nat Med* **27**,
825 1607-1613, doi:10.1038/s41591-021-01433-3 (2021).

826 3 Montefusco, L. *et al.* Acute and long-term disruption of glycometabolic control after SARS-CoV-2
827 infection. *Nat Metab* **3**, 774-785, doi:10.1038/s42255-021-00407-6 (2021).

828 4 Groff, D. *et al.* Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A
829 Systematic Review. *JAMA Netw Open* **4**, e2128568, doi:10.1001/jamanetworkopen.2021.28568
830 (2021).

831 5 Su, Y. *et al.* Multiple early factors anticipate post-acute COVID-19 sequelae. *Cell* **185**, 881-
832 895.e820, doi:10.1016/j.cell.2022.01.014 (2022).

833 6 Tang, S. W., Leonard, B. E. & Helmeste, D. M. Long COVID, neuropsychiatric disorders,
834 psychotropics, present and future. *Acta Neuropsychiatr*, 1-18, doi:10.1017/neu.2022.6 (2022).

835 7 Mehandru, S. & Merad, M. Pathological sequelae of long-haul COVID. *Nat Immunol* **23**, 194-202,
836 doi:10.1038/s41590-021-01104-y (2022).

837 8 Wulf Hanson, S. *et al.* Estimated Global Proportions of Individuals With Persistent Fatigue,
838 Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021.
839 *JAMA*, doi:10.1001/jama.2022.18931 (2022).

840 9 Hartung, T. J. *et al.* Fatigue and cognitive impairment after COVID-19: A prospective multicentre
841 study. *EClinicalMedicine* **53**, 101651, doi:10.1016/j.eclim.2022.101651 (2022).

842 10 López-Hernández, Y. *et al.* The plasma metabolome of long COVID patients two years after
843 infection. *Scientific reports* **13**, 12420, doi:10.1038/s41598-023-39049-x (2023).

844 11 Xie, Y. & Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: a cohort study. *Lancet
845 Diabetes Endocrinol* **10**, 311-321, doi:10.1016/s2213-8587(22)00044-4 (2022).

846 12 Wang, F. *et al.* The laboratory tests and host immunity of COVID-19 patients with different severity
847 of illness. *JCI insight* **5**, doi:10.1172/jci.insight.137799 (2020).

848 13 Milic, J. *et al.* Metabolic-Associated Fatty Liver Disease Is Highly Prevalent in the Postacute COVID
849 Syndrome. *Open Forum Infectious Diseases* **9**, doi:10.1093/ofid/ofac003 (2022).

850 14 Rinaldi, R. *et al.* Myocardial Injury Portends a Higher Risk of Mortality and Long-Term
851 Cardiovascular Sequelae after Hospital Discharge in COVID-19 Survivors. *J Clin Med* **11**,
852 doi:10.3390/jcm11195964 (2022).

853 15 Wu, X. *et al.* The Roles of CCR9/CCL25 in Inflammation and Inflammation-Associated Diseases.
854 *Front Cell Dev Biol* **9**, 686548, doi:10.3389/fcell.2021.686548 (2021).

855 16 Palmer, C. S. Innate metabolic responses against viral infections. *Nat Metab* **4**, 1245-1259,
856 doi:10.1038/s42255-022-00652-3 (2022).

857 17 Wang, W. *et al.* Elevated glucose level leads to rapid COVID-19 progression and high fatality. *BMC
858 Pulm Med* **21**, 64, doi:10.1186/s12890-021-01413-w (2021).

859 18 Wu, J. *et al.* Elevation of blood glucose level predicts worse outcomes in hospitalized patients with
860 COVID-19: a retrospective cohort study. *BMJ Open Diabetes Research & Care* **8**, e001476,
861 doi:10.1136/bmjdrc-2020-001476 (2020).

862 19 Rahmati, M. *et al.* The global impact of COVID-19 pandemic on the incidence of pediatric new-
863 onset type 1 diabetes and ketoacidosis: A systematic review and meta-analysis. *J. Med. Virol.* **94**,
864 5112-5127, doi:10.1002/jmv.27996 (2022).

865 20 Barreto, E. A. *et al.* COVID-19-related hyperglycemia is associated with infection of hepatocytes
866 and stimulation of gluconeogenesis. *Proc. Natl. Acad. Sci. U. S. A.* **120**, e2217119120,
867 doi:10.1073/pnas.2217119120 (2023).

868 21 Thorens, B. GLUT2, glucose sensing and glucose homeostasis. *Diabetologia* **58**, 221-232,
869 doi:10.1007/s00125-014-3451-1 (2015).

870 22 Han, H. S., Kang, G., Kim, J. S., Choi, B. H. & Koo, S. H. Regulation of glucose metabolism from a
871 liver-centric perspective. *Exp. Mol. Med.* **48**, e218, doi:10.1038/emm.2015.122 (2016).

872 23 Mayneris-Perxachs, J., Moreno-Navarrete, J. M. & Fernández-Real, J. M. The role of iron in host-
873 microbiota crosstalk and its effects on systemic glucose metabolism. *Nat Rev Endocrinol* **18**, 683-
874 698, doi:10.1038/s41574-022-00721-3 (2022).

875 24 Shaw, R. J. *et al.* The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of
876 metformin. *Science* **310**, 1642-1646, doi:10.1126/science.1120781 (2005).

877 25 Blair, R. V. *et al.* Acute Respiratory Distress in Aged, SARS-CoV-2-Infected African Green Monkeys
878 but Not Rhesus Macaques. *Am. J. Pathol.* **191**, 274-282, doi:10.1016/j.ajpath.2020.10.016 (2021).

879 26 Müller, J. A. *et al.* SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine
880 pancreas. *Nat Metab* **3**, 149-165, doi:10.1038/s42255-021-00347-1 (2021).

881 27 Wu, C. T. *et al.* SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. *Cell
882 Metab* **33**, 1565-1576.e1565, doi:10.1016/j.cmet.2021.05.013 (2021).

883 28 Montemari, A. L. *et al.* An inflammatory Signature of Glucose Impairment in Cystic Fibrosis. *J
884 Inflamm Res* **15**, 5677-5685, doi:10.2147/jir.S365772 (2022).

885 29 Atanes, P., Lee, V., Huang, G. C. & Persaud, S. J. The role of the CCL25-CCR9 axis in beta-cell
886 function: potential for therapeutic intervention in type 2 diabetes. *Metabolism* **113**, 154394,
887 doi:10.1016/j.metabol.2020.154394 (2020).

888 30 Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. *Nature Reviews
889 Immunology* **11**, 98-107, doi:10.1038/nri2925 (2011).

890 31 Tsalamandris, S. *et al.* The Role of Inflammation in Diabetes: Current Concepts and Future
891 Perspectives. *Eur Cardiol* **14**, 50-59, doi:10.15420/ecr.2018.33.1 (2019).

892 32 Girard, D. & Vandiedonck, C. How dysregulation of the immune system promotes diabetes
893 mellitus and cardiovascular risk complications. *Front Cardiovasc Med* **9**, 991716,
894 doi:10.3389/fcvm.2022.991716 (2022).

895 33 Liao, B. *et al.* Detection of Anti-SARS-CoV-2-S2 IgG Is More Sensitive Than Anti-RBD IgG in
896 Identifying Asymptomatic COVID-19 Patients. *Front Immunol* **12**, 724763,
897 doi:10.3389/fimmu.2021.724763 (2021).

898 34 Qadir, M. M. F. *et al.* SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is
899 associated with new-onset diabetes. *JCI insight* **6**, doi:10.1172/jci.insight.151551 (2021).

900 35 Wan, L. *et al.* GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia.
901 *Nat Metab* **4**, 29-43, doi:10.1038/s42255-021-00508-2 (2022).

902 36 Liddie, S., Goody, R. J., Valles, R. & Lawrence, M. S. Clinical chemistry and hematology values in a
903 Caribbean population of African green monkeys. *J. Med. Primatol.* **39**, 389-398,
904 doi:10.1111/j.1600-0684.2010.00422.x (2010).

905 37 Surendar, J., Mohan, V., Rao, M. M., Babu, S. & Aravindhan, V. Increased levels of both Th1 and
906 Th2 cytokines in subjects with metabolic syndrome (CURES-103). *Diabetes Technol Ther* **13**, 477-
907 482, doi:10.1089/dia.2010.0178 (2011).

908 38 Ye, Y., Tang, X., Sun, Z. & Chen, S. Upregulated WDR26 serves as a scaffold to coordinate PI3K/
909 AKT pathway-driven breast cancer cell growth, migration, and invasion. *Oncotarget* **7**, 17854-
910 17869, doi:10.18632/oncotarget.7439 (2016).

911 39 Sun, Z., Tang, X., Lin, F. & Chen, S. The WD40 Repeat Protein WDR26 Binds G β y and Promotes
912 G β y-dependent Signal Transduction and Leukocyte Migration*. *Journal of Biological Chemistry*
913 **286**, 43902-43912, doi:<https://doi.org/10.1074/jbc.M111.301382> (2011).

914 40 Penrice-Randal, R. *et al.* Blood gene expression predicts intensive care unit admission in
915 hospitalised patients with COVID-19. *Front Immunol* **13**, doi:10.3389/fimmu.2022.988685 (2022).

916 41 Stein, S. R. *et al.* SARS-CoV-2 infection and persistence in the human body and brain at autopsy.
917 *Nature* **612**, 758-763, doi:10.1038/s41586-022-05542-y (2022).

918 42 Radziuk, J. & Pye, S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen
919 synthesis. *Diabetes. Metab. Res. Rev.* **17**, 250-272, doi:<https://doi.org/10.1002/dmrr.217> (2001).

920 43 Fahlberg, M. D. *et al.* Cellular events of acute, resolving or progressive COVID-19 in SARS-CoV-2
921 infected non-human primates. *Nat Commun* **11**, 6078, doi:10.1038/s41467-020-19967-4 (2020).

922 44 Codo, A. C. *et al.* Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response
923 through a HIF-1 α /Glycolysis-Dependent Axis. *Cell Metab* **32**, 437-446.e435,
924 doi:10.1016/j.cmet.2020.07.007 (2020).

925 45 Lucas, C. *et al.* Longitudinal analyses reveal immunological misfiring in severe COVID-19. *Nature*
926 **584**, 463-469, doi:10.1038/s41586-020-2588-y (2020).

927 46 Su, Y. *et al.* Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-
928 19. *Cell* **183**, 1479-1495.e1420, doi:10.1016/j.cell.2020.10.037 (2020).

929 47 Hoel, H. *et al.* Elevated markers of gut leakage and inflammasome activation in COVID-19 patients
930 with cardiac involvement. *J. Intern. Med.* **289**, 523-531, doi:10.1111/joim.13178 (2021).

931 48 Ellinghaus, D. *et al.* Genomewide Association Study of Severe Covid-19 with Respiratory Failure.
932 *N Engl J Med* **383**, 1522-1534, doi:10.1056/NEJMoa2020283 (2020).

933 49 Muri, J. *et al.* Anti-chemokine antibodies after SARS-CoV-2 infection correlate with favorable
934 disease course. *bioRxiv*, doi:10.1101/2022.05.23.493121 (2022).

935 50 Amiya, T. *et al.* C-C motif chemokine receptor 9 regulates obesity-induced insulin resistance via
936 inflammation of the small intestine in mice. *Diabetologia* **64**, 603-617, doi:10.1007/s00125-020-
937 05349-4 (2021).

938 51 Chung, H. K. *et al.* Growth differentiation factor 15 is a myomitokine governing systemic energy
939 homeostasis. *J. Cell Biol.* **216**, 149-165, doi:10.1083/jcb.201607110 (2017).

940 52 Kim, K. H. *et al.* Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and
941 related metabolic disorders in mice. *Scientific reports* **8**, 6789, doi:10.1038/s41598-018-25098-0
942 (2018).

943 53 Mullican, S. E. *et al.* GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice
944 and nonhuman primates. *Nat Med* **23**, 1150-1157, doi:10.1038/nm.4392 (2017).

945 54 Emmerson, P. J. *et al.* The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL.
946 *Nat Med* **23**, 1215-1219, doi:10.1038/nm.4393 (2017).

947 55 Parchwani, D., Dholariya, S., Katoch, C. & Singh, R. Growth differentiation factor 15 as an emerging
948 novel biomarker in SARS-CoV-2 infection. *World J Methodol* **12**, 438-447,
949 doi:10.5662/wjm.v12.i5.438 (2022).

950 56 Anitha, M. *et al.* GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through
951 activation of the PI3K/Akt pathway. *J Clin Invest* **116**, 344-356, doi:10.1172/jci26295 (2006).

952 57 Beg, M., Abdullah, N., Thowfeik, F. S., Altorki, N. K. & McGraw, T. E. Distinct Akt phosphorylation
953 states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. *eLife* **6**,
954 doi:10.7554/eLife.26896 (2017).

955 58 Zisman, A. *et al.* Targeted disruption of the glucose transporter 4 selectively in muscle causes
956 insulin resistance and glucose intolerance. *Nat Med* **6**, 924-928, doi:10.1038/78693 (2000).

957 59 Aldhshan, M. S., Jhanji, G., Poritsanos, N. J. & Mizuno, T. M. Glucose Stimulates Glial Cell Line-
958 Derived Neurotrophic Factor Gene Expression in Microglia through a GLUT5-Independent
959 Mechanism. *International journal of molecular sciences* **23**, doi:10.3390/ijms23137073 (2022).

960 60 Tang, M. J., Worley, D., Sanicola, M. & Dressler, G. R. The RET-glial cell-derived neurotrophic factor
961 (GDNF) pathway stimulates migration and chemoattraction of epithelial cells. *J. Cell Biol.* **142**,
962 1337-1345, doi:10.1083/jcb.142.5.1337 (1998).

963 61 Young, H. M. *et al.* GDNF is a chemoattractant for enteric neural cells. *Dev. Biol.* **229**, 503-516,
964 doi:10.1006/dbio.2000.0100 (2001).

965 62 Yang, Y. *et al.* THE ASSOCIATION OF DECREASED SERUM GDNF LEVEL WITH HYPERGLYCEMIA AND
966 DEPRESSION IN TYPE 2 DIABETES MELLITUS. *Endocr Pract* **25**, 951-965, doi:10.4158/ep-2018-0492
967 (2019).

968 63 Mwangi, S. *et al.* Glial cell line-derived neurotrophic factor increases beta-cell mass and improves
969 glucose tolerance. *Gastroenterology* **134**, 727-737, doi:10.1053/j.gastro.2007.12.033 (2008).

970 64 Gebre, M. S. *et al.* mRNA vaccines induce rapid antibody responses in mice. *NPJ Vaccines* **7**, 88,
971 doi:10.1038/s41541-022-00511-y (2022).

972 65 Taylor, K. *et al.* Diabetes following SARS-CoV-2 infection: Incidence, persistence, and implications
973 of COVID-19 vaccination. A cohort study of fifteen million people. *medRxiv*,
974 2023.2008.2007.23293778, doi:10.1101/2023.08.07.23293778 (2023).

975 66 Trypsteen, W., Van Cleemput, J., Snijnenberg, W. V., Gerlo, S. & Vandekerckhove, L. On the
976 whereabouts of SARS-CoV-2 in the human body: A systematic review. *PLoS Pathog* **16**, e1009037,
977 doi:10.1371/journal.ppat.1009037 (2020).

978 67 Fears, A. C. *et al.* Exposure modality influences viral kinetics but not respiratory outcome of
979 COVID-19 in multiple nonhuman primate species. *PLoS Pathog* **18**, e1010618,
980 doi:10.1371/journal.ppat.1010618 (2022).

981 68 Beddingfield, B. J. *et al.* Effective Prophylaxis of COVID-19 in Rhesus Macaques Using a
982 Combination of Two Parenterally-Administered SARS-CoV-2 Neutralizing Antibodies. *Front Cell*
983 *Infect Microbiol* **11**, 753444, doi:10.3389/fcimb.2021.753444 (2021).

984 69 Arunachalam, P. S. *et al.* Durable protection against the SARS-CoV-2 Omicron variant is induced
985 by an adjuvanted subunit vaccine. *Science translational medicine* **14**, eabq4130,
986 doi:10.1126/scitranslmed.abq4130 (2022).

987 70 Ashurst, T. M. *et al.* Integration, exploration, and analysis of high-dimensional single-cell
988 cytometry data using Spectre. *Cytometry A* **101**, 237-253, doi:10.1002/cyto.a.24350 (2022).

989 71 R: A language and environment for statistical computing. R Foundation for Statistical Computing
990 (2022).

991 72 Assarsson, E. *et al.* Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity,
992 and excellent scalability. *PLoS One* **9**, e95192, doi:10.1371/journal.pone.0095192 (2014).

993 73 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**, 676-
994 682, doi:10.1038/nmeth.2019 (2012).

995 74 Szklarczyk, D. *et al.* STRING v10: protein-protein interaction networks, integrated over the tree of
996 life. *Nucleic Acids Res* **43**, D447-452, doi:10.1093/nar/gku1003 (2015).

997 75 Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene
998 function, and other gene attributes, in the context of phylogenetic trees. *Nucleic Acids Res* **41**,
999 D377-386, doi:10.1093/nar/gks1118 (2013).

1000 76 Thomas, P. D. *et al.* PANTHER: Making genome-scale phylogenetics accessible to all. *Protein Sci.*
1001 **31**, 8-22, doi:<https://doi.org/10.1002/pro.4218> (2022).

1002