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Abstract 

Background: Aldosterone, a mineralocorticoid steroid hormone, has been described to initiate 

cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of 

C-C Motif Chemokine Ligand 5 (CCL5) and its receptor, C-C Motif Chemokine Receptor 5 (CCR5), 

are well known in infectious diseases, but their roles in the genesis of aldosterone-induced 

vascular injury and hypertension are unknown.  

 

Methods: We analyzed the vascular profile, blood pressure, and renal damage in wild-type 

(CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg/day for 14 days) 

while receiving 1% saline to drink. 

 

Results: Here, we show that CCR5 plays a central role in aldosterone-induced vascular injury, 

hypertension, and renal damage. Long-term infusion of aldosterone in CCR5+/+ mice resulted in 

exaggerated CCL5 circulating levels and vascular CCR5 expression. Aldosterone treatment also 

triggered vascular injury, characterized by endothelial dysfunction and inflammation, 

hypertension, and renal damage. Mice lacking CCR5 were protected from aldosterone-induced 

vascular damage, hypertension, and renal injury. Mechanistically, we demonstrated that CCL5 

increased NADPH oxidase 1 (Nox1) expression, reactive oxygen species (ROS) formation, NFκB 

activation, and inflammation and reduced nitric oxide production in isolated endothelial cells. 

These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aortae incubated 

with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking Nox1, NFκB, 

or with Maraviroc treatment. 

 

Conclusions: Our data demonstrate that CCL5/CCR5, through activation of NFkB and Nox1, is 

critically involved in aldosterone-induced vascular and renal damage and hypertension. Our data 

place CCL5 and CCR5 as potential targets for therapeutic interventions in conditions with 

aldosterone excess.  

Keywords: aldosterone; chemokines; chemokines receptors; NADPH oxidases; oxidative stress.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.22.558020doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.22.558020
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Nonstandard Abbreviations and Acronyms 

4,5-Diaminofluorescein Diacetate (DAF-2 DA) 

Acetylcholine (ACh)  

Chemokine (C-C motif) Ligand 5 (CCL5)  

Diastolic Blood Pressure (DBP) 

Dulbecco's Modified Eagle's Medium (DMEM)  

Enzyme-Linked Immunosorbent Assay (ELISA) 

Lotus Tetragonolobus Lectin (LTA) 

 Mean arterial pressure (MAP) 

Mineralocorticoid Receptors (MR) 

Nuclear Factor Kappa B (NFκB) 

PBS containing 0.1% Tween-20 (PBS-T)  

Phenylephrine (PE) 

Phosphate-Buffered Saline (PBS)  

Reactive Oxygen Species (ROS) 

Regulated on Activation Normal T Cell Expressed and Secreted (RANTES)  

Sodium Nitroprusside (SNP)  

Systolic Blood Pressure (SBP) 

T-Regulatory Cells (T-Reg) 

Vascular Smooth Muscle Cells (VSMC)  
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Introduction 

Aldosterone is a mineralocorticoid steroid hormone, and it is principally generated by the 

adrenal glomerulosa1, although other cell types, including adipocytes2, 3, can be an alternative 

source of aldosterone. The primary function of aldosterone, via mineralocorticoid receptor (MR), 

is to regulate salt and water homeostasis in the body by acting on the distal tubule and collecting 

duct of nephrons in the kidney, which in turn leads to sodium and water reabsorption and 

potassium excretion1, 4, 5. However, MR are expressed in different cell types including vascular 

smooth muscle cells (VSMC)6, endothelial cells9, adipocytes that form perivascular adipose 

tissue7, and immune cells8, 9, where aldosterone can exert its deleterious effects including 

inflammation, oxidative stress, accelerated fibrosis, and proliferation4, 5, 8, 10-13. In this context, 

hyperaldosteronism and hyperactivation of MR signaling are key features in the pathogenesis of 

diabetes2, 3, 10, obesity2, 3, 10, atherosclerosis14, stroke13, and hypertension15. Although such 

evidence is well-established, the cellular and molecular mechanisms by which aldosterone 

induces cardiovascular injury are not fully elucidated.  

Chemokines (or chemotactic cytokines) are a large family of small proteins that act 

through cell surface G protein‐coupled chemokine receptors16. They are best known for their 

ability to stimulate the migration of cells, most notably immune cells into the injured area17. 

Conversely, chemokines can induce cellular changes independent of immune cell recruitment by 

signaling directly through their receptors in VSMC and endothelial cells17-20.  

Chemokine (C-C motif) ligand 5 (CCL5) (or regulated on activation normal T cell expressed 

and secreted - RANTES) is one of the most important chemokines secreted by T cells, 

macrophages, activated platelets, endothelial cells, and VSMC17, 20, 21. While CCL5 can bind to 

CCR1, CCR3, CCR4 and CCR5, it has the highest affinity to CCR5, which is expressed in endothelial 

cells as well17, 18, 20, 21. High levels of CCL5 have been identified in hyperlipidemia22, 

atherosclerosis23, 24, and hypertension25. In vivo and in vitro studies have revealed that lack or 

blockage of CCL5 or CCR5 significantly attenuates atherosclerosis26-28, neointima formation29, 

atherogenic phenotype switching in obesity30, vascular inflammation in acquired lipodystrophy31, 

and inflammation of perivascular adipose tissue in hypertension25. We previously reported that 

CCL5 via CCR5 induces VSMC proliferation and migration in a NADPH oxidase 1 (Nox1)-derived 
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reactive oxygen species (ROS) dependent-manner, whereas blockage of CCR5 in vivo attenuates 

vascular hypertrophy19. However, whether the effects of aldosterone-induced vascular injury and 

hypertension are mediated by exaggerated activity or increased levels of CCL5 and CCR5 is not 

known. 

Herein, we addressed a new mechanism of aldosterone-induced endothelial dysfunction, 

hypertension, and renal damage. We found that CCL5 and CCR5 are connected to 

hyperaldosteronism- associated cardiovascular risk. Importantly, high levels of CCL5 in 

aldosterone-treated mice induces endothelial dysfunction and inflammation via nuclear factor 

kappa B (NFκB) and Nox1-derived ROS, whereas deficiency in CCR5 protects against aldosterone-

induced vascular injury, hypertension, and end-organ damage. Therefore, we place CCL5 and 

CCR5 as a major trigger of cardiovascular disease in conditions associated with aldosterone 

excess such as primary aldosteronism, obesity, and hypertension.  

 

Methods 

Mice 

Ten- to twelve-week-old male CCR5+/+ (C57BL6/J) and CCR5-/- (Ccr5tm1Kuz/J Jax #005427) 

mice were used. All mice were fed with standard mouse chow and tap water was provided ad 

libitum. Mice were housed in an American Association of Laboratory Animal Care- approved 

animal care facility in Rangos Research Building at Children’s Hospital of Pittsburgh (CHP) of 

University of Pittsburgh. The Institutional Animal Care and Use Committee approved all protocols 

(IACUC protocols #19065333 and #22061179). All experiments were performed in Rangos 

Research Building at CHP and were in accordance with the Guide Laboratory Animals for The Care 

and Use of Laboratory Animals. 

 

Aldosterone treatment 

CCR5+/+ and CCR5-/- mice were infused with vehicle (saline) or aldosterone (600 μg/kg per 

day) for 14 days with ALZET osmotic minipumps (Durect, Cupertino, CA) while receiving 1% saline 

in the drinking water as described previously8. 
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Circulating chemokine profile  

Circulating chemokines levels were analyzed via the Proteome Profiler Mouse Cytokine 

Array from R&D System. Serum was pooled from six CCR5+/+ mice treated with vehicle or 

aldosterone. Data were presented as fold changes by a Heat Map graph. 

 

Circulating CCL5 levels 

Circulating CCL5 levels were measured in serum from CCR5+/+ mice treated with vehicle 

or aldosterone via Enzyme-Linked Immunosorbent Assay (ELISA) (R&D System).  

 

Vascular function 

As described previously32 33, thoracic aortae from CCR5+/+ and CCR5-/- mice treated with 

vehicle or aldosterone were dissected from connective tissues, separated into rings (2 mm), and 

mounted in a wire myograph (Danysh MyoTechnology) for isometric tension recordings with 

PowerLab software (AD Instruments). Rings were placed in tissue baths containing warmed (37 

°C), aerated (95% O2, 5% CO2) Krebs Henseleit Solution (in mM: 130 NaCl, 4.7 KCl, 1.17 MgSO4, 

0.03 EDTA, 1.6 CaCl2, 14.9 NaHCO3, 1.18 KH2PO4, and 5.5 glucose). After 30 min of stabilization, 

KCl (120 mM) was used to test arterial viability. Concentration-effect curves for phenylephrine 

(PE, -1 adrenergic receptor-dependent vasoconstrictor), acetylcholine (ACh, endothelium-

dependent vasodilator), and sodium nitroprusside (SNP, endothelium-independent vasodilator) 

were performed. Some experiments were performed in the presence of Nox1Ads (10 µM, specific 

Nox1 inhibitor) to analyze the involvement of Nox1 on aldosterone-induced vascular dysfunction.  

 

Ex vivo protocol for isolated aortae incubation 

Aortae were harvested from CCR5+/+ mice, separated in 2 mm rings, and incubated with 

CCL5 (100 ng/mL) for 24 hours. Some aortic rings were treated with Maraviroc (40 µM, specific 

CCR5 antagonist), Nox1Ads (10 µM), or BMS-345541 (5 µM, NFκB signaling inhibitor). Then, 

experiments of endothelial function were performed. 
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Blood pressure analysis 

CCR5+/+ and CCR5-/- mice were instrumented with telemetry transmitters to record arterial 

pressure and heart rate (HD-X10, Data Sciences International). Transmitters were implanted as 

described previously34-36. After 7 days of recovery from surgery, necessary for the mice to gain 

their initial body weight, data were recorded for 4 days as baseline. Then, aldosterone was 

infused via osmotic mini-pump for 14 days as described8, and blood pressure [systolic blood 

pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP)] values were 

obtained for 2-3 hours per day between 12pm-5pm. 

 

Immunohistochemical staining for renal injury  

As described previously37, kidneys were fixed in 4% paraformaldehyde overnight, 

embedded in paraffin and sectioned at 4 μm. After deparaffinization, rehydration, and 

permeabilization in PBS containing 0.1% Tween-20 (PBS-T), antigen retrieval was performed by 

boiling the slides for 30 min in either 10 mM sodium citrate pH 6.0 buffer or Trilogy (Cell Marque). 

Sections were then blocked in 3% BSA before and incubated overnight with the appropriate 

primary antibody at 4oC. Then, sections were washed with PBS-T, incubated with secondary 

antibody, washed again with PBS-T and mounted in Fluoro Gel with DABCO™ (Electron 

Microscopy Science) before visualizing with either a Leica DM2500 microscope equipped with  a 

Leica DFC 7000T camera and a LAS X software or with a Zeiss 710 confocal microscope with Zen 

software (Zeiss). The antibodies used for immunostaining are shown in Supplementary Table 1. 

Primary antibodies were visualized by staining with fluorescence-conjugated antibodies. Nuclei 

were counterstained with DAPI. Proximal tubules were visualized with fluorescein-labeled Lotus 

tetragonolobus lectin (LTA). 

 

Proteinuria 

Urine was collected during the tissue harvesting, stored at -80oC, and proteinuria was 

analyzed as previously described38. 15 µL of urine samples were separated on 10% SDS-PAGE gels 
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followed by staining with Coomassie Brilliant Blue (Sigma-Aldrich). Albumin (15 µg) was used as 

a control.  

 

Endothelial cell culture 

Mouse Mesenteric Endothelial Cells (MEC) were purchased from Cell Biologics. Cells were 

maintained in Complete Mouse Endothelial Cell Medium (Cell Biologics) containing Endothelial 

Cell Medium Supplement Kit (Cell Biologics). Cells were used between passage 4-8. 

 

Protocol of endothelial cells stimulation 

MEC were treated with CCL5 (100 ng/mL) for 24 hours in the presence of vehicle or 

Maraviroc (40 µM), Nox1Ads (10 µM), or BMS-345541 (5 µM). MEC were also treated with 

aldosterone (0.1 µM) with or without eplerenone (1 µM). MEC were incubated for 30 min with 

Inhibitors and antagonists prior to CCL5 or aldosterone treatments. 

 

Macrophage adhesion assay 

Endothelial macrophage adhesion was determined according to our previously described 

methods11 39. Briefly, MEC were cultured to confluence in 6-well plates and treated with CCL5 

(100 ng/mL) for 24 hours in the presence of vehicle or Maraviroc (40 µM). Non-stimulated MEC 

served as controls. Macrophage cells (RAW 264.7, ATCC) were cultured in Dulbecco's Modified 

Eagle's Medium (DMEM) contained 10% of Fetal Bovine Serum (FBS). For cell fluorescent labeling, 

macrophages (105 cells/mL) were suspended in 1% bovine serum albumin (BSA)-supplemented 

phosphate buffered saline containing 1 μM calcein-AM (Invitrogen) and incubated for 20 minutes 

at 37 °C. Labeled macrophages were washed twice with phosphate-buffered saline and 

suspended in Hanks' buffered salt solution. Fluorescence labeled cells (105 cells/well) were then 

added to both non-stimulated and stimulated MEC layers and were allowed to adhere for 

30 minutes at 37 °C in 5% CO2. After incubation, non-adhered cells were removed by gently 

washing with pre-warmed Hanks' buffered salt solution. The number of adherent cells was 

determined by images or fluorescence intensity via fluorescence microscopy (Leica 

Microsystems) and fluorimeter (SpectraMax i3x Multi-Mode Microplate Reader), respectively. 
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For the fluorescence intensity, cells were lysed with 0.1 M NaOH and transferred to a 96 well 

plate, then fluorescence intensity was measured. 

 

ROS measurement 

Aortae and MEC were collected in lysis buffer (Hank’s Balanced Salt Solution with 

Complete Mini protease inhibitor and PhosSTOP phosphatase inhibitor) and were lysed by five 

freeze/thaw cyclesand passed through a 30-gauge needle five times to disrupt cells to measured 

ROS as described before40. The cell lysates were centrifuged at 1000 g for 5 min at 4 °C to remove 

unbroken cells, nuclei, and debris. Throughout all procedures, extreme care was taken to 

maintain the lysate at a temperature close to 0 °C. Lysates of aortae and MEC were resuspended 

in Amplex Red assay mixture (25 mM HEPES, pH 7.4, containing 120 mM NaCl, 3 mM KCl, 1 mM 

MgCl2, 0.1 mM Amplex red (Invitrogen), and 0.35 U/ml horseradish peroxidase (HRP) in the 

presence and absence of catalase (300 U/ml). The reaction was initiated by the addition of 36 

µmol/l NADPH (MP Biomedicals). Florescence measurements were made using a Biotek Synergy 

4 hybrid multimode microplate reader with a 530/25-exitation and a 590/35-emission filter. The 

reaction was monitored at 25 ˚C for 1 hour. 

 

Nitric oxide measurement 

Nitric oxide production was measured by 4,5-Diaminofluorescein diacetate (DAF-2 DA) 

probe. Briefly, MEC were treated with CCL5 (100 ng/mL) for 24 hours in the presence of vehicle 

or Maraviroc (40 µM). Then, media were replaced, and bradykinin (1 µM)41 was used to stimulate 

nitric oxide production for 30 minutes. After the treatments, cells were washed with PBS and 

stained with DAF-2 DA (5 µM) for 30 minutes before the analysis. Bradykinin (5 µM) was used as 

positive control. Fluorescence intensity was measured in a fluorimeter (SpectraMax i3x Multi-

Mode Microplate Reader) (Emission. 538 nm/Excitation. 485 nm).  

 

Western Blot 

Aortic protein was extracted using radioimmunoprecipitation assay buffer (RIPA) buffer 

(30 mM HEPES, pH 7.4,150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium 
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dodecyl sulfate, 5 mM EDTA, 1 mM NaV04, 50 mM NaF, 1 mM PMSF, 10% pepstatin A, 10 μg/mL 

leupeptin, and 10 μg/mL aprotinin). Total protein extracts were centrifuged at 15,000 rpm/10 

min and the pellet was discarded. Proteins from homogenates of aortae (25 μg) were used. MEC 

samples were directly homogenized using 2x Laemmli Sample Buffer and supplemented with 2-

mercaptoethanol (β-mercaptoethanol) (BioRad Hercules). Proteins were separated by 

electrophoresis on a polyacrylamide gradient gel (BioRad Hercules) and transferred to 

Immobilon-P poly (vinylidene fluoride) membranes. Non-specific binding sites were blocked with 

5% skim milk or 1% bovine serum albumin (BSA) in tris-buffered saline solution with tween for 

1h at 24 °C. Membranes were then incubated with specific antibodies overnight at 4 °C as 

described in Supplementary Table 2. After incubation with secondary antibodies, the enhanced 

chemiluminescence luminol reagent (SuperSignal™ West Femto Maximum Sensitivity Substrate, 

Thermo Fisher) was used for antibody detection.  

 

Real-Time Polymerase Chain Reaction (RT-PCR) 

mRNA from aortae and MEC were extracted using RNeasy Mini Kit (Quiagen). 

Complementary DNA (cDNA) was generated by reverse transcription polymerase chain reaction 

(RT-PCR) with SuperScript III (Thermo Fisher). Reverse transcription was performed at 58 °C for 

50 min; the enzyme was heat inactivated at 85 °C for 5 min, and real-time quantitative RT-PCR 

was performed with the PowerTrack™ SYBR Green Master Mix (Thermo Fisher). Sequences of 

genes as listed in Supplementary Table 3. Experiments were performed in a QuantStudio™ 5 Real-

Time PCR System, 384-well (Thermo Fisher). Data were quantified by 2ΔΔ Ct and are presented 

by fold changes indicative of either upregulation or downregulation.   

 

Statistical analysis 

For comparisons of multiple groups, one-way or two-way analysis of variance (ANOVA), 

followed by the Tukey post-test was used. Differences between the two groups were determined 

using Student’s t-test. The vascular relaxation response is expressed as a percentage of relaxation 

based on the phenylephrine maximal response (1uM), whereas contractile response is presented 

as millinewton (mN). Maximal response (Emax) and negative logarithm of EC50 (pD2) were 
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determined. Analyses were performed using Prism 10.0 software (GraphPad). A difference was 

considered statistically significant when p ≤ 0.05. 

 

RESULTS 

Circulating CCL5 levels and vascular CCR5 expression are increased in aldosterone-treated mice 

and may play important role on aldosterone-induced endothelial dysfunction 

We firstly observed that CCR5+/+ mice treated with aldosterone displayed changes in 

circulating cytokines and chemokines (Fig. 1A). However, CCL5, which is considered the main 

CCR5 ligand, was the most elevated in the proteome cytokine array. In addition, we also used 

ELISA to confirm the high CCL5 circulating levels post-aldosterone treatment (Fig. 1B). 

In aortae from aldosterone-treated mice, we found elevated CCR1, CCR5, and CCL5 gene 

expression, with no difference for CCR3 (Fig. 1C). To understand whether aldosterone regulates 

chemokine receptors expression, we treated endothelial cells with aldosterone and observed a 

significant increase in CCR1, CCR5, and CCL5 levels, which was dependent on MR activation, since 

eplerenone blunted the aldosterone effects (Fig. 1D). These data indicate that aldosterone 

increases CCL5 production and CCR5 expression in endothelial cells in a MR dependent manner. 

We recently demonstrated that CCL5 induces vascular inflammation and proliferation 

dependent on CCR5. Although CCL5 has a large affinity by CCR5, other chemokine receptors can 

recognize CCL5, such as CCR1 and CCR3. Therefore, we investigated whether CCL5 is leading to 

endothelial dysfunction via CCR5. By incubating aortae from CCR5+/+ mice with CCL5, with or 

without a specific CCR5 antagonist (Maraviroc), and performing studies of endothelial function 

by myography, we observed that CCL5 triggered severe endothelial dysfunction in aortae, which 

was partially protected by antagonizing CCR5 (Fig. 1E). Furthermore, CCL5 incubation for 24h 

elevated CCR1 and CCL5 expressions in isolated aortae (Supplementary Fig. 1A). CCL5 triggered 

vascular hypercontractile to phenylephrine in aortae, which was protected by antagonizing CCR5 

(Supplementary Fig. 1B). No difference was observed for SNP (endothelium-independent 

vasodilator) (Supplementary Fig. 1C). 
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CCR5 deficiency protects from aldosterone-induced endothelial dysfunction and vascular 

inflammation 

Since we found that CCL5 and CCR5 are elevated in aldosterone-treated mice and CCL5 

induces endothelial dysfunction in a CCR5-dependent manner, we treated CCR5+/+ and CCR5-/- 

mice with aldosterone to analyze whether lack in CCR5 might confer protection against vascular 

injury. Interestingly, we found that aldosterone promoted severe vascular dysfunction 

characterized by an impaired endothelium-dependent relaxation to ACh (Fig. 2A) and 

hypercontractility to phenylephrine (Supplementary Fig. 2A); these changes were prevented by 

CCR5 deficiency. No difference was observed for SNP (Fig. 2B). 

We found that aldosterone treatment augmented NFkB phosphorylation in aortae from 

CCR5+/+ mice, but not in CCR5-/- mice (Fig. 2C). These effects were accompanied by increased 

expression of inflammatory genes (IL-1, TNF-, and VCAM expression) (Fig. 2D), which was not 

detected in CCR5-/- mice. Ex vivo experiments in aortae revealed that CCL5 incubation for 24h 

increased NFkB activation (Fig. 2E), whereas NFkB inhibition prevented CCL5-induced endothelial 

dysfunction (Fig. 2F). Furthermore, CCL5 incubation for 24h increased expression of inflammatory 

genes (IL-1, TNF-, ICAM and VCAM expression) in isolated aortae (Supplementary Fig. 2B). 

To confirm that CCL5/CCR5 leads to endothelial inflammation, we interrogated whether 

CCL5 triggers endothelial inflammation by treating MEC with CCL5 in the presence or absence of 

Maraviroc and analyzing inflammatory markers and RAW264.7 adhesion. CCL5 augmented IL1, 

TNF-α, ICAM and VCAM gene expression and increased RAW264.7 adhesion in MEC at 24 hr, 

whereas Maraviroc prevented these effects (Fig. 3A and B).  

 

CCR5 deficiency prevents aldosterone-induced hypertension and kidney damage 

Endothelial dysfunction is a key feature in the genesis and progression of hypertension 

and end-organ damage. Therefore, we investigated whether CCR5 deficiency could protect from 

aldosterone-induced hypertension and renal injury. Aldosterone induced hypertension is 

characterized by increased SBP, DBP, and MAP. Interestingly, CCR5-/- mice were protected against 

aldosterone-induced hypertension (Fig. 4A-C).  
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In kidneys, aldosterone augmented the expression of the renal injury markers, Kidney 

injury molecule-1 (KIM-1) and Neutrophil gelatinase-associated lipocalin (NGAL) by qRT-PCR (Fig. 

4E). Furthermore, immunostaining analyses indicated elevated tubulointerstitial deposition of 

fibrotic markers, SMA and collagen III (Fig. 4D). Increased collagen III levels were also confirmed 

by qRT-PCR (Fig. 4E). Interestingly, aldosterone-treated mice exhibited reduced expression of the 

podocyte-specific marker synaptopodin (measured by immunofluorescence and RT-PCR) (Fig. 4D 

and Fig. 4E), and this was accompanied by augmented proteinuria (Fig. 4F). No changes in the 

expression of the endothelial cell marker, endomucin, were detected (Fig. 4D and Fig. 4E). All 

these deleterious effects caused by aldosterone (renal damage and proteinuria) were abolished 

in CCR5-/- mice. Finally, no structural difference was observed in the afferent and efferent 

glomerular arterioles (Supplementary Fig. 3). These data suggest that CCL5/CCR5 play major role 

on aldosterone-associated hypertension and renal damage.  

 

Aldosterone induces endothelial injury and Nox1-derived ROS and impairs nitric oxide 

formation via CCL5 and CCR5 

Aldosterone has been associated with Nox activation in different cell types. Herein, we 

demonstrated that aldosterone treatment increases aortic Nox1 (but not Nox2 and Nox4) (Fig. 

5A) and induces ROS production (Fig. 5B) in CCR5+/+ mice. CCR5-/- mice were protected from these 

effects. To understand whether aldosterone is leading to endothelial dysfunction via Nox1 

activation, we incubated arteries prior to ACh curves with a selective Nox1 inhibitor, NoxA1ds40, 

and observed that Nox1 inhibition blunted the endothelial dysfunction in CCR5+/+ mice (Fig.5C). 

Next, we assessed whether CCL5 induces endothelial dysfunction via Nox1 activation by 

multiple approaches. Firstly, we treated isolated aortae from CCR5+/+ mice with CCL5 for 24h, and 

we observed an increase in the Nox1 expression (Fig. 5D), but not Nox2 and Nox4 (Supplementary 

Fig. 4A-B), and in the ROS generation (Fig. 5D). This increase in ROS generation was abolished in 

the presence of a selective Nox1 inhibitor, NoxA1ds (Fig. 5D). In addition, in presence of Nox1Ads, 

we performed studies of endothelial function to examine whether CCL5 induces endothelial 

dysfunction via Nox1 and found Nox1 inhibition conferred protection against CCL5-induced 

endothelial dysfunction (Fig. 5E). 
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Secondly, we treated MEC with CCL5 in presence of Maraviroc to confirm that CCL5 

increases endothelial Nox1 and ROS production. We observed that CCL5 treatment for 24h 

augmented Nox1 expression and induced ROS formation, which were blunted by blocking CCR5 

(Maraviroc)or inhibiting NOX1 (NOXA1ds) (Fig. 5F). 

Lastly, we treated MEC with CCL5 to analyze whether it can affect nitic oxide formation, 

as displayed in Supplementary Figures 4C and 4D. CCL5 (100ng/mL, 24h) decreased eNOS 

phosphorylation at Ser1177 and impaired bradykinin-induced nitric oxide formation at 24h, which 

were prevented by antagonizing CCR5 with Maraviroc.   

 

Aldosterone induces Nox1 expression and endothelial dysfunction via CCL5/CCR5 and NFkB 

The association between aldosterone, Nox1, and NFκB, as well as NFκB modulating Nox1 

expression has been described before, but whether such communications are dependent on 

CCL5 and CCR5 are unknown. In vitro, we found that CCL5 induces an increase in Nox1 expression, 

which is prevented by the presence of the NFκB pathway inhibitor (Fig. 6A). Furthermore, the 

presence of the NFκB inhibitor blocks ROS generation (Fig. 6B). By a feedback mechanism, CCL5 

increases NFκB phosphorylation, which was reverted in the presence of the Nox1 inhibitor (Fig. 

6C), indicating that ROS formed by Nox1 increase NFκB activity, while NFκB activity can regulate 

NOX1 expression and ROS formation.  Therefore, we can suggest that CCL5 induces endothelial 

injury via a continuous and positive feedback between Nox1 and NFκB. 

 

Discussion 

Cardiovascular diseases are the leading cause of death globally. Aldosterone contributes 

to the endocrine basis of the development and progression of multiple cardiovascular disease 

processes, including hypertension, chronic kidney disease, coronary artery disease, and 

congestive heart failure4, 42. The association between aldosterone and genesis of hypertension is 

particularly strong3, 4, 15, 43. Several studies place this mineralocorticoid hormone as a major 

trigger to the development and severity of hypertension, even in the absence of classically 

defined primary aldosteronism. For instance, blockage of the aldosterone receptor, MR, 

decreases blood pressure in rodent models of hypertension44, improves cardiovascular and renal 
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outcomes associated with obesity and diabetes12, 45-49, restores obesity-associated 

hypertension46, 50. Although the beneficial hemodynamic effects of aldosterone blockage have 

been described, the molecular and cellular mechanisms remain not fully elucidated.  

Aldosterone is a potent inflammatory hormone, and several of its deleterious 

cardiovascular effects is mediated by its inflammatory capacity, which in turn can lead to 

dysfunction, fibrosis, and remodeling in the heart, vasculature, and kidney, as well as 

hypertension51. We previously demonstrated that aldosterone induces VSMC inflammation via 

oxidative stress11 and triggers vascular injury and hypertension dependent on NLRP3 

inflammasome and IL-1 formation in immune compartment8. Others have demonstrated that 

aldosterone treatment impairs T-regulatory cells (T-Reg) recruitment into injury sites, impairing 

a tuned innate and adaptive immune response and impacting vascular function and blood 

pressure control52. In atherosclerosis, lack of endothelial MR confers protection against 

leukocyte-endothelial interactions, plaque inflammation, and expression of adhesion proteins14. 

Therefore, elucidating how aldosterone initiates an inflammatory response is highly important to 

generate new therapeutic approaches for aldosterone excess-associated cardiovascular disease. 

In this study, we are describing a novel mechanism by which aldosterone induces vascular 

injury, hypertension, and end-organ damage. We are demonstrating that aldosterone (1) 

increases vascular CCR5 via MR activation and circulating CCL5 levels in mice, (2) induces vascular 

dysfunction, inflammation, and remodeling in a CCR5-dependent manner, (3) promotes 

hypertension and renal damage via CCR5, and (4) activates a continuous and positive feedback 

between NFκB and Nox1-derived ROS in the vasculature via CCL5 and CCR5. These data reveal a 

remarkable participation of CCL5 and CCR5 in aldosterone-associated cardiovascular damage and 

hypertension. 

Hypertension is associated with immune cell activation and their migration into the 

kidney, vasculature, heart, and brain; such mechanisms are central for blood pressure regulation 

and convincing targets for pharmacological intervention53. Because chemokines and their 

receptors (chemokine receptors) help recruit immune cells into the inflamed or injured areas, 

they are believed to be a leading pathway in the development and progression of hypertension, 
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but whether any interaction between chemokines and their receptors can directly propagate 

vascular injury, changes in blood pressure, and end-organ damage is unknown.  

CCR5 and CCL5 are elevated in cardiovascular events19, 27-29, 31 including hypertension54-56. 

Aligned with these previous reports, we observed that aldosterone-treated mice display 

increased circulating CCL5 and vascular CCR5, which seems to be mediated by MR activation, 

since aldosterone-induced CCR5 expression in endothelial cells is blunted by eplerenone. 

Although CCR5 and CCL5 are increased in different models of hypertension, whether they can 

modulate vascular function, blood pressure control, and renal injury is controversial25, 55, 57 or not 

fully described. Furthermore, it is not clear whether CCR5 can participate in the development and 

progression of any model of hypertension, or if it is model dependent. 

The role of CCR5 and CCL5 on hypertension has been explored before, but not in the 

aldosterone model. Krebs et al55 demonstrated that CCR5 deficient mice are not protected from 

cardiac and renal injury and hypertension induced by DOCA salt (50mg) + angiotensin II infusion 

(1500ng/Kg/min), whereas Rudemiller et al57 showed that CCL5 knockout mice demonstrate a 

worse renal outcome post angiotensin II treatment (1000ng/Kg/min) with no changes in blood 

pressure. Furthermore, Mikolajczyk et al25 showed that CCL5 knockout mice or pharmacological 

intervention with CCL5 blockage (met-RANTES) does not affect blood pressure in angiotensin II-

induced hypertension model (490ng/Kg/min), but improves vascular function and decreases 

vascular ROS, and T-cells infiltration into perivascular adipose tissue. In contrast, we found that 

CCR5 deficient mice are protected from aldosterone-induced vascular injury, hypertension, and 

renal damage. This discrepancy may be due to the highly potent model of hypertension, DOCA 

salt plus a very high dose of angiotensin II treatment used by Krebs et al55. On the other hand, 

Rudemiller et al57 or Mikolajczyk et al25 used CCL5 deficient mice, and not CCR5. Other ligands 

than CCL5 can activate CCR5 including CCL3 and CCL416, thus these intriguing studies do not rule 

out the effect of other chemokines activating CCR5. Finally, none of these studies used an 

aldosteronism model to induce hypertension and injury, so involvement of CCR5 may be specific 

to this model, and not for angiotensin II for example. Further studies are necessary to dissect any 

difference amongst the hypertension models including 2-kidneys 1-clip and genetic models.  
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Aldosterone increases cardiac and renal CCR551, 54, 56, but it is not clear if it does the same 

in arteries or endothelium and if CCR5 propagates any changes in the vasculature. Herein, we 

confirmed that aldosterone increases CCL5 and CCR5 and described CCL5 and CCR5 as novel 

regulators of endothelial homeostasis via adjusting Nox1 and NFκB in the vasculature. These 

findings corroborate our previous study19, where we demonstrated that CCL5, via CCR5, induces 

VSMC proliferation and migration via Nox1-derived ROS likely dependent on NFκB activation. The 

involvement of NADPH oxidases and NFκB activation in the genesis of aldosterone-induced 

cardiovascular injury has been described before8, 11, 58. NADPH oxidases are the major source of 

ROS in the vasculature and have been implicated in vascular dysfunction, inflammation, and 

remodeling by regulating NFκB, an important redox sensitive transcript factor, which regulates 

multiple inflammatory genes59. Furthermore, others have reported that NFκB can also regulate 

NADPH oxidase expression40, 60 indicating positive feedback between NADPH oxidases and NFκB.  

  While CCL5 can bind to CCR1, CCR3, CCR4 and CCR5, it has the highest affinity to CCR516. 

By in vitro and ex vivo experiments, we examined whether CCL5 induces endothelial dysfunction 

and inflammation via CCR5. By treating arteries or endothelial cells with CCL5 with or without 

Maraviroc (CCR5 antagonist), we found that CCL5 impairs endothelial function and inflammation 

and increases NFkB activation and NOX1-derived ROS dependent on CCR5. Therefore, we can 

suggest that increases in circulating CCL5 might be activating CCR5 and triggering vascular injury 

and perhaps hypertension and renal damage in aldosterone treated mice.  

It is important to acknowledge the limitations of the current study. First, we did not 

analyze immune cell infiltration into the arteries or kidney, which might be an additional 

mechanism whereby deficiency in CCR5 protects the vasculature and kidney. Instead, we mostly 

focused on a direct mechanism of CCL5 on endothelial cells. Second, we used aortae, and not 

resistance arteries. Blood pressure is normally regulated by small arteries, but multiple mouse 

models of hypertension are associated with vascular dysfunction in large25, 61, 62 and small 

vessels8, 63, 64, including aldosterone8, 61, 62, therefore we can suggest that vascular dysfunction 

might be displayed in small arteries too. Finally, we did not evaluate the source of CCL5. CCL5 is 

produced by many cell types including immune and vascular cells, therefore we cannot confirm 

that increases in CCL5 produced by aldosterone treatment is generated by an immune 
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compartment or any other cell type. Future experiments including CCL5 deficiency in cell specific 

population or bone marrow transplant (CCL5 knockout mice into wild-type mice) could overcome 

this limitation.  

Despite these limitations, our study provides the first evidence that aldosteronism impairs 

vascular function, induces vascular inflammation, and triggers hypertension and end-organ 

damage via regulating CCL5 and CCR5, which in turn activates NFkB and NOX1-derived ROS and 

diminishes nitric oxide formation. Taken together, these results indicate that blockage of CCR5 

may confer protection against high levels of aldosterone-associated cardiovascular damage and 

hypertension.  

 

Perspective 

Overall, our findings provide novel mechanistic insights into the underlying causes of 

vascular damage, hypertension, and end-organ injury in the pathophysiology of aldosteronism. 

In addition, our data present CCR5 blockage, e.g., Maraviroc, a drug broadly used in human 

immunodeficiency virus (HIV)+ patients65, as a possible new avenue for the treatment of 

cardiovascular dysfunction and hypertension associated with high levels of aldosterone such as 

aldosteronism, obesity, and hypertension.  

 

What Is New? 

• Increase in aldosterone levels, a key characteristic of primary aldosteronism, obesity, and 

hypertension, augments circulating CCL5 and vascular CCR5, whereas CCR5 deficiency 

protects from aldosterone-induced vascular injury, hypertension, and renal damage.  

• CCL5/CCR5 triggers endothelial dysfunction and vascular inflammation via NFκB and 

NOX1 activation. 

What Is Relevant?  

• Our study has clinical implications by suggesting that CCR5 blockage can prevent the 

vascular and renal injuries and hypertension in diseases associated with high levels of 

aldosterone.  
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Clinical/Pathophysiological Implications? 

• Maraviroc, a selective CCR5 antagonist approved by FDA for the treatment of HIV 

infection, may demonstrate clinical implications also to treat cardiovascular diseases 

specially associated with high levels of aldosterone. 
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Legends 

Figure 1. Aldosterone-induced CCL5 high levels promotes endothelial dysfunction. 

Inflammatory profile in plasma, measured by proteome profiler mouse cytokine array and 

presented as heat map (A); CCL5 levels, measured by ELISA (B); and chemokine receptors 

expression, measured by RT-PCR (C), from CCR5+/+ mice treated with vehicle or aldosterone (600 

µg/kg/day for 14 days). Chemokine receptors expression, measured by RT-PCR, in endothelial 

cells (MEC) treated with vehicle or aldosterone (0.1µM) in the presence of Eplerenone (1µM) (D). 

Concentration-effect curves to acetylcholine in aortae from CCR5+/+ mice incubated with vehicle 
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or CCL5 (100ng/ml, 24h) in the presence of Maraviroc (40µM) (E). Values represent means ± SEM 

(n= 3-7). Student t test or ANOVA test. *p<0.05 vs. Vehicle; #p<0.05 vs. CCL5. 

 

Figure 2. CCR5 deficiency prevents endothelial dysfunction and vascular inflammation induced 

by aldosterone. Concentration-effect curves to acetylcholine (A) and sodium nitroprusside (B); 

phosphorylated (p65 subunit) and total NFκB expression, analyzed by western blot to (C); 

inflammatory markers, measured by RT-PCR (D), in aortae from CCR5+/+ and CCR5-/- mice treated 

with vehicle or aldosterone (600 µg/kg/day + saline for 14 days). Phosphorylated (p65 subunit) 

and total NFκB expression analyzed by western blot in aortae from CCR5+/+ mice incubated with 

vehicle or CCL5 (100ng/ml, 24h) (E) and concentration-effect curves to acetylcholine (F) in aortae 

from CCR5+/+ mice incubated with vehicle or CCL5 (100ng/ml, 24h) in the presence of BMS-

345541 (5µM). Values represent means ± SEM (n= 4-7). Student t test or ANOVA test. *p<0.05 

vs. CCR5+/+ or Vehicle; #p<0.05 vs. CCR5+/+_Aldo or CCL5. 

 

Figure 3. CCL5 via CCR5 induces endothelial cell activation and immune cell adhesion. 

Photomicrography and fluorescence intensity depicting labeled macrophages (calcein-AM probe, 

green) and endothelial cells (MEC, DAPI, blue). MEC were treated with vehicle, Maraviroc (40µM, 

30 minutes prior CCL5 incubation), CCL5 (100ng/ml, 24h) or CCL5 plus Maraviroc-stimulated MEC. 

Scale bar = 100µm (A). Inflammatory markers, measured by RT-PCR, in MEC treated with vehicle 

or CCL5 (100ng/ml) in the presence of Maraviroc (40µM) (B). Values represent means ± SEM (n= 

4). ANOVA test. 

 

Figure 4. Aldosterone via CCR5 promotes increased blood pressure and kidney injury. Systolic 

blood pressure (A), diastolic blood pressure (B), and mean arterial pressure (C), measured via 

radiotelemetry, in CCR5+/+ and CCR5-/- mice treated with vehicle or aldosterone (600 µg/kg/day 

and saline for 14 days). Immunofluorescence for podocyte marker synaptopodin (Synap; green), 

endothelial marker endomucin (Endom; red), and nuclei (DAPI, blue) represented by letters A to 

D, α-smooth muscle actin (α-SMA; green) and nuclei (DAPI, blue) represented by letters E to H, 

fibrosis marker and proximal tubules were visualized with fluorescein-labeled collagen III (red) 
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and Lotus tetragonolobus lectin (LTA; green), which are represented by letters I to L. Images were 

obtained from kidney sections of CCR5+/+ and CCR5-/- mice treated with vehicle or aldosterone. 

The images shown are representative of three independent experiments. Scale bar = 20 or 50µm 

(D). Kidney injury markers, measured by RT-PCR in CCR5+/+ and CCR5-/- mice treated with vehicle 

or aldosterone (E), and proteinuria levels in CCR5+/+ and CCR5-/- mice treated with vehicle or 

aldosterone measured by 10% SDS-PAGE gels followed by staining with Coomassie Brilliant. 

Albumin was used as a control analyzed. Values represent means ± SEM (n= 3-7). Student t test 

or ANOVA test. *p<0.05 vs. CCR5+/+. 

 

Figure 5. Aldosterone, via CCR5, promotes endothelial dysfunction by NOX1-dependent 

mechanisms. Representative western blot (A) to NOX1 (i), NOX2 (ii) and NOX4 (iii) expression; 

ROS generation, measured Amplex red assay (B); and concentration-effect curves to 

acetylcholine, in the presence of NOXA1ds (10µM) (C), in aortae from CCR5+/+ and CCR5-/- mice 

treated with vehicle or aldosterone (600 µg/kg/day for 14 days). Representative western blot to 

NOX1 (i); ROS generation, measured by Amplex red assay (ii) (D); and concentration-effect curves 

to acetylcholine, in the presence of NOXA1ds (10µM) (E), in aortae from CCR5+/+ mice incubated 

with vehicle or CCL5 (100ng/ml). Representative western blot to NOX1 (i) and ROS generation, 

measured by Amplex red (ii), in endothelial cells (MEC) treated with vehicle or CCL5 (100ng/ml) 

in the presence of Maraviroc (40µM) and NOXA1ds (10µM) (F). Values represent means ± SEM 

(n= 4-7). ANOVA test. *p<0.05 vs. CCR5+/+ or Vehicle; #p<0.05 vs. CCR5+/+_Aldo or CCL5. 

 

Figure 6. CCL5 induces an increase in NOX1 expression and NFKB activity by a positive feedback 

mechanism in endothelial cells. Representative western blot to NOX1 expression (A) and ROS 

generation, measured by Amplex red (B), in endothelial cells (MEC) treated with vehicle or CCL5 

(100ng/ml), in the presence of BMS-345541 (5µM). Representative western blot to 

phosphorylated and total NFκB expression in MEC treated with vehicle or CCL5, in the presence 

of NOXA1ds (10µM) (C). Values represent means ± SEM (n= 4). ANOVA test.  
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