

1 **An ATF4-centric regulatory network is required for**

2 **the assembly and function of the OXPHOS system**

3 Umut Cagin^{1*}, Manuel José Gómez^{1*}, Ester Casajús-Pelegay¹, Rocío Nieto-
4 Arellano¹, Daniel Arias-Sanroman¹, Nieves Movilla², Raquel Moreno-Loshuertos³,
5 M. Esther Gallardo⁴, Fátima Sánchez-Cabo^{1§} and José Antonio Enriquez^{1,5§}

6

7 ¹ Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.

8 ² Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering
9 Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza,
10 Spain.

11 ³ Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza,
12 50009 Zaragoza, Spain.

13 ⁴ Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación
14 Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.

15 ⁵ CIBERFES: C/ Melchor Fernández-Almagro 3, 28029 Madrid.

16 * These two authors contributed equally to this work.

17 § To whom correspondence should be addressed.

18

19

20

21

22

23 **ABSTRACT**

24 Identifying the factors that determine mammalian cell viability when oxidative
25 phosphorylation (OXPHOS) function is impaired poses challenges due to the diverse
26 cellular responses and limited clinical material availability. Moreover, animal models
27 often fail to replicate human phenotypes. To address these challenges, this study
28 conducted comprehensive analyses involving multiple defects and species by
29 comparing the RNA-Seq expression profiles of human and murine cell lines with
30 distinct nuclear backgrounds, representing both normal and OXPHOS-deficient
31 models. To minimize species-specific variation, the study employed clustering
32 techniques to group murine genes affected by OXPHOS dysfunction and identified
33 crucial regulators like ATF4, UCP1, and SYVN1. ATF4 consistently displayed
34 activation in response to OXPHOS defects, not only in murine but also in human cells,
35 confirming its pivotal role in the cellular response to mitochondrial dysfunction. By
36 integrating human and murine data, the study unveiled a conserved regulatory network
37 encompassing genes related to the mTOR pathway and folate metabolism. Remarkably,
38 the study uncovered an unexpected finding: the depletion of ATF4 in both mouse and
39 human cells impairs OXPHOS assembly and supercomplex organization. This
40 impairment primarily stems from a severe disruption in complex I assembly in the
41 absence of ATF4, even under non-stress conditions.

42 INTRODUCTION

43 Mitochondria play a central physiological role as cellular metabolic information
44 hub. They collect information about the metabolic status of the cell and their own
45 functional status and receive input from different organelles informing on aspects such
46 as nutrient availability, quality of the protein and nucleic acid metabolism, and disposal
47 of metabolic byproducts. This information is computed to adapt mitochondrial
48 physiology to cellular requirements. A central component of the adaptability of
49 mitochondria is the fact that they have their own genome, their own expression
50 machinery (transcription and translation) and extremely efficient quality control
51 mechanisms devoted to adjust the oxidative phosphorylation system (OXPHOS) to the
52 very different physiological demands that cell differentiation, growth, activity, or death
53 may have under a continuously changing environment ¹. Integrated expression of the
54 two genomes (nuclear and mitochondrial) that encode components of OXPHOS is
55 important for the effective functioning and plasticity of the bioenergetic system and for
56 many other cellular processes that are integrated with it (metabolism, epigenetics, etc).
57 Mitochondrial DNA (mtDNA) encodes only 13 proteins while the remaining OXPHOS
58 structural components (up to 70) are nuclear encoded, together with the approximately
59 1,300 characterized proteins located in mitochondria². Physiological or dysfunctional
60 variations in OXPHOS capacity, on the other hand, elicit a nuclear response, known as
61 *Retrograde Response* (RR), that may allow, in the extreme, the survival in culture of
62 cells lacking mtDNA (ρ^0 cells). The molecular mechanisms responsible for the
63 retrograde response have eluded its determination while more and more evidence
64 connected the failure in the OXPHOS system with the Integrated Stress Response
65 (ISR)^{3,4}.

66 Clinical materials obtained from mitochondrial disease patients, together with
67 model organisms such as mouse, fruit flies and *C. elegans*, have been critical resources
68 to investigate cellular adaptation to OXPHOS deficiency. Mitochondrial
69 communication with the nucleus is the key mechanistic adaptation when the cells'
70 bioenergetics status is affected. Mito-nuclear communication involves regulation of
71 many conserved signaling pathways including PGC1 α , mTOR, Myc, Akt, or Hif1 α ⁵.
72 For instance, regulation of Hif1 α pathway has been shown to ameliorate effects of
73 mitochondrial dysfunction in *Drosophila* motoneurons and can enhance lifespan^{4,6}. A
74 valuable work by Khan and colleagues highlighted the importance of performing

75 integrative multi-omics approaches to discover mechanisms and develop therapies for
76 mitochondrial diseases ⁷.

77 Despite those proposals, an integrated picture of the molecular mechanisms that
78 monitor the status of the OXPHOS system remains to be established. It was expected
79 that a detailed analysis of transcriptomic changes in OXPHOS deficient and OXPHOS
80 rescued cellular models would allow to elucidate the key genes and signaling molecules
81 involved in such monitoring. Transcriptomic technologies have been available already
82 for a while and several groups have applied them to cellular and organismal models of
83 mitochondrial diseases⁸⁻¹¹. However, those analysis could not provide a complete
84 picture, probably due to several reasons: (i) Most of the earlier studies investigating
85 transcriptomic reprogramming upon mitochondrial dysfunction on cellular and
86 organismal models were performed with microarray technologies^{6,8-11}; (ii) it has been
87 demonstrated that nuclear background plays a major role in shaping the nuclear
88 transcriptomic reprogramming in the skeletal muscles of mitochondrial
89 encephalomyopathy patients¹²; and (iii) cell transcriptomes are cell type and species
90 specific and the magnitude of the endogenous differences between them overlap with
91 and confuse the interpretation of the differences induced by changes in OXPHOS
92 performance.

93 To overcome these difficulties, we have analyzed in parallel the transcriptome of
94 cell lines from different nuclear backgrounds, both in human and mouse OXPHOS
95 deficient cellular models, by RNA sequencing. We confirm the strong influence of
96 nuclear background within the same species and between species in two widely used
97 human cell lines (HeLa & 143B), and two mouse cells lines (L929 and NIH3T3), by
98 comparing wild-type OXPHOS function, driven by a common mtDNA, with cells in
99 which mtDNA has been completely lost (ρ^0). Other cellular models in which mtDNA
100 has been mutated (mild, partial complex I –CI- deficiency versus complex IV –CIV-
101 depletion in human, and CI or CIV depletion in mice) were also compared to search for
102 common transcriptomic changes that may represent or shed light on potential adaptive
103 response to mtDNA functional alterations. Additionally, to distinguish between
104 adaptation only due to the affectation of the redox status of enzyme cofactors we
105 compared the transcriptomic profiles of OXPHOS deficient mouse cells expressing
106 AOX, the alternative oxidase of *Emericella nidulans*, alone or in combination with
107 NDI1, an alternative mitochondrial NADH dehydrogenase from *Saccharomyces*

108 *cerevisiae*. Thus, mitochondrial NADH oxidation and electron flux around CoQ is
109 restored without restoring proton-pumping¹³. Using an integrative bioinformatics
110 analysis of these multi-species and multi-conditions data we were able to identify the
111 regulatory network of transcription factors orchestrating transcriptional changes upon
112 mtDNA depletion being the Activating Transcription Factor 4 (ATF4) at its center. In
113 addition, we show that ATF4 deficient fibroblasts undergo a complete reorganization
114 of OXPHOS, and we demonstrate the involvement of ATF4 in the stability of
115 assembled CI and complex (CV), and its requirement for a mammalian cell to survive
116 in the absence of mtDNA.

117 **RESULTS**

118

119 **Multi-species cellular models of mtDNA dysfunction**

120 Gene expression profiling of various human and mouse cell lines with mtDNA
121 defects (Table 1) was used to perform a cross-species comparison of the response to
122 mitochondrial dysfunction, at the transcriptional level.

123 *Control and mtDNA-less cells.* Cells completely devoid of mtDNA, named rho-zero
124 (ρ^0) cells, have been intensely used in mitochondrial research for more than 30 years¹⁴.
125 Here, we choose two human (143B and HeLa) and two mouse (L929 and NIH-3T3)
126 nuclear backgrounds of ρ^0 cell lines that were compared between them and with cells
127 that had been repopulated with wild type mtDNA from a human donor (613 mtDNA,
128 with a white mtDNA haplogroup H¹⁵) or mtDNA derived from Balb/c mouse. We
129 confirmed that all four ρ^0 cells cannot assemble functional OXPHOS, are dependent on
130 uridine supplementation and dependent on glycolysis for energy production (not
131 shown). As expected, oxygen consumption of ρ^0 (OCR) tested on Seahorse XF analyzer
132 was marginal (Figure1E-F). All four ρ^0 repopulated cells (control cells), used for the
133 comparative analyses, recovered normal respiration and assembly of OXPHOS
134 complexes. Furthermore, we also used mouse L929 nucleus ρ^0 cell lines expressing
135 AOX, alone or in conjunction with NDI1 (referred to as NA cells), which had been
136 previously characterized by our group from the energetic and metabolic point of view¹³.

137 *Mutant mtDNA cells.* Because ρ^0 cells can be considered extreme cases of OXPHOS
138 deficiency, we included additional cell lines, both human and murine, suffering of
139 partial OXPHOS deficiency due to mutations in mtDNA affecting either CI (143B and
140 L929 nuclei) or CIV (only L929 nucleus) function. Human and mouse cells with
141 complex I deficiency were obtained by repopulation of ρ^0 -143B cells and ρ^0 -L929 cells,

142 respectively, with mutant mtDNA. In human, we used mitochondria harboring mild or
143 severe CI defects. For mild we used Leber's Hereditary Optic Neuropathy (LHON)
144 mutant cells with a homoplasmic G to A mutation at position 11778 (143B^{LHON}). This
145 mutation affects *MT-ND4* gene and is the most common mutation, found in 69% LHON
146 patients. For severe CI deficiency we used 143B^{ND4} cells (named C4T in former
147 papers¹⁶) that have a homoplasmic frameshift mutation, consisting in the insertion of
148 an additional C in a row of six Cs at positions 10947-10952, altering the coding
149 sequence of *MT-ND4* and placing a stop codon approximately 150 bp downstream of
150 the mutation¹⁶. 143B^{LHON} cells exhibit normal levels of CI activity tested by native in-
151 gel activity (Figure 1A). As expected, 143B^{LHON} cells can assemble all OXPHOS
152 complexes and supercomplexes, while 143B^{ND4} cells show no detectable CI activity in
153 gel because they fail to assemble CI and CI-containing supercomplexes (Figure B).
154 Mouse complex I mutant cells L929^{ND4} (named FMI12 in previous papers¹⁷) have a
155 deletion of an A at position 10227, affecting *mt-Nd4* gene and can survive in the absence
156 of uridine in culture. These cells have no detectable CI activity by in gel activity (Figure
157 1C) and were able to assemble complexes II, III and IV and supercomplex III₂+IV, but
158 not CI (Figure 1D). In fact, L929^{ND4} cells have increased III₂ and III₂+IV levels derived
159 from the fact that they would associate with CI in normal circumstances (Figure 1D).
160 L929^{COI} mutant mouse cells harbor a homoplasmic missense C6247T point mutation in
161 the cytochrome oxidase 1 (*mt-CoI*) gene that induces a serine to leucine amino acid
162 change; these cells require uridine to survive in culture. Homoplasmic L929^{COI} cells
163 showed residual CIV activity in gel that is concentrated in the monomer CIV, and
164 undetectable supercomplex III₂+IV activity in the respirasome (Figure 1D). In
165 agreement with that, homoplasmic L929^{COI} mouse cells assemble a very small amount
166 of CIV. Interestingly, the free CIV is strongly reduced and migrates slightly faster in
167 gel than CIV in wild type cells. CIV dimers and I+III₂+IV supercomplex are
168 dramatically reduced while supercomplex III₂+IV was present at almost normal levels
169 suggesting that under reduced CIV availability the III₂+IV supercomplex is
170 preferentially preserved (Figure 1D). Interestingly, xenoexpression of AOX in L929^{COI}
171 cells (L929^{COI}AOX) induces the elimination of the residual amount of CIV (Figure 1D
172 & see below).

173 To obtain a quantitative estimation of the respiration capacity of the different
174 cell lines utilized in this study, we performed respirometry analysis with a Seahorse XF
175 Analyzer. 143B^{LHON} and 143B^{ND4} showed mild decrease and major deficiency in

176 oxygen consumption, respectively (Figure 1E). As expected, homoplasmic L929^{ND4}
177 shows virtually no respiration, while L929^{COI} mutant cells shows a reduced level of
178 basal respiration, very limited spare respiratory capacity and maximal respiration
179 (Figure 1F). Interestingly L929^{COI}AOX showed a respiration capacity independent of
180 complexes III and IV due to the additional activity of AOX (Figure 1F). Based on OCR
181 profiles, patterns of mitochondrial supercomplex formation and metabolic properties
182 (uridine dependency) we classified cell lines as having WT, mild, severe, or extreme
183 OXPHOS deficiency phenotype (Table 1).

184 **Mitochondrial dysfunction severity correlates with transcriptome changes in cell
185 lines with different nuclear backgrounds.**

186 It is well documented that the nuclear background of cell lines (depending on
187 species and/or tissue origin) is a major contributor of transcriptional differences. This
188 is also true for mtDNA background *in-vivo*¹⁸ although no systematic information is
189 available for cultured cell lines. Moreover, very limited information is available on the
190 combined interaction of the three major sources of transcriptome variability. In
191 addition, it is unknown up to which degree the transcriptomic adaptation to
192 mitochondrial dysfunction may be cell type and/or species-specific making it difficult
193 to identify universal responses.

194 To assess the relevance of nuclear backgrounds in mitochondrial defective
195 human and mouse cells we first estimated the transcriptome differences across different
196 nucleus by RNA Sequencing. Principal component analysis of mouse transcriptomic
197 profiles separated cell lines according to mitochondrial dysfunction severity (Figure
198 2A). The first dimension (accounting for 35.72% of variability) separated wild type
199 cells (L929^{BalbC} and NIH3T3) and L929^{ND4} (carrying a mutation in gene *mt-Nd4* that
200 results in the loss of CI but maintains uridine-prototrophy) from cells with more severe
201 mitochondrial defects; these were either lacking mitochondrial DNA (ρ^0 cell lines), or
202 carrying a mutation in *mt-Co1*, independently of whether alternative oxidase (AOX) or
203 NDI1 had been introduced to ameliorate the mitochondrial defect. Analysis of human
204 transcriptomic profiles rendered a similar landscape (Figure 2B). Separation of cell
205 lines according to phenotype severity occurred along the second Principal Component
206 Analysis (PCA) dimension (accounting for 26.74% of variability) because the lack of
207 mtDNA in HeLa background causes a more dramatic adjustment of gene expression

208 programs which was recapitulated by the first dimension (50.35% of variability), which
209 separated ρ^0 HeLa cells from the other cell lines.

210 **Unsupervised clustering analysis identifies groups of genes specifically
211 deregulated in mouse cell lines with severe OXPHOS dysfunction.**

212 8,008 mouse genes were identified as differentially expressed between control
213 and mitochondrially dysfunctional cell lines (Table S1), confirming a large impact of
214 OXPHOS dysfunction on the transcriptional profile of the cell lines. Unsupervised k-
215 means clustering (k=30) revealed different transcriptional profiles upon different
216 perturbations (Figure S1). *Clusters 1* and *7* contained genes that were either up or
217 downregulated in ρ^0 cells, respectively. *Cluster 1* was mainly enriched in genes related
218 with one-carbon metabolism, autophagy, and glucose homeostasis, while *cluster 7*
219 genes pointed to oxidative phosphorylation, lipid metabolism and NADH metabolism
220 (Figure S2).

221 We also identified groups of co-expressed genes that were either up-regulated
222 (clusters 19 and 26) or down-regulated (clusters 13 and 15) in cell lines with severe
223 OXPHOS dysfunction and uridine dependency. Up-regulated genes in *cluster 19* were
224 involved in transport and oxidation-reduction but also in ER response to stress,
225 unfolded protein response, response to hypoxia, autophagy, and metabolism. *Cluster*
226 *26* was enriched in genes involved in metabolic processes including glycolysis,
227 gluconeogenesis, carbon metabolism and response to hypoxia. On the other hand, a
228 large proportion of genes down-regulated in OXPHOS-defective cells, *clusters 13* and
229 *15*, were involved in mitosis, DNA replication and repair, nucleotide metabolism and
230 development (Figure S2). Finally, clusters 29 and 10 contained genes that were either
231 up- or down-regulated in cells with any type of OXPHOS deficiency, including
232 L929^{ND4} cells, which had a mild phenotype. For example, genes in *cluster 29* were
233 mostly associated with carbon metabolism and transport, while genes in *cluster 10* were
234 mostly related with lipid metabolism and cell migration (Figure S2).

235 All in all, our functional characterization of genes clusters suggest that genes
236 deregulated in the absence of mtDNA or defective OXPHOS activate compensatory
237 metabolic and homeostatic mechanisms for the cell to cope with partial or total
238 mitochondrial dysfunction. These processes may involve ER stress, amino-acid
239 metabolism, one-carbon metabolism, and other related pathways.

240 **ATF4 is the master regulator of metabolic remodeling upon mtDNA dysfunction.**

241 With the aim of identifying key regulators responsible for the transcriptional
242 changes observed we determined the most likely upstream regulators for each cluster.
243 We found that the activating transcription factor 4 (ATF4), involved in integrated stress
244 response (ISR), the E3 ubiquitin-protein ligase Synoviolin 1 (SYVN1) and the
245 uncoupling protein 1 (UCP1) were upstream regulators of a significantly enriched set
246 of genes specifically upregulated in ρ^0 state or in OXPHOS deficient cell lines (clusters
247 1, 19, 26 and 29) (Figure 3 and Figure S3). Interestingly, other regulators such as the
248 regulator of the ISR Tribbles Pseudokinase 3 (TRIB3) and the transcription factors
249 CREB1 and DDIT3, whose functions are highly related to ATF4²², were enriched in at
250 least 2 or 3 clusters (Figure 3). In agreement to this, tunicamycin (a known activator of
251 ATF4¹⁹) was enriched in clusters 1, 19 and 26 (Figure 3). ATF4 was also identified as
252 a key upstream regulator when predictions were based on the complete collections of
253 differentially expressed genes associated to each relevant pairwise comparison (Figure
254 4 and Table S2)

255 To further explore the hierarchy of the regulators involved in the response to
256 mitochondrial dysfunction changes, RNA-Seq was carried out to identify differences in
257 the gene expression profile of an ATF4^{KO} mouse embryonic fibroblasts (MEFs) cell
258 line, in the conditions described in Methods. 6,952 genes were identified as
259 differentially expressed, with Benjamini-Hochberg adjusted p-value < 0.05 (Table S3),
260 out of which 3,259 and 3,693 genes were up- or down-regulated, respectively, in
261 ATF4^{KO} cells relative to WT controls. Functional enrichment analyses with IPA and
262 GSEA indicated that differentially expressed genes were mostly associated to
263 developmental functions (Table S3). Twenty-one of the 40 topmost significant
264 upstream regulators identified in pairwise comparisons were expressed in the ATF4^{KO}
265 experiment. Among them, 14 transcription factors (66.67%) were found to be
266 differentially expressed (Table S3) and hence potentially regulated by ATF4. These
267 were SRY-Box Transcription Factor 4 (Sox4) (logFC=14.15), DNA Damage Inducible
268 Transcript 3 (Ddit3) (-2.88), GLI Family Zinc Finger 2 (Gli2) (4.83), Tripartite Motif
269 Containing 24 (Trim24) (2.39), Hypoxia Inducible Factor 1 Subunit Alpha (Hif1 α) (-
270 2.41), Endothelial PAS Domain Protein 1 (Epas1) (4.1), Kruppel Like Factor 3 (Klf3)
271 (1.65), Forkhead Box O4 (Foxo4) (1.42), NFKB Inhibitor Alpha (Nfkbia) (1.37),
272 Sirtuin 1 (Sirt1) (1.12), Sterol Regulatory Element Binding Transcription Factors 1
273 (Srebf1) (-0.97) and 2 (Srebf2) (0.70), JunB Proto-Oncogene, AP-1 Transcription

274 Factor Subunit (Junb) (0.68). In fact, the network representation of the differentially
275 expressed targets of each TF unbiasedly identified Atf4, Hif1a, Ddit3, Sirt1 and Nfkbia
276 as the network hubs with the highest closeness (circle size), what indicates their
277 influential position in the network (Figure 5).

278 On a different side, 48 OXPHOS genes, out of the collection of 168 genes
279 defined in MitoCarta 3.0, were differentially expressed in the ATF4^{KO} cell line, relative
280 to controls (Fig S4A). To explore additional connections between the Atf4 network and
281 OXPHOS genes, we predicted binding sites for the transcription regulators included in
282 the network. TF binding sites were detected in the promoters of 48 out 168 OXPHOS
283 genes, and in 14 of the 48 OXPHOS genes that had been detected as differentially
284 expressed in the ATF4^{KO} versus control comparison (Fig S4 B).

285 **Activation of ATF4 is required for survival upon mitochondrial stress.**

286 Cell lines used in the analysis were stable cell lines and already adapted to
287 culture conditions. For example, mtDNA depleted (ρ^0) cells were obtained by long-
288 term treatment with ethidium bromide (EtBr). To check the dynamic nature of the Atf4
289 response to mtDNA dysfunction, control L929^{Balbc} cells were treated with EtBr for 72
290 hours to obtain partial depletion of mtDNA. After 72 hours, ATF4 protein levels were
291 dramatically increased (Figure S5A). Treatment with rotenone, a known inhibitor of CI,
292 also resulted in increased levels of ATF4 (Figure S5A), in agreement with a study using
293 oligodendroglia²⁰. We also tested whether ATF4 expression is affected upon defects in
294 mtDNA translation. We found that treatment with doxycycline, an inhibitor of mtDNA
295 translation²¹, results in increased ATF4 levels in mice control L929^{Balbc} cells (Figure
296 S5A). Interestingly, ATF4 levels were correlated with doxycycline treatment in a time-
297 dependent manner. Similar results have been obtained in a study using HeLa cells²².

298 We then used ATF4^{KO} MEFs to obtain information regarding its sensitivity to
299 the same collection of drugs. ATF4^{KO} mouse cells were more sensitive to EtBr,
300 rotenone and doxycycline treatment compared to control L929^{Balbc} cells (Figure S5B).
301 Of note, we failed to obtain ρ^0 derivatives from the ATF4^{KO} cell line, since long term
302 treatment with EtBr resulted in the death of all cells in 4/5 months. This further proves
303 that ATF4 upregulation and activation is necessary for the survival of cells in the
304 absence of mtDNA or defective OXPHOS.

305 **Cross-species analysis reveals an ATF4 centric transcriptional network involved
306 in a conserved response upon mitochondrial defects.**

307 Following the analysis in mouse cell lines, unsupervised clustering was
308 performed on a collection of 8,165 DEGs identified after transcriptome profiling of
309 human cell lines (Table S1). As before, we used k-means to define 30 clusters of co-
310 expressed genes, which were subject to Upstream Regulator analyses with IPA.
311 Interestingly, ATF4 was enriched in four clusters (Cluster 16, 23, 28 and 30) (Figure
312 S6) indicating the prominent role of ATF4 in metabolic adaptation also in human cells.
313 More importantly, the shapes of those clusters, representing patterns of gene expression
314 differences associated to various states of mitochondrial dysfunction, were highly like
315 gene clusters observed in mouse, indicating that a similar gene regulatory network may
316 exist in both species.

317 To search for a conserved shared network where ATF4 could be involved, we
318 generated two meta-clusters, MCOMB and HCOMB, which combined murine and
319 human clusters, respectively, that had been identified as enriched in ATF4 targets after
320 applying a stringent significance threshold (adjusted p-value < 0.05) (Figure 6A). After
321 performing Upstream Regulator analysis on both meta-clusters, we identified eight
322 transcription factors: Atf4, Ddit3, Hif1 α , Hepatocyte Nuclear Factor 4 Alpha (Hnf4 α),
323 Nfkbia, Nuclear protein 1 (Nurp1), Signal Transducer and Activator of Transcription 4
324 (Stat4) and Tumor Protein P53 (Tp53) whose targets had been detected as highly
325 enriched in both meta-clusters (Figure 6B). Atf4 was the transcriptional regulator
326 enriched with the maximal significance in both gene sets (Figure 6C). This was
327 expected, of course, given that individual clusters had been selected because they were
328 enriched in ATF4 targets. However, the fact that mouse and human meta-clusters were
329 enriched in targets of an additional common set of seven regulators was very relevant
330 because it suggested the existence of a common regulatory network (referred here as
331 the Atf4 network) involved in a conserved response to mitochondrial OXPHOS
332 dysfunction. To summarize the functions in which the set of shared regulators could be
333 involved, we defined eight collections of genes, representing a total of 1,325
334 orthologous genes that had been detected as differentially expressed both in human and
335 mouse and that, at the same time, were targets of some of the eight shared regulators.
336 Each collection of genes was subjected to enrichment analysis to identify functional
337 terms that are connected to each of the regulators (Figure 6D). Results indicated that
338 the set of eight transcriptional regulators is not only involved on mitochondrial function
339 regulation, but also on the regulation of ER-stress, calcium homeostasis and several

340 aspects of energy metabolism. In summary, these results together show that ATF4
341 activation is a conserved signal in response to mitochondrial dysfunction both in human
342 and mouse cells.

343 **ATF4 deficient cells have defective OXPHOS assembly and performance.**

344 ATF4 is required for Integrated Stress Response (ISR) and more specifically its
345 upregulation is a classical marker for ER-stress²³. Therefore, ATF4 defective cells
346 cannot adapt to stress conditions affecting ER homeostasis. It has been recently shown
347 that ATF4 is also required for expression of UPR genes and that loss of ATF4 results
348 in enhanced oxidative damage and reduced mitochondrial membrane potential²⁴.
349 ATF4^{KO} MEFs showed normal growth pattern in DMEM supplied with essential and
350 non-essential amino acids, and 50 µm β-mercaptoethanol. However, they could not
351 survive in media without these supplements. ATF4^{KO} MEFs had reduced levels of basal
352 and maximal respiration compared to L929^{Balbc} control cells and their spare respiratory
353 capacity was very low (Figure 7A). Blue Native-Polyacrylamide Gel Electrophoresis
354 (BN-PAGE) analysis showed a re-organization of the whole OXPHOS system (Figure
355 7B). More specifically, reduced levels of CI and CI-containing supercomplexes (I+III₂
356 and I+III₂+IV) and slightly less CIV and CV were detected. The highest MW band,
357 which may represent a dimer of I+III₂, is completely absent in ATF4^{KO} cells. On the
358 contrary, due to the re-organization of the OXPHOS system, more III₂ and III₂+IV
359 supercomplexes were detected. Interestingly, ATF4^{KO} cells accumulate low molecular
360 weight CV subunits which may represent a partially assembled CV (Figure 7B). The
361 OXPHOS system re-organization phenotype is reminiscent of CI OXPHOS deficiency.
362 Therefore, we analyzed native CI in-gel activity and detected reduced levels of CI
363 activity (Figure 7B).

364 To generalize the role of ATF4 in the regulation of CI, we then generated
365 ATF4^{KO} human cell lines from 143B⁶¹³ control cells by Crispr/Cas9 gene editing. After
366 targeted nuclease expression and single cell sorting of GFP-positive cells, we
367 characterized several single-cell colonies (named Clone I, II and III) for which the
368 absence of the last part of ATF4 exon 1 was proven by PCR (not-shown). As expected,
369 these colonies could not survive in the absence of β-ME (Figure S7A) and had
370 undetectable levels of ATF4 protein even after treatment with doxycycline (Figure
371 S7B). These three ATF4^{KO} clones had reduced oxygen consumption rates (Figure 7C).
372 Complex I in-gel activity assay reflected strong reduction in CI activity, correlating
373 with the oxygen-consumption rates (Figure 7D). Human ATF4^{KO} cells reproduced the

374 reduction in CI amount and the accumulation of low molecular weight-CV
375 subassemblies observed before in ATF4^{KO} mouse cells (Figure 7E). In summary, ATF4
376 is not only required to cellular adaptation to OXPHOS defect but also for the normal
377 biogenesis and functionally competent OXPHOS systems both in human and mouse
378 cells.

379 **ATF4 controls circadian rhythm.**

380 The requirement of ATF4 for the correct biogenesis of the OXPHOS system
381 was somehow surprising since this transcription factor is barely detected in wild type
382 cultured cells under non-stress conditions. We hypothesized that the relevance of this
383 transcription factor may be related with the requirement of ATF4 to the proper
384 expression of circadian master regulatory genes and the fact that its expression follows
385 also a period^{25,26}. Moreover, mounting evidence suggest that the biogenesis of the
386 OXPHOS system and its recycling is also circadian²⁷⁻²⁹. In agreement with this
387 proposal, we identified 154 expressed putative circadian related genes in our RNA-Seq,
388 out of 229 mouse genes annotated as “circadian” in the Gene Ontology database. Thus,
389 83 of them (53.8%) were differentially expressed between WT and ATF4^{KO} cells,
390 including Clock and Bmal1 (Table S3). This observation confirms the requirements of
391 basal ATF4 activity for a proper cellular circadian function.

392 **DISCUSSION**

393 Heterogeneity of mitochondrial disorders has been a serious drawback in the
394 diagnosis and treatment of these detrimental diseases. Limited availability of clinical
395 material has also limited the amount of genetic information that can be obtained from
396 patients. Information scarcity is revealed by the fact that many published datasets are
397 only partially overlapping, if not contradictory, a constraint that could be sorted by
398 performing multi-defect and multi-species comparative analyses. On a different side,
399 and from a methodological point of view, advances in sequencing technologies,
400 especially exome sequencing, helped clinicians to characterize disease causing
401 mutations in mitochondrial related genes³⁰. In addition, transcriptomic technologies,
402 especially RNA Sequencing, have served as a very important tool to uncover the roles
403 of such genes. Most of the studies investigating transcriptomic changes associated to
404 mitochondrial dysfunction, however, have been carried out with microarray
405 technologies. In fact, the only published systematic approach incorporated datasets
406 from several organisms (*H. sapiens*, *M. musculus*, *D. melanogaster* and *C. elegans*) and
407 various microarray platforms³¹.

408 In the current study we have compared the expression profiles of human and
409 murine cell lines with different nuclear backgrounds, representing WT or OXPHOS
410 deficient cellular models. To eliminate some sources of variability, and to be in position
411 of reaching more conclusive and trustable conclusions, we have worked exclusively
412 with transcriptomic datasets generated ‘in-house’, by RNA-Seq. As it could be
413 expected, we have observed significant differences at transcriptomic level in the
414 response to OXPHOS dysfunction in human and mouse cell lines. Nuclear background
415 specific changes have also been observed, especially in human cells. One should
416 consider that mouse cell nucleus derives from close related and inbred strains that have
417 lost heterozygosity and variability. The human, however, are derived from different
418 individuals and present heterozygosity and genetic variability. In our case, for example,
419 HeLa cell nucleus derive from an Afro-American female while the 143B nucleus comes
420 from a white individual. This in turn may explains the limited consensus on the
421 published datasets.

422 To reduce the species-specific transcriptomic variation, we initially focused on
423 murine cell lines having defective mitochondria. K-means clustering of murine genes
424 whose regulation was altered by OXPHOS dysfunction was used to identify groups of
425 genes whose expression level correlated with the severity of OXPHOS defects.
426 Downstream functional analyses on these clusters allowed us to identify three
427 regulators: ATF4, UCP1 and SYVN1 (Figure 3). ATF4 is the only transcription
428 regulator in this list since UCP1 is a carrier and SYVN1 is a ligase. Furthermore, ATF4
429 was also detected as a highly activated and enriched transcription factor in most
430 pairwise comparisons between OXPHOS deficient cell lines and their corresponding
431 WT counterparts (Figure 4A). Interestingly, enrichment of ATF4 targets was also
432 detected in the collections of dysregulated genes from cell lines expressing AOX or
433 NdiI/AOX. In these cells the rescue of the mitochondrial function was not fully
434 achieved by the expression of AOX and NdiI (no recovery of proton pumping).
435 Therefore, ATF4 activation is involved in the response to OXPHOS defects,
436 independently of their severity. Supporting this, we have detected upregulation of ATF4
437 at the protein level upon chemically inducing mitochondrial dysfunction *in-vitro* by
438 EtBr, rotenone, and doxycycline treatments.

439 ATF4’s novel role in regulating one-carbon metabolism upon mitochondrial
440 dysfunction has been recently uncovered by several studies in cellular and animal
441 models^{2,4,7,19,32-35}. In correlation with our results on p^o cell lines, TRIB3 expression level

442 was also among the top 5 highest expressed genes in a microarray-based study that
443 characterized the expression profile of human mtDNA depleted cells³⁶. Of note, TRIB3
444 induction is observed upon variety of stress conditions including oxidative stress, ER
445 stress, glucose and amino acid deficiency³⁷.

446 After using k-means to cluster human genes whose regulation was altered by
447 OXPHOS dysfunction, we were able to identify a set of clusters that were enriched in
448 ATF4 targets. Upstream regulator analysis of murine and human meta-clusters, defined
449 by the combination of ATF4-target enriched clusters in mouse and human, respectively,
450 resulted in the identification of a common set of eight regulators, including ATF4. We
451 propose that these genes conform a regulatory network conserved between mouse and
452 human cells, which is activated upon mitochondrial dysfunction (Figure 5). This
453 network includes regulators such as Hif1a, highlighting the interconnected nature of
454 oxidative stress and mitochondrial dysfunction. Interestingly, this conserved regulatory
455 network had overlapping with the regulatory elements with the Integrated Stress
456 Response (ISR) such as DDIT3, therefore confirming the role of ISR as a key signaling
457 element, conserved between two species and various mitochondrial deficiencies:
458 mtDNA loss, CI and CIV mutants.

459 It has been shown that ATF4 itself can regulate purine synthesis by interacting
460 with mTORC1³⁸. In agreement with this study, we have observed the enrichment of
461 genes related to mTOR pathway in most of the collections of genes that are
462 differentially regulated in association to OXPHOS dysfunction. One-carbon
463 metabolism plays a central role in biosynthesis of purines and thymidine, amino acid
464 homeostasis, redox defense and methylation³⁹. Folate-mediated one-carbon cycle is
465 compartmentalized both in cytosol and mitochondria. Since mitochondria determine
466 NAD⁺/NADH ratio within the cell, regulation of one-carbon metabolism can have
467 important energy buffering roles. Specifically, it has been shown that folate metabolism
468 has direct roles in mitochondrial NADPH production via ALDH1L2 (Aldehyde
469 Dehydrogenase 1 Family Member L2, Mitochondrial 10-Formyltetrahydrofolate
470 Dehydrogenase) and MTHFD2 (methylenetetrahydrofolate dehydrogenase 2),
471 therefore can balance the changes in NAD⁺/NADH ratio⁴⁰. Furthermore, we have
472 observed conserved MTHFD2 activation, as shown in the table in Figure 4, supporting
473 the folate metabolism activation as a metabolic survival mechanism³⁸. Similar
474 approaches of characterization of metabolic deficiencies that are associated to
475 mitochondrial dysfunction can also uncover new therapeutic avenues, as exemplified

476 by the discovery that enhancing nucleotide metabolism has beneficial effects in *PINK1*
477 mutant animal models⁴¹. Tissue specific metabolic requirements, especially related to
478 one-carbon metabolism⁴², may be the underlying cause of heterogeneity observed in
479 mitochondrial patients. Although it requires more research, we believe folate (folic
480 acid), or nucleotide supplementation may have beneficial effects on mitochondrial
481 patients with defects in mtDNA (mutation or depletion).

482 It has been recently shown that ATF4 silenced cells have reduced mitochondrial
483 membrane potential and increased oxidative stress²⁴. Although several metabolic roles
484 of ATF4 have been recently discovered, its direct role on OXPHOS assembly was not
485 noticed. We observed complete re-organization of OXPHOS and reduced CI levels and
486 activity. These observations are in-line with these cells being more sensitive to
487 rotenone, doxycycline and EtBr treatment. We postulated that the ATF4 dependent CI-
488 biogenesis may be indirectly controlled by the circadian role of ATF4 in normal cells.
489 Our proposal is in agreement with the observation that mitochondrial OXPHOS activity
490 is rhythmic and regulated by CI acetylation under the control of clock genes^{43,44}.

491 Surprisingly, accumulation of low molecular-weight CV bands on BN-PAGE
492 may suggest that ATF4 has wider roles in CV assembly or plasticity. Interestingly, a
493 recent report by Balsa and colleagues showed that ATF4 can regulate OXPHOS
494 supercomplex organization upon endoplasmic reticulum (ER) and nutrient stress via
495 activation of PERK-eIF2 α axis⁴⁵. Importantly, the same study reported increased ATF4
496 levels upon galactose treatment in cultured U2OS cells. In summary, the exact
497 involvement of ATF4 in the assembly of OXPHOS complexes is not fully known yet
498 and requires further investigation.

499 This work not only provides mechanistic insights into the response to
500 mitochondrial dysfunction but also information that may affect the choice of clinical
501 markers for mitochondrial diseases. Non-invasive methods for mitochondrial patient
502 diagnosis are very critical since muscle biopsies are not an easy procedure for
503 mitochondrial patients with myopathies. Until recently, only ‘serum lactate’
504 measurements were consulted for many years as a marker for mitochondrial patients.
505 FGF-21 has been demonstrated as a promising biomarker for mtDNA defected
506 myopathies⁴⁶, and it is also regulated by ATF4. More recently, the activation on FGF-
507 21 has been demonstrated in neuronal mitochondrial dysfunction following ablation of
508 the mitochondrial fission protein Drp1⁴⁷. Here, we further prove that ATF4 centered

509 biomarkers studies can be more trustable, putting FGF-21 and serine levels at the center
510 of the stage in understanding and treating mitochondrial diseases.

511 **Acknowledgments**

512 We acknowledge all GENOXPHOS group members for their scientific discussions
513 contributing to this manuscript. We thank Dr. David Ron for providing ATF4^{-/-} mouse
514 cells. We thank members of the CNIC facilities (Genomics, Bioinformatics, Cell
515 culture, Animal facility and Viral vectors) for their technical assistance.

516 **Author contributions**

517 JAE & UC conceived and designed experiments. U.C. performed CRISPR KO,
518 respirometry, enzymatic activity, mitochondrial isolation, BN-gel and immunoblot
519 analysis, assisted by RN-A, EC-P and DA-S in different stage of the experimental work.
520 FSC & MJG performed quantitative analyses of RNAseq and computational network
521 modeling experiments. Data analysis and figure creation was carried out by UC, MJG,
522 FSC and J.A.E. that also wrote the manuscript with input from all authors.

523 **Fundings**

524 This study was supported by grants from Ministerio de Ciencia e Innovación [grants
525 PID2021-127988OB-I00 & TED2021-131611B-100], Human Frontier Science
526 Program [grant RGP0016/2018], Fundación Leduc [17CVD04] Instituto de Salud
527 Carlos III CIBERFES [CB16/10/00282] to JAE. Ministerio de Ciencia, Innovación, y
528 Universidades (MCIU) [grant no. RTI2018-102084-B-I00] and Ministerio de Ciencia e
529 Innovación [grant no. TED2021-131611B-I00] to FSC. The CNIC is supported by the
530 Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN)
531 and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant
532 CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033).

533 **Declaration of interests**

534 Umut Cagin is currently employed by Spark Therapeutics

535

536 **References**

- 537 1. Monzel, A.S., Enriquez, J.A., and Picard, M. (2023). Multifaceted
538 mitochondria: moving mitochondrial science beyond function and
539 dysfunction. *Nat Metab* 5, 546-562. 10.1038/s42255-023-00783-1.
- 540 2. Rath, S., Sharma, R., Gupta, R., Ast, T., Chan, C., Durham, T.J., Goodman,
541 R.P., Grabarek, Z., Haas, M.E., Hung, W.H.W., et al. (2021). MitoCarta3.0: an

542 updated mitochondrial proteome now with sub-organelle localization and
543 pathway annotations. *Nucleic Acids Res* **49**, D1541-D1547.
544 10.1093/nar/gkaa1011.

545 3. Quiros, P.M., Mottis, A., and Auwerx, J. (2016). Mitonuclear communication
546 in homeostasis and stress. *Nat Rev Mol Cell Biol* **17**, 213-226.
547 10.1038/nrm.2016.23.

548 4. Suomalainen, A., and Battersby, B.J. (2018). Mitochondrial diseases: the
549 contribution of organelle stress responses to pathology. *Nat Rev Mol Cell Biol*
550 **19**, 77-92. 10.1038/nrm.2017.66.

551 5. Cagin, U., and Enriquez, J.A. (2015). The complex crosstalk between
552 mitochondria and the nucleus: What goes in between? *Int J Biochem Cell Biol*
553 **63**, 10-15. 10.1016/j.biocel.2015.01.026.

554 6. Cagin, U., Duncan, O.F., Gatt, A.P., Dionne, M.S., Sweeney, S.T., and
555 Bateman, J.M. (2015). Mitochondrial retrograde signaling regulates neuronal
556 function. *Proc Natl Acad Sci U S A* **112**, E6000-6009.
557 10.1073/pnas.1505036112.

558 7. Khan, S., Ince-Dunn, G., Suomalainen, A., and Elo, L.L. (2020). Integrative
559 omics approaches provide biological and clinical insights: examples from
560 mitochondrial diseases. *J Clin Invest* **130**, 20-28. 10.1172/JCI129202.

561 8. Chae, S., Ahn, B.Y., Byun, K., Cho, Y.M., Yu, M.H., Lee, B., Hwang, D., and
562 Park, K.S. (2013). A systems approach for decoding mitochondrial retrograde
563 signaling pathways. *Sci Signal* **6**, rs4. 10.1126/scisignal.2003266.

564 9. Freije, W.A., Mandal, S., and Banerjee, U. (2012). Expression profiling of
565 attenuated mitochondrial function identifies retrograde signals in *Drosophila*.
566 *G3 (Bethesda)* **2**, 843-851. 10.1534/g3.112.002584.

567 10. Miner, R., Pavelka, N., Fernandez-Vizarra, E., Ricciardi-Castagnoli, P.,
568 Zeviani, M., and Tiranti, V. (2009). How do human cells react to the absence
569 of mitochondrial DNA? *PLoS One* **4**, e5713. 10.1371/journal.pone.0005713.

570 11. Tyynismaa, H., Carroll, C.J., Raimundo, N., Ahola-Erkkila, S., Wenz, T.,
571 Ruhanen, H., Guse, K., Hemminki, A., Peltola-Mjosund, K.E., Tulkki, V., et
572 al. (2010). Mitochondrial myopathy induces a starvation-like response. *Hum
573 Mol Genet* **19**, 3948-3958. 10.1093/hmg/ddq310.

574 12. Crimi, M., Bordoni, A., Menozzi, G., Riva, L., Fortunato, F., Galbiati, S., Del
575 Bo, R., Pozzoli, U., Bresolin, N., and Comi, G.P. (2005). Skeletal muscle gene
576 expression profiling in mitochondrial disorders. *FASEB J* **19**, 866-868.
577 10.1096/fj.04-3045fje.

578 13. Perales-Clemente, E., Bayona-Bafaluy, M.P., Perez-Martos, A., Barrientos,
579 A., Fernandez-Silva, P., and Enriquez, J.A. (2008). Restoration of electron
580 transport without proton pumping in mammalian mitochondria. *Proc Natl
581 Acad Sci U S A* **105**, 18735-18739. 10.1073/pnas.0810518105.

582 14. King, M.P., and Attardi, G. (1989). Human cells lacking mtDNA:
583 repopulation with exogenous mitochondria by complementation. *Science* **246**,
584 500-503. 10.1126/science.2814477.

585 15. Gomez-Duran, A., Pacheu-Grau, D., Lopez-Gallardo, E., Diez-Sanchez, C.,
586 Montoya, J., Lopez-Perez, M.J., and Ruiz-Pesini, E. (2010). Unmasking the
587 causes of multifactorial disorders: OXPHOS differences between
588 mitochondrial haplogroups. *Hum Mol Genet* **19**, 3343-3353.
589 10.1093/hmg/ddq246.

590 16. Hofhaus, G., and Attardi, G. (1993). Lack of assembly of mitochondrial DNA-
591 encoded subunits of respiratory NADH dehydrogenase and loss of enzyme

592 activity in a human cell mutant lacking the mitochondrial ND4 gene product.
593 *EMBO J* 12, 3043-3048.

594 17. Perales-Clemente, E., Fernandez-Vizarra, E., Acin-Perez, R., Movilla, N.,
595 Bayona-Bafaluy, M.P., Moreno-Loshuertos, R., Perez-Martos, A., Fernandez-
596 Silva, P., and Enriquez, J.A. (2010). Five entry points of the mitochondrially
597 encoded subunits in mammalian complex I assembly. *Mol Cell Biol* 30, 3038-
598 3047. 10.1128/MCB.00025-10.

599 18. Latorre-Pellicer, A., Moreno-Loshuertos, R., Lechuga-Vieco, A.V., Sanchez-
600 Cabo, F., Torroja, C., Acin-Perez, R., Calvo, E., Aix, E., Gonzalez-Guerra, A.,
601 Logan, A., et al. (2016). Mitochondrial and nuclear DNA matching shapes
602 metabolism and healthy ageing. *Nature* 535, 561-565. 10.1038/nature18618.

603 19. Quiros, P.M., Prado, M.A., Zamboni, N., D'Amico, D., Williams, R.W.,
604 Finley, D., Gygi, S.P., and Auwerx, J. (2017). Multi-omics analysis identifies
605 ATF4 as a key regulator of the mitochondrial stress response in mammals. *J*
606 *Cell Biol* 216, 2027-2045. 10.1083/jcb.201702058.

607 20. Silva, J.M., Wong, A., Carelli, V., and Cortopassi, G.A. (2009). Inhibition of
608 mitochondrial function induces an integrated stress response in
609 oligodendroglia. *Neurobiol Dis* 34, 357-365. 10.1016/j.nbd.2009.02.005.

610 21. Moullan, N., Mouchiroud, L., Wang, X., Ryu, D., Williams, E.G., Mottis, A.,
611 Jovaisaite, V., Frochaux, M.V., Quiros, P.M., Deplancke, B., et al. (2015).
612 Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A
613 Call for Caution in Biomedical Research. *Cell Rep* 10, 1681-1691.
614 10.1016/j.celrep.2015.02.034.

615 22. Michel, S., Canonne, M., Arnould, T., and Renard, P. (2015). Inhibition of
616 mitochondrial genome expression triggers the activation of CHOP-10 by a cell
617 signaling dependent on the integrated stress response but not the mitochondrial
618 unfolded protein response. *Mitochondrion* 21, 58-68.
619 10.1016/j.mito.2015.01.005.

620 23. Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and
621 Gorman, A.M. (2016). The integrated stress response. *EMBO Rep* 17, 1374-
622 1395. 10.15252/embr.201642195.

623 24. Fusakio, M.E., Willy, J.A., Wang, Y., Mirek, E.T., Al Baghdadi, R.J., Adams,
624 C.M., Anthony, T.G., and Wek, R.C. (2016). Transcription factor ATF4
625 directs basal and stress-induced gene expression in the unfolded protein
626 response and cholesterol metabolism in the liver. *Mol Biol Cell* 27, 1536-
627 1551. 10.1091/mbc.E16-01-0039.

628 25. Koyanagi, S., Hamdan, A.M., Horiguchi, M., Kusunose, N., Okamoto, A.,
629 Matsunaga, N., and Ohdo, S. (2011). cAMP-response element (CRE)-
630 mediated transcription by activating transcription factor-4 (ATF4) is essential
631 for circadian expression of the Period2 gene. *J Biol Chem* 286, 32416-32423.
632 10.1074/jbc.M111.258970.

633 26. Pathak, S.S., Liu, D., Li, T., de Zavalia, N., Zhu, L., Li, J., Karthikeyan, R.,
634 Alain, T., Liu, A.C., Storch, K.F., et al. (2019). The eIF2alpha Kinase GCN2
635 Modulates Period and Rhythmicity of the Circadian Clock by Translational
636 Control of Atf4. *Neuron* 104, 724-735 e726. 10.1016/j.neuron.2019.08.007.

637 27. Panda, S., Antoch, M.P., Miller, B.H., Su, A.I., Schook, A.B., Straume, M.,
638 Schultz, P.G., Kay, S.A., Takahashi, J.S., and Hogenesch, J.B. (2002).
639 Coordinated transcription of key pathways in the mouse by the circadian
640 clock. *Cell* 109, 307-320. 10.1016/s0092-8674(02)00722-5.

641 28. Liu, C., Li, S., Liu, T., Borjigin, J., and Lin, J.D. (2007). Transcriptional
642 coactivator PGC-1alpha integrates the mammalian clock and energy
643 metabolism. *Nature* *447*, 477-481. 10.1038/nature05767.

644 29. Aviram, R., Adamovich, Y., and Asher, G. (2021). Circadian Organelles:
645 Rhythms at All Scales. *Cells* *10*. 10.3390/cells10092447.

646 30. Stenton, S.L., and Prokisch, H. (2020). Genetics of mitochondrial diseases:
647 Identifying mutations to help diagnosis. *EBioMedicine* *56*, 102784.
648 10.1016/j.ebiom.2020.102784.

649 31. Zhang, Z., Hailat, Z., Falk, M.J., and Chen, X.W. (2014). Integrative analysis
650 of independent transcriptome data for rare diseases. *Methods* *69*, 315-325.
651 10.1016/j.ymeth.2014.06.003.

652 32. Forsstrom, S., Jackson, C.B., Carroll, C.J., Kuronen, M., Pirinen, E., Pradhan,
653 S., Marmyleva, A., Auranen, M., Kleine, I.M., Khan, N.A., et al. (2019).
654 Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic Stress
655 Responses in Mitochondrial Myopathy with mtDNA Deletions. *Cell Metab*
656 *30*, 1040-1054 e1047. 10.1016/j.cmet.2019.08.019.

657 33. Hunt, R.J., Granat, L., McElroy, G.S., Ranganathan, R., Chandel, N.S., and
658 Bateman, J.M. (2019). Mitochondrial stress causes neuronal dysfunction via
659 an ATF4-dependent increase in L-2-hydroxyglutarate. *J Cell Biol* *218*, 4007-
660 4016. 10.1083/jcb.201904148.

661 34. Lozoya, O.A., Martinez-Reyes, I., Wang, T., Grenet, D., Bushel, P., Li, J.,
662 Chandel, N., Woychik, R.P., and Santos, J.H. (2018). Mitochondrial
663 nicotinamide adenine dinucleotide reduced (NADH) oxidation links the
664 tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA
665 methylation. *PLoS Biol* *16*, e2005707. 10.1371/journal.pbio.2005707.

666 35. Mick, E., Titov, D.V., Skinner, O.S., Sharma, R., Jourdain, A.A., and Mootha,
667 V.K. (2020). Distinct mitochondrial defects trigger the integrated stress
668 response depending on the metabolic state of the cell. *eLife* *9*.
669 10.7554/eLife.49178.

670 36. Bao, X.R., Ong, S.E., Goldberger, O., Peng, J., Sharma, R., Thompson, D.A.,
671 Vafai, S.B., Cox, A.G., Marutani, E., Ichinose, F., et al. (2016). Mitochondrial
672 dysfunction remodels one-carbon metabolism in human cells. *eLife* *5*.
673 10.7554/eLife.10575.

674 37. Ord, T., and Ord, T. (2017). Mammalian Pseudokinase TRIB3 in Normal
675 Physiology and Disease: Charting the Progress in Old and New Avenues. *Curr*
676 *Protein Pept Sci* *18*, 819-842. 10.2174/1389203718666170406124547.

677 38. Ben-Sahra, I., Hoxhaj, G., Ricoult, S.J.H., Asara, J.M., and Manning, B.D.
678 (2016). mTORC1 induces purine synthesis through control of the
679 mitochondrial tetrahydrofolate cycle. *Science* *351*, 728-733.
680 10.1126/science.aad0489.

681 39. Ducker, G.S., and Rabinowitz, J.D. (2017). One-Carbon Metabolism in Health
682 and Disease. *Cell Metab* *25*, 27-42. 10.1016/j.cmet.2016.08.009.

683 40. Ducker, G.S., Chen, L., Morscher, R.J., Ghergurovich, J.M., Esposito, M.,
684 Teng, X., Kang, Y., and Rabinowitz, J.D. (2016). Reversal of Cytosolic One-
685 Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. *Cell*
686 *Metab* *23*, 1140-1153. 10.1016/j.cmet.2016.04.016.

687 41. Tufi, R., Gandhi, S., de Castro, I.P., Lehmann, S., Angelova, P.R., Dinsdale,
688 D., Deas, E., Plun-Favreau, H., Nicotera, P., Abramov, A.Y., et al. (2014).
689 Enhancing nucleotide metabolism protects against mitochondrial dysfunction

690 and neurodegeneration in a PINK1 model of Parkinson's disease. *Nat Cell Biol*
691 *16*, 157-166. 10.1038/ncb2901.

692 42. Yoshida, T., and Kikuchi, G. (1973). Majors pathways of serine and glycine
693 catabolism in various organs of the rat and cock. *J Biochem* *73*, 1013-1022.
694 10.1093/oxfordjournals.jbchem.a130155.

695 43. Cela, O., Scrima, R., Pazienza, V., Merla, G., Benegiamo, G., Augello, B.,
696 Fugetto, S., Menga, M., Rubino, R., Fuhr, L., et al. (2016). Clock genes-
697 dependent acetylation of complex I sets rhythmic activity of mitochondrial
698 OxPhos. *Biochim Biophys Acta* *1863*, 596-606.
699 10.1016/j.bbamcr.2015.12.018.

700 44. Scrima, R., Cela, O., Merla, G., Augello, B., Rubino, R., Quarato, G., Fugetto,
701 S., Menga, M., Fuhr, L., Relogio, A., et al. (2016). Clock-genes and
702 mitochondrial respiratory activity: Evidence of a reciprocal interplay. *Biochim
703 Biophys Acta* *1857*, 1344-1351. 10.1016/j.bbabi.2016.03.035.

704 45. Balsa, E., Soustek, M.S., Thomas, A., Cogliati, S., Garcia-Poyatos, C., Martin-
705 Garcia, E., Jedrychowski, M., Gygi, S.P., Enriquez, J.A., and Puigserver, P.
706 (2019). ER and Nutrient Stress Promote Assembly of Respiratory Chain
707 Supercomplexes through the PERK-eIF2alpha Axis. *Mol Cell* *74*, 877-890
708 e876. 10.1016/j.molcel.2019.03.031.

709 46. Suomalainen, A., Elo, J.M., Pietilainen, K.H., Hakonen, A.H., Sebastianova,
710 K., Korpela, M., Isohanni, P., Marjavaara, S.K., Tyni, T., Kiuru-Enari, S., et
711 al. (2011). FGF-21 as a biomarker for muscle-manifesting mitochondrial
712 respiratory chain deficiencies: a diagnostic study. *Lancet Neurol* *10*, 806-818.
713 10.1016/S1474-4422(11)70155-7.

714 47. Restelli, L.M., Oettinghaus, B., Halliday, M., Agca, C., Licci, M., Sironi, L.,
715 Savoia, C., Hench, J., Tolnay, M., Neutzner, A., et al. (2018). Neuronal
716 Mitochondrial Dysfunction Activates the Integrated Stress Response to Induce
717 Fibroblast Growth Factor 21. *Cell Rep* *24*, 1407-1414.
718 10.1016/j.celrep.2018.07.023.

719 48. Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N.,
720 Yun, C., Popko, B., Paules, R., et al. (2003). An integrated stress response
721 regulates amino acid metabolism and resistance to oxidative stress. *Mol Cell*
722 *11*, 619-633. 10.1016/s1097-2765(03)00105-9.

723 49. Wittig, I., Braun, H.P., and Schagger, H. (2006). Blue native PAGE. *Nat
724 Protoc* *1*, 418-428. 10.1038/nprot.2006.62.

725 50. Acin-Perez, R., Fernandez-Silva, P., Peleato, M.L., Perez-Martos, A., and
726 Enriquez, J.A. (2008). Respiratory active mitochondrial supercomplexes. *Mol
727 Cell* *32*, 529-539. 10.1016/j.molcel.2008.10.021.

728 51. Kechin, A., Boyarskikh, U., Kel, A., and Filipenko, M. (2017). cutPrimers: A
729 New Tool for Accurate Cutting of Primers from Reads of Targeted Next
730 Generation Sequencing. *J Comput Biol* *24*, 1138-1143.
731 10.1089/cmb.2017.0096.

732 52. Thrash, A., Arick, M., 2nd, and Peterson, D.G. (2018). Quack: A quality
733 assurance tool for high throughput sequence data. *Anal Biochem* *548*, 38-43.
734 10.1016/j.ab.2018.01.028.

735 53. Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification
736 from RNA-Seq data with or without a reference genome. *BMC Bioinformatics*
737 *12*, 323. 10.1186/1471-2105-12-323.

738 54. Johnson, W.E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in
739 microarray expression data using empirical Bayes methods. *Biostatistics* 8,
740 118-127. 10.1093/biostatistics/kxj037.

741 55. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth,
742 G.K. (2015). limma powers differential expression analyses for RNA-
743 sequencing and microarray studies. *Nucleic Acids Res* 43, e47.
744 10.1093/nar/gkv007.

745 56. Huang, D.W., Sherman, B.T., Tan, Q., Collins, J.R., Alvord, W.G., Roayaei,
746 J., Stephens, R., Baseler, M.W., Lane, H.C., and Lempicki, R.A. (2007). The
747 DAVID Gene Functional Classification Tool: a novel biological module-
748 centric algorithm to functionally analyze large gene lists. *Genome Biol* 8,
749 R183. 10.1186/gb-2007-8-9-r183.

750 57. Acin-Perez, R., Bayona-Bafaluy, M.P., Bueno, M., Machicado, C., Fernandez-
751 Silva, P., Perez-Martos, A., Montoya, J., Lopez-Perez, M.J., Sancho, J., and
752 Enriquez, J.A. (2003). An intragenic suppressor in the cytochrome c oxidase I
753 gene of mouse mitochondrial DNA. *Hum Mol Genet* 12, 329-339.
754 10.1093/hmg/ddg021.

755 58. Hoffmann, S., Spitkovsky, D., Radicella, J.P., Epe, B., and Wiesner, R.J.
756 (2004). Reactive oxygen species derived from the mitochondrial respiratory
757 chain are not responsible for the basal levels of oxidative base modifications
758 observed in nuclear DNA of Mammalian cells. *Free Radic Biol Med* 36, 765-
759 773. 10.1016/j.freeradbiomed.2003.12.019.

760

761

762

763

764 **Figure Legends**

765

766 **Figure 1.**- Seahorse and native gel characterization of the indicated human and mouse
767 cell lines. **(A)** Complex I in-gel activity analysis and **(B)** immunodetection of the
768 indicated respiratory complexes and supercomplexes after separation by BNGE of
769 digitonin-permeabilized mitochondria from human 143B-derived cell lines. **(C)**
770 Complexes I and IV in-gel activity assays and **(D)** western blot analysis of the indicated
771 complexes and supercomplexes after BNGE of mitochondria from mouse L929-derived
772 cell lines. **(E-F)** Oxygen consumption rate (OCR) measurement upon sequential
773 addition of oligomycin, FCCP, and rotenone + antimycin A in the indicated human (E)
774 and mouse (F) cells lines using a Seahorse XF96 Extracellular Flux Analyzer.

775

776 **Figure 2.**- Principal Component Analysis (PCA) of transcriptomic profiles for human
777 and mouse cell lines. **(A)** PCA of mouse transcriptomic profiles separated cell lines
778 according to mitochondrial dysfunction severity. The first dimension (accounting for
779 35.72% of variability) separated wild type cells (L929-BalbC and NIH3T3) and L929-
780 ND4 (carrying a mutation in gene *mt-Nd4* that results in a mild phenotype) from cells
781 with more severe mitochondrial defects; these were either lacking mitochondrial DNA
782 (ρ^0 cell lines), or carrying a mutation in cytochrome oxidase I gene (*mt-Co1*),
783 independently of whether alternative oxidase (AOX) or ND11 (an alternative
784 mitochondrial NADH DH from yeast) had been introduced to ameliorate the
785 mitochondrial defect. **(B)** Analysis of human transcriptomic profiles rendered a slightly
786 different landscape. Now, separation of cell lines according to phenotype severity
787 occurred along the second PCA dimension (accounting for 26.74% of variability). The
788 first dimension (50.35% of variability) separate ρ^0 HeLa cells from the other cell lines,
789 suggesting that the lack of mitochondrial DNA in HeLa background causes a more
790 dramatic adjustment of gene expression programs.

791

792 **Figure 3.**- **(A)** collection of 8,008 mouse genes, detected as differentially expressed in
793 contrasts involving control and mitochondrially dysfunctional cell lines, were clustered
794 using k-means, as represented in Figure S1. **(A)** Expression profiles for clusters 1, 19,
795 26 and 29, which contain genes that are specifically upregulated in ρ^0 state or in
796 OXPHOS deficient cell lines. **(B)** Summary of IPA-Upstream Regulator analysis results
797 obtained for each of the clusters. ATF4 is the only transcriptional regulator whose
798 targets are enriched in the four clusters.

799

800 **Figure 4.**- **(A)** Comparative heatmap presenting z-score values for significantly
801 enriched transcriptional regulators, as detected with IPA-Upstream Regulator analysis,
802 on the collections of genes detected as differentially expressed in seven contrasts that
803 compared the expression profile of OXPHOS-deficient mouse cell lines against their
804 control counterparts. **(B)** Average normalized z-score for the same regulators described
805 in panel (A).

806

807 **Figure 5.** Gene network summarizing the relations between enriched transcriptional
808 regulators and its targets, as derived from IPA-Upstream Regulator analysis results for
809 of 6,952 differentially expressed genes detected in the comparison of ATF4^{KO} mouse
810 embryonic fibroblasts (MEFs) cell line and their control counterparts. Nodes are
811 colored by logFC values, and their size represents the betweenness of each node.

812

813 **Figure 6.-** (A) Mouse and human clusters enriched in ATF4 targets (with adjusted p-
814 value < 0.05; MC* and HC*, respectively), and combined gene sets in mouse and
815 human (MCOMB and HCOMB, respectively). (B) IPA-Upstream Regulator analysis
816 results summary for MCOMB (green) and HCOMB (yellow), with indication of a set
817 of eight shared transcriptional regulators. (C) Enrichment significance for the eight
818 shared transcriptional regulators in human and mouse. (D) Enriched selected functions
819 from the Canonical Pathways (CP) and Diseases and Biofunctions (DBF) IPA
820 ontologies, associated to the target genes of each of the eight shared regulators
821

822 **Figure 7.-** Seahorse and native gel characterization of mouse ATF4^{KO} MEFs and
823 human ATF4^{KO}. (A-B) Oxygen consumption rate measurement in mouse ATF4^{KO} cells
824 compared to L929^{Balb/c} and L929^{Rho0} cell lines (A) and OXPHOS complexes and
825 supercomplexes organization analysis in mouse ATF4^{KO} cells compared to
826 L929Balb/c (B). (C-E) Respiration activity of three independent clones of human 143B
827 derived ATF4^{KO} cells measured using the Seahorse technology (C) and pattern of
828 mitochondrial supercomplexes analyzed by BNGE followed by complex I in-gel
829 activity (D) and immunodetection of the indicated respiratory complexes subunits (E)

830
831

Table 1.- Summary of cell lines used in the current study. Nuclear and mitochondrial genetic backgrounds are described, as well as phenotypes. Cell lines have been classified into four categories according to the severity of mitochondrial dysfunction.

Species	Cell line	Nucleus	mtDNA	Phenotype	Severity	Reference
MOUSE	L929 ^{Rho0}	L929	p ^o	Uridine auxotrophy, no functional OXPHOS, depends on glycolysis, no oxygen consumption in SeaHorse	Extreme	57
MOUSE	NIH3T3 ^{Rho0}	NIH3T3	p ^o	Uridine auxotrophy, no functional OXPHOS, depends on glycolysis, no oxygen consumption in SeaHorse	Extreme	
MOUSE	L929 ^{COI}	L929	Point mutation in Col (Complex IV)	Uridine auxotrophy, fails to assemble CIV. Reduced levels of basal respiration with SeaHorse	Severe	
MOUSE	L929 ^{ND4}	L929	Point mutation in mtND4, dA10227 (Complex I)	Uridine prototrophy. Fails to assemble CI and CI-containing supercomplexes. Severe decrease in O ₂ consumption with SeaHorse	Mild	17
MOUSE	L929 ^{Rho0} AOX	L929 / AOX	p ^o	L929 ^{Rho0} expressing AOX	Mild	13
MOUSE	L929 ^{Rho0} NA	L929 / NA	p ^o	L929 ^{Rho0} expressing NDI1 and AOX	Mild	13
MOUSE	L929 ^{COI} AOX	L929 / AOX	Point mutation in Col	Respiration capacity independent of complexes III and IV, due to AOX activity	Mild	13
MOUSE	L929 ^{Balb/c}	L929	WT	WT	WT	57
MOUSE	NIH3T3	NIH3T3	WT	WT	WT	
HUMAN	143B ^{Rho0}	143B	p ^o	Uridine auxotrophy, no functional OXPHOS, depends on glycolysis, no oxygen consumption in SeaHorse	Extreme	14
HUMAN	HeLa ^{Rho0}	HeLa	p ^o	Uridine auxotrophy, no functional OXPHOS, depends on glycolysis, no oxygen consumption in SeaHorse	Extreme	58
HUMAN	143B ^{ND4}	143B	Frameshift in mtND4, iC10947 (Complex I)	Fails to assemble CI and CI-containing supercomplexes. Severe decrease in O ₂ consumption with SeaHorse.	Extreme	16
HUMAN	143B ^{LHON}	143B	Point mutation in mtND4, G11778A (Complex I)	Allows assembly of CI and all supercomplexes. Mild decrease in O ₂ consumption with SeaHorse	Mild	
HUMAN	143B ⁶¹³	143B	WT	WT	WT	15
HUMAN	HeLa ⁶¹³	HeLa	WT	WT	WT	

832

833

834 **Methods**

835

836 **Cell Lines and Media**

837 All cell lines were grown in DMEM (D5796 Sigma-Aldrich) supplemented with
838 5% FBS (fetal bovine serum, GIBCO-BRL) and 1 mM sodium pyruvate (Lonza) in a
839 5% CO₂, 95% air atmosphere at 37°C. Cell lines lacking mtDNA (ρ⁰) and mtDNA
840 mutants were supplemented with 50 µg/ml uridine. Most cell lines used in this study
841 were generated and described previously (Table 1). For drug treatments, medium
842 containing the indicated concentration of Rotenone (Sigma), BFA (Sigma),
843 Doxycycline (Sigma, D9891) were used.

844 ATF4^{-/-} mouse cells (MEFs) used in this study were described earlier ⁴⁸. ATF4
845 mutant human osteosarcoma cell lines were obtained from control 613 cells by
846 CRISPR/Cas9 gene editing technology. GuideRNA (gRNA) were selected to drive the
847 elimination of the last portion of exon 1. After each round of Crispr/Cas9 endonuclease
848 expression, single cells expressing GFP were collected by cell sorter and colonies were
849 genotyped by PCR. Sequences of primers used for genotyping of the colonies were:
850 atgatggcttggccagt (forward) and ccattttctccaacatccaatc (reverse). Two rounds of
851 CRISPR/Cas9 expression were applied to mutate both alleles. A third round of
852 expression and single cell sorting and genotyping was applied to minimize any
853 possibility of having mixed culture population. Furthermore, viability of these colonies
854 was tested by media lacking βME, EAA and NEAA.

855 **Western Blotting**

856 After electrophoresis (SDS-PAGE, BNGE, or BN-SDS-PAGE), gels were
857 electroblotted onto Hybond-P polyvinylidene fluoride (PVDF) membranes (GE
858 Healthcare) and sequentially probed with specific antibodies against ATF4 (Cell
859 Signaling ATF-4 (D4B8), #11815) and GAPDH (Abcam). Secondary antibodies were
860 peroxidase conjugated (Invitrogen) when the signal was generated using ECL Plus (GE
861 Healthcare) or conjugated to LI-COR IRDye 800CW or IRDye 680LT when the signal
862 was acquired with the ODYSSEY Infrared Imaging System (LI-COR). The relative
863 amount of each band was estimated with GelEval software from the scanned
864 membranes or with the ODYSSEY Infrared Imaging System (LI-COR).

865 **BN-PAGE and In-gel Activity of OXPHOS Complexes**

866 Mitochondria were isolated, run on 5-13% gradient gels and analyzed by
867 BNGE, according to Wittig et al.⁴⁹, with some modifications⁵⁰. SDS-PAGE was
868 conducted with strips excised from the first BNGE dimension. Antibodies that were
869 used to compare the levels of OXPHOS complexes are: CI-Ndufa9 (Abcam), CII-Fp70
870 (Molecular Probes), CIII-Core1 (Abcam), CIII-UQCRC2 (Abcam), CIV-CoI
871 (Invitrogen), CV-ATPB (Abcam). VDAC1 (Mitosciences) was used as a loading
872 control antibody. In order to determine CI in-gel activity, NADH dehydrogenase
873 activity was measured in isolated mitochondria. BN gels were incubated in a buffer
874 containing 0.1 M Tris-HCl, 0.14mM NADH and 1mg/ml Nitro Blue Tetrazolium
875 overnight at 25 °C

876 **Respirometry and Oxygen Consumption with Seahorse XF Analyzer**

877 Oxygen consumption was measured with an XF96 Extracellular Flux Analyzer
878 (SeaHorse Bioscience), as specified by the provider. Mito Stress Kit was used as a
879 standard way of assessing mitochondrial OXPHOS performance. Data were normalized
880 to DNA content with the CyQuant NF Cell Proliferation Assay Kit (Molecular Probes,
881 C35006).

882 **Cell viability and proliferation**

883 To assess cellular proliferation, growth curves were obtained by seeding 3,000 cells per
884 well in 96-well plate. At least 8 replicate wells were used per condition. Cyquant
885 (Molecular Probes, C35006) was used as a quantifiable measurement for cell number.

886 **RNA Isolation and RNA Sequencing**

887 Cells were grown on p100 cell culture dishes until reaching approximately 80%
888 confluency. The plate was washed with PBS and cells were collected immediately.
889 Total RNA was extracted with TRIzol reagent and then purified on RNeasy spin
890 columns (Qiagen). Total RNA was quantified, and purity checked using a NanoDrop
891 ND-1000 (Thermo Scientific, Waltham, MA, USA). RNA integrity (RNA Integrity
892 Score ≥ 7.9) and quantity were determined with an Agilent 2100 Bioanalyzer. 500 ng
893 of total RNA were used with the TruSeq RNA Sample Preparation v2 Kit (Illumina,
894 San Diego, CA) to construct index-tagged cDNA libraries. Libraries were quantified
895 using a Quant-iT™ dsDNA HS assay with the Q-bit fluorometer (Life Technologies,
896 Carlsbad, California). Average library size and the size distribution were determined
897 using a DNA 1000 assay in an Agilent 2100 Bioanalyzer. Libraries were normalized to
898 10nM using Tris-HCl 10mM, pH8.5 with 0.1% Tween 20. Libraries were applied to an
899 Illumina flow cell for cluster generation (True Seq SR Cluster Kit V2 cBot) and

900 sequence-by-synthesis. Single reads (75 base long) were generated using the TruSeq
901 SBS Kit v5, on Illumina platforms Genome Analyzer IIx or HiSeq 2500, following the
902 standard RNA sequencing protocol. Reads were further processed using the CASAVA
903 package (Illumina) to demultiplex reads according to adapter indexes and produce fastq
904 files.

905 **Bioinformatic Analysis of RNASeq data**

906 Fastq files were pre-processed with a pipeline that used Cutadapt 1.2.1⁵¹ to remove
907 TruSeq adaptor remains, and FastQC⁵² to perform quality checks on the reads. Then,
908 RSEM⁵³ was used to align pre-processed reads against transcriptome references
909 GRCm38.v76 or GRCh38.v76, and to obtain expression estimates at gene level. Raw
910 count matrices were used as input for a differential expression pipeline that used
911 ComBat⁵⁴ to correct for batch effects and limma⁵⁵ for normalization and differential
912 expression testing, taking into consideration only nuclear genes with at least 1 count
913 per million in at least two samples. Genes were classified as differentially expressed if
914 changes were associated to Benjamini-Hochberg adjusted *P*-value < 0.05 and
915 abs(logFC)>0.5 in any of the pairwise contrasts performed, in which the transcriptomic
916 profile of OXPHOS deficient and WT cell lines were compared (Table S1). Raw reads
917 and TMM-normalized batch corrected counts have been deposited in GEO with the
918 accession number **GSE**. The gene network was built using the information on the
919 upstream regulators identified for IPA from the set of differentially expressed genes
920 between ATF4^{KO} vs WT mice. Only genes differentially expressed between both
921 conditions were considered in the analysis.

922 **KMeans Clustering and Downstream Functional Analysis**

923 To identify groups of genes with similar expression profiles across the cell lines being
924 considered, k-means clustering was performed with the R ComplexHeatmap package
925 on sets of 8,008 murine genes or 8,165 genes human genes that had been identified as
926 differentially expressed in a selection of pairwise contrasts (Table S1). The elbow
927 method was used to estimate the optimal number of clusters, which was set as k=30,
928 both for mice and human samples. Metaclusters were generated by manually merging
929 selected clusters. Gene clusters and metaclusters were functionally annotated with
930 DAVID⁵⁶, to identify significant associations to Biological Process GO terms and
931 KEGG pathways, as well as with the Upstream Regulator tool of Ingenuity Pathway
932 Analysis (IPA, Qiagen), to identify potential regulators. IPA was also used to recover

933 functional interactions between the set of eight regulators shared by mouse and human
934 metaclusters, and to recover information about associated functions.

935 **Statistical Analysis and Graphical Representation**

936 Statistical analyses and graphics were produced with GraphPad Prism 6
937 software or with the R suite. Data sets were compared by unpaired two-tailed *t*-tests.
938 Differences were considered statistically significant at *P* values below 0.05. **P* < 0.05;
939 ***P* < 0.005; ****P* < 0.0005. All results are presented as mean ± s.d. or mean ± s.e.m.

940
941 **Supplemental Information**

942
943 **Supplementary Figure Legends**

944
945 **Figure S1.**- K-means clustering of 8,008 genes detected as differentially expressed in
946 contrasts involving control and mitochondrially dysfunctional cell lines in mouse (see
947 also Table S1). Clusters 1, 7, 10, 13, 15, 19, 26, 29, selected by shape, are colored.

948
949 **Figure S2.**- Summary of DAVID analysis results for clusters 1, 7, 10, 13, 15, 19, 26,
950 which contain genes that are up- or down-regulated in mouse cell lines that have
951 either ρ⁰ genotype or that express uridine dependency or OXPHOS dysfunction.

952
953 **Figure S3.**- Summary of IPA-Upstream Regulator analysis for the collections of genes
954 included in mouse clusters 1, 19, 26 and 29.

955
956 **Figure S4.**- **Atf4^{KO} genes and OXPHOS.** (A) 6,952 genes were detected as
957 differentially expressed in association with the inactivation of Atf4 in mouse. Out of
958 them, 48 genes were included in the collection of 168 OXPHOS genes, as defined in
959 MitoCarta 3.0. (B) The promoter regions of the same collection of 168 OXPHOS genes
960 were scanned to identify transcription factor binding sites for the eight regulators
961 included in the so called Atf4 network. TF binding sites were detected in 42 OXPHOS
962 genes and in 14 of the 48 OXPHOS genes that had been detected as differentially
963 expressed in the Atf4^{KO} versus control comparison.

964
965 **Figure S5.**- ATF4 induction by drugs and sensitivity of ATF4^{KO} to drugs, in mouse.

966
967 **Figure S6.**- K-means clustering of 8,165 genes detected as differentially expressed in
968 contrasts involving control and mitochondrially dysfunctional cell lines in human (see
969 also Table S1). Clusters 11, 16, 23, 28, 29, 30, selected by ATF4 enrichment, are
970 colored.

971
972 **Figure S7: Crispr/Cas9 colonies obtained from human osteosarcoma cell line.** (A)
973 Relative growth of each colony obtained from Crispr/Cas9 gene editing in different
974 media was analyzed by Cyquant as a measure of DNA content. ATF4 media contain β-
975 mercaptoethanol, essential and non-essential amino acids. 8 replicates were measured
976 for each data point. (B) Western blot showing Crispr/Cas9 colonies fail to produce
977 ATF4 upon doxycycline treatment.

979 **Supplementary Tables**

980

981 **Table S1.**- Summary of contrasts and numbers
982 of differentially expressed genes, and
983 combined sets of differentially expressed
984 genes, in human and mouse.

MOUSE

Contrast	DEG
L929 ^{COI} _vs_L929 ^{Balbc}	3705
L929 ^{ND4} _vs_L929 ^{Balbc}	3170
L929 ^{Rho0} _vs_L929 ^{Balbc}	2900
NIH3T3 ^{Rho0} _vs_NIH3T3	3237
COMBINED GENE SET A	8008
L929 ^{COI} AOX_vs_L929 ^{Balbc}	4372
L929 ^{Rho0} AOX_vs_L929 ^{Balbc}	2992
L929 ^{Rho0} NA_vs_L929 ^{Balbc}	3341
COMBINED GENE SET B	9191

HUMAN

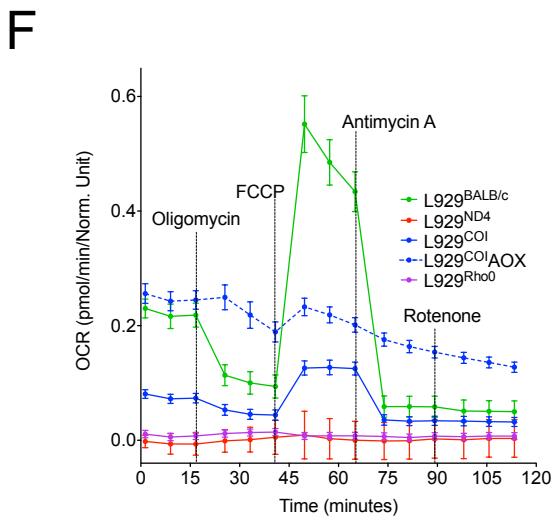
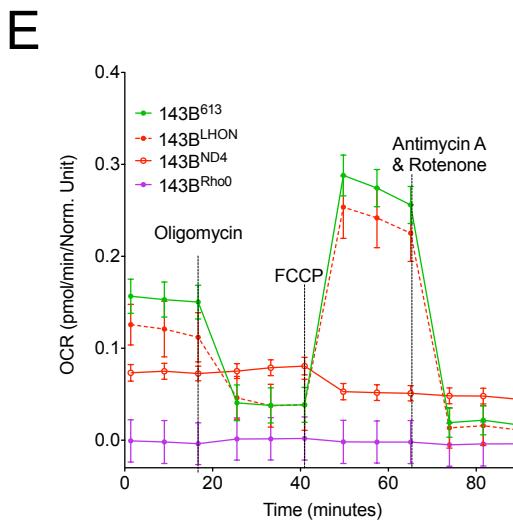
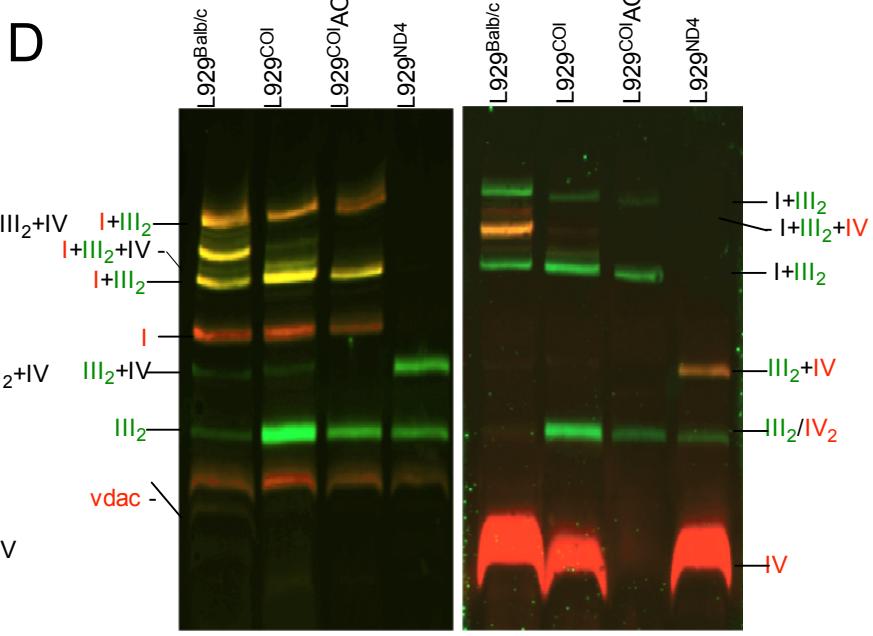
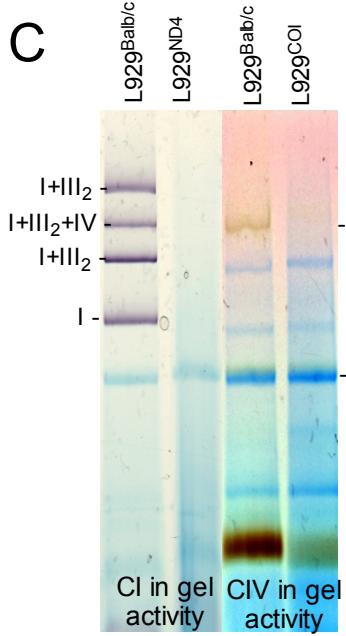
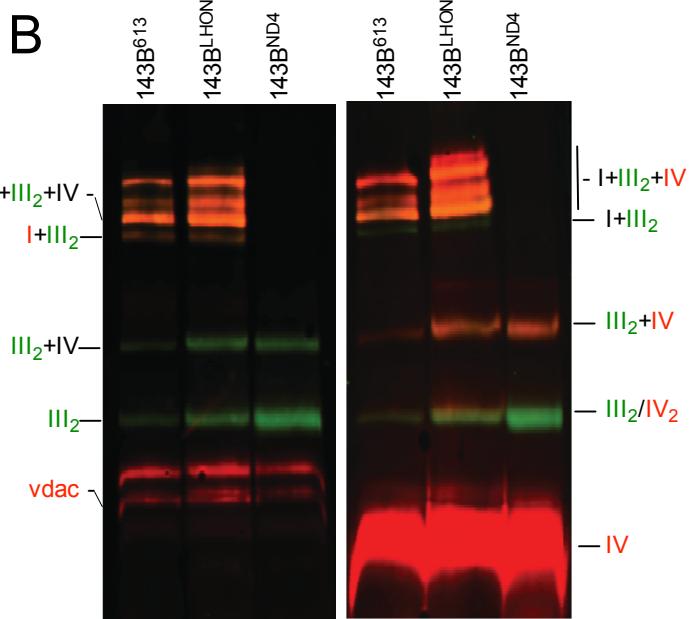
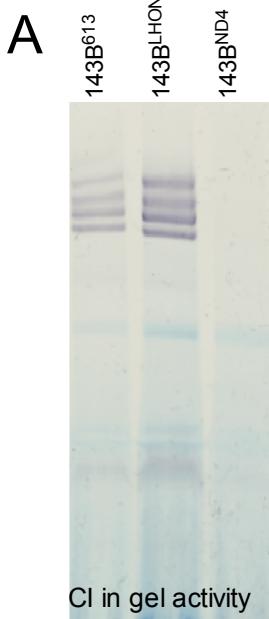
Contrast	DEG
143B ^{LHON} _vs_143B ⁶¹³	2893
143B ^{ND4} _vs_143B ⁶¹³	3018
143B ^{Rho0} _vs_143B ⁶¹³	3324
HeLa ^{Rho0} _vs_HeLa ⁶¹³	4334
COMBINED GENE SET	8165

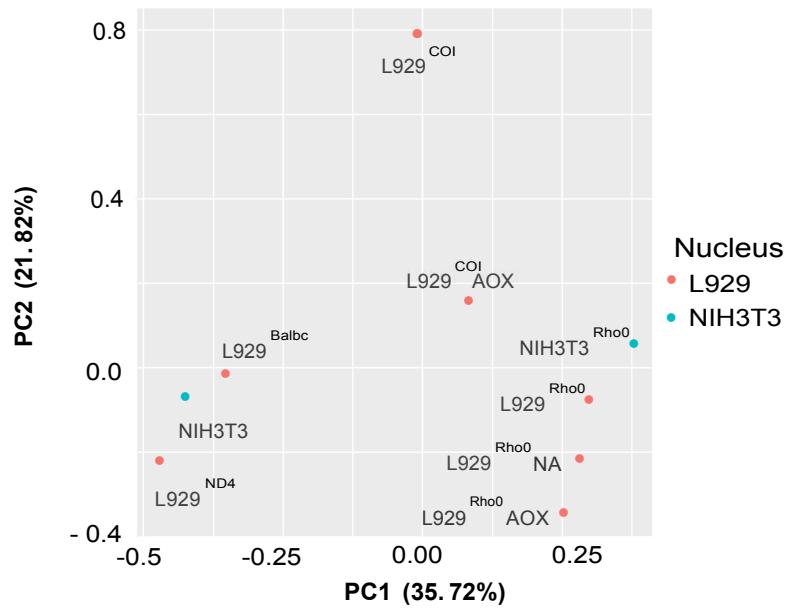
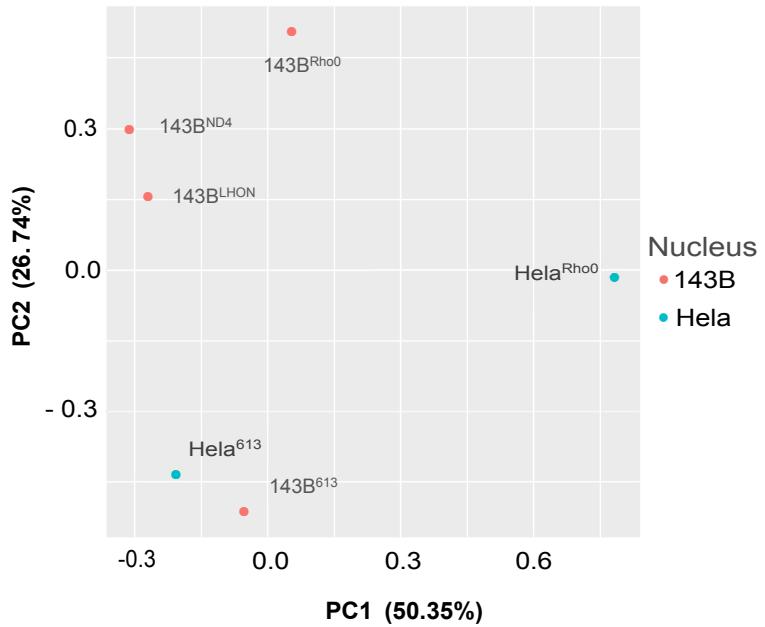
985 Pairwise differential expression tests were
986 performed with limma for the contrasts
987 indicated. Differentially expressed genes were
988 defined as those with expression changes
989 associated to Benjamini-Hochberg adjusted
990 p_value < 0.05 and abs(logFC) >= 0.5. A
991 combined collection of 8,008 mouse genes,
992 detected as differentially expressed in
993 contrasts involving control and
994 mitochondrially dysfunctional cell lines, was
995 assembled to define gene clusters with the
996 kmeans method. A second collection of 9,191
997 differentially expressed genes was assembled
998 by including those from contrasts involving
999 cells in which alternative oxidase (AOX), or
1000 ND1L (NA), had been introduced to rescue a
1001 mitochondrial defect; this collection was used
1002 to compare the transcriptomic profile of all
1003 mouse cell lines with PCA. Similarly, a
1004 combined collection of 8,165 differentially
1005 expressed human genes was selected for the
1006 construction of k-means clusters and, also, to
1007 compare transcriptomic profiles with PCA

1008

1009

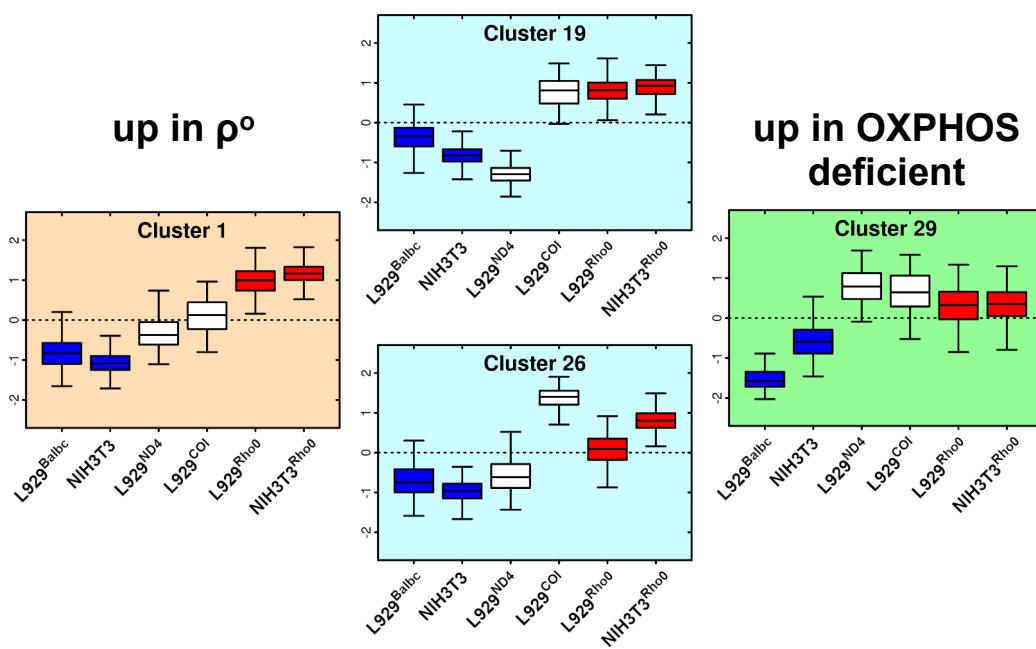
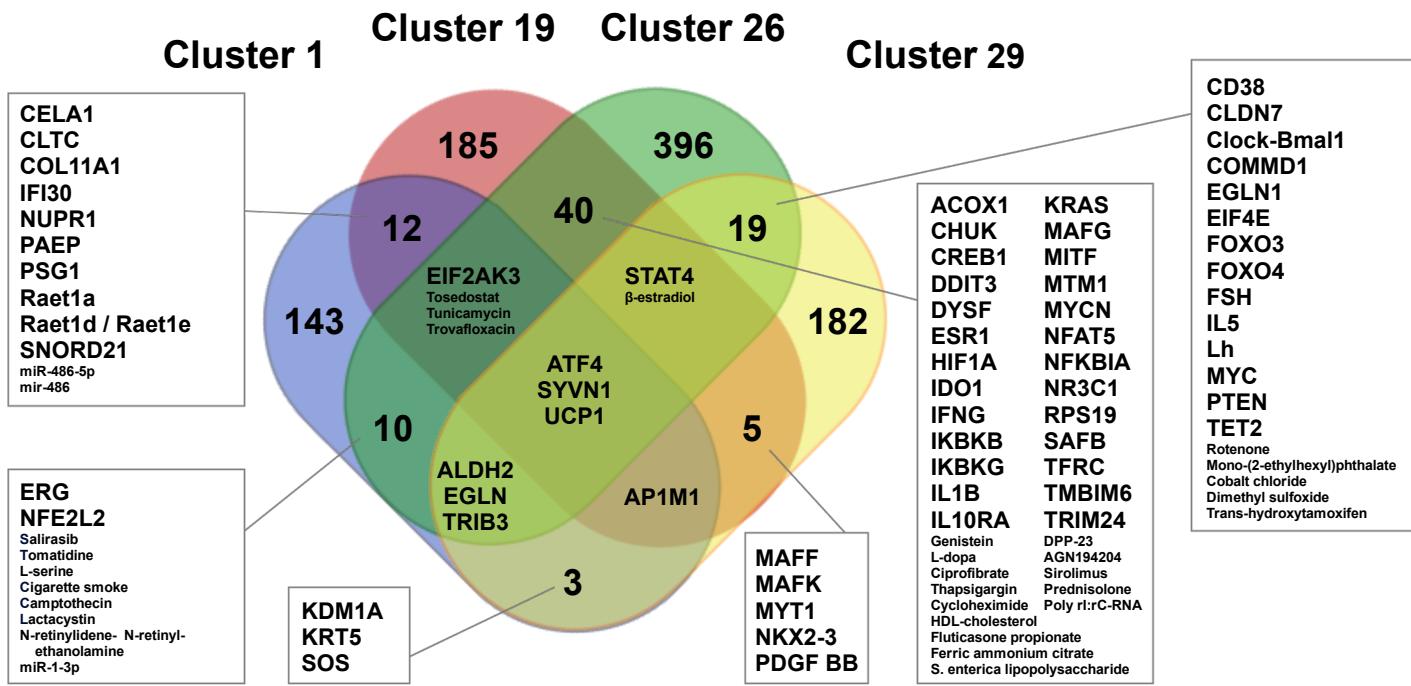
Table S2.- Summary Atf4-related IPA-Upstream Regulator analysis results, in mouse.

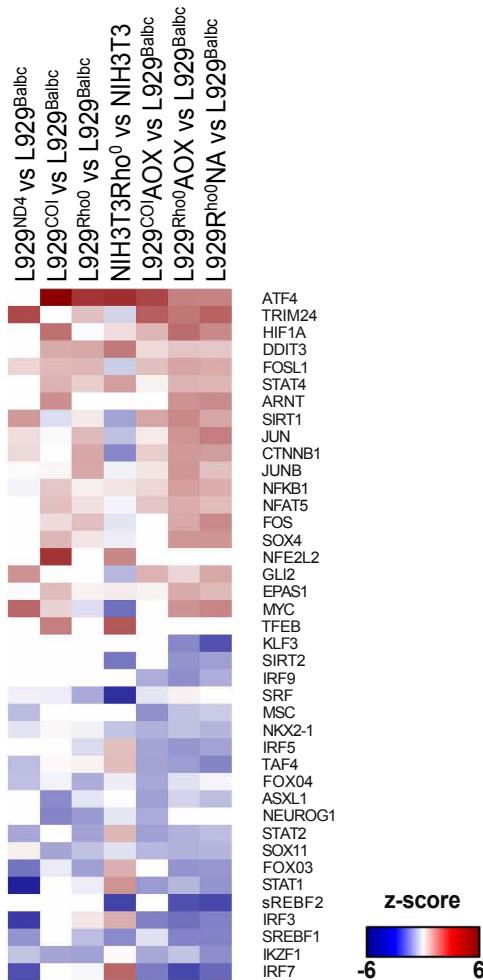
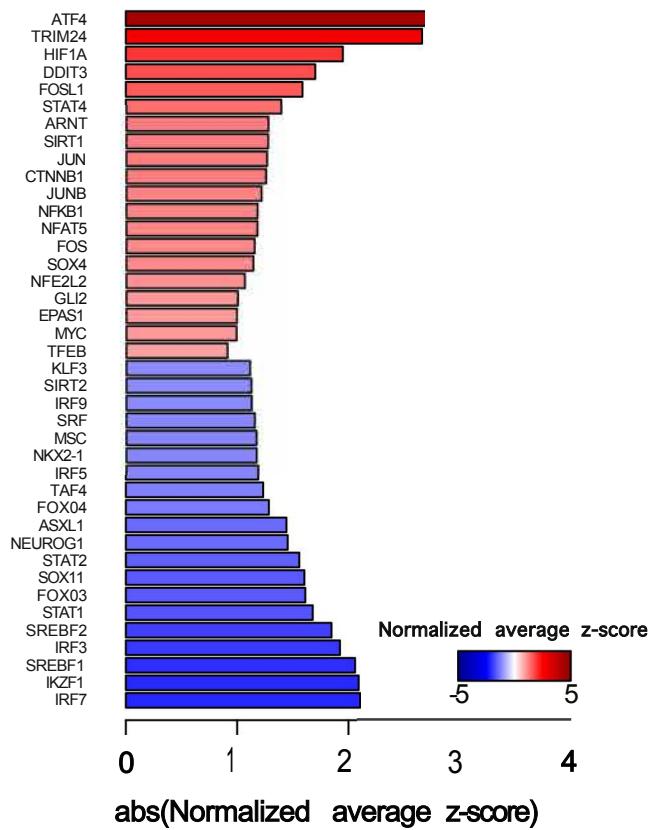






Contrast	Exp ogFC	Exp adj.p_value	En z- score	En p_value	En adj.p_value	Up-regulated genes	Down-regulated genes
L929 ^{COI} _vs_L929 ^{Balbc}	0.6624	4.72E-06	6.264	9.67E-08	9.82E-06	APBA3, AREG, ASNS, ATF3, ATF4, BCAT1, CA9, CDKN1A, CEBPB, CHAC1, CTH, DDT4, DDR2, EIF2S2, EIF4EBP1, ERO1A, GADD45A, GARS1, GCH1, GHITM, GYS1, HNFA4, IARS1, IGFBP7, LARS1, LGALS3, MGST1, MTHFD2 , NARS1, NDRG1, NID2, NOX4, PEG3, PHGDH, PPARG, PSAT1, PYCR1, SARS1, SEL1L, SHMT2 , SLC1A5, SLC3A2, SLC6A9, SLC7A1, SLC7A11, SLC7A3, SLC7A5, SOAT2, TRIB3, VEGFA, WARS1, WFS1 , XPTO	ANKRD1, CYP7A1, IGFBP5, JUN, PRKDC, SNAI2, SREBF1
L929 ^{ND4} _vs_L929 ^{Balbc}	0.0769	4.77E-01	ND	ND	ND	APEX1, BCAT1, IGFBP7, IL6, JAG1, MTHFD2 , PCK2, PPARG, RBPJ, SERPINF1, SHMT2 , SLC1A4, SLC7A3, ST3	ABCG2, ANKRD1 , AREG, BBC3, CDKN1A, GADD45A, GCH1, GDF15, IGFBP5, KLF4, NOX4, NUPR1, PMP22, PPP1R15A, PTGS2, SLC6A9, STAT3, TRIB3
L929 ^{Rho0} _vs_L929 ^{Balbc}	0.3016	7.88E-04	4.969	1.40E-08	9.33E-07	AREG, ASNS, BCAT1, CA9, CHAC1, CPOX, CTH, DDT3, DDR2, EIF4EBP1, ERO1A, FYN, GADD45A, GARS1, GCH1, GHITM, IARS1, KLF4, KLF9, LARS1, MARS1, MED13L, MTHFD2 , NARS1, NDRG1, PCK2, PPP1R15A, PSAT1, PSPH, PYCR1, RBPJ, SHMT2 , SLC1A4, SLC6A9, SLC7A1, SLC7A11, SLC7A3, SLC7A5, SOAT2, TRIB3, VEGFA, WARS1, WFS1 , XPTO	ABCG2, ANKRD1 , ARHGAP24, CYP7A1, IGFBP5, JUN, MID1IP1, SREBF1
NIH3T3 ^{Rho0} _vs_NIH3T3	0.5595	3.03E-04	5.094	1.07E-16	1.15E-14	APBA3, ARHGAP24, ASNS, ATF4, ATF5, BBC3, CEBPB, CEBPG, CHAC1, CPOX, CTH, DDT3, DDT4, ERO1A, FYN, GADD45A, GARS1, GCH1, GHITM, GYS1, HERPUD1, HSP90, IL6, KLF4, KLF9, LARS1, LGALS3, MARS1, MGST1, MTHFD2 , NARS1, NDRG1, NUPR1, OSMR, PCK2, PHGDH, PPP1R15A, PSPH, PTX3, PYCR1, RBPJ, SARS1, SEL1L, SHMT2 , SLC1A4, SLC3A2, SLC6A9, SLC7A1, SLC7A11, SNAI2, SOAT2, SOD2, SSBP2, ST2, TRIB3, VEGFA, WARS1, WFS1 , XPTO	ANKRD1, APEX1, ATF3, CALR, CPT1A, EDN1, FASN, IGFBP7, JAG1, NID2, PEG3, PRKDC, PRRX2, Pmaapl, TNFRSF11A
L929 ^{COI} AOX_vs_L929 ^{Balbc}	0.4955	9.25E-05	4.535	5.73E-06	1.66E-04	APBA3, ASNS, BCAT1, CA9, CARS1, CHAC1, CTH, DDT4, DDR2, EIF2S2, EIF4EBP1, ERO1A, GADD45A, GARS1, GCH1, GHITM, GYS1, IARS1, IARS1, IGFBP7, LARS1, MARS1, MTHFD2 , NARS1, NDRG1, NID2, NOX4, PCK2, PHGDH, PSAT1, PSPH, PYCR1, RBPJ, SEL1L, SERPINF1, SHMT2 , SLC1A4, SLC7A1, SLC7A11, SLC7A3, SLC7A5, SOAT2, TNFRSF12A, TRIB3, VEGFA, WARS1, WFS1 , XPTO	ABCG2, ANKRD1 , BBC3, CYP27A1, CYP7A1, GDF15, IGFBP5, JUN, KLF4, NUPR1, PMP22, SREBF1, SSBP2, STAT3
L929 ^{Rho0} AOX_vs_L929 ^{Balbc}	0.0326	7.77E-01	3.073	1.74E-04	1.16E-03	AREG, ASNS, BCAT1, CA9, CHAC1, CTH, DDT4, DDR2, EIF2S2, EIF4EBP1, ERO1A, GADD45A, GARS1, GCH1, GHITM, GYS1, IARS1, IARS1, IGFBP7, LARS1, MARS1, MTHFD2 , NARS1, NDRG1, PSAT1, PSPH, PTGS2, RBPJ, SHMT2 , SLC1A4, SLC7A1, SLC7A11, SLC7A3, SLC7A5, TNFRSF12A, VEGFA, WARS1, WFS1 , XPTO	ANKRD1, BBC3, CYP7A1, DDT3, IGFBP5, JUN, MGST1, MID1IP1, NR1H3, SREBF1, SSBP2
L929 ^{Rho0} NA_vs_L929 ^{Balbc}	0.2078	4.76E-02	3.038	3.99E-04	2.69E-03	AREG, BCAT1, CA9, CEBPG, CHAC1, CTH, DDT4, DDR2, EIF2S2, EIF4EBP1, ERO1A, GCH1, IARS1, IGFBP7, KLF4, LARS1, MED13L, MTHFD2 , NARS1, NDRG1, PSAT1, PSPH, PTGS2, PYCR1, RBPJ, SHMT2 , SLC1A4, SLC7A1, SLC7A11, SLC7A3, SLC7A5, TNFRSF12A, VEGFA, WARS1, WFS1 , XPTO	ANKRD1, ATF3, BBC3, CPT1A, CYP7A1, DDT3, GDF15, IGFBP5, JUN, SREBF1, SSBP2

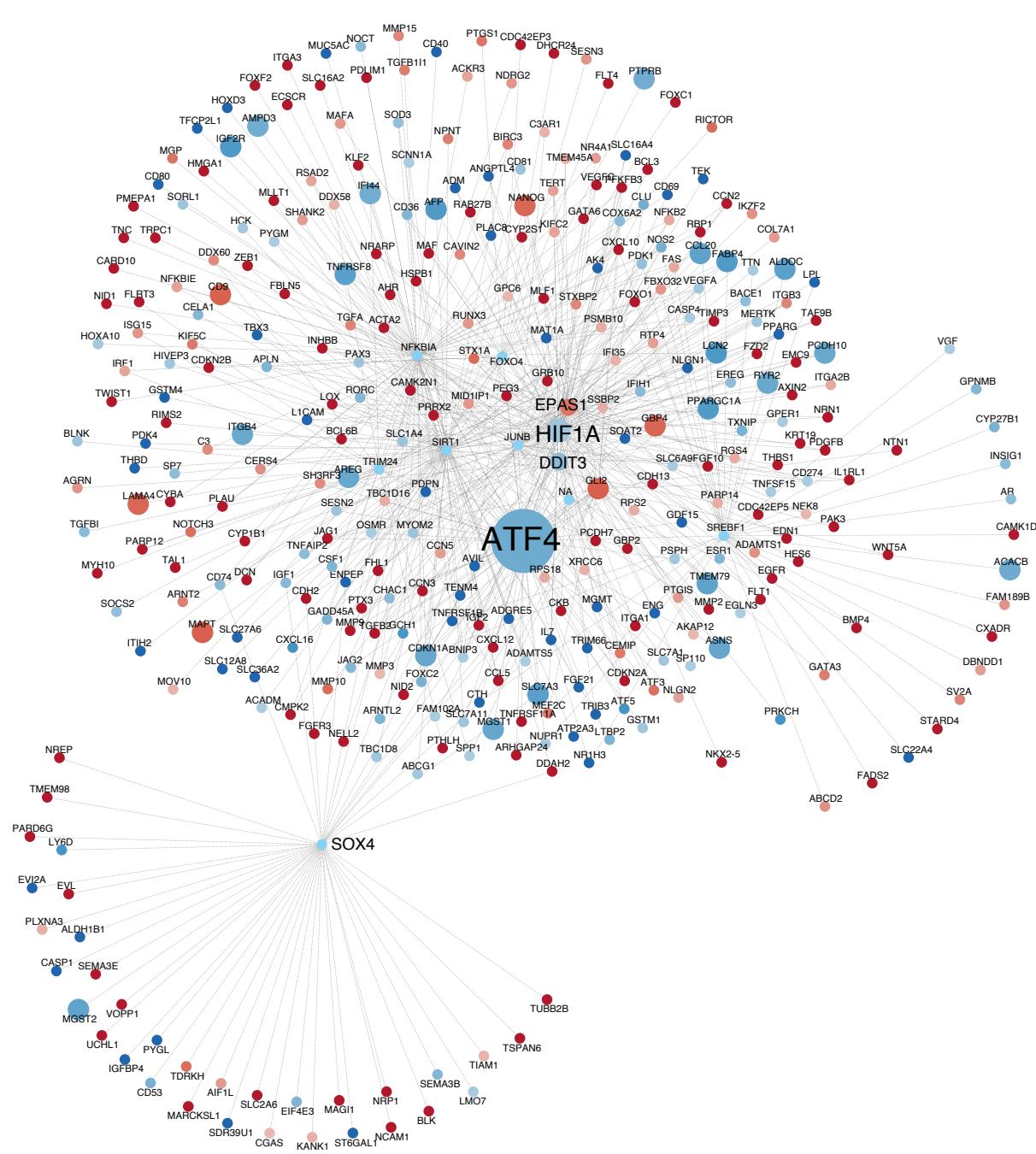


1010 For each of the seven mouse contrasts described in Table S1, the current table describes the logFC (exp_logFC) and adjusted p (exp_adj.p_value)
1011 values that characterize Atf4 differential expression. As it could be expected, IPA-Upstream Regulator analysis identified Atf4 as a potential
1012 regulator of the collections of genes detected as differentially expressed genes in each of the contrasts, as described in the following columns,
1013 which indicate the predicted activity change for Atf4 (en_z_score), the enrichment significance (en_p_value and en_adj.p_value) and the
1014 collections of up- and down-regulated genes that are known to be targets of Atf4.
1015

1016 EXCEL File

1017 **Table S3.**- Summary of RNA Seq-based characterization of Atf4^{KO} in mouse. The first
1018 sheet of the table describes differential expression analysis results for the contrast
1019 Atf4KO vs control. The following three sheets describe functional enrichment analyses
1020 results generated with IPA on the collection of 2,878 differentially expressed genes
1021 with adjusted p_value < 0.05 and abs(logFC) > 2. The following three sheets describe
1022 functional enrichment analyses results generated with GSEA against the Biological
1023 Process GO, Hallmark and KEGG databases. The following sheets describes expression
1024 data for 154 circadian genes with detectable expression in the Atf4^{KO} vs control
1025 contrast. The last sheet describes expression data for a selection of 21 upstream
1026 regulators.

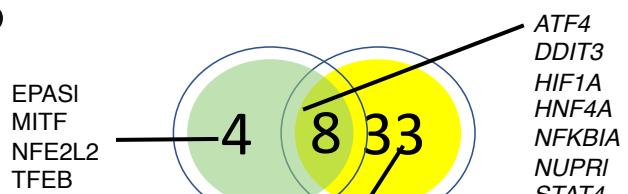
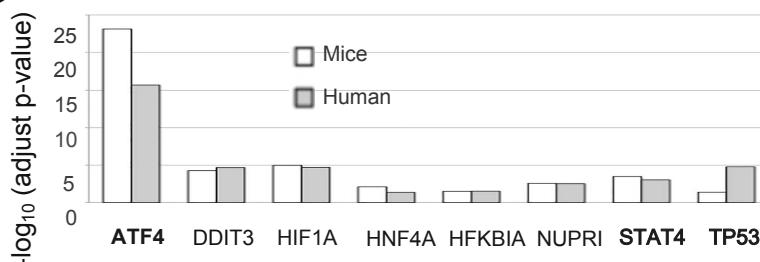


1027

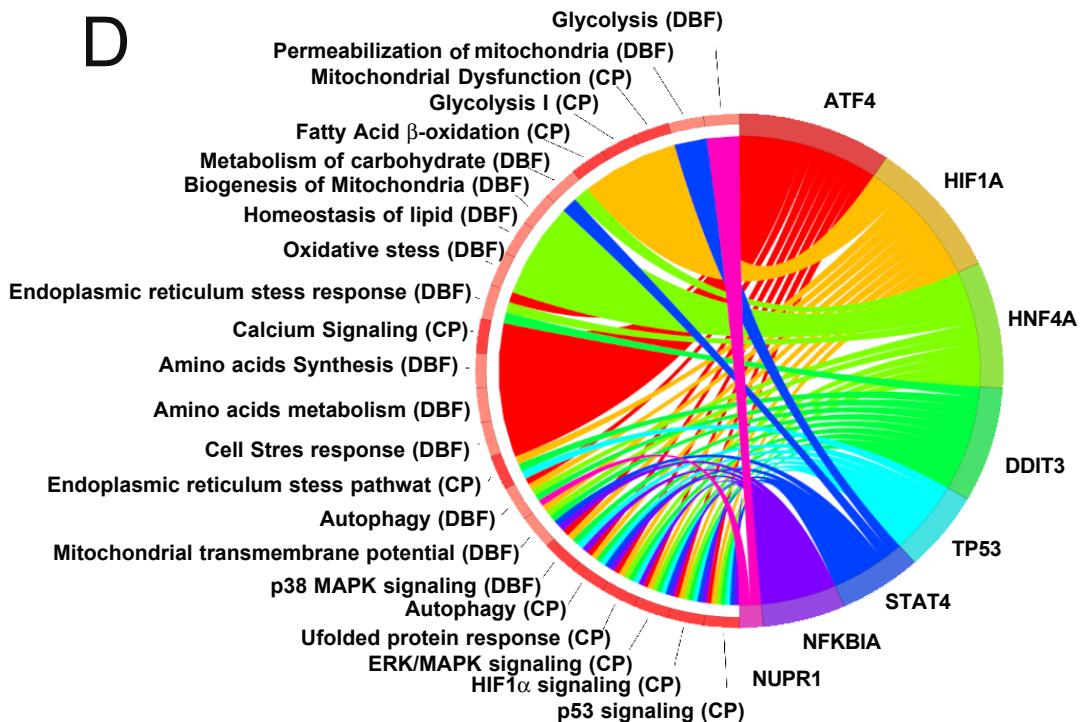

A**B**

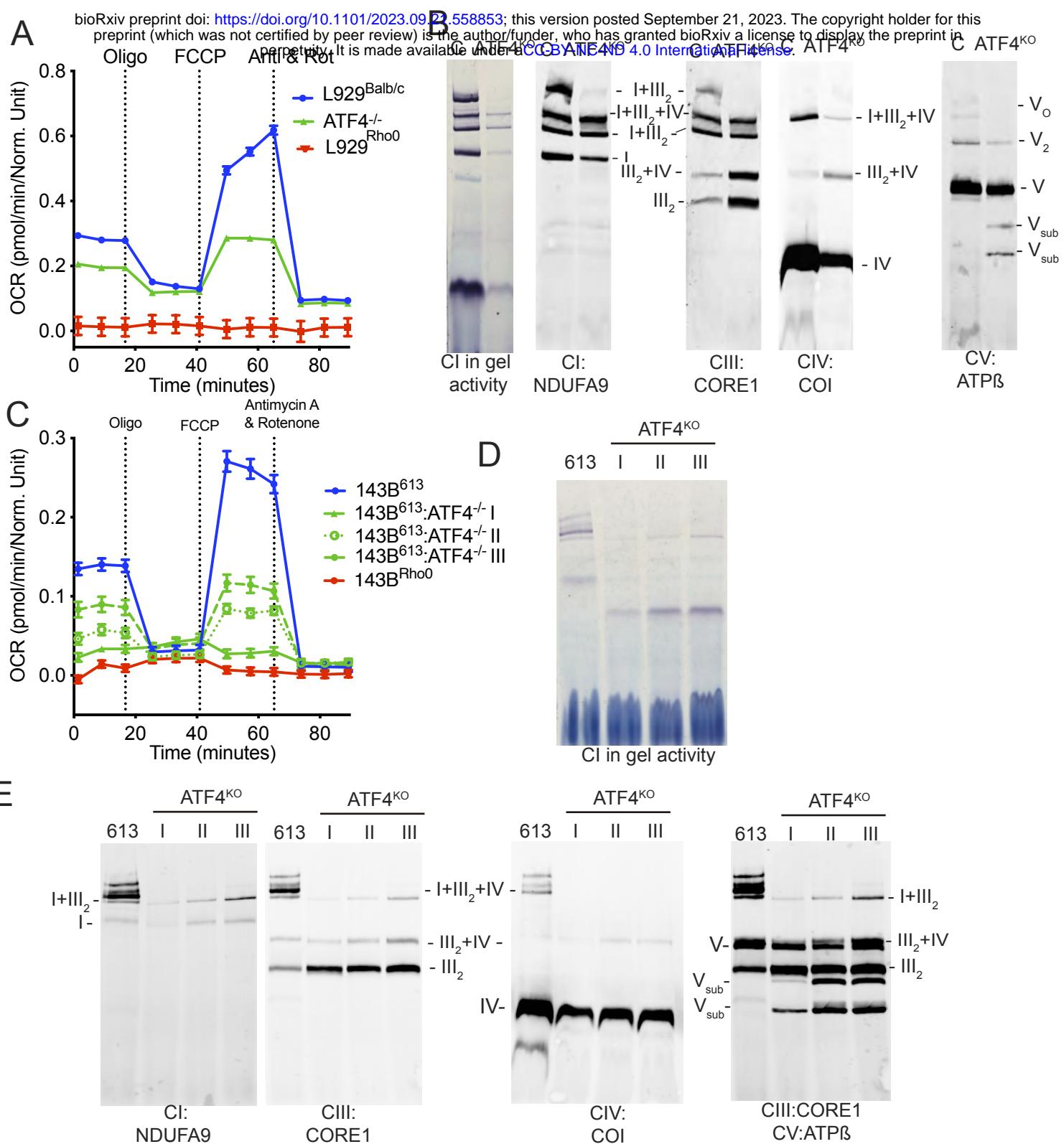
A

up in uridine dependent



B

A**B**




A

Cluster	Genes	Cluster	Genes
MCI	306	HC16	288
MC19	423	HC23	302
MC26	444	HC28	407
		HC30	213
MCOMB	1173	HCOMB	1210

B**C**

ARNT	FOS	HEXIM1	RUNX3	SPI	TLE1
BRCA1	FOXO1	JUN	SATB1	SPI10	VHL
CDKN2A	FOXO3	KLF3	SMAD3	SP3	WT1
CREM	G1II	MYC	SMAD4	SPDEF	
CTNNBI	GLI3	PAX3	SMAD7	SRF	
ELKI	GMNN	PDX1	SMARCA4	STAT3	

D

