

1 **TITLE:**

2

3 **Germline-targeting chimpanzee SIV Envelopes induce V2-apex broadly neutralizing-like**
4 **B cell precursors in a rhesus macaque infection model**

5

6 **Short title**

7 Germline-targeting SIVcpz Env designs shape B cell responses in infected rhesus macaques.

8

9 **AUTHORS:**

10 Rami Musharrafieh^{1,2,3†}, Yana Safonova^{4†,*}, Ge Song^{1,2,3†}, Ryan S. Roark^{5†}, Fang-Hua Lee⁵,
11 Shiyu Zhang⁶, Jonathan Hurtado^{1,2}, Peter Yong^{1,2,3}, Shuyi Wang⁵, Ronnie M. Russell⁵, Wenge
12 Ding⁵, Yingying Li⁵, Juliette Rando⁵, Alexander I. Murphy⁵, Emily Lindemuth⁵, Chengyan Zhao⁵,
13 Andrew Jesse Connell⁵, Wen-Hsin Lee⁶, Nitesh Mishra^{1,2,3}, Gabriel Avillion^{1,2,3}, Wanting He^{1,2,3},
14 Sean Callaghan^{1,2,3}, Katharina Dueker^{1,2,3}, Anh L. Vo^{1,2,3}, Xuduo Li^{1,2,3}, Tazio Capozzola^{1,2,3},
15 Collin Joyce^{1,2,3}, Fangzhu Zhao^{1,2,3}, Fabio Anzanello^{1,2,3}, Weimin Liu⁵, Frederic Bibollet-Ruche⁵,
16 Alejandra Ramos³, Hui Li⁵, Mark G. Lewis⁸, Gabriel Ozorowski⁶, Elise Landais^{1,3,7}, Brian T.
17 Foley⁸, Kshitij Wagh⁸, Devin Sok^{1,2,3}, Bryan Briney^{1,2,3}, Andrew B. Ward^{2,3,5}, Beatrice H. Hahn⁵,
18 Dennis R. Burton^{1,2,3,10}, George M. Shaw^{5*}, Raiees Andrabi^{1,2,3,11,12*}

19

20 **AUTHOR AFFILIATIONS:**

21 ¹Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA

22 ²Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037,
23 USA

24 ³IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA

25 ⁴Computer Science and Engineering Department, Huck Institutes of the Life Sciences, Penn State University, State
26 College, PA 16801, USA

27 ⁵Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA

28 ⁶Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
29 92037, USA

30 ⁷International AIDS Vaccine Initiative, New York, NY 10004, USA

31 ⁸Los Alamos National Laboratory, Los Alamos, NM 87545, USA

32 ⁹Bioqual, Inc., Rockville, Maryland, USA

33 ¹⁰Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard
34 University, Cambridge, MA 02114, USA

35 ¹¹Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

36 [†]These authors contributed equally to this work.

37 ¹²Lead Contact

38 *Corresponding authors. Email: yana@psu.edu (Y.S.); shawg@pennmedicine.upenn.edu (G.M.S.);
39 raiees.andrabi@pennmedicine.upenn.edu (R.A.).

40

41 **SUMMARY:**

42 Eliciting broadly neutralizing antibodies-(bnAbs) remains a major goal of HIV-1 vaccine research.
43 Previously, we showed that a soluble chimpanzee SIV Envelope-(Env) trimer, MT145K, bound
44 several human V2-apex bnAb-precursors and stimulated an appropriate response in V2-apex
45 bnAb precursor-expressing knock-in mice. Here, we tested the immunogenicity of three MT145
46 variants (MT145, MT145K, MT145K.dV5) expressed as chimeric simian-chimpanzee-
47 immunodeficiency-viruses-(SCIVs) in rhesus macaques-(RMs). All three viruses established
48 productive infections with high setpoint vRNA titers. RMs infected with the germline-targeting
49 SCIV_MT145K and SCIV_MT145K.dV5 exhibited larger and more clonally expanded B cell
50 lineages featuring long anionic heavy chain complementary-determining-regions-(HCDR3s)

51 compared with wildtype SCIV_MT145. Moreover, antigen-specific B cell analysis revealed
52 enrichment for long-CDHR3-bearing antibodies in SCIV_MT145K.dV5 infected animals with
53 paratope features resembling prototypic V2-apex bnAbs and their precursors. Although none of
54 the animals developed bnAbs, these results show that germline-targeting SCIVs can activate
55 and preferentially expand B cells expressing V2-apex bnAb-like precursors, the first step in bnAb
56 elicitation.

57

58 **KEYWORDS:** human immunodeficiency virus; broadly neutralizing antibodies; B cell responses;
59 non-human primates; vaccine design; V2-apex; antibody repertoire; germline-targeting;
60 immunofocusing

61

62

63

64

65 Introduction

66
67 A major goal of HIV/AIDS vaccine research is to elicit broadly neutralizing antibodies (bnAbs),
68 which represent a key immune defense as demonstrated by passive protection trials^{1,2}. These
69 bnAbs are grouped into six major classes based on their epitope specificities, which target V2-
70 apex, V3-glycan, CD4 binding site (CD4bs), gp120/gp41 interface or fusion peptide (FP), the
71 membrane proximal external region (MPER)^{3,4} and the silent face of gp120⁵. Although HIV-1
72 infected humans have the capacity to develop bnAbs, they do so only rarely⁶⁻¹¹. This is because
73 bnAbs are encoded by rare B cell precursors and require complex affinity maturation pathways,
74 which makes their elicitation by vaccination particularly difficult¹²⁻¹⁴. In addition, each bnAb class
75 presents unique challenges. For example, VRC01-class bnAb B cell precursors are present at
76 relatively high frequencies (1 in ~400,000 B cells) in humans, and germline-targeting approaches
77 have been successful in activating them¹⁵⁻¹⁹. However, affinity maturing these responses
78 requires extreme V-gene somatic hypermutation (SHM), which is difficult to achieve through
79 vaccination. V2-apex and V3-glycan bnAbs exhibit comparably lower levels of SHM, but utilize
80 long heavy-chain complementarity determining region 3 (HCDR3) loops that originate from rare
81 VDJ recombination events^{13,20-23}. BnAbs targeting the MPER region are extremely broad, but
82 generally lack potency, require lipid binding, and are often polyreactive^{24,25}.

83
84 To overcome these hurdles, HIV vaccine development efforts seek to engineer priming
85 immunogens that stimulate the appropriate precursor B cells which are then followed by boosting
86 immunogens that affinity mature these lineages along desired pathways. Germline-targeting
87 immunogens have been developed for multiple bnAb specificities, including CD4bs, V3-glycan,
88 and V2-apex, using molecular information from inferred bnAb precursors in reverse vaccine
89 engineering approaches^{17,18,21,26-30}. These immunogens have shown promise in preclinical
90 animal models as well as humans since they generated the intended epitope-specific B cell
91 responses^{15,26,31-36}. Immunofocusing strategies, including glycan masking³⁷ and protein
92 resurface engineering^{16,38-42}, have also been employed to direct B cell responses towards
93 desired bnAb epitopes and away from off-target sites. Among various immunogen templates,
94 native-like Env trimers that mimic the conformation of the pre-fusion spike on the virion surface⁴²⁻
95⁴⁵ have been shown to elicit autologous nAb responses⁴⁶⁻⁴⁸.

96
97 One promising target for vaccine strategies is the trimer apex^{1,29,30,38,47-51}, which forms a
98 quaternary epitope comprised of the lysine-rich V1V2 loops and surrounding glycans of three
99 gp120 protomers⁵²⁻⁵⁴. In humans, five major V2-apex bnAb lineages have been identified: PG9,
100 PGT145, CH01, CAP256, and PCT64^{13,49,55-58}. These bnAb lineages share common
101 immunogenetic features and utilize long anionic HCDR3 regions that allow them to penetrate
102 the glycan shield and reach the protein surface underneath^{50,52,54,57,59}. The most potent human
103 V2-apex bnAbs utilize the IGHD3-3 gene, which encodes a germline “YYD” motif that makes
104 contacts with basic residues within the Env C-strand³⁰. These HCDR3s also contain sulfated
105 tyrosines that are critical for epitope recognition in several V2-apex bnAb lineages^{60,61}.
106 Importantly, rhesus macaques develop V2-apex bnAbs that share very similar features, including
107 anionic residues and sulfated tyrosines encoded by a long IGHD3-09 germline D-gene following
108 infection with chimeric simian-human immunodeficiency viruses (SHIVs) that express the HIV-1
109 Env ectodomain^{53,59}. Thus, SHIV infection of RMs recapitulates V2-apex bnAb development in
110 an animal model that closely approximates HIV-1-infected humans⁵³.

111
112 Simian immunodeficiency viruses infecting chimpanzees (SIVcpz) are the zoonotic ancestors of
113 HIV-1⁶²⁻⁶⁴ and share a last common ancestor at least 100 years ago⁶⁵. HIV-1 and SIVcpz are
114 thus phylogenetically closely related yet substantially more divergent than are different HIV-1
115 clades from each other. As a consequence, SIVcpz shares little antigenic cross-reactivity with
116 HIV-1 in the canonical HIV-1 bnAb epitopes, except for the MPER and V2-apex epitopes, which
117 are highly cross-reactive between SIVcpz and HIV-1⁶⁶. These findings suggest that SIVcpz Envs,
118 if used as immunogens, might serve to immunofocus B cell responses to these highly conserved
119 neutralizing epitopes. We previously generated a germline-targeting version of an SIVcpz Env,
120 termed MT145, by introducing a Q171K mutation in the lysine-rich motif of strand C of the V2
121 loop⁵⁰. This modified MT145K Env bound the inferred precursors of the human V2-apex bnAbs,
122 PG9, CH01 and CAP256, and induced V2-apex directed neutralizing responses when used to
123 immunize CH01 germline heavy chain knock-in mice⁵⁰. To examine the germline-targeting
124 properties of this Env in an outbred animal model and to test its bnAb-induction potential in the
125 context of infection where viral Envs and antibody responses can coevolve, we generated
126 simian-chimpanzee immunodeficiency viruses (SCIVs) that expressed wildtype MT145 and
127 MT145K Envs, as well as a minimally modified derivative, MT145K.dV5, which has a shortened
128 variable loop 5 (V5). We used these chimeric viruses to infect three groups of rhesus macaques.
129 While all SCIVs established productive infections characterized by high peak and setpoint viral
130 loads, animals infected with the germline-targeting SCIV_MT145K and SCIV_MT145K.dV5
131 exhibited a larger number of clonally expanded B cell lineages as well as more lineages that
132 featured long (>24 residue) anionic HCDR3s than animals infected with wildtype SCIV_MT145.
133 SCIV_MT145K.dV5 infected animals also exhibited sequence changes in the V2-apex bnAb core
134 epitope suggestive of antibody mediated pressures as well as an enrichment of long HCDR3s
135 and IGHD3-09 gene usage in antigen-specific memory B cells. These results suggest that
136 germline-targeting SCIVs were able to activate and preferentially expand V2-apex bnAb-like
137 precursors within the first 4 to 8 weeks post infection.
138
139

140 Results

141 **142 SCIVs expressing wildtype and germline targeting MT145 Envs establish persistent 143 infections and induce autologous neutralizing responses in rhesus macaques**

144 SHIV infections provide insight into the immunogenicity of HIV-1 Env glycoproteins since these
145 viruses replicate continuously over the course of the infection and express native trimers that
146 co-evolve with germline and intermediate B cell receptors^{53,67-69}. To investigate whether the
147 germline-targeting MT145K Env can activate desirable B cell precursors in an outbred animal
148 model, we generated SCIVs expressing both wildtype MT145 and MT145K Envs as well as a
149 minimally modified MT145K.dV5 Env, which partially lacked immunodominant off-target
150 epitopes (see below). These SCIVs were used to infect three groups of three rhesus macaques
151 (Fig. 1A) after transient CD8+ T cell depletion⁷⁰, which were then followed longitudinally for up
152 to 88 weeks to assess in vivo viral replication, sequence evolution and nAb responses. Both
153 SCIV_MT145 and SCIV_MT145K replicated efficiently in all RMs with high peak and setpoint
154 viral loads, while SCIV_MT145K.dV5 had slightly lower setpoint viral loads (Fig. 1B). Two
155 SCIV_MT145 infected RMs (6931, 6933) and one SCIV_MT145K infected RM (T924) with
156

157 particularly high setpoint viral loads developed an AIDS-like illness and were euthanized at
158 weeks 29, 18, and 22, respectively. The animal that died most rapidly (6933) failed to develop
159 anti-SCIV antibodies, a feature previously described for SIVsm and SIVmac infected “rapid
160 progressor” animals⁷¹.
161

162 Analysis of plasma samples by enzyme linked immunosorbent assay (ELISA) showed that all
163 SCIV infected animals, except for the rapid progressor animal 6933, developed antibodies that
164 bound to both autologous and heterologous soluble Env trimers as early as 4-8 weeks post
165 infection (Fig. 1C). All animals except for RM 6933 also developed high titer autologous
166 neutralizing antibodies as well as antibodies that potently neutralized tier 1 HIV-1 strains.
167 However, none of the animals developed significant heterologous neutralization breadth over
168 the course of their infection (Fig. S1). Although plasma samples from four animals neutralized a
169 handful of heterologous HIV-1 strains, all these responses were only weakly cross-neutralizing,
170 with reciprocal 50% inhibitory dilutions (ID₅₀) less than 1:100 with no increase in breadth and
171 potency over time. Thus, none of the SCIV infected RMs developed bnAbs.
172

173 To characterize sequence changes from the infecting virus strains, we used limiting dilution PCR
174 of plasma viral RNA/cDNA to generate longitudinal *env* gene sequences for each infected RM.
175 This method, referred to as single genome sequencing or SGS^{72,73}, retains genetic linkage
176 across the complete gp160 gene and eliminates PCR induced mutational artifacts from finished
177 sequences. An alignment of these sequences revealed strong selection in variable loop 5 (V5)
178 in both SCIV_MT145 and SCIV_MT145K infected RMs, as evidenced by a diverse set of
179 mutations, including amino acid substitutions, insertions, and deletions, which led to changes in
180 length, net charge, and number of glycans (Fig. 1D-F, Fig. S2). Among these mutations, the
181 same nine amino acid V5 loop deletion was observed in multiple animals, suggesting a common
182 pathway of escape from potent autologous neutralizing antibodies (Fig. S2). Longitudinal
183 Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) analysis, which reveals sites
184 under selection pressure using >50% transmitter/founder-loss at any time point, confirmed this
185 selection in the V5 region as well as additional sites of selection elsewhere in gp160 (Figs. S3
186 and S4). These data indicated the presence of an immunodominant strain-specific neutralizing
187 epitope in the V5 loop of the MT145 Env that elicited off-target responses. When we examined
188 the primary, x-ray crystallographic and cryoEM structures of MT145 Env, we noted that the V5
189 loop was atypically long and disordered, likely contributing to its immunodominance. To remove
190 this immunodominant epitope, we deleted the nine V5 residues that comprised the naturally-
191 occurring truncation, thus generating SCIV_MT145K.dV5.
192

193 To confirm that SCIV_MT145K.dV5 retained its germline targeting potential, we tested its
194 neutralization sensitivity to inferred germline (iGL) or reverted unmutated ancestors (RUAAs) of
195 the V2 apex bnAbs CH01⁵⁵, PG9^{21,74}, and PG16⁷⁴, the inferred germline (iGL) of PCT64⁵⁶ as
196 well as the unmutated common ancestors (UCA) of VRC26¹³ and RHA1⁵³. As expected, wildtype
197 SCIV_MT145 was resistant to neutralization by all precursor antibodies (Fig. S5). However, both
198 SCIV_MT145K and SCIV_MT145K.dV5 were neutralized by CH01_RUA and VRC26_UCA at
199 IC₅₀ values of 4.6-8.1 µg/ml and 124.3-202.7 µg/ml, respectively. While this analysis likely
200 underestimated germline interactions, the results confirmed that the modified SCIVs engaged at
201 least two human V2-apex precursors.
202

203 We next used both SGA of longitudinal Env sequences as well as next generation sequencing
204 (NGS) of the V1V2 region to investigate within-host Env evolution across all three groups of
205 SCIV-infected RMs. These analyses showed residual selection on the V5 region in MT145K.dV5
206 animals, despite epitope trimming, suggesting that resurfacing did not completely eliminate
207 responses to this immunodominant off-target site (Fig. 1D, Fig. S2-4). This was confirmed by
208 negative stain polyclonal electron microscopy mapping (EMPEM), which showed V5 binding of
209 serum IgG Fabs for all animals except the rapid progressor RM 6933 (Fig. 2). LASSIE analysis
210 also showed selection pressures in Env regions other than V5 for MT145K.dV5 as well as MT145
211 and MT145K circulating viruses (Fig. S4). Examining the V1V2 region in particular for mutations
212 that altered the TF amino acid sequence, we found that both SCIV_MT145K and
213 SCIV_MT145K.dV5, but not SCIV_MT145 infected RMs exhibited amino acid substitutions at
214 positions 160, 166, 169 and 171 at one or more time points (Fig. 1G & 1H, Fig. S6 & S7); of
215 these, only the site 171 was chosen for all three MT145K infected RMs, using the pre-specified
216 LASSIE selection criterion of 50% or more mutation at any time point (Fig. S4). Statistical
217 analyses of the corresponding mutation frequencies in the NGS dataset showed significantly
218 higher mutation frequency for either SCIV_MT145K or SCIV_MT145K.dV5 groups as compared
219 to WT SCIV_MT145 group at positions 160 and 171 (Fig. 1H, S7), while SCIV_MT145 group
220 showed significantly higher frequency at 166 than SCIV_MT145K.dV5 group. However, despite
221 selection in V1V2 and gp41 regions, no changes were observed at the canonical V2-apex bnAb
222 site for any animal infected with SCIV_MT145K and SCIV_MT145K.dV5 from EMPEM analysis
223 (Fig. 1I & 2). Together, these results suggest early B cell priming at the V2-apex bnAb epitope
224 by germline-targeting MT145 Envs, but these responses did not contribute to the dominant
225 serum antibody specificities.

226
227

228 **Infection with SCIV_MT145K.dV5 results in early expansion of isotype-switched B cell 229 lineages with long anionic HCDR3s**

230

231 To investigate the immunogenetic features that define the earliest immune responses for each
232 SCIV-infected RM group, we performed next-generation sequencing (NGS) of longitudinal
233 peripheral blood B cells (up to week 16) to examine the bulk IgG and IgM repertoires (Fig. 3A).
234 Prior to infection, animals from all three groups (SCIV_MT145, SCIV_MT145K and
235 SCIV_MT145K.dV5) showed similar numbers of long (≥ 24 aa) HCDR3-bearing B cells in their
236 IgG repertoires (Fig. 3B). Differences between the groups appeared as early as 2 wpi, with two
237 animals in the SCIV_MT145K.dV5 group showing an increased number of long HCDR3
238 lineages, which peaked at 4 wpi ($P=0.04$, the Kruskal-Wallis test). All three animals in the
239 SCIV_MT145K.dV5 group were substantially enriched in the number and fraction of lineages
240 with long HCDR3s (P -values are 0.01 and 0.005, the linear mixed model) by week 4, which was
241 maintained until 16 wpi (Fig. 3B-C). In contrast, no significant enrichment for long HCDR3 B cell
242 lineages were observed in animals infected with wildtype SCIV_MT145. Long HCDR3s detected
243 in SCIV_MT145K.dV5 infected animals at weeks 4 to 12 were also more anionic compared with
244 SCIV_MT145 and SCIV_MT145K infected animals ($P=0.008$, the linear mixed model),
245 containing DD, DE, ED, or EE residues as well as predicted sulfotyrosines (Fig. 3D). Overall,
246 SCIV_MT145K.dV5 infected RMs had the highest percentage of clonally expanded long
247 HCDR3s enriched for sulfated tyrosines across all time points, whereas SCIV_MT145 infected
248 RMs had the lowest (Fig. 3E).

249

250 SCIV_MT145K and SCIV_MT145K.dV5-infected animals featured significantly more clonally
251 expanded (>10 sequences) long HCDR3 lineages compared with SCIV_MT145 infected RMs
252 ($P=0.02$, the Kruskal-Wallis test). The three SCIV_MT145K-infected animals had 20, 32, and 46
253 unique expanded lineages, while the SCIV_MT145K.dV5 featured slightly higher numbers of 24,
254 50, and 59 lineages, respectively (Fig. 3F).

255

256 To illustrate differences in IgM and IgG repertoires during the first 16 weeks of SCIV infection,
257 we constructed phylogenetic trees of all clonally expanded (>10 sequences) long HCDR3
258 lineages identified in longitudinal PBMC samples (Fig. 3F). Comparing the three groups, all
259 animals had at least 3 clonally expanded lineages containing long HCDR3s. SCIV_MT145
260 infected animals had between 3 to 14 expanded lineages. For 50–90% of these lineages across
261 three animals, IgM was a dominant isotype suggesting a memory B cell origin (Fig. 3F, upper
262 row). Sulfotyrosines were predicted for 2 of the 3 animals in the SCIV_MT145 group (present in
263 four clones) and were predominantly present in IgG lineages.

264

265 For animals in the SCIV_MT145K group, 76–95% of expanded long HCDR3 lineages were
266 isotype switched relative to SCIV_MT145 animals (Fig. 3F, middle row). Most of the expanded
267 IgG lineages in the SCIV_MT145K group were identified 4–12 wpi. Predicted sulfotyrosines were
268 observed in all three animals in SCIV_MT145K group and were predominantly identified in IgG
269 lineages.

270

271 SCIV_MT145K.dV5 animals had the 75–90% of isotype-switched IgG lineages with expanded
272 long HCDR3s (Fig 3B, Fig S8). For animals in this group, most of the IgM lineages were identified
273 prior to infection or less than 4 wpi, suggesting that most of the observed expansion was antigen-
274 driven. Predicted sulfotyrosines were notably higher compared to the SCIV_MT145 and
275 SCIV_MT145K groups and were identified in 27–32% of lineages across animals in the
276 SCIV_MT145K.dV5 group. Overall, clonally expanded lineages in MT145KdV5 animals have
277 higher fractions of IgG sequences compared to MT145K and MT145 groups ($P=0.0002$, the
278 Kruskal-Wallis test)

279

280 **SCIV_MT145K.dV5 infection elicited larger and more clonally expanded long HCDR3 281 lineages encoding germline D-genes with anionic residues and sulfated tyrosines**

282

283 Unlike in animals infected with SCIV_MT145 and SCIV_MT145K, the percentage of lineages
284 with long HCDR3s and sulfated tyrosines increased in SCIV_MT145K.dV5-infected animals over
285 time ($P=0.03$, the linear mixed model) (Fig 3G, Fig. S8). Importantly, this effect was not observed
286 for lineages with short HCDR3s (<24 aa) and sulfated tyrosines (Fig. 3G). While the fraction of
287 large, expanded lineages remained stable in SCIV_MT145K and SCIV_MT145K.dV5 infected
288 animals, this fraction decreased slightly in SCIV_MT145 infected animals (Fig. S9A). All groups
289 showed increases in the average HCDR3 length over time, with the SCIV_MT145K.dV5 group
290 showing the most pronounced increase (Fig. S9B).

291

292 We also observed differences in IGHD gene usage in expanded lineages with long HCDR3s
293 among the three groups (Fig. S10 and S11). While SCIV_MT145-infected RMs used the IGHD6-
294 25 gene more frequently than SCIV_MT145K and SCIV_MT145K.dV5-infected animals (Fig.

295 S9 and S10), SCIV_MT145K.dV5-infected animals exhibited the greatest enrichment of the
296 IGHD3-09 gene, especially at later time points. The IGHD3-09 gene contains an “EDDY” motif
297 that is highly conserved in V2-apex bnAbs isolated from macaques⁵³ and likely contains
298 germline-encoded features that are essential for activating the respective precursors. Moreover,
299 these long HCDR3 germline D gene features are shared between human and macaque V2-apex
300 bnAbs (Fig S13). In contrast, there was no statistically significant enrichment for D genes in short
301 HCDR3 lineages (Fig. S11 and S12), although SCIV_MT145 infected animals used the IGHD3-
302 9 gene less frequently (Fig. S11D).

303
304 We also analyzed V gene frequencies in IgM and IgG repertoires for all three groups. No
305 enrichment of unique IGHV gene families or alleles were observed in any group, with most
306 animals utilizing the IGHV3 and IGHV4 families (Fig. S14), consistent with gene usage in rhesus
307 and cynomolgus macaques⁷⁵.

308
309 Expanded long HCDR3 lineages for all animals contained moderately to highly mutated
310 members with varying numbers of predicted sulfation sites. The most abundant lineages in
311 SCIV_MT145-infected RMs were significantly smaller and less diverse than those found in
312 SCIV_MT145K and SCIV_MT145K.dV5 infected animals (Fig. S16-18). Only three of five of the
313 largest long HCDR3 lineages contained an ‘EDDY’ motif, and only one ‘EDDY’ lineage was IgG
314 isotype-switched and contained significant SHM and predicted sulfotyrosine residues (Fig. S15).
315 In contrast, the largest lineages in the SCIV_MT145K group were much more diverse and
316 expanded. Eleven of 12 large long HCDR3 lineages from the SCIV_MT145K group contained
317 ‘EDDY’, or ‘YY’, and six of 11 of these lineages were predominantly IgG (Fig. S16). For the
318 SCIV_MT145K.dV5 group, all of 15 of the largest long HCDR3 lineages contained ‘EDDY’, ‘YY’,
319 or ‘DDY’ motifs, and only two of these lineages were predominantly IgM (Fig. S17). Collectively
320 these results suggest that the germline-targeting SCIV that was modified to limit V5 directed off
321 target responses generated an antibody response that most closely resembled the activation of
322 V2-directed bnAb precursors⁵⁰.

323
324 **SCIV infection reshapes antigen-specific B cell repertoires toward V2-apex bnAb-like
325 features**

326
327 Given that IgM and IgG repertoires were significantly different between the three groups of SCIV
328 infected RMs, we next asked whether these differences were also present in the antigen-specific
329 repertoires. We sorted antigen-specific memory B cells from peripheral blood collected 8 and 12
330 wpi, since this was when the most substantial differences in the overall IgH repertoires were
331 observed (Fig. 4A). For each animal, memory B cells were sorted using MT145, MT145K and
332 MT145K.dV5 trimer probes to enrich BCRs with affinities for one or more of these antigens (Fig.
333 4B). The percentages of total antigen-specific IgG-positive B cells were similar across groups
334 (Fig. 4B), with each group containing BCRs specific for all three trimers. There was a trend for
335 higher numbers of antigen-specific B cell lineages as well as lineages with long HCDR3s in
336 SCIV_MT145K and SCIV_MT145K.dV5-infected animals compared to SCIV_MT145-infected
337 animals, but this did not reach statistical significance (Fig. 4C). HCDR3 lengths followed a normal
338 distribution with a right shoulder towards longer HCDR3s and the peak fraction of lineages for
339 both antigen-specific and repertoire sequences at 14 amino acids (Fig. 4D). Mutation levels in
340 the V_H region were slightly higher for MT145K.dV5 antigen-specific sequences (3.96%)

341 compared with MT145K (2.6%) and MT145 (2.1%) antigen-specific sequences. Similar to the
342 IgM and IgG total repertoire frequencies, IGHV3 and IGHV4 families were mostly observed in
343 longer HCDR3 B cells for all three groups.

344
345 IGHD3 gene usage was similar among all three groups, with no significant differences between
346 groups (Fig. 4E). The IGHD3-9 gene was overrepresented in all long HCDR3 lineages, while the
347 IGHD6-25 gene was more abundant in short HCDR3s (Fig. 4F). The enrichment of specific
348 IGHD3 gene families in total and antigen-specific repertoire sequences with long HCDR3s
349 suggested that specific motifs were selected during clonal expansion and in the case of the
350 IGHD3-09 gene, the germline-encoded “EDDY” motif was consistently observed. Since, during
351 B cell development, nucleotide insertions and deletions in VDJ junctions could change germline-
352 encoded motifs present in the D or J genes, we examined the open reading frame (ORF) across
353 all common IGHD genes identified in long HCDR3 lineages. Interestingly, we observed very little
354 variation in this ORF across the various IGHD3 genes, suggesting preservation of germline-
355 encoded motifs important for V2 bnAb development (Fig. 4G). Analysis of the ORFs of IGHD
356 genes showed that ORFs with ≥ 2 tyrosines had much higher usage in BCR sequences
357 compared with ORFs with < 2 tyrosines (Fig. S19).

358
359 We next compared lineages from total IgM and IgG repertoires with antigen-specific single B cell
360 sequences. Similar to the bulk repertoire sequencing data, the percent lineages with sulfated
361 HCDR3 tyrosines tended to be higher for the SCIV_MT145K.dV5-infected group compared with
362 the SCIV_MT145 or SCIV_MT145K-infected groups, although this did not reach statistical
363 significance (Fig. 4H). All three groups showed similar numbers of matching lineages, with a
364 slightly higher fraction in the SCIV_MT145K group among all sequences and the
365 SCIV_MT145K.dV5 group among long HCDR3 sequences, independent of lineage size (Fig. 4I,
366 S20A). Antigen-specific members from SCIV_MT145K and SCIV_MT145K.dV5-infected groups
367 were mapped to large, expanded long HCDR3 lineages in IgG and IgM repertoires that utilized
368 the IGHD3-09 gene, with more than one member identified in each lineage (Fig. S20B).
369 Collectively these data suggested that the observed reshaping of the B cell repertoire following
370 SCIV infection was driven at least in part by antigen-specific B cells.

371
372 **SCIV_MT145K.dV5-induced long HCDR3 antibodies with V2-apex bnAb features exhibit**
373 **apex epitope binding properties**

374 By minimizing responses to the immunodominant V5 region and introducing the germline-
375 targeting Q171K substitution, the antigen-specific responses in SCIV_MT145K.dV5 infected
376 animals exhibited features characteristic of V2-directed precursor activation. We thus
377 characterized antigen-specific B cells from SCIV_MT145K.dV5-infected animals by performing
378 a sort at week 16 and testing the recovered cells in a B cell activation method (Fig. 5A). A total
379 of 1,271 antigen-specific B cells were isolated, resulting in the recovery of 367 IgG-secreting B
380 cells after 14 days of culture (Fig 5B). Nearly all (332/367) secreted antibodies (mAb) bound the
381 MT145K.dV5 SOSIP trimer, and 26.4% or 7.7% were able to neutralize MT145K.dV5 or CRF250
382 Env-containing pseudoviruses, respectively (Fig 5B, Supplementary Table 01). While almost all
383 mAbs (94.5%) bound a version of the MT145K.dV5 trimer in which the N160 was removed
384 (MT145K.dV5-N160K), a fraction (5.2%) was dependent on glycan N160. Only 19 mAbs bound
385 the MT145K.dV5 trimer in a N160 glycan-dependent manner and were also able to neutralize
386

387 CRF250 pseudoviruses. The most V gene-mutated mAbs (SHM level of 12.6%) were those that
388 neutralized the MT145K.dV5 virus but maintained binding to the MT145K.dV5-N160K SOSIP.
389 However, mAbs that were dependent on N160 were also moderately mutated (SHM level of
390 8.7%). These mAbs also had the second longest HCDR3s on average (19.5 aa).
391

392 All antigen-specific mAbs isolated from B cell cultures were skewed towards longer HCDR3s
393 (Fig. 5C), although there was one 11 aa HCDR3 expanded lineage from RM 44092 that was not
394 observed in the pre-infection repertoire (Figs. 5C, 4D). Among all mAbs, 22% encoded the
395 IGHD3-09 gene with the “EDDY” motif (Fig. 5E). However, for mAbs with long HCDR3s, IGHD3-
396 09 was by far the most abundant and observed in 76% of all sequences. In contrast, IGHV or
397 IGHJ genes were highly variable (Fig. 5F and G). Finally, while repertoire sequences in
398 SCIV_MT145K.dV5 infected monkeys showed enrichment for long HCDR3s and anionic
399 sulfated tyrosines, this fraction was significantly increased in the antigen-specific antibodies
400 sorted from week 16 (Fig 5H-J).
401

402 Encouraged by the immunogenetic and functional findings of antigen-specific mAbs
403 characterized for animals in the SCIV_MT145K.dV5 group, we next asked-what are the
404 functional characteristics associated with mAbs expressed from antigen-specific V2-apex bnAb-
405 like B cell precursors? Therefore, a subset of antigen-specific long HCDR3 mAbs encoding the
406 IGHD3-09 that were isolated at week 12 and 16 from SCIV_MT145K.dV5 infected animals were
407 cloned and expressed (Fig. 6). Although these mAbs were restricted by their IGHD gene usage,
408 they all shared a similar anionic motif centered in the HCDR3 region (Fig. 6A). Eighteen mAbs
409 (01, 03, 07, 15, 18, 23, 24, 27, 31, 38, 41, 51, 53, 55, 58, 59, 60, 70) exhibited significant binding
410 to the MT145K.dV5 trimer as well as N160 glycan dependence. Out of this subset of N160 glycan
411 dependent mAbs, nine (15, 18, 23, 24, 27, 31, 41, 58, 70) were predicted to be trimer dependent
412 based on their inability to bind MT145K.dV5 gp120 protein. These results suggest that, although
413 we were enriching for V2 bnAb-like HCDR3 signatures, these mAbs showed surprising functional
414 diversity. If a subset of these mAbs are true V2-apex bnAb precursors, we would expect them
415 to show higher affinity to germline targeting MT145 trimer and lower affinity to trimer variants
416 with mutations at specific V2 sites that interact with bnAbs. To test this, we compared the binding
417 of these mAbs to MT145, MT145K and MT145K.dV5 SOSIP trimers as well as derivatives with
418 mutations in the V2 epitope (Fig. 6B). The results showed less binding to MT145, MT145K-
419 N160K and MT145K-N169E/N171E SOSIP trimers compared to MT145K or MT145K.dV5
420 SOSIP trimers. Since HCDR3 conformation or shape plays a significant role in V2-apex bnAb
421 function, we predicted the structures for these antigen-specific mAb HCs with long HCDR3s
422 using the Colabfold pipeline ⁷⁶⁻⁷⁸. V2-bnAb HCDR3s fall within a spectrum of conformations
423 resembling a needle (i.e., PGT145) or hammerhead (i.e., PG9) (Fig. S21). Both hammerhead-
424 and needle-like HCDR3s were identified in the antigen-specific mAbs (Fig. 6C). Of the 52 mAbs,
425 45 were identified to contain hammerhead-like HCDR3 conformation, while 7 showed a needle-
426 like shape. Overall, antigen-specific long HCDR3 mAbs were highly diverse in their sequence
427 and IGHV gene usage, but shared features characteristic of human and rhesus V2-like bnAbs
428 and their precursors.
429
430
431

432 **Discussion**

433

434 Antigen-driven B cell selection and affinity maturation have been extensively studied for simple
435 antigens but are less well-understood for complex antigens like the HIV-1 Env⁷⁹⁻⁸¹. For example,
436 haptens are often used to study clonal selection because they predominantly expand B cells
437 with well-defined immunogenetic features and specificities to immunodominant epitopes⁸²⁻⁸⁴.
438 However, for complex antigens such as the HIV-1 envelope glycoprotein, B cell responses
439 emerge from intra-clonal and inter-clonal competition to multiple epitopes, and the dynamics of
440 this competition is likely a key contributor to bnAb development^{81,85}. Intra- and inter-clonal
441 competition dynamics depend on BCR frequency in the repertoire, affinities, as well as
442 avidities¹⁹. Here we show that B cell responses to germline targeting chimpanzee SIV MT145
443 Envelope glycoproteins can be enriched for desirable features present in the precursors of
444 prototypical HIV-1 bnAbs. We show that unlike the wildtype chimpanzee MT145 Env, its
445 germline-targeting trimer variants exhibit strikingly different immunogenetic properties across
446 both total and antigen-specific repertoires by consistently eliciting long HCDR3 B cell lineages
447 with paratope features characteristic for HIV-1 V2-apex bnAb precursors.

448

449 We previously showed that increasing the affinity of the MT145 Env to human V2-apex bnAb
450 precursors resulted in epitope-specific nAbs following vaccination in a V2 apex bnAb precursor
451 expressing knock-in (KI) mouse⁵⁰. Here, we investigated the immunogenicity of three MT145
452 variants (MT145, MT145K, MT145.dV5) as replicating SCIVs in the rhesus macaque infection
453 model. Although SCIV_MT145K elicited V2-targeted B cell responses, our data suggest that
454 competition from the immunodominant V5 region may have reduced V2 apex directed
455 responses. Partial trimming of the V5 region refocused these responses to the desired epitope
456 although it did not completely eliminate V5 targeting. These findings suggest that eliminating or
457 shielding immunodominant off-target epitopes may reduce interclonal competition and focus the
458 B cell response on more desirable epitopes. Indeed, germline-targeting and protein resurface
459 engineering reduced off-target reactivities, favoring the engagement of rare V2-apex bnAb-like
460 precursors with long HCDR3s. This was most pronounced for SCIV_MT145K.dV5 infected
461 animals, where we observed a 10-fold increase in the fraction of long HCDR3 B cell lineages,
462 some of which exhibited properties similar to prototypic human V2-apex bnAbs. Activation of
463 rare long HCDR3 B cell precursors is a major bottleneck for inducing V2-apex bnAbs. Our study
464 shows that this can be accomplished using both germline-targeting and immunogen resurfacing
465 approaches.

466

467 In contrast to wildtype SCIV_MT145, infections with both MT145K and MT145K.dV5 SCIVs
468 elicited selection in the V2 region and caused expansions of long HCDR3 antibody lineages with
469 IGHD3-09 genes expressing the 'EDDY' motif. Both MT145K and MT145K.dV5 SCIVs expanded
470 antibodies with V2-bnAb precursor-like features from the bulk repertoire, with more clonal
471 expansion observed in the SCIV_MT145K.dV5 compared to the SCIV_MT145K infected group.
472 These data suggest that while both germline-targeting Envs elicited responses to the V2 region,
473 removal of the immunodominant V5 epitope increased the number of desired responses. It is
474 possible that the precursor frequency and/or affinity of naive B cells targeting the MT145 V5
475 region was higher than that of B cells targeting the canonical V2 epitope, which would have given
476 V5-targeting BCRs a competitive advantage over V2-targeting BCRs in the germinal centers.
477 Although not statistically significant, there was a trend for improved V2-bnAb like responses in

478 SCIV_MT145K.dV5 compared to SCIV_MT145K infected animals. Thus, it seems critical to
479 eliminate off-target immunodominant B cell epitopes when designing germline-targeting
480 immunogens.

481
482 The two germline-targeting SCIVs, but not their wildtype counterpart, appear to have primed V2
483 bnAb-like B cell precursors and elicited V2-directed antibody responses that placed weak, albeit
484 transient, selection pressures on the C-strand. However, these responses failed to broaden
485 since none of our SCIV infected macaques ultimately developed bnAbs. This failure may be due
486 to the absence of the required viral variants in the germinal centers at the time of antibody
487 maturation. A number of studies have shown that specific Ab-Env co-evolution pathways are
488 needed for neutralization breadth to develop^{9,53,86,87}. The lack of significant diversification within
489 and around the core V2-apex epitope in our recovered Env sequences indicates that viral
490 variants capable of driving affinity maturation down desirable pathways were lacking. The
491 absence of key Env mutations in the majority of the circulating viral immunotypes may have
492 impeded the maturation of nascent bnAb lineages. Alternatively, it is possible that the
493 SCIV_MT145K and SCIV_MT145k.dV5 expanded B cell lineages, despite their similarity to
494 known V2 apex bnAb UCAs, have additional features that prevent them from maturing to breadth
495 even if the necessary boosting immunotypes are present. Future studies will need to differentiate
496 between these scenarios.

497
498 The SCIV_MT145K.dV5 induced long HCDR3 mAbs exhibited a range of V2-apex epitope
499 specific binding and neutralizing properties as well as immunogenetic features frequently found
500 in V2 apex bnAbs. It is thus tempting to speculate that a germline-targeting immunogen that
501 engages a large pool of long HCDR3 lineages with diverse paratope properties, including those
502 with features similar to V2-apex bnAbs, would also prime desired B cell responses to this bnAb
503 site. Once a sizable pool of long HCDR3 precursor B cells is engaged, boosting immunogens
504 capable of immunofocusing and polishing are required. Rhesus macaque appears to represent
505 a particularly suitable outbred animal model to test V2 apex bnAb induction strategies since their
506 B cell repertoires possess precursors with paratope properties that closely resemble human V2-
507 apex bnAb lineages³⁰. In addition, the SHIV infection model allows for challenge/protection
508 studies should the desired bnAbs be induced by vaccination^{53,88}. Thus, rhesus macaques
509 provide a rapid and reliable evaluation model to test proof-of-concept germline-targeting,
510 immunofocusing, and polishing vaccine strategies for the HIV V2-apex bnAb site, which can
511 inform HIV vaccine trials in humans.

512
513 In summary, our study illustrates that rare bnAb-like B cell precursors can be preferentially
514 stimulated by germline targeting immunogens, which represents a first step in bnAb elicitation.
515 Moreover, rational antigen design may allow to eliminate or shield off-target epitopes that would
516 otherwise impede bnAb development. Although the SCIV infected RMs failed to develop bnAbs,
517 these results provide new insights into strategies for HIV-1 vaccine development.

518
519 **Limitations of the study**
520 Although we have demonstrated rare bnAb-like B cell precursors are expanded in germline
521 targeting Envs using the SCIV infection model, protein immunization with the same immunogen
522 might be different. Inducing similar responses in rhesus macaques by protein immunizations
523 would be ideal for additional *in vivo* comparisons. An important variable for B cell expansion is

524 the concentration and retention of antigen in draining lymph nodes and the periphery. Although
525 we see viral kinetics were consistent across animals for each group, slight differences across
526 groups may differentially affect antigen availability and in turn influence B cell responses. Thus,
527 evaluation of protein immunizations with fixed concentration should clarify the effect of antigen
528 concentration on B cell responses. In this study, we used immunogenetic and biochemical
529 signatures of rhesus macaque V2 bnAbs to categorize SCIV-elicited mAbs as precursor bnAbs.
530 However, whether any and which of the expanded lineages have the potential to mature into
531 real bnAbs is still unclear. Further studies using SHIVs and SCIVs to interrogate Envs that
532 promote lineage maturation would help clarify the limitation of our study.
533
534

535 **References**

536
537

- 538 1. Haynes, B.F., Wiehe, K., Borrow, P., Saunders, K.O., Korber, B., Wagh, K., McMichael, A.J., Kelsoe,
539 G., Hahn, B.H., Alt, F., and Shaw, G.M. (2023). Strategies for HIV-1 vaccines that induce broadly
540 neutralizing antibodies(vol 23, pg 142, 2023). *Nature Reviews Immunology* 23, 265-265.
541 10.1038/s41577-023-00854-0.
- 542 2. Burton, D.R., and Hangartner, L. (2016). Broadly Neutralizing Antibodies to HIV and Their Role in
543 Vaccine Design. *Annu Rev Immunol* 34, 635-659. 10.1146/annurev-immunol-041015-055515.
- 544 3. Derking, R., Ozorowski, G., Sliepen, K., Yasmeen, A., Cupo, A., Torres, J.L., Julien, J.P., Lee, J.H.,
545 van Montfort, T., de Taeye, S.W., et al. (2015). Comprehensive antigenic map of a cleaved soluble
546 HIV-1 envelope trimer. *PLoS Pathog* 11, e1004767. 10.1371/journal.ppat.1004767.
- 547 4. Zhao, F., Joyce, C., Burns, A., Nogal, B., Cottrell, C.A., Ramos, A., Biddle, T., Pauthner, M., Nedellec,
548 R., Qureshi, H., et al. (2020). Mapping Neutralizing Antibody Epitope Specificities to an HIV Env
549 Trimer in Immunized and in Infected Rhesus Macaques. *Cell Rep* 32, 108122.
550 10.1016/j.celrep.2020.108122.
- 551 5. Zhou, T., Zheng, A., Baxa, U., Chuang, G.Y., Georgiev, I.S., Kong, R., O'Dell, S., Shahzad-Ul-Hussan,
552 S., Shen, C.H., Tsybovsky, Y., et al. (2018). A Neutralizing Antibody Recognizing Primarily N-Linked
553 Glycan Targets the Silent Face of the HIV Envelope. *Immunity* 48, 500-513 e506.
554 10.1016/j.immuni.2018.02.013.
- 555 6. Hraber, P., Seaman, M.S., Bailer, R.T., Mascola, J.R., Montefiori, D.C., and Korber, B.T. (2014).
556 Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. *Aids* 28,
557 163-169. 10.1097/QAD.0000000000000106.
- 558 7. Gray, E.S., Madiga, M.C., Hermanus, T., Moore, P.L., Wibmer, C.K., Tumba, N.L., Werner, L.,
559 Mlisana, K., Sibeko, S., Williamson, C., et al. (2011). The neutralization breadth of HIV-1 develops
560 incrementally over four years and is associated with CD4+ T cell decline and high viral load during
561 acute infection. *J Virol* 85, 4828-4840. 10.1128/JVI.00198-11.
- 562 8. Bonsignori, M., Liao, H.X., Gao, F., Williams, W.B., Alam, S.M., Montefiori, D.C., and Haynes, B.F.
563 (2017). Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development.
564 *Immunol Rev* 275, 145-160. 10.1111/imr.12509.
- 565 9. Liao, H.X., Lynch, R., Zhou, T., Gao, F., Alam, S.M., Boyd, S.D., Fire, A.Z., Roskin, K.M., Schramm,
566 C.A., Zhang, Z., et al. (2013). Co-evolution of a broadly neutralizing HIV-1 antibody and founder
567 virus. *Nature* 496, 469-476. 10.1038/nature12053.
- 568 10. Burton, D.R., and Mascola, J.R. (2015). Antibody responses to envelope glycoproteins in HIV-1
569 infection. *Nature immunology* 16, 571-576. 10.1038/ni.3158.
- 570 11. Landais, E., Huang, X., Havenar-Daughton, C., Murrell, B., Price, M.A., Wickramasinghe, L., Ramos,
571 A., Bian, C.B., Simek, M., Allen, S., et al. (2016). Broadly Neutralizing Antibody Responses in a
572 Large Longitudinal Sub-Saharan HIV Primary Infection Cohort. *PLoS pathogens* 12, e1005369.
573 10.1371/journal.ppat.1005369.
- 574 12. Liao, H.X., Lynch, R., Zhou, T., Gao, F., Alam, S.M., Boyd, S.D., Fire, A.Z., Roskin, K.M., Schramm,
575 C.A., Zhang, Z., et al. (2013). Co-evolution of a broadly neutralizing HIV-1 antibody and founder
576 virus. *Nature* 496, 469-476. 10.1038/nature12053.

- 577 13. Doria-Rose, N.A., Schramm, C.A., Gorman, J., Moore, P.L., Bhiman, J.N., DeKosky, B.J., Ernandes, 578 M.J., Georgiev, I.S., Kim, H.J., Pancera, M., et al. (2014). Developmental pathway for potent V1V2- 579 directed HIV-neutralizing antibodies. *Nature* 509, 55-62. 10.1038/nature13036.
- 580 14. MacLeod, D.T., Choi, N.M., Briney, B., Garces, F., Ver, L.S., Landais, E., Murrell, B., Wrin, T., 581 Kilembe, W., Liang, C.H., et al. (2016). Early Antibody Lineage Diversification and Independent 582 Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch. 583 *Immunity* 44, 1215-1226. 10.1016/j.jimmuni.2016.04.016.
- 584 15. Leggat, D.J., Cohen, K.W., Willis, J.R., Fulp, W.J., deCamp, A.C., Kalyuzhniy, O., Cottrell, C.A., 585 Menis, S., Finak, G., Ballweber-Fleming, L., et al. (2022). Vaccination induces HIV broadly 586 neutralizing antibody precursors in humans. *Science* 378, eadd6502. 10.1126/science.add6502.
- 587 16. Wu, X., Yang, Z.Y., Li, Y., Hogerkorp, C.M., Schief, W.R., Seaman, M.S., Zhou, T., Schmidt, S.D., Wu, 588 L., Xu, L., et al. (2010). Rational design of envelope identifies broadly neutralizing human 589 monoclonal antibodies to HIV-1. *Science* 329, 856-861. 10.1126/science.1187659.
- 590 17. Jardine, J.G., Kulp, D.W., Havenar-Daughton, C., Sarkar, A., Briney, B., Sok, D., Sesterhenn, F., 591 Ereno-Orbea, J., Kalyuzhniy, O., Deresa, I., et al. (2016). HIV-1 broadly neutralizing antibody 592 precursor B cells revealed by germline-targeting immunogene. *Science* 351, 1458-1463. 593 10.1126/science.aad9195.
- 594 18. Sok, D., Briney, B., Jardine, J.G., Kulp, D.W., Menis, S., Pauthner, M., Wood, A., Lee, E.C., Le, K.M., 595 Jones, M., et al. (2016). Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci 596 transgenic mice. *Science* 353, 1557-1560. 10.1126/science.aah3945.
- 597 19. Abbott, R.K., Lee, J.H., Menis, S., Skog, P., Rossi, M., Ota, T., Kulp, D.W., Bhullar, D., Kalyuzhniy, 598 O., Havenar-Daughton, C., et al. (2018). Precursor Frequency and Affinity Determine B Cell 599 Competitive Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine 600 Immunogens. *Immunity* 48, 133-+. 10.1016/j.jimmuni.2017.11.023.
- 601 20. Andrabi, R., Voss, J.E., Liang, C.H., Briney, B., Mccoy, L.E., Wu, C.Y., Wong, C.H., Poignard, P., and 602 Burton, D.R. (2015). Identification of Common Features in Prototype Broadly Neutralizing 603 Antibodies to HIV Envelope V2 Apex to Facilitate Vaccine Design. *Immunity* 43, 959-973. 604 10.1016/j.jimmuni.2015.10.014.
- 605 21. Willis, J.R., Berndsen, Z.T., Ma, K.M., Steichen, J.M., Schiffner, T., Landais, E., Liguori, A., 606 Kalyuzhniy, O., Allen, J.D., Baboo, S., et al. (2022). Human immunoglobulin repertoire analysis 607 guides design of vaccine priming immunogens targeting HIV V2-apex broadly neutralizing 608 antibody precursors. *Immunity* 55, 2149-2167 e2149. 10.1016/j.jimmuni.2022.09.001.
- 609 22. Rantalainen, K., Berndsen, Z.T., Murrell, S., Cao, L., Omorodion, O., Torres, J.L., Wu, M., Umotoy, 610 J., Copps, J., Poignard, P., et al. (2018). Co-evolution of HIV Envelope and Apex-Targeting 611 Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design. *Cell reports* 23, 3249- 612 3261. 10.1016/j.celrep.2018.05.046.
- 613 23. Briney, B.S., Willis, J.R., and Crowe, J.E., Jr. (2012). Human peripheral blood antibodies with long 614 HCDR3s are established primarily at original recombination using a limited subset of germline 615 genes. *PLoS one* 7, e36750. 10.1371/journal.pone.0036750.
- 616 24. Pinto, D., Fenwick, C., Caillat, C., Silacci, C., Guseva, S., Dehez, F., Chipot, C., Barbieri, S., Minola, 617 A., Jarrossay, D., et al. (2019). Structural Basis for Broad HIV-1 Neutralization by the MPER- 618 Specific Human Broadly Neutralizing Antibody LN01. *Cell Host Microbe* 26, 623-637 e628. 619 10.1016/j.chom.2019.09.016.

- 620 25. Williams, L.D., Ofek, G., Schatzle, S., McDaniel, J.R., Lu, X., Nicely, N.I., Wu, L., Lougheed, C.S.,
621 Bradley, T., Louder, M.K., et al. (2017). Potent and broad HIV-neutralizing antibodies in memory
622 B cells and plasma. *Sci Immunol* 2. 10.1126/sciimmunol.aal2200.
- 623 26. Steichen, J.M., Lin, Y.C., Havenar-Daughton, C., Pecetta, S., Ozorowski, G., Willis, J.R., Toy, L., Sok,
624 D., Liguori, A., Kratochvil, S., et al. (2019). A generalized HIV vaccine design strategy for priming
625 of broadly neutralizing antibody responses. *Science* 366. 10.1126/science.aax4380.
- 626 27. Steichen, J.M., Kulp, D.W., Tokatlian, T., Escolano, A., Dosenovic, P., Stanfield, R.L., McCoy, L.E.,
627 Ozorowski, G., Hu, X.Z., Kalyuzhniy, O., et al. (2016). HIV Vaccine Design to Target Germline
628 Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. *Immunity* 45, 483-496.
629 10.1016/j.jimmuni.2016.08.016.
- 630 28. Caniels, T.G., Medina-Ramirez, M., Zhang, J., Sarkar, A., Kumar, S., LaBranche, A., Derking, R.,
631 Allen, J.D., Snitselaar, J.L., Capella-Pujol, J., et al. (2023). Germline-targeting HIV-1 Env vaccination
632 induces VRC01-class antibodies with rare insertions. *Cell Rep Med* 4, 101003.
633 10.1016/j.xcrm.2023.101003.
- 634 29. Voss, J.E., Andrabí, R., McCoy, L.E., de Val, N., Fuller, R.P., Messmer, T., Su, C.Y., Sok, D., Khan,
635 S.N., Garces, F., et al. (2017). Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the
636 HIV Envelope Trimer in a Wild-Type Animal Model. *Cell reports* 21, 222-235.
637 10.1016/j.celrep.2017.09.024.
- 638 30. Andrabí, R., Voss, J.E., Liang, C.H., Briney, B., McCoy, L.E., Wu, C.Y., Wong, C.H., Poignard, P., and
639 Burton, D.R. (2015). Identification of Common Features in Prototype Broadly Neutralizing
640 Antibodies to HIV Envelope V2 Apex to Facilitate Vaccine Design. *Immunity* 43, 959-973.
641 10.1016/j.jimmuni.2015.10.014.
- 642 31. McGuire, A.T., Hoot, S., Dreyer, A.M., Lippy, A., Stuart, A., Cohen, K.W., Jardine, J., Menis, S.,
643 Scheid, J.F., West, A.P., et al. (2013). Engineering HIV envelope protein to activate germline B cell
644 receptors of broadly neutralizing anti-CD4 binding site antibodies. *The Journal of experimental
645 medicine* 210, 655-663. 10.1084/jem.20122824.
- 646 32. Jardine, J.G., Ota, T., Sok, D., Pauthner, M., Kulp, D.W., Kalyuzhniy, O., Skog, P.D., Thinnes, T.C.,
647 Bhullar, D., Briney, B., et al. (2015). HIV-1 VACCINES. Priming a broadly neutralizing antibody
648 response to HIV-1 using a germline-targeting immunogen. *Science* 349, 156-161.
649 10.1126/science.aac5894.
- 650 33. Escolano, A., Steichen, J.M., Dosenovic, P., Kulp, D.W., Golijanin, J., Sok, D., Freund, N.T., Gitlin,
651 A.D., Oliveira, T., Araki, T., et al. (2016). Sequential Immunization Elicits Broadly Neutralizing Anti-
652 HIV-1 Antibodies in Ig Knockin Mice. *Cell* 166, 1445-1458 e1412. 10.1016/j.cell.2016.07.030.
- 653 34. Briney, B., Sok, D., Jardine, J.G., Kulp, D.W., Skog, P., Menis, S., Jacak, R., Kalyuzhniy, O., de Val,
654 N., Sesterhenn, F., et al. (2016). Tailored Immunogens Direct Affinity Maturation toward HIV
655 Neutralizing Antibodies. *Cell* 166, 1459-1470 e1411. 10.1016/j.cell.2016.08.005.
- 656 35. Sok, D., Briney, B., Jardine, J.G., Kulp, D.W., Menis, S., Pauthner, M., Wood, A., Lee, E.C., Le, K.M.,
657 Jones, M., et al. (2016). Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci
658 transgenic mice. *Science*. 10.1126/science.aah3945.
- 659 36. Tian, M., Cheng, C., Chen, X., Duan, H., Cheng, H.L., Dao, M., Sheng, Z., Kimble, M., Wang, L., Lin,
660 S., et al. (2016). Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor
661 Repertoires. *Cell* 166, 1471-1484 e1418. 10.1016/j.cell.2016.07.029.
- 662 37. Martina, C.E., Crowe, J.E., Jr., and Meiler, J. (2023). Glycan masking in vaccine design: Targets,
663 immunogens and applications. *Front Immunol* 14, 1126034. 10.3389/fimmu.2023.1126034.

- 664 38. Crooks, E.T., Almanza, F., D'Addabbo, A., Duggan, E., Zhang, J., Wagh, K., Mou, H., Allen, J.D.,
665 Thomas, A., Osawa, K., et al. (2021). Engineering well-expressed, V2-immunofocusing HIV-1
666 envelope glycoprotein membrane trimers for use in heterologous prime-boost vaccine regimens.
667 *PLoS Pathog* 17, e1009807. 10.1371/journal.ppat.1009807.
- 668 39. Brouwer, P.J.M., Antanasiievic, A., de Gast, M., Allen, J.D., Bijl, T.P.L., Yasmeen, A., Ravichandran,
669 R., Burger, J.A., Ozorowski, G., Torres, J.L., et al. (2021). Immunofocusing and enhancing
670 autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein
671 nanoparticles. *Npj Vaccines* 6, 24. 10.1038/s41541-021-00285-9.
- 672 40. Bibollet-Ruche, F., Russell, R.M., Ding, W., Liu, W., Li, Y., Wagh, K., Wrapp, D., Habib, R., Skelly,
673 A.N., Roark, R.S., et al. (2023). A Germline-Targeting Chimpanzee SIV Envelope Glycoprotein
674 Elicits a New Class of V2-Apex Directed Cross-Neutralizing Antibodies. *mBio* 14, e0337022.
675 10.1128/mbio.03370-22.
- 676 41. Moyer, T.J., Kato, Y., Abraham, W., Chang, J.Y.H., Kulp, D.W., Watson, N., Turner, H.L., Menis, S.,
677 Abbott, R.K., Bhiman, J.N., et al. (2020). Engineered immunogen binding to alum adjuvant
678 enhances humoral immunity. *Nature medicine* 26, 430-440. 10.1038/s41591-020-0753-3.
- 679 42. Kulp, D.W., Steichen, J.M., Pauthner, M., Hu, X., Schiffner, T., Liguori, A., Cottrell, C.A., Havenar-
680 Daughton, C., Ozorowski, G., Georgeson, E., et al. (2017). Structure-based design of native-like
681 HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. *Nature
682 communications* 8, 1655. 10.1038/s41467-017-01549-6.
- 683 43. Sanders, R.W., and Moore, J.P. (2017). Native-like Env trimers as a platform for HIV-1 vaccine
684 design. *Immunological Reviews* 275, 161-182. 10.1111/imr.12481.
- 685 44. Ringe, R.P., Yasmeen, A., Ozorowski, G., Go, E.P., Pritchard, L.K., Guttman, M., Ketas, T.A., Cottrell,
686 C.A., Wilson, I.A., Sanders, R.W., et al. (2015). Influences on the Design and Purification of Soluble,
687 Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. *Journal of virology* 89, 12189-
688 12210. 10.1128/JVI.01768-15.
- 689 45. Kumar, R., Deshpande, S., Sewall, L.M., Ozorowski, G., Cottrell, C.A., Lee, W.H., Holden, L.G.,
690 Richey, S.T., Chandrawacar, A.S., Dhiman, K., et al. (2021). Elicitation of potent serum neutralizing
691 antibody responses in rabbits by immunization with an HIV-1 clade C trimeric Env derived from
692 an Indian elite neutralizer. *PLoS Pathog* 17, e1008977. 10.1371/journal.ppat.1008977.
- 693 46. Sanders, R.W., van Gils, M.J., Derking, R., Sok, D., Ketas, T.J., Burger, J.A., Ozorowski, G., Cupo, A.,
694 Simonich, C., Goo, L., et al. (2015). HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by
695 native-like envelope trimers. *Science* 349, aac4223. 10.1126/science.aac4223.
- 696 47. Sahoo, A., Hodge, E.A., LaBranche, C.C., Styles, T.M., Shen, X., Cheedarla, N., Shiferaw, A.,
697 Ozorowski, G., Lee, W.H., Ward, A.B., et al. (2022). Structure-guided changes at the V2 apex of
698 HIV-1 clade C trimer enhance elicitation of autologous neutralizing and broad V1V2-scaffold
699 antibodies. *Cell Rep* 38, 110436. 10.1016/j.celrep.2022.110436.
- 700 48. de Taeye, S.W., Go, E.P., Sliepen, K., de la Pena, A.T., Badal, K., Medina-Ramirez, M., Lee, W.H.,
701 Desaire, H., Wilson, I.A., Moore, J.P., et al. (2019). Stabilization of the V2 loop improves the
702 presentation of V2 loop-associated broadly neutralizing antibody epitopes on HIV-1 envelope
703 trimers. *J Biol Chem* 294, 5616-5631. 10.1074/jbc.RA118.005396.
- 704 49. Walker, L.M., Phogat, S.K., Chan-Hui, P.Y., Wagner, D., Phung, P., Goss, J.L., Wrin, T., Simek, M.D.,
705 Fling, S., Mitcham, J.L., et al. (2009). Broad and potent neutralizing antibodies from an African
706 donor reveal a new HIV-1 vaccine target. *Science* 326, 285-289. 10.1126/science.1178746.

- 707 50. Andrabi, R., Pallesen, J., Allen, J.D., Song, G., Zhang, J., de Val, N., Gegg, G., Porter, K., Su, C.Y.,
708 Pauthner, M., et al. (2019). The Chimpanzee SIV Envelope Trimer: Structure and Deployment as
709 an HIV Vaccine Template. *Cell reports* 27, 2426-2441 e2426. 10.1016/j.celrep.2019.04.082.
- 710 51. Gorman, J., Soto, C., Yang, M.M., Davenport, T.M., Guttman, M., Bailer, R.T., Chambers, M.,
711 Chuang, G.Y., DeKosky, B.J., Doria-Rose, N.A., et al. (2016). Structures of HIV-1 Env V1V2 with
712 broadly neutralizing antibodies reveal commonalities that enable vaccine design. *Nature structural & molecular biology* 23, 81-90. 10.1038/nsmb.3144.
- 713 52. McLellan, J.S., Pancera, M., Carrico, C., Gorman, J., Julien, J.P., Khayat, R., Louder, R., Pejchal, R.,
714 Sastry, M., Dai, K., et al. (2011). Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing
715 antibody PG9. *Nature* 480, 336-343. 10.1038/nature10696.
- 716 53. Roark, R.S., Li, H., Williams, W.B., Chug, H., Mason, R.D., Gorman, J., Wang, S., Lee, F.H., Rando,
717 J., Bonsignori, M., et al. (2021). Recapitulation of HIV-1 Env-antibody coevolution in macaques
718 leading to neutralization breadth. *Science* 371. 10.1126/science.abd2638.
- 719 54. Gorman, J., Chuang, G.Y., Lai, Y.T., Shen, C.H., Boyington, J.C., Druz, A., Geng, H., Louder, M.K.,
720 McKee, K., Rawi, R., et al. (2020). Structure of Super-Potent Antibody CAP256-VRC26.25 in
721 Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. *Cell reports*
722 31, 107488. 10.1016/j.celrep.2020.03.052.
- 723 55. Bonsignori, M., Hwang, K.K., Chen, X., Tsao, C.Y., Morris, L., Gray, E., Marshall, D.J., Crump, J.A.,
724 Kapiga, S.H., Sam, N.E., et al. (2011). Analysis of a clonal lineage of HIV-1 envelope V2/V3
725 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated
726 common ancestors. *J Virol* 85, 9998-10009. 10.1128/JVI.05045-11.
- 727 56. Landais, E., Murrell, B., Briney, B., Murrell, S., Rantalainen, K., Berndsen, Z.T., Ramos, A.,
728 Wickramasinghe, L., Smith, M.L., Eren, K., et al. (2017). HIV Envelope Glycoform Heterogeneity
729 and Localized Diversity Govern the Initiation and Maturation of a V2 Apex Broadly Neutralizing
730 Antibody Lineage. *Immunity* 47, 990-1003 e1009. 10.1016/j.immuni.2017.11.002.
- 731 57. Doria-Rose, N.A., Bhiman, J.N., Roark, R.S., Schramm, C.A., Gorman, J., Chuang, G.Y., Pancera, M.,
732 Cale, E.M., Ernandes, M.J., Louder, M.K., et al. (2016). New Member of the V1V2-Directed
733 CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. *J Virol* 90, 76-91.
734 10.1128/JVI.01791-15.
- 735 58. Walker, L.M., Huber, M., Doores, K.J., Falkowska, E., Pejchal, R., Julien, J.P., Wang, S.K., Ramos,
736 A., Chan-Hui, P.Y., Moyle, M., et al. (2011). Broad neutralization coverage of HIV by multiple
737 highly potent antibodies. *Nature* 477, 466-470. 10.1038/nature10373.
- 738 59. Lee, J.H., Andrabi, R., Su, C.Y., Yasmeen, A., Julien, J.P., Kong, L., Wu, N.C., McBride, R., Sok, D.,
739 Pauthner, M., et al. (2017). A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope
740 Trimer Apex via a Long, Rigidified, and Anionic beta-Hairpin Structure. *Immunity* 46, 690-702.
741 10.1016/j.immuni.2017.03.017.
- 742 60. Cai, C.X., Doria-Rose, N.A., Schneck, N.A., Ivleva, V.B., Tippett, B., Shadrick, W.R., O'Connell, S.,
743 Cooper, J.W., Schneiderman, Z., Zhang, B., et al. (2022). Tyrosine O-sulfation proteoforms affect
744 HIV-1 monoclonal antibody potency. *Sci Rep* 12, 8433. 10.1038/s41598-022-12423-x.
- 745 61. Pejchal, R., Walker, L.M., Stanfield, R.L., Phogat, S.K., Koff, W.C., Poignard, P., Burton, D.R., and
746 Wilson, I.A. (2010). Structure and function of broadly reactive antibody PG16 reveal an H3
747 subdomain that mediates potent neutralization of HIV-1. *Proceedings of the National Academy
748 of Sciences of the United States of America* 107, 11483-11488. 10.1073/pnas.1004600107.
- 749

- 750 62. Gao, F., Bailes, E., Robertson, D.L., Chen, Y., Rodenburg, C.M., Michael, S.F., Cummins, L.B.,
751 Arthur, L.O., Peeters, M., Shaw, G.M., et al. (1999). Origin of HIV-1 in the chimpanzee *Pan*
752 *troglodytes troglodytes*. *Nature* **397**, 436-441. 10.1038/17130.
- 753 63. Keele, B.F., Van Heuverswyn, F., Li, Y., Bailes, E., Takehisa, J., Santiago, M.L., Bibollet-Ruche, F.,
754 Chen, Y., Wain, L.V., Liegeois, F., et al. (2006). Chimpanzee reservoirs of pandemic and
755 nonpandemic HIV-1. *Science* **313**, 523-526. 10.1126/science.1126531.
- 756 64. Sharp, P.M., and Hahn, B.H. (2011). Origins of HIV and the AIDS pandemic. *Cold Spring Harb
757 Perspect Med* **1**, a006841. 10.1101/csfperspect.a006841.
- 758 65. Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta, R., Lapedes, A., Hahn, B.H., Wolinsky, S., and
759 Bhattacharya, T. (2000). Timing the ancestor of the HIV-1 pandemic strains. *Science* **288**, 1789-
760 1796.
- 761 66. Barbian, H.J., Decker, J.M., Bibollet-Ruche, F., Galimidi, R.P., West, A.P., Jr., Learn, G.H., Parrish,
762 N.F., Iyer, S.S., Li, Y., Pace, C.S., et al. (2015). Neutralization properties of simian
763 immunodeficiency viruses infecting chimpanzees and gorillas. *mBio* **6**. 10.1128/mBio.00296-15.
- 764 67. Li, H., Wang, S., Lee, F.H., Roark, R.S., Murphy, A.I., Smith, J., Zhao, C., Rando, J., Chohan, N., Ding,
765 Y., et al. (2021). New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission,
766 Immunopathogenesis, Prevention and Cure. *J Virol*. 10.1128/JVI.00071-21.
- 767 68. van Schooten, J., van Haaren, M.M., Li, H., McCoy, L.E., Havenar-Daughton, C., Cottrell, C.A.,
768 Burger, J.A., van der Woude, P., Helgers, L.C., Tomris, I., et al. (2021). Antibody responses induced
769 by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers
770 in non-human primates. *PLoS Pathog* **17**, e1009736. 10.1371/journal.ppat.1009736.
- 771 69. Pegu, A., Xu, L., DeMouth, M.E., Fabozzi, G., March, K., Almasri, C.G., Cully, M.D., Wang, K., Yang,
772 E.S., Dias, J., et al. (2022). Potent anti-viral activity of a trispecific HIV neutralizing antibody in
773 SHIV-infected monkeys. *Cell Rep* **38**, 110199. 10.1016/j.celrep.2021.110199.
- 774 70. Li, H., Wang, S., Lee, F.H., Roark, R.S., Murphy, A.I., Smith, J., Zhao, C., Rando, J., Chohan, N., Ding,
775 Y., et al. (2021). New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission,
776 Immunopathogenesis, Prevention and Cure. *J Virol* **95**. 10.1128/JVI.00071-21.
- 777 71. Hirsch, V.M., Santra, S., Goldstein, S., Plishka, R., Buckler-White, A., Seth, A., Ourmanov, I., Brown,
778 C.R., Engle, R., Montefiori, D., et al. (2004). Immune failure in the absence of profound CD4+ T-
779 lymphocyte depletion in simian immunodeficiency virus-infected rapid progressor macaques. *J
780 Virol* **78**, 275-284. 10.1128/jvi.78.1.275-284.2004.
- 781 72. Salazar-Gonzalez, J.F., Bailes, E., Pham, K.T., Salazar, M.G., Guffey, M.B., Keele, B.F., Derdeyn,
782 C.A., Farmer, P., Hunter, E., Allen, S., et al. (2008). Deciphering human immunodeficiency virus
783 type 1 transmission and early envelope diversification by single-genome amplification and
784 sequencing. *J Virol* **82**, 3952-3970. 10.1128/JVI.02660-07.
- 785 73. Keele, B.F., Giorgi, E.E., Salazar-Gonzalez, J.F., Decker, J.M., Pham, K.T., Salazar, M.G., Sun, C.,
786 Grayson, T., Wang, S., Li, H., et al. (2008). Identification and characterization of transmitted and
787 early founder virus envelopes in primary HIV-1 infection. *Proceedings of the National Academy of
788 Sciences of the United States of America* **105**, 7552-7557. 10.1073/pnas.0802203105.
- 789 74. Pancera, M., McLellan, J.S., Wu, X., Zhu, J., Changela, A., Schmidt, S.D., Yang, Y., Zhou, T., Phogat,
790 S., Mascola, J.R., and Kwong, P.D. (2010). Crystal structure of PG16 and chimeric dissection with
791 somatically related PG9: structure-function analysis of two quaternary-specific antibodies that
792 effectively neutralize HIV-1. *J Virol* **84**, 8098-8110. 10.1128/JVI.00966-10.

- 793 75. Vazquez Bernat, N., Corcoran, M., Nowak, I., Kaduk, M., Castro Dopico, X., Narang, S.,
794 Maisonneuve, P., Dereuddre-Bosquet, N., Murrell, B., and Karlsson Hedestam, G.B. (2021). Rhesus
795 and cynomolgus macaque immunoglobulin heavy-chain genotyping yields comprehensive
796 databases of germline VDJ alleles. *Immunity* 54, 355-366 e354. 10.1016/j.jimmuni.2020.12.018.
797 76. Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022).
798 ColabFold: making protein folding accessible to all. *Nat Methods* 19, 679-682. 10.1038/s41592-
799 022-01488-1.
800 77. Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and
801 Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and
802 developers. *Protein Sci* 30, 70-82. 10.1002/pro.3943.
803 78. Mirdita, M., Steinegger, M., and Soding, J. (2019). MMseqs2 desktop and local web server app
804 for fast, interactive sequence searches. *Bioinformatics* 35, 2856-2858.
805 10.1093/bioinformatics/bty1057.
806 79. Victora, G.D., and Nussenzweig, M.C. (2022). Germinal Centers. *Annu Rev Immunol* 40, 413-442.
807 10.1146/annurev-immunol-120419-022408.
808 80. Abbott, R.K., and Crotty, S. (2020). Factors in B cell competition and immunodominance. *Immunol Rev* 296, 120-131. 10.1111/imr.12861.
809 81. Kuraoka, M., Schmidt, A.G., Nojima, T., Feng, F., Watanabe, A., Kitamura, D., Harrison, S.C.,
810 Kepler, T.B., and Kelsoe, G. (2016). Complex Antigens Drive Permissive Clonal Selection in
811 Germinal Centers. *Immunity* 44, 542-552. 10.1016/j.jimmuni.2016.02.010.
812 82. Berek, C., Berger, A., and Apel, M. (1991). Maturation of the immune response in germinal
813 centers. *Cell* 67, 1121-1129.
814 83. Manser, T., Huang, S.Y., and Gefter, M.L. (1984). Influence of clonal selection on the expression
815 of immunoglobulin variable region genes. *Science* 226, 1283-1288.
816 84. Jacob, J., Kelsoe, G., Rajewsky, K., and Weiss, U. (1991). Intralonal generation of antibody
817 mutants in germinal centres. *Nature* 354, 389-392. 10.1038/354389a0.
818 85. Tas, J.M., Mesin, L., Pasqual, G., Targ, S., Jacobsen, J.T., Mano, Y.M., Chen, C.S., Weill, J.C.,
819 Reynaud, C.A., Browne, E.P., et al. (2016). Visualizing antibody affinity maturation in germinal
820 centers. *Science* 351, 1048-1054. 10.1126/science.aad3439.
821 86. Bonsignori, M., Zhou, T., Sheng, Z., Chen, L., Gao, F., Joyce, M.G., Ozorowski, G., Chuang, G.Y.,
822 Schramm, C.A., Wiehe, K., et al. (2016). Maturation Pathway from Germline to Broad HIV-1
823 Neutralizer of a CD4-Mimic Antibody. *Cell* 165, 449-463. 10.1016/j.cell.2016.02.022.
824 87. Garces, F., Sok, D., Kong, L., McBride, R., Kim, H.J., Saye-Francisco, K.F., Julien, J.P., Hua, Y., Cupo,
825 A., Moore, J.P., et al. (2014). Structural evolution of glycan recognition by a family of potent HIV
826 antibodies. *Cell* 159, 69-79. 10.1016/j.cell.2014.09.009.
827 88. Pauthner, M.G., Nkolola, J.P., Havenar-Daughton, C., Murrell, B., Reiss, S.M., Bastidas, R., Prevost,
828 J., Nedellec, R., von Bredow, B., Abbink, P., et al. (2019). Vaccine-Induced Protection from
829 Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing
830 Antibody Titers. *Immunity* 50, 241-252 e246. 10.1016/j.jimmuni.2018.11.011.
831 89. Andrabi, R., Pallesen, J., Allen, J.D., Song, G., Zhang, J., de Val, N., Gegg, G., Porter, K., Su, C.Y.,
832 Pauthner, M., et al. (2019). The Chimpanzee SIV Envelope Trimer: Structure and Deployment as
833 an HIV Vaccine Template. *Cell reports* 27, 2426-2441.e2426. 10.1016/j.celrep.2019.04.082.
834 90. Li, H., Wang, S., Kong, R., Ding, W., Lee, F.H., Parker, Z., Kim, E., Learn, G.H., Hahn, P., Policicchio,
835 B., et al. (2016). Envelope residue 375 substitutions in simian-human immunodeficiency viruses
836

- 837 enhance CD4 binding and replication in rhesus macaques. *Proc Natl Acad Sci U S A* **113**, E3413-
838 3422. 10.1073/pnas.1606636113.
- 839 91. Zhao, F., Berndsen, Z.T., Pedreno-Lopez, N., Burns, A., Allen, J.D., Barman, S., Lee, W.H.,
840 Chakraborty, S., Gnanakaran, S., Sewall, L.M., et al. (2022). Molecular insights into antibody-
841 mediated protection against the prototypic simian immunodeficiency virus. *Nat Commun* **13**,
842 5236. 10.1038/s41467-022-32783-2.
- 843 92. Bangaru, S., Antanasijevic, A., Kose, N., Sewall, L.M., Jackson, A.M., Suryadevara, N., Zhan, X.,
844 Torres, J.L., Copps, J., de la Pena, A.T., et al. (2022). Structural mapping of antibody landscapes to
845 human betacoronavirus spike proteins. *Sci Adv* **8**, eabn2911. 10.1126/sciadv.abn2911.
- 846 93. Shlemov, A., Bankevich, S., Bzikadze, A., Turchaninova, M.A., Safonova, Y., and Pevzner, P.A.
847 (2017). Reconstructing Antibody Repertoires from Error-Prone Immunosequencing Reads. *J*
848 *Immunol* **199**, 3369-3380. 10.4049/jimmunol.1700485.
- 849 94. Monigatti, F., Gasteiger, E., Bairoch, A., and Jung, E. (2002). The Sulfinator: predicting tyrosine
850 sulfation sites in protein sequences. *Bioinformatics* **18**, 769-770.
851 10.1093/bioinformatics/18.5.769.
- 852 95. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H.,
853 Remmert, M., Soding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple
854 sequence alignments using Clustal Omega. *Mol Syst Biol* **7**, 539. 10.1038/msb.2011.75.
- 855 96. Moore, R.M., Harrison, A.O., McAllister, S.M., Polson, S.W., and Wommack, K.E. (2020). Iroki:
856 automatic customization and visualization of phylogenetic trees. *Peerj* **8**, e8584.
857 10.7717/peerj.8584.
- 858 97. Hraber, P., Korber, B., Wagh, K., Giorgi, E.E., Bhattacharya, T., Gnanakaran, S., Lapedes, A.S.,
859 Learn, G.H., Kreider, E.F., Li, Y., et al. (2015). Longitudinal Antigenic Sequences and Sites from
860 Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. *Viruses* **7**, 5443-5475.
861 10.3390/v7102881.
- 862 98. Tareen, A., and Kinney, J.B. (2020). Logomaker: beautiful sequence logos in Python.
863 *Bioinformatics* **36**, 2272-2274. 10.1093/bioinformatics/btz921.
- 864 99. Ranwez, V., Douzery, E.J.P., Cambon, C., Chantret, N., and Delsuc, F. (2018). MACSE v2: Toolkit
865 for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. *Mol Biol*
866 *Evol* **35**, 2582-2584. 10.1093/molbev/msy159.
- 867 100. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment
868 search tool. *Journal of molecular biology* **215**, 403-410. 10.1016/S0022-2836(05)80360-2.
- 869
870

871 **ACKNOWLEDGEMENTS**

872 We thank ... for expert technical assistance; T. Denny, T. Demarco, and N. DeNaeyer and
873 members of the Nonhuman Primate Virology Core Laboratory at the Duke Human Vaccine
874 Institute for SCIV plasma vRNA measurements; the staff at Bioqual for exceptional care and
875 assistance with nonhuman primates. This work was supported by National Institutes of Health
876 grants R61 AI 161818 (R.A., G.M.S.), R01 AI 167716 (R.A.), R01 AI 050529 (B.H.H.), R37 AI
877 150590 (B.H.H., K.W., B.T.F.), R01 AI 160607 (G.M.S.), P01 AI 131251 (G.M.S., K.W.), the
878 University of Pennsylvania Center for AIDS Research (P30 AI 045008), the National Institute of
879 Allergy and Infectious Diseases (NIAID) Consortium for HIV/AIDS Vaccine Development
880 (CHAVD; UM1 AI144371, UM1AI144462) (A.B.W., D.S., B.B., and D.R.B.), the Bill and
881 Melinda Gates Foundation through the Collaboration for AIDS Vaccine Discovery (INV-008352/
882 OPP1153692 and OPP1196345/INV-008813) (D.S., D.R.B., A.B.W., and R.A.), and
883 (OPP1206647) (G.M.S., and R.A.). R.S.R. and R.M.R. were supported by a training grant (T32
884 AI 007632). R.M. was supported by a training grant (T32 AI 007244).
885

886 **Author Contributions**

887 R.M., Y.S., G.S., R.S.R., G.M.S., and R.A. conceived and designed experiments; R.M., G.S.,
888 R.S.R., F.L., S.W., R.M.R., W.D., Y.L., J.R., A.I.M., E.L., C.Z., A.J.C., F.B., N.M., generated
889 SCIV viruses, performed neutralization and binding assays; R.M., G.S., R.S.R., F.L., S.W.,
890 R.M.R., W.D., and Y.L. collected viral Env sequencing, repertoire, and single cell sequencing
891 data; R.M., G.S., and P.Y. performed single B cell sorting and B cell culture experiments; R.M.,
892 G.S., P.Y., G.A., W.H., S.C., K.D., A.L.V., X.L., T.C., F.A., cloned, expressed, purified, and tested
893 monoclonal antibodies and SOSIP trimers and probes; S.Z., W.L., G.O., and A.B.W. generated
894 and analyzed EMPEM data; Y.S., R.M., J.H., and B.B. analyzed repertoire and single cell NGS
895 data; B.T.F., K.W., Y.S., R.S.R., and R.M. analyzed viral envelope sequencing data; the
896 experiments. N.M., and R.M. performed the structure prediction experiments. R.M., Y.S., E.L.,
897 B.H.H. and R.A. wrote the manuscript with input from all listed authors.
898

899 **Competing Interests**

900 The authors declare no competing interests.
901

902 **Key Resource Table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins		
40 K polyethylenimine (PEI) MAX	Polysciences	# 24765-1
FectoPRO	Polyplus	# 116-001
Valproic acid sodium salt	Sigma	# P4543-100G
D-(+)-Glucose Solution	Gibco	# A2494001
L-glutamine	Corning	# 25-005-CI
Penicillin-streptomycin	Corning	# 30-002-CI
DEAE-dextran	Sigma-Aldrich	# 93556-1G
QuikChange II XL Site-Directed Mutagenesis Kit	Aligent Technologies	# 200522
Galanthus nivalis lectin (snow drop), agarose bound	Vector Labs	# AL-1243
CNBr-activated Sepharose 4B bead	GE Healthcare	# 17-0430-01
Bright-Glo Luciferase Assay System	Promega	# E2620
Papain	Sigma-Aldrich	# P3125

MT145 SOSIP.664	Andrabi et al., 2019	N/A
MT145K SOSIP.664	Andrabi et al., 2019	N/A
MT145K.dV5 SOSIP.664	This paper	N/A
MT145K.dV5 gp120	This paper	N/A
MT145K.dV5 N160K SOSIP.664	This paper	N/A
MT145K.dV5 N169E/N171E SOSIP.664	This paper	N/A
WITO SOSIP.664		
BG505 SOSIP.664	Sanders et al., 2013	
Streptavidin	ThermoFisher Scientific	# 434301
Human IL-4	Miltenyi Biotec	# 130-093-917
SPRIselect Bead-Based Reagent	Beckman Coulter Genomics	# B23318
RNeasy Plus Kit	Qiagen	# 74134
SuperScript™ III Reverse Transcriptase	ThermoFisher Scientific	# 18080093
ExoSAP-IT™ PCR Product Cleanup Reagent	ThermoFisher Scientific	# 78205
HotStarTaq Plus DNA Polymerase	ThermoFisher Scientific	# 203603
Interleukin-2, human (hIL-2)	Sigma	# 10799068001
Human IL-21 Recombinant Protein	ThermoFisher Scientific	# PHC0211
Antibodies		
Anti-human CD3 (APC-Cy7)	BD Pharmingen	Clone SP34-2, #557757
Anti-human CD4 (APC-Cy7)	Biolegend	Clone OKT-4, #317418
Anti-human CD8 (APC-Cy7)	Biolegend	Clone RPA-T8, #557760
Anti-human CD19 (PerCP-Cy5.5)	Biolegend	Clone HIB19, #302230
Anti-human CD20 (PerCP-Cy5.5)	Biolegend	Clone 2H7, #302326
Anti-human IgG (BV786)	BD Horizon	Clone G18-145, #564230
Anti-human IgM (PE)	Biolegend	Clone MHM-88, #314508
Anti-human CD14 (APC-Cy7)	BD Pharmingen	Clone M5E2, #561384
Anti-human IgG (BV786)	BD Horizon	Clone G18-145, #564230
Anti-monkey IgG (H/L)	Bio Rad	# AAI42
Bacterial and Virus Strains		
MT145 SIVcpz virus	This Paper	N/A
MT145K SIVcpz virus	This Paper	N/A
MT145K.dV5 SIVcpz virus	This Paper	N/A
MLV	NIH AIDS Reagent Program	N/A
MW965.26	NIH AIDS Reagent Program	N/A
TH023.6	NIH AIDS Reagent Program	N/A
Tier 2 Global Neutralization Panel	NIH AIDS Reagent Program	N/A
Tier 2 SHIV Panel	NIH AIDS Reagent Program	N/A
CRF250_N160K	NIH AIDS Reagent Program	N/A
Deposited Data		
Structure of MT145, MT145K and MT145KdV5 in complex with polyclonal Fabs		EMD Accession numbers EMD-41832-EMD-41836

SCIV env Gene Sequences		Genbank Accession numbers X
Nucleotide sequences of SCIV_MT145, SCIV_MT145K and SCIV_MT145K.dV5		Genbank Accession numbers OR117733-OR117735
Nucleotide sequences of monoclonal antibodies		Genbank Accession numbers OR517381-OR517472
EM Data availability		Electron Microscopy Data Bank under accession codes EMD-41832-41836
Experimental Models: Cell Lines		
Expi293F cells	Gibco	# A14527
HEK293T cells	ATCC	# CRL-3216
TZM-b1 cells	NIH AIDS Reagents Program	N/A
3T3msCD40L		
Recombinant DNA		
pSG3Δenv plasmid	NIH AIDS Reagent Program	# 11051
Oligonucleotides		
RM_IgM_RT: ACACTTTCCCTACACGACGCTCTCCGATCTNNNNNNNNNNNGTTGGGCGGATGCAC TCC	Integrated DNA Technologies	N/A
RM_IgG_RT: ACACTTTCCCTACACGACGCTCTCCGATCTNNNNNNNNNSGATGGGCCCTGGTGG ARGC	Integrated DNA Technologies	N/A
VH1-FR1: AGACGTGTGCTCTCCGATCTGGCCTCAGTG AAGGTCTCCTGCAAG	Integrated DNA Technologies	N/A
VH2-FR1: AGACGTGTGCTCTCCGATCTGTCTGGTCCT ACGCTGGTGAACCC	Integrated DNA Technologies	N/A
VH3-FR1: AGACGTGTGCTCTCCGATCTCTGGGGGTC CCTGAGACTCTCCTG	Integrated DNA Technologies	N/A
VH4-FR1: AGACGTGTGCTCTCCGATCTCTCGGAGAC CCTGTCCTCACCTG	Integrated DNA Technologies	N/A
VH5-FR1: AGACGTGTGCTCTCCGATCTCGGGAGTCT CTGAAGATCTCCTGT	Integrated DNA Technologies	N/A
VH6-FR1: AGACGTGTGCTCTCCGATCTCGCAGACCC TCTCACTCACCTGTG	Integrated DNA Technologies	N/A

UT_Rev: AATGATACGGCGACCACCGAGATCTACACTC TTCCCTACACGACG	Integrated DNA Technologies	N/A
UT_Fwd_reali: CAAGCAGAAGACGGCATACGAGAGATCGGT CTCGGCATTCTGCTGAAGAT XXXXXX GTGA CTGGAGTTCAGACGTGTGCTTCCGATC	Integrated DNA Technologies	N/A
scIGHM-R1: CATGACGTCTTGGAGCCA	Integrated DNA Technologies	N/A
scIGHG-R1: TTGTCCACCTGGTGTGCT	Integrated DNA Technologies	N/A
scIGKC-R1: TCTGGTAGTCTGTGCTGCTCAG	Integrated DNA Technologies	N/A
scIGLC-R1: TGTGGGACTTCCACTG	Integrated DNA Technologies	N/A
scR1-F: AATGATACGGCGACCACCGAGATCTACACTC TTCCCTACACGACGCTC	Integrated DNA Technologies	N/A
scIGHM-R2: GCCACTTCGTTGTATCCAA	Integrated DNA Technologies	N/A
scIGHG-R2: CCCTGAGGACTGTAGGACAGC	Integrated DNA Technologies	N/A
scIGKC-R2: GACACCATCCACCTTCCACTTT	Integrated DNA Technologies	N/A
scIGLC-R2: TAGCTGCTGGCCGC	Integrated DNA Technologies	N/A
scR2-F: AATGATACGGCGACCACCGAGATCT	Integrated DNA Technologies	N/A
Software and Algorithms		
IMGT/V-Quest	International ImMunoGeneTics Information System; Marie-Paule Lefranc (marie-paule.lefranc@igh.cnrs.fr), University of Montpellier, France	www.imgt.org ; RRID: SCR_012780
AbStar	Bryan Briney (briney@scripps.edu), The Scripps Research Institute	https://github.com/briney/abstar
Cellranger	10X Genomics	https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
Prism 8	GraphPad	https://www.graphpad.com/scientific-software/prism/
ForteBio Data Analysis software	Sartorius	https://www.sartorius.com/en
PyMOL V2.4.2	PyMOL by Schrödinger	https://pymol.org

UCSF Chimera	Pettersen et al., 2004	http://plato.cgl.ucsf.edu/chimera/ ; RRID: SCR_004097
FlowJo v.10	BD Life Sciences	https://www.flowjo.com/solutions/flowjo
ColabFold	https://github.com/sokrypton/ColabFold	V1.5.2
NumPy	https://github.com/numpy/numpy	v1.20.3
SciPy	https://github.com/scipy/scipy	v1.6.0
scikit-learn	https://github.com/scikit-learn/scikit-learn	V0.24.2
Statsmodels	https://github.com/statsmodels/statsmodels	v0.12.2
Clustal Omega	http://www.clustal.org/omega/	v1.2.2
DiversityAnalyzer	https://immunotools.git.hub.io/immunotools/diversity_analyzer.html	N/A
Sulfinator	https://web.expasy.org/sulfinator/	N/A
Iroki	https://www.iroki.net/viewer	N/A
Other		
Expi293 Expression Medium	Thermo Fisher Scientific	# A1435101
DMEM	Corning	# 10-017-CV
GlutaMAX Supplement	Thermo Fisher Scientific	# 35050061
FBS	Omega Scientific	# NC0471611
IMDM	Thermo Fisher Scientific	# 12440053
VZA-2021 MycoZap™ Plus-PR	Lonza	# 195263
0.2 um membrane filters	Fisher Scientific	# 564-0020
Steriflip™ Vacuum Filter Units	MilliporeSigma	# SCGP00525
Superdex 200 Increase10/300 GL column	GE Healthcare	#GE28-9909-44
Superose 6 Increase 10/300 GL	GE Healthcare	#GE29-0915-96
Praesto Protein A Affinity Chromatography Resin	Purolite	# PR00300-164
Protein G Sepharose	GE Healthcare	#45000118
Anti-human IgG Fc capture (AHC) biosensors	ForteBio	#18-5060
TurboCapture mRNA Kits	Qiagen	# 72251
Streptavidin-AF488	Thermo Fisher	#S32354
Streptavidin-AF647	Thermo Fisher	#S21374
Streptavidin-BV421	BD Biosciences	#563259
FVS510 Live/Dead stain	Thermo Fisher Scientific	#L34966
Chromium Next GEM Single Cell 5' Kit v2	10X Genomics	#1000253
Chromium Next GEM Chip K Single Cell Kit	10X Genomics	#1000286
70 um nylon mesh FACS tube caps	Fisher Scientific	#08-771-23
Pierce™ Fab Preparation Kit	Thermo Fisher	#44985
Electron microscopy copper mesh grids	Electron Microscopy Sciences	Cat#EMS400-Cu

903 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

904

905 **Animal studies.** Nine outbred Indian rhesus macaques (*Macaca mulatta*) were used in this
906 study. All animals were housed in Bioqual, Inc. (Rockville, MD) according to guidelines set by
907 the Association for Assessment and Accreditation of Laboratory Animal Care International
908 (AAALAC). All experiments were approved by the University of Pennsylvania and Bioqual
909 Institutional Animal Care and Use Committees (IACUC). Animals were socially housed with a
910 variety of recommended environmental enrichments and sedated for blood draws, anti-CD8 mAb
911 infusions and SCIV inoculations. RM 6931 received 1 ml of an equal mixture of three SCIV
912 constructs (50 ng of p27 antigen), all of which expressed the wildtype MT145 Env but differed in
913 their SIVmac backbone. RM 6932 and RM 6933 were infected with a mixture of six allelic variants
914 of SCIV_MT145, which differed at Env position 375 (50ng of p27 antigen each). RMs T922,
915 T923, and T924 received 1 ml of SCIV_MT145K, which contained a glutamine (Q) to lysine (K)
916 mutation at position 171 in the C strand as previously described⁸⁹. RMs 43189, 43359, and
917 44092 received 1 ml of SCIV_MT145K.dV5, which had a shortened V5 loop. All three SCIVs
918 encoded the wildtype His at position 375 of the envelope glycoprotein. Plasma viral loads were
919 determined as previously described^{40,53}. All animals received an intravenous infusion of 25
920 mg/kg of the anti-CD8b mAb CD8beta255R1 at the time of SCIV inoculation. Infected RMs were
921 followed for up to 88 weeks, with plasma and peripheral blood mononuclear cells (PBMCs)
922 collected at weekly and bi-weekly (Fig 1B) and later at monthly and bi-monthly intervals (Fig S1).
923 Animals 6931, 6933 and T924 progressed to AIDS within 29, 18 and 22 weeks, and were thus
924 euthanized on day 203, 128 and 154, respectively.

925

926 **Cell Lines.** Expi293F cells (Gibco Cat# A14527) were maintained in Expi293 Expression
927 Medium (Gibco Cat# A1435101) at 37°C in a 8% CO₂ atmosphere 150 rpm shaker. HEK293T
928 (ATCC Cat# CRL-3216) cells were grown in Dulbecco's Modified Eagle Medium (DMEM)
929 (Corning Cat# 10-017-CV) with 10% heat-inactivated FBS (Omega Scientific Cat# NC0471611),
930 4mM L-Glutamine (Corning Cat# 25-005-CI) and 1% P/S (Corning Cat# 30-002-CI) in a 37°C,
931 5% CO₂ incubator. Irradiated 3T3msCD40L cells were used in B cell culture assay and TZM-b1
932 cells (NIH AIDS Reagents Program) were used for the pseudovirus neutralization assay as
933 previously described.

934

935 **METHOD DETAILS**

936 **SCIV construction.** To generate the wildtype SCIV_MT145 construct, we cloned a *vpu-env*
937 fragment (*env* nucleotides 1 to 2153, HXB2 numbering) from the SIVcpz MT145 infectious
938 molecular clone (JN835462) into first-generation⁹⁰, “intermediate,” and second-generation
939 SIVmac vectors⁷⁰ and tested their relative replication potential by infecting RM 6931 with an
940 equal mixture (based on p27 content) of these constructs. Sequence analysis 2 weeks post-
941 infection identified the second-generation vector as the biologically most fit, which was thus
942 selected for all subsequent constructions. Since the amino acid residue at position 375 of the
943 HIV-1 Env determines how efficiently the corresponding SHIV replicates in rhesus CD4+ T cells,
944 we next created isogenic mutants of SCIV_MT145 by changing the wildtype histidine (375H) to
945 serine (375S), tyrosine (375Y), methionine (375M), tryptophan (375W) or phenylalanine
946 (375F). After assessing their replication competence in rhesus CD4+ T cells *in vitro*, these
947 constructs were used as equal mixtures (based on p27 content) to infect RM 6932 and RM 6933.

948 Single genome sequencing of plasma viral RNA 14 and 28 days post-infection identified the
949 375H variant as the predominant strain in both animals. The 375H construct was then used to
950 generate the germline-targeting SCIV_MT145K by replacing a glutamine (Q) at position 171 in
951 the C strand of SCIV_MT145 with a lysine (K) residue as previously described⁵⁰. The second
952 germline-targeting SCIV_MT145K.dV5 was generated by deleting nine amino acids
953 (NREDQGEDQ) from the V5 loop of SCIV_MT145K, which was identified as a strain-specific
954 immunodominant off-target epitope. The germline-targeting potential of the SCIV-expressed
955 MT145K and MT145K.dV5 Envs was confirmed by testing their sensitivity to neutralization by
956 inferred human V2 apex bnAb precursors (Fig. S5). The nucleotide sequences of SCIV_MT145,
957 SCIV_MT145K and SCIV_MT145K.dV5 are available under GenBank accession numbers
958 OR117733, OR117734 and OR117735, respectively.

959 **Neutralizing antibody assay.** The neutralization capacity of rhesus macaque plasma was
960 assessed using the TZM-bl assay as described⁹¹. Briefly, serial 5-fold dilutions of RM plasma
961 (1:20, 1:100, 1:2,500, 1:12,500, 1:62,500, 1:312,500) were incubated with transfection-derived
962 virus at a multiplicity of infection of 0.3 in a total volume of 100 ml in the presence of DEAE-
963 dextran (Sigma-Aldrich) (40 mg/ml) for 1 h at 37°C, and this mixture was then added to TZM-
964 bl cells. After 48 h, TZM-bl cells were analyzed for luciferase expression with uninfected cells
965 used to correct for background luciferase activity. The infectivity of each virus without plasma
966 was set at 100% and the plasma dilution that reduced the relative light units (RLUs) by 50%
967 compared with the no plasma control wells were calculated by using the variable slope (four
968 parameters) function in Prism software (v8.0). Viral stocks were generated by transfection of
969 293T cells, using 4.5 µg of Env-minus HIV-1 (SG3Δenv) (NIH AIDS Reagent Program)
970 backbone and 30 ng of codon optimized HIV-1 Env plasmids, or 6 µg of SCIV or SHIV construct
971 DNA. B cell culture supernatants and mAbs were incubated with Env-encoded pseudoviruses in
972 384-well plates (Greiner Bio-One) for 1 h at 37°C. TZM-bl cells were added at 5,000 cells/well
973 in 50 µL of complete DMEM and incubated for an additional 48 h at 37°C. After incubation,
974 culture media was removed, cells were lysed, and luciferase activity was read after Bright-Glo
975 (Promega) addition.

976 **Env SOSIP Expression and Purification**

977 SOSIP Envs were expressed and purified as previously described⁵⁰. Briefly, plasmids encoding
978 for HIV Env SOSIP trimers were cotransfected in HEK293F cells using PEI-MAX 4000
979 transfection reagent (Polysciences, Inc.). After transfected cells were incubated for four days,
980 supernatants containing expressed trimers were placed in an agarose-bound *Gallanthus Nivalis*
981 Lectin (GNL) or CNBr-activated Sepharose 4B bead (GE Healthcare) bound PGT145 bnAb
982 antibody affinity columns for purification. Size exclusion chromatography (SEC) purification in a
983 Superdex 200 10/300 GL column (GE Healthcare) in PBS/TBS was performed for further
984 purification if needed.

985 Introduction of specific mutations in the SOSIP Envs was performed using QuikChange site-
986 directed mutagenesis kit (Agilent Technologies, USA) according to manufacturer's instructions
987 and verified by sequencing analysis (Eton Bioscience, San Diego, CA).

988

989 **Monoclonal Antibody Expression and Purification**

990 Plasmids containing HC and LC sequences were expressed in Expi293F cells. Briefly,
991 FectoPRO (Polyplus) transfection reagent was used to cotransfect both HC and LC plasmids

993 according to manufacturer's instructions. Transfected cells were incubated at 37°C, 5% CO₂ with
994 150 rpm shaking. One day after transfection, cells were given 300 mM valproic acid and 40%
995 glucose (Gibco). After 5 days of incubation, supernatant was filtered through a 0.22 mm Steriflip
996 (EMD Millipore) to remove cells. To purify the antibodies, the filtered supernatant ran through a
997 protein A and protein G affinity column (GE Healthcare) and eluted with 0.2 M citric acid at pH
998 3.0 and neutralized in 2 M Tris-base. Antibodies were buffer-exchanged into phosphate-buffered
999 saline (PBS). The nucleotide sequences of mAb HCs and LCs are available under GenBank
1000 accession numbers OR517427-OR517472 and OR517381-OR517426, respectively.

1001

1002 **B Cell Sorting**

1003 For antigen-specific sorting, Avi-tagged biotinylated MT145, MT145K, and MT145K.dV5 trimers
1004 were conjugated with SA-labeled fluorophores at RT for 30 min. Cryopreserved PBMC samples
1005 were thawed and added into RPMI medium (Thermo Fisher) supplemented with 50% FBS. Cells
1006 were washed with FACS buffer (PBS with 2% FBS) and stained using anti-CD3, CD4, CD8,
1007 CD14, CD19, CD20, IgG, and IgM fluorescent antibodies for 15 min at RT in the dark. After
1008 incubation, conjugated antigens were added to stained cells and incubated for an additional 30
1009 min. A 1:300 dilution of FVS510 LIVE/DEAD cell stain (Thermo Fisher Scientific) was added to
1010 the sample and incubated for an additional 15 min. Prior to sorting, cells were washed with FACS
1011 buffer and filtered through a cell strainer in a 5 mL round bottom tube (Corning). Sorting was
1012 performed on a BD FACSMelody and cells were either sorted in tubes for single cell sequencing
1013 or incubated in 384-well plates for B cell culturing.

1014

1015 **BioLayer Interferometry (BLI) Binding Assay**

1016 Binding by BLI was performed using an Octet K2 system (Sartorius) using anti-human IgG-Fc
1017 biosensors (AHC: ForteBio). To set up the assay, 10 µg/mL of IgGs and 200 µM of SOSIP was
1018 used for loading and capture, respectively. Biosensors were first dipped into PBST and loaded
1019 with IgGs for 60 s. The loaded biosensors were then incubated with Env for 120 s. To measure
1020 off rates, biosensors with captured protein was placed in PBST for 240 s. Analysis was
1021 performed using the ForteBio Data Analysis Software 10.0 and plotted using Prism 8.

1022

1023 **Antibody-Env ELISA Binding Assay**

1024 ELISA assays were performed using biotinylated proteins on streptavidin coated plates as
1025 previously described⁵⁰. Briefly, 2 µg/mL streptavidin (Thermo Fisher Scientific) was used to coat
1026 96-well half-area clear plates (Corning, Thermo Fisher Scientific) overnight. Plates were washed
1027 3 times with PBST and blocked with 3% BSA in PBS for 1 h. Biotinylated proteins were added
1028 at 2 µg/mL in 1% BSA in PBST and incubated for 1.5 h at RT. After protein incubation, plates
1029 were washed three times and diluted mAbs were added for an additional 1.5 h. Secondary
1030 antibodies conjugated to alkaline phosphatase (Jackson ImmunoResearch Laboratories) was
1031 added following staining with alkaline phosphatase substrate pNPP (Thermo Fisher Scientific).
1032 Absorbance was measured after 20 minutes at 405 nm using a VersaMax microplate reader
1033 (Molecular Devices) and plotted using Prism 8.

1034

1035 **Negative Stain Electron Microscopy**

1036 The negative stain EMPEM method was described previously⁹². Briefly, 15 µg of trimer MT145,
1037 MT145K or MT145K.dV5 was incubated overnight with 0.5 mg polyclonal Fab (generated using
1038 papain digestion) and purified the next day using a Superdex 200 Increase 10/300 GL gel

1039 filtration column (Cytiva). After concentrating, purified complexes were diluted to 0.03 mg/mL
1040 and deposited on glow-discharged carbon coated copper mesh grids, followed by staining with
1041 NanoW (Nanoprobe). Imaging was performed on an FEI Tecnai Spirit T12 equipped with an
1042 FEI Eagle 4k x 4k CCD camera (120 keV, 2.06 Å/pixel), an FEI TF20 equipped with a TVIPS
1043 TemCam F416 CMOS 4k x 4k camera (200 keV, 1.77 Å/pixel) and an FEI Talos Arctica equipped
1044 with an FEI Ceta (4k x 4k) camera (120 keV, 1.98 Å/pixel). All data were processed using Relion
1045 3.0 (PMID: 30412051) using standard 2D and 3D classification procedures. Composite maps
1046 were generated using UCSF Chimera (PMID: 15264254). Representative maps have been
1047 deposited to the Electron Microscopy Data Bank (see STAR Methods).
1048

1049 **Single Genome Amplification and Env Evolution Analysis**

1050 Single genome amplification of viral RNA was performed as described previously⁵³. Briefly,
1051 ~20,000 copies of viral RNA were extracted from plasma using QIAamp Viral RNA kit (Qiagen)
1052 and reverse transcribed using SuperScript III Reverse Transcriptase (Invitrogen). Viral cDNA
1053 was then endpoint diluted and 3' half genomes or viral *env* genes were amplified using nested
1054 PCR with primers and conditions as previously reported (refs). Geneious software was used for
1055 alignments and sequence analysis (see Table X for GenBank accession numbers of longitudinal
1056 *env* gene sequences).
1057

1058 **Bulk Repertoire Sequencing**

1059 Cryopreserved PBMC samples were thawed at 37°C and added into RPMI medium (Thermo
1060 Fisher) supplemented with 5% FBS. Cells were centrifuged at 400 x g for 5 min, and the
1061 supernatant was discarded. Cells were lysed and RNA was extracted using the RNeasy Plus
1062 Mini Kit (Qiagen). Extracted RNA was used to synthesize cDNA using IgM and IgG reverse
1063 transcription primers and SuperScript III enzyme (Thermo Fisher Scientific). cDNA products
1064 were cleaned using ExoSAP-IT (Thermo Fisher Scientific) following a 2-step VDJ amplification
1065 using HotStarTaq Plus (Qiagen). PCR products were enzymatically cleaned again and illumina
1066 adapters and indexes were introduced via PCR. The final DNA libraries were SPRI-cleaned
1067 (SPRIselect, Beckman Coulter Genomics) and quantified by concentration (Qubit, Thermo
1068 Fisher Scientific) and size (Bioanalyzer, Agilent 2100). Libraries were loaded on a Illumina MiSeq
1069 system using 2 x 300 bp read length.
1070

1071 **Single B Cell Sequencing**

1072 Antigen-enriched B cell repertoires were sequenced using the 10x 5'V2 Single Cell Immune
1073 Profiling kit per manufacturer's instructions (10x Genomics) with the modification of custom NHP
1074 primers for V(D)J amplification steps. Libraries were loaded on a Illumina MiSeq system using 2
1075 x 300 bp read length and sequences were identified and analyzed using Cell Ranger.
1076

1077 **B Cell Activation Assay**

1078 Antigen-specific B cells were sorted in 384-well plates for B cell culturing as previously described
1079 (Zhao et al. 2022). Briefly, B cells were cultured with Iscove's modified Dulbecco's medium
1080 (IMDM) supplemented with GlutaMAX (Gibco) and 10% FBS, 1× MycoZap Plus-PR (Lonza),
1081 100 U/mL human IL-2 (Roche), 50 ng/mL human IL-21 (Thermo Fisher Scientific), 50 ng/mL
1082 human IL-4 (Miltenyi), 0.1 µg/mL anti-rhesus IgG (H + L) (BioRad), and irradiated 3T3msCD40L
1083 feeder cells. After 14 days of incubation at 37°C, the supernatant was transferred to a new,
1084 sterile 384-well plate for binding and neutralization experiments. Remaining B cells were lysed

1085 and mRNA was extracted using TurboCapture plates (Qiagen) according to manufacturer's
1086 instructions. RT-PCR was performed using a Superscript IV reaction and IgH, IgK, and IgL
1087 primers. Paired HC and LC sequences were amplified using nested PCR reactions and analyzed
1088 by 2% 96 E-gels (Thermo Fisher Scientific) followed by sequencing (Eton Bioscience, San
1089 Diego, CA).

1090

1091 **Immunogenomics analysis**

1092 Repertoire sequencing reads were merged and processed using the DiversityAnalyzer⁹³ tool.
1093 The macaque database of germline immunoglobulin genes reported by⁷⁵ was used for alignment
1094 of repertoire sequencing reads and CDR labeling. VDJ sequences that have identical V and J
1095 gene matches and HCDR3s of the same lengths with at least 90% similarity were combined into
1096 clonal lineages. Posttranslationally modified tyrosine sulfation sites were predicted using the
1097 Sulfinator tool⁹⁴ with the maximum E-value threshold equal to 30. Phylogenetic trees of the clonal
1098 lineages were computed using the Clustal Omega tool⁹⁵ and visualized using the Iroki tool⁹⁶.
1099 Statistical tests were performed using the following Python packages: NumPy (v1.20.3), SciPy
1100 (v1.6.0), scikit-learn (v0.24.2), statsmodels (v0.12.2).

1101

1102 **Structure Prediction and Visualization**

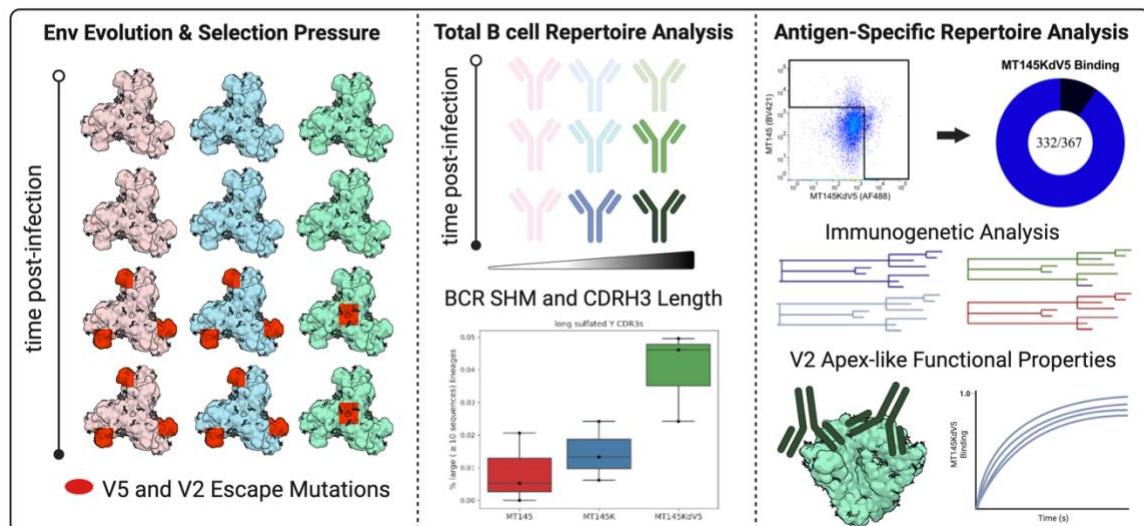
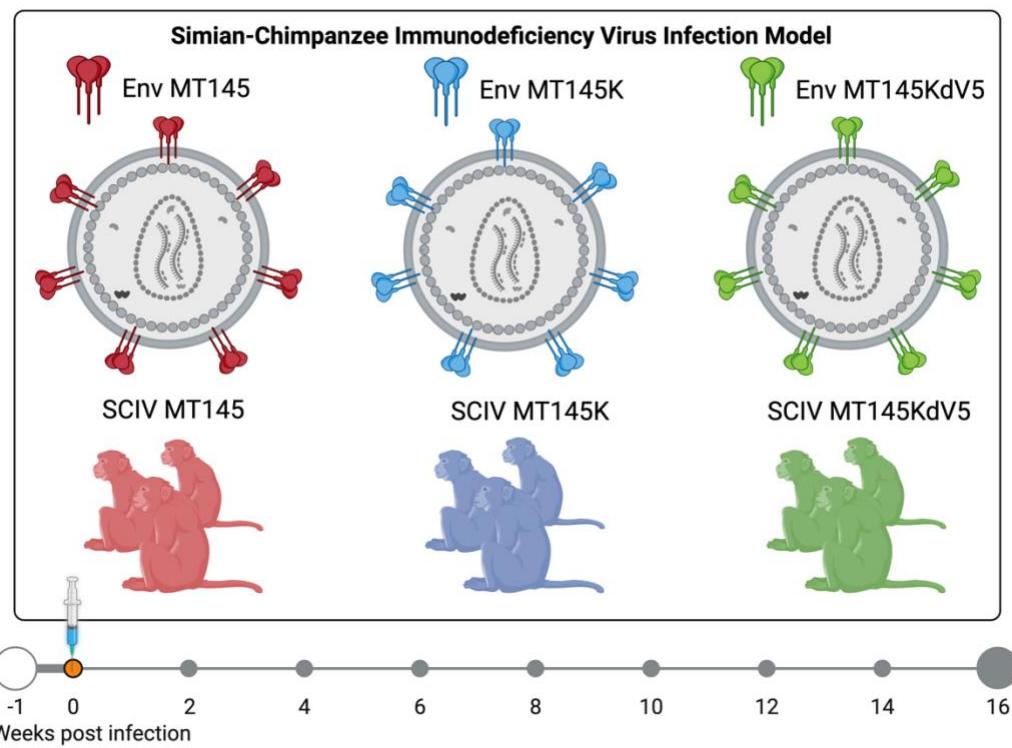
1103 The structure for heavy chain sequences of all expressed mAbs from infected RMs, PGT145,
1104 and PG9 were predicted with ColabFold⁷⁶. The alignment was prepared using MMseqs2⁷⁸
1105 PDB100 was used as the template database. The structure prediction was carried out with
1106 alphafold2_ptm as the model with 3 recycles and max MSA of 512:1024. The structures were
1107 visualized in UCSF ChimeraX⁷⁷.

1108

1109 **Env SGS, NGS, and LASSIE analysis**

1110 SGA sequence alignment and analyses using LASSIE and hypervariable loop characteristics
1111 was performed as previously⁵³. Briefly, Gene Cutter
[\(<https://www.hiv.lanl.gov/content/sequence/GENE CUTTER/cutter.html>\)](https://www.hiv.lanl.gov/content/sequence/GENE CUTTER/cutter.html) from the Los Alamos
1112 HIV Database was used to isolate the Env genes and an automated codon-alignment spanning
1113 all time points from all RMs was obtained, which was with further refined by manual curation
1114 (particularly in the hypervariable loop regions). LASSIE⁹⁷ was used to identify Env sites under
1115 putative selection pressure using a pre-specified criterion of 50% or more mutation away from
1116 the TF sequence at any time point in each RM. Hypervariable V5 loop characteristics for each
1117 time point from each RM were calculated using Variable Region Characteristics webtool from
1118 the Los Alamos HIV Database
[\(\[https://www.hiv.lanl.gov/content/sequence/VAR_REG_CHAR/index.html\]\(https://www.hiv.lanl.gov/content/sequence/VAR_REG_CHAR/index.html\)\)](https://www.hiv.lanl.gov/content/sequence/VAR_REG_CHAR/index.html) by assuming that
1119 hypervariable V5 loop spans from HXB2 site 460 up to 465. Sequence logos were generated
1120 using Logomaker⁹⁸ (<https://logomaker.readthedocs.io/en/latest/>).

1121 Given the volume of NGS sequences, it was not possible to use standard multiple alignment
1122 tools even on sequences from the same RM and the same time point, and thus, the following
1123 modified strategy was used. MACSEv2⁹⁹ (<https://www.agap-ge2pop.org/macse/>) was used to
1124 individually align each NGS sequence to the TF V1V2 region, using a custom Python script that
1125 both initiated these runs and analyzed the results of each alignment. The vast majority of NGS
1126 sequences had the same length as the TF or only showed deletions, both of which led to
1127 straightforward alignment of the NGS sequences to TF and to each other. For a minority of
1128 sequences (around 300-800 sequences out of ~44,000-136,000 of week 12 sequences from
1129
1130

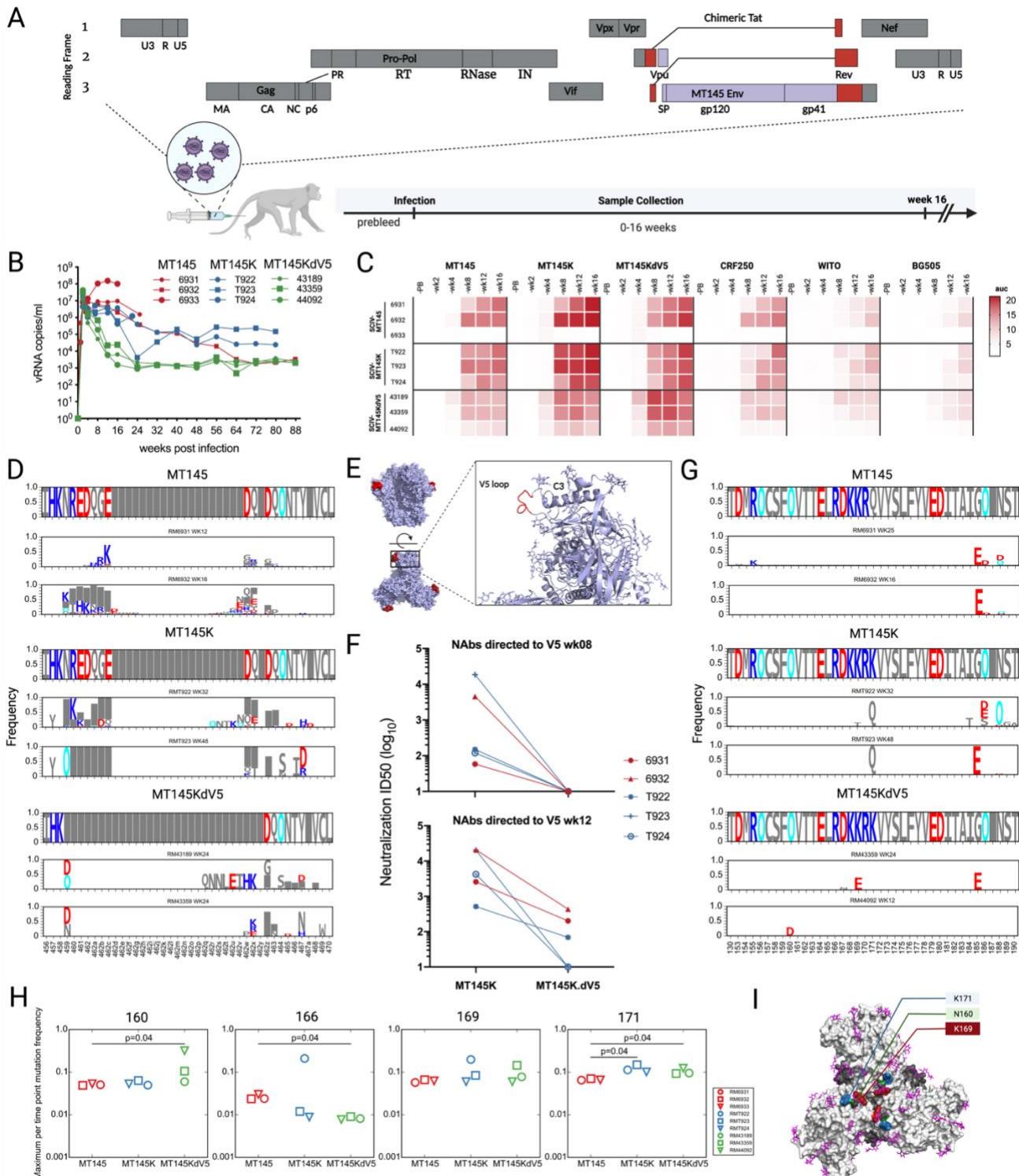


1131 MT145 group), there were sizeable insertions (including frameshift mutations) to rule out
1132 straightforward alignment; these were isolated and subjected to baseline alignment using
1133 MACSEv2 followed by manual refinement. In these sequence alignments, around 10-30
1134 sequences per RM were found to have no homology to MT145 sequence, and were found to
1135 map to other organisms using BLAST¹⁰⁰; these reads were removed. The simpler alignment
1136 (without any insertions) and the more complex alignments (with insertions) were then merged
1137 together by matching the reference TF sequence from each alignment to obtain the full alignment
1138 for all NGS sequences from the same time point for the same RM. These alignments were
1139 subjected to a custom Python script to calculate per time point mutation frequency at each site
1140 in the V1V2 region for each RM, and mutation frequencies at select V2 apex sites were
1141 compared using two sided Wilcoxon rank sum test as implemented in Scipy
1142 (v0.18.0)(www.scipy.org) and plotted using Matplotlib (v.1.4.2)(www.matplotlib.org).
1143

1144 **EM Data availability**

1145 The structures presented in this manuscript can be found in the Electron Microscopy Data Bank
1146 under accession codes EMD-41832, EMD-41833, EMD-41834, EMD-41835, and EMD-41836.
1147 Heavy chain antibody repertoire sequencing reads were deposited to NCBI under accession
1148 number PRJNA1014130.
1149

1150 **Graphical Abstract**

1151

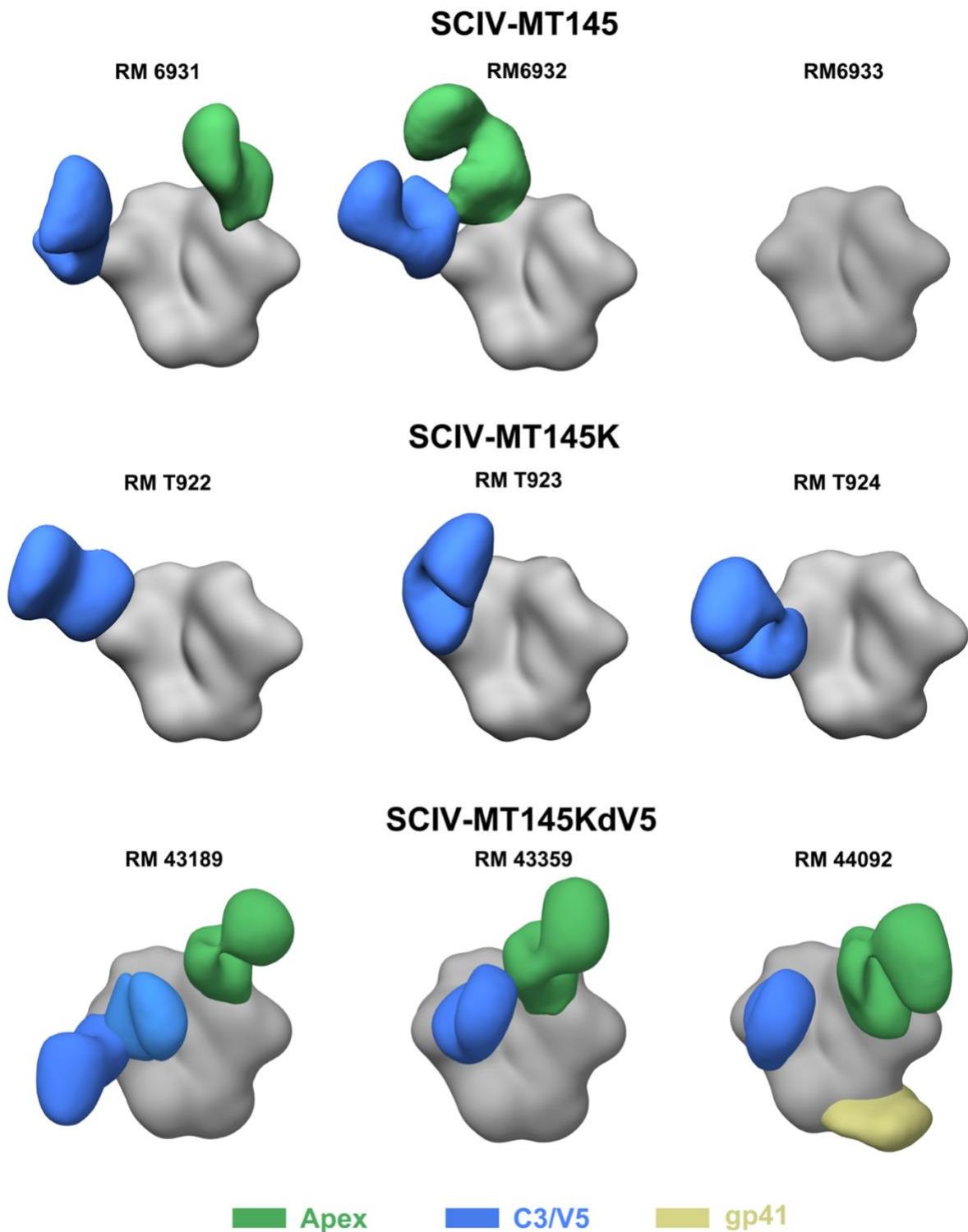


1152

1153

1154 **Figures and Legends**

1155



1156

1157 **Figure 1. Resurfacing of SCIV expressed MT145 Envs redirects immune responses.**

1158 (A) Generation of a SCIV construct that expresses SIVcpz Env ectodomains. The SIVcpz MT145
1159 vpx-env region (blue) was cloned into an optimized SHIV vector (LI, JVI) consisting of a

1160 SIVmac766 proviral backbone (grey) and HIV-1 derived *tat* and *rev* genes (red). SCIVs
1161 expressing wildtype MT145 (n=3) as well as germline-targeting MT145K (n=3) and MT145K.dV5
1162 (n=3) Envs were used to infect 9 naïve Indian rhesus macaques.
1163 (B) Plasma vRNA kinetics in group of RMs infected with SCIV.MT145 (red), SCIV.MT145K (blue)
1164 and SCIV_MT145K.dV5 (green). Blood samples were initially collected at -1 (pre-bleed) up to
1165 96 wpi.
1166 (C) Serum ELISA binding titers in SCIV-infected animals against MT145K, MT145K.dV5,
1167 CRF250, WITO, and BG505 Envs during the first 16 weeks of infection. A heatmap indicates
1168 area under the curve (auc) values.
1169 (D) Single genome sequencing (SGS) alignment of the *env* V5 region gene sequences for 2/3
1170 RMs in each group. Sequence logos show the per time-point frequency of mutations away from
1171 the TF sequence in the sequences from each RM. Red indicates negatively charged amino
1172 acids, blue for positively charge amino acids and cyan for Asn in potential N-linked glycans. Grey
1173 box indicates a gap.
1174 (E) Structure of Mt145K Env with the V5 loop shown in red (PDB: 6OHY).
1175 (F) Plasma neutralization from SCIV_MT145 and SCIV_MT145K infected animals at 8 wpi (left)
1176 and 12 wpi (right) against MT145K and MT145K.dV5 Env containing pseudoviruses.
1177 (G) SGS alignment of the *env* V2 region gene sequences for 2/3 RMs in each group. Same
1178 formatting as (D).
1179 (H) Maximum per-time point mutation frequency for each RM for residues 160, 166, 169, and
1180 171 from NGS sequencing analysis. Statistics measured using Wilcoxon rank sum test, two-
1181 sided p value shown if p < 0.05 and are not corrected for multiple testing.
1182 (I) MT145K trimer (PDB: 6OHY) with mutations identified in the V2 region and C-strand colored
1183 green, red, and blue for N160, K169, and K171, respectively. gp120, gp41, and surface glycans
1184 shown in light grey, dark grey, and purple, respectively.
1185

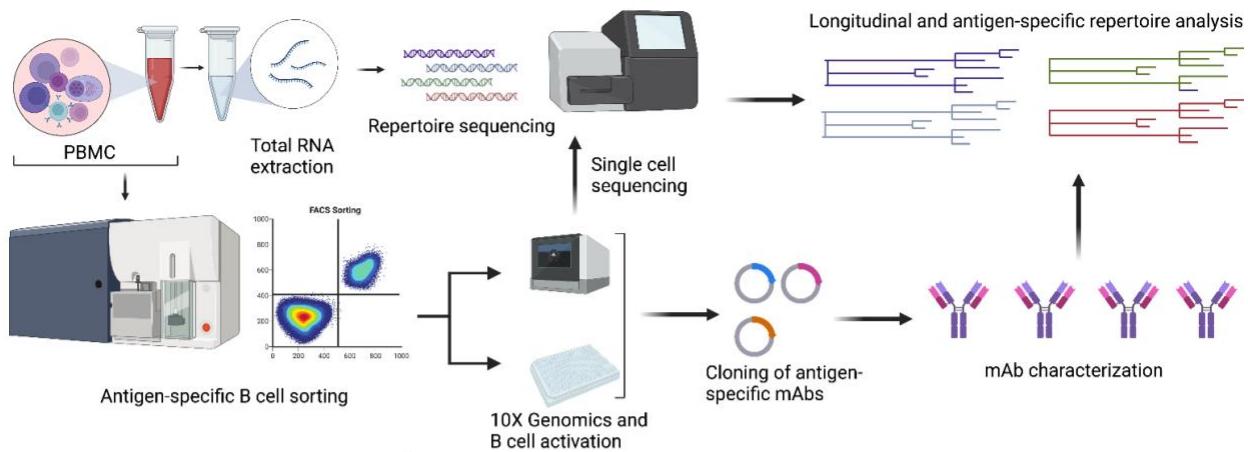
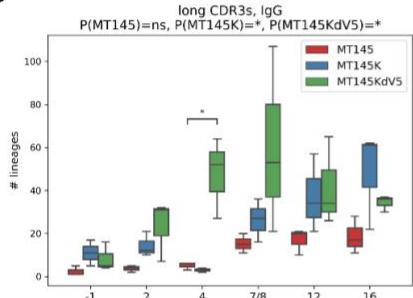
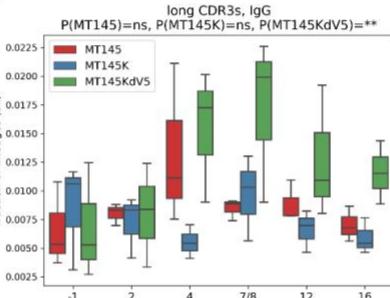


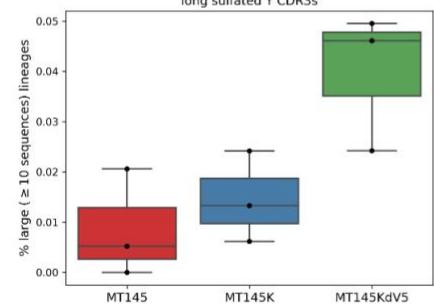
Figure 2. MT145, MT145K, and MT145K.dV5 trimers bind to digested Fabs from SCIV-infected animal sera.

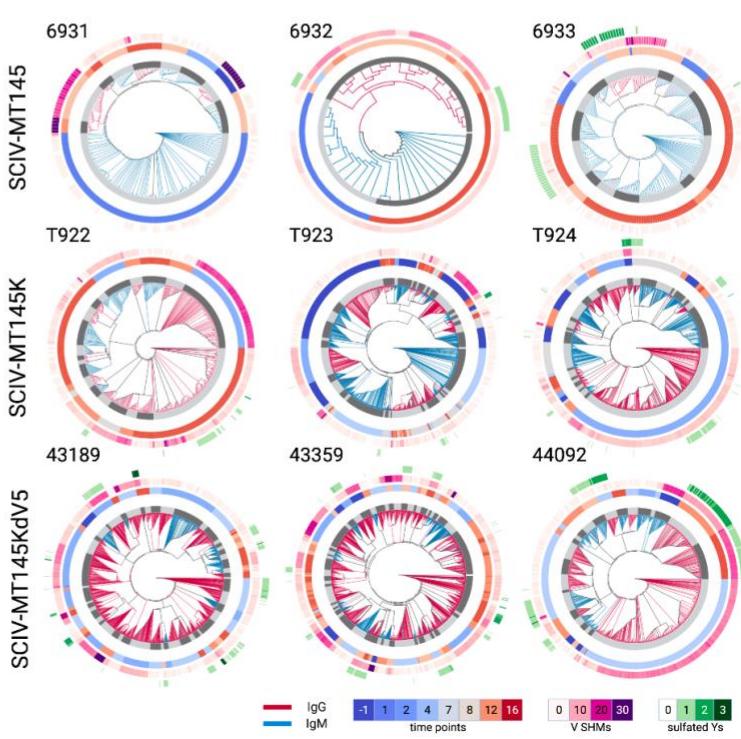

3D reconstructions generated from negative stain electron microscopy epitope mapping (EMPEM) of serum Fabs from SCIV-infected rhesus macaques at week 12 time point. The Env corresponding to the SCIV Env was used for complexing. Fabs colored based on epitope, with

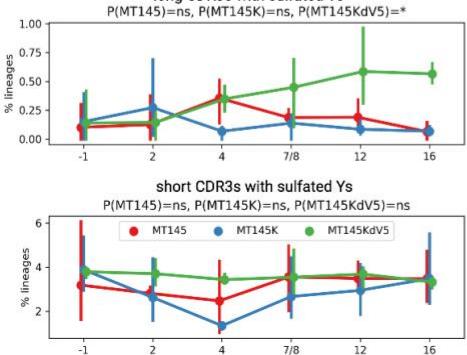
1192 V1/V2 (apex) in green, C3/V5 in blue, and gp41 in yellow. Top row shows SCIV_MT145 Envs
1193 bound to Fabs at the C3/V5 region (blue) and apex adjacent sites (green). Center row shows
1194 SCIV_MT145K Envs bound primarily to C3/V5 Fabs (blue). Bottom row shows
1195 SCIV_MT145K.dV5 Envs bound to apex adjacent (green), C3/V5 (blue), and gp41 (yellow) sites.
1196 Representative maps have been deposited to the Electron Microscopy Data Bank (see STAR
1197 Methods).
1198


A


B

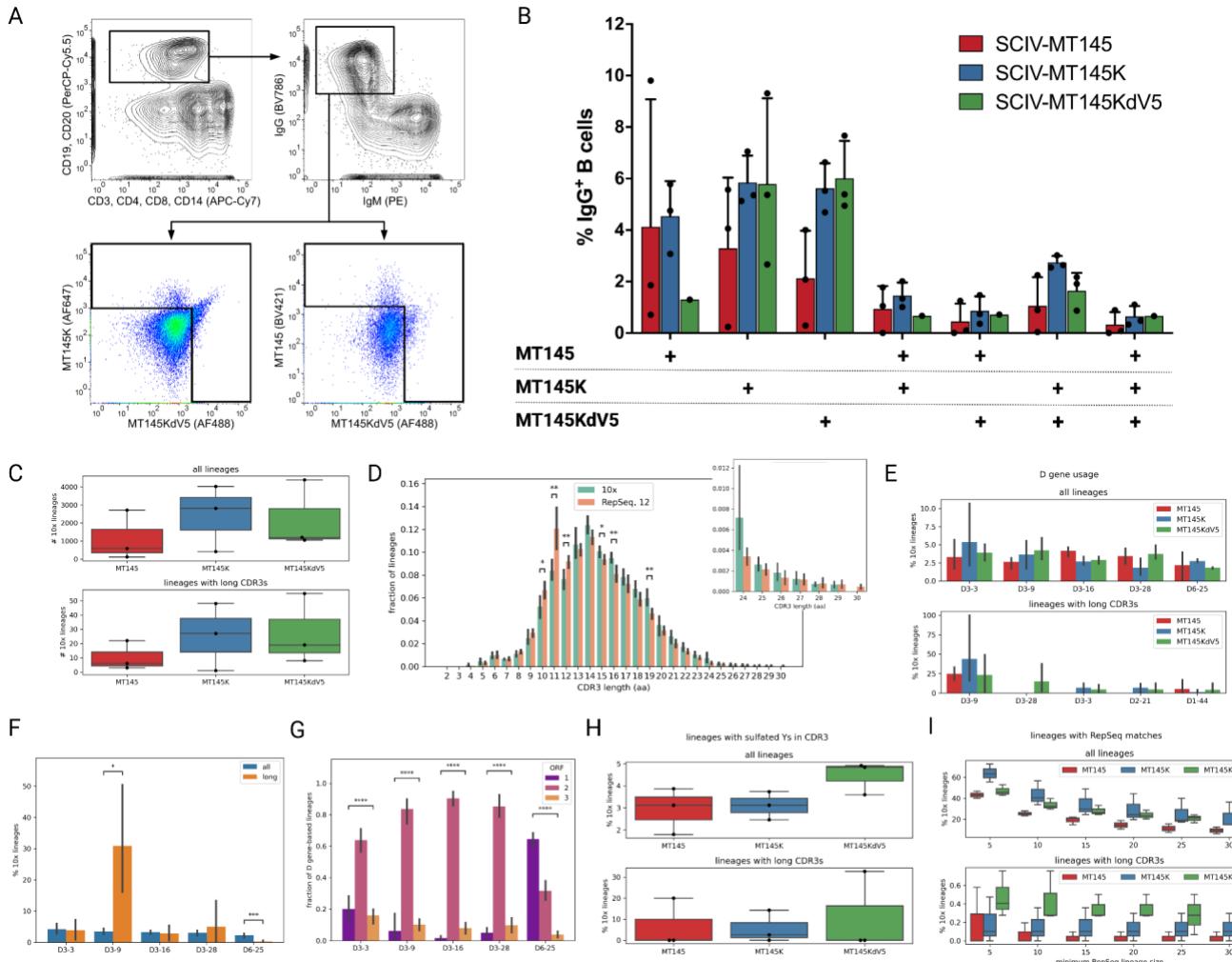

C


D


E

F

G


1199

1200

1201

Figure 3. SCIV_MT145K.dV5 infection results in early expansion of isotype-switched lineages with long, anionic HCDR3s.

- 1202 (A) Experimental pipeline to determine repertoire and antigen-specific B cell responses as well
1203 as antibody characterization in rhesus macaques infected with SCIVs.
1204 (B) Number of lineages with long (≥ 24 aa) HCDR3s in isotype-switched IgG sequences at all
1205 time points for all 9 rhesus macaques.
1206 (C) Fraction of the total number of lineages with long HCDR3s in isotype-switched IgG
1207 sequences.
1208 (D) Total number of lineages with long HCDR3s that feature anionic, sulfated tyrosines in IgG
1209 sequences. Sulfated Ys were predicted using the Sulfinator prediction tool with a default E-value
1210 set to 30.
1211 (E) The percent of total lineages with HCDR3s that are long with predicted Y sulfations by group
1212 for all time points combined together.
1213 (F) Circular phylogenetic trees featuring all clonally expanded (defined as ≥ 10 sequences)
1214 lineages with long HCDR3 for all nine animals. Inner trees are colored red for IgG sequences
1215 and blue for IgM. The first inner circle represents unique lineage clusters. The second inner circle
1216 defines the time point in which the sequence was identified. The last two circles represent the
1217 V-region somatic hypermutation and sulfated Ys shown in gradients of purple and green,
1218 respectively.
1219 (G) Percent of lineages that feature HCDR3s with predicted Y sulfations for long (top) and short
1220 (bottom) HCDR3s at each time point.
1221

1222

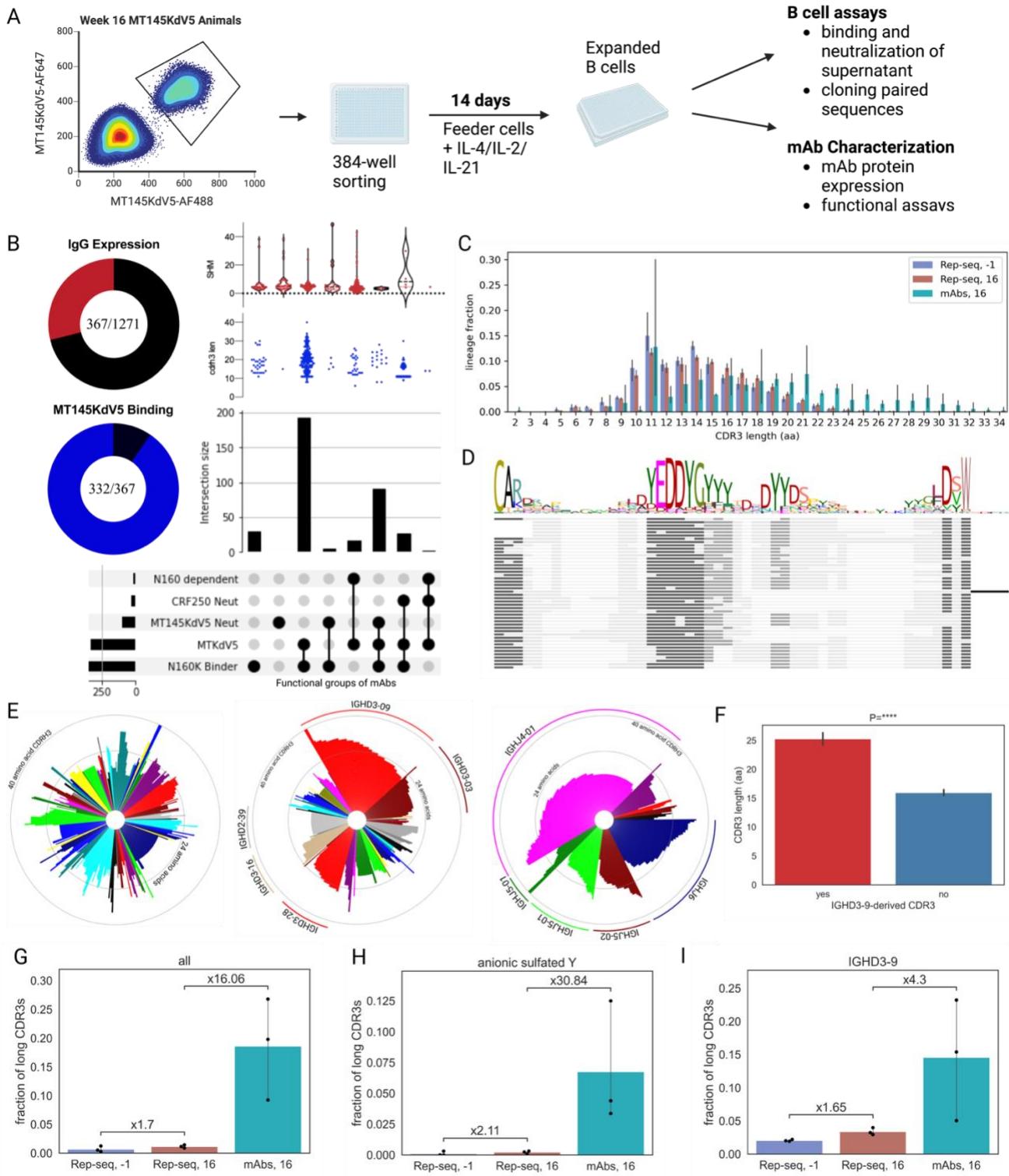
1223 **Figure 4. Antigen-specific IgG B cell lineages match features found in repertoire analysis.**

1224 (A) MT145, MT145K, and MT145K.dV5 probes were used to sort all antigen-specific IgG (+) IgM (-) B cells from week 12 samples for single cell sequencing.

1225 (B) Sorting analysis showing the percent of total B cells from each group that is specific for one or more Env from each group.

1226 (C) The total number of lineages identified from single cell analysis per group (top) or the total number of lineages with long HCDR3s (bottom).

1227 (D) Distribution of HCDR3 lengths in the fraction of lineages from antigen-sorted B cells (green) and those from total repertoire analysis (orange). Long HCDR3s (residues 24 aa or longer) enlarged on the right panel.


1228 (E) Percent of all (top) lineages or lineages with long HCDR3s (bottom) that use certain IGHD genes by group.

1229 (F) Percent of all (blue) lineages or lineages with long HCDR3s (orange) that use certain IGHD genes from all nine rhesus macaques.

1230 (G) Reading frame used by IGHD genes in antigen-sorted B cell sequences from all animals.

1231 (H) Percent of lineages with sulfated Ys located in all (top) or long (bottom) HCDR3 sequences by group.

1240 (I) Percent of lineages for all (top) or long (bottom) HCDR3s that are also present in the overall
1241 repertoire by lineage size.
1242 P-values showing pairwise differences between percentages of lineages with long CDR3s
1243 across all time points. P-values were computed using the one-way ANOVA test. (*P < 0.05; **P
1244 < 0.01)
1245

1246

1247 **Figure 5. Binding mAbs from antigen-sorted B cells from SCIV_MT145K.dV5 animals are**
 1248 **biased for long HCDR3 and IGHD3-09 gene usage.**

1249 (A) Illustration of experimental design for isolating antigen-binding mAbs from B cells. Week 16
 1250 SCIV_MT145K.dV5 infected PBMC samples were sorted for antigen-specific IgG(+) B cells

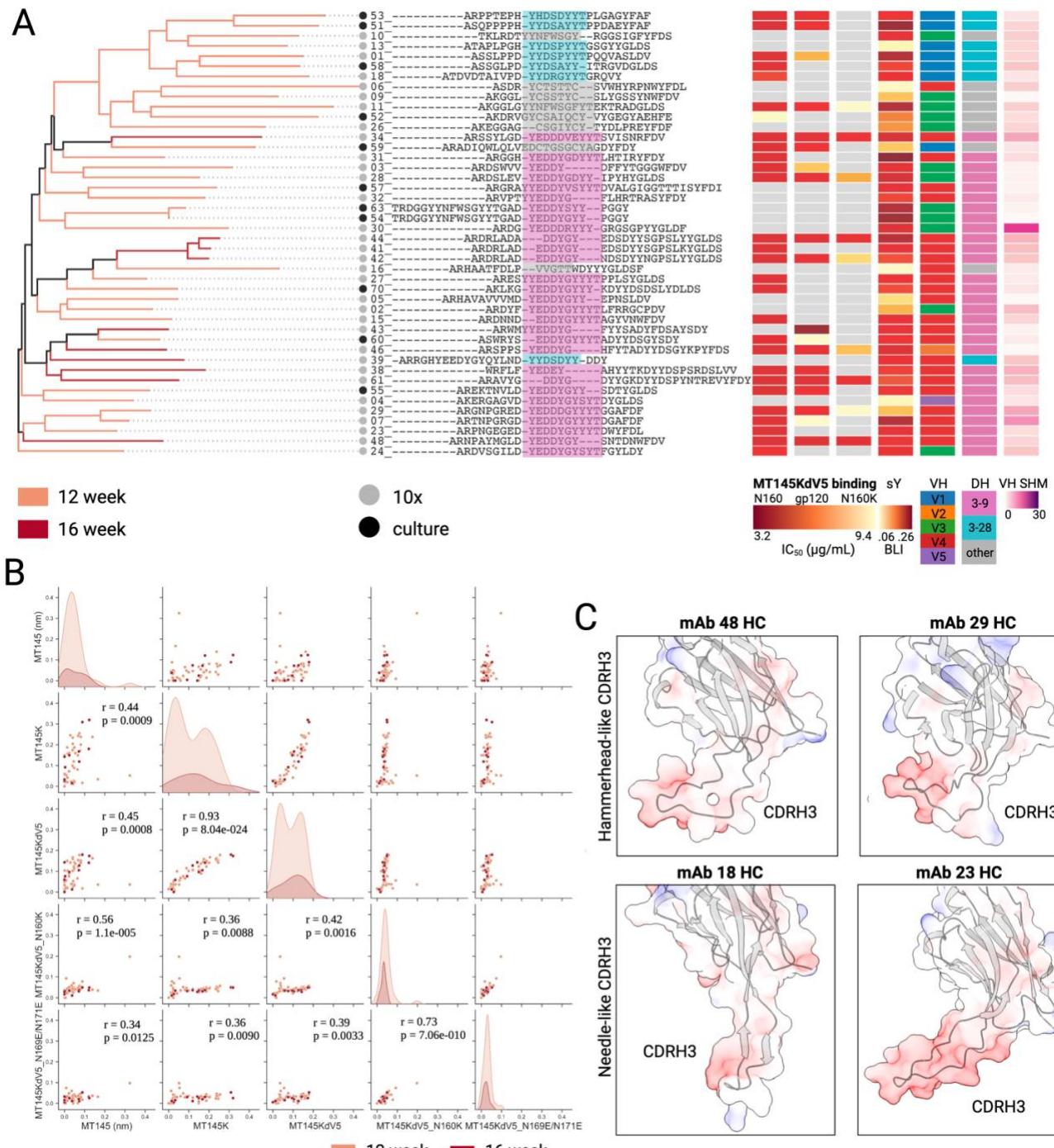
1251 using MT145K.dV5 probes and cultured in 384-well plates for activation and mAb
1252 characterization.

1253 (B) Pie plots depicting total (red) and MT145K.dV5-specific (blue) mAbs isolated and
1254 characterized from cultured B cell supernatants. Upset plot showing intersecting sets of binding
1255 and neutralization properties as well as set count (histogram). HCDR3 lengths (red) and SHM
1256 levels (blue) are shown as categorical plots above each set.

1257 (C) Distribution of HCDR3 lengths in the fraction of lineages from antigen-sorted B cell cultures
1258 at week 16 (red) and those from total repertoire analysis preinfection (purple) and at week 16
1259 (green).

1260 (D) Alignment of representative sequences from long HCDR3 mAbs that bind to MT145K.dV5
1261 and use IGHD3-09 gene.

1262 (E) Circular bar plots representing HCDR3 lengths for IGHV, IGHD, and IGHJ gene sequences.
1263 Genes are color coded and enriched genes are individually labeled.


1264 (F) HCDR3 lengths from sequences that use or do not use IGHD3-09 gene from all three
1265 SCIV_MT145K.dV5 animals at week 16.

1266 (H) Fraction of all long HCDR3s present in the repertoire prior to and 16 wpi compared to
1267 antigen-sorted B cells at week 16.
1268 Fraction of long HCDR3s with anionic features and predicted Y sulfations in the repertoire prior
1269 to and 16 wpi compared to antigen-sorted B cells at week 16.

1270 (I) Fraction of long HCDR3s using the IGHD3-09 gene present in the repertoire prior to and 16
1271 wpi compared to antigen-sorted B cells at week 16.

1272

1273

1274

Figure 6. Select mAbs from antigen-sorted B cells from SCIV_MT145K.dV5 animals have V2 apex binding characteristics.

1275 (A) Phylogenetic tree for isolated antigen-binding mAbs expressed from B cells isolated at week
1276 12 (tan) and 16 (maroon) time points for MT145K.dV5 animals. Grey and black circles at lineages
1277 terminals represent mAbs isolated using 10x Chromium or B cell culturing, respectively. HCDR3
1278 sequences with IGHD regions highlighted in grey, pink, or aqua shown. IC₅₀ values for mAbs
1279
1280

1281 against MT145K.dV5, MT145K.dV5-gp120, and MT145K.dV5-N160K shown in columns 1-3.
1282 Sulfotyrosine analysis using BLI (mean response) for each mAb shown in column 4. Column 5
1283 and 6 show V gene and D gene usage, respectively. Last column shows a heatmap of V gene
1284 SHM levels per mAb.

1285 (B) Pairwise relationship across MT145 variants for all antigen-specific mAbs. The center
1286 diagonal subplots show histogram distributions for each MT145 variant, and the off-diagonal
1287 plots show binding correlation across different SOSIPs. All values obtained from BLI responses
1288 using mAb Fc capture biosensors and are from 12 and 16 wpi samples shown in tan and maroon,
1289 respectively.

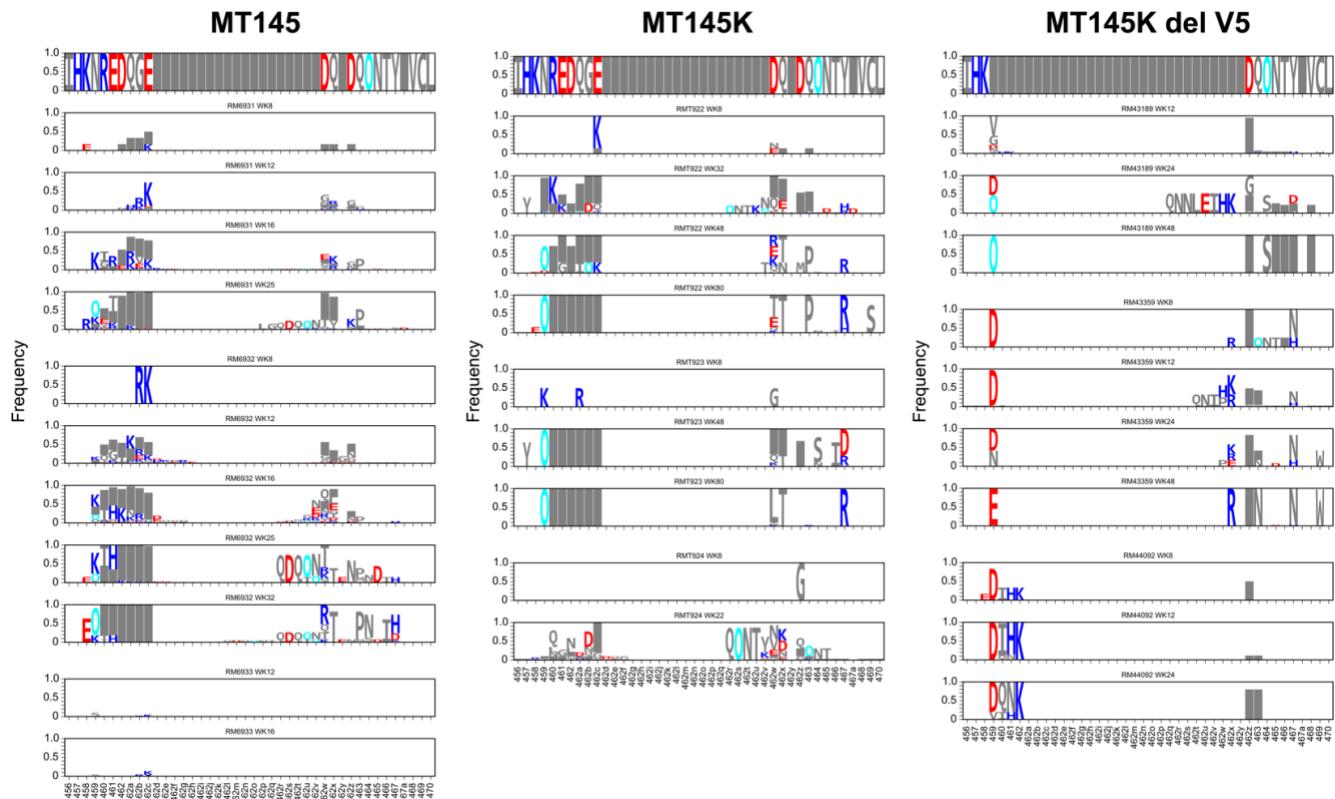
1290 (C) Structural prediction of antigen-specific HC mAbs with hammerhead-like (top) and needle-
1291 like (bottom) HCDR3 conformations using ColabFold. Select mAb HCs 48 and 28 with
1292 hammerhead-like HCDR3s are shown in the top row and select mAb HCs 18 and 23 with needle-
1293 like HCDR3s are shown in the lower row.

1294

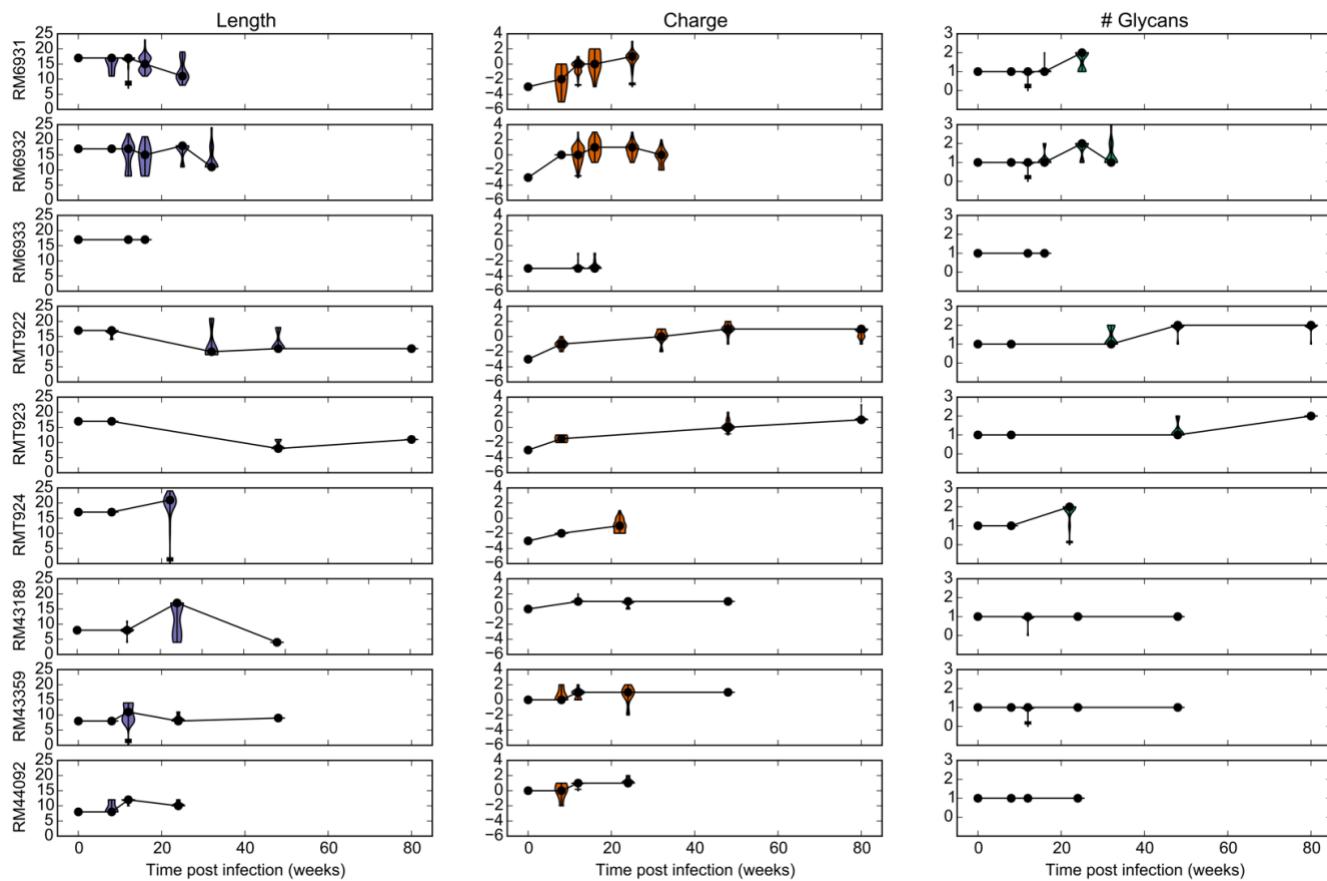
A

Rhesus ID	MLV	Week	SIVcpz	Tier 1												Tier 2 Global Neutralization Panel												CRF250_N160K			
			MT145K	MT145K.d5	MT145K.d5.v5	TR011	25710	25710	CMES	X2278	BJ02010800	X1632	Ce1176	246F3	CH119	Co017	CMES5	Q3	CRF260	WTO	2M23	CAP250d5	CH365	CH365	CH365	CRF250_N160K	AG	nd	nd	nd	
6931*	25	<20	9116	243	722	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd
	12	<20	12037	70	74	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	25	<20	3845	929	773	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	32	<20	3501	1628	1088	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	40	<20	2068	1885	2729	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
6932	48	<20	2759	2103	2473	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	56	<20	1972	2560	2573	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	64	<20	1919	2351	2772	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	72	<20	1138	2410	1350	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	80	<20	1490	1349	1820	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	88	<20	812	2098	1401	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
6933*	12	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	

B

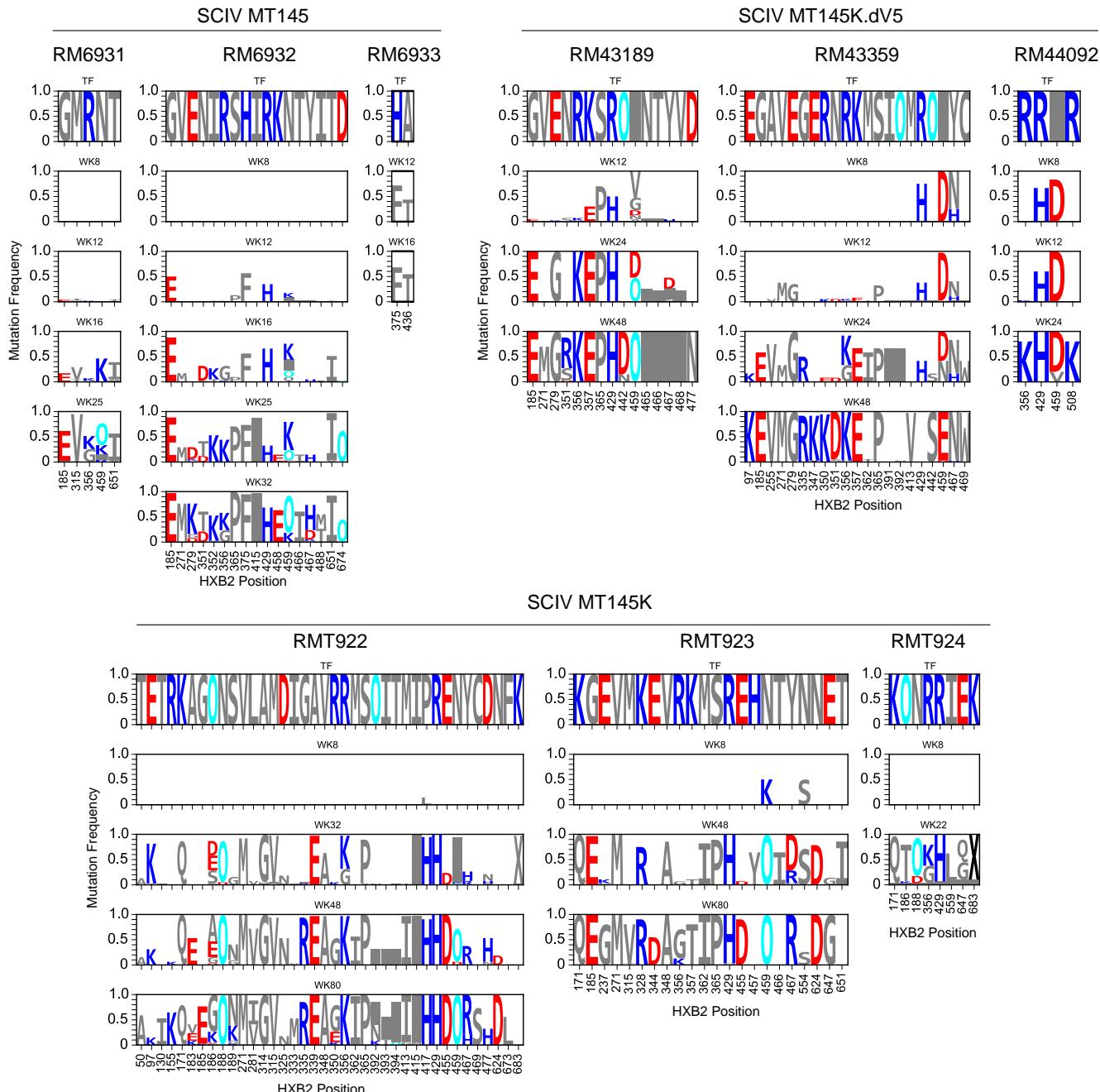

Rhesus ID	MLV	Week	MT145K	MT145K.d5	MT145K.d5.v5	TR011	25710	25710	CMES	X2278	BJ02010800	X1632	Ce1176	246F3	CH119	Co017	CMES5	Q3	CRF260	WTO	2M23	CAP250d5	CH365	CH365	CH365	CRF250_N160K	AG		
			16	20	4163	357	344	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
	24	<20	3162	90	833	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	3524	nd	
	32	<20	1258	377	3704	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	3571	nd	
	40	<20	1408	374	3880	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	4458	nd	
T922	48	<20	725	624	2777	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	2009	nd	
	56	<20	578	818	1836	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	1444	nd	
	64	<20	499	684	2336	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	1061	nd	
	72	<20	305	801	2070	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	6631	nd	
	80	<20	469	706	2080	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	980	nd	
	88	<20	461	705	1809	<20	<20	47	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd	
T923	48	<20	3306	2763	5734	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	25	nd	
	56	<20	2138	2081	3086	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	27	nd	
	64	<20	1693	1930	5086	<20	<20	25	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	51	nd	
	72	<20	1401	2105	5640	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	29	nd	
	80	<20	1458	1808	2687	<20	<20	43	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	25	38	nd	
	88	<20	1446	2105	4359	<20	<20	51	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	51	<20	<20	nd
T924*	16	<20	2410	20	73	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	nd
	22	<20	837	978	2458	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	20	30	nd

C

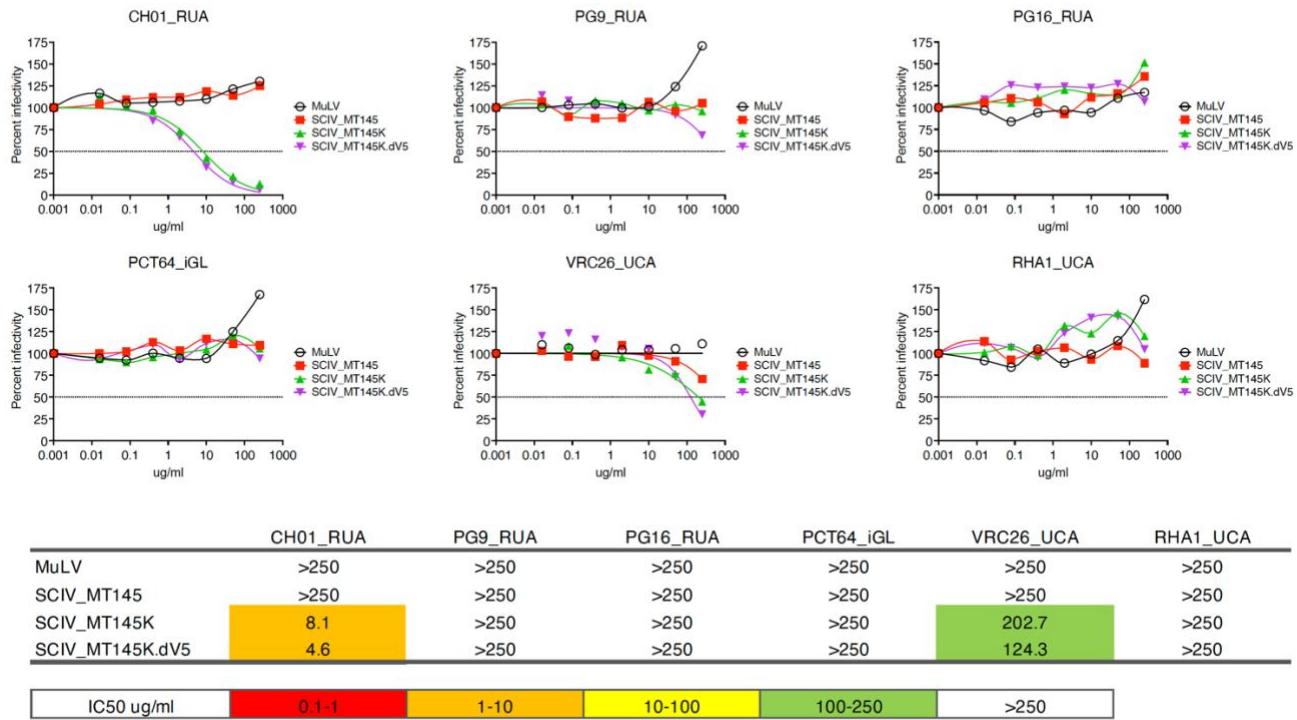

Rhesus ID	MLV	Week	MT145K	MT145K.d5	MT145K.d5.v5	TR011	25710	25710	CMES	X2278	BJ02010800	X1632	Ce1176	246F3	CH119	Co017	CMES5	Q3	CRF260	WTO	2M23	CAP250d5	CH365	CH365	CH365	CRF250_N160K	AG
			24	20 <td>242</td> <td>887</td> <td>1135</td> <td><20</td> <td>38</td> <td>nd</td>	242	887	1135	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	38
	32	<20	407	1346	3184	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	23	nd
	40	<20	145	1554	2066	&																					

1299 (SCIV_MT145K and SCIV_MT145K.dV5) and heterologous (tier 1 and tier 2) viruses
1300 representing different HIV-1 subtypes (A, AG, AE, AC, B, C, BC, G; indicated below virus name),
1301 with no reactivity observed against a murine leukemia virus (MLV) Env control (all ID₅₀ <1:20).
1302 One N160K mutant was also tested (CRF250_N160K). Coloring indicates relative neutralization
1303 potency. Both Env pseudoviruses (tier 1 and tier 2 global panel) and replication competent SHIV
1304 strains were tested. Asterisks denote rapid progressor animals that were euthanized prior to
1305 week 88.
1306

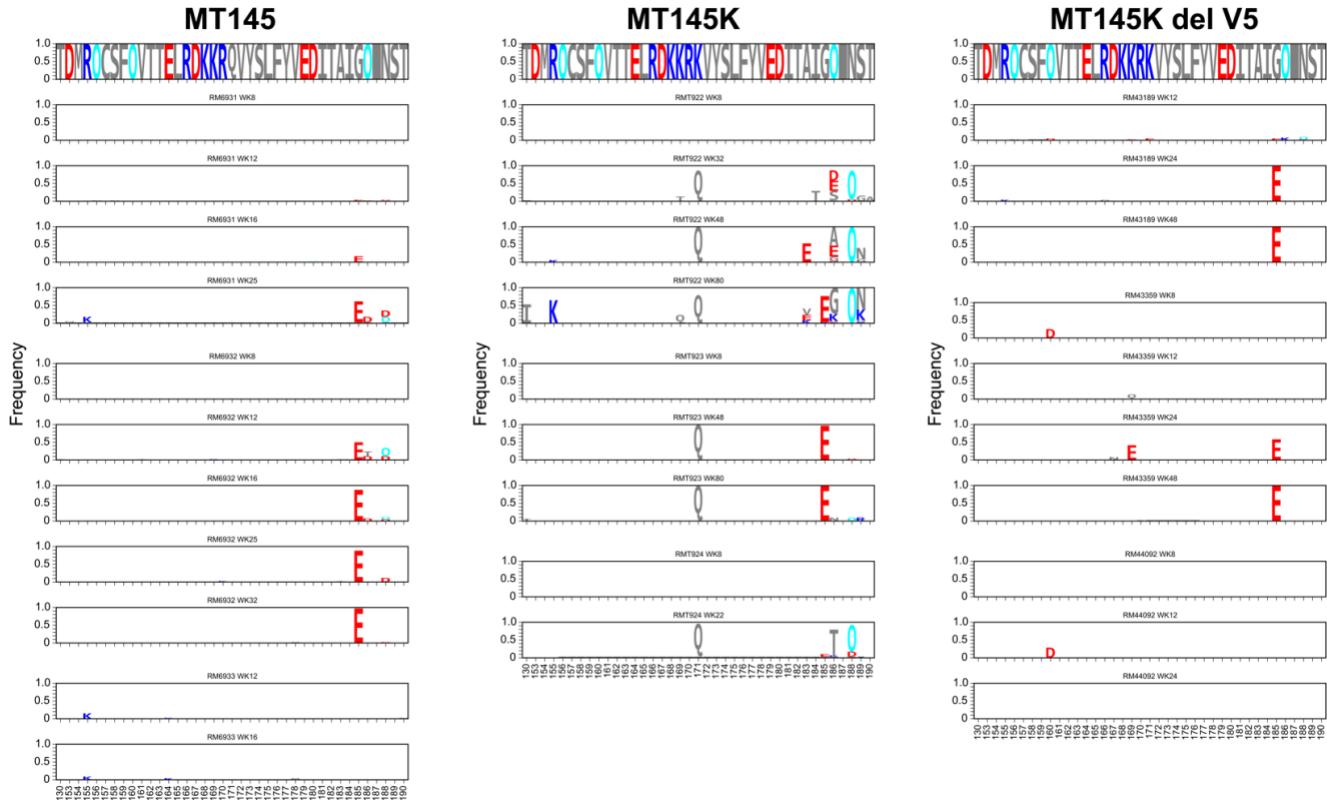
1307
1308 Supplementary Figure 2. Env evolution in the V5 region in MT145 (left), MT145K (center), and
1309 MT145K.dV5 (right) SCIV infected rhesus macaques. Sequence logos show the per time-point
1310 frequency of Env mutations away from the TF sequence using the SGS sequences from each
1311 RM. The horizontal axis labels are HXB2 numbers of sites, with gaps relative to HXB2 indicated
1312 by letters appended to the immediately preceding HXB2 number (e.g. 462a). O=glycan. Colors:
1313 O=cyan, DE=red, HRK=blue.
1314


1315

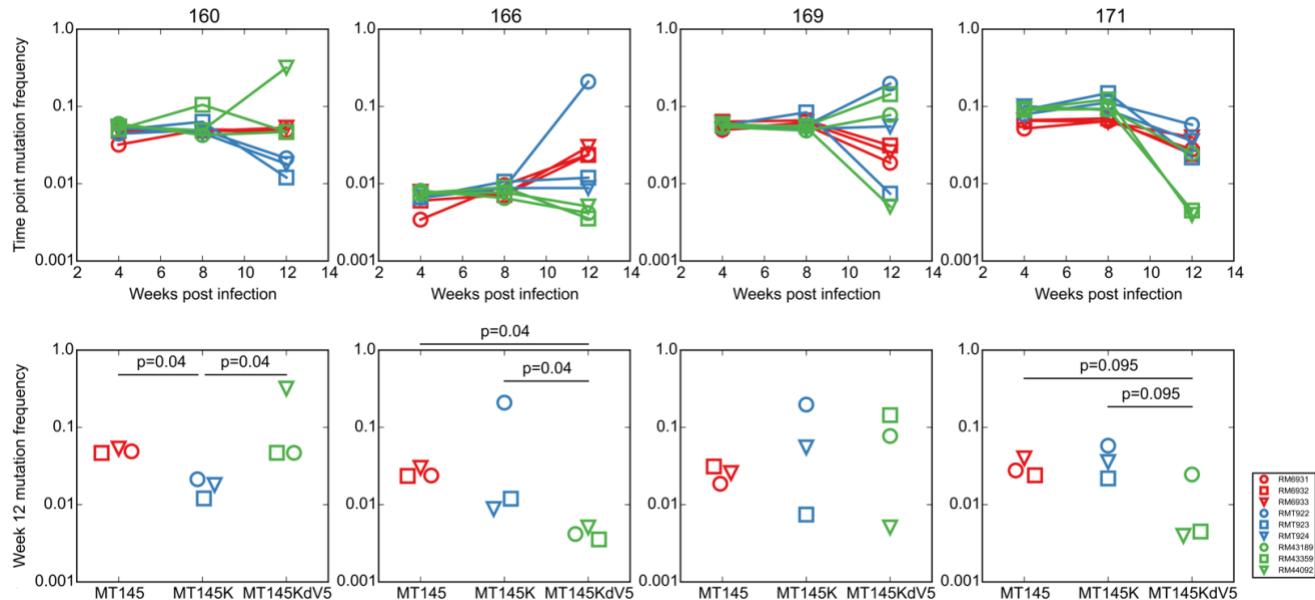
1316


1317 Supplementary Figure 3. Longitudinal alignment-free hypervariable V5 loop characteristics for
1318 all three groups. Changes in V5 length (purple, left), charge (orange, center), and glycans (green,
1319 right) in the hypervariable V5 loop were determined by SGA sequence analysis. The distributions
1320 of each characteristic for sequences from each time point and each RM are shown using violin
1321 plots with black dots indicating medians, the vertical lines indicate the inter-quartile range (25th
1322 to 75th percentile). Median points are connected with black lines.

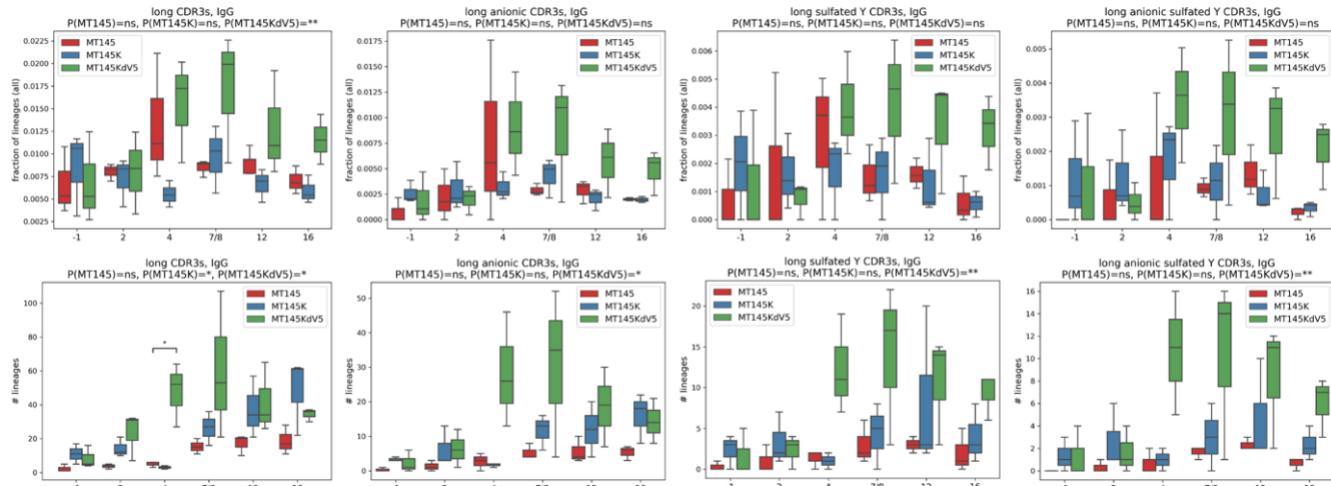
1323


1324
1325
1326
1327
1328
1329
1330

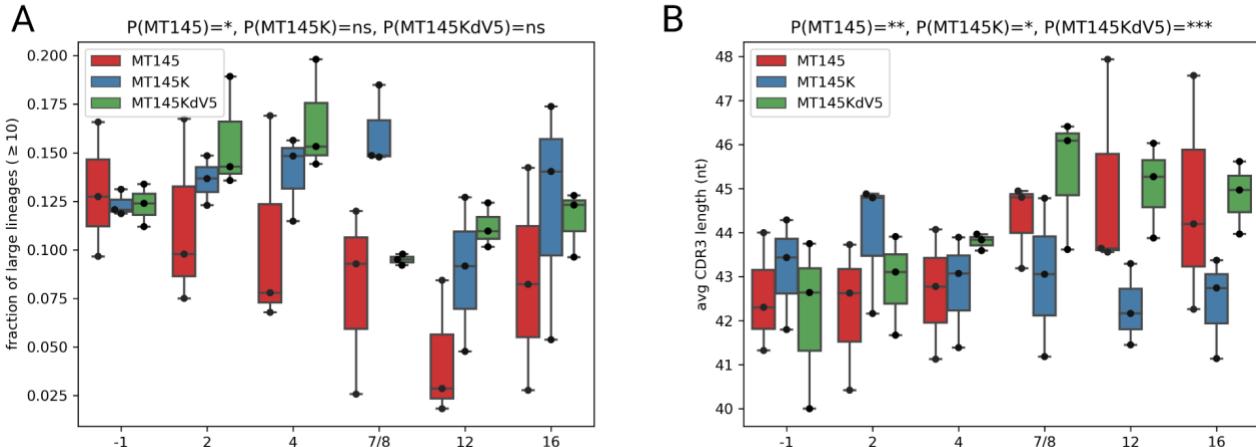
Supplementary Figure 4. Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) selected sites for each RM. LASSIE using the TF loss criterion of 50% or more was applied to SGS data from each RM. Logo plots are shown for identified sites per RM, with the transmitter/founder (TF) amino acid sequence shown in the first row. O=glycan. Colors: O=cyan, DE=red, HRK=blue.


1331
1332
1333
1334
1335
1336
1337
1338
1339

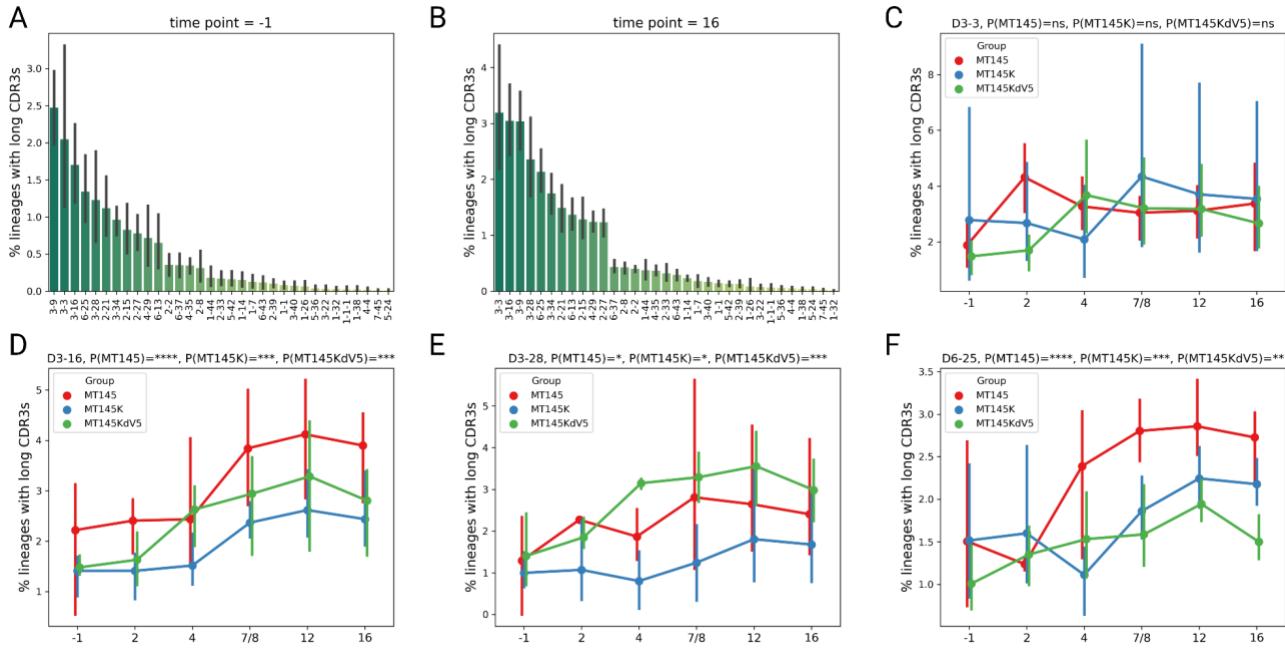
Supplementary Figure 5. Germline-binding potential of SCIV_MT145, SCIV_MT145K and SCIV_MT145K.dV5. Neutralization curves depicting the sensitivity of SCIV_MT145 (red squares), SCIV_MT145K (green triangles), SCIV_MT145K.dV5 (purple triangles) and MLV (open circles, for control) to the RUA or iGL of the human V2-apex bnAbs CH01⁵⁵, PG9^{21,74}, PG16⁷⁴, PCT64⁵⁶, and VRC26¹³ and the rhesus V2-apex bnAb RHA1⁵³. Dashed lines indicate 50% reduction in virus infectivity (the antibody concentration is shown on the x-axis in mg/ml). RUA, reverted unmutated ancestor; iGL, inferred germline; UCA, unmutated common ancestor.


1340
1341
1342
1343
1344
1345
1346

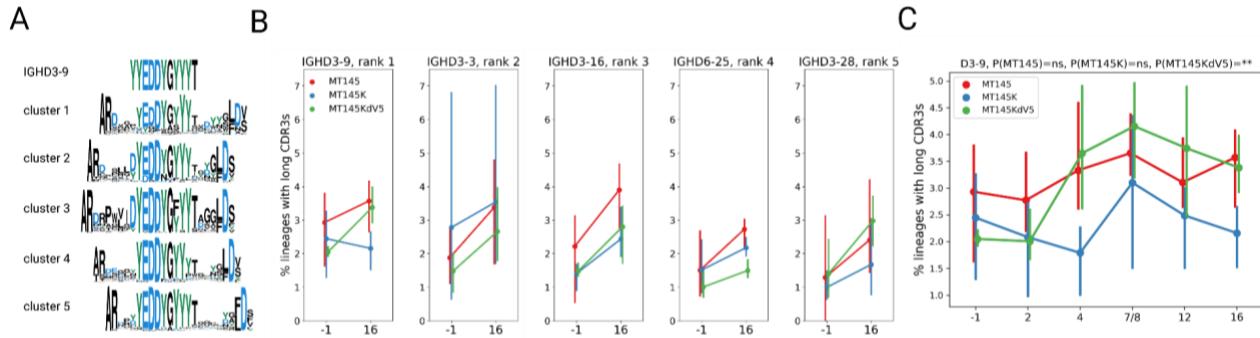
Supplementary Figure 6. Env V2 region evolution for MT145 (left), MT145K (center), and MT145K.dV5 (right) groups. Sequence logos show the per time-point frequency of Env mutations away from the TF sequence using the single genome amplification sequences (SGA) from each RM. The horizontal axis labels are HXB2 numbers of sites. O=glycan. Colors: O=cyan, D,E=red, H,R,K=blue.


1347
1348
1349
1350
1351
1352
1353
1354

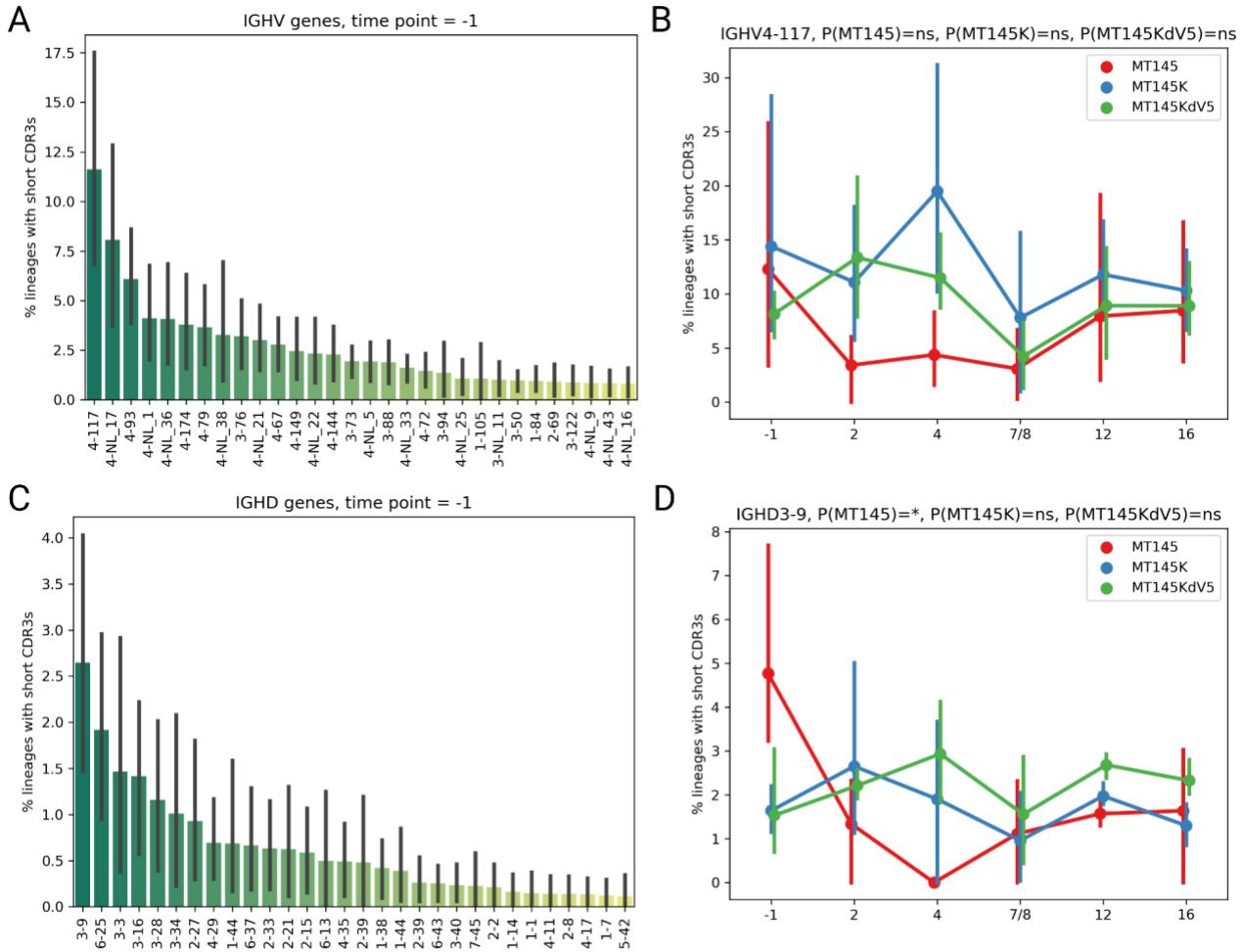
Supplementary Figure 7. Mutation frequency at key V2 apex sites using NGS sequencing data. Top row: time course of mutation frequency for each RM at each site. Bottom row: comparison of mutation frequency at each site at week 8 across RMs. Each color is based on the SCIV group (red=MT145, blue=MT145K, and green=MT145K.dV5) and each line representing an individual animal is shown with a unique symbol. Significance of difference in frequency in bottom row calculated using Wilcoxon rank sum test, with two-sided uncorrected $p < 0.05$ shown.


1355
1356
1357
1358
1359
1360
1361
1362

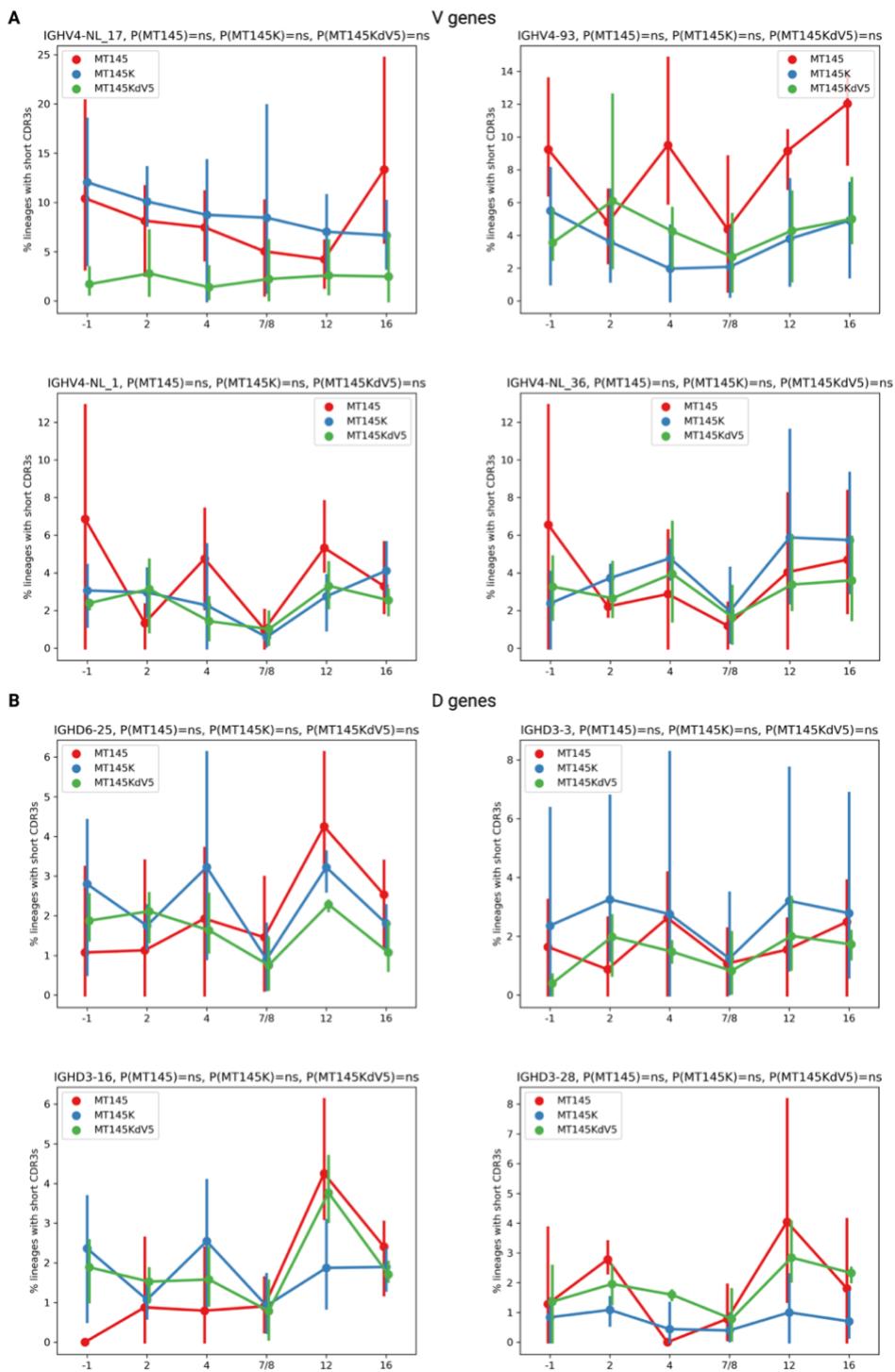
Supplementary Figure 8. Longitudinal analysis of long HCDR3 lineages across MT145, MT145K, and MT145K.dV5 groups. The fraction and number of lineages containing long HCDR3, long anionic HCDR3, long sY HCDR3, and long anionic sY HCDR3s are shown in the top and bottom rows, respectively. P-values showing pairwise differences between percentages of lineages with long CDR3s across all time points. P-values were computed using the linear mixed model. (*P < 0.05; **P < 0.01)


1363
1364
1365
1366
1367

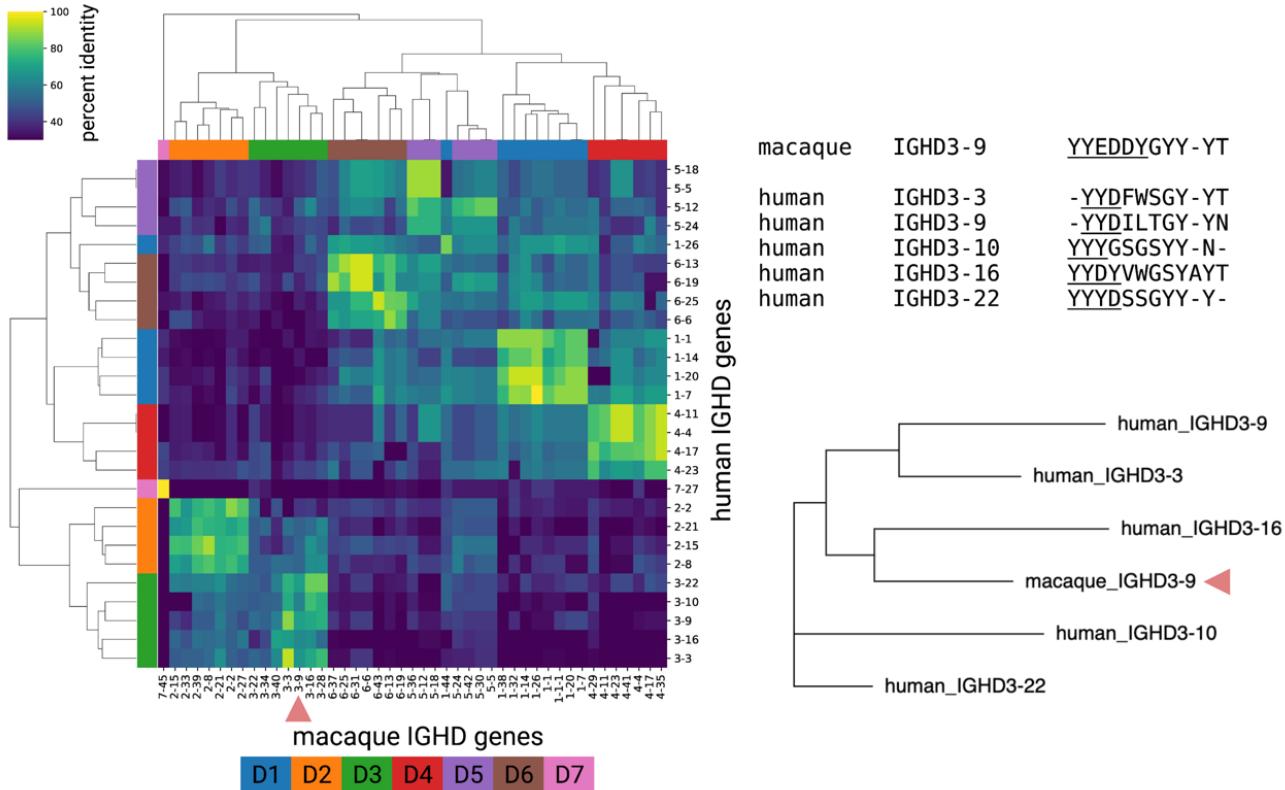
Supplementary Figure 9. Longitudinal analysis of percentage of expanded lineages derived from IGHD3-9 (A) and HCDR3 length (B) across groups. P-values showing changes across time points were computed using the linear mixed model. (* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$).


1368
1369
1370
1371
1372
1373
1374
1375
1376

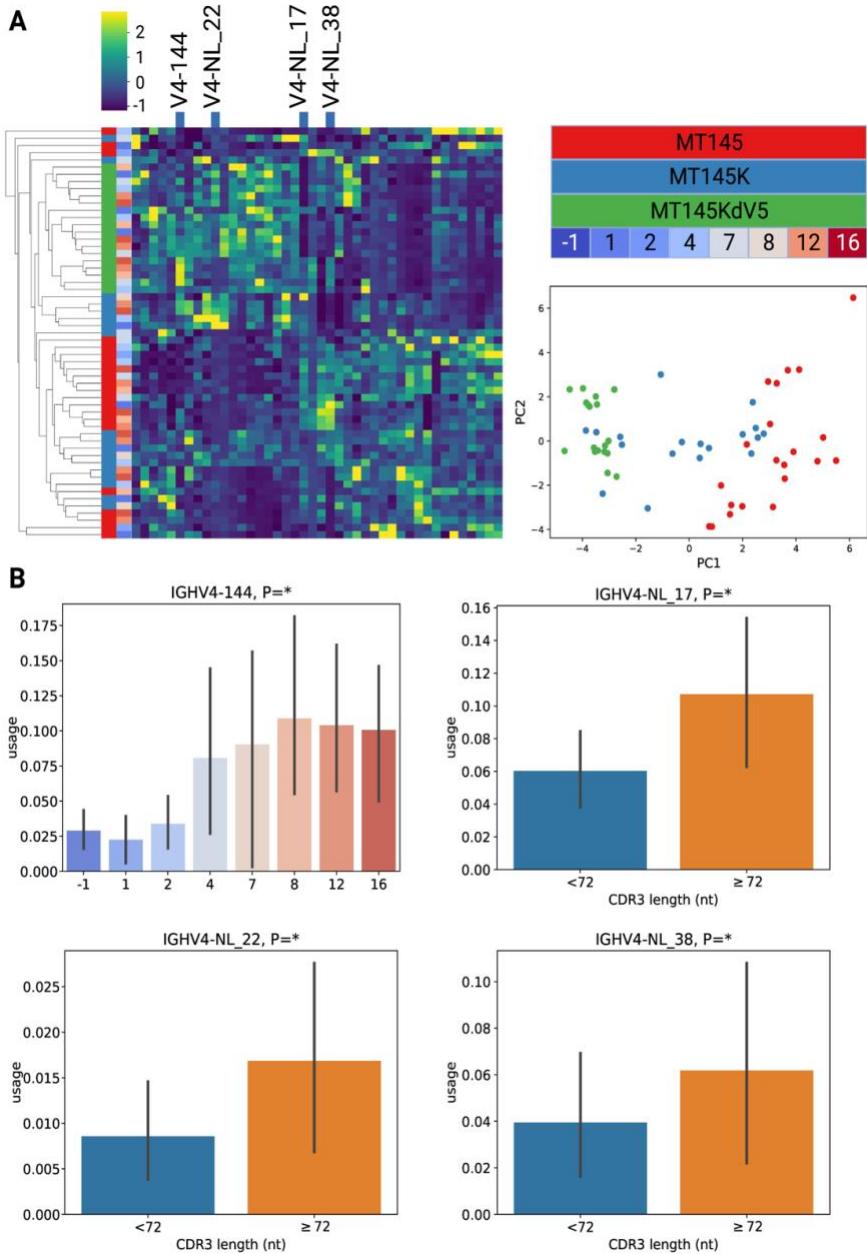
Supplementary Figure 10. Repertoire analysis of longitudinal IGHD gene usages across groups. Percent of lineages with long HCDR3s containing specific IGHD genes for all animals in MT145, MT145K, and MT145K.dV5 groups (A) prior to infection and (B) 16 wpi. (C) Percent of lineages in long HCDR3s across groups for all time points containing (C) IGHD3-3, (D) IGHD3-16, (E) IGHD3-28, and (F) IGHD6-25. P-values showing pairwise differences between percentages of lineages with long CDR3s across all time points. P-values were computed using the lineage mixed model. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).


1377
1378
1379
1380
1381
1382
1383
1384
1385
1386

Supplementary Figure 11. Enrichment of 'EDDY' motif encoding IGHD3-9 in MT145K.dV5 group animals (A) HCDR3s that use the IGHD3-09 gene that are clustered based on common amino acid motifs are represented as sequence logo plots. The EDDY is conserved in the top 5 clusters identified from the repertoire of SCIV_MT145K.dV5 infected rhesus macaques. (B) Change in the percent of lineages with long HCDR3s for the top 5 D genes identified. (C) Change in the percent of long HCDR3s that use the D3-09 gene over all time points. P-values showing pairwise differences between percentages of lineages with long CDR3s across all time points. P-values were computed using the linear mixed model. (** $P < 0.01$)

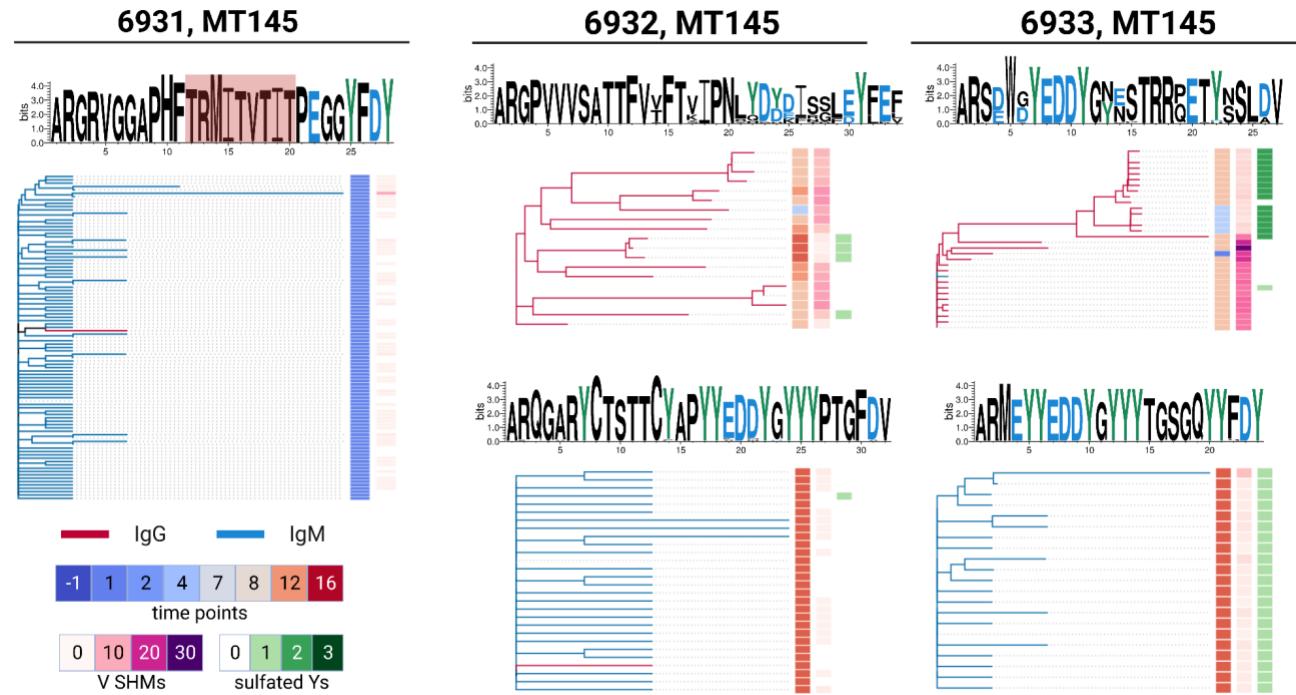

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

Supplementary Figure 12. Frequencies of most prevalent V and D genes in short HCDR3 lineages present in pre-infection repertoires do not change after infection. (A) Percent of lineages with short HCDR3s that contain specific IGHV genes prior to infection. (B) Percent of short HCDR3 lineages with IGHV4-117 across groups over time. (C) Percent of lineages with short HCDR3s that contain specific IGHD genes prior to infection. (D) Percent of short HCDR3 lineages with IGHD3-9 across groups over time. P-values showing pairwise differences between percentages of lineages with long HCDR3s across all time points. P-values were computed using the linear mixed model. (*P < 0.05).


1397
1398
1399
1400
1401
1402

Supplementary Figure 13. No significant difference in longitudinal V or D gene frequencies in short HCDR3s across groups. Percent of lineages with short HCDR3s containing common V genes (A) or D genes (B) prior to infection across groups over time. P-values were computed using the linear mixed model.

1403
1404
1405
1406
1407
1408
1409

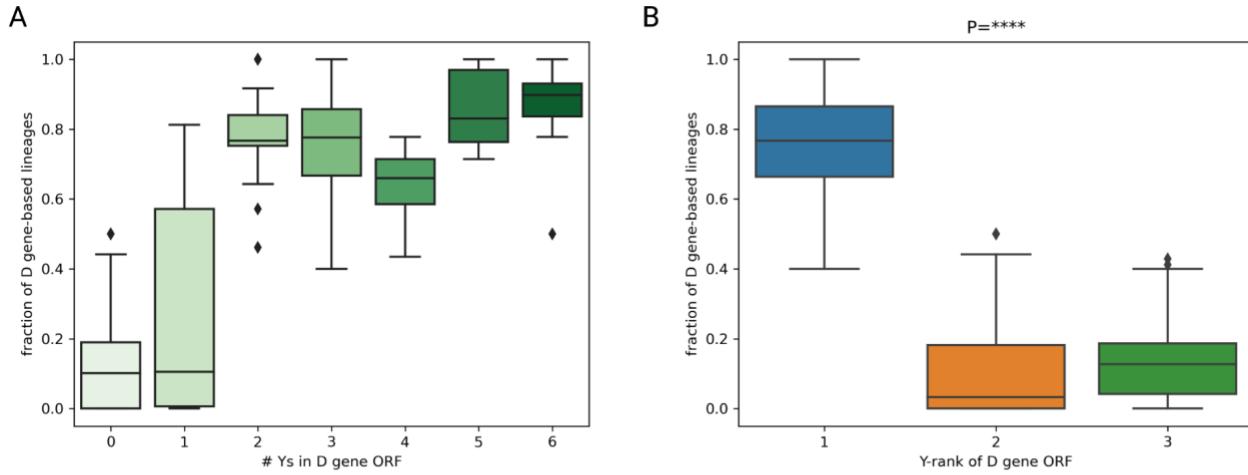

Supplementary Figure 14. Germline IGHD gene similarities across humans and macaques. (Left) Phylogenetic heatmap of germline macaque IGHD genes on the horizontal axis against human germline IGHD genes on the vertical axis. Clusters of related genes are shown as a percent identifying color gradient. Red arrow indicates the RM IGHD3-09 gene. (Right) Human IGHD genes with similar anionic motifs characteristic of human and macaque V2 bnAbs.

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

Supplementary Figure 15. Longitudinal repertoire analysis of IGHV gene usages across groups reveals no enrichment of unique gene families or alleles.

(A) A heatmap of germline macaque IGHV gene usages across animals and time points. Rows showing samples and columns showing IGHV genes of the heatmap are rearranged using hierarchical clustering. Four IGHV genes with statistically significant associations with usages across time usages or usages in short/long HCDR3s are shown on the top of the heatmap. The scatterplot on the right shows the principal component analysis of the usage matrix shown on the left. Principal components 1 and 2 are shown are x- and y-axes. Each point represents a sample and is colored across the group. (B) enrichment of IGHV4-144 gene across time and IGHV4-NL_17, IGHV4-NL_22, and IGHV4-NL_38 gene usage in short (<72 nt) and long (≥72 nt) HCDR3s in all animals. P-values showing pairwise differences between groups. P-values were computed using the linear mixed model and the Kruskal-Wallis test (*P < 0.05).

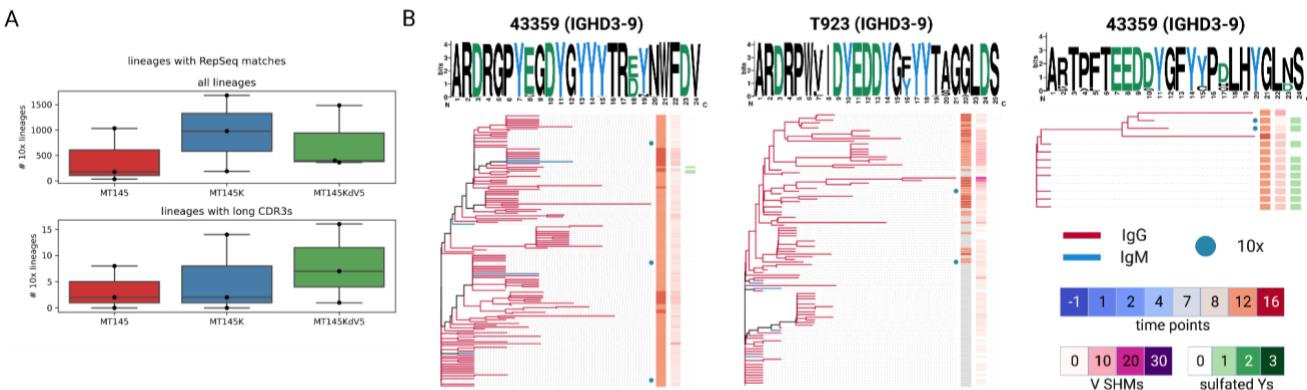
1423



1424 Supplementary Figure 16. Top lineages from SCIV.MT145 infected animals containing long
1425 HCDR3s. Isotype, timepoint, SHM and Y sulfation levels are shown on the right columns of each
1426 tree. HCDR3 sequences are shown above each phylogenetic tree.
1427 Supplementary Figure 17. Top lineages from SCIV.MT145K infected animals containing long
1428 HCDR3s. Isotype, timepoint, SHM and Y sulfation levels are shown on the right columns of each
1429 tree. HCDR3 sequences are shown above each phylogenetic tree.
1430

1431
1432
1433
1434
1435

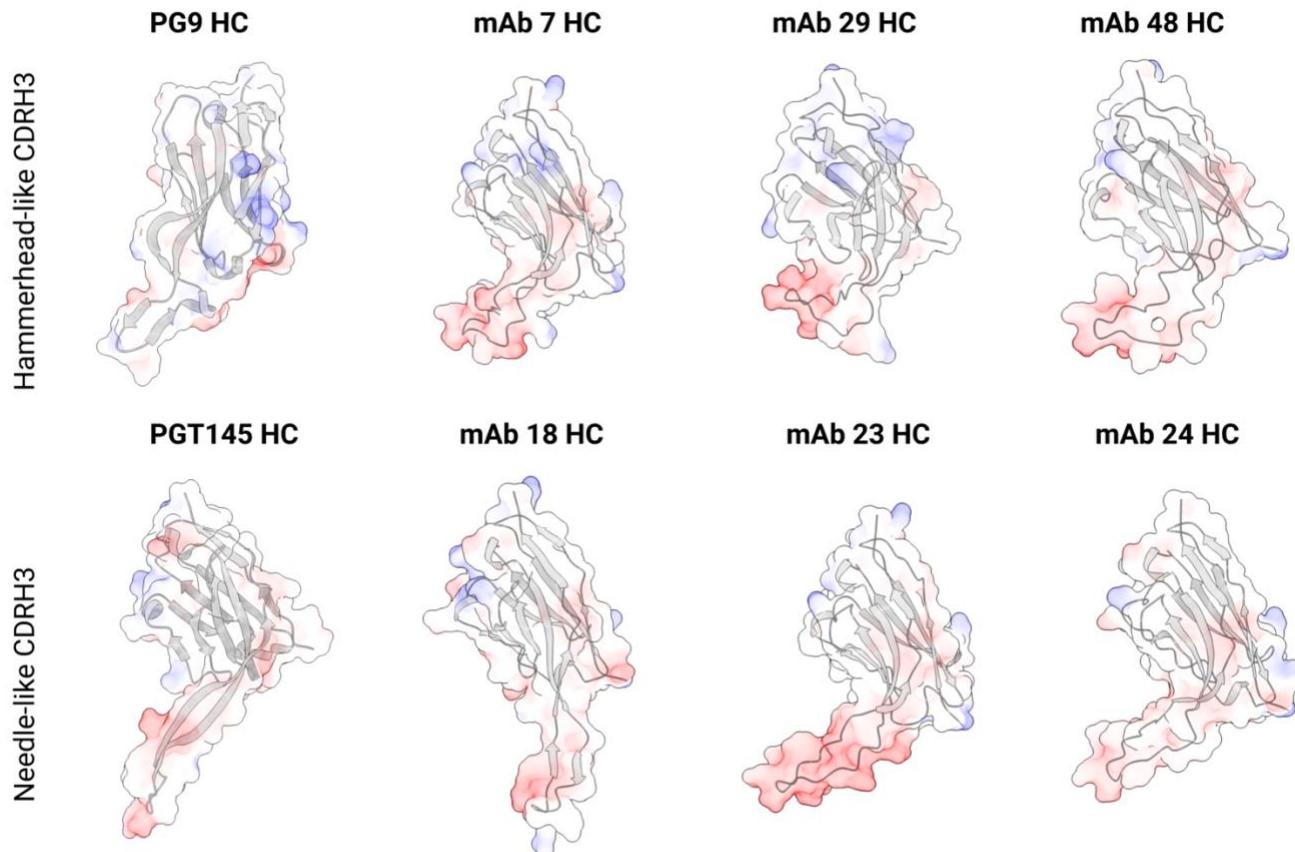
Supplementary Figure 18. Top lineages from SCIV.MT145K.dV5 infected animals containing long HCDR3s. Isotype, timepoint, SHM and Y sulfation levels are shown on the right columns of each tree. HCDR3 sequences are shown above each phylogenetic tree.



C

IGHD3-3	IGHD3-9	IGHD3-16	IGHD3-28	IGHD6-25
1(2) VLQFLDWLLY	1(2) VLRG*LRLLLH	1(2) VLL*W*LLL	1(2) VLL**WLLH	1(1) GYSGSWN
2(1) YYNFWWTGYYT	2(1) YYEDDYGYYYT	2(1) YYYSGSYYY	2(1) YYYDSGYYT	2(2) GIAAAG
3(3) ITIFGLVII	3(3) ITRMITVTIT	3(3) ITIVVVIT	3(3) ITMIVVIT	3(3) V*RQLE

1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446


Supplementary Figure 19. Antigen-specific repertoires are skewed for D gene ORFs enriched in tyrosine residues. (A) The fraction of lineages corresponding to D gene ORFs with 0, 1, ..., 6 tyrosines. Each fraction was computed with respect to the number of lineages derived from a given D gene. (B) Three D gene ORFs were sorted in the descending order of the number of tyrosines in them, and ranks 1, 2, 3 were assigned to the ORFs with highest, medium and lowest numbers of tyrosines, respectively. The plot shows the fractions of lineages for D gene ORFs with ranks 1–3. P-value was computed using the Kruskal-Wallis test. (****P<0.0001) (C) ORFs of D genes with top five usages. The numbers before and in the parenthesis show the ORF number and the ORF rank, respectively.

1447
1448
1449
1450
1451
1452
1453
1454
1455

Supplementary Figure 20. Antigen-specific IgG B cell lineages match features found in repertoire analysis.

(A) Total number of lineages from antigen-sorted B cells that match sequences in the bulk repertoire for all (top) or long (bottom) HCDR3.
(B) Phylogenetic trees for expanded lineages in SCIV_MT145K.dV5 and SCIV_MT145K animals with repertoire sequence matches. Isotype, timepoint, and SHM and Y sulfation levels are shown on the right columns of each tree. HCDR3 sequences are shown above each phylogenetic tree.

1456
1457 Supplementary Figure 21. Structural prediction of antigen-specific mAb HCs. Antibodies with
1458 hammerhead-like (top) and needle-like (bottom) HCDR3s are shown. PG9 (3U2S) and PGT145
1459 (3U1S) HC structures are shown on the left for comparison.
1460
1461