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SUMMARY:

Eliciting broadly neutralizing antibodies-(bnAbs) remains a major goal of HIV-1 vaccine research.
Previously, we showed that a soluble chimpanzee SIV Envelope-(Env) trimer, MT145K, bound
several human V2-apex bnAb-precursors and stimulated an appropriate response in V2-apex
bnAb precursor-expressing knock-in mice. Here, we tested the immunogenicity of three MT145
variants (MT145, MT145K, MT145K.dV5) expressed as chimeric simian-chimpanzee-
immunodeficiency-viruses-(SCIVs) in rhesus macaques-(RMs). All three viruses established
productive infections with high setpoint VRNA titers. RMs infected with the germline-targeting
SCIV_MT145K and SCIV_MT145K.dV5 exhibited larger and more clonally expanded B cell
lineages featuring long anionic heavy chain complementary-determining-regions-(HCDR3s)
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compared with wildtype SCIV_MT145. Moreover, antigen-specific B cell analysis revealed
enrichment for long-CDHR3-bearing antibodies in SCIV_MT145K.dV5 infected animals with
paratope features resembling prototypic V2-apex bnAbs and their precursors. Although none of
the animals developed bnAbs, these results show that germline-targeting SCIVs can activate
and preferentially expand B cells expressing V2-apex bnAb-like precursors, the first step in bnAb
elicitation.

KEYWORDS: human immunodeficiency virus; broadly neutralizing antibodies; B cell responses;
non-human primates; vaccine design; V2-apex; antibody repertoire; germline-targeting;
immunofocusing
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Introduction

A major goal of HIV/AIDS vaccine research is to elicit broadly neutralizing antibodies (bnAbs),
which represent a key immune defense as demonstrated by passive protection trials'2. These
bnAbs are grouped into six major classes based on their epitope specificities, which target V2-
apex, V3-glycan, CD4 binding site (CD4bs), gp120/gp41l interface or fusion peptide (FP), the
membrane proximal external region (MPER)3# and the silent face of gp120°. Although HIV-1
infected humans have the capacity to develop bnAbs, they do so only rarely®1%. This is because
bnAbs are encoded by rare B cell precursors and require complex affinity maturation pathways,
which makes their elicitation by vaccination particularly difficult'?4. In addition, each bnAb class
presents unique challenges. For example, VRCO1-class bnAb B cell precursors are present at
relatively high frequencies (1 in ~400,000 B cells) in humans, and germline-targeting approaches
have been successful in activating them®>-1°. However, affinity maturing these responses
requires extreme V-gene somatic hypermutation (SHM), which is difficult to achieve through
vaccination. V2-apex and V3-glycan bnAbs exhibit comparably lower levels of SHM, but utilize
long heavy-chain complementarity determining region 3 (HCDR3) loops that originate from rare
VDJ recombination events329-23, BnAbs targeting the MPER region are extremely broad, but
generally lack potency, require lipid binding, and are often polyreactive?+2°,

To overcome these hurdles, HIV vaccine development efforts seek to engineer priming
immunogens that stimulate the appropriate precursor B cells which are then followed by boosting
immunogens that affinity mature these lineages along desired pathways. Germline-targeting
immunogens have been developed for multiple bnAb specificities, including CD4bs, V3-glycan,
and V2-apex, using molecular information from inferred bnAb precursors in reverse vaccine
engineering approaches!’182126-30 " These immunogens have shown promise in preclinical
animal models as well as humans since they generated the intended epitope-specific B cell
responsest®?6:31-36  Immunofocusing strategies, including glycan masking®” and protein
resurface engineering'®38-42 have also been employed to direct B cell responses towards
desired bnAb epitopes and away from off-target sites. Among various immunogen templates,
native-like Env trimers that mimic the conformation of the pre-fusion spike on the virion surface**
45 have been shown to elicit autologous nAb responses?*6-48,

One promising target for vaccine strategies is the trimer apex!2%:30:3847-51 which forms a
guaternary epitope comprised of the lysine-rich V1V2 loops and surrounding glycans of three
gp120 protomers®2>4, In humans, five major V2-apex bnAb lineages have been identified: PG9,
PGT145, CHO1, CAP256, and PCT6413495-58 These bnAb lineages share common
immunogenetic features and utilize long anionic HCDR3 regions that allow them to penetrate
the glycan shield and reach the protein surface underneath:525457.59 The most potent human
V2-apex bnAbs utilize the IGHD3-3 gene, which encodes a germline “YYD” motif that makes
contacts with basic residues within the Env C-strand®°. These HCDR3s also contain sulfated
tyrosines that are critical for epitope recognition in several V2-apex bnAb lineages®%6l,
Importantly, rhesus macaques develop V2-apex bnAbs that share very similar features, including
anionic residues and sulfated tyrosines encoded by a long IGHD3-09 germline D-gene following
infection with chimeric simian-human immunodeficiency viruses (SHIVs) that express the HIV-1
Env ectodomain®3%°. Thus, SHIV infection of RMs recapitulates V2-apex bnAb development in
an animal model that closely approximates HIV-1-infected humans 52,
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Simian immunodeficiency viruses infecting chimpanzees (SIVcpz) are the zoonotic ancestors of
HIV-15264 and share a last common ancestor at least 100 years ago®. HIV-1 and SIVcpz are
thus phylogenetically closely related yet substantially more divergent than are different HIV-1
clades from each other. As a consequence, SIVcpz shares little antigenic cross-reactivity with
HIV-1 in the canonical HIV-1 bnAb epitopes, except for the MPER and V2-apex epitopes, which
are highly cross-reactive between SVcpz and HIV-1%8. These findings suggest that SIVcpz Envs,
if used as immunogens, might serve to immunofocus B cell responses to these highly conserved
neutralizing epitopes. We previously generated a germline-targeting version of an SIVcpz Env,
termed MT145, by introducing a Q171K mutation in the lysine-rich motif of strand C of the V2
loop®°. This modified MT145K Env bound the inferred precursors of the human V2-apex bnAbs,
PG9, CHO1 and CAP256, and induced V2-apex directed neutralizing responses when used to
immunize CHO1 germline heavy chain knock-in mice®. To examine the germline-targeting
properties of this Env in an outbred animal model and to test its bnAb-induction potential in the
context of infection where viral Envs and antibody responses can coevolve, we generated
simian-chimpanzee immunodeficiency viruses (SCIVs) that expressed wildtype MT145 and
MT145K Envs, as well as a minimally modified derivative, MT145K.dV5, which has a shortened
variable loop 5 (V5). We used these chimeric viruses to infect three groups of rhesus macaques.
While all SCIVs established productive infections characterized by high peak and setpoint viral
loads, animals infected with the germline-targeting SCIV_MT145K and SCIV_MT145K.dV5
exhibited a larger number of clonally expanded B cell lineages as well as more lineages that
featured long (>24 residue) anionic HCDR3s than animals infected with wildtype SCIV_MT145.
SCIV.MT145K.dV5 infected animals also exhibited sequence changes in the V2-apex bnAb core
epitope suggestive of antibody mediated pressures as well as an enrichment of long HCDR3s
and IGHD3-09 gene usage in antigen-specific memory B cells. These results suggest that
germline-targeting SCIVs were able to activate and preferentially expand V2-apex bnAb-like
precursors within the first 4 to 8 weeks post infection.

Results

SCIVs expressing wildtype and germline targeting MT145 Envs establish persistent
infections and induce autologous neutralizing responses in rhesus macaques

SHIV infections provide insight into the immunogenicity of HIV-1 Env glycoproteins since these
viruses replicate continuously over the course of the infection and express native trimers that
co-evolve with germline and intermediate B cell receptors®367-¢°, To investigate whether the
germline-targeting MT145K Env can activate desirable B cell precursors in an outbred animal
model, we generated SCIVs expressing both wildtype MT145 and MT145K Envs as well as a
minimally modified MT145K.dV5 Env, which partially lacked immunodominant off-target
epitopes (see below). These SCIVs were used to infect three groups of three rhesus macaques
(Fig. 1A) after transient CD8+ T cell depletion’®, which were then followed longitudinally for up
to 88 weeks to assess in vivo viral replication, sequence evolution and nAb responses. Both
SCIV_MT145 and SCIV_MT145K replicated efficiently in all RMs with high peak and setpoint
viral loads, while SCIV_MT145K.dV5 had slightly lower setpoint viral loads (Fig. 1B). Two
SCIV_MT145 infected RMs (6931, 6933) and one SCIV_MT145K infected RM (T924) with
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particularly high setpoint viral loads developed an AIDS-like illness and were euthanized at
weeks 29, 18, and 22, respectively. The animal that died most rapidly (6933) failed to develop
anti-SCIV antibodies, a feature previously described for SIVsm and SlIVmac infected “rapid
progressor” animals’?.

Analysis of plasma samples by enzyme linked immunosorbent assay (ELISA) showed that all
SCIV infected animals, except for the rapid progressor animal 6933, developed antibodies that
bound to both autologous and heterologous soluble Env trimers as early as 4-8 weeks post
infection (Fig. 1C). All animals except for RM 6933 also developed high titer autologous
neutralizing antibodies as well as antibodies that potently neutralized tier 1 HIV-1 strains.
However, none of the animals developed significant heterologous neutralization breadth over
the course of their infection (Fig. S1). Although plasma samples from four animals neutralized a
handful of heterologous HIV-1 strains, all these responses were only weakly cross-neutralizing,
with reciprocal 50% inhibitory dilutions (IDso) less than 1:100 with no increase in breadth and
potency over time. Thus, none of the SCIV infected RMs developed bnAbs.

To characterize sequence changes from the infecting virus strains, we used limiting dilution PCR
of plasma viral RNA/cDNA to generate longitudinal env gene sequences for each infected RM.
This method, referred to as single genome sequencing or SGS 7273, retains genetic linkage
across the complete gp160 gene and eliminates PCR induced mutational artifacts from finished
sequences. An alignment of these sequences revealed strong selection in variable loop 5 (V5)
in both SCIV_MT145 and SCIV_MT145K infected RMs, as evidenced by a diverse set of
mutations, including amino acid substitutions, insertions, and deletions, which led to changes in
length, net charge, and number of glycans (Fig. 1D-F, Fig. S2). Among these mutations, the
same nine amino acid V5 loop deletion was observed in multiple animals, suggesting a common
pathway of escape from potent autologous neutralizing antibodies (Fig. S2). Longitudinal
Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) analysis, which reveals sites
under selection pressure using >50% transmitter/founder-loss at any time point, confirmed this
selection in the V5 region as well as additional sites of selection elsewhere in gp160 (Figs. S3
and S4). These data indicated the presence of an immunodominant strain-specific neutralizing
epitope in the V5 loop of the MT145 Env that elicited off-target responses. When we examined
the primary, x-ray crystallographic and cryoEM structures of MT145 Env, we noted that the V5
loop was atypically long and disordered, likely contributing to is immunodominance. To remove
this immunodominant epitope, we deleted the nine V5 residues that comprised the naturally-
occurring truncation, thus generating SCIV_MT145K.dV5.

To confirm that SCIV_MT145K.dV5 retained its germline targeting potential, we tested its
neutralization sensitivity to inferred germline (iGL) or reverted unmutated ancestors (RUAS) of
the V2 apex bnAbs CH01%, PG9%174, and PG1674, the inferred germline (iGL) of PCT64%¢ as
well as the unmutated common ancestors (UCA) of VRC26'2 and RHA153, As expected, wildtype
SCIV_MT145 was resistant to neutralization by all precursor antibodies (Fig. S5). However, both
SCIV_MT145K and SCIV_MT145K.dV5 were neutralized by CHO1_RUA and VRC26 _UCA at
ICs0 values of 4.6-8.1 pg/ml and 124.3-202.7 pg/ml, respectively. While this analysis likely
underestimated germline interactions, the results confirmed that the modified SCIVs engaged at
least two human V2-apex precursors.
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We next used both SGA of longitudinal Env sequences as well as next generation sequencing
(NGS) of the V1V2 region to investigate within-host Env evolution across all three groups of
SCIV-infected RMs. These analyses showed residual selection on the V5 region in MT145K.dV5
animals, despite epitope trimming, suggesting that resurfacing did not completely eliminate
responses to this immunodominant off-target site (Fig. 1D, Fig. S2-4). This was confirmed by
negative stain polyclonal electron microscopy mapping (EMPEM), which showed V5 binding of
serum IgG Fabs for all animals except the rapid progressor RM 6933 (Fig. 2). LASSIE analysis
also showed selection pressures in Env regions other than V5 for MT145K.dV5 as well as MT145
and MT145K circulating viruses (Fig. S4). Examining the V1V2 region in particular for mutations
that altered the TF amino acid sequence, we found that both SCIV_MT145K and
SCIV_MT145K.dV5, but not SCIV_MT145 infected RMs exhibited amino acid substitutions at
positions 160, 166, 169 and 171 at one or more time points (Fig. 1G & 1H, Fig. S6 & S7); of
these, only the site 171 was chosen for all three MT145K infected RMs, using the pre-specified
LASSIE selection criterion of 50% or more mutation at any time point (Fig. S4). Statistical
analyses of the corresponding mutation frequencies in the NGS dataset showed significantly
higher mutation frequency for either SCIV_MT145K or SCIV_MT145K.dV5 groups as compared
to WT SCIV_MT145 group at positions 160 and 171 (Fig. 1H, S7), while SCIV_MT145 group
showed significantly higher frequency at 166 than SCIV_MT145K.dV5 group. However, despite
selection in V1V2 and gp41 regions, no changes were observed at the canonical V2-apex bnAb
site for any animal infected with SCIV_MT145K and SCIV_MT145K.dV5 from EMPEM analysis
(Fig. 11 & 2). Together, these results suggest early B cell priming at the V2-apex bnAb epitope
by germline-targeting MT145 Envs, but these responses did not contribute to the dominant
serum antibody specificities.

Infection with SCIV_MT145K.dV5 results in early expansion of isotype-switched B cell
lineages with long anionic HCDR3s

To investigate the immunogenetic features that define the earliest immune responses for each
SCIV-infected RM group, we performed next-generation sequencing (NGS) of longitudinal
peripheral blood B cells (up to week 16) to examine the bulk IgG and IgM repertoires (Fig. 3A).
Prior to infection, animals from all three groups (SCIV_MT145, SCIV_MT145K and
SCIV_MT145K.dV5) showed similar numbers of long (= 24 aa) HCDR3-bearing B cells in their
IgG repertoires (Fig. 3B). Differences between the groups appeared as early as 2 wpi, with two
animals in the SCIV_MT145K.dV5 group showing an increased number of long HCDR3
lineages, which peaked at 4 wpi (P=0.04, the Kruskal-Wallis test). All three animals in the
SCIV_MT145K.dV5 group were substantially enriched in the number and fraction of lineages
with long HCDR3s (P-values are 0.01 and 0.005, the linear mixed model) by week 4, which was
maintained until 16 wpi (Fig. 3B-C). In contrast, no significant enrichment for long HCDR3 B cell
lineages were observed in animals infected with wildtype SCIV_MT145. Long HCDR3s detected
in SCIV_MT145K.dV5 infected animals at weeks 4 to 12 were also more anionic compared with
SCIV_MT145 and SCIV_MT145K infected animals (P=0.008, the linear mixed model),
containing DD, DE, ED, or EE residues as well as predicted sulfotyrosines (Fig. 3D). Overall,
SCIV_MT145K.dV5 infected RMs had the highest percentage of clonally expanded long
HCDR3s enriched for sulfated tyrosines across all time points, whereas SCIV_MT145 infected
RMs had the lowest (Fig. 3E).
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SCIV_MT145K and SCIV_MT145K.dV5-infected animals featured significantly more clonally
expanded (>10 sequences) long HCDR3 lineages compared with SCIV_MT145 infected RMs
(P=0.02, the Kruskal-Wallis test). The three SCIV_MT145K-infected animals had 20, 32, and 46
unique expanded lineages, while the SCIV_MT145K.dV5 featured slightly higher numbers of 24,
50, and 59 lineages, respectively (Fig. 3F).

To illustrate differences in IgM and IgG repertoires during the first 16 weeks of SCIV infection,
we constructed phylogenetic trees of all clonally expanded (>10 sequences) long HCDR3
lineages identified in longitudinal PBMC samples (Fig. 3F). Comparing the three groups, all
animals had at least 3 clonally expanded lineages containing long HCDR3s. SCIV_MT145
infected animals had between 3 to 14 expanded lineages. For 50-90% of these lineages across
three animals, IgM was a dominant isotype suggesting a memory B cell origin (Fig. 3F, upper
row). Sulfotyrosines were predicted for 2 of the 3 animals in the SCIV_MT145 group (present in
four clones) and were predominantly present in IgG lineages.

For animals in the SCIV_MT145K group, 76-95% of expanded long HCDR3 lineages were
isotype switched relative to SCIV_MT145 animals (Fig. 3F, middle row). Most of the expanded
IgG lineages in the SCIV_MT145K group were identified 4-12 wpi. Predicted sulfotyrosines were
observed in all three animals in SCIV_MT145K group and were predominantly identified in IgG
lineages.

SCIV_MT145K.dV5 animals had the 75-90% of isotype-switched IgG lineages with expanded
long HCDR3s (Fig 3B, Fig S8). For animals in this group, most of the IgM lineages were identified
prior to infection or less than 4 wpi, suggesting that most of the observed expansion was antigen-
driven. Predicted sulfotyrosines were notably higher compared to the SCIV_MT145 and
SCIV_MT145K groups and were identified in 27-32% of lineages across animals in the
SCIV_MT145K.dV5 group. overall, clonally expanded lineages in MT145KdV5 animals have
higher fractions of IgG sequences compared to MT145K and MT145 groups (P=0.0002, the
Kruskal-Wallus test)

SCIV_MT145K.dV5 infection elicited larger and more clonally expanded long HCDRS3
lineages encoding germline D-genes with anionic residues and sulfated tyrosines

Unlike in animals infected with SCIV_MT145 and SCIV_MT145K, the percentage of lineages
with long HCDR3s and sulfated tyrosines increased in SCIV_MT145K.dV5-infected animals over
time (P=0.03, the linear mixed model) (Fig 3G, Fig. S8). Importantly, this effect was not observed
for lineages with short HCDR3s (<24 aa) and sulfated tyrosines (Fig. 3G). While the fraction of
large, expanded lineages remained stable in SCIV_MT145K and SCIV_MT145K.dV5 infected
animals, this fraction decreased slightly in SCIV_MT145 infected animals (Fig. S9A). All groups
showed increases in the average HCDR3 length over time, with the SCIV_MT145K.dV5 group
showing the most pronounced increase (Fig. S9B).

We also observed differences in IGHD gene usage in expanded lineages with long HCDR3s
among the three groups (Fig. S10 and S11). While SCIV_MT145-infected RMs used the IGHD6-
25 gene more frequently than SCIV_ MT145K and SCIV_MT145K.dV5-infected animals (Fig.
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S9 and S10), SCIV_MT145K.dV5-infected animals exhibited the greatest enrichment of the
IGHD3-09 gene, especially at later time points. The IGHD3-09 gene contains an “EDDY” motif
that is highly conserved in V2-apex bnAbs isolated from macaques®® and likely contains
germline-encoded features that are essential for activating the respective precursors. Moreover,
these long HCDR3 germline D gene features are shared between human and macaque V2-apex
bnAbs (Fig S13). In contrast, there was no statistically significant enrichment for D genes in short
HCDRS3 lineages (Fig. S11 and S12), although SCIV_MT145 infected animals used the IGHD3-
9 gene less frequently (Fig. S11D).

We also analyzed V gene frequencies in IgM and IgG repertoires for all three groups. No
enrichment of unique IGHV gene families or alleles were observed in any group, with most
animals utilizing the IGHV3 and IGHV4 families (Fig. S14), consistent with gene usage in rhesus
and cynomolgus macaques’®.

Expanded long HCDRS3 lineages for all animals contained moderately to highly mutated
members with varying numbers of predicted sulfation sites. The most abundant lineages in
SCIV.MT145-infected RMs were significantly smaller and less diverse than those found in
SCIV_MT145K and SCIV_MT145K.dV5 infected animals (Fig. S16-18). Only three of five of the
largest long HCDRS lineages contained an ‘EDDY’ motif, and only one ‘EDDY’ lineage was IgG
isotype-switched and contained significant SHM and predicted sulfotyrosine residues (Fig. S15).
In contrast, the largest lineages in the SCIV_MT145K group were much more diverse and
expanded. Eleven of 12 large long HCDR3 lineages from the SCIV_MT145K group contained
‘EDDY’, or ‘YY’, and six of 11 of these lineages were predominantly 1gG (Fig. S16). For the
SCIV_MT145K.dV5 group, all of 15 of the largest long HCDR3 lineages contained ‘EDDY’, ‘YY",
or ‘DDY’ motifs, and only two of these lineages were predominantly IgM (Fig. S17). Collectively
these results suggest that the germline-targeting SCIV that was modified to limit V5 directed off
target responses generated an antibody response that most closely resembled the activation of
V2-directed bnAb precursors®°.

SCIV infection reshapes antigen-specific B cell repertoires toward V2-apex bnAb-like
features

Given that IgM and IgG repertoires were significantly different between the three groups of SCIV
infected RMs, we next asked whether these differences were also present in the antigen-specific
repertoires. We sorted antigen-specific memory B cells from peripheral blood collected 8 and 12
wpi, since this was when the most substantial differences in the overall IgH repertoires were
observed (Fig. 4A). For each animal, memory B cells were sorted using MT145, MT145K and
MT145K.dV5 trimer probes to enrich BCRs with affinities for one or more of these antigens (Fig.
4B). The percentages of total antigen-specific IgG-positive B cells were similar across groups
(Fig. 4B), with each group containing BCRs specific for all three trimers. There was a trend for
higher numbers of antigen-specific B cell lineages as well as lineages with long HCDR3s in
SCIV_MT145K and SCIV_MT145K.dV5-infected animals compared to SCIV_MT145-infected
animals, but this did not reach statistical significance (Fig. 4C). HCDR3 lengths followed a normal
distribution with a right shoulder towards longer HCDR3s and the peak fraction of lineages for
both antigen-specific and repertoire sequences at 14 amino acids (Fig. 4D). Mutation levels in
the Vu region were slightly higher for MT145K.dV5 antigen-specific sequences (3.96%)
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compared with MT145K (2.6%) and MT145 (2.1%) antigen-specific sequences. Similar to the
IgM and IgG total repertoire frequencies, IGHV3 and IGHV4 families were mostly observed in
longer HCDR3 B cells for all three groups.

IGHD3 gene usage was similar among all three groups, with no significant differences between
groups (Fig. 4E). The IGHD3-9 gene was overrepresented in all long HCDR3 lineages, while the
IGHD6-25 gene was more abundant in short HCDR3s (Fig. 4F). The enrichment of specific
IGHD3 gene families in total and antigen-specific repertoire sequences with long HCDR3s
suggested that specific motifs were selected during clonal expansion and in the case of the
IGHD3-09 gene, the germline-encoded “EDDY” motif was consistently observed. Since, during
B cell development, nucleotide insertions and deletions in VDJ junctions could change germline-
encoded motifs present in the D or J genes, we examined the open reading frame (ORF) across
all common IGHD genes identified in long HCDR3 lineages. Interestingly, we observed very little
variation in this ORF across the various IGHD3 genes, suggesting preservation of germline-
encoded motifs important for V2 bnAb development (Fig. 4G). Analysis of the ORFs of IGHD
genes showed that ORFs with = 2 tyrosines had much higher usage in BCR sequences
compared with ORFs with < 2 tyrosines (Fig. S19).

We next compared lineages from total IgM and IgG repertoires with antigen-specific single B cell
sequences. Similar to the bulk repertoire sequencing data, the percent lineages with sulfated
HCDR3 tyrosines tended to be higher for the SCIV_MT145K.dV5-infected group compared with
the SCIV_MT145 or SCIV_MT145K-infected groups, although this did not reach statistical
significance (Fig. 4H). All three groups showed similar numbers of matching lineages, with a
slightly higher fraction in the SCIV_MT145K group among all sequences and the
SCIV_MT145K.dV5 group among long HCDRS3 sequences, independent of lineage size (Fig. 4,
S20A). Antigen-specific members from SCIV_MT145K and SCIV_MT145K.dV5-infected groups
were mapped to large, expanded long HCDRS3 lineages in IgG and IgM repertoires that utilized
the IGHD3-09 gene, with more than one member identified in each lineage (Fig. S20B).
Collectively these data suggested that the observed reshaping of the B cell repertoire following
SCIV infection was driven at least in part by antigen-specific B cells.

SCIV_MT145K.dV5-induced long HCDR3 antibodies with V2-apex bnAb features exhibit
apex epitope binding properties

By minimizing responses to the immunodominant V5 region and introducing the germline-
targeting Q171K substitution, the antigen-specific responses in SCIV_MT145K.dV5 infected
animals exhibited features characteristic of V2-directed precursor activation. We thus
characterized antigen-specific B cells from SCIV_MT145K.dV5-infected animals by performing
a sort at week 16 and testing the recovered cells in a B cell activation method (Fig. 5A). A total
of 1,271 antigen-specific B cells were isolated, resulting in the recovery of 367 IgG-secreting B
cells after 14 days of culture (Fig 5B). Nearly all (332/367) secreted antibodies (mAb) bound the
MT145K.dV5 SOSIP trimer, and 26.4% or 7.7% were able to neutralize MT145K.dV5 or CRF250
Env-containing pseudoviruses, respectively (Fig 5B, Supplementary Table 01). While almost all
mAbs (94.5%) bound a version of the MT145K.dV5 trimer in which the N160 was removed
(MT145K.dV5-N160K), a fraction (5.2%) was dependent on glycan N160. Only 19 mAbs bound
the MT145K.dV5 trimer in a N160 glycan-dependent manner and were also able to neutralize
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CRF250 pseudoviruses. The most V gene-mutated mAbs (SHM level of 12.6%) were those that
neutralized the MT145K.dV5 virus but maintained binding to the MT145K.dV5-N160K SOSIP.
However, mAbs that were dependent on N160 were also moderately mutated (SHM level of
8.7%). These mAbs also had the second longest HCDR3s on average (19.5 aa).

All antigen-specific mAbs isolated from B cell cultures were skewed towards longer HCDR3s
(Fig. 5C), although there was one 11 aa HCDR3 expanded lineage from RM 44092 that was not
observed in the pre-infection repertoire (Figs. 5C, 4D). Among all mAbs, 22% encoded the
IGHD3-09 gene with the “EDDY” motif (Fig. 5E). However, for mAbs with long HCDR3s, IGHD3-
09 was by far the most abundant and observed in 76% of all sequences. In contrast, IGHV or
IGHJ genes were highly variable (Fig. 5F and G). Finally, while repertoire sequences in
SCIV_MT145K.dV5 infected monkeys showed enrichment for long HCDR3s and anionic
sulfated tyrosines, this fraction was significantly increased in the antigen-specific antibodies
sorted from week 16 (Fig 5H-J).

Encouraged by the immunogenetic and functional findings of antigen-specific mAbs
characterized for animals in the SCIV_MT145K.dV5 group, we next asked-what are the
functional characteristics associated with mAbs expressed from antigen-specific V2-apex bnAb-
like B cell precursors? Therefore, a subset of antigen-specific long HCDR3 mAbs encoding the
IGHD3-09 that were isolated at week 12 and 16 from SCIV_MT145K.dV5 infected animals were
cloned and expressed (Fig. 6). Although these mAbs were restricted by their IGHD gene usage,
they all shared a similar anionic motif centered in the HCDR3 region (Fig. 6A). Eighteen mAbs
(01,03, 07, 15,18, 23, 24, 27, 31, 38,41, 51, 53, 55, 58, 59, 60, 70) exhibited significant binding
to the MT145K.dV5 trimer as well as N160 glycan dependence. Out of this subset of N160 glycan
dependent mAbs, nine (15,18, 23, 24, 27, 31, 41, 58, 70) were predicted to be trimer dependent
based on their inability to bind MT145K.dV5 gp120 protein. These results suggest that, although
we were enriching for V2 bnAb-like HCDRS3 signatures, these mAbs showed surprising functional
diversity. If a subset of these mAbs are true V2-apex bnAb precursors, we would expect them
to show higher affinity to germline targeting MT145 trimer and lower affinity to trimer variants
with mutations at specific V2 sites that interact with bnAbs. To test this, we compared the binding
of these mAbs to MT145, MT145K and MT145K.dV5 SOSIP trimers as well as derivatives with
mutations in the V2 epitope (Fig. 6B). The results showed less binding to MT145, MT145K-
N160K and MT145K-N169E/N171E SOSIP trimers compared to MT145K or MT145K.dV5
SOSIP trimers. Since HCDR3 conformation or shape plays a significant role in V2-apex bnAb
function, we predicted the structures for these antigen-specific mAb HCs with long HCDR3s
using the Colabfold pipeline 7678, V2-bnAb HCDR3s fall within a spectrum of conformations
resembling a needle (i.e., PGT145) or hammerhead (i.e., PG9) (Fig. S21). Both hammerhead-
and needle-like HCDR3s were identified in the antigen-specific mAbs (Fig. 6C). Of the 52 mAbs,
45 were identified to contain hammerhead-like HCDR3 conformation, while 7 showed a needle-
like shape. Overall, antigen-specific long HCDR3 mAbs were highly diverse in their sequence
and IGHV gene usage, but shared features characteristic of human and rhesus V2-like bnAbs
and their precursors.
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Discussion

Antigen-driven B cell selection and affinity maturation have been extensively studied for simple
antigens but are less well-understood for complex antigens like the HIV-1 Env’®-8, For example,
haptens are often used to study clonal selection because they predominantly expand B cells
with well-defined immunogenetic features and specificities to immunodominant epitopes8?-84,
However, for complex antigens such as the HIV-1 envelope glycoprotein, B cell responses
emerge from intra-clonal and inter-clonal competition to multiple epitopes, and the dynamics of
this competition is likely a key contributor to bnAb development88>, Intra- and inter-clonal
competition dynamics depend on BCR frequency in the repertoire, affinities, as well as
avidities!®. Here we show that B cell responses to germline targeting chimpanzee SIV MT145
Envelope glycoproteins can be enriched for desirable features present in the precursors of
prototypical HIV-1 bnAbs. We show that unlike the wildtype chimpanzee MT145 Env, its
germline-targeting trimer variants exhibit strikingly different immunogenetic properties across
both total and antigen-specific repertoires by consistently eliciting long HCDR3 B cell lineages
with paratope features characteristic for HIV-1 V2-apex bnAb precursors.

We previously showed that increasing the affinity of the MT145 Env to human V2-apex bnAb
precursors resulted in epitope-specific nAbs following vaccination in a V2 apex bnAb precursor
expressing knock-in (KI) mouse®. Here, we investigated the immunogenicity of three MT145
variants (MT145, MT145K, MT145.dV5) as replicating SCIVs in the rhesus macaque infection
model. Although SCIV_MT145K elicited V2-targeted B cell responses, our data suggest that
competition from the immunodominant V5 region may have reduced V2 apex directed
responses. Partial trimming of the V5 region refocused these responses to the desired epitope
although it did not completely eliminate V5 targeting. These findings suggest that eliminating or
shielding immunodominant off-target epitopes may reduce interconal competition and focus the
B cell response on more desirable epitopes. Indeed, germline-targeting and protein resurface
engineering reduced off-target reactivities, favoring the engagement of rare V2-apex bnAb-like
precursors with long HCDR3s. This was most pronounced for SCIV_MT145K.dV5 infected
animals, where we observed a 10-fold increase in the fraction of long HCDR3 B cell lineages,
some of which exhibited properties similar to prototypic human V2-apex bnAbs. Activation of
rare long HCDR3 B cell precursors is a major bottleneck for inducing V2-apex bnAbs. Our study
shows that this can be accomplished using both germline-targeting and immunogen resurfacing
approaches.

In contrast to wildtype SCIV_MT145, infections with both MT145K and MT145K.dV5 SCIVs
elicited selection in the V2 region and caused expansions of long HCDR3 antibody lineages with
IGHD3-09 genes expressing the ‘EDDY’ motif. Both MT145K and MT145K.dV5 SCIVs expanded
antibodies with V2-bnAb precursor-like features from the bulk repertoire, with more clonal
expansion observed in the SCIV_MT145K.dV5 compared to the SCIV_MT145K infected group.
These data suggest that while both germline-targeting Envs elicited responses to the V2 region,
removal of the immunodominant V5 epitope increased the number of desired responses. It is
possible that the precursor frequency and/or affinity of naive B cells targeting the MT145 V5
region was higher than that of B cells targeting the canonical V2 epitope, which would have given
V5-targeting BCRs a competitive advantage over V2-targeting BCRs in the germinal centers.
Although not statistically significant, there was a trend for improved V2-bnAb like responses in
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SCIV_MT145K.dV5 compared to SCIV_MT145K infected animals. Thus, it seems critical to
eliminate off-target immunodominant B cell epitopes when designing germline-targeting
immunogens.

The two germline-targeting SCIVs, but not their wildtype counterpart, appear to have primed V2
bnAb-like B cell precursors and elicited V2-directed antibody responses that placed weak, albeit
transient, selection pressures on the C-strand. However, these responses failed to broaden
since none of our SCIV infected macaques ultimately developed bnAbs. This failure may be due
to the absence of the required viral variants in the germinal centers at the time of antibody
maturation. A number of studies have shown that specific Ab-Env co-evolution pathways are
needed for neutralization breadth to develop®®°38687, The lack of significant diversification within
and around the core V2-apex epitope in our recovered Env sequences indicates that viral
variants capable of driving affinity maturation down desirable pathways were lacking. The
absence of key Env mutations in the majority of the circulating viral immunotypes may have
impeded the maturation of nascent bnAb lineages. Alternatively, it is possible that the
SCIV_MT145K and SCIV_MT145k.dV5 expanded B cell lineages, despite their similarity to
known V2 apex bnAb UCAs, have additional features that prevent them from maturing to breadth
even if the necessary boosting immunotypes are present. Future studies will need to differentiate
between these scenarios.

The SCIV_MT145K.dV5 induced long HCDR3 mAbs exhibited a range of V2-apex epitope
specific binding and neutralizing properties as well as immunogenetic features frequently found
in V2 apex bnAbs. It is thus tempting to speculate that a germline-targeting immunogen that
engages a large pool of long HCDR3 lineages with diverse paratope properties, including those
with features similar to V2-apex bnAbs, would also prime desired B cell responses to this bnAb
site. Once a sizable pool of long HCDRS3 precursor B cells is engaged, boosting immunogens
capable of immunofocusing and polishing are required. Rhesus macaque appears to represent
a particularly suitable outbred animal model to test V2 apex bnAb induction strategies since their
B cell repertoires possess precursors with paratope properties that closely resemble human V2-
apex bnAb lineages®. In addition, the SHIV infection model allows for challenge/protection
studies should the desired bnAbs be induced by vaccination®3®, Thus, rhesus macaques
provide a rapid and reliable evaluation model to test proof-of-concept germline-targeting,
immunofocusing, and polishing vaccine strategies for the HIV V2-apex bnAb site, which can
inform HIV vaccine trials in humans.

In summary, our study illustrates that rare bnAb-like B cell precursors can be preferentially
stimulated by germline targeting immunogens, which represents a first step in bnAb elicitation.
Moreover, rational antigen design may allow to eliminate or shield off-target epitopes that would
otherwise impede bnAb development. Although the SCIV infected RMs failed to develop bnAbs,
these results provide new insights into strategies for HIV-1 vaccine development.

Limitations of the study

Although we have demonstrated rare bnAb-like B cell precursors are expanded in germline
targeting Envs using the SCIV infection model, protein immunization with the same immunogen
might be different. Inducing similar responses in rhesus macaques by protein immunizations
would be ideal for additional in vivo comparisons. An important variable for B cell expansion is
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the concentration and retention of antigen in draining lymph nodes and the periphery. Although
we see viral kinetics were consistent across animals for each group, slight differences across
groups may differentially affect antigen availability and in turn influence B cell responses. Thus,
evaluation of protein immunizations with fixed concentration should clarify the effect of antigen
concentration on B cell responses. In this study, we used immunogenetic and biochemical
signatures of rhesus macaque V2 bnAbs to categorize SCIV-elicited mAbs as precursor bnAbs.
However, whether any and which of the expanded lineages have the potential to mature into
real bnAbs is still unclear. Further studies using SHIVs and SCIVs to interrogate Envs that
promote lineage maturation would help clarify the limitation of our study.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal studies. Nine outbred Indian rhesus macaques (Macaca mulatta) were used in this
study. All animals were housed in Bioqual, Inc. (Rockville, MD) according to guidelines set by
the Association for Assessment and Accreditation of Laboratory Animal Care International
(AAALAC). All experiments were approved by the University of Pennsylvania and Bioqual
Institutional Animal Care and Use Committees (IACUC). Animals were socially housed with a
variety of recommended environmental enrichments and sedated for blood draws, anti-CD8 mAb
infusions and SCIV inoculations. RM 6931 received 1 ml of an equal mixture of three SCIV
constructs (50 ng of p27 antigen), all of which expressed the wildtype MT145 Env but differed in
their SIVmac backbone. RM 6932 and RM 6933 were infected with a mixture of six allelic variants
of SCIV_MT145, which differed at Env position 375 (50ng of p27 antigen each). RMs T922,
T923, and T924 received 1 ml of SCIV_MT145K, which contained a glutamine (Q) to lysine (K)
mutation at position 171 in the C strand as previously described 8. RMs 43189, 43359, and
44092 received 1 ml of SCIV_MT145K.dV5, which had a shortened V5 loop. All three SCIVs
encoded the wildtype His at position 375 of the envelope glycoprotein. Plasma viral loads were
determined as previously described*®53, All animals received an intravenous infusion of 25
mg/kg of the anti-CD8b mAb CD8beta255R1 at the time of SCIV inoculation. Infected RMs were
followed for up to 88 weeks, with plasma and peripheral blood mononuclear cells (PBMCs)
collected at weekly and bi-weekly (Fig 1B) and later at monthly and bi-monthly intervals (Fig S1).
Animals 6931, 6933 and T924 progressed to AIDS within 29, 18 and 22 weeks, and were thus
euthanized on day 203, 128 and 154, respectively.

Cell Lines. Expi293F cells (Gibco Cat# A14527) were maintained in Expi293 Expression
Medium (Gibco Cat# A1435101) at 37°C in a 8% CO2 atmosphere 150 rpm shaker. HEK293T
(ATCC Cat# CRL-3216) cells were grown in Dulbecco's Modified Eagle Medium (DMEM)
(Corning Cat# 10-017-CV) with 10% heat-inactivated FBS (Omega Scientific Cat# NC0471611),
4mM L-Glutamine (Corning Cat# 25-005-Cl) and 1% P/S (Corning Cat# 30-002-Cl) in a 37°C,
5% CO:zincubator. Irradiated 3T3msCDA40L cells were used in B cell culture assay and TZM-b1l
cells (NIH AIDS Reagents Program) were used for the pseudovirus neutralization assay as
previously described.

METHOD DETAILS

SCIV construction. To generate the wildtype SCIV_MT145 construct, we cloned a vpu-
env fragment (env nucleotides 1 to 2153, HXB2 numbering) from the SIVcpz MT145 infectious
molecular clone (JN835462) into first-generation®, “intermediate,” and second-generation
SIVmac vectors’ and tested their relative replication potential by infecting RM 6931 with an
equal mixture (based on p27 content) of these constructs. Sequence analysis 2 weeks post-
infection identified the second-generation vector as the biologically most fit, which was thus
selected for all subsequent constructions. Since the amino acid residue at position 375 of the
HIV-1 Env determines how efficiently the corresponding SHIV replicates in rhesus CD4+ T cells,
we next created isogenic mutants of SCIV_MT145 by changing the wildtype histidine (375H) to
serine (375S), tyrosine (375Y), methionine (375M), tryptophan (375W) or phenylalanine
(375F). After assessing their replication competence in rhesus CD4+ T cells in vitro, these
constructs were used as equal mixtures (based on p27 content) to infect RM 6932 and RM 6933.
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Single genome sequencing of plasma viral RNA 14 and 28 days post-infection identified the
375H variant as the predominant strain in both animals. The 375H construct was then used to
generate the germline-targeting SCIV_MT145K by replacing a glutamine (Q) at position 171 in
the C strand of SCIV_MT145 with a lysine (K) residue as previously described®. The second
germline-targeting SCIV_MT145K.dV5 was generated by deleting nine amino acids
(NREDQGEDQ) from the V5 loop of SCIV_MT145K, which was identified as a strain-specific
immunodominant off-target epitope. The germline-targeting potential of the SCIV-expressed
MT145K and MT145K.dV5 Envs was confirmed by testing their sensitivity to neutralization by
inferred human V2 apex bnAb precursors (Fig. S5). The nucleotide sequences of SCIV_MT145,
SCIV_MT145K and SCIV_MT145K.dV5 are available under GenBank accession numbers
OR117733, OR117734and OR117735, respectively.

Neutralizing antibody assay. The neutralization capacity of rhesus macaque plasma was
assessed using the TZM-bl assay as described®!. Briefly, serial 5-fold dilutions of RM plasma
(2:20, 1;100, 1:2,500, 1:12,500, 1:62,500, 1:312,500) were incubated with transfection-derived
virus at a multiplicity of infection of 0.3 in a total volume of 100 ml in the presence of DEAE-
dextran (Signma-Aldrich) (40 mg/ml) for 1 h at 37°C, and this mixture was then added to TZM-
bl cells. After 48 h, TZM-bl cells were analyzed for luciferase expression with uninfected cells
used to correct for background luciferase activity. The infectivity of each virus without plasma
was set at 100% and the plasma dilution that reduced the relative light units (RLUS) by 50%
compared with the no plasma control wells were calculated by using the variable slope (four
parameters) function in Prism software (v8.0). Viral stocks were generated by transfection of
293T cells, using 4.5 ug of and Env-minus HIV-1 (SG3Aenv) (NIH AIDS Reagent Program)
backbone and 30 ng of codon optimized HIV-1 Env plasmids, or 6 pg of SCIV or SHIV construct
DNA. B cell culture supernatants and mAbs were incubated with Env-encoded pseudoviruses in
384-well plates (Greiner Bio-One) for 1 h at 37°C. TZM-bl cells were added at 5,000 cells/well
in 50 uL of complete DMEM and incubated for an additional 48 h at 37°C. After incubation,
culture media was removed, cells were lysed, and luciferase activity was read after Bright-Glo
(Promega) addition.

Env SOSIP Expression and Purification

SOSIP Envs were expressed and purified as previously described®°. Briefly, plasmids encoding
for HIV Env SOSIP trimers were cotransfected in HEK293F cells using PEI-MAX 4000
transfection reagent (Polysciences, Inc.). After transfected cells were incubated for four days,
supernatants containing expressed trimers were placed in an agarose-bound Gallanthus Nivalis
Lectin (GNL) or CNBr-activated Sepharose 4B bead (GE Healthcare) bound PGT145 bnAb
antibody affinity columns for purification. Size exclusion chromatography (SEC) purification in a
Superdex 200 10/300 GL column (GE Healthcare) in PBS/TBS was performed for further
purification if needed.

Introduction of specific mutations in the SOSIP Envs was performed using QuikChange site-
directed mutagenesis kit (Agilent Technologies, USA) according to manufacturer’s instructions
and verified by sequencing analysis (Eton Bioscience, San Diego, CA).

Monoclonal Antibody Expression and Purification

Plasmids containing HC and LC sequences were expressed in Expi293F cells. Briefly,
FectoPRO (Polyplus) transfection reagent was used to cotransfect both HC and LC plasmids
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according to manufacturer’s instructions. Transfected cells were incubated at 37°C, 5% CO2with
150 rpm shaking. One day after transfection, cells were given 300 mM valproic acid and 40%
glucose (Gibco). After 5 days of incubation, supernatant was filtered through a 0.22 mm Steriflip
(EMD Millipore) to remove cells. To purify the antibodies, the filtered supernatant ran through a
protein A and protein G affinity column (GE Healthcare) and eluted with 0.2 M citric acid at pH
3.0 and neutralized in 2 M Tris-base. Antibodies were buffer-exchanged into phosphate-buffered
saline (PBS). The nucleotide sequences of mAb HCs and LCs are available under GenBank
accession numbers OR517427-OR517472 and OR517381-OR517426, respectively.

B Cell Sorting

For antigen-specific sorting, Avi-tagged biotinylated MT145, MT145K, and MT145K.dV5 trimers
were conjugated with SA-labeled fluorophores at RT for 30 min. Cryopreserved PBMC samples
were thawed and added into RPMI medium (Thermo Fisher) supplemented with 50% FBS. Cells
were washed with FACS buffer (PBS with 2% FBS) and stained using anti-CD3, CD4, CD8,
CD14, CD19, CD20, IgG, and IgM fluorescent antibodies for 15 min at RT in the dark. After
incubation, conjugated antigens were added to stained cells and incubated for an additional 30
min. A 1:300 dilution of FVS510 LIVE/DEAD cell stain (Thermo Fisher Scientific) was added to
the sample and incubated for an additional 15 min. Prior to sorting, cells were washed with FACS
buffer and filtered through a cell strainer in a 5 mL round bottom tube (Corning). Sorting was
performed on a BD FACSMelody and cells were either sorted in tubes for single cell sequencing
or incubated in 384-well plates for B cell culturing.

BioLayer Interferometry (BLI) Binding Assay

Binding by BLI was performed using an Octet K2 system (Sartorius) using anti-human IgG-Fc
biosensors (AHC: ForteBio). To set up the assay, 10 yg/mL of IgGs and 200 uM of SOSIP was
used for loading and capture, respectively. Biosensors were first dipped into PBST and loaded
with IgGs for 60 s. The loaded biosensors were then incubated with Env for 120 s. To measure
off rates, biosensors with captured protein was placed in PBST for 240 s. Analysis was
performed using the ForteBio Data Analysis Software 10.0 and plotted using Prism 8.

Antibody-Env ELISA Binding Assay

ELISA assays were performed using biotinylated proteins on streptavidin coated plates as
previously described®. Briefly, 2 ug/mL streptavidin (Thermo Fisher Scientific) was used to coat
96-well half-area clear plates (Corning, Thermo Fisher Scientific) overnight. Plates were washed
3 times with PBST and blocked with 3% BSA in PBS for 1 h. Biotinylated proteins were added
at 2 yg/mL in 1% BSA in PBST and incubated for 1.5 h at RT. After protein incubation, plates
were washed three times and diluted mAbs were added for an additional 1.5 h. Secondary
antibodies conjugated to alkaline phosphatase (Jackson ImmunoResearch Laboratories) was
added following staining with alkaline phosphatase substrate pNPP (Thermo Fisher Scientific).
Absorbance was measured after 20 minutes at 405 nm using a VersaMax microplate reader
(Molecular Devices) and plotted using Prism 8.

Negative Stain Electron Microscopy

The negative stain EMPEM method was described previously®?. Briefly, 15 pg of trimer MT145,
MT145K or MT145K.dV5 was incubated overnight with 0.5 mg polyclonal Fab (generated using
papain digestion) and purified the next day using a Superdex 200 Increase 10/300 GL gel
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filtration column (Cytiva). After concentrating, purified complexes were diluted to 0.03 mg/mL
and deposited on glow-discharged carbon coated copper mesh grids, followed by staining with
NanoW (Nanoprobes). Imaging was performed on an FEI Tecnai Spirit T12 equipped with an
FEI Eagle 4k x 4k CCD camera (120 keV, 2.06 A/pixel), an FEI TF20 equipped with a TVIPS
TemCam F416 CMOS 4k x 4k camera (200 keV, 1.77 A/pixel) and an FEI Talos Arctica equipped
with an FEI Ceta (4k x 4k) camera (120 keV, 1.98 A/pixel). All data were processed using Relion
3.0 (PMID: 30412051) using standard 2D and 3D classification procedures. Composite maps
were generated using UCSF Chimera (PMID: 15264254). Representative maps have been
deposited to the Electron Microscopy Data Bank (see STAR Methods).

Single Genome Amplification and Env Evolution Analysis

Single genome amplification of viral RNA was performed as described previously®3. Briefly,
~20,000 copies of viral RNA were extracted from plasma using QIAamp Viral RNA kit (Qiagen)
and reverse transcribed using SuperScript Ill Reverse Transcriptase (Invitrogen). Viral cDNA
was then endpoint diluted and 3’ half genomes or viral env genes were amplified using nested
PCR with primers and conditions as previously reported (refs). Geneious software was used for
alignments and sequence analysis (see Table X for GenBank accession numbers of longitudinal
env gene sequences).

Bulk Repertoire Sequencing

Cryopreserved PBMC samples were thawed at 37°C and added into RPMI medium (Thermo
Fisher) supplemented with 5% FBS. Cells were centrifuged at 400 x g for 5 min, and the
supernatant was discarded. Cells were lysed and RNA was extracted using the RNeasy Plus
Mini Kit (Qiagen). Extracted RNA was used to synthesize cDNA using IgM and IgG reverse
transcription primers and SuperScript Ill enzyme (Thermo Fisher Scientific). cDNA products
were cleaned using ExoSAP-IT (Thermo Fisher Scientific) following a 2-step VDJ amplification
using HotStarTaq Plus (Qiagen). PCR products were enzymatically cleaned again and illumina
adapters and indexes were introduced via PCR. The final DNA libraries were SPRI-cleaned
(SPRIselect, Beckman Coulter Genomics) and quantified by concentration (Qubit, Thermo
Fisher Scientific) and size (Bioanalyzer, Agilent 2100). Libraries were loaded on a lllumina MiSeq
system using 2 x 300 bp read length.

Single B Cell Sequencing

Antigen-enriched B cell repertoires were sequenced using the 10x 5’V2 Single Cell Immune
Profiling kit per manufacturer’s instructions (10x Genomics) with the modification of custom NHP
primers for V(D)J amplification steps. Libraries were loaded on a Illumina MiSeq system using 2
x 300 bp read length and sequences were identified and analyzed using Cell Ranger.

B Cell Activation Assay

Antigen-specific B cells were sorted in 384-well plates for B cell culturing as previously described
(Zhao et al. 2022). Briefly, B cells were cultured with Iscove’s modified Dulbecco’s medium
(IMDM) supplemented with GlutaMAX (Gibco) and 10% FBS, 1x MycoZap Plus-PR (Lonza),
100 U/mL human IL-2 (Roche), 50 ng/mL human IL-21 (Thermo Fisher Scientific), 50 ng/mL
human IL-4 (Miltenyi), 0.1 ug/ mL anti-rhesus IgG (H + L) (BioRad), and irradiated 3T3msCD40L
feeder cells. After 14 days of incubation at 37°C, the supernatant was transferred to a new,
sterile 384-well plate for binding and neutralization experiments. Remaining B cells were lysed
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and mRNA was extracted using TurboCapture plates (Qiagen) according to manufacturer's
instructions. RT-PCR was performed using a Superscript IV reaction and IgH, IgK, and IgL
primers. Paired HC and LC sequences were amplified using nested PCR reactions and analyzed
by 2% 96 E-gels (Thermo Fisher Scientific) followed by sequencing (Eton Bioscience, San
Diego, CA).

Immunogenomics analysis

Repertoire sequencing reads were merged and processed using the DiversityAnalyzer®3tool.
The macaque database of germline immunoglobulin genes reported by’ was used for alignment
of repertoire sequencing reads and CDR labeling. VDJ sequences that have identical V and J
gene matches and HCDRS3s of the same lengths with at least 90% similarity were combined into
clonal lineages. Posttranslationally modified tyrosine sulfation sites were predicted using the
Sulfinator tool®**with the maximum E-value threshold equal to 30. Phylogenetic trees of the clonal
lineages were computed using the Clustal Omega tool®® and visualized using the Iroki tool®6).
Statistical tests were performed using the following Python packages: NumPy (v1.20.3), SciPy
(v1.6.0), scikit-learn (v0.24.2), statsmodels (v0.12.2).

Structure Prediction and Visualization

The structure for heavy chain sequences of all expressed mAbs from infected RMs, PGT145,
and PG9 were predicted with ColabFold’®. The alignment was prepared using MMseqs2®
PDB100 was used as the template database. The structure prediction was carried out with
alphafold2_ptm as the model with 3 recycles and max MSA of 512:1024. The structures were
visualized in UCSF ChimeraX’’.

Env SGS, NGS, and LASSIE analysis

SGA sequence alignment and analyses using LASSIE and hypervariable loop characteristics
was performed as previously®3. Briefly, Gene Cutter
(https://lwww.hiv.lanl.gov/content/sequence/GENE _CUTTER/cutter.html) from the Los Alamos
HIV Database was used to isolate the Env genes and an automated codon-alignment spanning
all time points from all RMs was obtained, which was with further refined by manual curation
(particularly in the hypervariable loop regions). LASSIE °” was used to identify Env sites under
putative selection pressure using a pre-specified criterion of 50% or more mutation away from
the TF sequence at any time point in each RM. Hypervariable V5 loop characteristics for each
time point from each RM were calculated using Variable Region Characteristics webtool from
the Los Alamos HIV Database
(https://lwww.hiv.lanl.gov/content/sequence/VAR_REG _CHAR/index.html) by assuming that
hypervariable V5 loop spans from HXB2 site 460 up to 465. Sequence logos were generated
using Logomaker °8 (https://logomaker.readthedocs.io/en/latest/).

Given the volume of NGS sequences, it was not possible to use standard multiple alignment
tools even on sequences from the same RM and the same time point, and thus, the following
modified strategy was used. MACSEV2 % (https://www.agap-ge2pop.org/macse/) was used to
individually align each NGS sequence to the TF V1V2 region, using a custom Python script that
both initiated these runs and analyzed the results of each alignment. The vast majority of NGS
sequences had the same length as the TF or only showed deletions, both of which led to
straightforward alignment of the NGS sequences to TF and to each other. For a minority of
sequences (around 300-800 sequences out of ~44,000-136,000 of week 12 sequences from
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MT145 group), there were sizeable insertions (including frameshift mutations) to rule out
straightforward alignment; these were isolated and subjected to baseline alignment using
MACSEvV2 followed by manual refinement. In these sequence alignments, around 10-30
sequences per RM were found to have no homology to MT145 sequence, and were found to
map to other organisms using BLAST 1%; these reads were removed. The simpler alignment
(without any insertions) and the more complex alignments (with insertions) were then merged
together by matching the reference TF sequence from each alignment to obtain the full alignment
for all NGS sequences from the same time point for the same RM. These alignments were
subjected to a custom Python script to calculate per time point mutation frequency at each site
in the V1V2 region for each RM, and mutation frequencies at select V2 apex sites were
compared using two sided Wilcoxon rank sum test as implemented in Scipy
(v0.18.0)(www.scipy.org) and plotted using Matplotlib (v.1.4.2)(www.matplotlib.org).

EM Data availability

The structures presented in this manuscript can be found in the Electron Microscopy Data Bank
under accession codes EMD-41832, EMD-41833, EMD-41834, EMD-41835, and EMD-41836.
Heavy chain antibody repertoire sequencing reads were deposited to NCBI under accession
number PRINA1014130.
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1157 Figure 1. Resurfacing of SCIV expressed MT145 Envs redirects immune responses.
1158 (A) Generation of a SCIV construct that expresses SIVcpz Env ectodomains. The SIVcpz MT145
1159  vpu-env region (blue) was cloned into an optimized SHIV vector (LI, JVI) consisting of a
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SIVmac766 proviral backbone (grey) and HIV-1 derived tat and rev genes (red). SCIVs
expressing wildtype MT145 (n=3) as well as germline-targeting MT145K (n=3) and MT145K.dV5
(n=3) Envs were used to infect 9 naive Indian rhesus macaques.

(B) Plasma VRNA kinetics in group of RMs infected with SCIV.MT145 (red), SCIV.MT145K (blue)
and SCIV_MT145K.dV5 (green). Blood samples were initially collected at -1 (pre-bleed) up to
96 wpi.

(C) Serum ELISA binding titers in SCIV-infected animals against MT145K, MT145K.dV5,
CRF250, WITO, and BG505 Envs during the first 16 weeks of infection. A heatmap indicates
area under the curve (auc) values.

(D) Single genome sequencing (SGS) alignment of the env V5 region gene sequences for 2/3
RMs in each group. Sequence logos show the per time-point frequency of mutations away from
the TF sequence in the sequences from each RM. Red indicates negatively charged amino
acids, blue for positively charge amino acids and cyan for Asn in potential N-linked glycans. Grey
box indicates a gap.

(E) Structure of Mt145K Env with the V5 loop shown in red (PDB: 60HY).

(F) Plasma neutralization from SCIV_MT145 and SCIV_MT145K infected animals at 8 wpi (left)
and 12 wpi (right) against MT145K and MT145K.dV5 Env containing pseudoviruses.

(G) SGS alignment of the env V2 region gene sequences for 2/3 RMs in each group. Same
formatting as (D).

(H) Maximum per-time point mutation frequency for each RM for residues 160, 166, 169, and
171 from NGS sequencing analysis. Statistics measured using Wilcoxon rank sum test, two-
sided p value shown if p < 0.05 and are not corrected for multiple testing.

() MT145K trimer (PDB: 60HY) with mutations identified in the V2 region and C-strand colored
green, red, and blue for N160, K169, and K171, respectively. gp120, gp41, and surface glycans
shown in light grey, dark grey, and purple, respectively.
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Figure 2. MT145, MT145K, and MT145K.dV5 trimers bind to digested Fabs from SCIV-
infected animal sera.

3D reconstructions generated from negative stain electron microscopy epitope mapping
(EMPEM) of serum Fabs from SCIV-infected rhesus macaques at week 12 time point. The Env
corresponding to the SCIV Env was used for complexing. Fabs colored based on epitope, with
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V1/V2 (apex) in green, C3/V5 in blue, and gp41 in yellow. Top row shows SCIV_MT145 Envs
bound to Fabs at the C3/V5 region (blue) and apex adjacent sites (green). Center row shows
SCIV_MT145K Envs bound primarily to C3/V5 Fabs (blue). Bottom row shows
SCIV_MT145K.dV5 Envs bound to apex adjacent (green), C3/V5 (blue), and gp41 (yellow) sites.
Representative maps have been deposited to the Electron Microscopy Data Bank (see STAR
Methods).
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(A) Experimental pipeline to determine repertoire and antigen-specific B cell responses as well
as antibody characterization in rhesus macaques infected with SCIVs.

(B) Number of lineages with long (=24 aa) HCDR3s in isotype-switched IgG sequences at all
time points for all 9 rhesus macaques.

(C) Fraction of the total number of lineages with long HCDR3s in isotype-switched 1gG
sequences.

(D) Total number of lineages with long HCDR3s that feature anionic, sulfated tyrosines in IgG
sequences. Sulfated Ys were predicted using the Sulfinator prediction tool with a default E-value
set to 30.

(E) The percent of total lineages with HCDR3s that are long with predicted Y sulfations by group
for all time points combined together.

(F) Circular phylogenetic trees featuring all clonally expanded (defined as =210 sequences)
lineages with long HCDR3 for all nine animals. Inner trees are colored red for IgG sequences
and blue for IgM. The first inner circle represents unique lineage clusters. The second inner circle
defines the time point in which the sequence was identified. The last two circles represent the
V-region somatic hypermutation and sulfated Ys shown in gradients of purple and green,
respectively.

(G) Percent of lineages that feature HCDR3s with predicted Y sulfations for long (top) and short
(bottom) HCDR3s at each time point.
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Figure 4. Antigen-specific IgG B cell lineages match features found in repertoire analysis.
(A) MT145, MT145K, and MT145K.dV5 probes were used to sort all antigen-specific IgG (+) IgM
(-) B cells from week 12 samples for single cell sequencing.

(B) Sorting analysis showing the percent of total B cells from each group that is specific for one
or more Env from each group.

(C) The total number of lineages identified from single cell analysis per group (top) or the total
number of lineages with long HCDR3s (bottom).

(D) Distribution of HCDR3 lengths in the fraction of lineages from antigen-sorted B cells (green)
and those from total repertoire analysis (orange). Long HCDR3s (residues 24 aa or longer)
enlarged on the right panel.

(E) Percent of all (top) lineages or lineages with long HCDR3s (bottom) that use certain IGHD
genes by group.

(F) Percent of all (blue) lineages or lineages with long HCDR3s (orange) that use certain IGHD
genes from all nine rhesus macaques.

(G) Reading frame used by IGHD genes in antigen-sorted B cell sequences from all animals.
(H) Percent of lineages with sulfated Ys located in all (top) or long (bottom) HCDR3 sequences

by group.
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(I) Percent of lineages for all (top) or long (bottom) HCDR3s that are also present in the overall
repertoire by lineage size.

P-values showing pairwise differences between percentages of lineages with long CDR3s
across all time points. P-values were computed using the one-way ANOVA test. (*P < 0.05; **P
<0.01)
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Figure 5. Binding mAbs from antigen-sorted B cells from SCIV_MT145K.dV5 animals are
biased for long HCDR3 and IGHD3-09 gene usage.

(A) lllustration of experimental design for isolating antigen-binding mAbs from B cells. Week 16
SCIV_MT145K.dV5 infected PBMC samples were sorted for antigen-specific IgG(+) B cells
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using MT145K.dV5 probes and cultured in 384-well plates for activation and mADb
characterization.

(B) Pie plots depicting total (red) and MT145K.dV5-specific (blue) mAbs isolated and
characterized from cultured B cell supernatants. Upset plot showing intersecting sets of binding
and neutralization properties as well as set count (histogram). HCDR3 lengths (red) and SHM
levels (blue) are shown as categorical plots above each set.

(C) Distribution of HCDR3 lengths in the fraction of lineages from antigen-sorted B cell cultures
at week 16 (red) and those from total repertoire analysis preinfection (purple) and at week 16
(green).

(D)Alignment of representative sequences from long HCDR3 mAbs that bind to MT145K.dV5
and use IGHD3-09 gene.

(E) Circular bar plots representing HCDR3 lengths for IGHV, IGHD, and IGHJ gene sequences.
Genes are color coded and enriched genes are individually labeled.

(F) HCDRS3 lengths from sequences that use or do not use IGHD3-09 gene from all three
SCIV_MT145K.dV5 animals at week 16.

(H) Fraction of all long HCDR3s present in the repertoire prior to and 16 wpi compared to
antigen-sorted B cells at week 16.

Fraction of long HCDR3s with anionic features and predicted Y sulfations in the repertoire prior
to and 16 wpi compared to antigen-sorted B cells at week 16.

(I) Fraction of long HCDR3s using the IGHD3-09 gene present in the repertoire prior to and 16
wpi compared to antigen-sorted B cells at week 16.
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1275  Figure 6. Select mAbs from antigen-sorted B cells from SCIV_MT145K.dV5 animals have

1276 V2 apex binding characteristics.

1277  (A) Phylogenetic tree for isolated antigen-binding mAbs expressed from B cells isolated at week
1278 12 (tan) and 16 (maroon) time points for MT145K.dV5 animals. Grey and black circles at lineage
1279 terminals represent mAbs isolated using 10x Chromium or B cell culturing, respectively. HCDR3
1280 sequences with IGHD regions highlighted in grey, pink, or aqua shown. ICso values for mAbs
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against MT145K.dV5, MT145K.dV5-gp120, and MT145K.dV5-N160K shown in columns 1-3.
Sulfotyrosine analysis using BLI (mean response) for each mAb shown in column 4. Column 5
and 6 show V gene and D gene usage, respectively. Last column shows a heatmap of V gene
SHM levels per mAD.

(B) Pairwise relationship across MT145 variants for all antigen-specific mAbs. The center
diagonal subplots show histogram distributions for each MT145 variant, and the off-diagonal
plots show binding correlation across different SOSIPs. All values obtained from BLI responses
using mADb Fc capture biosensors and are from 12 and 16 wpi samples shown in tan and maroon,
respectively.

(C) Structural prediction of antigen-specific HC mAbs with hammerhead-like (top) and needle-
like (bottom) HCDR3 conformations using ColabFold. Select mAb HCs 48 and 28 with
hammerhead-like HCDR3s are shown in the top row and select mAb HCs 18 and 23 with needle-
like HCDR3s are shown in the lower row.
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1296  Supplementary Figure 1. Autologous and heterologous neutralization of longitudinal plasma
1297 samples from RMs infected with (A) SCIV_MT145, (B) SCIV_MT145K and (C)
1298 SCIV_MT145K.dV5. Reciprocal 50% inhibitory dilutions (IDso) are shown for autologous
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(SCIV_MT145K and SCIV_MT145K.dV5) and heterologous (tier 1 and tier 2) viruses
representing different HIV-1 subtypes (A, AG, AE, AC, B, C, BC, G; indicated below virus name),
with no reactivity observed against a murine leukemia virus (MLV) Env control (all IDso <1:20).
One N160K mutant was also tested (CRF250_N160K). Coloring indicates relative neutralization
potency. Both Env pseudoviruses (tier 1 and tier 2 global panel) and replication competent SHIV
strains were tested. Asterisks denote rapid progressor animals that were euthanized prior to
week 88.
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1308  Supplementary Figure 2. Env evolution in the V5 region in MT145 (left), MT145K (center), and
1309 MT145K.dV5 (right) SCIV infected rhesus macaques. Sequence logos show the per time-point
1310 frequency of Env mutations away from the TF sequence using the SGS sequences from each
1311 RM. The horizontal axis labels are HXB2 numbers of sites, with gaps relative to HXB2 indicated
1312 by letters appended to the immediately preceding HXB2 number (e.g. 462a). O=glycan. Colors:
1313  O=cyan, DE=red, HRK=blue.
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Supplementary Figure 3. Longitudinal alignment-free hypervariable V5 loop characteristics for
all three groups. Changes in V5 length (purple, left), charge (orange, center), and glycans (green,
right) in the hypervariable V5 loop were determined by SGA sequence analysis. The distributions
of each characteristic for sequences from each time point and each RM are shown using violin
plots with black dots indicating medians, the vertical lines indicate the inter-quartile range (25"
to 75™ percentile). Median points are connected with black lines.
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Supplementary Figure 4. Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution
(LASSIE) selected sites for each RM. LASSIE using the TF loss criterion of 50% or more was
applied to SGS data from each RM. Logo plots are shown for identified sites per RM, with the
transmitter/founder (TF) amino acid sequence shown in the first row. O=glycan. Colors: O=cyan,
DE=red, HRK=Dblue.
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Supplementary Figure 5. Germline-binding potential of SCIV_MT145, SCIV_MT145K and
SCIV_MT145K.dV5. Neutralization curves depicting the sensitivity of SCIV_MT145 (red
squares), SCIV_MT145K (green triangles), SCIV_MT145K.dV5 (purple triangles) and MLV
(open circles, for control) to the RUA or iGL of the human V2-apex bnAbs CH015%°, PG921:74,
PG1674, PCT64%, and VRC26' and the rhesus V2-apex bnAb RHA1%3. Dashed lines indicate
50% reduction in virus infectivity (the antibody concentration is shown on the x-axis in mg/ml).
RUA, reverted unmutated ancestor; iGL, inferred germline; UCA, unmutated common ancestor.
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1341  Supplementary Figure 6. Env V2 region evolution for MT145 (left), MT145K (center), and
1342  MT145K.dV5 (right) groups. Sequence logos show the per time-point frequency of Env
1343  mutations away from the TF sequence using the single genome amplification sequences (SGA)
1344  from each RM. The horizontal axis labels are HXB2 numbers of sites. O=glycan. Colors: O=cyan,
1345 D,E=red, H,R,K=blue.
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1348  Supplementary Figure 7. Mutation frequency at key V2 apex sites using NGS sequencing data.
1349  Top row: time course of mutation frequency for each RM at each site. Bottom row: comparison
1350 of mutation frequency at each site at week 8 across RMs. Each color is based on the SCIV group
1351 (red=MT145, blue=MT145K, and green=MT145K.dV5) and each line representing an individual
1352 animal is shown with a unique symbol. Significance of difference in frequency in bottom row
1353  calculated using Wilcoxon rank sum test, with two-sided uncorrected p < 0.05 shown.
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Supplementary Figure 8. Longitudinal anaIyS|s of long HCDR3 lineages across MT145, MT145K,
and MT145K.dV5 groups. The fraction and number of lineages containing long HCDRS3, long
anionic HCDR3, long sY HCDR3, and long anionic sY HCDR3s are shown in the top and bottom
rows, respectively. P-values showing pairwise differences between percentages of lineages with
long CDR3s across all time points. P-values were computed using the linear mixed model. (*P

<0.

05; **P < 0.01)
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Supplementary Figure 9. Longitudinal analysis of percentage of expanded lineages derived from
IGHD3-9 (A) and HCDRS3 length (B) across groups. P-values showing changes across time
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points were computed using the linear mixed model. (*P < 0.05;**P < 0.01;**P < 0.001).
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Supplementary Figure 10. Repertoire analysis of longitudinal IGHD gene usages across groups.
Percent of lineages with long HCDR3s containing specific IGHD genes for all animals in MT145,
MT145K, and MT145K.dV5 groups (A) prior to infection and (B) 16 wpi. (C) Percent of lineages
in long HCDR3s across groups for all time points containing (C) IGHD3-3, (D) IGHD3-16, (E)
IGHD3-28, and (F) IGHD6-25. P-values showing pairwise differences between percentages of
lineages with long CDR3s across all time points. P-values were computed using the lineage
mixed model. (*P < 0.05; *P < 0.01;***P < 0.001;****P < 0.0001).
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Supplementary Figure 11. Enrichment of ‘EDDY’ motif encoding IGHD3-9 in MT145K.dV5 group
animals (A) HCDR3s that use the IGHD3-09 gene that are clustered based on common amino
acid motifs are reparented as sequence logo plots. The EDDY is conserved in the top 5 clusters
identified from the repertoire of SCIV_MT145K.dV5 infected rhesus macaques.

(B) Change in the percent of lineages with long HCDR3s for the top 5 D genes identified.

(C) Change in the percent of long HCDR3s that use the D3-09 gene over all time points.
P-values showing pairwise differences between percentages of lineages with long CDR3s
across all time points. P-values were computed using the linear mixed model. (**P < 0.01)
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Supplementary Figure 12. Frequencies of most prevalent V and D genes in short HCDR3
lineages presentin pre-infection repertoires do not change after infection. (A) Percent of lineages
with short HCDR3s that contain specific IGHV genes prior to infection. (B) Percent of short
HCDR3 lineages with IGHV4-117 across groups over time. (C) Percent of lineages with short
HCDR3s that contain specific IGHD genes prior to infection. (D) Percent of short HCDR3
lineages with IGHD3-9 across groups over time. P-values showing pairwise differences between
percentages of lineages with long HCDR3s across all time points. P-values were computed
using the linear mixed model. (*P < 0.05).
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Supplementary Figure 13. No significant difference in longitudinal V or D gene frequencies in
short HCDR3s across groups. Percent of lineages with short HCDR3s containing common V
genes (A) or D genes (B) prior to infection across groups over time. P-values were computed
using the linear mixed model.
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1403
1404  Supplementary Figure 14. Germline IGHD gene similarities across humans and macaques.

1405 (Left) Phylogenetic heatmap of germline macaque IGHD genes on the horizontal axis against
1406 human germline IGHD genes on the vertical axis. Clusters of related genes are shown as a
1407  percent identifying color gradient. Red arrow indicates the RM IGHD3-09 gene. (Right) Human
1408 IGHD genes with similar anionic motifs characteristic of human and macaque V2 bnAbs.
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Supplementary Figure 15. Longitudinal repertoire analysis of IGHV gene usages across groups
reveals no enrichment of unique gene families or alleles.

(A) A heatmap of germline macaque IGHV gene usages across animals and time points. Rows
showing samples and columns showing IGHV genes of the heatmap are rearranged using
hierarchical clustering. Four IGHV genes with statistically significant associations with usages
across time usages or usages in short/long HCDR3s are shown on the top of the heatmap. The
scatterplot on the right shows the principal component analysis of the usage matrix shown on
the left. Principal components 1 and 2 are shown are x- and y-axes. Each point represents a
sample and is colored across the group. (B) enrichment of IGHV4-144 gene across time and
IGHV4-NL_17, IGHV4-NL_22, and IGHV4-NL_38 gene usage in short (<72 nt) and long (272
nt) HCDR3s in all animals. P-values showing pairwise differences between groups. P-values
were computed using the linear mixed model and the Kruskal-Wallis test (*P < 0.05).
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1424  Supplementary Figure 16. Top lineages from SCIV.MT145 infected animals containing long
1425 HCDRS3s. Isotype, timepoint, SHM and Y sulfation levels are shown on the right columns of each
1426 tree. HCDR3 sequences are shown above each phylogenetic tree.

1427  Supplementary Figure 17. Top lineages from SCIV.MT145K infected animals containing long
1428 HCDRS3s. Isotype, timepoint, SHM and Y sulfation levels are shown on the right columns of each
1429 tree. HCDR3 sequences are shown above each phylogenetic tree.

1430

63


https://doi.org/10.1101/2023.09.21.558743
http://creativecommons.org/licenses/by-nd/4.0/

1431
1432

1433
1434
1435

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.21.558743; this version posted September 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

43189, MT145KdV5 43359, MT145KdV5

MRS e ) ﬁmnanniaﬂmmﬂﬂw PRy MMMMM Mﬂﬂ@m

F

H%
g rrﬁrﬂ

Ml

e

T
TR FWTHW]—WFnI

Rus

=

Ymmms < sl sl s

E |

44092, MT145KdV5

Spnecieser  mowlbdisias sl

i ﬁ'HHn
a

. el | | —
= I =
= = — IgG — IgM
|&E | B B - - - =
= = —_— time points
sl esoeienaher IR 20| 30 EIRY 2| 3 |
R o V SHMs sulfated Ys

Supplementary Figure 18. Top lineages from SCIV.MT145K.dV5 infected animals containing
long HCDR3s. Isotype, timepoint, SHM and Y sulfation levels are shown on the right columns of
each tree. HCDR3 sequences are shown above each phylogenetic tree.
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1436
1437  Supplementary Figure 19. Antigen-specific repertoires are skewed for D gene ORFs enriched in

1438 tyrosine residues. (A) The fraction of lineages corresponding to D gene ORFs with 0, 1, ..., 6
1439 tyrosines. Each fraction was computed with respect to the number of lineages derived from a
1440 given D gene. (B) Three D gene ORFs were sorted in the descending order of the number of
1441 tyrosines in them, and ranks 1, 2, 3 were assigned to the ORFs with highest, medium and lowest
1442  numbers of tyrosines, respectively. The plot shows the fractions of lineages for D gene ORFs
1443  with ranks 1-3. P-value was computed using the Kruskal-Wallis test. (****P<0.0001) (C) ORFs
1444  of D genes with top five usages. The numbers before and in the parenthesis show the ORF
1445 number and the ORF rank, respectively.
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Supplementary Figure 20. Antigen-specific IgG B cell lineages match features found in repertoire
analysis.

(A) Total number of lineages from antigen-sorted B cells that match sequences in the bulk
repertoire for all (top) or long (bottom) HCDR3.

(B) Phylogenetic trees for expanded lineages in SCIV_MT145K.dV5 and SCIV_MT145K animals
with repertoire sequence matches. Isotype, timepoint, and SHM and Y sulfation levels are shown
on the right columns of each tree. HCDR3 sequences are shown above each phylogenetic tree.
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Supplementary Figure 21. Structural prediction of antigen-specific mAb HCs. Antibodies with
hammerhead-like (top) and needle-like (bottom) HCDR3s are shown. PG9 (3U2S) and PGT145
(3U1S) HC structures are shown on the left for comparison.
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