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Abstract

The hypothalamus is a brain region that plays a key role in coordinating fundamental biological
functions. However, our understanding of the underlying cellular components and circuitry, have, until
recently, emerged primarily from rodent studies. Here, we combine a single-nucleus sequencing
database of 433,369 human hypothalamic cells, with spatial transcriptomics, to present a
comprehensive spatio-cellular transcriptional map of the human hypothalamus, the ‘HYPOMAP’.
Analysing hypothalamic leptin melanocortin pathway neuronal populations that play a role in appetite
control, we identify spatially distinct populations of arcuate nucleus POMC and AGRP neurons, and
their receptors MC3R and MC4R. Next, we map the cells expressing incretin receptors, targets of the
new generation of anti-obesity medications, and uncover transcriptionally distinct GLP1R and GIPR-
expressing cellular populations. Finally, out of the 458 hypothalamic cell types in HYPOMAP, we find
182 neuronal clusters are significantly enriched in expression of BMI GWAS genes. This enrichment is
driven by 375 ‘effector’ genes, with rare deleterious variants in 6 of these; MC4R, PCSK1, POMC,
CALCR, BSN and COROI1A, the last of which has previously not been linked to obesity; being
significantly associated with changes in BMI at the population level. Thus, the HYPOMAP provides a
detailed atlas of the human hypothalamus in a spatial context, and serves as an important resource
to identify novel druggable targets for treating a wide range of conditions, including reproductive,
circadian, and metabolic disorders.
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Introduction

The hypothalamus is a brain region that plays a key role in coordinating fundamental biological
functions, including maintaining body temperature, sleep, thirst, and energy homeostasis, as well as
regulating sexual and parental behaviour, response to stress, and circadian rhythms. Yet in spite of its
importance, the inaccessibility of the human hypothalamus has meant that, to date, our
understanding of its architecture, has emerged primarily from rodent studies.

For instance, while human genetic studies have uncovered many of the major components of the
hypothalamic appetitive  and reproductive 2 control pathways, it has only been possible to illuminate
their underlying cellular components and circuitry through detailed neuroanatomical mapping studies
in mice. The fat sensing leptin-melanocortin pathway, which comprises agouti-related peptide (AgRP)-
and pro-opiomelanocortin (POMC)-expressing neurons in the hypothalamic arcuate nucleus (ARC),
acting through intra- and extrahypothalamic projections to control food intake and energy
expenditure, is a case in point. We know that it plays a key role in the control of appetite because
genetic disruption at all levels of the pathway results in severe obesity, not only in humans and mice,
but in many other vertebrate species as well 3. Recently we found that the leptin-melanocortin
pathway also plays important roles in linear growth and pubertal onset, via the melanocortin 3
receptor (MC3R) %. However, our understanding of the melanocortin neurocircuitry is largely derived
from functional studies in mice 3.

Despite the paucity of knowledge about the human hypothalamic circuitry, currently licensed
therapies that reduce food intake, including semaglutide > and tirzepatide ©, primarily target the
hypothalamus 7 and hindbrain 8. Semaglutide is a glucagon-like peptide-1 receptor (GLP1R) agonist,
and tirzepatide a GLP1R/gastric inhibitory polypeptide receptor (GIPR) co-agonist, and both are
thought to mediate their effects on appetite, at least in part, via POMC neurons ’. However, studies
supporting these modes of action are largely derived from studies in mice 7°. Additionally,
setmelanotide, an MC4R agonist that targets the melanocortin system itself, has recently been
approved for rare genetic causes of obesity ¥°. Given the therapeutic focus on the hypothalamus,
enhancing our understanding of its human-specific architecture is crucial.

Over the past decade, access to fresh frozen and fixed human donor brain samples from brain banks
has markedly improved !. These precious samples, coupled with developments in droplet single-
cell/nucleus sequencing and spatial transcriptomic technologies, have provided us the opportunity to
map the functional architecture of the human hypothalamus. Following on from our generation of a
unified murine hypothalamic single cell database ?, here, we have integrated single nucleus RNA
sequencing (snRNAseq) data from 433,369 hypothalamic cells with spatial transcriptomics to create a
comprehensive spatio-cellular map of the human hypothalamus, the HYPOMAP. This resource has
allowed us to uncover previously unappreciated spatial heterogeneity of non-neuronal hypothalamic
cell-types, and provided the opportunity to delineate the spatial context of neuronal populations, such
as those expressing components of the leptin-melanocortin pathway and GLP1/GIP receptors, both
targets of current anti-obesity therapeutics. Finally, HYPOMAP has provided a framework for the
integration of population level genetic data, which we show here for BMI associated genes, allowing
us to identify new components in the regulation of body-weight. Thus, this new open-access resource
will be vital in our understanding of the human hypothalamus and facilitate the identification of novel
druggable targets for treating a wide range of conditions, including reproductive, circadian, and
metabolic disorders.
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Results
HYPOMAP captures 433K human hypothalamic cells

We collected fresh frozen hypothalamic tissue from eight brain donors of normal BMI (range 18-28,
clinical data shown Supp Table 1), and performed snRNASeq (see Methods). We and others have
previously shown snRNASeq produces comparable data to single-cell RNA sequencing (scRNASeq) %13,
thus allowing us to work with frozen archival samples. After quality control steps (see Methods), we
captured 311,964 nuclei with an average of 4541 + 10.6 (mean * SEM) counts detected per nucleus
(mean 2040 + 2.4 genes per nucleus). In addition, we extracted the expression matrix for 121,405
nuclei (20,331 + 55.9 [mean + SEM] counts detected and 5097 + 7.1 genes per nucleus) from the
hypothalamic regions of three separate donors, captured in the publicly available whole-brain dataset

(Siletti et al, https://doi.org/10.1101/2022.10.12.511898) (Supp Table 1). We integrated the two

12,14

datasets via scvi-tools to correct for donor and study heterogeneity , and generated a reference
single-cell database of the human hypothalamus consisting of a total of 433,369 nuclei, we call the
human ‘HYPOMAP’ (Extended Data Figure 1, 2). A uniform manifold approximation plot (UMAP) is
shown in Figure 1A, illustrating the different major cell types identified from the human
hypothalamus. Here, we examined the expression of key transcription factors, used as regional

markers, demonstrating our dataset indeed spans the hypothalamus (Extended Data Figure 3).
Flexible cell-type classification via multi-level hierarchical clustering

HYPOMAP comprises 166,475 neurons (NE), 175,109 oligodendrocytes (Oligo), 61,579 astrocytes
(Astro) and 30,206 cells from other non-neuronal (NN) cell types (Figure 1A). Here, we adopted a
multi-level (granularity) hierarchical clustering strategy by coupling leiden and multi-resolution tree
(mrtree) algorithms, to enable flexibility in cell-type classification and ensure optimal granularity for
downstream analyses of specific populations (see Methods for details). The final circular dendrogram
(tree) consists of 7 levels and 458 clusters (levels CO-C5 in Figure 1B to preserve visibility, C0=4, C1=12,
C2=29, C3=59, C4=134, C5=265, C6=458). Cluster nomenclature was determined based on the most
informative marker gene exhibiting the largest global differences to all clusters, and local differences
to its sibling clusters; if a marker gene could not be determined, clusters were manually named with
their common names, or a sequential number. All marker genes are labelled on the tree edges (Figure
1B). At cluster level C1, hypothalamic neurons are segregated into 5 sub-populations, largely following
their broad anatomical origin, from the preoptic/anterior (Pre), middle (Mid) to the posterior (Post)
hypothalamus (Figure 1A). Mid hypothalamic neurons exhibit a higher level of heterogeneity
compared to other regions, and a larger number of clusters in the tree (Figure 1A,B).

To illustrate the functionality of our atlas, we have focused on a subset of SIM1 neurons at level C3 as
an exemplar, highlighted in blue in Figure 1B and red in Figure 1C (inset). These neuronal populations
are marked with expression of STK32B (Figure 1C). They are segregated into 4 different classes at the
next level C4, one of which has high expression of AVP. Moving to level C6, and these neurons are
divided into 5 further populations, driven by the expression of NTS, CARTPT, CALCR, SCGN, RORB and
ONECUT, all showing distinct clustering on the UMAP (Figure 1C).

Spatial cellular mapping via the integration of spatial transcriptomics and snRNAseq

Next, using Visium technology (10X Genomics), we performed high-resolution spatial transcriptomic
profiling of 7 hypothalamic sections from 5 donors, covering the preoptic/anterior, middle and the
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posterior hypothalamus (regional annotation shown in Figure 2A). An example of the data-output can
be seen in a mid-hypothalamic section (the third section in Figure 2A), where we can discriminate
spatially-restricted expression of VGLUT2 (SLC17A6) and VGAT (SLC32A1), which corresponds to the
excitatory glutamatergic neurons concentrated within the ventromedial hypothalamus (VMH), and
the inhibitory GABA-ergic neurons in the arcuate nucleus (ARC) respectively (Figure 2B). The region-
specific expression of transcription factors TBX3, FEZF1, and SIM1, which mark the ARC, VMH and PVN
respectively on the same section, are also clearly illustrated (Figure 2C).

Because Visium technology does not achieve single-cell resolution (each spot typically covering 1-10
cells), we integrated the spatial transcriptomics and snRNAseq data using cell2location, a Bayesian
model-based package >, to spatially map cell clusters at all levels in the snRNAseq, to the
hypothalamic sections shown in Figure 2A. Figure 2D showcases the spatial mapping of VMH cell
clusters identified in the snRNAseq data. At C6 level, we identify 16 VMH neuronal populations. Here,
they all show distinct mapping in the VMH (Extended Data Figure 4). 4 clusters, C6-237, C6-243, C6-
247 and C6-249 (highlighted in 2D dendrogram) and their mapping in the VMH are shown in the
mediobasal hypothalamus section in Figure 2D.

To identify tissue regions in which sets of snRNAseq clusters consistently map to, we performed leiden
clustering on the cell abundance values of each cluster (at C6 level) in each Visium spot (Figure 2E).
Through this, we identified 30 clusters, which were annotated based on the hypothalamic regions in
which the majority of spots were located. Of note, we identified clusters for the ARC, VMH, PVN/SON,
lateral tuberal nucleus (LTN), median eminence (ME), tuberomammillary nucleus (TMN), as well as
clusters in predominantly non-neuronal regions e.g fornix and optic tract. Tables displaying the
average cell abundance of each snRNAseq cluster (at levels C1:C6) within each spatial cluster can be
found in Supp Tables 9-14.

Distinct spatial mapping of non-neuronal populations in the hypothalamus

Non-neuronal cells such as astrocytes, oligodendrocytes, and tanycytes have been historically
understudied. While less heterogeneous than their neuronal counterparts, single cell approaches have
still revealed considerable diversity . Here, we characterised the non-neuronal cell populations in
the human hypothalamus. According to the snRNAseq data, hypothalamic astrocytes are broadly
divided into two major populations, each marked by EPHA6 and TSHZ2. They further split into 7 sub-
populations (C3-47: Astro_EPHA6, C3-48: Astro_TSHZ2 ITPRID1, C3-49: Astro_TSHZ2 ALDH1A1, C3-
50: Astro_TSHZ2_GABBR2_HESS5, C3-51: Astro_TSHZ2_GABBR2_SERPINA3, C3-52:
Astro_TSHZ2 CCDC85A_MT1G, C3-53: Astro_TSHZ2 CCDC85A_HS6ST3) at level C3. These all show
spatially distinct patterns of expression in the hypothalamus (Extended Data Figure 5A). Similarly, we
found distinct populations of oligodendrocytes (C2_29 Oligo_OPALIN) and (C2_28 Oligo_ACSBG1)
located in the anterior commissure (ac) and the optic chiasm in the anterior hypothalamus
respectively, but they are more intermixed in the lateral preoptic area (LPOA, Extended Data Figure
5B). Ependymal cells also showed different localization on the hypothalamic sections. In Extended
Data Figure 4C, we show that the 3™ ventricle (3V) was lined with DTHD1-expressing ependymal cells
(C4-94: NN_1 Ventricular_Ependymal _DTHD1), while the tanycytes (C4-95:
NN_1 Ventricular_Ependymal_Tanycytes) were mapped to two locations in the MBH: at the base of
the 3V and in the median eminence.
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18 previously demonstrated discrete subpopulations of tanycytes in the

Campbell and colleagues
mouse hypothalamus. While our NucSeq data did not capture sufficient tanycytes (~100 cells) to
differentiate between subtypes in humans, we did observe different patterns of expression of CRYM
and FRZB in the median eminence (Extended Data Figure 5D). We additionally looked further into
expression of tanycyte and ependymal marker genes in the spatial transcriptomics dataset. We see
concentrated levels of expression of DIO2 and FZD5 below the third ventricle and in the median
eminence region, however expression of STOML3 and LPAR3 showed distinct expression in spots lining
the entirety of the walls of the third ventricle, suggesting that these are ependymal cell markers

(Extended data Figure 5D). We confirmed these findings using RNAscope.
Human hypothalamic leptin-melanocortin system

Insights from human and mouse genetics have illuminated the central role of the hypothalamic leptin-
melanocortin pathway in the control of mammalian food intake, with genetic disruption resulting in
extreme obesity, and more subtle polymorphic variation influencing the population distribution of
t 1,3

body-weigh . Here, we examined the transcriptomic profiles, as well as the spatial localisation of

leptin-responsive melanocortin neurons in the human hypothalamus.

We first focused on neurons expressing POMC, the gene encoding the melanocortin peptides. At the
highest granularity level C6, we discovered six clusters of POMC-expressing neurons (Figure 3A, cut
off: POMC+ clusters in the 99" percentile), and five out of six clusters are mapped to the ARC (C6-278,
C6-279, C6-280, C6-289 and C6-283; extended data figure 6A,B,E). Of these, 3 clusters displayed higher
average expression of POMC (C6-278, C6-279 and C6-280, highlighted on Figure 3A). C6-278 (NE-mid-
1_3_TBX3_POMC_LEPR) has the highest level of POMC expression (Figure 3B), and LEPR is one of the
key markers for this cluster and is detected in 80% of neurons, with 68.12% of cells in this cluster co-
expressing POMC and LEPR. The spatially mapped POMC clusters show distinct patterns of localisation,
with the canonical POMC/LEPR neurons located adjacent to the median eminence, and the
POMC/CALCR neurons closest to the 3™ ventricle (Figure 3C).

On the other hand, when examining clusters in the top 99" percentile of AGRP expression, we
identified five clusters (Figure 3A,B, extended data figure 6C,D,F), four of which are located within
the ARC/MBH (C6-260, C6-212 shown in Figure 3D, others in Extended Data Figure 6). The cluster with
the highest level of AGRP C6-260 (NE_Mid_1 3 OTP_SOX5_AGRP) co-expresses NPY and is GABA-
ergic, are likely the canonical AGRP/NPY neurons. Interestingly, we also detect low grade AGRP
expression in C6-212 and C6-196 in the ARC that co-express GHRH and GAL and GHSR; and in C6-396
neurons in the PVN that co-express AVP, CARTPT and TRH, but we could not validate the presence of
any AGRP transcripts in the PVN using spatial transcriptomics, or RNAScope (Figure 3E).

In contrast to the neuropeptidergic melanocortin neurons, the melanocortin receptors MC4R and
MC3R are more diffusely expressed in the snRNAseq and spatial transcriptomics datasets (extended
figure 7). To characterise populations expressing these receptors, we looked at clusters in the 98"
percentile of MC3R and MC4R expression. MC4R expression is found in 10 clusters, with >20% of cells
expressing MC4R (Figure 3F, Extended data figure 7A,B). The receptor is highest expressed in C6-43
(NE_PRE_1_MYO16_CXCL14_CAV1) and is detected in 49% of the cells within the cluster. However,
this cluster did not map to our spatial transcriptomics dataset (Figure 3F; extended data figure 7A,B).
One of the MC4R clusters also expresses SIM1 (C6-407), indicating they might originate from the PVN,
SON or mamillary region; but similarly the spatial mapping of this cluster was not reliable. Of the top
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10 MC4R clusters, only 3 show appreciable mapping, and these are the cholinergic cluster C6-112, the
SKOR2-expressing cluster C6-224, and the GLI3 expressing cluster C6-181, which are mapped to the
LPOA, the medial preoptic area (MPOA), and the intermediate nucleus of the hypothalamus (IMH)
respectively, in the anterior hypothalamus (Figure 3F).

Previously, we have shown that MC3R is expressed by ARC GHRH and KISS1/TAC3 neurons in both
mice and humans ®. Here, MC3R expression is detectable in two GHRH (C6-196, C6-212) and two KISS1
(C6-288, C6-291) populations (Figure 3G). Spatial mapping of MC3R with the GHRH neurons (C6-196,
C6-212) and the KISS1 populations show overlapping localisation in the ARC (Figure 3G, Extended data
figure 7C,D). We also identified a cluster of MC3R neurons that co-expresses PGR and CALCR, mapping
near to the KISS1 neurons in the ARC (C6-289) (Figure 3G). Of the top 10 MC3R expressing clusters, 9
mapped to the ARC, and 2 of these clusters are POMC clusters (Figure 3G, Extended data figure 7).
Interestingly, we identify a population of VMH neurons that express MC3R: C6-243, which we have
shown maps to the medial region of the VMH (Figure 2D).

Thus, these data provide a detailed expression profile of the human melanocortin neurocircuitry for
the first time.

Incretin Receptors in the human hypothalamus

Next, we turned our attention to the receptors of the incretin hormones GLP-1 and GIP, with both

GLP1R and GIPR being targets for type 2 diabetes mellitus and obesity therapeutics *°

including
semaglutide ° and tirzepatide ®. GLP1R is expressed in various tissues including the pancreas, stomach,
intestine and heart, and it is also found in the hypothalamus and the hindbrain, amongst other brain
regions 2°. There is growing evidence that GLP1 analogues such as liraglutide and semaglutide exhibit
their weight-loss effects through activation of their receptors expressed in the hypothalamus and

hindbrain, including by directly acting on POMC neurons in the ARC .

Defining clusters in the 98™ percentile of GLPIR expression, we identify 10 neuronal clusters. Three
of the clusters (C6-414, C6-413, C6-396) express SIM1 and AVP (Figure 4A,B). C6-414 (NE_Mid-
2_SIM1_SCGN_EBF3_AVP) has the highest expression of GLP1R and the transcript is detected in 77.9%
of the neurons within the cluster. Interestingly, we also detected co-expression of GLPIR and GIPR in
25% of cells within this cluster. All three SIM1/AVP clusters show overlapping mapping in the spatial
data and they are mapped to the PVN and SON (C6-414 shown in Figure 4C, others shown in Extended
Data Figure 8A-C). GLPIR is also detectable in 21.98% of POMC/LEPR neurons (C6-278) in the ARC
(Figure 4C). It has been shown in the mouse hypothalamus that Pomc/Glp1r and Pomc/LepR neurons
are two distinct populations in the hypothalamus #%, Of note, nearly all POMC/GLP1R neurons in this
cluster (19.81% of whole cluster) also co-expressed LEPR transcripts, demonstrating differences in
anorexigenic POMC populations between mice and human. A third population of interest is a
GABAergic population of SST and CALCR co-expressing neurons (C6-209, mapping to the MBH, but
outside of the ARC (Figure 4C). We performed orthogonal validation by single-molecule in-situ
hybridisation to confirm the co-expression of AVP+GLP1R, POMC+GLP1R, SST+CALCR+GLP1R (Figure
4C). C6-285 are TBX19-expressing neurons demonstrating some mapping to the MBH, while C6-198
are NKX2-4 and TRH-expressing neurons from the periventricular hypothalamus, both of which were
shown to express Glp1rin mice 2.

In contrast, GIPR is expressed in both neuronal and non-neuronal populations. They are co-expressed
with LMXI1A neurons (10 clusters, Figure 4A, Extended Data Figure 8C-E), and interestingly, we
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detected GIPR expression in mature oligodendrocytes that map to the fornix (FX) and the optic tract
(OT), and strikingly, the ependymal cells (C4-94) surrounding the 3" ventricle (Figure 4C). Collectively,
these data provide, for the first time, a high-resolution expression pattern of incretin hormone
receptors in both neuronal and non-neuronal cells in the human hypothalamus.

Hypothalamic neuronal populations are enriched for genes harbouring BMI-associated variants

Finally, we wanted to identify which hypothalamic cell types are implicated in the genetic regulation
of obesity. To do this, we first integrated HYPOMAP with data from a common variant GWAS of body
mass index (BMI) in up to 806,834 individuals ??, using CELL-type Expression-specific integration for
Complex Traits (CELLECT) 2% and Multi-marker Analysis of GenoMic Annotation (MAGMA) 2. We found
that 182 out of the 458 tested hypothalamic cell types showed significant enrichment in the BMI
GWAS signals (at Bonferroni corrected P<0.05/458, Figure 5A, Supplementary Table 15). The majority
of the enriched cell populations mapped to neurons in the middle hypothalamus (166/182), with a
few mapping to the anterior (18/182), posterior (1/182) and general hypothalamus (5/182). The most
significantly enriched neuronal cluster C6-179 (P=6.49x10-20) is an HMX3- and NPSR1-expressing
cluster from the IMH. Additionally, cluster C6-236, which maps to the lateral VMH and is marked by
FEZF1, NTNG1 and FAM9B was highly enriched in the BMI GWAS (5%, P= 2.31x10-18; see Extended
Data Figure 4 for mapping). Notably the SST-, CALCR- and GLP1R-expressing cluster C6-209 shown in
Figure 4C, also was highly enriched in the BMI GWAS (17th, P=1.28x10-14). Non-neuronal populations
did not show any enrichment in the BMI GWAS. We next sought to identify ‘effector’ genes which
might be driving these associations, defined as those in the 95"+ centile for cell-type specificity and
in the top 1000 MAGMA gene associations derived from the GWAS data (via CELLECT GENES). This
identified a total of 375 effector genes (Supplementary Table 16), the majority of which (362/375)
were identified as effector genes in neuronal populations and (290/375) in the BMI GWAS enriched
neuronal subpopulations.

To determine if disruption of these effector genes influences obesity risk at the population level, we
used exome-sequencing data from the UK Biobank study (n=419,692) 2°. We performed rare-variant
burden tests towards BMI for variants with a minor allele frequency <0.1% that were either protein
truncating (PTVs) or missense variants with a high CADD score (225, see Methods). We found that
carrying rare deleterious variants in 6 (of the 375) effector genes was significantly associated with
changes in BMI (at P<0.05/375, Figure 5B-G, Supplementary Table 17). Reassuringly, these included
well-established causes of monogenic obesity and previously reported associations; MC4R %%, PCSK1
2630 pOMC 3! and CALCR ?. However, our analysis also highlighted two new genes; BSN, a presynaptic
protein with a role in exocytosis-mediated neurotransmitter release 32 that we have recently shown is
associated with increased risk of severe obesity, NAFLD and T2D (Zhao, Chukanova et al,
https://doi.org/10.1101/2023.06.14.23291368), and CORO1A (n=415 carriers, B=0.98 +0.215,
P=5.6x10®), which encodes a WD repeat protein involved in cell cycle progression, signal transduction,

apoptosis, and gene regulation 3, a gene previously unlinked with obesity.
DISCUSSION

In functional hypothalamic research, the vast majority of ‘ground truths’ have, until recently, emerged
from murine neuroanatomical and functional studies. The maturation of single cell technologies,
coupled with the availability of relevant and precious donor samples, has ushered in a new era of
possibilities in human brain mapping. While there are ‘whole brain’ single cell datasets emerging, from
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both developing 3* and adult humans (Siletti et al, https://doi.org/10.1101/2022.10.12.511898), here
we provide a detailed, high resolution spatio-cellular map of the adult human hypothalamus.

It is the spatial element that provides a rich and novel dimension to the increasingly ubiquitous single
cell data. Often ignored non-neuronal cell types serve as prime example. The snRNAseq data reveals
seven different astrocyte and two different oligodendrocyte clusters, that HYPOMAP is actually able
to locate onto different areas within the hypothalamus (Extended data figure 5). Another advantage
of combining single cell and spatial data is emerging synergy of both technologies. Because the human
hypothalamic blocks used for snRNAseq typically arise from hemisected brains, the median eminence
tends to get lost in the process. Thus, tanycytes, which are enriched in the median eminence, are often
neglected in the snRNAseq data, with only ~100 cells identified. Yet, the expression profile of the
tanycytes can be clearly mapped onto the spatial whole transcriptome data (Extended Data Figure 5).

Then there is the central leptin-melanocortin appetitive control pathway, whose major components
were all uncovered more than 20 years ago using genetics 3, but whose mapping in the human
hypothalamus we finally reveal here for the first time. We are able to resolve spatially distinct
populations of POMC (Figure 3A-C), MC4R (Figure 3F) and MC3R (Figure 3G) neurons. With up to 0.3%
of the general population carrying pathogenic mutations in MC4R * and drugs on the market now
targeting this pathway, there has never been a more relevant time to increase our understanding
about this pathway in the human context.

The receptors du jour however, at least in terms of broadest societal relevance, are the incretin
hormone receptors, GLP1R and GIPR, both key targets for anti-obesity therapy development *°. Here
we are able to confirm that GLP1R in human hypothalamus is almost exclusively expressed in neurons,
and identify several separate populations, including one that co-expresses POMC and resides in the
ARC, and a number of AVP+ clusters mapping to the PVN and SON. In contrast, GIPR is expressed in
both non-neuronal and neuronal populations, consistent with our previous observations in both the
mouse 2 and human hypothalamus 3¢ and the mouse hindbrain . The GIPR population that intrigued
us the most however, was ependymal population marked by DTHD1 (Figure 4C). Heterozygous loss of

function mutations in GIPR are associated with lower BMI 38

, while pharmacological studies in humans
indicate that both agonism and antagonism of this receptor can augment weight loss . With recent
data showing that the GLP1R/GIPR co-agonist tirzepatide might be marginally more effective than the
GLP1R mono-agonist semaglutide *°, does this spatial localisation of GIPR to the ependymal cells hint
as to why this might be the case? Could these GIPR expressing cells be increasing access of tirzepatide
to the hypothalamus? While further work will be required to address these questions, our data
illuminating the high resolution expression profile of hypothalamic incretin receptors in a human

context is an important first step.

When we look at HYPOMAP through a genetics lens, we find a significant enrichment in expression of
BMI associated genes, specifically in neurons, which is coherent with our current understanding that
the large variation in body-weight is driven primarily by neuronal mechanisms. Finally, gene burden
analysis of the 375 ‘effector’ genes that drove the enrichment identified 6 genes, in which rare
deleterious variants was significantly associated with changes in BMI, with four of these, MC4R, PCSK1,
POMC and CALCR having well-established links to body-weight regulation. It is gratifying that our
approach also highlighted BSN, a gene we have recently shown to be linked to obesity, and CORO1A,
an entirely new player in the regulation of energy balance, we are reporting for the first time, thus
highlighting HYPOMAP as a platform for discovery.
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There are, of course, limitations to our study. First, it is crucial to remember that transcriptomic data,
of all types, are designed to identify what is expressed, as opposed to what is not. Second, HYPOMAP
has been derived from relatively few donors (11 for the snRNAseq dataset and 5 for the spatial data,
balanced in terms of male:female), limiting us from deep quantitative analyses, such as effectively
comparing differences between the male and female brain. Third, these donors were of normal weight
when they died, so while of interest in and of itself, the long-term value of this data, given the role of
the hypothalamus in maintaining homeostasis, is as a baseline to study this brain region in states of
dyshomeostasis. This will require the difficult and long-term prospective recruitment of donors
suffering from relevant diseases, in our case, severe obesity.

Given our field of expertise, it is natural that we have focussed here, initially, on characterisation of
the appetitive control circuitry. However, clearly this barely begins to scratch the surface of
possibilities with this dataset. We hope that by making this Human HYPOMAP completely open-access,
it will help illuminate human relevant neuronal populations and circuits more broadly, thus enabling
the identification of novel druggable targets for treating a wide range of conditions linked to the
hypothalamus, including reproductive, circadian, and metabolic disorders.


https://doi.org/10.1101/2023.09.15.557967
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557967; this version posted September 15, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

METHODS
Human post-mortem sample preparation

Anonymised human samples were obtained from the MRC Brain Bank Network, in line with each
bank’s Research Ethics Committee approval. Subjects were approached in life for written consent for
brain banking, and all tissue donations were collected and stored following legal and ethical
guidelines.

For snRNAseq, frozen blocks of post-mortem hypothalamus were sourced from adult donors with BMI
ranging from 18 to 28 and no significant neuropathology. Dissections were performed following
delineation of relevant anatomy in Cresyl Violet stained sections from the anterior and posterior
surfaces of each sample by a consultant pathologist. Samples from the relevant region were then
acquired using a punch biopsy, or macrodissected from 100um thick frozen cryostat sections spanning
the whole specimen.

For spatial transcriptomics, post-mortem paraffin-embedded (FFPE) human brain samples covering
the hypothalamus was obtained from the Edinburgh Brain Bank (BBN001.37136, BBN001.37137,
BBN001.37298, BBN001.37298, BBN001.37242). Selection of samples and areas to include in ST
analyses were based on anatomical landmarks using Luxol Fast Blue/Hematoxylin-Eosin staining of
myelinated fibers and cell bodies. n=7 samples from n=5 different donors (2 males, 3 females), ranging
from 50-95 years were included in the ST analyses. The BMI varied between 16-41 at the time of death
and the post-mortem interval ranged from 12-102 hours.

Nucleus dissociation and RNA-sequencing

Nuclei were isolated by dounce homogenisation and purified using a modified protocol from 2. Briefly,
chopped samples were transferred to a 15 ml Dounce Homogenizer with 5ml homogenisation buffer
(100 uM of DTT [Sigma—Aldrich, St. Louis, MO, USA], 0.1% Triton X-100 [Sigma—Aldrich], 2X EDTA
Protease Inhibitor [Roche, Basel, Switzerland], 0.4 U/ul of RNasin RNase inhibitor [Promega, Madison,
WI, USA, 10000 U, 40 U/ml], and 0.2 U/ul of Superase.In RNase Inhibitor [Ambion, Austin, TX, USA,
10000 U, 20 U/ul] in nuclei isolation medium [250 mM of sucrose, 25 mM of KCI (Ambion), 5 mM of
MgClI2 (Ambion), and 10 mM of Tris buffer at a pH of 8.0 (Ambion) in nuclease-free water (Ambion)]
with 1 pl/ml of DRAQ5 [Biostatus, Loughborough, UK]), and mechanical dissociation was performed
using 10 strokes with pestle A, and 20 strokes with pestle B. Homogenates were filtered through a
100um filter and centrifuged at 600 x g for 5 minutes in a precooled centrifuge. Supernatant was
discarded and pellet was resuspended in 27% Optiprep solution diluted in homogenization buffer and
centrifuged at 13,600 x g for 20 minutes at 4°C. The nuclei pellet was collected and resuspended in
wash buffer (1% BSA, 0.4 U/ul of RNasin, and 0.2 of U/ul of Superase.In in PBS [Sigma—Aldrich]) and
centrifuged at 700 x g for 5 minutes at 4°C. This was repeated twice before being passed through a
40um cell strainer and this final sample was used to create sequencing libraries. For two donors, single
nuclear suspensions were sorted using fluorescent-activated nucleus-sorting (FANS) on a BD
FACSMelody instrument. The gating was set according to FSC, SSC and fluorescence at 647/670nm to
detect DraQ5 nuclear staining, and 567nm to detect NeuN-PE staining. NeuN+ events were sorted into
a collection tube to enrich for neuronal nuclei

Sequencing libraries were generated using 10X Genomics Chromium Single-Cell 3’ Reagent kits
(Version 3.1) according to the standardised protocol. cDNA was amplified for 19 cycles. Paired-end
sequencing was performed using an lllumina NovaSeq 6000.
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Sequence alignment, cell calling and QC

Raw sequence reads were mapped and genes counted based on the Human GRCh38, Ensembl 98 gene
model, both using 10X Genomics CellRanger V5-6 (https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/what-is-cell-ranger) using the following parameters (--

include-introns). Cellbender 2.0 #* was used to recalibrate UMI counts and cell calling.

After removal of flagged nuclei, our nucSeq dataset included 571,091 from 58 samples, that
contributed between 748 and 45,771 cells. We used scran‘s quickCluster function *? to obtain an intial
set of clusters that were used as input cluster assignments to scDblFinder which was run with

multiSampleMode set to “split” *3

. We additionally ran an initial Seurat based processing of the whole
dataset, including detection of highly variable features, scaling of data, PCA and preliminary clustering
44 All cells detected by scDblFinder as Doublets or cells that were part of seurat clusters with more
than 75% of Doublets cells were removed. We further filtered the data using the sample-based
thresholds and additionally set a global threshold of maximum mitochondrial RNA of 10% and a
minimum of 800 UMIs per cell. After filtering the dataset for Doublets and low quality cells, it included

353,678 cells from the 58 samples, that contributed between 609 and 20,424 cells.

We extracted the processed nucSeq data of all hypothalamus samples (ROIGroupCoarse =
"Hypothalamus") from the loom file published by Siletti et al
(https://doi.org/10.1101/2022.10.12.511898). This included a total of 134,471 cells that we merged
with data from our own study.

snRNAseq Integration

Our combined human dataset includes 82 10x samples from 11 different donors and two independent
studies with a total 488,149 cells after merging and initial quality control. To integrate all cells and
make the data comparable we used scvi-tools #°, which we have previously shown to be a powerful
integration tool that preserves cell type purity while removing batch differences 2. Similar to our
previous study we optimized the main hyperparameters of scvi by running a grid search over pre-
defined parameter ranges using our published pipeline
(https://github.com/Isteuernagel/scintegration). scintegration evaluates different scvi model outputs

for mixing of samples (using the entropy of the sample distribution in each cell’s nearest neighbors),
the purity of cells (cell type distribution in each cell’s nearest neighbors) and the average silhouette
width for cluster separation. We defined a set of ground truth cell types using signatures for mouse
glial cell types from our mouse HypoMap and additionally added a set of manually curated neuron
signatures. We then visualized the hyperparameters of all runs by the evaluation metrics to choose a
final set of optimal parameters (Method Figure 1b-d). Overall, all models integrated the data well and
we mostly found small improvements. The final scvi model was trained for 100 epochs with a dropout
rate of 0.1. The model had 2 layers and 256 nodes per layer (n hidden) and the latent space had 80
dimensions. All other parameters were set to default.

snRNAseq clustering and annotation

The low dimensional latent space from the final scvi model was used for downstream analysis. We
adapted our previous dataset harmonization pipeline!?
(https://github.com/Isteuernagel/scHarmonization) for many of the following steps, but changed it

where necessary. We started with an initial round of clustering and annotated these clusters using
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marker gene signatures for major cell types, including some extra-hypothalamic ones (Method Figure
1a). We found multiple clusters of cells that likely reside outside the hypothalamus (e.g., SCL17A7+
neurons or thalamic SHOX2 neurons). After annotating all cells, we removed the likely extra-
hypothalamic clusters and some other clusters representing low-quality cells leaving us with a final
dataset of 433,369 cells. Due to the imbalance of major cell type distribution (e.g., 40.4% of all cells
are oligodendrocytes) we split the data into 4 main subsets for clustering and tree building: neurons,
oligodendrocytes, astrocytes and other non-neuronal cells. For each dataset multiple flat leiden
clusterings were combined into a consensus subtree using mrtree “¢ and marker genes of each cluster
vs all others as well as only its sibling nodes within the subtree were calculated using a batch-stratified
Wilcoxon rank sum test. The subtrees were pruned by merging nodes with insufficient differences
(less than 15 marker genes). We then merged all 4 subtrees into the final clustering tree which spans
7 different levels (C0-C6) with 4 to 458 distinct clusters, however, for non-neuronal cell types only up
to 5 levels exist. For each node in the tree the most informative marker gene was selected based on
global differences to all other clusters and on local differences to its sibling clusters 2. These marker
genes are shown on the edges of the circular tree. By concatenating genes from subsequent levels, a
full cluster annotation can be constructed. The informative marker genes are used to name the
clusters, but are not necessarily exclusive marker genes. Especially on higher tree levels it was not
possible to find optimal single marker genes, hence we manually renamed many clusters with their
commonly used names or a simple numbering scheme.

10X Genomics Visium CytAssist Spatial Transcriptomics

5um FFPE sections were prepared using a microtome (Leica) in an RNase free environment and
mounted onto positively charged slides. The sections were then stored at room temperature until use.
Slides were processed for spatial transcriptomics according to the 10x Genomics Visium CytAssist
Version 2 protocols. Briefly, samples were deparaffinized in Xylene, a series of concentrations of
Ethanol solutions (100% - 70%) and immersed in water prior to Haematoxylin and Eosin staining (H&E).
Once stained, samples were cover slipped using a glycerol mountant and images using a VS200 slide
scanner (Olympus Life Science) at 20X magnification (air objective, 0.8 NA). Coverslips were removed
and samples underwent destaining, decrosslinking and were incubated overnight with the 10x
Genomics Visium Human WT Probes version 2 (Pleasanton, CA, USA). Following this, slides were
loaded at the appropriate orientation, along with the Visium 11x11mm gene expression slide, onto a
CytAssist (10xGenomics), where hybridized probes were released from the tissue and ligated to
spatially barcoded oligonucleotides on the Visium Gene expression slide. A tissue image was taken on
the CytAssist at 10X magnification, for downstream alignment of library to the tissue section. Barcoded
ligation products were then amplified to create a cDNA library for sequencing.

Libraries from the seven samples were pooled and sequenced on a NovaSeq 6000 sequencing platform
(lumina), using a NovaSeq 6000 S2 Reagent Kit v1.5 (lllumina) according to the manufacturers
instructions. Subsequently, fastq files were generated for each sample, reads were aligned to their
corresponding probe-sequences (Visium human transcriptome probe set v2, based on GRCh38 2020-
A) and mapped back to the Visium spot where a given probe was originally captured, and finally
aligned to the original HE-stained image of the tissue section using SpaceRanger version 2.0.0 (10X
Genomics).

Spatial transcriptomic data analysis
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Across the seven samples, the average median number of paired-end reads per Visium spot equalled
37,863, with the min-max range from 29011 to 48778. The average median number of detected genes
per spot equalled 3982 (min-max range of median values: 1405 to 7051). The average sequencing
saturation equalled 0.65. Furthermore, for each individual sample, graphs with a) sequencing
saturation and b) detected number of genes plotted as a function of median number of reads per spot
revealed the plateau phase was either obtained or clearly approached, i.e., very little benefit would
be gained from even deeper sequencing.

Spatial Transcriptomics data pre-processing

The number of genes/spot and counts/spot was inspected for each tissue section individually using
the Loupe browser to identify whether there were areas of the sample that had unusually low/high
counts that are likely artefacts from the experimental procedures. These spots were identified and
removed from downstream analysis.

For visualisation of gene expression in the spatial transcriptomics data, data was analysed using Seurat
(version 4.3.0) . Raw count matrices along with spatial barcode coordinates for each sample were
loaded, and data was log-normalised for visualisation of transcript expression.

Integration of snRNA-seq and ST data: Cell2Location

We utilised the Cell2Location tool (Version 0.1.3) * to predict the locations of snRNA-seq cell
populations in the ST data. We utilised the entire snRNA-seq dataset as a reference, and estimated
reference cell type signatures for clustering levels C1:C6. We included genes that were expressed in
at least 8% of cells, and genes expressed in at least 0.05% of cells, if the non-zero mean was greater
than 1.4. We estimated reference signatures using the negative binomial regression model,
accounting for the effects of donor, sex, batch, and dataset.

For each cluster level, we trained the Cell2Location model with a detection alpha of 20, and 3 cells per
location as hyperparameters, and trained for 30,000 epochs, with the final gene list including genes
expressed in both the snRNA-seq and ST dataset. Results were visualized using scanpy and Seurat. The
plots represent the estimated abundance of cell types at each location.

To cluster the spatial transcriptomics spots, we utilised the cell abundance matrix which had snRNAseq
clusters as columns, and spot barcodes as rows with cell abundance scores in each cell. Using this we
used K nearest neighbours and Leiden clustering to cluster the spots according to the cell abundance
scores. Each cluster was then labelled based on the hypothalamic region in which most spots
appeared. If more than 1 region was covered, then the top two regions were used to label the cluster.

Fixation & parafinization of human samples

Three independent human samples were used to assess ependymal and tanycyte expression
markers. Fresh post-mortem human hypothalamus 2 x 3 x 1 cm blocks (<24h post-mortem) were
incubated for 16h in 10% NBF and then further fixed for 48-72h in 4% PFA. Brain blocks were
dehydrated in a series of ethanol treatments (70% (16h, 2x4h), 80% (16h, 2x4h), 96% (16h, 2x4h),
100% (16h, 1x4h)). The blocks were then incubated for 3.5 days in Xylol, followed by 2 incubations in
fresh paraffin (5h, 16h) until the blocks were poured into forms. Brain blocks were sliced (5 um) and
mounted on Superfrost (Thermo Fisher) glass slides and stored at RT.

Donor info
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91y, female, BMI:15.4, ICD codes for diseases: E41, E86, E48, 110.9, R54 (malnutrition, dehydration,
hypertension, age related physical debility)

90y, female, BMI: 24.6, ICD codes for diseases: N17, E86, FO3, 110, E11 (acute kidney failure,
dehydration, unspecified dementia, primary hypertension, type Il diabetes)

67y male, BMI 25.5, ICD codes: K70.4, K70.3, D64.9, 196.9 (alcoholic liver disease, anemia,
respiratory failure)

smFISH

5um FFPE sections were cut and mounted onto positively charged slides. Multiplex fluorescence
RNAscope (ACDBio) was performed using a Bond RX fully automated research stainer (Leica), the
RNAscope LS multiplex fluorescent reagent kit (Advanced Cell Diagnostics, Bio-Techne) and probes
specific for GLP1R (Cat# 519828), GIPR (Cat# 471348), SST (Cat# 310598), POMC (Cat# 429908), AVP
(Cat#t 401368) (Advanced Cell Diagnostics, Bio-Techne) . Slides were baked and deparaffinized prior to
heat-induced epitope retrieval at 95°C for 30 minutes using Bond ER Solution 2. Next ACD Enzyme
(ACDBio) was added, and slides were incubated at 40°C for 15 minutes. Hybridization, amplification,
and detection was performed according to the ACD Multiplex Protocol P1. Final detection was
achieved with the Opal-570 and Opal-690 fluorophore reagent packs (Akoya BioSciences, Inc.,diluted
1:1000), and samples were conterstained with DAPI (ACD) to mark cell nuclei and coverslipped with
ProLong Diamond antifade mountant (ThermoFisher Scientific) before imaged using the VS200 slide
scanner (Olympus Life Science) at 20X magnification (air objective, 0.8 NA).

Cell type enrichment & BMI associations

Cell type specificity matrices were generated using CELLEX software v1.2.2 2. Due to memory limits,
we performed bootstrapping by sampling the HYPOMAP dataset randomly into 9 smaller datasets,
each containing 100K cells. CELLEX was then performed on each of the subsets, and the mean values
were taken forward for the subsequent enrichment analysis.

Using the resulting cell-type specificity matrices, we ran CELL-type Expression-specific integration for
Complex Traits (CELLECT) % with Multi-marker Analysis of GenoMic Annotation (MAGMA) 24, alongside
GWAS data from the GIANT BMI meta-analysis (Nmax=806,834) %2, to prioritise hypothalamic cell
types that showed enrichment in the BMI GWAS. CELLECT-MAGMA (version 1.3.0) was run with
default parameters across the 458 tested hypothalamic cell types, setting the multiple-test corrected
significance threshold at P<0.05/458 and followed-up by CELLECT-GENES, but setting the percentile
cutoff to 95. CELLECT-MAGMA was also run on the above mentioned subsets as a sensitivity analysis
(Supplementary Figure 9).

Exome sequencing-based rare variant burden analyses, as described in Gardner et al. *® using data

from up to 454,787 individuals from the UK Biobank study % via the UK Biobank Research Access
Platform (https://ukbiobank.dnanexus.com). Variants were then annotated with the ENSEMBL
Variant Effect Predictor (VEP) *° v10448 with the ‘everything’ flag and the LOFTEE plugin *° and
prioritised a single MANE v0.97 or VEP canonical ENSEMBL transcript and most damaging

consequence as defined by VEP defaults. To define Protein Truncating Variants (PTVs), we grouped
high-confidence (as defined by LOFTEE) stop gained, splice donor/acceptor, and frameshift
consequences. All variants were subsequently annotated using CADD (v1.650) °!. BMI for all
participants was obtained from the UK Biobank data showcase (field 21001). After excluding
individuals with missing data, 419,692 individuals with BMI measures remained for downstream
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analysis. To assess the association between rare variant burden and BMI we implemented BOLT-LMM
(v2.3.551) 2, using a set of dummy genotypes representing the per-gene carrier status. For the latter,
we collapsed variants with a minor allele frequency (MAF) < 0.1% across each gene and defined
carriers of variants as those with a qualifying high confidence PTV (HC PTV) as defined by VEP and
LOFTEE or “Damaging” variants (DMG), including missense variants with a CADD score >=25 and the
aforementioned HC PTVs. Genes with fewer than 10 carriers were excluded. BOLT-LMM was run with
default settings and the ‘ImmInfOnly’ flag and all analyses were controlled for sex, age, age2, WES
batch, and the first ten genetic ancestral principal components as calculated ?°. Gene-level BOLT
association summary statistics were then extracted for the 375 identified effector genes, setting the
multiple-test corrected threshold at P<0.05/375.

Finally, to identify which GWAS signals were proximal to the identified effector genes, we also
performed signal selection on the GIANT BMI GWAS meta-analysis. GWAS summary statistics were
filtered to retain variants with a MAF>0.1% and which were present in at least half the contributing
studies. Quasi-independent genome-wide significant (P<5x10-8) signals were initially selected in 1IMb
windows and secondary signals within these loci were further selected via conditional analysis in GCTA
53 using an LD reference derived from the UK Biobank study. Primary signals were then supplemented
with unlinked (R2<5%) secondary signals, whose association statistics did not overtly change in the
conditional models. Signals were mapped to proximal effector genes, within 500kb windows. For
genes within 500kb of multiple GWAS signals, the most significant signal is shown in Supplementary
Table 17.

Results from CELLECT and exome associations were visualised using ggplot2 (version 3.4.2) in R
(version 4.2.1).
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Figure Legends

Figure 1: Integrated single-nucleus RNA sequencing (snRNAseq) reference atlas of the human
hypothalamus.

a) Uniform Manifold Approximation and Projection (UMAP) plot of the integrated atlas colored by
major cell classes. Coloring corresponds to background colors in (b). scvi-tools was utilized to integrate
the heterogeneous human samples originating from different donors and studies. b) Unbiased
clustering of the integrated human snRNAseq data. For 4 major subgroups, neurons, astrocytes,
oligodendrocytes and other non-neuronal cells, multiple flat clustering using the leiden algorithm
were generated and combined into a hierarchical consensus tree . The final tree spans 7 different
levels (CO-C6) with 4 to 458 distinct clusters, however, to improve visibility the circular tree only
includes the first 6 levels with up to 265 clusters. Nodes in the tree were anntotated using the most
informative marker genes, which are shown on the edges of the circular tree. The background color
marks major cell groups and corresponds to the coloring of clusters in the UMAP plot of (a). The
heatmap ring depicts the relative contribution of cells by the two included studies to each cluster on
level C5 c) Details on cluster NE_Mid2_SIM1_STK32B (C3) neurons highlighted in blue in the circular
tree in (b). This cluster includes the magnocellular AVP neurons as well as multiple SST-expressing
subclusters. They are unified by their expression of the kinase STK32B. The UMAP plots on the left
show the position on the global UMAP and a subset-UMAP containing only cells of the cluster colored
by level C6. The coloring of clusters corresponds to the dendrogram shown on the right, which gives
a detailed overview of the subcluster structure. See the description of (b) for more details on the tree
generation and annotation. The heatmap shows the average expression of marker genes used for
annotation (edges of the dendrogram).

Figure 2: Spatial Transcriptomics of the human hypothalamus and mapping of cell clusters identified
by snRNAseq

a) A reference atlas diagram of the 7 human hypothalamic sections used in spatial transcriptomics
experiment (5 donors). Diagrams were created using the H&E tissue sections, expression of canonical
marker genes for hypothalamic nuclei, and a human brain reference atlas in combination. Sections are
ordered from most anterior (left) to most posterior (right). LPA = lateral preoptic area; MPA = medial
preoptic area; PVN = paraventricular nucleus; IMH = intermediate hypothalamic nucleus; SCN =
suprachiasmatic nucleus; SON/SO = supraoptic nucleus; ac = anterior commissure; 3V = third ventricle;
ARC = arcuate nucleus; DMH = dorsomedial hypothalamus; RCN = retrochiasmatic nucleus; PeVtub =

Periventricular tuberal nucleus; Fnx = fornix; LH = lateral hypothalamus; ot = optic tract; TMN
tuberomammillary nucleus; VMH = ventromedial hypothalamus; ME = median eminence; Thal =
thalamus; Rh = rhomboid nucleus of the thalamus; Smt = stria medullaris of thalamus; PHN = posterior
hypothalamic nucleus. b) Log-normalized expression of SLC17A6, and SLC32A1 (glutamatergic and
GABAergic markers respectively) in a medial human hypothalamic section. SLC32A1 shows clear
expression in the arcuate nucleus, and the periventricular nucleus. SLC17A6 is expressed in the
ventromedial hypothalamus. c) Spatial expression plots of transcription factors TBX3, FEZF1 and SIM1,
used to mark the ARC, VMH and PVN respectively. Expression of these genes in the snRNAseq dataset
also represented. d) Details on 3 branches of C3-18 NE_Mid-1_4_ADAMTSL1 (C4-51: NE_Mid-
1_4_ADAMTSL1_WDRA49, C4-50: NE_Mid-1_4_ADAMTSL1_ITGAS, C4-49: NE_Mid-
1 4 ADAMTSL1_FEZF1). (Left) clusters highlighted in the global UMAP and a subset of the UMAP
containing only cells of the cluster coloured by C6. The colouring of the clusters corresponds to the
dendrogram (middle) which provides an overview of the subcluster structure and displays a heatmap
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of the average expression of each marker gene in each cluster. (Right) Cell2Location mapping of 4
clusters (highlighted in the dendrogram) at C6 level demonstrates mapping to subregions of the
ventromedial hypothalamus in a mid-posterior section of the hypothalamus. e) Spatial plots displaying
leiden clustering of spots from the co-occurance of snRNAseq cluster abundance scoares. The matrix
of cell abundance values of each snRNAseq cluster in each spot was used in the Leiden clustering
analysis. Spots in the same cluster will show similar patterns of snRNAseq cell abundance. Clusters
were named based on which regions of the hypothalamus they mostly appeared in.

Figure 3: Mapping the leptin-melanocortin pathway

Characterisation of POMC and AGRP neurons in the human hypothalamus. a) UMAP plot highlighting
3 clusters with the highest percentage of POMC+ nuclei (blue) and 3 clusters with the highest
percentage of AGRP+ nuclei (pink). b) Heatmap displaying average log-normalised expression of
marker genes for each of the top 3 POMC and AGRP clusters. c) Spatial mapping of POMC clusters.
Cell abundance scores for C6-278 (yellow), C6-279 (orange) and C6-280 (blue) in a medial section of
the human hypothalamus. C6-278 has higher abundance values in comparison to C6-279 and C6-280.
All 3 clusters map to the arcuate nucleus. d) Spatial mapping of AGRP clusters. Cell abundance scores
for Cg-260 (yellow), C6-212 (blue) and C6-396 (orange). C6-260 (AGRP/NPY neurons) map to the ARC,
C6-212 (GHRH) map to the ARC and periventricular nucleus, and C6-396 (TRH/SIM1) map to the PVN.
e) smFISH of AGRP expression in the medial hypothalamus in a near adjacent section to the spatial
transcriptomics section. No expression identified in the PVN (1) or perventricular hypothalamus (2).
Abundant AGRP expression in the ARC (3). Diagram highlights where in the section each image was
taken. f) Characterisation of MC4R populations in the human hypothalamus. (Left) Log-normalised
expression of MC4R in the snRNAseq data. MC4R expression is found in several different clusters.
(Right) Heatmap displaying marker genes for clusters in the 98" percentile of MC4R expression and
dotplot showing scaled average cell abundance of each MC4R snRNAseq cluster within each spatial
transcriptomics cluster. The size of the dot represents the percentage of spots in that cluster that
more than 0.05 cell abundance score for the snRNAseq population. Cluster C6-112 maps to the LPOA,
C6-181 maps to the intermediate nucleus of the hypothalamus and MPOA, C6-224 shows some
mapping to the MPOA/GABAergic MBH region. The rest of the MC4R clusters show low cell abundance
mapping to the spatial transcriptomics dataset. Spatial transcriptomics clusters were only included in
the plot if at least one snRNAseq cell type cluster mapped to a minimum of 5% of spots in a spatial
transcriptomics cluster. g) Characterisation of MC3R populations in the human hypothalamus. (Left)
Log-normalised expression of MC3R in the snRNAseq data. MC3R expression is found in several
clusters, but mainly in TBX3+ region and some in the FEZF1+ region. (Right) Heat map map of cluster
markers for clusters in the top 98" percentile of MC3R expression, and a dot plot displaying scaled
average cell abundance for each snRNAseq cluster in each spatial transcriptomics cluster. The size of
the dot represents the percentage of spots in that cluster that more than 0.05 cell abundance score
for the snRNAseq population. Of the 10 MC3R clusters, 9 map, at least in part, to the ARC, with cluster
C6-243 mapping to the VMH.
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Figure 4: Incretin receptor expression in the human hypothalamus.

a) Details of the branches of the clusters in the top 98 percentile of GLP1R of GIPR expression. Here,
an overview of the subcluster structure is displaed and a heatmap showing the percentage expression
of cells in each cluster that express each marker gene. b) UMAP plots showing log-normalised
expression of GLP1R (left) and GIPR (right). GLP1R is found in several neuronal clusters, while GIPR is
found in both neurons and non-neurons. c) (Left) Cell2location mapping of 3 GLP1R clusters: C6-414
(mapping to the PVN and SON), C6-278 (mapping to the ARC), and C6-209 (mapping to the MBH) and
cell2location mapping of the ependymal cluster in which GIPR is expressed in. This cluster maps to the
lining of the third ventricle. (Right) smFISH showing co-expression of GLP1R & AVP in the SON; GLP1R
and POMC in the ARC, CALCR, SST and GLP1R in the MBH, and GIPR expression in the ependymal cell
lining. Diagrams highlight where each image was taken.

Figure 5 | Neuronal clusters are enriched for genes linked to BMI variation in the general population.
a) Prioritisation of 458 human hypothalamic cell types identified 182 cell types as significantly enriched
for associations in the BMI GWAS, mapping to four neuronal populations. Cell types were grouped
into broader categories for visibility, as in Figure 2. The dashed line indicates a Bonferroni significance
threshold, P<0.05/458. Clusters are coloured based on their regional abundance, as seen in Figure 2.
Extended data are shown in Supplementary Table 15. (b-g) Variant-level associations in identified
effector genes in UK Biobank. Rare exome variant associations with BMI for variants within BSN (b),
CALCR (c), CORO1A (d), MC4R (e), PCSK1 (f), POMC (g). Variant collapsing masks included variants with
a minor allele frequency (MAF) < 0.1% and annotated as either high-confidence protein truncating
variants (HC_PTV) or HC_PTV plus missense variants with a high CADD score (>=25, denoted DMG).
Each variant association is represented by a circle and vertical line: the line length indicates the P-
value (-log10), in the direction of its effect on BMI in carriers of the rare allele, and the circle size
indicates the number of carriers of each variant (i.e. the allele count). Exons are indicated by the boxes
and connected by the intron line. Extended data are shown in Supplementary Table 16 and 17.
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Extended Figure Legends

Extended Figure 1: snRNAseq data integration a-c) Evaluation metrics for scvi integration results of
the combined dataset (see methods for a brief explanation of metrics) used to select the final set of
hyperparameters. Boxplots show evaluation metrics of different hyperparameters runs colored by the
number of layers in the model and stratified by the highly variable feature set size (a), the number of
training epochs (b) and the number of latent space dimensions (c). d) Scatter plot of purity vs mixing
metric colored by average silhouette width of all runs. PCA alone achieved good purity but did not
integrate the data as well as scvi. €) UMAP plot of the dataset after integration but before removal of
additional cell types such as non-hypothalamic neurons.

Extended Figure 2: snRNAseq reference atlas of the human hypothalamus. a) UMAP plot of the
integrated atlas colored by the two contributing studies. Overall, the data is well mixed, but the
contribution to different types of cells differs, with Siletti et al. (121,405) contributing more cells to
many of the neuronal clusters and the newly generated data (311,964 cells) containing more non-
neuronal cells. b) UMAP plot of the integrated atlas colored by clustering level C3. c) Dotplot of
informative marker genes used for annotation on level C3 as shown in (b). If no informative marker
gene was used to annotate the cluster, the next best marker gene was included. Dot size corresponds
to the percentage of expressing cells in that cluster and color intensity to the average expression level.
The dotplot shows that although all many the marker genes are strongly expressed in their respective
clusters, they are not necessarily exclusive and do not always reach very high percentage of
expression.

Extended Figure 3: Key transcription factors in the snRNAseq reference atlas of the human
hypothalamus and in the 7 spatial transcriptomics sections. a-f) UMAP plots showing per cell
expression, and spatial expression plots showing per spot expression of the transcription factors
MEIS2, LHX6, FEZF1, TBX3, SIX3, OTP, SIM1 and FOXB1.

Extended Figure 4: Spatial Mapping of 3 branches from C3-18 NE_Mid-1_4_ADAMTSL1 at C6 level in
the hypothalamus using Cell2Location.

Cell2location mapping of 16 C6 clusters from the C4-51: NE_Mid-1_4 ADAMTSL1_WDR49, C4-50:
NE_Mid-1_4 ADAMTSL1 ITGAS, C4-49: NE_Mid-1_4 ADAMTSL1_FEZF1 branches in a section of the
human hypothalamus. Each cluster maps to spatially distinct areas of the ventromedial hypothalamus.

Extended Figure 5: Non-neuronal cell types in the human hypothalamus.

a) Spatial mapping of astrocyte populations at the C3 cluster level. (Left) subset of the astrocyte
branches from the mrtree. (rest): Cell2Location mapping of each of the 6 astrocyte C3 clusters,
demonstrating spatially distinct astrocytic populations. b) Spatial mapping of oligodendrocyte
populations as the C2 level. (Left) subset of the oligodendrocyte branches from the mrtree. At C2 level,
mature oligodendrocytes split into two main clusters, marked by differential expression of OPALIN
and ACSBGI1. Cell2Location maps these two main populations to distinct locations in the
hypothalamus, and example of this shown in the right plot. In the most anterior section of the
hypothalamus, OPALIN+ oligodendrocytes map to the anterior commissure, and ACSBG1+
oligodendrocytes map to the optic chiasm, with both cell types mapping to the lateral preoptic area.
c) Mapping of ependymal cell types in the hypothalamus. (Left) A subset of the ventricular branches
from the mrtree. (Right) spatial mapping of tanycytes and DTHD1+ ependymal cell types in the
hypothalamus. Tanycytes show distinct mapping to the median eminence and the base of the third
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ventricle, whereas ependymal cells map to the lining of the third ventricle. d) Log-normalized
expression of CRYM and FRZB, both previously identified to be markers of tanycyte subtypes, in the
third section below the third ventricle. (Below) Log-normalized expression of DIO2, FZD5, STOML3 and
LPAR3, marker genes for tanycytes and/or ependymal cells with complementary RNAscope.

Extended figure 6: Leptin-melanocortin mapping: POMC and AGRP

a) Spatial expression of POMC (log-normalized per spot value) on each of the 7 human hypothalamus
sections. b) table showing information of top POMC expressing clusters including the % cells
expressing POMC, average POMC expression, marker genes, and the top region cluster of the
hypothalamus each cluster maps to. c) Spatial expression of AGRP (log-normalized per spot value) on
each of the 7 human hypothalamus sections. d) table showing information of top AGRP expressing
clusters including the % cells expressing AGRP, average AGRP expression, marker genes, and the top
cluster of the hypothalamus each cluster maps to. Dot plot showing scaled average cell abundance of
clusters in the top 99 percentile of e) POMC and f) AGRP expression in the snRNAseq data. Dot size
represents the percentage of spots in each cluster that had a cell abundance score greater than 0.05.
5 of the 6 POMC clusters mapped to the ARC C6-223 showing low abundance throughout the ST data.
4 or the 5 AGRP clusters mapped at varying abundance levels to the ARC, with cluster C6-396 mapping
to the PVN.

Extended figure 7: Leptin-melanocortin mapping: MC4R and MC3R

a) Spatial expression of MC4R (log-normalized per spot value) on each of the 7 human hypothalamus
sections. b) table showing information of top MC4R expressing clusters including the % cells expressing
MCA4R, average MC4R expression, marker genes, and which region of the hypothalamus each cluster
maps to. c) Spatial expression of MC3R (log-normalized per spot value) on each of the 7 human
hypothalamus sections. d) table showing information of top MC3R expressing clusters including the %
cells expressing MC3R, average MC3R expression, marker genes, and which region of the
hypothalamus each cluster maps to.

Extended figure 8: Incretin receptors in the human hypothalamus.

a) Spatial expression of GLP1R (log-normalized per spot value) on each of the 7 human hypothalamus
sections. b) table showing information of top GLP1R expressing clusters including the % cells
expressing GLP1R, average GLP1R expression, marker genes, and which region of the hypothalamus
each cluster maps to. c) Scaled average cell abundance of GLP1R clusters (left) and GIPR clusters
(right). Dot size represents the percentage of spots in each spatial cluster that has a cell abundance
greater than 0.05. Of the GLP1R clusters, 3 mapped to the PVN and SON, and 1 mapped to the ARC.
Others show some low mapping to other regions of the hypothalamus. Of the GIPR clusters 1 mapped
to the mamillary body region and another showed some mapping to the lateral hypothalamus. Spatial
clusters were included in the plot if at least 5% of spots displayed mapping of one of the snRNAseq
clusters. d) Log-normalised spatial expression of GIPR on each of the 7 human hypothalamus sections.
e) table showing information of the top GIPR expressing clusters including the % cells expressing GIPR,
average GIPR expression, marker genes and which region of the hypothalamus each cluster maps to.

Extended Figure 9 | Correlation of MAGMA enrichment across different subsets of cell populations.
Cell-type prioritisation across each the 458 human hypothalamic cell types, was compared between
three different subsets of 100K cells and also enrichment calculated using reference signature values
generated from Cell2Location (on the Y axes), and the dataset used in discovery (on the X axes). The
Pearson correlation for each comparison is displayed.
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Figure 1: Human snRNA-seq overview and SIM1 clustering example
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Figure 2: Integration of snRNA-seq with ST using Cell2Location
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Figure 3: Mapping the Leptin-Melanocortin Pathway
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Figure 4: Characterisation of incretin receptor expression
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Figure 5:
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