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Abstract

Interferon (IFN)-a is the earliest cytokine signature observed in individuals at risk for type 1
diabetes (T1D), but its effect on the repertoire of HLA Class | (HLA-I)-bound peptides
presented by pancreatic B-cells is unknown. Using immunopeptidomics, we characterized the
peptide/HLA-1 presentation in in-vitro resting and IFN-a-exposed pB-cells. IFN-a increased
HLA-I expression and peptide presentation, including neo-sequences derived from alternative
MRNA splicing, post-translational modifications - notably glutathionylation - and protein cis-
splicing. This antigenic landscape relied on processing by both the constitutive and immune
proteasome. Theresting B-cell immunopeptidome was dominated by HL A-A-restricted ligands.
However, IFN-o only marginally upregulated HLA-A and largely favored HLA-B, translating
into amajor increase in HLA-B-restricted peptides and into an increased activation of HLA-B-
restricted vs. HLA-A-restricted CD8" T-cells. A preferential HLA-B hyper-expression was also
observed in the idlets of T1D vs. non-diabetic donors, and we identified islet-infiltrating CD8*
T-cells from T1D donors reactive to HLA-B-restricted granule peptides. Thus, the
inflammatory milieu of insulitis may skew the autoimmune response toward epitopes presented
by HLA-B, hence recruiting a distinct T-cell repertoire that may be relevant to T1D

pathogenesis.
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Introduction

Type | interferons (IFNs), notably IFN-a, play acrucial rolein anti-viral immune responses by
driving infected cells to express IFN-stimulated genes, thus limiting vira replication and
spreading®. Type | IFNs are also central in modulating innate immune responses and activating
adaptive immunity®. They boost B-cell differentiation and antibody (Ab) production?, mature
antigen-presenting cells?, and upregulate their expression of human leukocyte antigen (HLA)
Class| (HLA-I) and Class |1 along with costimulatory molecules®. Upon detection of microbial
components, macrophages and dendritic cells (DCs; mainly plasmacytoid DCs) secrete IFN-a,
leading to additional cytokine and chemokine release. IFN-a also increases HLA-I expression
directly on infected cells®, thus augmenting their antigenic visibility, and enhance the cytolytic
activity and survival of natura killer (NK) and CD8* T-cells>”.

Besides these potent anti-viral effects, IFNs can also promote autoimmunity®. In type 1 diabetes
(T1D), transcriptomics investigations on the peripheral blood of children genetically at risk for
disease revealed a strong type | IFN signature®, preceding seroconversion'®!, At the tissue
level, IFN-stimulated genes are found overexpressed only in infiltrated islets of recent-onset
T1D patients'?, in line with an enhanced pancreatic IFN-o expression’3!4, These IFN signature
may reflect exposure to viral infections, with Coxsackieviruses B proposed as possible

environmental triggers of islet autoimmunity™®, or to other “danger signals”.

IFN-a® and IFN-stimulated gene expression'®’ colocalize with HLA-I hyper-expression,
which is a histopathological hallmark of T1D in insulin (INS)-containing islets'®, More
recently, a causal relationship between IFN-a, endoplasmic reticulum (ER) stress, and HLA-I
upregulation has been demonstrated in B-cells*'°. The increased surface HLA-I expression on
B-cells may be a driver of T1D pathogenesis, as self-reactive CD8" T-cells must recognize
peptide-HLA-I (pHLA-1) complexes on B-cells to trigger lysis. Additionally, both IFN-o and
ER stress may impact the repertoire of HLA-I-presented peptides (so caled
immunopeptidome), as is the case for IFN-y?>22, Indeed, IFN-a promotes the generation of
mRNA splice variants'®?, which can result in the presentation of neo-epitopes spanning novel
splicing sites. Thisloss of immune ignorance may also rely on other cytokine-induced pathways
of neo-epitope formation?®?*, eg. post-translation modifications (PTMs), aternative
transcription start sites generating an INS defective ribosomal product (DRiP)?® and peptide

cis-splicing, i.e. the fusion of non-contiguous protein fragments.

IFN-o may thus modulate the antigenic cargo offered to T-cells. Against this background,

elucidating how IFN-a shapes the immunopeptidome of B-cellsis crucial to further understand
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the antigenic drivers of T1D. We have therefore used immunopeptidomics strategies applied to
human B-cells treated or not with IFN-a to define the antigenic display driving autoimmune T-
cell recognition.
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Results

ECN90 p-cells exposed to IFN-a increase surface HLA-I expression and peptide
presentation

To understand changes in the profile of HLA-I-presented peptides in B-cells exposed to IFN-a,
we cultured the ECN90 B-cell line?® with or without IFN-o for 18 h. pHLA-I complexes were
immunoprecipitated from cell lysates, and peptidesidentified by liquid chromatography tandem
mass spectrometry (LC-MS/MS). ECN90 B-cells exposed to IFN-a yielded more peptides than
untreated cells (Fig. 1A-B), with respectively 91.1% and 74.9% sequences in the expected 8-
14 amino-acid (aa) range for HLA-I ligands (Fig. 1A, E). This observation reflected an IFN-a-
induced upregulation of surface HLA-I (Fig. 1C-D). Unsupervised Gibbs clustering uncovered
the peptide motifs of HLA-I alleles expressed by ECN90 B-cells (Supplementary Fig. 1). The
predominant group 1 identified the HLA-A*03:01 (HLA-A3 from hereon) motif, group 2
corresponded to a mixture of HLA-A*02:01 (HLA-A2), -C*03:04 (-C3) and -C*07:01 (-C7)
motifs, and group 3 matched the related motifs of HLA-B*40:01 (-B40) and -B*49:01 (-B49).
Peptides were identified and filtered by a multi-step bioinformatics pipeline (Fig. 1E). The

reference database used for the identification of genome-templated sequences was preliminarily
complemented with translated MRNA isoforms enriched in human islets exposed or not to | FN-
ol® and generating aa neo-sequences; and with INS open-reading frames covering published
neo-epitopes™. Following selection for 8-14 aalength, and identification of mRNA variants, all
sequences underwent filtering based on enriched expression of source proteins in B-cells.
Peptides carrying PTMs were analyzed separately. All those spectra whose peptide
interpretation did not match genome-templated, RNA-spliced or PTM sequences were searched
for putative proteasomal cis-spliced peptides using the MARS algorithm?’. In total, this
workflow led to the identification of 4 mMRNA splice candidates (Supplementary Data 1), 784
conventional peptides (Supplementary Data 2), 247 sequences carrying PTMs (Supplementary

Data 3), 11 cis-spliced sequences (Supplementary Data 4). HLA-I restrictions were then

predicted using NetMHCpan 4.1a%®. For all peptide categories, more HLA-I binders were
identified in cells exposed to IFN-o (Fig. 1E), in line with the induced surface HLA-I
upregulation.

Collectively, these results show that IFN-a increases surface HLA-I expression and peptide

presentation.

Theimmunopeptidome of ECN90 g-cellsisdominated by insulin granule proteinsand its
diversity isincreased by | FN-a
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Next, we investigated the source proteins of the B-cell-enriched peptides identified. IFN-a
treatment increased not only the number of peptides presented, but also the diversity of source
proteins, with 35.6% (58/163) of them appearing only in IFN-a-treated cells as compared to
6.1% (10/163) specific to untreated cells (Supplementary Fig. 2A). Accordingly, 19 source

proteins in IFN-a-treated cells yielded >2-fold more peptides (fold change logoFC>1) than in
the control condition (Fig. 2A, Supplementary Fig. 2A). Conversely, only 8 source proteins
displayed a similar 10goFC<1 in untreated vs. IFN-a-treated cells. In both conditions, the 5

source proteins yielding more peptides are known to either localize in secretory granules, i.e.
chromogranin A (CHGA, n=132), INS (n=64), secretogranin 5 (SCG5, n=34); or to be
associated with granule transport, i.e. kinesin-like protein (KIF1A, n=34) and microtubule-
associated protein 1B (MAP1B, n=26). Conversely, some known B-cell antigens were
underrepresented (Supplementary Fig. 2A), i.e. zinc transporter 8 (SLC30A8, n=5), glutamate

decarboxylase (GAD2, n=3) and islet amyloid polypeptide (IAPP, n=1), or completely absent,
i.e. islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) and INS
DRiP?®. Novel granule proteins were aso identified, i.e. chromogranin B (CHGB, n=6),
secretogranin 2 and 3 (SCG2, n=11; SCG3, n=10).

To validate the results obtained on ECN9O B-cells, HLA-1-bound peptides were identified from
two untreated HLA-A2/A3" primary human islet preparations from non-diabetic donors.
Despite the limited (~100-fold lower) amount of starting material and the dilution of B-cell-
derived peptides with those from other endocrine cells, 342 B-cell-enriched conventional

peptides were retrieved from these islet preparations (Supplementary Data 5), i.e. only 2-fold

less than in ECN9O B-cells (n=784). Across the 2 islet samples, the source proteins (n=72) of
the peptides retrieved overlapped by 44% with those from ECN90 pB-cells (n=163)
(Supplementary Fig. 2B). Interestingly, even though glucagon (GCG)-secreting a-cells account

for only half the number of B-cellsin human islets?®, the most represented endocrine-enriched
protein was GCG (n=26 and 30 peptides from islet sample 1 and 2, respectively; n=43 unique
peptides; Supplementary Fig. 2C). The other dominant source proteins were otherwise the same
as in ECN9O B-cells, notably CHGA (n=7+10, 12 unique peptides) and INS (n=29+24, 33
unique peptides; Fig. 2B, Supplementary Data 5). In total, 40/117 (34%) HLA-A2/-A3-
restricted peptides identified in primary islets were aso found in ECN90 B-cells

(Supplementary Data 6), which was only dlightly lower than the overlap between the two islet
preparations (56/117 shared peptides, 48%).
Collectively, these results show that |FN-a increases not only the number of peptides displayed

by HLA-I, but also their diversity in terms of source proteins. Granule-contained and granule-
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associated proteins are abundantly represented, with some novel ones (CHGB, SCG2, SCG3)
identified.

The immunopeptidome of ECN90 B-cellsincludes PTM, mRNA splicing and peptide cis-
splicing neo-sequences and is shaped by both the constitutive and immuno-proteasome

We subsequently focused on candidate neo-epitopes generated by PTMs and mRNA or peptide
cis-splicing. Thirty-four PTMs were identified on HLA-1-eluted ligands from ECN90 B-cells
(Supplementary Data 7). Several of them (15/34, 44.1%) were found in the same proportion in

both basal and IFN-a-treated samples (Fig. 2C). Since most PTM neo-epitopes are generated
under cell stress conditions®, we focused on those specifically enriched after IFN-a treatment
(10/34, 29.4%). In order to not dismiss the opposite scenario of physiological PTMs that may
belost in an inflammatory environment, we also included those enriched under basal conditions
(9/34, 26.5%). The second selection criterion was the possibility to chemically introduce the
modification on synthetic peptides for MS validation, excluding PTMs that naturally arise
during peptide synthesis or MS acquisition, e.g. oxidations and all PTMs found at the more
vulnerable N- and C-termina positions. Following these criteria, we retained for further study
lysine acetylation, cysteinylation, deamidation, glutathione disulfide (S-glutathionylation),
phosphorylation and sulphone; and synthesized predicted HLA-A and -B binders in both
modified and unmodified form. Wethen compared the spectrum of theidentified PTM peptides:
a) with that of the synthetic PTM peptides, and b) with the spectrum of the corresponding
peptides synthesized in their native form (Fig. 2D). In this second case, a spectral match would
indicate an artifactual modification that is experimentally introduced. Only 12/31 bona fine
biologica PTM peptides were thus validated, carrying: phosphorylation (n=1 peptide),
sulphone (n=2), cysteinylation (n=1) and S-glutathionylation (n=8) (Fig. 2E, Supplementary

Data 3 and Supplementary Data 7). Interestingly, 11/12 PTM peptides were exclusively found

in IFN-o-treated cells. The immunopeptidome of human islets did not retrieve glutathionylated
peptides.

Spectral matching of the 3 HLA-I-restricted mRNA splice candidates identified validated only
one HLA-B40/B49-restricted INS-205 sequence (Fig. 2F), which was exclusively found in
IFN-o-treated cells (Supplementary Data 1). We further assigned 11 peptides which could

hypotheticaly be explained by cis-splicing, either at the RNA or protein level. We could
validate most spectra by matching to spectra of the synthetic counterpart (9/11, 81.8%), with

some isoleucine/leucine ambiguities not resol vable by M S (Supplementary Data4). Altogether,
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12 PTM peptides, 1 mRNA splice and 9 candidate cis-spliced peptides were validated by
spectral matching.

To explore whether the generation of the identified peptides was proteasome-dependent, we
characterized changes in the immunopeptidome of ECN90 B-cells exposed or not to |FN-o and
(immuno)proteasome inhibitors. The catalytic subunits of the constitutive and immuno-
proteasome were found expressed by ECN90 B-cells, with the latter upregulated by IFN-o

treatment as expected (Supplementary Fig. 3A). Treatment with carfilzomib, an inhibitor of the
B5 proteasome subunit, or with ONX-0914, an inhibitor of the f5i immunoproteasome subunit
with minimal cross-reactivity for its conventional B5 counterpart, led to a significantly

decreased chymotrypsin-like activity (Supplementary Fig. 3B). The HLA-I-eluted ligands were

filtered and processed following the previous bioinformatics pipeline. The B-cell-enriched
peptides retrieved across conditions clustered into distinct subgroups (Supplementary Fig. 3C,

Supplementary Data 8). Some peptides (cluster 6) were specific to untreated B-cells and

remained unaffected by constitutive proteasome inhibition. Conversely, peptides in cluster 3,
also specific to untreated B-cells, were proteasome-dependent. Peptides in clusters 9 and 10
were instead largely specific to IFN-a-treated B-cells and, respectively, dependent and
independent on immuno-proteasome catalysis. Of note, cluster 10 can visually be divided in
peptides dependent (bottom half) or not (top half) on constitutive proteasome. Peptides in
cluster 2 were dependent on constitutive or immuno-proteasome, regardless of IFN-a exposure.
Similarly, the presentation of certain peptides was only enriched in B-cells treated with
carfilzomib, regardless of IFN-o exposure (cluster 1). Peptides enriched upon
immunoproteasome inhibition were also observed (cluster 8). Cluster 7, 4 and 5 were the most
surprising. Cluster 7 depended on the exposure to either carfilzomib alone or a combination of
IFN-a and carfilzomib/ ONX-0914. Cluster 4 was enriched in B-cells either untreated or
exposed to both IFN-o and ONX-0914, while cluster 5 was enriched in basal conditions,
regardless of carfilzomib exposure, or 3-cellstreated with both IFN-a and ONX-0914. Of note,
the preprolNS (PPl)1s.24 peptide was not affected by (immuno)proteasome inhibition and was
consistently identified in al conditions.

Collectively, these results show that the immunopeptidome is shaped by both the constitutive

and immuno-proteasome expressed by (-cells.

| FN-a skews peptide presentation toward HLA-B ligands
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Another distinctive feature of 1FN-a-treated ECN90 B-cells was the significant enrichment in
HLA-B binders. In untreated cells, only 8% (41/502) of peptideswere predicted HLA-B binders
(-B40, -B49 or both), which increased to 34% (226/672) in IFN-o-treated cells (Fig. 3A;
detailed in Supplementary Fig. 4). A similar but lesser effect was noted for HLA-C [5%
(25/502) vs. 8% (56/672)], while the number of HLA-A and HLA-E ligands remained stable
[41% (208/502) vs. 41% (277/672) and 0.8% (4/502) vs. 1.0% (7/672), respectively]. Thus,
HLA-B ligands were the main contributor to the enriched peptide display induced by |FN-a.

Granule proteins contributed 32% of the HL A-I immunopeptidome in untreated ECN90 B-cells,
which decreased to 22% upon IFN-a. treatment (Fig. 3B), reflecting a dilutional effect due to

the higher increase of peptides from other sources (Fig. 3C). Nonetheless, when analyzing
HLA-A, -B and -C ligands separately, IFN-a increased the number of peptides from granule
proteins only for HLA-B (Fig. 3C). The IFN-a-driven diversification of the immunopeptidome
was aso larger for HLA-B, which yielded 5.5-fold more peptides (226 vs. 41 in IFN-a-treated
vs. untreated cells) compared to 1.3-fold (277 vs. 208) for HLA-A; and 4.2-fold (98 vs. 23)
more source proteins compared to 1.2-fold (107 vs. 89) for HLA-A ligands (Fig. 3C,
Supplementary Fig. 4). In terms of peptide abundance (Fig. 3D-E), the increase was also more

evident for HLA-B ligands, particularly for granule-derived peptides, which did not
significantly increase for HLA-A. The previously described HLA-A2-restricted preprolNS
(PP)1s-24 peptide®® was the most abundantly presented, and was not affected by IFN-a
treatment.

Using stringent criteria (i.e. no aternative restriction predicted), 7 conventional peptides
predicted to bind HLA-E*01:01 were aso identified, none of which was found exclusively in
the basal condition, in line with the reported HLA-E upregulation induced by IFN-a'°. A more
extensive list of putative HLA-E ligands is provided in Supplementary Data 9.

Collectively, IFN-o skews antigen presentation toward HLA-B-restricted peptides.

| FN-a preferentially upregulates HL A-B expression without inducing de-differentiation
or reducing prol NS synthesis

Next, we considered whether the increased presentation of HLA-B ligands induced by IFN-a
could reflect preferential HLA-B upregulation. Indeed, HLA-B gene expression increased 42-
fold and 226-fold in IFN-a-treated and | FN-y-treated ECN90 B-cells, respectively, while HLA-
A was only marginally upregulated and HLA-C displayed an intermediate increase (Fig. 4A).
We then validated HLA-A, -B and -C Abs for their staining specificity, using HLA-1- K562
cells transduced with different HLA-I aleles. Using flow cytometry (Supplementary Fig. 5A),
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HLA-A Ab ARC0588 and HLA-C Ab DT-9 only recognized their respective alleles, while
HLA-B Ab JOAN-1 displayed some cross-reactivity with HLA-A alleles of low prevaence and
a lesser reactivity to HLA-C variants. The HLA-A Ab ARCO0588 was aso functional and
specific by Western blot (Supplementary Fig. 5B), while the JOAN-1 and DT-9 Abs did not
detect any band. Another Ab HC10, which was not functional by flow cytometry, preferentially

recognized HLA-B (Supplementary Fig. 5B), with minimal cross-reactivity for HLA-C. Using

these validated Abs, protein expression confirmed that, while only HLA-A was expressed under
basal conditions, both IFN-a and IFN-y preferentially upregulated HLA-B and, to a minor
extent, HLA-C, on ECN90 B-cdlls (Fig. 4B-C).

We then analyzed the effect of IFN-a on the expression of B-cell identity genes (Fig. 4D).
Despite a variable upregulation of the progenitor marker SOX9, severa B-cell identity markers
were also more consistently upregulated by IFN-a, i.e. INS, CHGA, PCSK2, SYT4, suggesting
that de-differentiation was not induced. Using puromycin treatment (which is incorporated
during protein synthesis) and an anti-puromycin Ab to detect newly synthesized proteins®,
IFN-o did not downregulate overall de-novo protein synthesis (Fig. 4E), while it upregulated
HLA-I tranglation, as expected. De-novo prolNS synthesis was also unaffected (Fig. 4F-G), at
variance with the downregulating effect of IFN-y on both total protein and prolNS synthesis
(Fig. 4E-F-G).

Collectively, these results document a preferential HLA-B gene and protein upregulation by
IFN-a and, to a larger extent, IFN-y. IFN-a neither induced B-cell de-differentiation nor

downregulated prolNS expression.

Preferential HLA-B hyper-expression in theislets of T1D donors

These observations prompted usto test whether the histopathol ogical hallmark of HLA-I hyper-
expression in theislets of T1D patients'® could also preferentialy involve HLA-B. To thisend,
we stained pancreas tissue sections of T1D (n=6) and non-diabetic donors (n=4) from the
Network for Pancreatic Organ Donors with Diabetes (nPOD) and Exeter Archival Diabetes
Biobank (EADB; Supplementary Table 1), using the previously validated HLA-A Ab
ARCO0588, HLA-B Ab HC10 (the other HLA-B Ab JOAN-1 was not functiona by
immunofluorescence) and the HLA-A/B/C/E Ab EMR8-5'8 (Fig. 5A-B-C). As expected, an
increased HLA-A/B/C/E expression was detected in INS-containing islets (ICls) from T1D

compared to non-diabetic (ND) donors, both in B-cells and a-cells (Fig. 5D). However, HLA-
B was upregulated to a greater extent than HLA-A. Conversely, HLA-A/B/C/E, HLA-A and
HLA-B expression in a-cells from T1D idlets devoid of p-cells (INS-deficient islets, IDIs;
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Supplementary Fig. 6A) was lower than in a-cells from T1D ICls, and comparable to that of

ND ICls (Fig. 5D). Moreover, assessment of individua - and a-cell HLA-I expressionin T1D
donors with increasing disease duration showed that HLA-B expression was highest in 4 of the

5 donors (Supplementary Fig. 6B-C) and, as for other HLA-Is, was sustained in ICls, but

reduced in IDIs with increasing disease duration (Supplementary Fig. 6D).

Collectively, these results confirm the HLA-I hyper-expression in the idets of T1D
individualst®, and demonstrate a preferential upregulation of HLA-B over HLA-A.

Idet-infiltrating CD8* T-cells from HLA-B40* T1D patients recognize HLA-B40-
restricted p-cell peptides

The next question was whether this preferential HLA-B upregulation in insulitis lesions
trandlated into recognition of HLA-B-restricted peptides by idet-infiltrating T-cells. To this
end, we first screened 101 T-cell receptors (TCRs), sequenced from islet-infiltrating CD8" T-
cells of 4 HLA-B40" T1D organ donors® from nPOD (Supplementary Table 2) and re-
expressed into ZsGreen-NFAT fluorescent reporter 5KC T-cells®, against 29 HLA-B40-
restricted peptides derived from granule proteins and detected in IFN-o-treated B-cells
(Supplementary Table 3). We identified a low-affinity TCR 173.D12 that recognized weakly
but reproducibly a PPlass, peptide (Fig. 6A). We reasoned that the preferential HLA-B
upregulation should translate into a preferential boosting of HL A-B-restricted T-cell activation

upon exposure to | FN-treated B-cells. We therefore compared the ZsGreen-reported activation
of HLA-B40-restricted PPlass, 5KC T-cells with that of HLA-A2-restricted PPlis24
counterparts upon exposure to ECN90 B-cells (Fig. 6B). HLA-A2-restricted T-cells displayed
higher activation than HLA-B40-restricted ones when exposed to untreated B-cells, which
reflects their higher affinity (Fig. 6A) and the higher abundance of PPl1s.24 presentation (Fig.
6C). However, HLA-A2-restricted T-cell activation was only marginally increased upon
exposure to B-cells treated with IFN-a or IFN-y, even when adding exogenous peptide to
normalize antigen exposure. Conversely, HLA-B40-restricted T-cells were poorly, if at al,
stimulated by untreated -cells, although some potentiation was observed with IFNs. When
normalizing antigen presentation by PPlass2 peptide pulsing, the IFN-mediated enhancement
was readily visualized. Both T-cells exposed to INS knock-out (KO) ECN90 B-cells did not
show any reactivity, irrespective of prior f-cell treatment, confirming their antigen specificity.
Also in this case, peptide pulsing enhanced HLA-B40-restricted T-cell activation to a larger

extent.

11


https://doi.org/10.1101/2023.09.15.557918
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557918; this version posted September 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Last, we looked for further evidence of HLA-B40-restricted responses in CD8" T-cell lines
raised from idet infiltrates of 4 HLA-B40" nPOD T1D donors™ (Supplementary Table 2). The
previous 29 HLA-B40-restricted peptides were first screened by combining them into 4 pools

(Supplementary Table 3), using peptides binding to irrelevant HLA-I aleles not expressed by

donors as negative controls (Supplementary Table 4). All 4 donors yielded some T-cell lines

positive to most peptide pools. Donor 6480 displayed positive IFN-y secretion responses in
pooled lines (L)9/L10 (Fig. 6D), while 3 other pooled T-cell lines were negative (not shown).
Donor 6536 tested positive for pooled L1/L2 (Fig. 6E); two other pooled lines and individual
L6, L9 and L32 were instead negative (not shown). Donor 6563 yielded robust |FN-y responses
in pooled lines LY/L3/L5 (Fig. 6F). L5 was aso tested individualy, yielding lower yet
significant responses (Fig. 6G). L6 from the same donor aso responded robustly (Fig. 6H),
while L32 responded weakly (Fig. 61). Pooled L8/L9/L10 gave robust IFN-y responses to all 4
peptide pools, notably to pool 1 (Fig. 6J). Donor 6566 displayed robust responses to all 4
peptide pools in pooled L1/L2/L4 (Fig. 6K) and L10/L18 (Fig. 6M), minor reactivities for
pooled L7/L11 (Fig. 6L) and no reactivity for pooled L2/L3/L4, L12/L14/L17 and individual
L6 (not shown). Overal, reactivities were found in 10/10 positive T-cell lines for peptide pool
1, 8/10 for pool 2, 8/10 for pool 3, and 9/10 for pool 4. The reactivity of positive CD8" T-cell
lines L8/L9/L 10 from donor 6563 was subsequently deconvoluted by testing for each individual
peptides of the 4 positive pools (Fig. 6N). While deconvolution of pools 3-4 did not return any
hit (not shown), significant IFN-y secretion was detected for 5/7 peptides from pool 1
(ABCCB81218-1206, ABCCB8i557-1565, CHGA77.84, CHGA 268275, CHGA323.332) and 2/7 peptides
from pool 2 (CPE20z-211, INS-205s665).

Collectively, these data indicate that multiple HLA-B*40-restricted peptides are targeted by
idet-infiltrating T-cells from HLA-B40" T1D donors.
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Discussion

Our study provides an in-depth view of the repertoire of HLA-I-bound peptides presented by
B-cells exposed or not to the early T1D signature cytokine IFN-o. Expectedly, IFN-o exposure
increased HLA-I surface expression*!°, which resulted into a higher number and abundance of
presented peptides, as we previously reported for IFN-y?°. Thus, the inflammatory milieu of
insulitislikely enhances the antigenic visibility of B-cells, both qualitatively and quantitatively.
These peptides originated from a wider array of source proteins, possibly reflecting IFN-a-
induced ER stress* and increased numbers of mis-folded proteins undergoing proteasomal
degradation?*. Within this more diversified peptide display, the fraction derived from secretory
granule proteins decreased. However, this decreased fraction reflected a dilutional effect,
because both the number and abundance of granule-derived peptides concomitantly increased,
underlining the major contribution of secretory granules to the pHLA-I display of B-cells?*®
under basal and, to alarger extent, IFN-o-treated conditions. In line with previous findings®,
de-differentiation, which could have resulted in increased degradation of granule proteins and
presentation of derived peptides, was not at play, as |FN-a rather increased the expression of [3-
cell identity genes such as INSand CHGA. Accordingly, prolNS synthesis was a so unaffected
by IFN-a, while it was decreased by IFN-y. B-cell de-differentiation might thus be a late event
in T1D pathogenesis, induced by inflammatory cytokines that intervene later than IFN-a*’, and
may represent a defense mechanism to limit autoimmune vulnerability®®. At earlier disease
stages, the HLA-E upregulation induced by IFN-a!® may provide another line of defense. HLA-
E inhibits NK-cell-mediated cytotoxicity>® and reportedly presents a limited set of peptides to
regulatory CD8" T-cells*®#!. Accordingly, the peptides predicted to bind exclusively to HLA-
E were presented only by IFN-a-treated p-cells and will provide a useful resource for follow-
up studies.

The immunopeptidome obtained confirmed our previous findings® that some known B-cell
antigens are underrepresented (ZnT8, GADG65, IAPP; with IAPP possibly reflecting a model
bias, as ECN90 express low |IAPP levels?®) or even absent (IGRP, INS DRiP), despite a much
deeper peptide sequencing depth. Indeed, using higher cell numbers and more restrictive
bioinformatics pipelines, we retrieved 714 conventional 8-12mer peptides as compared to the
previous 78%°. This does not exclude that these missing antigens may become T-cell targets
upon peptide presentation by antigen-presenting cells phagocytosing p-cell material. The INS
DRIP caseis noteworthy, asit has been confirmed as arelevant T-cell antigen targeted by islet-
infiltrating CD8" T-cells®. The short-lived and unstable nature of INS DRIiP and the fact that

13


https://doi.org/10.1101/2023.09.15.557918
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557918; this version posted September 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

its presentation is enhanced by IFN-y but not IFN-a** may explain this discrepancy,
emphasizing the need for complementary antigen identification strategies®. The proteasome-
independent generation of some peptides identified may reflect their processing in other cell
compartments. One notable example is PPlis24, which is reportedly processed by signal
peptidases during the import of nascent prolNS into the ER*. We also identified novel
antigens, namely CHGB, SCG2 and SCG3, which share several features with the previously
reported SCG5, UCN3 and PCSK2?°%, They are all soluble granule proteins undergoing
intermediate processing by proconvertases and furins to yield their bioactive products, which
are released with secretory granules. This processing, along with the modulation of their
biosynthesis according to metabolic demand and inflammatory context, may easily divert them
toward the HLA-I pathway under B-cell stress conditions®.

The comparison of the immunopeptidome of ECN90 B-cells and primary human islets was also
informative. Severa peptidesrestricted for the shared HLA-A2/A3 alelesidentified in ECN90
B-cells were aso found in iglets, lending support to this model. Intriguingly, several GCG-
derived peptides were aso retrieved from isets (n=43 vs. 33 for INS), with some of them
mapping to the signal sequence, as for INS (Supplementary Fig. 7). Moreover, a-cells from

T1D patients displayed an HLA-I hyper-expression equivalent to that of B-cells compared to
T1D controls. These findings suggest that the autoimmune resistance of a-cells cannot be
ascribed to a lesser antigen presentation leading to immune ignorance. Other a-cell-intrinsic
defense mechanisms and/or a higher proneness of the T-cell repertoire to recognize INS rather
than GCG®>* may be at play. Interestingly, one of the GCG-derived peptides mapping to the
signal sequence (GCGz-10) displaysapredicted HLA-E restriction, and a-cell reportedly express
higher HLA-E levels than B-cells®™.

Our thorough investigation of HLA-eluted peptide neo-sequences led to the robust
identification of 1 HLA-B40/B49-restricted INS-205 mRNA splice peptide; 9 cis-spliced
candidates and 12 sequences bearing PTMs. Among these PTMs, citrullination was not found,
despite being arelevant PTM in T1D**, However, citrullinated arginine has the same mass
increase as deamidated glutamine or asparagine, which makes their MS distinction
challenging®. Citrullination may thus be mis-identified as deamidation in peptides containing
both an arginine and a glutamine or asparagine. To exclude this possibility, we focused on the
5/13 spectra of arginine-containing deamidated sequences that did not match those of synthetic
deamidated peptides and synthesized them in citrullinated form. Also in this case, no spectral
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matching was observed, thus ruling out the presence of citrullinated peptide. It remains possible
that citrullinated epitopes may be generated outside -cells. The most represented PTM (8/12
peptides) was S-glutathionylation, which involves the formation of a disulfide bond between a
cysteine residue and a glutathione tripeptide. Glutathione is a key circulating anti-oxidant,
whose levels are reduced in T1D patients due to increased utilization®>, It participates to INS
degradation by reducing the disulfide bonds between the A and B chain®2. The observation that
more HLA-I-bound glutathionylated peptides are found in IFN-a-treated conditions may reflect
the altered redox balance of inflamed B-cells®, a therapeutic target that yielded promising
results in recent trials>*. Moreover, epitope glutathionylation can ater T-cell recognition®,
implying that oxidative stress may also contribute to the antigenic visibility of -cells. Cysteines
are exquisitely sensitive to oxidative PTMs, with cysteinylation (i.e. adisulfide-linked cysteine
addition) also found in our dataset and previously reported in HLA-I-restricted T-cell epitopes
from other fields®®>’. Most PTM peptides (11/12), cis-spliced peptides (6/9) and the INS-205
MRNA-spliced peptide were found exclusively after IFN-a treatment, underlining the role of
IFN-a in shaping this neo-antigen landscape. This neo-antigen generation may further increase

the autoimmune vulnerability of B-cells.

Besides HLA-I hyper-expression and neo-antigen generation, preferential HLA-B upregulation
by IFN-o may further contribute to the increased antigenic visibility of B-cells. This effect is
not unique to p-cells or IFN-a, asit has been reported for IFN-y in cancer cells?. HLA-B have
also been found enriched in extracellular vesicles, along with its peptide ligands™. Also in our
case, preferentiadl HLA-B upregulation translated into an increased peptide presentation
drastically skewed toward HLA-B ligands. Although remaining unnoticed, a preferential
upregulation of HLA-B and, to alesser degree, HLA-C, was also observed in RNA-seq studies
of induced pluripotent stem cell-derived islet-like cells exposed to IFN-a?; of sorted p-cells
from T1D vs. non-diabetic donors®®°, despite a long disease duration; and in proteomics
studies of islets from non-diabetic donors exposed to |FN-y/IL-1p%°. Mechanigtically, this may
reflect the structure of the HLA-B gene locus, which harbors two IFN response elements, while
HLA-A and -C loci have only one?*%!. Moreover, HLA-B ligands originated from a very
restricted set of source proteins, with CHGA and INS accounting together for 39% and 11% of
the total number of peptides displayed under basal and IFN-a-treated conditions, respectively,
as compared to 7% and 4% for HLA-A. This restricted set may also reflect the fact that the
ECNO90 B-cell model limited our analysis to HLA-B40/B49-binding peptides, whose near-

exclusive preference for glutamic acid at position 2 significantly reduces the number and
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amount of binders. Despite this constraint, the activation of HLA-B40-restricted PPlas-sz-
reactive T-cells was boosted when B-cells were exposed to |FNs, while the activation of HLA-
A2-restricted PPlis.0s-reactive T-cells was only marginally increased. Moreover, idet-
infiltrating CD8* T-cells from T1D patients recognized HL A-B40-restricted granule peptides,
notably derived from the known B-cell antigen CHGA and the newly described ATP-binding
cassette subfamily C member 8 (ABCC8) and carboxypeptidase E (CPE). Given the different
peptide-binding preferences of each HLA-I type, this implies that the inflammatory
microenvironment of insulitis may skew the autoimmune response toward a distinct set of
HLA-B-restricted peptides and recruit additional CD8" T-cell clonotypes. Thisfinding is also
relevant in view of the paucity of HLA-B-restricted B-cell epitopes described®?; and of the
notion that HLA-B*39:06 is the strongest T1D-predisposing HLA-I alele (relative risk 5.6)%.
Moreover, it has recently been reported that HLA-B matching, but neither HLA-A nor HLA-
DR matching, improves islet alograft survival®. This novel paradigm of preferential HLA-B
upregulation may also apply to other autoimmune diseases featuring IFN signatures®™.

This study carries limitations. First, our work focused on predicted HLA-I ligands, and the
datasets used to train prediction agorithms are mostly derived from vira and tumor
immunology studies. While in these studies HLA-I binding is a good predictor of T-cell
immunogenicity, it likely underestimates the number of potential epitopes in the case of
autoimmunity*, possibly reflecting a bias imposed by thymic T-cell deletion. Predicted non-
binders may hide additional immunogenic peptides, as recently demonstrated for cancer neo-
epitopes®®®’. Second, we analyzed T-cell recognition in only a subset of HLA-B40-restricted
peptides. The large repertoire of candidate epitopes identified will require higher-throughput
technol ogies based on DNA-barcoded HLA-I multimers® for a comprehensive validation.

In conclusion, our study shows that |FN-a shapes the immunopeptidome of -cells, promoting
neo-antigen formation and drastically increasing the presentation of HL A-B-restricted peptides.
Islet-infiltrating CD8" T-cells recognize a subset of these peptides derived from granule
proteins. This comprehensive catalog of HLA-I-eluted peptides sheds light on a neglected,
distinct set of peptides presented by HLA-B molecules and invites further studies to identify
diabetogenic HLA-B-restricted CD8" T-cells and T-cell biomarkers.
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Methods

B-cell culture and treatments

The ECN90 B-cell line* was maintained in DMEM/F12 Advanced medium (ThermoFisher)
supplemented with 2% bovine serum albumin (BSA; fraction V, fatty-acid-free; Roche), 50 uM
B-mercaptoethanol (Sigma), 10 mM nicotinamide (Merck), 1.7 ng/mL sodium selenite (Sigma),
100 U/mL penicillin-streptomycin (Gibco), 1% GlutaMAX (Gibco). Cells were seeded at 8-
8.5x10° cells in 75 cm? or 16.5x10° cells in 150 cm? culture flasks (TPP) coated with 0.25%
fibronectin from human plasma (Sigma) and 1% extracellular matrix from Engelbreth-Holm-
Swarm murine sarcoma (Sigma) and cultured at 37°C in 5% CO- for 18-24 h. ECN90 cells
were treated in DMEM/F12 medium (ThermoFisher), supplemented as above or without BSA
with the following agents and final concentrations: IFN-a (PBL Assay Science, #11100-1;
2,000 U/mL), IFN-y (RnD, #285-1F-100, 500 U/ml), carfilzomib (Selleckchem, #S2853; 50
nM) or ONX-0914 (Selleckchem, #57172; 100 nM). The proteasome enzymatic activity was
measured using Proteasome-Glo (Promega #G1180) on ECN90 p-cells collected by
trypsinization and extensively washed with PBS.

Human pancreatic islets were obtained from 2 non-diabetic brain-dead organ donors (79-year-
old male, BMI 27.8 kg/m?, insulin secretion 25.2 and 51.0 pU/ml at 3.3 and 16.7 mM glucose,
respectively; 80-year-old female, BMI 21.6 kg/m?, insulin secretion 19.6 and 29.6 pU/ml at 3.3
and 16.7 mM glucose, respectively); protocol approved by the Ethics Committee of the
University of Pisa, Italy.

The INS KO ECN90 B-cel line was generated by transfection with Lipofectamine
CRISPRMAX (Invitrogen, #CMAXQ00001) with Alt-R S.p. Cas9 Nuclease V3 (IDT,
#1081058) and INS-targeting gRNA (IDT). INS KO was validated by RT-PCR and by INS
ELISA (Mercodia, #10-1113-01) according to the manufacturer’s protocol.

HL A immunopr ecipitation and peptide elution

Purified anti-HLA-I Ab W6/32 (8-16 mg; produced in-house) was incubated with protein A
Sepharose beads for 30 min before being washed with borate buffer (0.05 M boric acid, 0.05 M
KCI, 4 mM NaOH, pH 8.0). Bound Abs were cross-linked to the beads with 40 mM dimethyl
pimelimidate dihydrochoride (Sigma) in borate buffer pH 8.3 for 30 min. The cross-linking was
terminated with ice-cold 0.2 M Tris pH 8.0, and unbound Abs removed by washing with 0.1 M
citrate buffer pH 3.0 followed by 50 mM Tris pH 8.0.

Dry-frozen cell pellets (1x10°) werelysed in 1 mL lysis buffer (1% IGEPAL-CA 630, 300 mM
NaCl, 100 mM TrispH 8.0, 1X Roche cOmplete Mini Protease Inhibitor Cocktail, EDTA-free)
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by mixing at 4°C for 30 min. Human primary islets were lysed in lysis buffer in bead beater
tubes (Precellys Evolution, Bertin) following 5 cycles a 7,200 rpm for 20 s, separated by 20 s
pauses. Lysates were collected, further mixed for 20 min at 4°C, and cleared by centrifugation
at 500 g for 10 min followed by 21,000 g for 45 min at 4°C. pHLA complexes were captured
by incubating the cleared lysates with W6/32 Ab-cross-linked Sepharose A beads overnight at
4°C. Theresin was collected by gravity.

HPL C fractionation and purification of HL A-I-bound peptides

ECNO90 B-cell sampleswereresuspended in 120 uL loading buffer (0.1% TFA, 1% acetonitrile)
and injected in an Ultimate 3000 HPL C System (ThermoFisher). Peptides were separated across
a4.6- by 50-mm ProSwift RP1S column (ThermoFisher) using ImL/min flow rate over 10 min
from 2% to 35% buffer B (0.1% TFA in acetonitrile) in buffer A (0.1 TFA in water). Fifteen
fractionswere collected, every 30 s, and peptide fractions 1-9 were combined into odd and even
aliquots and vacuum-dried prior to LC-MS/M S acquisition.

Resuspended HLA-I-eluted samples were centrifuged through 5 kDa cutoff filters (Merck
Millipore #UFC3LCCNB-HMT) and vacuum-dried. They were then resuspended in loading
buffer and cleared using Pierce C18 Spin Tips (ThermoFisher, #84850). Final elution was
performed in 30% acetonitrile 0.1% TFA. Samples were vacuum-dried prior to LC-MS/MS
acquisition.

LC-MS/M S acquisition

Dried samples of HLA-I-bound peptides from ECN90 B-cells exposed or not to IFN-o and
synthetic peptides were resuspended in loading buffer (1% acetonitrile, 0.1% TFA) and
analyzed by an Ultimate 3000 RSL Cnano system coupled to a Fusion L umos mass spectrometer
(ThermoFisher). Peptides were separated using a PepMap C18 column, 75 pm x 50 cm, 2 um
particle size (ThermoFisher) with a 30 min (synthetic peptides) to 60 min linear acetonitrile in
water gradient of 2-25%, at aflow rate of 250 pL/min. Solvent contained 5% DM SO and 0.1%
formic acid (v/v). Peptides were ionized using an EasySpray source at 2,000 V and ions were
introduced into the mass spectrometer through an on-transfer tube at 305°C. Data-dependent
acquisition was performed with one full MS1 spectrarecorded from 300 to 1,500 m/z (120,000
resolution, 400,000 AGC target, 60 ms accumulation time), followed by MS2 scans (30,000
resolution, 120 ms accumulation, 300,000 AGC target). Precursor selection was performed

using TopSpeed mode at acycle time of 2 s. High-collision dissociation (HCD) fragmentation
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was induced at an energy setting of 32 for singly charged peptides and of 28 for peptides with
acharge state 2-4.

Alternatively, vacuum-dried samples of HLA-I-bound peptides from ECN90 B-cells exposed
to (immuno-)proteasome inhibitors or human islets were resuspended in SCP loading buffer
(1% acetonitrile, 0.1% formic acid) and analyzed by a nanoElute system coupled to atimsTOF
SCP mass spectrometer (Bruker). Peptides were loaded into an Aurora C18 column, 25 cm x
75 pm, 1.7 um particle size (lonOpticks) with aloading pressure of 800 barsfor 9 min and were
separated with alinear acetonitrile gradient of 2-25% in 0.1% acetic acid over 60 min and 24-
37% for additional 6 min at aflow rate of 150 nL/min at 50°C. Peptides were ionized with the
CaptiveSpray source (Bruker) at 1,400 V and 180°C. Datawere acquired in DDA PASEF mode
with one TIMS-MS survey and 10 PASEF MS2 scans per cycle. lon accumulation and ramp
timein the TIMS analyzer were set to 166 ms/each. The ion mobility range for peptide anaysis
was set to /K0 = 1.7 to 0.7 Vs/cm?2 and the m/z range was 100-1,700. Two compound regions
were defined using m/z and /K0 Vs/cm? as follows: 300, 0.7; 800, 1.2; 800, 0.9; 500, 0.7; and
700, 1.4; 700, 1.1; 1000, 1.7; 1500, 1.7. Precursors with charge states 1-3 and a minimum
threshold of 500 arbitrary units (AU) werefragmented and re-sequenced until reaching a “target
value” of 20,000 AU. Collision energies were 70 eV at 1/K0 = 1.7 Vs/cm?; 40 eV at 1/KO =
1.34Vslem? 40 eV a VKO = 1.1 Vslem? 30 eV a 1/K0 = 1.06 Vslcm?;, 20 eV at VKO0 = 0.7
Vs/em?.

LC-MS/MSdata analysis

Analysis of the raw data was performed using PEAKS X or PEAKS X Pro (Bioinformatics
Solutions), reporting 5-10 peptides for each spectrum in de-novo sequencing, and searching a
protein sequence FASTA file containing the reviewed human Uniprot entries (downloaded on
22/01/2019), predicted peptide neo-sequences translated from published RNAseq datasets®® and
previously reported INS DRiPs®. PEAKS PTM search was performed with all 314 built-in
modifications. Some specific PTM searches were run by setting the PTM of interest as a
variable modification in both the de-novo and database search. The false discovery rate (FDR)
was caculated with a decoy database search integrated into PEAKS and set to 1% for all
samples. A 5% FDR was allowed when looking for mRNA variants reported in human islets
(see Immunopeptidomics bioinformatics analysis). Label-free quantification of peptide
abundance was performed using Progenesis QI (Waters) for chromatographic alignment,
normalization, and determination of ion abundances based on the area. Data analysis was

performed with Python, Perseus and Excel. Sequence clustering was generated by GibbsCluster
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(https://services.healthtech.dtu.dk/). All other figures and statistical analyses were done using
GraphPad Prism (v9.0). Datasets are available via ProteomeXchange with identifiers
PXD045265 and PXD045211.

RNAseq datasets and analysis

RNAs from 6 individual preparations of primary human islets exposed or not to IFN-a for 18
h'® and from HLA Class 11'° and HLA Class 1" human medullary thymic epithelial cells
(MTECS)?° were sequenced on an lllumina HizSeq 2000 at high depth (coverage >150x10°
reads, which is sufficient to detect >80% splice variants). Gene expression was quantified using
Salmon version 0.13.27° with parameters “--seqBias —gcBias —validateM appings”. GENCODE
v31 (GRCh38)"! was chosen as the reference genome and has been indexed with the default k-
mer values. The estimated number of reads obtained from Salmon were used asinput to perform
differential expression with DESeq2 1.24.07°. For each gene included in DESeq2’s model, a
log2 fold change (FC) was computed and a Wald test statistics was assessed with unadjusted
and adjusted p values. Transcripts were considered differentially expressed when presenting a
FC >1.50 and an adjusted p value <0.05. Only transcripts presenting >0.5 transcripts per million
(TPM) in at least 20% of samples were selected for further analysis. Datasets have been
deposited under GEO: GSE148058.

For the RNAseq pipeline, 30,947 mRNAs (TPM >0.5) were filtered based on:

a) A median TPM>5 inidets, either under basal or inflammatory conditions, a cut-off selected
based on the median TPM of known islet antigens (islet expression filter; n=12,594).

b) A median TPM<0.1 in mTECs (either HLA Class I1'° or HLA Class 11", or a median TPM
fold-decrease >100 vs. islet (MTEC expression filter).

c) A median TPM fold-increase >10 in islets compared to 12 control tissues (adipose tissue,
breast, colon, heart, kidney, liver, lung, lymph node, ovary, prostate, skeletal muscle, white
blood cells), using the Illumina BodyMap 2.0 dataset (islet enrichment filter). Tissues of
neuroendocrine origin (brain, testis, adrenal gland and thyroid) were excluded for thisfiltering.
d) We subsequently focused our analysis on mRNA isoforms, as described®. The predicted
trandation products were aligned using the R package Biostrings v2.52.0, with BLOSUM 100
asthe score matrix, and aa neo-sequences were defined by comparing the predicted aa sequence
of each mRNA isoform with that of the reference (canonical) mMRNA, taking as reference the
longest and/or most prevalent mMRNA isoform in islets (neo-sequence generation filter).

I mmunopeptidomics bioinformatics analysis
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Anin-house analysis pipeline was designed (Python 3.7) and applied to the PEAKS PTM output
file. After discarding long (>14-aa) sequences, the remaining ones were sorted based on their
source proteins/genes and according to their expression in the pancreas, based on downloadable
databases and datasets. Briefly, peptides whose source genes were found in the pancreas at the
RNA level, or at the protein level with a high/medium degree of evidence according to the
Human Protein Atlas (V 18) or the Human Protein Reference Database (rel ease 9) were retained.
Previously published single-cell RNAseq datasets from human pancreatic islets’? were re-
processed to generate alist of genes that are enriched in endocrine cells. Peptides identified in
MS were further retained only if their source gene was found in this list. Together, these steps
defined the “B-cell-enriched expression” filter. In parallel, the spectrafound in the PEAKS PTM
search (matched to the database) were excluded from the PEAKS de-novo search output, and
the remaining spectrawere searched for cis-spliced peptide sequences. The 10 reported peptides
per spectrum were investigated for putative forward (i.e. ligation of two fragments in the order
in which they occur in the parent protein) or backward (i.e. ligation of two fragments in the
reverse order compared to the parent protein sequence) cis-spliced sequences of proteins
included in the reference database. Sequences were then fed into the MARS v1.0 algorithm?’,
trained with the genome-templated sequences. The MARS output and the putative cis-spliced
sequences were compared, and sequences found in both were retained and filtered based on
their B-cell-enriched expression as above. NetMHCpan4.1a (https.//services.heal thtech.dtu.dk/)
was installed locally and used to predict HLA-binders to the aleles expressed by ECN90 (-
cells, i.e. HLA-A*02:01, -A*03:01, -B*40:01, -B*49:01, -C*03:04, -C*07:01 and -E*01:01
(cutoff score of <2)?. For PTM peptides, the prediction was performed on native sequences.
HLA-I binding predictions were not computed for cis-spliced sequences, as netMHCpan
ranking is a selection parameter already embedded in the MARS algorithm. A single HLA
prediction was attributed to a peptide if the score difference with the second-best allele was >3-

fold. Otherwise, the two best HLA prediction were assigned.

Real-time quantitative PCR (RT-qPCR)

Total RNA was isolated from ECN90 B-cells using RNeasy mini kit (Qiagen), with RNA
concentration and purity assessed by Nanodrop (ThermoFisher). cDNA was synthesized from
500 ng total RNA using superscript VILO synthesis kit (ThermoFisher #11754050) prior to
gene expression analysis by real-time quantitative PCR (LightCycler, Roche; or QuantStudio
3, ThermoFisher). Quantitect SYBR green PCR mastermix (Qiagen) or Power SYBR green

mix (Applied Biotechnologies) aong with primers designed with Primer3 software were used
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(Supplementary Table 5). For HLA-I genes, primers were as reported?'. Melting curve analysis

was performed to evaluate the specificity of each amplicon prior to anaysis. To normalize gene
expression across samples, GAPDH, ACTB and PPIA were used as housekeeping genes. The

ACt comparative method for relative quantification was used.

Protein synthesis analysis by puromycin incor poration

IFN-a- or IFN-y-treated ECN90 [-cells were pretreated or not with cycloheximide (50 pg/mL;
Sigma) for 1 h before pulsing during the last 10 min with puromycin (10 pg/mL;
ThermoFisher). After 3 washes with ice-cold PBS, cells were harvested, paraformaldehyde-
fixed and stained with AF488-coupled anti-puromycin Ab (RRID:AB_2736875) and APC-
coupled anti-HLA-A/B/C/IE Ab (RRID:AB_314879) in PBS/BSA with 1% saponin
(ThermoFisher #C10424) prior to acquisition on aBD L SRFortessa.

Neo-synthetized puromycin-labeled proINS was analyzed in ECN90 B-cells lysed in RIPA
buffer with protease and phosphatase inhibitors. Proteins (600 pg) were incubated with prolNS
Ab RRID:AB_10949314 overnight at 4°C, followed by addition of protein A/G agarose beads
(ThermoFisher) at room temperature for 3 h. Immunoprecipitated complexes were washed 4
times and eluted using Laemmli buffer (Bio-Rad). Low-molecular-weight protein Western blot
was performed as described”™. PVDF membranes were incubated with anti-puromycin Ab
overnight at 4°C and secondary Ab RRID:AB_330924 at room temperature for 2 h and revealed
by SuperSigna West Dura and iBright imaging system (ThermoFisher). After stripping,
membranes were incubated with prolNS Ab overnight at 4°C and processed as above.

Analysisof HLA-A, HLA-B and HLA-C expression

For Ab vaidation, HLA-I~ K562 cells transduced with different HLA-I alleles®® were single-
stained with the following Abs. HLA-A clone ARC0588 (RRID: AB_2849011) with secondary
Ab RRID:AB_2536097; HLA-B clone JOAN-1 (RRID:AB_1076708) with secondary Ab
RRID:AB_2536161; HLA-C Ab DT-9 (RRID:AB_2739715); HLA-A/BIC/IE Ab W6/32
(RRID:AB_314873), followed by acquisition on a Beckman CytoFLEX flow cytometer.
Surface HLA-I expression was analyzed on ECN90 B-cells single-stained for 30 min with
Live/Dead Violet (ThermoFisher) and Absto: HLA-A clone ARC0588 (RRID: AB_2849011)
with secondary Ab RRID:AB_2832926; HLA-B clone JOAN-1 (RRID:AB_1076708), HLA-
C Ab DT-9 (RRID:AB_2650941), HLA-A/B/C/E Ab W6/32 (RRID: AB_314871) with
secondary Ab RRID:AB_2921066 before acquisition on an LSRFortessa and anaysis with
FlowJo v10.8.
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For Western blotting, cell pellets were lysed in RIPA buffer with protease inhibitor cocktall
(Sigma) and total protein was quantified with Pierce BCA protein assay kit (ThermoFisher).
Protein sampleswere separated by Bolt 4-12% Bis-Tris polyacrylamide gels (Invitrogen) under
denaturing conditions. Detection was performed using the Abs ARC0588 (HLA-A,
RRID:AB_2849011; 1/1,000) and HC10 (HLA-B, RRID:AB_2728622; 1/1,000) overnight at
4°C, followed by horseradish peroxidase-conjugated secondary Abs RRID:AB_2687483 and
RRID:AB_330924 (1/10,000), respectively. a-tubulin Ab RRID:AB_1210457 (1/1,000, 1 h at
room temperature) was used with RRID:AB_330924 for |oading control. Bands were quantified
with Imagel.

For multiplex tissue immunofluorescence, formalin-fixed paraffin-embedded pancreas tissue
sections were obtained from EADB (https.//pancreatlas.org/; with ethical permission from the
West of Scotland Research Ethics Committee, 15/WS/0258) or nPOD (Supplementary Table
1). Sectionswere baked at 60°C for 1 h, dewaxed in Histoclear, rehydrated in degrading ethanol
concentrations (100%, 95%, 70%) and fixed in 10% neutral-buffered formalin. Heat-induced
epitoperetrieva (HIER; 10 mM citrate, pH 6) was performed for epitope unmasking by placing

sections in a pressure cooker in amicrowave oven at full power for 20 min. The sections were
then blocked with 5% normal goat serum and incubated with primary Ab, followed by probing
with an appropriate OPAL fluorophore-conjugated secondary Ab (Akoya Biosciences,
Supplementary Table 6). Thiswasfollowed by afurther HIER to removethe primary Ab before

staining with the next primary/secondary Ab combination. The same steps (from blocking to
epitoperetrieval) were repeated 5 times (for each of the 6 primary/secondary Ab combinations).
Sections were counterstained with DAPI and mounted for multispectral fluorescent microscopy
using the Vectra Polaris slide scanner (Akoya Biosciences). Quantification was performed
using the IndicaHAL O image analysis platform. The DenseNet classification module was used
to identify endocrine and exocrine regions on the whole slide scan. The resolution was set at 2
um/pixel and the minimum object size at 750 um?. The identified endocrine regions (islets)
were manualy sorted into ICIs and IDIs. The HighPlex module was used to segment and
phenotype islet cells; B-cells were defined as INS'GCG™ and a-cellsas INS GCG®. Cell object
datawere exported in Excel format and analyzed in GraphPad Prism 10.

Antigen recall on carrier T-cells transduced with TCRs from islet-infiltrating CD8* T-
cels
HLA-B40-restricted peptides (Supplementary Table 3) were screened on TCRs obtained from

donorslisted in Supplementary Table 2. Fluorescent reporter TCR transductants were generated
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as described® %, Briefly, 5KC T-hybridoma cells carrying transgenes for an NFAT-driven
ZsGreen-1reporter and human CD8 were transduced with retroviral vectors encoding TCRs
recognizing an HLA-B40-restricted PPlas.s2 epitope (TCR 173.D12) or an HLA-A2-restricted
PPl 1524 epitope (TCR 1E6). These TCRs were re-expressed as chimeric TCRo/p pairs linked
by a porcine teschovirus-1 2A (P2A) peptide (synthesized by Twist Bioscience). ECN90 f-
cells, either wild-type or INS KO and pulsed or not with TCR cognate peptides (100 uM,
Synpeptide), were exposed for 24 h to IFN-a. (PBL, 2,000 U/ml), IFN-y (RnD, 500 U/ml) or no
cytokine prior to addition of TCR transductants (T:B-cell ratio 1:2) for 6 h.

Antigen recall on idet-infiltrating CD8* T-cells

Isolated islets or live pancreas slices (150-pm thick) were provided by nPOD (donors listed in
Supplementary Table 2). Islets were isolated by tissue digestion with 1 mg/mL collagenase-P
(Sigma) in PBS at 37°C under shaking with a magnetic stir bar, with tissue dispersal visually

monitored. After washing, islets were enriched by hand-picking, and single-islet-derived T-cell
lines generated as described®*. The lymphocytic outgrowth from individual islets was collected,
re-plated, allowed to expand, re-stimulated as needed and cryopreserved in early passage (P1-
3). T-cell lines containing >20% CD8" T-cells were selected for analysis.

HLA-B40-transduced K562 cells were irradiated (5,000 rads), plated at 3,000 cells/well and
pulsed with pools of HLA-B40O-restricted peptides (4 pools of 7-8 peptides/each;
Supplementary Table 3) or a negative control pool of peptides binding to irrelevant HLA-I
aleles (Supplementary Table 4)*52. They were then co-cultured for 48-72 h with individual
islet-derived T-cell lines (or pooled lines when needed to reach required T-cell numbers) at
75,000 cells/well in triplicate wells of round-bottom 96-well plates. T-cells alone were cultured

with and without plate-bound anti-CD3/CD28 as positive control for functional, viable T-cells.
Supernatants were collected and IFN-y secretion measured by cytometric bead array (BD
#561515; 271 fg/ml lower detection limit). The reactivity of pooled T-cell lines L8/L9/L10
from donor 6563 was deconvoluted for individual peptides as above.

Statistical analysis

Statistical details of experiments can befound in thelegends of each figure. A two-tailed p<0.05
cut-off was used to define statistical significance.
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Figurelegends

Figure 1. Immunopeptidome profiling of HLA-I-bound peptides presented by ECN9O0 g-
cells. A. Length distribution of HLA-I-eluted peptides from ECN90 B-cells under basal (blue)
and IFN-a-stimulated conditions (orange). Four biological replicates (3.5-4.5x10° cells/each)
were acquired for each condition, and unique peptides across replicates were counted. B.
Number of 8-14mer peptides eluted from the above conditions. C. HLA-I expression detected
by flow cytometry on ECN9O B-cellsin basal (blue) and IFN-a-stimulated conditions (orange)
using W6/32 Ab. D. HLA-I heavy chain expression detected with HC10 Ab by Western blot in
whole cell lysates of ECN9O cells exposed or not to IFN-a, with a-tubulin bands as loading
controls and normalized HLA-I fold change (FC) values indicated. E. Bioinformatics analysis
pipeline. Predicted aa neo-segquences from RNAseq datasets of human islets (dashed lines) were
appended to the database used for immunopeptidome search. Database-matched sequences
identified by PEAKS (grey box) were sequentially filtered based on their length, on whether
they matched mRNA variants (yellow boxes; peptides listed in Supplementary Data 1) and on

the enriched expression of their source proteins in p-cells. Conventional candidates (green

boxes; Supplementary Data 2) and sequences carrying PTMs (violet boxes, Supplementary

Data 3) were separated. HLA-I-binding predictions were performed using NetMHCpan4.1a
(peptide motifs detailed in Supplementary Fig. 1). In parallel, non-genome-templated peptides

were interpreted as potential cis-spliced candidates and fed into the MARS algorithm, followed
by filtering according to the enrichment of their source proteins in B-cells (red box,

Supplementary Data 4).

Figure 2. Immunopeptidome of ECN90 B-cells exposed or not to | FN-a and validation of
HLA-I-eluted candidate neo-epitopes. A-B. Heatmap of the relative representation of the top
40 source proteinsin ECN90 B-cells (A) and human islets (B), ranked according to the number
of peptides detected in the IFN-ao-treated condition. The color scale is proportiona to the
number of peptides identified for each protein out of the total number of peptides in a given
condition, expressed as percentage. Only conventional and PTM sequences are included.
Peptides carrying PTMs were counted as such only for PTMs defined aslikely biologica (they
were otherwise counted as unmodified); cis-spliced peptides were excluded. Percent values and
peptide numbers are listed on the right. Source proteins enriched in IFN-a-treated cells (log2
fold change, FC > 1) or in basal condition (log2 FC < 1) are indicated for ECN90 B-cells. The
complete heatmap is provided in Supplementary Fig. 2. HLA-I-bound peptides eluted from

primary human islets are listed in Supplementary Data 5 and compared with those eluted from
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ECN90 B-cellsin Supplementary Data 6. C. Global PTM enrichment in basal and IFN-a-treated
condition. A detailed list is provided in Supplementary Data 7. D. Spectral matching examples

of matched (left) and unmatched (right) synthetic peptides compared to the initia peptide
identification using an online tool (https.//www.proteomicsdb.org/use). E. Validated post-
trandationally modified peptides and representation of the native and modified aa. The PTM is
indicated in red. A detailed list is provided in Supplementary Data 3. F. Peptide alignment of
INS and INS-205 mRNA variant. The sequence of the HLA-eluted variant is indicated in red
and correspond to a sequence spliced out as compared to the canonical INS mRNA.

Figure 3. HLA-I restrictions of the immunopeptidome of ECN90 -cells exposed or not to
|FN-a. A. Relative distribution of predicted HLA-I ligandsfor each allele expressed by ECN90
B-cellsin basal and IFN-a-treated conditions. **** p<0.0001 and * p=0.027 by Fisher exact test.
Predicted HLA-E*01:01-restricted peptides are listed in Supplementary Data 9. B-C. Percent
proportion (B) and number of peptides (C) originating from granule-contained and other

proteins in basal and IFN-o-treated conditions. A heatmap of the source proteins of HLA-A-
and HLA-B-restricted peptides is provided in Supplementary Fig. 4. D-E. Average total

abundance of conventional peptides originating from granule-contained (D) and other proteins
(E). The peptides were identified by PEAKS and quantified by Progenesis. The PPlis24
sequence of the most abundant peptide identified in both conditions is indicated. Horizontal
bars represent median values. ****p<0.0001 and * p<0.05 by Wilcoxon test.

Figure 4. IFN-o preferentially upregulates HLA-B expresson without inducing
dedifferentiation or reducing prolNS synthesis. A. Relative mRNA expression of HLA-A,
HLA-B and HLA-C alelesin ECN90 B-cells exposed or not to |FN-a or IFN-y for 24 h. GAPDH
was used as an internal normalizing control, and each gene was normalized to the basal sample.
Datarepresent mean+SEM of 5 biological replicates. **p<0.01 and * p<0.05 by Mann-Whitney
U test. B-C. Protein expression of HLA-A, -B and -C in in ECN90 B-cells exposed or not to
IFN-a or IFN-y, as detected by surface flow cytometry (B) and Western blot (C) using the
indicated Abs validated for their specificity (see Supplementary Fig. 5). For Western blotting,
the arrowhead indicates the HLA-1 heavy chain band, with the top band indicating the a-tubulin
loading control and normalized HLA-I fold change (FC) values indicated. D. Relative mRNA
expression of B-cell identity genesin ECN90 B-cells exposed or not to IFN-a. PPIA was used

asinterna normalizing control, and data representation isthe same asin panel A. **p<0.01 and

*p<0.05 by Mann-Whitney U test. E. Puromycin incorporation in newly synthesized total
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proteins (top) and HLA-A/B/C/E expression (bottom), detected by flow cytometry and
expressed as fold change compared to the basal sample (first column). Inhibition of protein
synthesis by cycloheximide (CHX) provided negative controls (last 2 columns). Data represent
meantSEM of 6 biologica replicates. ***p<0.0001 by one-way ANOVA. F. Puromycin
incorporation in newly synthesized prol NS, detected by prolNS immunopreci pitation followed
by Western blot for puromycin (top; corresponding to newly synthesized prolNS) and proINS
(bottom; corresponding to total prolNS). A representative experiment out of 4 performed is
shown. G. Puromycin incorporation in newly synthesized prolNS, detected by Western blot
and expressed as fold change compared to the basal sample (first column). Data represent
mean+SEM of 4 biological replicates. * p<0.03 and **p<0.002 by one-way ANOVA.

Figure5. HLA-B vs. HLA-A hyper-expression in theidets of T1D and non-diabetic (ND)
cases. A-B. Representative immunofluorescence images of ICls from T1D case nPOD 6396
(A) and ND case nPOD 6160 (B; al caseslisted in Supplementary Table 1), stained with DAPI
only (first row) or for HLA-A/B/C/E (yellow; second row), HLA-A (orange; third row) and

HLA-B (red, fourth row), alone (first column) or in combination with INS (green, second
column) or GCG (violet, third column). Scale bar 50 um. C. Whole ICI images from the same
T1D case nPOD 6396, scale bar 100 um. D. Immunofluorescence quantification of HLA-I
mean fluorescence intensity (MFI) for HLA-A/B/C/E, HLA-A and HLA-B in B-cells (Ieft) and
a-cells (right) from ICls of ND (blue; n=4) and T1D cases (orange; n=5); and in a-cells from
IDIs of T1D cases (white; n=6). Bars represent mean+SEM values. **p<0.005 by 2-way
ANOVA. T1D IDI images and individual quantifications for each T1D donor are provided in
Supplementary Fig. 6.

Figure6. Recognition of HL A-B40-restricted peptidesin theidletsof T1D donors. A. Dose-
response peptide recall of 173.D12, 1E6 and negative control 173.B2 TCR-transduced
ZsGreen-NFAT reporter 5KC T-cells co-cultured for 18 h K562 antigen-presenting cells
transduced with HLA-B40 (for 173.D12 and 173.B2) or HLA-A2 (for 1E6) and pulsed with the
indicated peptides. A representative experiment out of 2 performed is shown. B. Activation of
ZsGreen-NFAT reporter 5KC T-cells transduced with a 1E6 TCR recognizing HLA-A2-
restricted PPl 1s.04 or a 173.D12 TCR recognizing HLA-B40-restricted PPlas.s2. Following the
indicated cytokine pretreatment, ECN90 B-cells (wild-type or INSKO) left unpulsed or pulsed
with the cognate peptide were put in contact with TCR-transduced 5KC T-cells for 6 h. Data

represent meantSEM of triplicate measurements from a representative experiment performed
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intriplicate. *p<0.05, ** p<0.01 and *** p<0.001 by Student'st test. C. Averagetotal abundance
and fold difference of HLA-A2-restricted PPlis24 and HLA-B40-restricted PPlass2 peptides
presented under basal and IFN-a-treated conditions (n=4/each; PPlis24 but not PPlass, was
detected in 4 additional replicates). *p<0.05 and **p<0.01 by paired Student'st test. D-N. [FN-
v secretion by polyclonal CD8" T-cell lines expanded from idlet infiltrates of HLA-B40" nPOD
T1D donors (listed in Supplementary Table 2) and exposed to HLA-B40-transduced K562
antigen-presenting cells pulsed with HLA-B40-restricted peptide pools (D-M; listed in

Supplementary Table 3) or with individual peptides (N). Datarepresent mean+SEM of triplicate

measurementsfrom arepresentative experiment performed in duplicate. * p<0.05, ** p<0.01 and
***pn<0.001 by paired Student'st test.
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