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Abstract: Homeostasis of the host immune system is regulated by white blood cells with a variety
of cell surface receptors for cytokines. Chemotactic cytokines (chemokines) activate their receptors
to evoke the chemotaxis of immune cells in homeostatic migrations or inflammatory conditions to-
wards inflamed tissue or pathogens. Dysregulation of the immune system leading to disorders such
as allergies, autoimmune diseases, or cancer requires efficient, fast-acting drugs to minimize the
long-term effects of chronic inflammation. Here, we performed structure-based virtual screening
(SBVS) assisted by the Keras/TensorFlow neural network (NN) to find novel compound scaffolds
acting on three chemokine receptors: CCR2, CCR3 and one CXC receptor CXCR3. Keras/TensorFlow
NN was used here not as a typically used binary classifier, but as an efficient multi-class classifier
that can discard not only inactive compounds but also low or medium-activity compounds. Several
compounds proposed by SBVS and NN were tested in 100 ns all-atom molecular dynamics simula-
tions to confirm their binding affinity. To improve the basic binding affinity of the compounds, new
chemical modifications were proposed. The modified compounds were compared with known an-
tagonists of these three chemokine receptors. Known CXCR3 were among the top predicted com-
pounds and thus benefits of using Keras/TensorFlow in drug discovery have been shown in addi-
tion to structure-based approaches. Furthermore, we showed that Keras/TensorFlow NN can accu-
rately predict the receptor subtype selectivity of compounds, for which SBVS often fails. We cross-
tested chemokine receptor datasets retrieved from ChEMBL and curated datasets for cannabinoid
receptors available at: http://db-gpcr-chem.uw.edu.pl. The NN model trained on the cannabinoid

receptor datasets retrieved from ChEMBL was the most accurate in the receptor subtype selectivity
prediction. Among NN models trained on the chemokine receptor datasets, the CXCR3 model
showed the highest accuracy in differentiating the receptor subtype for a given compound dataset.
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Abbreviations:

GPCR—G protein-coupled receptor

CCL—C-C motif chemokine ligand
CXCL—C-X-C motif chemokine ligand
CCL—C-C motif chemokine ligand

CCR—C-C motif conventional chemokine receptor
CXCR—C-X-C motif chemokine receptor
ACKR—atypical chemokine receptor

MSMP — prostate-associated microseminoprotein
SBVS—structure-based virtual screening
LBVS—ligand-based virtual screening

MD —Molecular Dynamics

HLL—Hit Locator Library

NN —neural network
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ML —machine learning
Cryo-EM —cryogenic electron microscopy

1. Introduction

Chemokines, or chemotactic cytokines, are a group of highly conserved small pro-
teins that participate in the immune response via the chemotaxis of cells, either in response
to tissue damage or infection (inflammatory chemokines) or to ensure homeostasis (ho-
meostatic chemokines) [1], [2]. Inflammatory chemokines (incl. CCL1-13, CCL23, CCL24,
CCL26, CXCL1-3, CXCL5-11) are expressed under inflammatory conditions and cause an
increase in leukocyte trafficking towards the inflamed tissue. Homeostatic chemokines
(incl. CCL14, CCL15, CCL16, CCL19, CCL21, CCL25, CCL27, CCL28, CXCL4, CXCL12,
CXCL13), are expressed constitutively and induce constant homeostatic migrations to
lymph nodes throughout the body and as well as the homing of immune cells such as
lymphocytes [3]. However, dual-function chemokines, e.g.,, CCL11, CCL17, CCL22, or
XCL1 (lymphotactin) and CXC3CL1 (fractalkine) also exist.

Due to the chemokine system being central to physiological processes such as home-
ostasis and immune responses by leukocyte transferring [4,5], the expression of these pro-
teins a promising prognostic method for various malignancies [6]. Furthermore, a dysreg-
ulation of the chemokine system is implicated in cancer pathogenesis [7-9], but also in the
progression of inflammatory and immune diseases, making chemokine receptors an
emerging target in the development of new drugs.

The pro-inflammatory or homeostatic effects of chemokines are exerted through the
activation of their receptors—a family of rhodopsin-like G protein-coupled receptors
(GPCRs) that, based on the arrangement of cysteine residues in the N-terminal of the
chemokines they bind, can be divided into four subfamilies: XCR, CCR, CXCR, and
CX3CR [10]. To date, roughly 19 standard chemokine receptors and four atypical chemo-
kine receptors (ACKRs) have been characterized in humans [11,12]. The latter group is
less known and lacks a full-length structural characterization in the PDB but represents a
promising group of drug targets. For example, ACKR3 modulates the CXCR4 signaling
by acting as a decoy receptor and scavenging of CXCL12 [13]. The CXCL12 chemokine
that binds both ACKR3 and CXCR4 is classified as a homeostatic chemokine and is over-
expressed in autoimmune and inflammatory diseases [13]. Among homeostatic receptors,
CXCR4, CCR?7, and CCR9 are the most well-known [14] but many others are still being
investigated.

CCR2 is a conventional chemokine receptor responding to chemokines with the cys-
teine CC motif in their N-termini. CCR2 is expressed largely in T cells and monocytes [15],
and is specifically involved in monocyte mobilization [16]. Similarly to other chemokine
receptors, CCR2 can be activated non-selectively by many different chemokines, includ-
ing: CCL2, CCL7, CCLS, CCL12, CCL13, and CCL16 [16]. A recently discovered chemo-
kine PSMP—PC3-secreted microprotein (microseminoprotein, prostate-associated
MSMP), which is over-expressed in cancer and promotes hepatic fibrosis, has an affinity
for CCR2 on a level similar to the most potent CCL2 [17]. This has implications for the
importance of CCR2 in drug discovery for a variety of pathologies, e.g., inflammatory and
autoimmune diseases such as rheumatoid arthritis [15], multiple sclerosis [16], and auto-
immunity-driven type-1 diabetes [18], but also ischemic stroke [16], liver disease [19],
asthma, atherosclerosis, transplant rejection [20], diabetic nephropathy, neuropathic pain,
and the promotion of cancer cell metastasis [18]. CCR2 is the target of multiple clinical
candidates—according to ChEMBL (accessed: July 2023) [21,22], nine are already in the
2nd phase of clinical trials, and one more is in the 3 phase, but none has been approved
for clinical use so far [23].
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CCR3 belongs to the same subfamily of chemokine receptors as CCR2, and is ex- 97
pressed predominately on the surface of eosinophils [24] and basophils [25]. Although it 98
is also over-expressed in certain types of cancer, it is connected with a rather poor prog- 99
nosis (except in prostate and ovarian cancers) in contrast to a generally better prognosis 100
associated with a high expression of CCR2 (except in glioma, testicular, and renal cancers) 101
due to the CCR3-mediated migration of cancer cells [26]. CCR3 is known to bind chemo- 102
kines CCL5, CCL7, CCL13, CCL15, eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 103
(CCL26) [25]. The activation of CCR3 by eotaxins (eosinophil chemotactic proteins) in- 104
duces inflammation and thus is involved in asthma and allergies [24], including allergic 105
skin diseases [27]. According to ChEMBL, there are currently no drugs nor clinical candi- 106
dates targeting this receptor. Only recently have the active-state structures of CCR2 107
(bound to CCL2) and CCR3 (CCL11 not visible in electron density maps, but an active- 108
like receptor structure) been solved using cryo-EM [23] to provide a basis for the rational 109
design of novel immunomodulators acting on these two receptors. 110

CXCRS3 is a chemokine receptor that is expressed mainly on immune cells such as 111
natural killer cells and activated T lymphocytes. In humans, it can exist in three different 112
isoforms: CXCR3-A, CXCR3-B, and CXCR3-alt, which are a result of gene splicing. While 113
CXCR3-A and CXCR3-B sequences display a large overlap, there is a difference in their 114
N-terminal, which is longer in the case of CXCR3-B due to the insertion of an additional 115
sequence fragment from exon-2 of the CXCR3 gene. CXCR3-alt, however, consists of five 116
transmembrane domains rather than seven as a result of the deletion of 337 base pairs 117
from exon-3 [28]. Different isoforms are known to bind different chemokines—while 118
CXCR3-A binds CXCL9, CXCL10, and CXCL11, CXCR3-B additionally binds CXCL4 [28]; 119
CXCR3-alt is known to bind CXCL11 [29]. Similarly to CCR3, CXCR3 has been implicated 120
in the progression of numerous diseases, including but not limited to multiple sclerosis, 121
rheumatoid arthritis, transplant rejection [20], systemic lupus erythematosus [30], and al- 122
lergies [31]. CXCR3 knockout mice are reported to be more resistant to autoimmune dis- 123
eases [18]. A clinical candidate for acute lung inflammation targeting CXCR3 has been 124
suggested by Meyer et al. but it has not yet been tested in clinical trials [32]. Biased ligands 125
of CXCR3 (biaryl-type VUF10661 and VUF11418) have also been discovered in addition 126
to the biased signaling observed for endogenous agonists of CXCR3 (CXCL11 bias to- 127
wards B-arrestin). Recently, these three agonists of CXCR3 have been shown to activate 128
the formation of the Gai:f3-arrestin complex in non-canonical GPCR signaling [33]. This 129
emphasizes the importance of drug design for CXCR3 in numerous diseases, such as can- 130
cer, inflammatory diseases, and autoimmune disorders. 131

It is worth mentioning that except for the ACKRs, the structure of chemokine recep- 132
tors is vastly conserved around the DRYLAIV motif in TM3 and the ICL2 loop [34,35]. 133
However, only 3 drugs out of 45 in trials have so far been clinically approved [36]. 134
Mogamulizumab was first approved in 2012 as a CCR4 antibody antagonist for cancer 135
treatment. Maraviroc was approved in 2007 as an antiviral by acting as a CCR5 antagonist, 136
while in 2008, Plerixafor was approved as a CXCR4 partial agonist for cancer therapies. 137
To our knowledge, no drugs have been clinically approved so far for their action on CCR2, 138
CCR3, or CXCR3. 139

As mentioned above, CCR2 is involved in a wide range of diseases, however, most 140
of the clinical trials to find new CCR2-binding drugs failed in Phase II [37], [36]. CCR3 141
seems to be a target for asthma and allergy, but ongoing studies present a potential role 142
of CCR3 antagonism in two disorders associated with the aging population, such as mac- 143
ular degeneration (MAD) and cognitive dysfunction in mice models [37]. CXCR3, mostly 144
expressed on the surface of activated T cells, B cells, and natural killer cells, plays a crucial 145
role in infection, autoimmune diseases, and tumor immunity by binding to specific recep- 146
tors on target cell membranes to induce targeted cell migration and resulting immune 147
responses. CXCR3 and its main ligands (i.e., CXCL9, CXCL10 and CXCL11) have been 148
linked to the development of many tumors (Table 1). Interestingly, the CXCR3 ligands 149
CXCL9, CXCL10, and CXCL11 demonstrate a dichotomous activity in cancer ranging 150
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from the inhibition to the promotion of tumor growth [38]. This can be explained by the
varied expression patterns of CXCR3 in many tumor tissues. Therefore, it is necessary to
better investigate the mode of action(s) (MoAs) and related signaling pathways for CXCR3
given its potential role as a new target for clinical tumor immunotherapy. Known antag-
onists and agonists of CCR2, CCR3, and CXCR3 receptors are shown in Table 1.
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Table 1. Known active ligands of CCR2, CCR3 and CXCRS3 receptors.
Chemo- Active ligands Mechanism of Action Indications Status Refer-
kine re- ences
ceptor
ligand drugs
CCX-140 Antagonist Type 2 diabetes and In trial, [39];
diabetic nephropathy = Il clinical  [36]
phase
Plozali- Antagonist Anti-inflammatory In trial, [36]
zumab IT clinical
(MLN- phase
1202)
Plozali- Antagonist Antineoplastic In trial, [36]
CCR2 zumab, II clinical
MLN-1202 phase
CNTX-6970 Antagonist Analgesic In trial, [36]
IT clinical
phase
Incb3284 Antagonist Anti-inflammatory In trial, [36]
IT clinical
phase
azd2423 Antagonist Chronic obstructive In trial, [36]
pulmonary disorder  II clinical
phase
Ccx872 Antagonist In trial, [36]
IT clinical
phase
cenicriviroc Antagonist Antiviral, HIV In trial, [36]
IT clinical
phase
Ccl2-lpm Antagonist Anti-inflammatory In trial, [36]
IT clinical
phase
CCR3 Tpi-asm8 Antagonist Anti-asthmatic In trial [36]
CXCL9/10 Promoting lymph node me- Colorectal cancer [40]
tastasis; Promotion of Breast cancer; Ovar-
lymph node and lung me-  ian cancer; Lung can-
tastasis; Promotion of ma- cer; Stomach cancer;
lignant ascites production;
Promoting tumor growth
and metastasis; respectively
CXCL9/10/11 Promotes proliferation and  Esophageal cancer; [40]
CXCR3 metastasis of cancer cells; Kidney cancer; Oste-
Promotes distant metasta- osarcoma
sis; Inhibit tumor growth
and metastasis; respectively
CXCL10 Promotes tumor growth Prostate cancer; Gli- [40]

and metastasis; Inhibits tu-
mor growth; respectively

oma and Myeloma
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Drug discovery is a long and costly process, but it can be enhanced by computational 159
methods, including both structure- and ligand-based virtual screening (SBVS and LBVS, 160
respectively). Of these two, SBVS is more time-consuming, requiring the use of a target 161
structure or a homology model to compute the approximate free energy of the ligand 162
binding [41]. The aim of SBVS is to screen a library of compounds using a receptor homol- 163
ogy model or its cryo-EM/X-ray structure using scoring functions based on simplified 164
force fields. The computed free energy of binding, approximated by a scoring function 165
(SF), enables the selection of compounds that will likely evoke the highest response in 166
vitro. Many different programs are available to perform such library screening, including 167
Glide [42], AutoDock, AutoDock Vina [43,44], DOCK [45], MOE [46], GOLD [47]. Com- 168
parative studies done on AutoDock and AutoDock Vina indicate that the latter is better at 169
predicting binding poses, though it cannot be said that one program is inherently superior 170
to the other —they were found to be better fitted for different drug targets. The computa- 171
tional time is also crucial to deciding which docking program to choose for virtual screen- 172
ing purposes. Recently, Autodock Vina has been modified to fit the GPU architecture, 173
which significantly accelerates the computations and adds more advantages in compari- 174
son to other molecular docking software [48]. 175

In recent years, scoring functions (SFs) used in SBVS have also begun to be based on 176
machine learning. In contrast to classical SFs, ML-based SFs do not make use of a fixed 177
functional form (usually linear) that is based on the relationship between the characteris- 178
tics of the protein-ligand complex and the binding affinity. Instead, in their case the func- 179
tional form is based purely on the information obtained by ML from the training data [49]. 180
This way, it is possible to reflect non-linear relationships between the protein-ligand com- 181
plex structure and the ligand binding affinity, e.g., by using neural networks (NNs), ran- 182
dom forest (RF), or support vector machines (SVM) [50]. Deep learning methods—espe- 183
cially convolutional neural networks (CNN)—have been applied in SBVS in order to ob- 184
tain more reliable results from docking calculations [50]. Such approaches include 185
DeepVS [51], DenseFS [52], and Gonczarek et al.’s fingerprinting method involving learn- 186
able atomic convolution [53]. Furthermore, CNNs have also been used in the prediction 187
of binding poses and affinities, and more robust models can be built by combining them 188
with transfer and multitask learning [50]. Noteworthily, deep learning methods are not 189
always better than those based on classical machine learning [54]. Classical ML methods 190
are typically used for rescoring or ranking of the output from popular molecular docking 191
programs rather than being directly integrated into them, and their results are not easily 192
interpretable [50]. The interpretability of results of a deep learning method can be im- 193
portant especially when it comes to medical applications [55], e.g., for finding gene-drug 194
associations [56]. One of the common methods to explain ML results is SHapley Additive 195
exPlanations (SHAP) [57]. Shapley values allow the importance of specific features to be 196
assessed by computing three properties: consistency, missingness, and local accuracy. 197
This method demonstrates a high consistency with human intuition [57]. Other interpret- 198
ability methods include DeepLIFT [58], especially used for deep NNs, or Grad-CAM++ 199
[59], used to visually explain the predictions of CNN models [57]. There are also frame- 200
works joining various methods to uncover global feature importance in contrast to local 201
interpretation of each feature, e.g., SAGE [60,61]. 202

In principle, LBVS is much faster, based solely on the structure and physicochemical 203
properties of ligands known to interact with the molecular target in order to predict the 204
affinities of yet untested compounds [62]. This makes it possible to use when the structure 205
of a receptor is unavailable, which is often the case with GPCRs. The applicability of ma- 206
chine learning methods in ligand-based virtual screening has been widely discussed so 207
far, e.g., in [63]. Constantly increasing in the number of available ligand datasets for vari- 208
ous drug targets and improving of the quality and quantity of such datasets improves the 209
accuracy of computational drug discovery despite minor problems with integration and 210
optimization of used ML methods [64]. In supervised ML, feature selection is used to rec- 211
ognize relevant molecular (in case of drug discovery) or genomic (in case of genomic 212
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analysis) features that inform about drug responses or drug-gene associations. These tech- 213
niques, however, require the labeling of used training dataset, e.g., prior knowledge about 214
drug-target associations [65]. Thus, their use may inhibit the discovery of potential new 215
actives, as compounds not possessing the preselected features could be discarded. 216

Data-driven concepts to result in, e.g., new drugs or drug targets, require efficient 217
and accurate algorithms in advance, to process massive data from large biomedical repos- 218
itories and to reflect subtle differences in compounds that have a huge impact on the ob- 219
served biological response, respectively. Although conventional ML algorithms belong- 220
ing to a supervised learners’ group, such as gradient boosting or support vector machines, 221
seem to be the most accurate in tasks including predictions of compound activity or bind- 222
ing affinity [54,63,66-68], NNs constantly draw attention [64]. Learning of NNs can be 223
carried out as supervised learning (first NNs, also including backpropagation NNs), or 224
unsupervised learning (e.g., deep belief networks) where layers can detect relevant fea- 225
tures. Other types of learning, e.g., reinforcement learning can also be used to train NNs 226
[69]. In principle, if no labeled input data is used to train NN, it has many more possibili- 227
ties of finding new active-like scaffolds compared to supervised-learning methods. This 228
is the basis for the popularity of NNs and deep learning NNs in various tasks, ranging 229
from image recognition, natural language processing, and engineering applications [70], 230
to the retrieval of relevant information from databases, e.g., in protein structure prediction 231
[71] or in drug design [72]. The two, mostly used systems for machine learning and espe- 232
cially for deep learning tasks are TensorFlow, developed by Google [73], and PyTorch 233
[74], co-developed by A. Paszke. Keras API [75] makes it possible to define and train ML~ 234
models implemented on TensorFlow or PyTorch platforms to easily release open-source 235
projects and construct pipelines joining various libraries, e.g., RDKit [76] for compound 236
fingerprints [77]. TensorFlow with or without high-level Keras APl is widely used due to 237
the easy implementation of algorithms that are otherwise difficult to optimize flawlessly, 238
such as for example convolutional neural networks [78]. One of the key concepts recently = 239
introduced in TensorFlow2.0 and PyTorch is a ‘define-by-run’ paradigm [79,80], in which 240
connections in NNs are defined during the training, not before. This backpropagation al- 241
lows for a more efficient automatic differentiation scheme compared to ‘define-and-run’ 242
in TensorFlow1.0. 243

Recently, TensorFlow has been used for rapid screening for GPCR ligands [81] but 244
the combination of two methods, LBVS and SBVS, allows for a more precise and reliable 245
assessment of the ligand binding affinity and its detailed binding mode [54]. In the final 246
step, molecular dynamics (MD) can be used to validate the molecular docking-based bind- 247
ing affinity and binding modes of discovered compounds and thus to reduce the number 248
of false positives before the bioassay studies [82]. This combined computational approach 249
significantly reduces both time and cost required to find novel chemotypes. 250

Here, we performed MD simulations for previously obtained novel CCR2 and CCR3 251
antagonists, and used a combination of AutoDock Vina for SBVS, Keras/Tensorflow se- 252
quential model of neural network (NN) for LBVS, and MD simulations in order in order 253
to find and validate novel small-molecule antagonists for CCR2, CCR3, and CXCR3 chem- 254
okine receptors. While previously [81] the impact on the ligand dataset composition on 255
the ML results was discussed, here we focused on the ability of ML to reflect slight struc- 256
tural differences between ligands matching the certain receptor subtype which account 257
for their receptor subtype selectivity. In [83] we assessed gradient boosting decision trees 258
(LightGBM) in the recognition of the receptor subtype selective and non-selective ligands 259
of cannabinoid receptors. Here, we assess NNs (Keras/TensorFlow) in such a task using 260
not only the curated ligand datasets for CB1/CB2 cannabinoid receptors (http://db-gpcr- 261
chem.uw.edu.pl), but also for CCR2/CCR3/CXCR3 chemokine receptors. 262

2. Results 263
2.1. CXCR3 Model Validation 264
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The positions of transmembrane helices 5 and 6 (TM5 and TM6) were the first to be 265
analyzed. It is well-known that during the activation of the GPCR receptor, the extracel- 266
lular region of its TM5 helix moves inwards, while the intracellular region of TM6 moves 267
outwards [84]. These differences in the inactive and active-state conformations are shown 268
in Fig. 1. Indeed, the location and shape of TM5 and TM6 in our CXCR3 model are similar 269
to those observed for inactive-state structures of chemokine receptors. 270

Similarly, the conformations of selected residues were analyzed: the Wé4 toggle 271
switch, Y75 transmission switch, and D3#R330Y351 jonic lock [84-86]. The W64 toggle 272
switch was rotated as compared to the active-state structure, the Y75 transmission switch 273
had an altered position, and R3% in the ionic lock was bent inwards rather than straight- 274
ened out. On this basis, it was concluded that the model was suitable for performing struc- 275
ture-based virtual screening, i.e., the molecular switches present in the model were in the 276
conformations expected to be present in an inactive-state chemokine receptor. 277

278

Transmission Switch Tonic Lock

279

Figure. 1. The validation of the inactive-state CXCR3 model through an analysis of micro- and 280
macroswitches. The inactive-state model of CXCR3 (blue-to-red) was superposed on active-state 281
chemokine receptor structures (gray): 707F (CCR5) for TM5 and TM6, and 6WWZ (CCR6) for com- 282
parison of TM helices and microswitches (toggle and transmission switches, and the ionic lock). The 283
residues have been labeled using the Ballesteros-Weinstein numbering system [87]. 284

2.2. MD-based validation of ligand binding modes 285

CCR2 and CCR3 actives proposed in a recent study by Dragan et al. were docked to 286
the same receptor structures as before but with a different algorithm (Autodock Vina) to 287
confirm their binding modes. Based on these results, 6 out of 10 CCR2 actives, and 7 out 288
of 12 CCR3 actives were discarded as Glide and Autodock Vina provided significantly 289
different binding modes for them. For CXCR3 only Autodock Vina was used for molecu- 290
lar docking in prior to MD simulations. Notably, molecular docking algorithms, extremely 291
useful for virtual screening, have limitations regarding their reproducibility of ligand 292
binding modes. This is due to simplified force fields, in which some of molecular interac- 293
tions are approximated to decrease the computational time and to efficiently screen large 294
libraries of compounds [63]. For this reason, all-atom MD simulations were used to vali- 295
date the binding modes of proposed active compounds (see Appendix S1 Table 51-S3), 29
following a previous study [88,89]. Of the four ligands tested for CCR2, only three re- 297
mained stable throughout the course of the simulation (Fig. 2). Both Z144527132 and 298
7199951150 displayed a high stability from the very beginning of the production run— 299
both the RMSD values and their standard deviations were low. Z2607653068, on the other 300
hand, was stable at the beginning, but its hydroxyl group began moving upwards after 60 301
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AMSD [A]

2144527132

ns, as though to leave the receptor. At the 100 ns cutoff, the only interaction noted by
Maestro for this ligand was pi-pi stacking with Y332 at this point in the simulation, the
other tested molecules all displayed more binding interactions, further undermining the
72607653068 binding mode obtained from molecular docking. The final compound,
745637008, stabilized after 10 ns of the simulation, but after a noticeable relocation of its
trifluoromethyl end. This change made it possible for the sulfonyl group and a nearby
nitrogen atom to form hydrogen bonds with C52. Overall, pi-pi stacking interactions with
W260 and Y332 appeared in multiple cases, suggesting these residues may play a significant
role in the binding of CCR2 ligands.

2199951150 22607653088 Z45637008

S Mzsfh

W
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Figure. 2. Results of the MD simulations for CCR2 for four different compounds proposed by virtual
screening. Top: the interactions between the receptor and the ligand obtained after 100 ns of the
simulation. The receptor was shown in the red-to-blue color scheme; yellow dashed lines—hydro-
gen bonds; blue dashed lines—pi-pi stacking. The residues have been labeled using Ballesteros-
Weinstein numbering system [87]. Bottom: the RMSD plots obtained for each of the ligands over the
100 ns simulation, as well as the average RMSD with its fluctuation range.

In the same way, five molecules were tested for the inactive-state CCR3 Robetta
model (Fig. 3). 21912507172 was highly unstable over the first ca. 40 ns of the simulation.
The ligand was observed to move much deeper into the binding site than according to the
molecular docking results. After 40 ns its location stabilized and remained that way until
the end of the simulation. A comparison of its binding mode, both obtained in molecular
docking and refined in the MD simulations, are presented in Appendix S1 Table S2. Of
the tested CCR3 compounds, Z2441027668 was the most stable, barely changing its posi-
tion with respect to the results from molecular docking. Slightly larger, though still low,
RMSD fluctuations were observed for the remaining three compounds: 22764968046,
71274732994, and Z22606182917. In general, the RMSD fluctuations obtained for the CCR3
complexes were higher than those obtained for CCR2 complexes, likely because a receptor
model was used here rather than a high-quality structure. Similarly, as in the case of
CCR2, W26 and Y332 were shown to frequently participate in ligand binding; in addition,
interactions with E4% were noted in two separate cases.
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Figure. 3. Results of the MD simulations for CCR3 for five proposed compounds. Top: the interac-
tions between the receptor and the ligand obtained after 100 ns of the simulation. The receptor was
shown in the red-to-blue color scheme; yellow dashed lines—hydrogen bonds; blue dashed lines—
pi-pi stacking; green dashed lines —pi-cation; purple dashed lines—salt bridges. The residues have
been labeled using Ballesteros-Weinstein numbering system [87]. Bottom: the RMSD plots obtained
for each of the ligands over the 100 ns simulation, as well as the average RMSD with its fluctuation
range.

A turther five compounds were tested for the CXCR3 model —they all demonstrated
a high stability of their binding mode. The most interactions with the receptor were ob-
served for 722233592864 —mainly pi-pi stacking. This compound, along with 2107207944
and Z1903257002, demonstrated the most stable binding mode. The two final compounds,
71167188972 and 21510954688, fluctuated to a much greater extent, and no specific inter-
actions with the receptor were observed for the latter one, while for the former interactions
with residues N33 and Y33 were rarely formed during the simulations.

21167188972 21510954688 21903257002 22233592864
[

e
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4
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Figure. 4. Results of the MD simulations for CXCRS3 for five proposed compounds. Top: the interac-
tions between the receptor and the ligand obtained for 100 ns of the simulation. The receptor was
shown in the red-to-blue color scheme; yellow dashed lines—hydrogen bonds; blue dashed lines—
pi-pi stacking. The residues have been labeled using Ballesteros-Weinstein numbering system [87].
Bottom: the RMSD computed for each of the ligands over the 100 ns simulation, as well as the aver-
age RMSD with its fluctuation range.

Interestingly, the best compounds selected by the Keras/TensorFlow NN for CXCR3
(in the range of 9 and above of pChEMBL predicted values) did not include any of the
compounds proposed for CCR2 or CCR3 (Fig. 2 and 3). It means that like previously [54],
predictions made by the NN model are selective for the receptor subtype because they are
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based on known active ligands only and not on the receptor structures which could be too 359
similar, e.g., for SBVS. Thus, diverse CCR2, CCR3, or CXCR3 ligand training sets will pro- 360
vide diverse novel chemotypes for each of these receptors, while the similar structures of 361
these receptors could only provide similar compounds in SBVS. This is further discussed 362

in 2.5. 363
364
2.3. Chemical Modifications of Proposed Ligands 365

Chemical modifications of the structures of the proposed compounds were suggested 366

in order to increase their affinity towards the receptors. The modified structures as well 367
as their contacts with the receptor were presented in Appendix S1 Table 54-56. In the case 368
of the proposed CCR2 ligand Z144527132, the addition of the alkyl substituent with the 369
hydroxyl group to the hydrogenated quinazoline ring was proposed in order to enable 370
the formation of a hydrogen bond with E7%, a residue that participated in the binding of 371
another ligand for this receptor. A second alkyl group was added in order to fill out the 372
hydrophobic pocket. For 2199951150, a shortening of the molecule (specifically, of theend 373
with the trifluoride group) could be suggested, as it did not appear to greatly contribute 374
to the binding. More significant modifications should be introduced to the structure of 375
72607653068 in order to prevent it from immediately leaving the receptor. A phenyl ring 376
in the place of the ligand part with carbonyl and hydroxyl groups might support the for- 377
mation of pi-pi stacking interactions with the nearby Fs30 or Y>%. Furthermore, an intro- 378
duction of a cyclopentene ring between one of the carbons and an oxygen could facilitate 379
the formation of a hydrogen bond with H53%. No modifications were suggested for 380
Z45637008. However, only one modified compound based on Z2607653068 (together with 381
Z199951150) was in the 8-9 predicted activity range by Keras/TensorFlow NN, while the 382
other two (see Appendix 51 Table S4) were predicted as inactive (below 5). 383
For CCR3, the introduction of a hydroxyl group into the structure of 21274732994 384

was suggested to facilitate the formation of a hydrogen bond with E7.39. In the case of 385
71912507172, the addition of two separate alkyl groups were suggested in order to better 386
fill out the hydrophobic region of the binding pocket of the receptor, as well as a hydroxyl 387
group that could interact with Y332 to form a hydrogen bond. For Z2441027668, it was 388
suggested that the methylpiperidine ring could be transformed into methylpyridine in 389
order to allow for potential pi-pi stacking interactions with Y14, For Z2606182917, the ad- 390
dition of an alkyl chain is suggested in order to better fill the binding cavity, as wellasan 391
oxygen that could form a hydrogen bond with H53%. In the case of 22764968046, a cyclo- 392
pentane ring was added to the structure in order to better fill out the binding pocket. All 393
modified compounds were in the highest predicted activity range (above 9 or in the 8-9 394
range) except for Z2606182917 that fell into the medium predicted activity range (7-8). 395
For CXCR3, an additional double bond to introduce aromaticity was added to the 39
indane ring of Z107207944. Thus, the formation of pi-pi stacking interactions with the 397
nearby F332, W64, or Y651 could be facilitated. For Z1167188972, a benzene ring could bea 398
replacement for the cyclohexane ring to facilitate the pi-pi stacking interactions with F+6. 399
Furthermore, an alkene chain was added to fill out the binding pocket. In the case of 400
71510954688, the tetrahydropyran ring can be replaced with a benzene ring, and one of 401
the methyl groups was removed. This would allow for pi-pi stacking interactions with 402
Y337, In addition, a transformation of one of the other methyl groups present in the mole- 403
cule into a hydroxyethyl group would allow for the formation of a hydrogen bond with 404
D460, For 21903257002, the cyclohexane ring could be replaced with a benzene ring to fa- 405
cilitate interactions with Y¢51. A subsequent relocation of one of the methyl groups would 406
help fill out the binding pocket. No modifications were suggested for Z2233592864. Inter- 407
estingly, this compound (Z2233592864) together with a modified 2107207944 were the 408
best among all modified compounds according to Keras/TensorFlow NN (the 8-9 pre- 409
dicted activity range). 410
411
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2.4. Comparison of proposed compounds with known CXCR3 ligands

Recently, Meyer et al. [32] published a novel CXCR3 antagonist. A comparison of the
described structures and Enamine’s Hit Locator Library (HLL) provided three hits. Two
of the molecules, 22755039307 and 22755039304 proved most similar to ACT-7779991 (the
clinical candidate) with Tanimoto similarities equal to 0.255 and 0.253, respectively, as
well as ACT-672125, with similarities equal to 0.141 for both. A third compound,
71695828968, was most similar to ACT-660602, with a similarity of 0.207. Here, the previ-
ous two compounds had similarities equal to 0.196 and 0.195, respectively. Autodock
Vina-approximated binding affinities for these similar compounds in Enamine HLL were
rather low to medium, ranging from 6.5 to 7.5. For two compounds, Z2755039307 and
72755039304, the NN results were also unsatisfactory (see Table 2). However, the third
compound Z1695828968 was assessed by the Keras/TensorFlow NN as highly active (the
activity range above 9—the highest one) and it was included in less than 20 % of the best
compounds for CXCR3 in Enamine HLL. It shows that the Keras/TensorFlow NN does
not reproduce molecular docking results but indeed may provide substantial new infor-
mation on the compound activity not accessible to physics-based force fields. To compare,
the NN results for CXCR3 antagonists proposed and tested in MD simulations in this
study fell into 18.6%, 3.7%, 13.5%, 19.5%, and 14.0% of top NN predictions (see Fig. 4,
respectively) and 72.5%, 14,4%, 52.6%, 76.1%, and 54.9% of top predictions of the 9 and
above activity range, respectively.

In addition to the above CXCR3 antagonists, we also searched for the compounds
similar to a CXCR3 biased ligand VUF10661. Here, the results of NN were even better (see
Table 2). All three similar compounds were in the activity range of predicted pChEMBL
values of 8 and above, meaning they were predicted as highly active for CXCR3. All three
of these compounds were also among the best compounds found in Enamine HLL. De-
spite these results, in our opinion, Keras/TensorFlow NN is a method to be used in com-
bination with classical virtual screening methods such as SBVS rather than to be used
solely in VS.

Table 2. A comparison of three known CXCR3 active compounds proposed by Meyer et al. and a
biased CXCR3 ligand with the most similar compounds present in Enamine’s Hit Locator Library.
The common substructure of all six compounds is presented in the last row.

Known CXCR3 antagonists
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72755039307 72755039304 71695828968
Predicted activity range: 7-8 Predicted activity range: 7-8 Predicted activity range: 9-above
Predicted binding affinity: -6.503 Predicted binding affinity: -7.403 Predicted binding affinity: -7.081
In 63.3% of top NN predictions (20.9% top In 66.5% of top NN predictions In 18.6% of top NN predictions (72.5%
predictions in the 7-8 activity range) (29.9% top predictions in the 7-8 ac- top predictions in the 9-above activity
tivity range) range)

Common Substructure

Enamine HLL

Known biased CXCR3 small-molecule ligand O%N j ,,,,, ) (j@

7364673996
Predicted activity range: 89
In 26.2% of top NN predictions (2.0% top predictions in the
8-9 activity range)

71128741153

Predicted activity range: 9-above
In 19.0 % of top NN predictions (74.4% top predictions in the

9-above activity range)

VUF10661 N °
Predicted activity range: 8-9 k/”\/’LN)l """" . Oij

Predicted binding affinity: -10.690 (the best receptor confor- OY
mation—Z72233592864)

7422692598
Predicted activity range: 8-9
In 36.7 % of top NN predictions (36.5 % top predictions in
the 8-9 activity range)

Common Substructure
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All four known CXCR3 ligands were docked with AutoDock Vina to five receptor 446
conformations obtained at the end of MD simulations of five HLL compounds (see Fig. 4). 447
The best binding affinities predicted by AutoDock Vina are shown in Table 2, while the 448
binding modes are shown in Appendix S1 Table S7. There was no common receptor con- 449
formation that proved the best fit for all four compounds, but the Z1903257002-fitted con- 450
formation was discarded by all compounds possibly because of the steric hindrance 451
caused by Y33 forming interactions with 21903257002 (see Fig. 4). 452

All four CXCR3 ligands were additionally assessed by NN trained on the CXCR3 453
dataset and the CCR2 and CCR3 datasets to check if NN is sensitive to the receptor sub- 454
type selectivity. The CXCR3 model assessed these ligands rather highly, similarly as the 455
CCR3 model, while the CCR2 model assessed them as inactive compounds. A similar ob- 456
servation was made for the modified compounds. They were among the top-scored com- 457
pounds assessed by the CXCR3 and CCR3 models, but not by the CCR2 model. This 458
means, that the CCR3 and CXCR3 NN models were less selective with respective to each 459
other in the activity predictions for these compounds in comparison to the CCR2 model. 460
This again suggests the dependency of NN on the training dataset composition [54], yet 461
in this case with the desired outcome. 462

The NN and SBVS predictions were not fully consistent for Meyer’s compounds, 463
meaning that the best compound proposed by NN was not the best compound proposed 464
by SBVS. However, both NN and SBVS assessed VUF10661 as the best compound out of 465
these four actives. This could be due to the fact, that VUF10661 consists of much more 466
functional groups than Meyer’s compounds. More functional groups decrease the energy 467
of interactions computed in molecular docking as observed previously by us in the statins 468
case [90]. On the other hand, the presence of more functional groups ensures that the com- 469
pound resembles at least any subset of active compounds used for training of NN and 470

thus NN will select it as an active compound. 471
472
2.5. Performance of Keras/TensorFlow NN in the receptor subtype selectivity prediction tasks 473

To compare with the previous ML study on cannabinoid receptors (LightGBM, CB1/CB2 474
selectivity) we also used CB1 and CB2 datasets for the NN training. This time, we included 475
as many ChEMBL-retrieved compounds as possible (> 5000) in contrast to previous lim- 476
ited datasets for these two receptors [83] available at: https://db-gpcr.chem.uw.edu.pl. The 477
average Tanimoto coefficients between the current datasets and the previous datasets 478
were equal to 0.138 (mode: 0.17) and 0.141 (mode: 0.17) for CB1 and CB2, respectively. 479
Both datasets included small-molecule compounds only. However, the previous datasets 480
included data from assays that provided pKi values, while the current datasets included 481
only data from assays that provided pIC50 (standardized to pChEMBL values). This 482
means that the current datasets include only CB1 or CB2 small-molecule inhibitors and 483
not all CB1 and CB2 actives like previousely. Furthermore, the previous datasets did not 484
include any inactive or weakly active compounds (pChEMBL < 4), the addition of which 485
to training sets was recently discussed in [54]. In the current datasets, nearly 40 % and 25 486
% (CB1, CB2, respectively) of compounds were inactive compounds (pChEMBL equal to 487
0). Among active compounds in the current datasets 1 % and 2 % were weakly active 488
compounds (pChEMBL less than 5, CB1 and CB2, respectively). Histograms showing dis- 489
tribution of the activity classes in the current and previous datasets were shown in Ap- 490
pendix S1 Table S8. Despite these differences, the results of the receptor subtype selectiv- 491
ity prediction tasks were similar for the current and previous datasets, with only a slight 492
improvement in comparison to the previous ones. The accuracy of the prediction for val- 493
idation datasets were ca. 0.5 for the same receptor subtype, 0.2 for the other receptor sub- 494
type, less than 0.02 for CB2 selective compounds with the inconsistent receptor subtype 495
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and near 1 for the consistent receptor subtype (see Table 3 and 4). In the latter case of the
CB2 selective compounds with the matching receptor subtype, the CB2 model trained on
the previous dataset performed much better than trained on the current dataset (accuracy:
0.876 vs. 0.521, see Table 4). This is however could be due to the higher average similarity
between the previous training sets and the CB2 selective set (0.153 and 0.141 for the pre-
vious training set and the current one, respectively, see Table 4).

These results confirmed that although the composition of the training dataset has a no-
ticeable impact on the classification results [63], neural networks are still able to classify
correctly despite increase of noise in the training sets. Here, noise in datasets was intro-
duced by adding inactive compounds to the current dataset. This advantage of NNs over
supervised methods like gradient boosting decision trees (LightGBM) is mostly due to the
fact that NNs can also act as unsupervised learners using unlabeled datasets for training.
What is more, adding inactive or weakly active compounds to training sets only slightly
worsened the accuracy of the activity prediction, which was also expected based on [54].
Adding inactive compounds to training sets could improve the binary classification (ac-
tive vs. inactive compounds) but not the activity value prediction, which is a multiclass
classification task [54].

If we compare the results presented in Table 3 and 4, the NN model trained on the canna-
binoid receptor datasets seems to be more accurate in the selectivity prediction than mod-
els trained on the chemokine receptor datasets. In the case of the CB1 model, the predic-
tion accuracy dropped by more than 0.2 when the validation set with the inconsistent re-
ceptor subtype was tested. In the case of the CB2 model, the accuracy changed even
more—by 0.3. In the case of the chemokine receptor models, the most significant change
in the accuracy was for the CXCR3 model (nearly 0.2 for the CCR2 validation set), but the
remaining models showed only ca. 0.1 or less change in the accuracy. The worst model
regarding the selectivity prediction was the CCR2 model, which is consistent with the fact
that the CCR2 ligands from the training set were almost as similar to ligands from the
CCR2 validation as from the CCR3 or CXCR3 validation sets. The CXCR3 model per-
formed the best in the receptor subtype selectivity prediction task also for the same reason.
The CXCR3 ligands retrieved from ChEMBL were the most dissimilar to both CCR2 and
CCR3 ligands. In all cases, the prediction accuracy of NNs correlated with values of the
Tanimoto coefficient between the training and validation sets.

Table 3. Performance of Keras/TensorFlow NN in the chemokine receptor subtype selectivity tasks.

Training Number of data- | Validation Number of data- | Loss Accuracy Average Tanimoto co- | Mode Tanimoto co-
set points set points (change) efficient efficient
training vs. validation | training vs. valida-
set tion set
CCR2 1995 CCR2 399 5.406 | 0.190 0.139 0.16
CCR3 121 9.621 | 0.231 (+0.041) 0.141 0.16
CXCR3 199 17.878 | 0.126 (-0.064) 0.125 0.13
CCR3 603 CCR3 121 5332 | 0.223 0.243 0.15

CCR2 399 14.013 | 0.115 (-0.108) 0.142 0.10
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CXCR3 199 14.853 | 0.191 (-0.032) 0.143 0.13
CXCR3 994 CXCR3 199 4727 | 0.322 0.198 0.15
CCR2 399 13.681 | 0.125 (-0.197) 0.124 0.13
CCR3 121 8.029 | 0.182 (-0.140) 0.142 0.13

530

Table 4. Performance of Keras/TensorFlow NN in the cannabinoid receptor subtype selectivity 531
tasks. 532

Training set | Number of datapoints | Validation set | Number of datapoints | Loss | Accuracy (change) | Average Tanimoto coefficient

training vs. validation set

2023 ChEMBL datasets
CB1 4509 CB1 902 2.455 | 0.503 0.129
CB2 818 7.174 | 0.246 (-0.257) 0.133
CB2 selective | 35 6.499 | 0.0146 0.139
CB2 4087 CB2 818 2.987 | 0.418 0.137
CB1 902 5.354 | 0.291 (-0.127) 0.131
CB2 selective | 35 2.450 | 0.521 0.141

2020 ChEMBL datasets [83] from https://db-gpcr.chem.uw.edu.pl

CB1 1566 CB1 314 1.943 | 0.464 0.152
CB2 418 4417 | 0.203 (-0.261) 0.148
CB2 selective | 35 9.187 | 0.0135 0.150
CB2 2093 CB2 418 1.919 | 0.509 0.152
CB1 314 4263 | 0.210 (-0.299) 0.147
CB2 selective | 35 0.487 | 0.876 0.153

533

3. Discussion and Conclusions 534

Due to the role they play in numerous diseases, chemokine receptors represent prom- 535
ising drug targets—however, drug design is hindered by the unavailability of many of 536
their structures. In such cases, homology modeling makes it possible to create models of 537
receptors based on their similarity to other receptors with solved structures. Though this 538
can be done using webservers, standalone programs, such as Modeller, give researchers 539
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the opportunity to take a more hands-on approach and adjust the modeling process to 540
suit their own needs. The created models can then be used in SBVS in order to search for 541
novel active compounds for the receptors in question, and the results validated through 542
the use of properly trained machine learning algorithms. Regarding virtual screening, the 543
comparison to known CXCR3 ligands showed that our recently developed machine learn- 544
ing approach to ligand-based virtual screening provides substantially new informationon 545
the compound activity, different to predictions made by molecular docking in SBVS. Nev- 546
ertheless, Keras/TensorFlow NN or LightGBM cannot be used solely but rather as a filter- 547
ing method to decrease the number of compounds tested in SBVS for their precise binding 548
modes and affinities. Machine learning also allows to screen much larger compound li- 549
braries than those accessible to SBVS. Such novel algorithms offer better accuracy and 550
better computational time efficiency than classical QSAR methods. The pre-filtering of 551
large compound libraries before the SBVS step requires accurate but fast computational 552
methods, which can be easily fulfilled by ML. In our opinion, the only limitation of ML 553
remains in its dependency on the composition of the used training datasets [54]. This 554
seems to be more crucial for LightGBM, while NNs encounter problems arising from the 555
limited size of the assay-derived datasets. 556

Molecular dynamics, though more computationally expensive than LBVS or SBVS, is 557
much more reliable than these methods in the validation of the ligand-receptor interac- 558
tions, as it provides a dynamic image of the protein system in a time-dependent manner. 559
Here, MD simulations allowed to decide which of the previously selected compounds 560
could serve as novel scaffolds for each of the studied receptors, and which would require 561
modifications to improve their binding affinity. As a result, we obtained four novel 562
chemotypes for CCR2, five for CCR3, and five for CXCR3. These molecules can serve asa 563
basis for further drug design involving ligand binding assays and bioassays to confirm 564
their ability to enhance the biological response of the receptor. 565

The combination of various computational methods allows to overcome the limita- 566
tions of each method. For example, SBVS does not use any prior knowledge about known 567
active ligands of a given target and encounters problems arising from a simplification of 568
used force fields. Nanosecond MD simulations do not allow for scanning of all possible 569
receptor binding sites and all possible ligand conformations. Machine learning used in 570
LBVS does not use any explicit information about the receptor and its interactions with 571
ligands. On the other hand, SBVS allows to perform an exhaustive search through all pos- 572
sible ligand conformations and ligand-receptor interactions to find the global free energy 573
minimum. Nanosecond MD simulations allow unstable ligand-receptor interactions to be 574
discarded and ligand binding modes to be corrected using detailed all-atom force fields. 575
ML can perform an extremely fast search for active ligands among huge datasets of com- 576
pounds and thus significantly limits the number of ligands to be tested in SBVS. GPU- 577
accelerated neural networks designed in Keras/TensorFlow or using GPUs for LighGBM 578
offer the next level of processing cheminformatic data. 579

Among ML methods, NNs or deep learning NNs built on the Keras/TensorFlow plat- 580
form have been used so far mainly in binary classification tasks in drug design [91]. Here, 581
we showed that NNs can also be used in drug design as efficient multi-class classifiers 582
when trained on the datasets with discrete compound activity values [54]. To our 583
knowledge, this is the first such application of Keras/TensorFlow NNs. Keras/TensorFlow 584
NN multiclass classifier allows to discard not only inactive compounds from active ones, 585
but also low-active compounds from highly active compounds. This is especially im- 586
portant for drug design referring to large datasets, in which the number of low-active 587
compounds is so high and they are so diverse that they would introduce nothing but noise 588
when used as training sets for binary classification. 589

Another important application of NN models is the prediction of the receptor sub- 590
type selectivity of a compound. As we showed, Keras/TensorFlow NNs can accurately 591
distinguish ligand datasets matching different receptor subtypes. The only requirementis 592
a sufficient dissimilarity between such ligand datasets, which was met in the case of 593
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CB1/CB2 datasets. Structural differences between ligands of different chemokine receptor 594
subtypes were hardly sufficient, except for the CXCR3 dataset. Thus, based on the datasets 595
currently available in ChEMBL we could only develop the CB1/CB2 selective NN model 59

and CCR/CXCR selective model of an accuracy sufficient for drug design purposes. 597

598
4. Materials and Methods 599
4.1. Ligand-based Virtual Screening 600

In the LBVS step, we used a method described in detail elsewhere [54]. The method 601
uses the Keras/TensorFlow library for constructing, training, and evaluating the currently 602
used sequential model of neural network. NN was trained on the ChEMBL datasets of 603
CCR2, CCR3, and CXCR3 compounds following procedure described in [54]. Extended 604
connectivity fingerprints with bond diameter 4 (ECFP4) [77] based on Morgan 605
fingerprints were used to describe compound features with RDKit [76]. To emphasize, 606
Keras/TensorFlow NN was used here not as a typical binary NN classifier but as a multi- 607
class classifier that is able to distinguish not only active and inactive compounds, but also 608
low and medium-active from highly active compounds. This was done by labeling the 609
datasets with seven activity categories based on logarithmic pChEMBL values: 1 (below 610
4), 2 (4-5), 3 (5-6), 4 (6-7), 5 (7-8), 6 (8-9), and 7 (above 9). Categories 5, 6 and 7 referred 611
to highly active compounds, while 3 and 4 to medium-active, and 1 and 2 to inactive or 612
low-active compounds. An NN was built and trained using the categorical cross-entropy 613
loss function, stochastic gradient descent to minimize the loss function (Adaptive Moment 614
Estimation Optimizer). Due to the multi-class application of NN, Softmax conversion 615
leading to a probability distribution was used as the activation function for the last layer, 616
instead of the sigmoid function that is used typically for binary classification. The 617
Rectified Linear Unit activation function (ReLU) was used for hidden layers for quick 618
convergence. 1000 epochs were used to ensure the sufficient minimization of the model, 619
although a much smaller number could be also used, e.g., 200, as cross-entropy loss and 620
accuracy stabilized after 200 epochs (see Appendix 51, Figure S2-53). 621

In principle, in the case of neural networks fitted to solve big data problems, 622
increasing the training set from 40 % to 80 % (see Appendix S1 Figure 54-56) should 623
improve both the model accuracy and the model training efficiency. This improvement 624
was indeed visible in the case of CCR2 and CCR3 (Appendix Figure S4). Nevertheless, the 625
bootstrappping analysis should be performed to undoutedly confirm this. 626

For the receptor subtype selectivity tests, the following curated datasets were used 627
for training (80 % randomly selected compounds from the ChEMBL-retrieved datasets): 628
1995 (CCR2), 603 (CCR3), 994 (CXCR3), 4509 (CB1), 4087 (CB2), and for validation the 629
remaining compounds were used. For cannabinoid receptors, two additional training sets 630
[63,83] from https://db-gpcr.chem.uw.edu.pl were used, consisting of 1566 and 2093 631
compounds (CB1 and CB2, respectively). A further 35 CB2-selective compounds (from 632
https://db-gpcr.chem.uw.edu.pl) were used as one of the validation sets included in Table 633
4. To generate the results presented in Table 4, the number of epochs were set to 100, and 634

the average loss and accuracy was computed for 100 independent training runs of NN. 635
Python scripts with imported modules from the latest versions of RDKit, scikit-learn, 636
Keras, and Tensorflow were used for data processing. 637
638

4.2. Preparation of CCR2, CCR3, and CXCR3 structures 639

The 6GPX structure [92,93] of the inactive-state CCR2 receptor was downloaded from 640

the Protein Data Bank (PDB) [94], and a model of CCR3 was generated using the Robetta 641
webserver [95]. Both the structure and the model were preprocessed using Maestro [96] 642
and evaluated as described in a previous study [54]. 643
644
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The amino acid sequence of CXCR3-A was obtained from UniProt [97] (see Appendix 645
S1 Fig. S1). Protein BLAST was used to perform a search against PDB to find solved GPCR 646
structures with a high sequence similarity to CXCR3-A [98]. Of these, the inactive-state 647
5LWE [99,100] and 6MEO [101,102] PDB entries, with a 33.44% and 36.49% sequence sim- 648
ilarity to the target, respectively, were selected as templates for homology modeling. Mod- 649
eller [103] was used to generate 5000 models of CXCR3-A. The lowest energy models were 650
analyzed in PyMol [104] and validated by comparing their structures to those of other 651
GPCRs with well-described molecular switches, including PDB entries 7O7F [105,106] and 652

6WWZ [107,108]. 653
654
4.3. Structure-based Virtual Screening 655

SBVS assisted by machine learning was performed with Glide for CCR2 and CCR3, 656

and described previously [54]. Here, to confirm their binding modes and to test if two 657
molecular docking programs based on completely different force fields (OPLS and Amber 658
for Glide and AutoDock, respectively) provide similar results we used AutoDock Vina 659
[43,44,109]. Although the compound ranking proposed by AutoDock Vina was very sim- 660
ilar to the one obtained previously by Glide, a few compounds were discarded due to 661
significant differences in their binding modes provided with AutoDock Vina in compari- 662
son to Glide results. The remaining CCR2 and CCR3 compounds were subjected to vali- 663
dation with MD simulations. 664
665

The validated model of CXCR3 was used for structure-based virtual screening (SBVS) 666
with AutoDock Vina, using the Enamine Hit Locator Library (HLL) [110], consisting of 667
over 460 000 compounds. The position of the grid box for AutoDock Vina was determined 668
based on the positions of the ligands in the corresponding template structures, and its size 669
was 31.19x29.17x38.56. Ten binding modes were generated for each ligand, and the en- 670
ergy cut-off for selecting ligand poses was equal to -10.5. The results were analyzed using 671
the vs-analysis.py script [111], and 31 compounds with the best binding affinities were se- 672
lected for further investigation. 673
674

A set of known CXCR3 inhibitors—the IC50 subset—was downloaded from the 675
ChEMBL (accessed: May 2023). After the data was curated and compounds with no spec- 676
ified activity values (pChEMBL values) were removed, the CXCR3 dataset was used asa 677
training set for a neural network implemented in Keras/TensorFlow according to a proce- 678
dure described elsewhere [54]. The algorithm was then used to predict the activity values 679
of the molecules in the HLL compound library. The compounds with the highest pre- 680
dicted activity values (above 9) were mapped against those obtained via SBVS, and asa 681
result, nine potential CXCR3 actives were obtained. Out of these, five the best-assessed 682

compounds were selected for further MD simulations. 683
684
4.4. Molecular Dynamics Simulations 685

For the selected compounds, their complexes with receptors for the MD simulations 686
were prepared using CHARMM-GUI's [112-114] Membrane Builder [115-118]. Infor- 687
mation about the disulphide bonds in the receptor structures was provided based on 688
known structures of chemokine receptors in the PDB and the ligand parameterization was 689
performed using CGenFF [119] and 3D structural files generated by Maestro. The ligand- 690
receptor complexes were inserted into a lipid bilayer consisting of a 3:1 ratio of POPC (1- 691
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) to cholesterol. The periodic rectangular 692
water box (TIP3P) was fitted to the complex and each simulation system was neutralized 693
by adding Na* and CI- ions at a concentration of 0.15 M. The number of atoms in each 694
simulation system was equal to between 135000 and 148000 atoms, depending on the sys- 695
tem. The Charmm36 force field was used in each simulation. 696

697
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The equilibration step included 10,000 steps of the steepest descent minimization,
then 25,000 steps of the conjugated gradients minimization. The equilibration simulation
was performed in NVT using the Langevin dynamics (303.15 K). The time integration step
in the equilibration and production runs was set to 2 fs. The production run in NPT was
performed using the Langevin piston Nose-Hoover method (1 bar, 303.15 K) and lasted
for 100 ns for each system. The GPU-accelerated version of NAMD [120] was used for all
MD simulations. The obtained trajectories were analyzed using VMD [121].

4.5. Suggested Structural Modification of Active Compounds

Chemical modifications of functional groups of the proposed active compounds for
each receptor were suggested in order to improve their binding affinities. Maestro was
used to analyze the interactions between the modified ligands and the receptor in the final
frame of the MD simulation and to suggest possible changes. Modified structures of pro-
posed compounds were minimized in Maestro (OPLS4 force field), in order to prevent
clashes.

4.6 Structural Comparison of CXCR3 Antagonists

Compounds described by Meyer et al. [32] were reproduced in Maestro in order to
perform a search for similar structures in the HLL compound library. The Fingerprint
Similarity tool was used with the Tanimoto similarity metric. The docking scores and pre-
dicted activities as well as their ranks provided by Keras/TensorFlow NN were extracted
for compounds with the highest Tanimoto coefficients.
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