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Abstract: Homeostasis of the host immune system is regulated by white blood cells with a variety 8 
of cell surface receptors for cytokines. Chemotactic cytokines (chemokines) activate their receptors 9 
to evoke the chemotaxis of immune cells in homeostatic migrations or inflammatory conditions to- 10 
wards inflamed tissue or pathogens. Dysregulation of the immune system leading to disorders such 11 
as allergies, autoimmune diseases, or cancer requires efficient, fast-acting drugs to minimize the 12 
long-term effects of chronic inflammation. Here, we performed structure-based virtual screening 13 
(SBVS) assisted by the Keras/TensorFlow neural network (NN) to find novel compound scaffolds 14 
acting on three chemokine receptors: CCR2, CCR3 and one CXC receptor CXCR3. Keras/TensorFlow 15 
NN was used here not as a typically used binary classifier, but as an efficient multi-class classifier 16 
that can discard not only inactive compounds but also low or medium-activity compounds. Several 17 
compounds proposed by SBVS and NN were tested in 100 ns all-atom molecular dynamics simula- 18 
tions to confirm their binding affinity. To improve the basic binding affinity of the compounds, new 19 
chemical modifications were proposed. The modified compounds were compared with known an- 20 
tagonists of these three chemokine receptors. Known CXCR3 were among the top predicted com- 21 
pounds and thus benefits of using Keras/TensorFlow in drug discovery have been shown in addi- 22 
tion to structure-based approaches. Furthermore, we showed that Keras/TensorFlow NN can accu- 23 
rately predict the receptor subtype selectivity of compounds, for which SBVS often fails. We cross- 24 
tested chemokine receptor datasets retrieved from ChEMBL and curated datasets for cannabinoid 25 
receptors available at: http://db-gpcr-chem.uw.edu.pl. The NN model trained on the cannabinoid 26 
receptor datasets retrieved from ChEMBL was the most accurate in the receptor subtype selectivity 27 
prediction. Among NN models trained on the chemokine receptor datasets, the CXCR3 model 28 
showed the highest accuracy in differentiating the receptor subtype for a given compound dataset. 29 
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Abbreviations: 33 
GPCR—G protein-coupled receptor 34 
CCL—C-C motif chemokine ligand 35 
CXCL—C-X-C motif chemokine ligand 36 
CCL—C-C motif chemokine ligand 37 
CCR—C-C motif conventional chemokine receptor 38 
CXCR—C-X-C motif chemokine receptor 39 
ACKR—atypical chemokine receptor 40 
MSMP— prostate-associated microseminoprotein 41 
SBVS—structure-based virtual screening 42 
LBVS—ligand-based virtual screening 43 
MD—Molecular Dynamics 44 
HLL—Hit Locator Library 45 
NN—neural network 46 
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ML—machine learning 47 
Cryo-EM—cryogenic electron microscopy 48 
 49 

1. Introduction 50 
Chemokines, or chemotactic cytokines, are a group of highly conserved small pro- 51 

teins that participate in the immune response via the chemotaxis of cells, either in response 52 
to tissue damage or infection (inflammatory chemokines) or to ensure homeostasis (ho- 53 
meostatic chemokines) [1], [2]. Inflammatory chemokines (incl. CCL1-13, CCL23, CCL24, 54 
CCL26, CXCL1-3, CXCL5-11) are expressed under inflammatory conditions and cause an 55 
increase in leukocyte trafficking towards the inflamed tissue. Homeostatic chemokines 56 
(incl. CCL14, CCL15, CCL16, CCL19, CCL21, CCL25, CCL27, CCL28, CXCL4, CXCL12, 57 
CXCL13), are expressed constitutively and induce constant homeostatic migrations to 58 
lymph nodes throughout the body and as well as the homing of immune cells such as 59 
lymphocytes [3]. However, dual-function chemokines, e.g., CCL11, CCL17, CCL22, or 60 
XCL1 (lymphotactin) and CXC3CL1 (fractalkine) also exist. 61 

Due to the chemokine system being central to physiological processes such as home- 62 
ostasis and immune responses by leukocyte transferring [4,5], the expression of these pro- 63 
teins a promising prognostic method for various malignancies [6]. Furthermore, a dysreg- 64 
ulation of the chemokine system is implicated in cancer pathogenesis [7–9], but also in the 65 
progression of inflammatory and immune diseases, making chemokine receptors an 66 
emerging target in the development of new drugs. 67 

The pro-inflammatory or homeostatic effects of chemokines are exerted through the 68 
activation of their receptors—a family of rhodopsin-like G protein-coupled receptors 69 
(GPCRs) that, based on the arrangement of cysteine residues in the N-terminal of the 70 
chemokines they bind, can be divided into four subfamilies: XCR, CCR, CXCR, and 71 
CX3CR [10]. To date, roughly 19 standard chemokine receptors and four atypical chemo- 72 
kine receptors (ACKRs) have been characterized in humans [11,12]. The latter group is 73 
less known and lacks a full-length structural characterization in the PDB but represents a 74 
promising group of drug targets. For example, ACKR3 modulates the CXCR4 signaling 75 
by acting as a decoy receptor and scavenging of CXCL12 [13]. The CXCL12 chemokine 76 
that binds both ACKR3 and CXCR4 is classified as a homeostatic chemokine and is over- 77 
expressed in autoimmune and inflammatory diseases [13]. Among homeostatic receptors, 78 
CXCR4, CCR7, and CCR9 are the most well-known [14] but many others are still being 79 
investigated. 80 

CCR2 is a conventional chemokine receptor responding to chemokines with the cys- 81 
teine CC motif in their N-termini. CCR2 is expressed largely in T cells and monocytes [15], 82 
and is specifically involved in monocyte mobilization [16]. Similarly to other chemokine 83 
receptors, CCR2 can be activated non-selectively by many different chemokines, includ- 84 
ing: CCL2, CCL7, CCL8, CCL12, CCL13, and CCL16 [16]. A recently discovered chemo- 85 
kine PSMP—PC3-secreted microprotein (microseminoprotein, prostate-associated 86 
MSMP), which is over-expressed in cancer and promotes hepatic fibrosis, has an affinity 87 
for CCR2 on a level similar to the most potent CCL2 [17]. This has implications for the 88 
importance of CCR2 in drug discovery for a variety of pathologies, e.g., inflammatory and 89 
autoimmune diseases such as rheumatoid arthritis [15], multiple sclerosis [16], and auto- 90 
immunity-driven type-1 diabetes [18], but also ischemic stroke [16], liver disease [19], 91 
asthma, atherosclerosis, transplant rejection [20], diabetic nephropathy, neuropathic pain, 92 
and the promotion of cancer cell metastasis [18]. CCR2 is the target of multiple clinical 93 
candidates—according to ChEMBL (accessed: July 2023) [21,22], nine are already in the 94 
2nd phase of clinical trials, and one more is in the 3rd phase, but none has been approved 95 
for clinical use so far [23]. 96 
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CCR3 belongs to the same subfamily of chemokine receptors as CCR2, and is ex- 97 
pressed predominately on the surface of eosinophils [24] and basophils [25]. Although it 98 
is also over-expressed in certain types of cancer, it is connected with a rather poor prog- 99 
nosis (except in prostate and ovarian cancers) in contrast to a generally better prognosis 100 
associated with a high expression of CCR2 (except in glioma, testicular, and renal cancers) 101 
due to the CCR3-mediated migration of cancer cells [26]. CCR3 is known to bind chemo- 102 
kines CCL5, CCL7, CCL13, CCL15, eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 103 
(CCL26) [25]. The activation of CCR3 by eotaxins (eosinophil chemotactic proteins) in- 104 
duces inflammation and thus is involved in asthma and allergies [24], including allergic 105 
skin diseases [27]. According to ChEMBL, there are currently no drugs nor clinical candi- 106 
dates targeting this receptor. Only recently have the active-state structures of CCR2 107 
(bound to CCL2) and CCR3 (CCL11 not visible in electron density maps, but an active- 108 
like receptor structure) been solved using cryo-EM [23] to provide a basis for the rational 109 
design of novel immunomodulators acting on these two receptors. 110 

CXCR3 is a chemokine receptor that is expressed mainly on immune cells such as 111 
natural killer cells and activated T lymphocytes. In humans, it can exist in three different 112 
isoforms: CXCR3-A, CXCR3-B, and CXCR3-alt, which are a result of gene splicing. While 113 
CXCR3-A and CXCR3-B sequences display a large overlap, there is a difference in their 114 
N-terminal, which is longer in the case of CXCR3-B due to the insertion of an additional 115 
sequence fragment from exon-2 of the CXCR3 gene. CXCR3-alt, however, consists of five 116 
transmembrane domains rather than seven as a result of the deletion of 337 base pairs 117 
from exon-3 [28]. Different isoforms are known to bind different chemokines—while 118 
CXCR3-A binds CXCL9, CXCL10, and CXCL11, CXCR3-B additionally binds CXCL4 [28]; 119 
CXCR3-alt is known to bind CXCL11 [29]. Similarly to CCR3, CXCR3 has been implicated 120 
in the progression of numerous diseases, including but not limited to multiple sclerosis, 121 
rheumatoid arthritis, transplant rejection [20], systemic lupus erythematosus [30], and al- 122 
lergies [31]. CXCR3 knockout mice are reported to be more resistant to autoimmune dis- 123 
eases [18]. A clinical candidate for acute lung inflammation targeting CXCR3 has been 124 
suggested by Meyer et al. but it has not yet been tested in clinical trials [32]. Biased ligands 125 
of CXCR3 (biaryl-type VUF10661 and VUF11418) have also been discovered in addition 126 
to the biased signaling observed for endogenous agonists of CXCR3 (CXCL11 bias to- 127 
wards b-arrestin). Recently, these three agonists of CXCR3 have been shown to activate 128 
the formation of the Gαi:β-arrestin complex in non-canonical GPCR signaling [33]. This 129 
emphasizes the importance of drug design for CXCR3 in numerous diseases, such as can- 130 
cer, inflammatory diseases, and autoimmune disorders. 131 

It is worth mentioning that except for the ACKRs, the structure of chemokine recep- 132 
tors is vastly conserved around the DRYLAIV motif in TM3 and the ICL2 loop [34,35]. 133 
However, only 3 drugs out of 45 in trials have so far been clinically approved [36]. 134 
Mogamulizumab was first approved in 2012 as a CCR4 antibody antagonist for cancer 135 
treatment. Maraviroc was approved in 2007 as an antiviral by acting as a CCR5 antagonist, 136 
while in 2008, Plerixafor was approved as a CXCR4 partial agonist for cancer therapies. 137 
To our knowledge, no drugs have been clinically approved so far for their action on CCR2, 138 
CCR3, or CXCR3. 139 

As mentioned above, CCR2 is involved in a wide range of diseases, however, most 140 
of the clinical trials to find new CCR2-binding drugs failed in Phase II [37], [36]. CCR3 141 
seems to be a target for asthma and allergy, but ongoing studies present a potential role 142 
of CCR3 antagonism in two disorders associated with the aging population, such as mac- 143 
ular degeneration (MAD) and cognitive dysfunction in mice models [37]. CXCR3, mostly 144 
expressed on the surface of activated T cells, B cells, and natural killer cells, plays a crucial 145 
role in infection, autoimmune diseases, and tumor immunity by binding to specific recep- 146 
tors on target cell membranes to induce targeted cell migration and resulting immune 147 
responses. CXCR3 and its main ligands (i.e., CXCL9, CXCL10 and CXCL11) have been 148 
linked to the development of many tumors (Table 1). Interestingly, the CXCR3 ligands 149 
CXCL9, CXCL10, and CXCL11 demonstrate a dichotomous activity in cancer ranging 150 
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from the inhibition to the promotion of tumor growth [38]. This can be explained by the 151 
varied expression patterns of CXCR3 in many tumor tissues. Therefore, it is necessary to 152 
better investigate the mode of action(s) (MoAs) and related signaling pathways for CXCR3 153 
given its potential role as a new target for clinical tumor immunotherapy. Known antag- 154 
onists and agonists of CCR2, CCR3, and CXCR3 receptors are shown in Table 1. 155 
  156 
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Table 1. Known active ligands of CCR2, CCR3 and CXCR3 receptors. 157 

Chemo-
kine re-
ceptor 

Active ligands Mechanism of Action Indications Status Refer-
ences 

 ligand drugs     
 
 
 
 
 
 
 
 

CCR2 

 CCX-140 Antagonist Type 2 diabetes and 
diabetic nephropathy 

In trial, 
 II clinical 

phase 

[39];  
[36] 

 Plozali-
zumab 
(MLN-
1202) 

Antagonist Anti-inflammatory  In trial,  
II clinical 

phase 

[36] 

 Plozali-
zumab, 

MLN-1202 

Antagonist Antineoplastic In trial,  
II clinical 

phase 

[36] 

 CNTX-6970 Antagonist Analgesic In trial,  
II clinical 

phase 

[36] 

 Incb3284 Antagonist Anti-inflammatory  In trial,  
II clinical 

phase 

[36] 

 azd2423 Antagonist Chronic obstructive 
pulmonary disorder 

In trial,  
II clinical 

phase 

[36] 

 Ccx872 Antagonist  In trial,  
II clinical 

phase 

[36] 

 cenicriviroc Antagonist Antiviral, HIV In trial,  
II clinical 

phase 

[36] 

 Ccl2-lpm Antagonist Anti-inflammatory In trial,  
II clinical 

phase 

[36] 

CCR3  Tpi-asm8 Antagonist Anti-asthmatic In trial [36] 

 
 
 
 
 
 
 
 

CXCR3 

CXCL9/10  Promoting lymph node me-
tastasis; Promotion of 

lymph node and lung me-
tastasis; Promotion of ma-
lignant ascites production; 
Promoting tumor growth 

and metastasis; respectively 

Colorectal cancer 
Breast cancer; Ovar-

ian cancer; Lung can-
cer; Stomach cancer; 

 [40] 

CXCL9/10/11  Promotes proliferation and 
metastasis of cancer cells; 
Promotes distant metasta-
sis; Inhibit tumor growth 

and metastasis; respectively 

Esophageal cancer; 
Kidney cancer; Oste-

osarcoma 

 [40] 

CXCL10  Promotes tumor growth 
and metastasis; Inhibits tu-
mor growth; respectively 

Prostate cancer; Gli-
oma and Myeloma 

 [40] 

 158 
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Drug discovery is a long and costly process, but it can be enhanced by computational 159 
methods, including both structure- and ligand-based virtual screening (SBVS and LBVS, 160 
respectively). Of these two, SBVS is more time-consuming, requiring the use of a target 161 
structure or a homology model to compute the approximate free energy of the ligand 162 
binding [41]. The aim of SBVS is to screen a library of compounds using a receptor homol- 163 
ogy model or its cryo-EM/X-ray structure using scoring functions based on simplified 164 
force fields. The computed free energy of binding, approximated by a scoring function 165 
(SF), enables the selection of compounds that will likely evoke the highest response in 166 
vitro. Many different programs are available to perform such library screening, including 167 
Glide [42], AutoDock, AutoDock Vina [43,44], DOCK [45], MOE [46], GOLD [47]. Com- 168 
parative studies done on AutoDock and AutoDock Vina indicate that the latter is better at 169 
predicting binding poses, though it cannot be said that one program is inherently superior 170 
to the other—they were found to be better fitted for different drug targets. The computa- 171 
tional time is also crucial to deciding which docking program to choose for virtual screen- 172 
ing purposes. Recently, Autodock Vina has been modified to fit the GPU architecture, 173 
which significantly accelerates the computations and adds more advantages in compari- 174 
son to other molecular docking software [48]. 175 

In recent years, scoring functions (SFs) used in SBVS have also begun to be based on 176 
machine learning. In contrast to classical SFs, ML-based SFs do not make use of a fixed 177 
functional form (usually linear) that is based on the relationship between the characteris- 178 
tics of the protein-ligand complex and the binding affinity. Instead, in their case the func- 179 
tional form is based purely on the information obtained by ML from the training data [49]. 180 
This way, it is possible to reflect non-linear relationships between the protein-ligand com- 181 
plex structure and the ligand binding affinity, e.g., by using neural networks (NNs), ran- 182 
dom forest (RF), or support vector machines (SVM) [50]. Deep learning methods—espe- 183 
cially convolutional neural networks (CNN)—have been applied in SBVS in order to ob- 184 
tain more reliable results from docking calculations [50]. Such approaches include 185 
DeepVS [51], DenseFS [52], and Gonczarek et al.’s fingerprinting method involving learn- 186 
able atomic convolution [53]. Furthermore, CNNs have also been used in the prediction 187 
of binding poses and affinities, and more robust models can be built by combining them 188 
with transfer and multitask learning [50]. Noteworthily, deep learning methods are not 189 
always better than those based on classical machine learning [54]. Classical ML methods 190 
are typically used for rescoring or ranking of the output from popular molecular docking 191 
programs rather than being directly integrated into them, and their results are not easily 192 
interpretable [50]. The interpretability of results of a deep learning method can be im- 193 
portant especially when it comes to medical applications [55], e.g., for finding gene-drug 194 
associations [56]. One of the common methods to explain ML results is SHapley Additive 195 
exPlanations (SHAP) [57]. Shapley values allow the importance of specific features to be 196 
assessed by computing three properties: consistency, missingness, and local accuracy. 197 
This method demonstrates a high consistency with human intuition [57]. Other interpret- 198 
ability methods include DeepLIFT [58], especially used for deep NNs, or Grad-CAM++ 199 
[59], used to visually explain the predictions of CNN models [57]. There are also frame- 200 
works joining various methods to uncover global feature importance in contrast to local 201 
interpretation of each feature, e.g., SAGE [60,61]. 202 

In principle, LBVS is much faster, based solely on the structure and physicochemical 203 
properties of ligands known to interact with the molecular target in order to predict the 204 
affinities of yet untested compounds [62]. This makes it possible to use when the structure 205 
of a receptor is unavailable, which is often the case with GPCRs. The applicability of ma- 206 
chine learning methods in ligand-based virtual screening has been widely discussed so 207 
far, e.g., in [63]. Constantly increasing in the number of available ligand datasets for vari- 208 
ous drug targets and improving of the quality and quantity of such datasets improves the 209 
accuracy of computational drug discovery despite minor problems with integration and 210 
optimization of used ML methods [64]. In supervised ML, feature selection is used to rec- 211 
ognize relevant molecular (in case of drug discovery) or genomic (in case of genomic 212 
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analysis) features that inform about drug responses or drug-gene associations. These tech- 213 
niques, however, require the labeling of used training dataset, e.g., prior knowledge about 214 
drug-target associations [65]. Thus, their use may inhibit the discovery of potential new 215 
actives, as compounds not possessing the preselected features could be discarded.  216 

Data-driven concepts to result in, e.g., new drugs or drug targets, require efficient 217 
and accurate algorithms in advance, to process massive data from large biomedical repos- 218 
itories and to reflect subtle differences in compounds that have a huge impact on the ob- 219 
served biological response, respectively. Although conventional ML algorithms belong- 220 
ing to a supervised learners’ group, such as gradient boosting or support vector machines, 221 
seem to be the most accurate in tasks including predictions of compound activity or bind- 222 
ing affinity [54,63,66–68], NNs constantly draw attention [64]. Learning of NNs can be 223 
carried out as supervised learning (first NNs, also including backpropagation NNs), or 224 
unsupervised learning (e.g., deep belief networks) where layers can detect relevant fea- 225 
tures. Other types of learning, e.g., reinforcement learning can also be used to train NNs 226 
[69]. In principle, if no labeled input data is used to train NN, it has many more possibili- 227 
ties of finding new active-like scaffolds compared to supervised-learning methods. This 228 
is the basis for the popularity of NNs and deep learning NNs in various tasks, ranging 229 
from image recognition, natural language processing, and engineering applications [70], 230 
to the retrieval of relevant information from databases, e.g., in protein structure prediction 231 
[71] or in drug design [72]. The two, mostly used systems for machine learning and espe- 232 
cially for deep learning tasks are TensorFlow, developed by Google [73], and PyTorch 233 
[74], co-developed by A. Paszke. Keras API [75] makes it possible to define and train ML 234 
models implemented on TensorFlow or PyTorch platforms to easily release open-source 235 
projects and construct pipelines joining various libraries, e.g., RDKit [76] for compound 236 
fingerprints [77]. TensorFlow with or without high-level Keras API is widely used due to 237 
the easy implementation of algorithms that are otherwise difficult to optimize flawlessly, 238 
such as for example convolutional neural networks [78]. One of the key concepts recently 239 
introduced in TensorFlow2.0 and PyTorch is a ‘define-by-run’ paradigm [79,80], in which 240 
connections in NNs are defined during the training, not before. This backpropagation al- 241 
lows for a more efficient automatic differentiation scheme compared to ‘define-and-run’ 242 
in TensorFlow1.0. 243 

Recently, TensorFlow has been used for rapid screening for GPCR ligands [81] but 244 
the combination of two methods, LBVS and SBVS, allows for a more precise and reliable 245 
assessment of the ligand binding affinity and its detailed binding mode [54]. In the final 246 
step, molecular dynamics (MD) can be used to validate the molecular docking-based bind- 247 
ing affinity and binding modes of discovered compounds and thus to reduce the number 248 
of false positives before the bioassay studies [82]. This combined computational approach 249 
significantly reduces both time and cost required to find novel chemotypes.  250 

Here, we performed MD simulations for previously obtained novel CCR2 and CCR3 251 
antagonists, and used a combination of AutoDock Vina for SBVS, Keras/Tensorflow se- 252 
quential model of neural network (NN) for LBVS, and MD simulations in order in order 253 
to find and validate novel small-molecule antagonists for CCR2, CCR3, and CXCR3 chem- 254 
okine receptors. While previously [81] the impact on the ligand dataset composition on 255 
the ML results was discussed, here we focused on the ability of ML to reflect slight struc- 256 
tural differences between ligands matching the certain receptor subtype which account 257 
for their receptor subtype selectivity. In [83] we assessed gradient boosting decision trees 258 
(LightGBM) in the recognition of the receptor subtype selective and non-selective ligands 259 
of cannabinoid receptors. Here, we assess NNs (Keras/TensorFlow) in such a task using 260 
not only the curated ligand datasets for CB1/CB2 cannabinoid receptors (http://db-gpcr- 261 
chem.uw.edu.pl), but also for CCR2/CCR3/CXCR3 chemokine receptors. 262 

2. Results 263 
2.1. CXCR3 Model Validation 264 
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The positions of transmembrane helices 5 and 6 (TM5 and TM6) were the first to be 265 
analyzed. It is well-known that during the activation of the GPCR receptor, the extracel- 266 
lular region of its TM5 helix moves inwards, while the intracellular region of TM6 moves 267 
outwards [84]. These differences in the inactive and active-state conformations are shown 268 
in Fig. 1. Indeed, the location and shape of TM5 and TM6 in our CXCR3 model are similar 269 
to those observed for inactive-state structures of chemokine receptors. 270 

Similarly, the conformations of selected residues were analyzed: the W6.48 toggle 271 
switch, Y7.53 transmission switch, and D3.49R3.50Y3.51 ionic lock [84–86]. The W6.48 toggle 272 
switch was rotated as compared to the active-state structure, the Y7.53 transmission switch 273 
had an altered position, and R3.50 in the ionic lock was bent inwards rather than straight- 274 
ened out. On this basis, it was concluded that the model was suitable for performing struc- 275 
ture-based virtual screening, i.e., the molecular switches present in the model were in the 276 
conformations expected to be present in an inactive-state chemokine receptor. 277 

 278 

 279 
 Figure. 1. The validation of the inactive-state CXCR3 model through an analysis of micro- and 280 
macroswitches. The inactive-state model of CXCR3 (blue-to-red) was superposed on active-state 281 
chemokine receptor structures (gray): 7O7F (CCR5) for TM5 and TM6, and 6WWZ (CCR6) for com- 282 
parison of TM helices and microswitches (toggle and transmission switches, and the ionic lock). The 283 
residues have been labeled using the Ballesteros-Weinstein numbering system [87]. 284 

2.2. MD-based validation of ligand binding modes 285 
CCR2 and CCR3 actives proposed in a recent study by Dragan et al. were docked to 286 

the same receptor structures as before but with a different algorithm (Autodock Vina) to 287 
confirm their binding modes. Based on these results, 6 out of 10 CCR2 actives, and 7 out 288 
of 12 CCR3 actives were discarded as Glide and Autodock Vina provided significantly 289 
different binding modes for them. For CXCR3 only Autodock Vina was used for molecu- 290 
lar docking in prior to MD simulations. Notably, molecular docking algorithms, extremely 291 
useful for virtual screening, have limitations regarding their reproducibility of ligand 292 
binding modes. This is due to simplified force fields, in which some of molecular interac- 293 
tions are approximated to decrease the computational time and to efficiently screen large 294 
libraries of compounds [63]. For this reason, all-atom MD simulations were used to vali- 295 
date the binding modes of proposed active compounds (see Appendix S1 Table S1-S3), 296 
following a previous study [88,89]. Of the four ligands tested for CCR2, only three re- 297 
mained stable throughout the course of the simulation (Fig. 2). Both Z144527132 and 298 
Z199951150 displayed a high stability from the very beginning of the production run— 299 
both the RMSD values and their standard deviations were low. Z2607653068, on the other 300 
hand, was stable at the beginning, but its hydroxyl group began moving upwards after 60 301 
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ns, as though to leave the receptor. At the 100 ns cutoff, the only interaction noted by 302 
Maestro for this ligand was pi-pi stacking with Y3.32; at this point in the simulation, the 303 
other tested molecules all displayed more binding interactions, further undermining the 304 
Z2607653068 binding mode obtained from molecular docking. The final compound, 305 
Z45637008, stabilized after 10 ns of the simulation, but after a noticeable relocation of its 306 
trifluoromethyl end. This change made it possible for the sulfonyl group and a nearby 307 
nitrogen atom to form hydrogen bonds with C5.26. Overall, pi-pi stacking interactions with 308 
W2.60 and Y3.32 appeared in multiple cases, suggesting these residues may play a significant 309 
role in the binding of CCR2 ligands. 310 

 311 

 312 
Figure. 2. Results of the MD simulations for CCR2 for four different compounds proposed by virtual 313 
screening. Top: the interactions between the receptor and the ligand obtained after 100 ns of the 314 
simulation. The receptor was shown in the red-to-blue color scheme; yellow dashed lines—hydro- 315 
gen bonds; blue dashed lines—pi-pi stacking. The residues have been labeled using Ballesteros- 316 
Weinstein numbering system [87]. Bottom: the RMSD plots obtained for each of the ligands over the 317 
100 ns simulation, as well as the average RMSD with its fluctuation range. 318 

In the same way, five molecules were tested for the inactive-state CCR3 Robetta 319 
model (Fig. 3). Z1912507172 was highly unstable over the first ca. 40 ns of the simulation. 320 
The ligand was observed to move much deeper into the binding site than according to the 321 
molecular docking results. After 40 ns its location stabilized and remained that way until 322 
the end of the simulation. A comparison of its binding mode, both obtained in molecular 323 
docking and refined in the MD simulations, are presented in Appendix S1 Table S2. Of 324 
the tested CCR3 compounds, Z2441027668 was the most stable, barely changing its posi- 325 
tion with respect to the results from molecular docking. Slightly larger, though still low, 326 
RMSD fluctuations were observed for the remaining three compounds: Z2764968046, 327 
Z1274732994, and Z2606182917. In general, the RMSD fluctuations obtained for the CCR3 328 
complexes were higher than those obtained for CCR2 complexes, likely because a receptor 329 
model was used here rather than a high-quality structure. Similarly, as in the case of 330 
CCR2, W2.60 and Y3.32 were shown to frequently participate in ligand binding; in addition, 331 
interactions with E4.60 were noted in two separate cases. 332 
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 333 
Figure. 3. Results of the MD simulations for CCR3 for five proposed compounds. Top: the interac- 334 
tions between the receptor and the ligand obtained after 100 ns of the simulation. The receptor was 335 
shown in the red-to-blue color scheme; yellow dashed lines—hydrogen bonds; blue dashed lines— 336 
pi-pi stacking; green dashed lines—pi-cation; purple dashed lines—salt bridges. The residues have 337 
been labeled using Ballesteros-Weinstein numbering system [87]. Bottom: the RMSD plots obtained 338 
for each of the ligands over the 100 ns simulation, as well as the average RMSD with its fluctuation 339 
range. 340 

A further five compounds were tested for the CXCR3 model—they all demonstrated 341 
a high stability of their binding mode. The most interactions with the receptor were ob- 342 
served for Z2233592864—mainly pi-pi stacking. This compound, along with Z107207944 343 
and Z1903257002, demonstrated the most stable binding mode. The two final compounds, 344 
Z1167188972 and Z1510954688, fluctuated to a much greater extent, and no specific inter- 345 
actions with the receptor were observed for the latter one, while for the former interactions 346 
with residues N3.33 and Y3.37 were rarely formed during the simulations. 347 

 348 
Figure. 4. Results of the MD simulations for CXCR3 for five proposed compounds. Top: the interac- 349 
tions between the receptor and the ligand obtained for 100 ns of the simulation. The receptor was 350 
shown in the red-to-blue color scheme; yellow dashed lines—hydrogen bonds; blue dashed lines— 351 
pi-pi stacking. The residues have been labeled using Ballesteros-Weinstein numbering system [87]. 352 
Bottom: the RMSD computed for each of the ligands over the 100 ns simulation, as well as the aver- 353 
age RMSD with its fluctuation range. 354 

Interestingly, the best compounds selected by the Keras/TensorFlow NN for CXCR3 355 
(in the range of 9 and above of pChEMBL predicted values) did not include any of the 356 
compounds proposed for CCR2 or CCR3 (Fig. 2 and 3). It means that like previously [54], 357 
predictions made by the NN model are selective for the receptor subtype because they are 358 
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based on known active ligands only and not on the receptor structures which could be too 359 
similar, e.g., for SBVS. Thus, diverse CCR2, CCR3, or CXCR3 ligand training sets will pro- 360 
vide diverse novel chemotypes for each of these receptors, while the similar structures of 361 
these receptors could only provide similar compounds in SBVS. This is further discussed 362 
in 2.5. 363 

 364 
2.3. Chemical Modifications of Proposed Ligands 365 

Chemical modifications of the structures of the proposed compounds were suggested 366 
in order to increase their affinity towards the receptors. The modified structures as well 367 
as their contacts with the receptor were presented in Appendix S1 Table S4-S6. In the case 368 
of the proposed CCR2 ligand Z144527132, the addition of the alkyl substituent with the 369 
hydroxyl group to the hydrogenated quinazoline ring was proposed in order to enable 370 
the formation of a hydrogen bond with E7.39, a residue that participated in the binding of 371 
another ligand for this receptor. A second alkyl group was added in order to fill out the 372 
hydrophobic pocket. For Z199951150, a shortening of the molecule (specifically, of the end 373 
with the trifluoride group) could be suggested, as it did not appear to greatly contribute 374 
to the binding. More significant modifications should be introduced to the structure of 375 
Z2607653068 in order to prevent it from immediately leaving the receptor. A phenyl ring 376 
in the place of the ligand part with carbonyl and hydroxyl groups might support the for- 377 
mation of pi-pi stacking interactions with the nearby F5.30 or Y5.29. Furthermore, an intro- 378 
duction of a cyclopentene ring between one of the carbons and an oxygen could facilitate 379 
the formation of a hydrogen bond with H5.38. No modifications were suggested for 380 
Z45637008. However, only one modified compound based on Z2607653068 (together with 381 
Z199951150) was in the 8-9 predicted activity range by Keras/TensorFlow NN, while the 382 
other two (see Appendix S1 Table S4) were predicted as inactive (below 5). 383 

For CCR3, the introduction of a hydroxyl group into the structure of Z1274732994 384 
was suggested to facilitate the formation of a hydrogen bond with E7.39. In the case of 385 
Z1912507172, the addition of two separate alkyl groups were suggested in order to better 386 
fill out the hydrophobic region of the binding pocket of the receptor, as well as a hydroxyl 387 
group that could interact with Y3.32 to form a hydrogen bond. For Z2441027668, it was 388 
suggested that the methylpiperidine ring could be transformed into methylpyridine in 389 
order to allow for potential pi-pi stacking interactions with Y1.14. For Z2606182917, the ad- 390 
dition of an alkyl chain is suggested in order to better fill the binding cavity, as well as an 391 
oxygen that could form a hydrogen bond with H5.38. In the case of Z2764968046, a cyclo- 392 
pentane ring was added to the structure in order to better fill out the binding pocket. All 393 
modified compounds were in the highest predicted activity range (above 9 or in the 8-9 394 
range) except for Z2606182917 that fell into the medium predicted activity range (7-8). 395 

For CXCR3, an additional double bond to introduce aromaticity was added to the 396 
indane ring of Z107207944. Thus, the formation of pi-pi stacking interactions with the 397 
nearby F3.32, W6.48, or Y6.51 could be facilitated. For Z1167188972, a benzene ring could be a 398 
replacement for the cyclohexane ring to facilitate the pi-pi stacking interactions with F4.63. 399 
Furthermore, an alkene chain was added to fill out the binding pocket. In the case of 400 
Z1510954688, the tetrahydropyran ring can be replaced with a benzene ring, and one of 401 
the methyl groups was removed. This would allow for pi-pi stacking interactions with 402 
Y3.37. In addition, a transformation of one of the other methyl groups present in the mole- 403 
cule into a hydroxyethyl group would allow for the formation of a hydrogen bond with 404 
D4.60. For Z1903257002, the cyclohexane ring could be replaced with a benzene ring to fa- 405 
cilitate interactions with Y6.51. A subsequent relocation of one of the methyl groups would 406 
help fill out the binding pocket. No modifications were suggested for Z2233592864. Inter- 407 
estingly, this compound (Z2233592864) together with a modified Z107207944 were the 408 
best among all modified compounds according to Keras/TensorFlow NN (the 8-9 pre- 409 
dicted activity range). 410 

 411 
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2.4. Comparison of proposed compounds with known CXCR3 ligands 412 
Recently, Meyer et al. [32] published a novel CXCR3 antagonist. A comparison of the 413 

described structures and Enamine’s Hit Locator Library (HLL) provided three hits. Two 414 
of the molecules, Z2755039307 and Z2755039304 proved most similar to ACT-7779991 (the 415 
clinical candidate) with Tanimoto similarities equal to 0.255 and 0.253, respectively, as 416 
well as ACT-672125, with similarities equal to 0.141 for both. A third compound, 417 
Z1695828968, was most similar to ACT-660602, with a similarity of 0.207. Here, the previ- 418 
ous two compounds had similarities equal to 0.196 and 0.195, respectively. Autodock 419 
Vina-approximated binding affinities for these similar compounds in Enamine HLL were 420 
rather low to medium, ranging from 6.5 to 7.5. For two compounds, Z2755039307 and 421 
Z2755039304, the NN results were also unsatisfactory (see Table 2). However, the third 422 
compound Z1695828968 was assessed by the Keras/TensorFlow NN as highly active (the 423 
activity range above 9—the highest one) and it was included in less than 20 % of the best 424 
compounds for CXCR3 in Enamine HLL. It shows that the Keras/TensorFlow NN does 425 
not reproduce molecular docking results but indeed may provide substantial new infor- 426 
mation on the compound activity not accessible to physics-based force fields. To compare, 427 
the NN results for CXCR3 antagonists proposed and tested in MD simulations in this 428 
study fell into 18.6%, 3.7%, 13.5%, 19.5%, and 14.0% of top NN predictions (see Fig. 4, 429 
respectively) and 72.5%, 14,4%, 52.6%, 76.1%, and 54.9% of top predictions of the 9 and 430 
above activity range, respectively. 431 

In addition to the above CXCR3 antagonists, we also searched for the compounds 432 
similar to a CXCR3 biased ligand VUF10661. Here, the results of NN were even better (see 433 
Table 2). All three similar compounds were in the activity range of predicted pChEMBL 434 
values of 8 and above, meaning they were predicted as highly active for CXCR3. All three 435 
of these compounds were also among the best compounds found in Enamine HLL. De- 436 
spite these results, in our opinion, Keras/TensorFlow NN is a method to be used in com- 437 
bination with classical virtual screening methods such as SBVS rather than to be used 438 
solely in VS.  439 

Table 2. A comparison of three known CXCR3 active compounds proposed by Meyer et al. and a 440 
biased CXCR3 ligand with the most similar compounds present in Enamine’s Hit Locator Library. 441 
The common substructure of all six compounds is presented in the last row. 442 

Known CXCR3 antagonists 

 
ACT-672125 

Predicted activity range: 7–8 
Predicted binding affinity: -11.570 (receptor 

conformation—Z1167188972) 
 

 
ACT-660602 

Predicted activity range: 8–10 
Predicted binding affinity: -10.930 

(receptor conformation—
Z1510954688) 

 
ACT-777991 

Predicted activity range: 7–8 
Predicted binding affinity: -9.065 (recep-

tor conformation—Z107207944) 

Enamine HLL 
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Z2755039307 

Predicted activity range: 7–8 
Predicted binding affinity: -6.503 

In 63.3% of top NN predictions (20.9% top 
predictions in the 7–8 activity range) 

 
Z2755039304 

Predicted activity range: 7–8 
Predicted binding affinity: -7.403 
In 66.5% of top NN predictions 

(29.9% top predictions in the 7–8 ac-
tivity range) 

 
Z1695828968 

Predicted activity range: 9–above 
Predicted binding affinity: -7.081 

In 18.6% of top NN predictions (72.5% 
top predictions in the 9–above activity 

range) 
Common Substructure 

 

Known biased CXCR3 small-molecule ligand 
 

 
VUF10661 

Predicted activity range: 8–9 
Predicted binding affinity: -10.690 (the best receptor confor-

mation—Z2233592864) 
 
 

Enamine HLL 

 
Z364673996 

Predicted activity range: 8–9 
In 26.2% of top NN predictions (2.0% top predictions in the 

8–9 activity range) 

 
Z1128741153 

Predicted activity range: 9–above 
In 19.0 % of top NN predictions (74.4% top predictions in the 

9–above activity range) 

 
Z422692598 

Predicted activity range: 8-9 
In 36.7 % of top NN predictions (36.5 % top predictions in 

the 8–9 activity range) 
Common Substructure 
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All four known CXCR3 ligands were docked with AutoDock Vina to five receptor 446 
conformations obtained at the end of MD simulations of five HLL compounds (see Fig. 4). 447 
The best binding affinities predicted by AutoDock Vina are shown in Table 2, while the 448 
binding modes are shown in Appendix S1 Table S7. There was no common receptor con- 449 
formation that proved the best fit for all four compounds, but the Z1903257002-fitted con- 450 
formation was discarded by all compounds possibly because of the steric hindrance 451 
caused by Y3.37 forming interactions with Z1903257002 (see Fig. 4).  452 

All four CXCR3 ligands were additionally assessed by NN trained on the CXCR3 453 
dataset and the CCR2 and CCR3 datasets to check if NN is sensitive to the receptor sub- 454 
type selectivity. The CXCR3 model assessed these ligands rather highly, similarly as the 455 
CCR3 model, while the CCR2 model assessed them as inactive compounds. A similar ob- 456 
servation was made for the modified compounds. They were among the top-scored com- 457 
pounds assessed by the CXCR3 and CCR3 models, but not by the CCR2 model. This 458 
means, that the CCR3 and CXCR3 NN models were less selective with respective to each 459 
other in the activity predictions for these compounds in comparison to the CCR2 model. 460 
This again suggests the dependency of NN on the training dataset composition [54], yet 461 
in this case with the desired outcome. 462 

The NN and SBVS predictions were not fully consistent for Meyer’s compounds, 463 
meaning that the best compound proposed by NN was not the best compound proposed 464 
by SBVS. However, both NN and SBVS assessed VUF10661 as the best compound out of 465 
these four actives. This could be due to the fact, that VUF10661 consists of much more 466 
functional groups than Meyer’s compounds. More functional groups decrease the energy 467 
of interactions computed in molecular docking as observed previously by us in the statins 468 
case [90]. On the other hand, the presence of more functional groups ensures that the com- 469 
pound resembles at least any subset of active compounds used for training of NN and 470 
thus NN will select it as an active compound. 471 

 472 
2.5. Performance of Keras/TensorFlow NN in the receptor subtype selectivity prediction tasks 473 

To compare with the previous ML study on cannabinoid receptors (LightGBM, CB1/CB2 474 
selectivity) we also used CB1 and CB2 datasets for the NN training. This time, we included 475 
as many ChEMBL-retrieved compounds as possible (> 5000) in contrast to previous lim- 476 
ited datasets for these two receptors [83] available at: https://db-gpcr.chem.uw.edu.pl. The 477 
average Tanimoto coefficients between the current datasets and the previous datasets 478 
were equal to 0.138 (mode: 0.17) and 0.141 (mode: 0.17) for CB1 and CB2, respectively. 479 
Both datasets included small-molecule compounds only. However, the previous datasets 480 
included data from assays that provided pKi values, while the current datasets included 481 
only data from assays that provided pIC50 (standardized to pChEMBL values). This 482 
means that the current datasets include only CB1 or CB2 small-molecule inhibitors and 483 
not all CB1 and CB2 actives like previousely. Furthermore, the previous datasets did not 484 
include any inactive or weakly active compounds (pChEMBL < 4), the addition of which 485 
to training sets was recently discussed in [54]. In the current datasets, nearly 40 % and 25 486 
% (CB1, CB2, respectively) of compounds were inactive compounds (pChEMBL equal to 487 
0). Among active compounds in the current datasets 1 % and 2 % were weakly active 488 
compounds (pChEMBL less than 5, CB1 and CB2, respectively). Histograms showing dis- 489 
tribution of the activity classes in the current and previous datasets were shown in Ap- 490 
pendix S1 Table S8. Despite these differences, the results of the receptor subtype selectiv- 491 
ity prediction tasks were similar for the current and previous datasets, with only a slight 492 
improvement in comparison to the previous ones. The accuracy of the prediction for val- 493 
idation datasets were ca. 0.5 for the same receptor subtype, 0.2 for the other receptor sub- 494 
type, less than 0.02 for CB2 selective compounds with the inconsistent receptor subtype 495 
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and near 1 for the consistent receptor subtype (see Table 3 and 4). In the latter case of the 496 
CB2 selective compounds with the matching receptor subtype, the CB2 model trained on 497 
the previous dataset performed much better than trained on the current dataset (accuracy: 498 
0.876 vs. 0.521, see Table 4). This is however could be due to the higher average similarity 499 
between the previous training sets and the CB2 selective set (0.153 and 0.141 for the pre- 500 
vious training set and the current one, respectively, see Table 4). 501 

These results confirmed that although the composition of the training dataset has a no- 502 
ticeable impact on the classification results [63], neural networks are still able to classify 503 
correctly despite increase of noise in the training sets. Here, noise in datasets was intro- 504 
duced by adding inactive compounds to the current dataset. This advantage of NNs over 505 
supervised methods like gradient boosting decision trees (LightGBM) is mostly due to the 506 
fact that NNs can also act as unsupervised learners using unlabeled datasets for training. 507 
What is more, adding inactive or weakly active compounds to training sets only slightly 508 
worsened the accuracy of the activity prediction, which was also expected based on [54]. 509 
Adding inactive compounds to training sets could improve the binary classification (ac- 510 
tive vs. inactive compounds) but not the activity value prediction, which is a multiclass 511 
classification task [54]. 512 

If we compare the results presented in Table 3 and 4, the NN model trained on the canna- 513 
binoid receptor datasets seems to be more accurate in the selectivity prediction than mod- 514 
els trained on the chemokine receptor datasets. In the case of the CB1 model, the predic- 515 
tion accuracy dropped by more than 0.2 when the validation set with the inconsistent re- 516 
ceptor subtype was tested. In the case of the CB2 model, the accuracy changed even 517 
more—by 0.3. In the case of the chemokine receptor models, the most significant change 518 
in the accuracy was for the CXCR3 model (nearly 0.2 for the CCR2 validation set), but the 519 
remaining models showed only ca. 0.1 or less change in the accuracy. The worst model 520 
regarding the selectivity prediction was the CCR2 model, which is consistent with the fact 521 
that the CCR2 ligands from the training set were almost as similar to ligands from the 522 
CCR2 validation as from the CCR3 or CXCR3 validation sets. The CXCR3 model per- 523 
formed the best in the receptor subtype selectivity prediction task also for the same reason. 524 
The CXCR3 ligands retrieved from ChEMBL were the most dissimilar to both CCR2 and 525 
CCR3 ligands. In all cases, the prediction accuracy of NNs correlated with values of the 526 
Tanimoto coefficient between the training and validation sets. 527 

 528 

Table 3. Performance of Keras/TensorFlow NN in the chemokine receptor subtype selectivity tasks. 529 

Training 
set 

Number of data-
points 

Validation 
set 

Number of data-
points 

Loss Accuracy 
(change) 

Average Tanimoto co-
efficient  

training vs. validation 
set 

Mode Tanimoto co-
efficient  

training vs. valida-
tion set 

CCR2 1995 CCR2 399 5.406 0.190 0.139 0.16 

  CCR3 121 9.621 0.231 (+0.041) 0.141 0.16 

  CXCR3 199 17.878 0.126 (-0.064) 0.125 0.13 

CCR3 603 CCR3 121 5.332 0.223 0.243 0.15 

  CCR2 399 14.013 0.115 (-0.108) 0.142 0.10 
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  CXCR3 199 14.853 0.191 (-0.032) 0.143 0.13 

CXCR3 994 CXCR3 199 4.727 0.322 0.198 0.15 

  CCR2 399 13.681 0.125 (-0.197) 0.124 0.13 

  CCR3 121 8.029 0.182 (-0.140) 0.142 0.13 

 530 

Table 4. Performance of Keras/TensorFlow NN in the cannabinoid receptor subtype selectivity 531 
tasks. 532 

Training set Number of datapoints 

 

Validation set Number of datapoints Loss Accuracy (change) Average Tanimoto coefficient  

training vs. validation set 

2023 ChEMBL datasets 

CB1 4509 CB1 902 2.455 0.503 0.129 

  CB2 818 7.174 0.246 (-0.257) 0.133 

  CB2 selective 35 6.499 0.0146 0.139 

CB2 4087 CB2 818 2.987 0.418 0.137 

  CB1 902 5.354 0.291 (-0.127) 0.131 

  CB2 selective 35 2.450 0.521 0.141 

2020 ChEMBL datasets [83] from https://db-gpcr.chem.uw.edu.pl 

CB1 1566 CB1 314 1.943 0.464 0.152 

  CB2 418 4.417 0.203 (-0.261) 0.148 

  CB2 selective 35 9.187 0.0135 0.150 

CB2 2093 CB2 418 1.919 0.509 0.152 

  CB1 314 4.263 0.210 (-0.299) 0.147 

  CB2 selective 35 0.487 0.876 0.153 

 533 

3. Discussion and Conclusions  534 
Due to the role they play in numerous diseases, chemokine receptors represent prom- 535 

ising drug targets—however, drug design is hindered by the unavailability of many of 536 
their structures. In such cases, homology modeling makes it possible to create models of 537 
receptors based on their similarity to other receptors with solved structures. Though this 538 
can be done using webservers, standalone programs, such as Modeller, give researchers 539 
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the opportunity to take a more hands-on approach and adjust the modeling process to 540 
suit their own needs. The created models can then be used in SBVS in order to search for 541 
novel active compounds for the receptors in question, and the results validated through 542 
the use of properly trained machine learning algorithms. Regarding virtual screening, the 543 
comparison to known CXCR3 ligands showed that our recently developed machine learn- 544 
ing approach to ligand-based virtual screening provides substantially new information on 545 
the compound activity, different to predictions made by molecular docking in SBVS. Nev- 546 
ertheless, Keras/TensorFlow NN or LightGBM cannot be used solely but rather as a filter- 547 
ing method to decrease the number of compounds tested in SBVS for their precise binding 548 
modes and affinities. Machine learning also allows to screen much larger compound li- 549 
braries than those accessible to SBVS. Such novel algorithms offer better accuracy and 550 
better computational time efficiency than classical QSAR methods. The pre-filtering of 551 
large compound libraries before the SBVS step requires accurate but fast computational 552 
methods, which can be easily fulfilled by ML. In our opinion, the only limitation of ML 553 
remains in its dependency on the composition of the used training datasets [54]. This 554 
seems to be more crucial for LightGBM, while NNs encounter problems arising from the 555 
limited size of the assay-derived datasets. 556 

Molecular dynamics, though more computationally expensive than LBVS or SBVS, is 557 
much more reliable than these methods in the validation of the ligand-receptor interac- 558 
tions, as it provides a dynamic image of the protein system in a time-dependent manner. 559 
Here, MD simulations allowed to decide which of the previously selected compounds 560 
could serve as novel scaffolds for each of the studied receptors, and which would require 561 
modifications to improve their binding affinity. As a result, we obtained four novel 562 
chemotypes for CCR2, five for CCR3, and five for CXCR3. These molecules can serve as a 563 
basis for further drug design involving ligand binding assays and bioassays to confirm 564 
their ability to enhance the biological response of the receptor. 565 

The combination of various computational methods allows to overcome the limita- 566 
tions of each method. For example, SBVS does not use any prior knowledge about known 567 
active ligands of a given target and encounters problems arising from a simplification of 568 
used force fields. Nanosecond MD simulations do not allow for scanning of all possible 569 
receptor binding sites and all possible ligand conformations. Machine learning used in 570 
LBVS does not use any explicit information about the receptor and its interactions with 571 
ligands. On the other hand, SBVS allows to perform an exhaustive search through all pos- 572 
sible ligand conformations and ligand-receptor interactions to find the global free energy 573 
minimum. Nanosecond MD simulations allow unstable ligand-receptor interactions to be 574 
discarded and ligand binding modes to be corrected using detailed all-atom force fields. 575 
ML can perform an extremely fast search for active ligands among huge datasets of com- 576 
pounds and thus significantly limits the number of ligands to be tested in SBVS. GPU- 577 
accelerated neural networks designed in Keras/TensorFlow or using GPUs for LighGBM 578 
offer the next level of processing cheminformatic data. 579 

Among ML methods, NNs or deep learning NNs built on the Keras/TensorFlow plat- 580 
form have been used so far mainly in binary classification tasks in drug design [91]. Here, 581 
we showed that NNs can also be used in drug design as efficient multi-class classifiers 582 
when trained on the datasets with discrete compound activity values [54]. To our 583 
knowledge, this is the first such application of Keras/TensorFlow NNs. Keras/TensorFlow 584 
NN multiclass classifier allows to discard not only inactive compounds from active ones, 585 
but also low-active compounds from highly active compounds. This is especially im- 586 
portant for drug design referring to large datasets, in which the number of low-active 587 
compounds is so high and they are so diverse that they would introduce nothing but noise 588 
when used as training sets for binary classification. 589 

Another important application of NN models is the prediction of the receptor sub- 590 
type selectivity of a compound. As we showed, Keras/TensorFlow NNs can accurately 591 
distinguish ligand datasets matching different receptor subtypes. The only requirement is 592 
a sufficient dissimilarity between such ligand datasets, which was met in the case of 593 
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CB1/CB2 datasets. Structural differences between ligands of different chemokine receptor 594 
subtypes were hardly sufficient, except for the CXCR3 dataset. Thus, based on the datasets 595 
currently available in ChEMBL we could only develop the CB1/CB2 selective NN model 596 
and CCR/CXCR selective model of an accuracy sufficient for drug design purposes. 597 

 598 

4. Materials and Methods 599 
4.1. Ligand-based Virtual Screening 600 
 In the LBVS step, we used a method described in detail elsewhere [54]. The method 601 
uses the Keras/TensorFlow library for constructing, training, and evaluating the currently 602 
used sequential model of neural network. NN was trained on the ChEMBL datasets of 603 
CCR2, CCR3, and CXCR3 compounds following procedure described in [54]. Extended 604 
connectivity fingerprints with bond diameter 4 (ECFP4) [77] based on Morgan 605 
fingerprints were used to describe compound features with RDKit [76]. To emphasize, 606 
Keras/TensorFlow NN was used here not as a typical binary NN classifier but as a multi- 607 
class classifier that is able to distinguish not only active and inactive compounds, but also 608 
low and medium-active from highly active compounds. This was done by labeling the 609 
datasets with seven activity categories based on logarithmic pChEMBL values: 1 (below 610 
4), 2 (4–5), 3 (5–6), 4 (6–7), 5 (7–8), 6 (8–9), and 7 (above 9). Categories 5, 6 and 7 referred 611 
to highly active compounds, while 3 and 4 to medium-active, and 1 and 2 to inactive or 612 
low-active compounds. An NN was built and trained using the categorical cross-entropy 613 
loss function, stochastic gradient descent to minimize the loss function (Adaptive Moment 614 
Estimation Optimizer). Due to the multi-class application of NN, Softmax conversion 615 
leading to a probability distribution was used as the activation function for the last layer, 616 
instead of the sigmoid function that is used typically for binary classification. The 617 
Rectified Linear Unit activation function (ReLU) was used for hidden layers for quick 618 
convergence. 1000 epochs were used to ensure the sufficient minimization of the model, 619 
although a much smaller number could be also used, e.g., 200, as cross-entropy loss and 620 
accuracy stabilized after 200 epochs (see Appendix S1, Figure S2-S3). 621 

In principle, in the case of neural networks fitted to solve big data problems, 622 
increasing the training set from 40 % to 80 % (see Appendix S1 Figure S4-S6) should 623 
improve both the model accuracy and the model training efficiency. This improvement 624 
was indeed visible in the case of CCR2 and CCR3 (Appendix Figure S4). Nevertheless, the 625 
bootstrappping analysis should be performed to undoutedly confirm this. 626 

For the receptor subtype selectivity tests, the following curated datasets were used 627 
for training (80 % randomly selected compounds from the ChEMBL-retrieved datasets): 628 
1995 (CCR2), 603 (CCR3), 994 (CXCR3), 4509 (CB1), 4087 (CB2), and for validation the 629 
remaining compounds were used. For cannabinoid receptors, two additional training sets 630 
[63,83] from https://db-gpcr.chem.uw.edu.pl were used, consisting of 1566 and 2093 631 
compounds (CB1 and CB2, respectively). A further 35 CB2-selective compounds (from 632 
https://db-gpcr.chem.uw.edu.pl) were used as one of the validation sets included in Table 633 
4. To generate the results presented in Table 4, the number of epochs were set to 100, and 634 
the average loss and accuracy was computed for 100 independent training runs of NN. 635 

Python scripts with imported modules from the latest versions of RDKit, scikit-learn, 636 
Keras, and Tensorflow were used for data processing. 637 

 638 
4.2. Preparation of CCR2, CCR3, and CXCR3 structures 639 

The 6GPX structure [92,93] of the inactive-state CCR2 receptor was downloaded from 640 
the Protein Data Bank (PDB) [94], and a model of CCR3 was generated using the Robetta 641 
webserver [95]. Both the structure and the model were preprocessed using Maestro [96] 642 
and evaluated as described in a previous study [54].  643 

 644 
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The amino acid sequence of CXCR3-A was obtained from UniProt [97] (see Appendix 645 
S1 Fig. S1). Protein BLAST was used to perform a search against PDB to find solved GPCR 646 
structures with a high sequence similarity to CXCR3-A [98]. Of these, the inactive-state 647 
5LWE [99,100] and 6MEO [101,102] PDB entries, with a 33.44% and 36.49% sequence sim- 648 
ilarity to the target, respectively, were selected as templates for homology modeling. Mod- 649 
eller [103] was used to generate 5000 models of CXCR3-A. The lowest energy models were 650 
analyzed in PyMol [104] and validated by comparing their structures to those of other 651 
GPCRs with well-described molecular switches, including PDB entries 7O7F [105,106] and 652 
6WWZ [107,108].  653 

 654 
4.3. Structure-based Virtual Screening 655 

SBVS assisted by machine learning was performed with Glide for CCR2 and CCR3, 656 
and described previously [54]. Here, to confirm their binding modes and to test if two 657 
molecular docking programs based on completely different force fields (OPLS and Amber 658 
for Glide and AutoDock, respectively) provide similar results we used AutoDock Vina 659 
[43,44,109]. Although the compound ranking proposed by AutoDock Vina was very sim- 660 
ilar to the one obtained previously by Glide, a few compounds were discarded due to 661 
significant differences in their binding modes provided with AutoDock Vina in compari- 662 
son to Glide results. The remaining CCR2 and CCR3 compounds were subjected to vali- 663 
dation with MD simulations. 664 

 665 
The validated model of CXCR3 was used for structure-based virtual screening (SBVS) 666 

with AutoDock Vina, using the Enamine Hit Locator Library (HLL) [110], consisting of 667 
over 460 000 compounds. The position of the grid box for AutoDock Vina was determined 668 
based on the positions of the ligands in the corresponding template structures, and its size 669 
was 31.19×29.17×38.56. Ten binding modes were generated for each ligand, and the en- 670 
ergy cut-off for selecting ligand poses was equal to -10.5. The results were analyzed using 671 
the vs-analysis.py script [111], and 31 compounds with the best binding affinities were se- 672 
lected for further investigation. 673 

 674 
A set of known CXCR3 inhibitors—the IC50 subset—was downloaded from the 675 

ChEMBL (accessed: May 2023). After the data was curated and compounds with no spec- 676 
ified activity values (pChEMBL values) were removed, the CXCR3 dataset was used as a 677 
training set for a neural network implemented in Keras/TensorFlow according to a proce- 678 
dure described elsewhere [54]. The algorithm was then used to predict the activity values 679 
of the molecules in the HLL compound library. The compounds with the highest pre- 680 
dicted activity values (above 9) were mapped against those obtained via SBVS, and as a 681 
result, nine potential CXCR3 actives were obtained. Out of these, five the best-assessed 682 
compounds were selected for further MD simulations. 683 

 684 
4.4. Molecular Dynamics Simulations 685 

For the selected compounds, their complexes with receptors for the MD simulations 686 
were prepared using CHARMM-GUI’s [112–114] Membrane Builder [115–118]. Infor- 687 
mation about the disulphide bonds in the receptor structures was provided based on 688 
known structures of chemokine receptors in the PDB and the ligand parameterization was 689 
performed using CGenFF [119] and 3D structural files generated by Maestro. The ligand- 690 
receptor complexes were inserted into a lipid bilayer consisting of a 3:1 ratio of POPC (1- 691 
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) to cholesterol. The periodic rectangular 692 
water box (TIP3P) was fitted to the complex and each simulation system was neutralized 693 
by adding Na+ and Cl- ions at a concentration of 0.15 M. The number of atoms in each 694 
simulation system was equal to between 135000 and 148000 atoms, depending on the sys- 695 
tem. The Charmm36 force field was used in each simulation. 696 

 697 
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The equilibration step included 10,000 steps of the steepest descent minimization, 698 
then 25,000 steps of the conjugated gradients minimization. The equilibration simulation 699 
was performed in NVT using the Langevin dynamics (303.15 K). The time integration step 700 
in the equilibration and production runs was set to 2 fs. The production run in NPT was 701 
performed using the Langevin piston Nose-Hoover method (1 bar, 303.15 K) and lasted 702 
for 100 ns for each system. The GPU-accelerated version of NAMD [120] was used for all 703 
MD simulations. The obtained trajectories were analyzed using VMD [121]. 704 

 705 
4.5. Suggested Structural Modification of Active Compounds 706 

Chemical modifications of functional groups of the proposed active compounds for 707 
each receptor were suggested in order to improve their binding affinities. Maestro was 708 
used to analyze the interactions between the modified ligands and the receptor in the final 709 
frame of the MD simulation and to suggest possible changes. Modified structures of pro- 710 
posed compounds were minimized in Maestro (OPLS4 force field), in order to prevent 711 
clashes. 712 

 713 
4.6 Structural Comparison of CXCR3 Antagonists 714 

Compounds described by Meyer et al. [32] were reproduced in Maestro in order to 715 
perform a search for similar structures in the HLL compound library. The Fingerprint 716 
Similarity tool was used with the Tanimoto similarity metric. The docking scores and pre- 717 
dicted activities as well as their ranks provided by Keras/TensorFlow NN were extracted 718 
for compounds with the highest Tanimoto coefficients.    719 
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