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Abstract 14 

The production of recombinant proteins in a host using synthetic constructs such as plasmids 15 

comes at the cost of detrimental effects such as reduced growth, energetic inefficiencies, and 16 

other stress responses, collectively known as metabolic stress. Increasing the number of copies 17 

of the foreign gene increases the metabolic load but increases the expression of the foreign 18 

protein. Thus, there is a trade-off between biomass and product yield in response to changes in 19 

heterologous gene copy number. This work proposes a computational method, rETFL 20 

(recombinant Expression and Thermodynamic Flux), for analyzing and predicting the 21 

responses of recombinant organisms to the introduction of synthetic constructs. rETFL is an 22 

extension to the ETFL formulations designed to reconstruct models of metabolism and 23 

expression (ME-models). We have illustrated the capabilities of the method in four studies to 24 

(i) capture the growth reduction in plasmid-containing E. coli and recombinant protein 25 

production; (ii) explore the trade-off between biomass and product yield as plasmid copy 26 

number is varied; (iii) predict the emergence of overflow metabolism in recombinant E. coli in 27 

agreement with experimental data; and (iv) investigate the individual pathways and enzymes 28 

affected by the presence of the plasmid. We anticipate that rETFL will serve as a 29 

comprehensive platform for integrating available omics data for recombinant organisms and 30 

making context-specific predictions that can help optimize recombinant expression systems for 31 

biopharmaceutical production and gene therapy.  32 
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Introduction 33 

Recombinant protein expression involves the transfer of heterologous genes into a 34 

prokaryotic or eukaryotic host organism. The foreign genes are delivered to the host using an 35 

engineered DNA molecule called a vector. There are several types of vectors, but the plasmid 36 

is the most common. A plasmid can carry functional genes and provide its host with selective 37 

advantages, such as antibiotic resistance. The presence of the plasmid in the host can also 38 

trigger metabolic stress responses such as a reduction in growth (1, 2), an increase in 39 

maintenance energy (3, 4), and the emergence of overflow metabolism (5, 6). Such stress 40 

responses are referred to as plasmid metabolic load. The plasmid load depends on several 41 

factors, including copy number, number of genes on the plasmid, and strength of the promoters 42 

on the plasmid.  43 

Most of these approaches have focused on simulating the plasmid load in E. coli as the 44 

most widely used host for the expression of recombinant proteins. Peretti and Bailey 45 

reconstructed a whole-cell kinetic model that included key cellular processes such as DNA 46 

replication, mRNA transcription, and protein translation (7). However, as the kinetic 47 

parameters and mechanisms for many biological reactions are unknown, they greatly simplified 48 

the cellular processes. da Silva and Bailey developed a theoretical model to calculate the 49 

plasmid effect on biomass yield when the additional energy and material requirements caused 50 

by the plasmid are known (8). Bentley et al. developed a structured kinetic model to investigate 51 

the relationship between growth rate and the level of heterologous protein expression (9). To 52 

this end, they included separate reactions for plasmid-related DNA, mRNA, and protein 53 

synthesis in the model. Özkan et al. used constraint-based optimization to capture the plasmid 54 

load (10). They used a stoichiometric model to represent cell metabolism under the steady-55 

state assumption, where a single reaction was added to represent the plasmid-related energy 56 

and material requirements. Experimental fluxomic data were used to constrain the fluxes in the 57 

central metabolism, and an optimization problem was solved to find the other fluxes. In another 58 

study, Ow et al. integrated a lumped reaction that accounts for plasmid requirements into a 59 

genome-scale metabolic model (GEM) (4). They explored different objective functions to find 60 

the cellular objective that was most consistent with the experimental data. Recently, Zeng and 61 

Yang integrated empirical constraints into the E. coli GEM to account for foreign protein 62 

expression and plasmid maintenance requirements (11). 63 

 Metabolism and Expression models (ME-models) are constraint-based models that 64 

simulate cellular metabolism and expression (12-14). Reconstruction of an ME model starts 65 
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with a GEM representing metabolism, and additional constraints are incorporated to account 66 

for expression. Expression and Thermodynamics-enabled Flux (ETFL) is a mixed-integer 67 

linear formulation for the reconstruction of ME models (14-16). The previous formulations of 68 

ME-models were nonlinear and required special quad-precision solvers (12, 13). In contrast, 69 

ETFL is a linear formulation that can be solved with standard double-precision solvers. dETFL 70 

is an extended version of ETFL that considers temporal dynamics of extracellular metabolite 71 

concentrations and enzyme abundances (15). Recently, we have extended the ETFL 72 

formulation to the study of eukaryotic organisms. To this end, we enabled the implementation 73 

of multiple RNA polymerases and ribosomes and accounted for the compartmentalized 74 

expression systems in eukaryotes. We also improved the parameterization of the ETFL models 75 

by correcting for growth-associated maintenance (GAM) and allocating a limited proteome 76 

fraction to metabolic and expression-related enzymes. We used the extended ETFL formulation 77 

to reconstruct the first ME model for Saccharomyces cerevisiae, yETFL (16).  78 

This work presents an updated ETFL model for E. coli, ecETFL, by improving the 79 

model parameters, including GAM and resource allocation. We also extend the ETFL 80 

formulation to allow the simulation of recombinant cells. The proposed formulation, called 81 

rETFL, allows the user to include new genes in the model and to integrate new constraints for 82 

the allocation of expression resources to plasmid-related macromolecules. We used rETFL to 83 

simulate the plasmid load for different plasmids in E. coli. The explicit representation of 84 

individual enzymes in rETFL allows the investigation of enzymes that are more affected by 85 

the presence of the plasmid. Furthermore, rETFL allows the mechanistic investigation of 86 

different transcriptomic and proteomic perturbations in recombinant cells.  87 
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Results and Discussion 88 

Updated E. coli ETFL model 89 

In addition to the 1366 metabolic genes from the FBA model, an updated E. coli ETFL 90 

model, ecETFL, has 69 genes encoding RNA polymerase, ribosomal RNAs, and ribosomal 91 

peptides. Since the transcription elongation rate is faster for stable RNA (sRNA) in E. coli, we 92 

implemented two RNA polymerases (Methods): (i) the faster RNA polymerase with an 93 

elongation rate of 85 nucleotides/second, which is associated with rRNAs and tRNAs; and (ii) 94 

the slower RNA polymerase with an elongation rate of 45 nucleotides/second, which is 95 

associated with the other genes. One ribosome is implemented to translate all mRNAs into 96 

proteins. The model includes 1128 metabolic enzymes catalyzing 2007 reactions (Table 1).  97 

As a benchmark for ecETFL, we simulated the growth rate at different glucose uptake 98 

rates (Figure 1A). Initially, growth increased linearly with increasing the uptake rate. In this 99 

part, growth is limited by substrate availability, and both the FBA and ecETFL models were 100 

able to capture the experimental data. However, as the cellular expression capacity is limited, 101 

the growth reached a plateau that could not be further increased by increasing the uptake. While 102 

FBA failed to capture the shift from substrate-limited to protein-limited growth, ecETFL 103 

predicted that growth would reach a maximum in accordance with the experimental data 104 

(Figure 1a). The observed maximum growth rate of E. coli in the minimal medium was 0.61 h-105 
1 (17), whereas ecETFL predicted a maximum growth rate of 0.67 h-1. The agreement between 106 

the predicted and measured maximum growth rate shows that the updated ecETFL model 107 

improves upon the previous ME-models for E. coli (12, 14), as these models captured the 108 

maximum growth rate with a significant deviation from the experimental observations. 109 

Overflow metabolism is a shift from pure respiration to a combination of respiration 110 

and fermentation observed in fast-growing cells (18-20). This shift results in seemingly 111 

suboptimal secretion of fermentation byproducts, which could otherwise be incorporated into 112 

the biomass. One hypothesis is that overflow metabolism occurs due to the limited capacity of 113 

the enzymes involved in respiration and redox balance (21-23). As the ETFL formulation 114 

considers the limited enzymatic capacity through the catalytic constraints, we investigated the 115 

ability of ecETFL to capture overflow metabolism in E. coli as a further test of the quality of 116 

the model (Figure 1b). At growth rates above a critical growth rate, which is strain specific but 117 

estimated to be around 0.42 h-1, E. coli cells secrete acetate while consuming oxygen, known 118 

as overflow metabolism in E. coli. ecETFL predicted the shift in metabolic fluxes at high 119 

growth rates, albeit delayed with respect to the experimental data. The model captured the 120 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2023. ; https://doi.org/10.1101/2023.09.13.557522doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.13.557522
http://creativecommons.org/licenses/by/4.0/


 6 

decrease in acetate secretion and oxygen consumption at growth rates above 0.58 h-1. The same 121 

delay in the predicted onset of overflow metabolism was observed in Saccharomyces cerevisiae 122 

using yETFL (16). In that paper, we discussed that improvements such as the inclusion of 123 

regulatory constraints or the integration of more growth-dependent parameters could further 124 

reconcile model predictions and experimental data (16). 125 

Quantifying the allocation of resources to the expression of heterologous genes 126 

rETFL has three additional parameters that quantify the allocation of resources to 127 

heterologous gene expression. The first two parameters, 𝜔!"#$  and 𝜔!%&$ , are phenomenological 128 

parameters that determine the basal level of RNA polymerases and ribosomes, respectively, 129 

allocated for the heterologous gene l expression. 𝜔!"#$  characterizes the availability of the 130 

promoter of the gene l and the affinity of RNA polymerase to this promoter. Similarly, 𝜔!%&$  131 

represents the affinity of ribosomes to the mRNA l. The third parameter, 𝜑', represents the 132 

fraction of the heterologous proteins taking their share from the metabolism- and expression-133 

related (ME-) enzymes (see Methods for more details). Since ME enzymes synthesize biomass 134 

building blocks and generate energy for various cellular processes, allocating a higher 135 

proportion of the ME enzyme fraction to the heterologous proteins represents a higher 136 

metabolic burden (24).  137 

We used data on the fraction of RNA polymerase and ribosome assigned to the plasmid 138 

(7) to estimate 𝜔!"#$  and 𝜔!%&$  at different copy numbers for plasmid pMB1. Table S1 139 

summarizes the estimated values of 𝜔!"#$  and 𝜔!%&$ . It should be noted that the values of 𝜔!"#$  140 

and 𝜔!%&$  might vary subject to different promoters and ribosomal binding sites. We observed 141 

that the specific activity of RNA polymerase and ribosome decreased with increasing copy 142 

number. We fitted the model to experimental data (7) to estimate 𝜑'. For plasmid pMB1, we 143 

obtained a proper fit to the data with 𝜑' = 0.2, implying that 20% of the heterologous proteins 144 

recruit the resources allocated to the ME-enzymes. 145 

In addition to the additional requirements for the expression of heterologous genes, 146 

plasmid burden manifests itself in increased energy requirements for maintenance (3, 4). As a 147 

result, plasmid-containing cells are less energetically efficient than wild-type cells. This 148 

increase in global maintenance energy is attributed to plasmid maintenance. ATP maintenance 149 

(ATPM) is an ATP hydrolysis reaction added to the model to account for global energy 150 

maintenance. The level of ATPM is determined by fitting model predictions to experimental 151 

growth (25). For E. coli, different levels of ATPM have been reported for different strains of 152 

E. coli and different versions of GEMs (25, 26). For example, the ATPM is set to 3.15 mmol 153 
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gDW-1 h-1 in iJO1366 (26) and 8.39 in iAF1260 (25) for wild-type E. coli. To account for the 154 

reduced energetic efficiency caused by the introduction of the plasmid, we estimated the ATPM 155 

to be 15 mmol gDW-1 h-1 by fitting the model to the experimental growth in recombinant E. 156 

coli containing pMB1 (7). 157 

The plasmid impact on growth rate 158 

We used ecETFL and the fitted parameters to simulate the maximal growth of 159 

recombinant E. coli containing different copy numbers of pMB1 (Figure 2a). At low copy 160 

numbers, where a smaller fraction of resources was allocated to heterologous synthesis, the 161 

metabolic load was dominated by energy requirements for plasmid maintenance. As copy 162 

numbers increased, the fraction of resources allocated to plasmids also increased, and the 163 

metabolic burden was mainly due to the additional requirements for the synthesis of plasmid-164 

related macromolecules. The recombinant ecETFL also predicted the relative heterologous 165 

protein production according to the experimental data (Figure 2b). Heterologous protein 166 

production increased non-linearly with increasing copy number and reached a maximum where 167 

no more resources could be allocated to the plasmids. 168 

The impact of plasmid copy number on biomass and product yields 169 

The heterologous protein may benefit the host by providing a novel metabolic function 170 

or enhancing an existing capacity. Applying evolutionary pressure can translate such benefits 171 

into selective advantages. For example, appropriate evolutionary pressure stimulates higher 172 

heterologous protein production in the host. For example, if the product protein confers 173 

antibiotic resistance, adding antibiotics to the medium can further stimulate product 174 

production. We simulated the stimulated product production using a multi-objective problem 175 

with two objective functions, i.e., maximizing growth and maximizing heterologous protein 176 

production: 177 

 max
	
	(𝑤)*+,!-𝜇 + 𝑤#*+./"!MW'𝑣'

#*+./"!)  

with 𝑤)*+,!- and 𝑤#*+./"! denoting arbitrary weights assigned to the objectives such that 178 

𝑤)*+,!- +𝑤#*+./"! = 1, 𝜇 is the specific growth rate, and MW' and 𝑣'
#*+./"! represent the 179 

molecular weight and the production rate of the heterologous protein, respectively. We 180 

explored the trade-off between the two objectives by assigning different weights (Figure 3). As 181 

expected, for 𝑤)*+,!- = 1, the minimum product yield increased with increasing the copy 182 

number. If the product was not beneficial to the host, increasing the copy number increased the 183 

product yield, but at the expense of decreasing the biomass yield. 184 
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On the other hand, if product production was the sole cellular objective, i.e., 𝑤#*+./"! =185 

1, increasing the copy number reduced the maximum product yield due to the additional 186 

requirements for plasmid-related RNA and DNA synthesis. Indeed, when the objective 187 

function stimulated the product production at low copy numbers, higher product yields were 188 

achieved than when the production was enforced by increasing the copy number. Our results 189 

suggest that the stimulated product production, e.g., by exerting proper selective pressure, is 190 

more efficient than increasing the copy number because higher product and biomass yields are 191 

achieved. 192 

The impact of plasmid on consumption and secretion fluxes 193 

For this study, we used rETFL to simulate the metabolic burden of plasmid pOri2 and 194 

its effect on acetate secretion and oxygen consumption. Like pMB1, pOri2 genes are 195 

transcribed under the lac promoter. Therefore, we used the same values for RNA polymerase 196 

and ribosome affinities for the plasmid genes, i.e.,  𝜔!"#$  and 𝜔!%&$ , as was used for pMB1 (Table 197 

S1). We varied the fraction of resources allocated to the plasmid-related proteins, 𝜑' and the 198 

ATPM so that the model fits the experimental growth of E. coli containing pOri2 (6). The 199 

estimated values of 𝜑' and the ATPM were, respectively, 30% and 30 mmol gDW-1 h-1. 200 

Interestingly, the estimated value of ATPM  obtained was close to that obtained in Zeng and 201 

Yang using a phenomenological model (11). The ATPM found for pOri2 was significantly 202 

higher than pMB1 (15 mmol gDW-1 h-1), indicating that pOri2 is energetically less efficient. 203 

We then used ecETFL to compare the model predictions for oxygen consumption and 204 

acetate secretion with the experimental data in the wild-type and plasmid-containing organisms 205 

(Table 2). The model captured the impact of the plasmid on the exchange fluxes in agreement 206 

with the experimental observations. Notably, the model predicted acetate production in the 207 

plasmid-containing E. coli, whereas no acetate was produced in the wild-type organism.  208 

Proteome comparison in the wild-type and recombinant organisms 209 

By explicitly simulating the expression of individual proteins, we were able to use 210 

rETFL to evaluate the differences in the proteomes of wild-type and recombinant E. coli. In 211 

the recombinant organism, part of the proteome is allocated to the heterologous proteins, 212 

limiting the resources available to the native proteins. We compared the levels of several 213 

enzymes in wild-type and recombinant E. coli. We calculated a normalized expression score 214 

(𝑠0) for each protein according to this formula: 215 
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 𝑠0 =
(𝐸012 − 𝐸034)
(𝐸012 + 𝐸034)

  

where 𝐸034 and 𝐸012 are the concentrations of enzyme j in the wild-type and recombinant 216 

organisms, respectively. If the enzyme j is upregulated due to the presence of the plasmid, 𝑠0 217 

is positive, and if the enzyme j is downregulated, 𝑠0 is negative (Figure 4). Out of the 1131 218 

enzymes included in the model, 778 enzyme concentrations remained almost unaffected by the 219 

presence of plasmid, i.e., −0.1 < 𝑠0 < 0.1. Due to the allocation of cellular resources to the 220 

heterologous proteins, most of the remaining enzymes were slightly downregulated, including 221 

251 enzymes with −0.3 < 𝑠0 < −0.1. We found that 34 enzymes were highly upregulated, i.e., 222 

0.5 < 𝑠0, and 29 were highly downregulated, i.e., 𝑠0 < −0.5.  223 

The maximum catalytic capacity of an enzyme can be represented as 5!"#
63$

𝜌0, where 𝜌0 224 

is the mass concentration. As a result, for larger values of 5!"#
63$

, the cell requires smaller 225 

amounts of enzymes to achieve the same catalytic capacity. We calculated the average 5!"#
63$

 to 226 

be 3.68 mol g-1 min-1 for the 34 enzymes upregulated in the recombinant E. coli, significantly 227 

higher than 0.22 mol g-1 min-1, the average 5!"#
63$

 for the 29 downregulated enzymes. This 228 

implies that the recombinant organism synthesizes enzymes with higher mass efficiencies 229 

under more limited resource availability at the expense of switching to a suboptimal 230 

metabolism.  231 
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Conclusion 232 

 In this work, we presented rETFL, an extension of the ETFL formulation and code to 233 

simulate the expression of heterologous genes in recombinant organisms. To this end, we 234 

extended the ETFL formulation to account for the allocation of cellular resources and 235 

expression machinery to plasmid-related activities. The new formulation allows us to account 236 

for the energetic burden imposed by the plasmid by modifying ATP maintenance. We 237 

demonstrated that rETFL could capture the plasmid burden and heterologous protein 238 

production in recombinant E. coli. We also simulated the change in reaction fluxes due to the 239 

presence of the plasmid in agreement with the experimental observations without directly 240 

constraining the fluxes as in the previous constraint-based formulations of the plasmid burden 241 

(4, 10).  242 

rETFL allows the integration of different omics data, including transcriptomics, 243 

proteomics, and metabolomics. Since the ETFL models can be readily developed for both 244 

prokaryotic and eukaryotic organisms, rETFL can be used to simulate recombinant protein 245 

expression in different hosts. Furthermore, like the original ETFL formulation, rETFL can be 246 

extended to dynamic settings to capture time-dependent evolutions (15). The mechanistic 247 

representation of the expression of individual enzymes in rETFL allows us to reveal the specific 248 

pathways and enzymes affected by plasmids. rETFL is available as open-source code for 249 

generating and analyzing models of recombinant organisms. We envision that rETFL can be a 250 

versatile tool to simulate recombinant organisms and propose metabolic and protein 251 

engineering strategies to design optimal hosts for biotechnological applications. In addition, 252 

rETFL can simulate and support other types of genetic interventions, such as gene therapies in 253 

humans and animals.  254 
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Methods 255 

Data Collection 256 

The most recent version of iJO1366 was obtained from the BiGG database (27). The essential 257 

metabolites to produce 1 gram of biomass were taken from the growth reaction and divided 258 

into different types, including amino acids, nucleoside triphosphates, deoxynucleoside 259 

triphosphates, lipids, peptidoglycans, lipopolysaccharides, ions, and cofactors. The percentage 260 

of different macromolecules in the biomass was then calculated. Sequences of peptides and 261 

mRNAs were obtained from the KEGG database (28). The functions from GECKO (29) were 262 

used to obtain the turnover numbers (kcats). The composition and stoichiometry of the enzymes 263 

were obtained from a previous ME-model for E. coli (12). 264 

Updating the E. coli ETFL model 265 

The E. coli ETFL model presented here, i.e., ecETFL, is improved in three main aspects. First, 266 

we incorporated an additional constraint to determine the maximum proteome fraction 267 

allocated to the ME-enzymes, as previously done for Saccharomyces cerevisiae (16). The 268 

latest whole-cell proteomics data for E. coli was obtained from PaxDB to calculate the fraction 269 

of the ME-enzymes (30). Second, we modified the GAM to avoid double counting the energy 270 

requirements for peptide synthesis. According to the biomass reaction in iJO1366, ~5.2 mmol 271 

of amino acids are required to produce 1 gram of biomass. We know 3 mmol of ATP are 272 

consumed to attach an amino acid to a peptide chain, including 1 mmol ATP for the tRNA 273 

charging and 2 mmol ATP for the amino acid assembly (14, 16). In total, the energetic 274 

requirement for peptide synthesis is 3 × 5.2 = 15.6 mmol gDW-1 of ATP, which was removed 275 

from the GAM. Third, we integrated more enzymes into the model such that the number of 276 

enzymes in ecETFL is 1131, compared to 562 enzymes in the previous E. coli  ETFL model. 277 

Recently, we extended the ETFL formulation to account for multiple RNA polymerases and 278 

ribosomes (16). Like other bacteria, E. coli has only one type of RNA polymerase. However, 279 

it is observed that its RNA polymerase transcribes the sRNAs much faster than the mRNAs 280 

(31). We used the extended ETFL formulation to define two types of RNA polymerases in 281 

ecETFL with identical compositions but different catalytic efficiencies. The faster RNA 282 

polymerase was associated with the sRNAs, and the slower one with the mRNAs. 283 
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Extending the formulation of ETFL 284 

Expression 285 

The original ETFL formulation simulates cell behavior under the optimality assumption where 286 

growth is maximized. This means that the ETFL models, like other similar models, could only 287 

predict the synthesis of proteins that contribute to the growth of the organism. Such models do 288 

not predict the synthesis of proteins that are not beneficial for growth because in this way, a 289 

higher fraction of the cellular protein content could be allocated to proteins with a positive 290 

contribution to growth. However, the cell could produce gratuitous proteins that have no 291 

function in the cell (32). Similarly, heterologous proteins transferred into a host often do not 292 

have a positive impact on cellular activity (33). To allow the ETFL formulation to account for 293 

the expression of nonfunctional proteins, we incorporated the following two constraints: 294 

 𝜔!"#$
𝐿$%!	
𝐿1789

𝐺$ ≤ RNAP$ (1) 

 𝜔!%&$ 𝐿$%!	
𝐿1:;

𝑀$ ≤ Rib$ (2) 

Equations 1 and 2 impose a basal level for the RNA polymerases (RNAP$) and ribosomes (Rib$) 295 

allocated to the template l. This basal level is defined based on the copy number of the gene l 296 

(𝐺$) or the mRNA transcript l (𝑀$), the footprint of RNA polymerase (𝐿1789) or ribosome 297 

(𝐿1:;) in nucleotides, the length of the template in nucleotides (𝐿$%!), and the affinity of the 298 

RNA polymerase or ribosome for the template l reflected in 𝜔!"#$  and 𝜔!%&$ , respectively. The 299 

constraints in Equations 1 and 2 can be defined for both native and heterologous genes. 300 

However, we applied Equations 1 and 2 only to the heterologous genes, as these genes are 301 

present in the host in high copy numbers due to the high copy number of plasmids. We assumed 302 

the basal level of RNA polymerases, and hence ribosomes, allocated to the native genes is 303 

negligible, as these genes are usually present in a single copy.  304 

Allocation 305 

In ETFL models, we divide the native proteins into two groups: (i) the ME-enzymes and (ii) 306 

the other proteins. The latter are not explicitly modeled in ETFL and are represented by a 307 

modeling protein called dummy protein. Then, we add a constraint of the following form to 308 

determine the fraction of the cellular protein content that can be allocated to the dummy protein 309 

(16):  310 

 G MW0𝐸0 = 𝜑 · 𝑃<	
0=./>>?	#*+!@:%

 (3) 
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where MW0 and 𝐸0 are the molecular weight and molar concentration of jth protein, 311 

respectively. 𝑃< is the fraction of the cell weight that is protein, and 𝜑 is the fraction of total 312 

protein allocated to the ME-enzymes. We used proteomics data to calculate this fraction as 313 

𝜑 = 0.48	g	g#*+!@:%AB . Since the total protein content 𝑃< is fixed, Equation 3 also defines the 314 

share of dummy protein to be (1 − 𝜑) · 𝑃<. 315 

A part of the protein content is allocated to the heterologous proteins in a recombinant cell. 316 

However, since whole-cell proteomics data is not readily available for recombinant cells, it is 317 

difficult to determine the influence of recombinant proteins on 𝜑. In the absence of proteomics 318 

data, we modified Equation 3 as follows:  319 

 
𝜑' G MW5𝐸5

5∈D@!@*+&+)+/E

+ G MW0𝐸0 = 𝜑 · 𝑃<	
0=./>>?	#*+!@:%,			0∉D@!@*+&+)+/E

 

 

(3) 

𝜑' is a parameter representing the fraction of the heterologous proteins that take their share 320 

from the ME-enzymes (Figure 5).  321 

Estimation of 𝜔!"#$  and 𝜔!%&$  322 

The parameters 𝜔!"#$  and 𝜔!%&$  represent the RNA polymerase and ribosome affinity for the 323 

gene and mRNA template l, respectively. Table S2 summarizes the fraction of RNA 324 

polymerases (𝑓1789$ ) and ribosomes (𝑓1:;$ ) allocated to plasmid-related expression. These 325 

fractions were calculated based on the available kinetic information. We varied 𝜔!"#$  and 𝜔!%&$  326 

and solved the rETFL problem to calculate 𝑓1789$  and 𝑓1:;$  subject to different plasmid copy 327 

numbers. Figure S1 shows that 𝑓1789$  only depends on 𝜔!"#$ , while Figure S2 shows that 𝑓1:;$  328 

is impacted by variations in both 𝜔!"#$  and 𝜔!%&$ . For each plasmid copy number, we selected 329 

𝜔!"#$  and 𝜔!%&$  such that the following expression is minimized: 330 

 N𝑓1789$ − 𝑓1789
$,H:% N + 𝜔N𝑓1:;$ − 𝑓1:;

$,H:%N  

where 𝑓1789$  and 𝑓1:;$  are calculated by the rETFL problem, and 𝑓1789
$,H:%  and 𝑓1:;

$,H:% are calculated 331 

using the kinetic parameters (Table S2). To check if the variation in 𝜑' impacts 𝑓1789$  and 332 

𝑓1:;$ , we calculated 𝑓1789$  and 𝑓1:;$  subject to different 𝜑's. Figures S3 and S4 demonstrate that 333 

𝑓1789$  and 𝑓1:;$  are independent of 𝜑'. 334 

Estimation of 𝜑' and ATP maintenance 335 

We used the experimental data for growth to estimate 𝜑' and ATPM. We varied 𝜑' and ATPM 336 

and maximized growth. We plotted the maximum growth rate for different values of 𝜑' and 337 
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ATPM (Figure S5). At different copy numbers, changing ATPM had a uniform impact since 338 

ATPM was independent of the amount of heterologous protein production. However, the 339 

impact of 𝜑' was accentuated by increasing the copy number as more heterologous proteins 340 

were produced. That is, the growth reduction at low copy numbers depended on ATPM, and 341 

the slope of the reduction with increasing the copy number depended on 𝜑'. We then chose 342 

ATPM and 𝜑' for which we obtained the best fit to the experimental data. 343 

Code Availability 344 

The ecETFL model and the code used to create the models and perform the analyses is available 345 

at https://github.com/EPFL-LCSB/ecetfl. 346 
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Table 1: Properties of ecETFL 355 

Growth upper bound (ū) 1.5 h-1 
Number of bins (N) 128 
Resolution (ū/N) 0.0117 h-1 
Number of species  

  -    Metabolites 1809 
  -    mRNAs 1432 
  -    Peptides 1432 
  -    rRNAs 3 
Number of enzymes  

  -    Metabolic enzymes 1128 
  -    RNA polymerases 2 
  -    Ribosomes 1 

Number of reactions  

  -    Metabolic 1543 
  -    Transport 733 
  -    Exchange flux 330 
  -    Transcription 1435 
  -    Translation 1432 
  -    Complexation 1131 
  -    Degradation 2566 
Thermodynamic data  
  -    Number of metabolites ΔG ‘°f 1737 
  -    Number of reactions ΔG’ °r 1787 

356 
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Table 2: the predicted and experimental growth rate, oxygen consumption, and acetate secretion in wild-type E. coli (copy 357 
number = 0) and recombinant E. coli containing pOri2 (copy number = 410). Glucose uptake was constrained by an upper 358 
bound of 5.2 and 6.3 mmol gDW-1 h-1, the values measured in the wild-type and recombinant cell, respectively. The 359 
experimental data were obtained from Wang et al. (6). Abbreviations: Ex.: Experimental measurement; Mod.: Model 360 
prediction. 361 

Copy 
number 

Glucose uptake 
(mmol gDW-1 h-1) 

Growth  
(h-1) 

Acetate secretion 
(mmol gDW-1 h-1) 

Oxygen uptake 
(mmol gDW-1 h-1) 

Mod. Ex. Mod. Ex. Mod. Ex. 

0 5.2 0.44 0.46 0 0 11 11 

410 6.3 0.29 0.29 5.5 4.4 13.2 12.2 

 362 
  363 
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a 

 

b 

 
Figure 1: Benchmarking ecETFL against experimental data. a the simulation of maximum growth rate (h-1) at different 364 
glucose uptake rates (mmol gDW-1 h-1). ecETFL captured that the growth rate plateaued at high glucose uptakes due to the 365 
limited enzymatic capacities. The model predicted a maximum growth rate of 0.67 h-1, close to the experimental maximum 366 
growth rate of 0.61 h-1. b the simulation of overflow metabolism in E. coli. ecETFL predicted a shift in metabolic fluxes of 367 
acetate secretion, glucose uptake, and oxygen consumption after a critical growth rate of 0.58 h-1. The model predictions were 368 
in qualitative agreement with the experimental data, which showed the oxygen consumption decrease and the emergence of 369 
acetate production after the growth rate of 0.42 h-1. The experimental data were taken from Vemuri et al. (17). 370 
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a 

 

b 

 
Figure 2: Relative growth and product formation as a function of pMB1 copy number. a The presence of the plasmid 372 
exerts a metabolic burden on the host due to extra resource requirements and energetic inefficiency. The metabolic burden 373 
manifests as decreased growth rate. Increasing the plasmid copy number adversely affects biomass yield. b The amount of 374 
heterologous protein produced from the plasmid, i.e., the product, increases with increasing the copy number. However, the 375 
increase in the product level is nonlinear and reaches a maximum due to the saturation of expression enzymes. 376 
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 378 
Figure 3: Trade-off between biomass and product yields. We set the objective function as a weighted sum of growth rate 379 
and heterologous protein concentration. We changed the objectives’ weights subject to different plasmid copy numbers to 380 
explore the Pareto front. An increase in the copy number raised the minimum product yield but at the expense of reducing the 381 
biomass yield. On the other hand, an increase in the copy number decreased the maximum product yield due to allocating 382 
more resources to plasmid-related RNA and DNA. The most optimal solutions were obtained when the copy number was low, 383 
but the product production was motivated by the objective function.  384 
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  386 
Figure 4: Normalized comparison of expression of different enzymes in wild-type and recombinant E. coli. For the 387 
normalized expression scores close to 0, the expression of the enzymes was not affected by the plasmid. The positive and 388 
negative scores reflect up- and downregulation after inserting the plasmid. While most of the enzymes were unaffected by the 389 
plasmid, a total number of 34 and 29 enzymes were highly up- and down-regulated, respectively. We assumed an enzyme 390 
expression is highly up- or downregulated, respectively, if the normalized expression score was more than 0.5 or less than -391 
0.5. Comparing the turnover number (kcat) and molecular weight of the enzymes with significant changes in their expression, 392 
we showed that the enzymes upregulated in recombinant E. coli are more mass efficient than the enzymes downregulated.  393 
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 394 

a 

 

b 

 
 395 

Figure 5: Schematic representation of the cellular composition. a wild-type cell and b recombinant cell. We assumed that 396 
apart from the plasmid DNA share, which increases due to the plasmid integration, the composition of the recombinant cell 397 
was the same as the wild-type cell. 𝜑 is a parameter representing the share of the total protein allocated to metabolism and 398 
expression. In the recombinant cell, the fractions of the cellular weight allocated to RNA and protein also include the 399 
heterologous RNAs and proteins, respectively.  𝜑! represents the fraction of the heterologous proteins taking their share from 400 
the metabolism- and expression-related enzymes.  401 
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