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Abstract

The production of recombinant proteins in a host using synthetic constructs such as plasmids
comes at the cost of detrimental effects such as reduced growth, energetic inefficiencies, and
other stress responses, collectively known as metabolic stress. Increasing the number of copies
of the foreign gene increases the metabolic load but increases the expression of the foreign
protein. Thus, there is a trade-off between biomass and product yield in response to changes in
heterologous gene copy number. This work proposes a computational method, rETFL
(recombinant Expression and Thermodynamic Flux), for analyzing and predicting the
responses of recombinant organisms to the introduction of synthetic constructs. rETFL is an
extension to the ETFL formulations designed to reconstruct models of metabolism and
expression (ME-models). We have illustrated the capabilities of the method in four studies to
(i) capture the growth reduction in plasmid-containing E. coli and recombinant protein
production; (ii) explore the trade-off between biomass and product yield as plasmid copy
number is varied; (iii) predict the emergence of overflow metabolism in recombinant E. coli in
agreement with experimental data; and (iv) investigate the individual pathways and enzymes
affected by the presence of the plasmid. We anticipate that rETFL will serve as a
comprehensive platform for integrating available omics data for recombinant organisms and
making context-specific predictions that can help optimize recombinant expression systems for

biopharmaceutical production and gene therapy.
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Introduction

Recombinant protein expression involves the transfer of heterologous genes into a
prokaryotic or eukaryotic host organism. The foreign genes are delivered to the host using an
engineered DNA molecule called a vector. There are several types of vectors, but the plasmid
is the most common. A plasmid can carry functional genes and provide its host with selective
advantages, such as antibiotic resistance. The presence of the plasmid in the host can also
trigger metabolic stress responses such as a reduction in growth (1, 2), an increase in
maintenance energy (3, 4), and the emergence of overflow metabolism (5, 6). Such stress
responses are referred to as plasmid metabolic load. The plasmid load depends on several
factors, including copy number, number of genes on the plasmid, and strength of the promoters
on the plasmid.

Most of these approaches have focused on simulating the plasmid load in E. coli as the
most widely used host for the expression of recombinant proteins. Peretti and Bailey
reconstructed a whole-cell kinetic model that included key cellular processes such as DNA
replication, mRNA transcription, and protein translation (7). However, as the kinetic
parameters and mechanisms for many biological reactions are unknown, they greatly simplified
the cellular processes. da Silva and Bailey developed a theoretical model to calculate the
plasmid effect on biomass yield when the additional energy and material requirements caused
by the plasmid are known (8). Bentley et al. developed a structured kinetic model to investigate
the relationship between growth rate and the level of heterologous protein expression (9). To
this end, they included separate reactions for plasmid-related DNA, mRNA, and protein
synthesis in the model. Ozkan et al. used constraint-based optimization to capture the plasmid
load (10). They used a stoichiometric model to represent cell metabolism under the steady-
state assumption, where a single reaction was added to represent the plasmid-related energy
and material requirements. Experimental fluxomic data were used to constrain the fluxes in the
central metabolism, and an optimization problem was solved to find the other fluxes. In another
study, Ow et al. integrated a lumped reaction that accounts for plasmid requirements into a
genome-scale metabolic model (GEM) (4). They explored different objective functions to find
the cellular objective that was most consistent with the experimental data. Recently, Zeng and
Yang integrated empirical constraints into the E. coli GEM to account for foreign protein
expression and plasmid maintenance requirements (11).

Metabolism and Expression models (ME-models) are constraint-based models that

simulate cellular metabolism and expression (12-14). Reconstruction of an ME model starts
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with a GEM representing metabolism, and additional constraints are incorporated to account
for expression. Expression and Thermodynamics-enabled Flux (ETFL) is a mixed-integer
linear formulation for the reconstruction of ME models (14-16). The previous formulations of
ME-models were nonlinear and required special quad-precision solvers (12, 13). In contrast,
ETFL is a linear formulation that can be solved with standard double-precision solvers. dETFL
is an extended version of ETFL that considers temporal dynamics of extracellular metabolite
concentrations and enzyme abundances (15). Recently, we have extended the ETFL
formulation to the study of eukaryotic organisms. To this end, we enabled the implementation
of multiple RNA polymerases and ribosomes and accounted for the compartmentalized
expression systems in eukaryotes. We also improved the parameterization of the ETFL models
by correcting for growth-associated maintenance (GAM) and allocating a limited proteome
fraction to metabolic and expression-related enzymes. We used the extended ETFL formulation
to reconstruct the first ME model for Saccharomyces cerevisiae, yETFL (16).

This work presents an updated ETFL model for E. coli, ecETFL, by improving the
model parameters, including GAM and resource allocation. We also extend the ETFL
formulation to allow the simulation of recombinant cells. The proposed formulation, called
rETFL, allows the user to include new genes in the model and to integrate new constraints for
the allocation of expression resources to plasmid-related macromolecules. We used rETFL to
simulate the plasmid load for different plasmids in E. coli. The explicit representation of
individual enzymes in rETFL allows the investigation of enzymes that are more affected by
the presence of the plasmid. Furthermore, rETFL allows the mechanistic investigation of

different transcriptomic and proteomic perturbations in recombinant cells.
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88 Results and Discussion

89  Updated E. coli ETFL model

90 In addition to the 1366 metabolic genes from the FBA model, an updated E. coli ETFL
91  model, ecETFL, has 69 genes encoding RNA polymerase, ribosomal RNAs, and ribosomal
92 peptides. Since the transcription elongation rate is faster for stable RNA (sRNA) in E. coli, we
93  implemented two RNA polymerases (Methods): (i) the faster RNA polymerase with an
94  elongation rate of 85 nucleotides/second, which is associated with rRNAs and tRNAs; and (ii)
95 the slower RNA polymerase with an elongation rate of 45 nucleotides/second, which is
96  associated with the other genes. One ribosome is implemented to translate all mRNAs into
97  proteins. The model includes 1128 metabolic enzymes catalyzing 2007 reactions (Table 1).
98 As a benchmark for ecETFL, we simulated the growth rate at different glucose uptake
99  rates (Figure 1A). Initially, growth increased linearly with increasing the uptake rate. In this
100  part, growth is limited by substrate availability, and both the FBA and ecETFL models were
101  able to capture the experimental data. However, as the cellular expression capacity is limited,
102 the growth reached a plateau that could not be further increased by increasing the uptake. While
103 FBA failed to capture the shift from substrate-limited to protein-limited growth, ecETFL
104  predicted that growth would reach a maximum in accordance with the experimental data
105  (Figure 1a). The observed maximum growth rate of £. coli in the minimal medium was 0.61 h-
106 ' (17), whereas ecETFL predicted a maximum growth rate of 0.67 h™!. The agreement between
107  the predicted and measured maximum growth rate shows that the updated ecETFL model
108  improves upon the previous ME-models for E. coli (12, 14), as these models captured the
109  maximum growth rate with a significant deviation from the experimental observations.
110 Overflow metabolism is a shift from pure respiration to a combination of respiration
111  and fermentation observed in fast-growing cells (18-20). This shift results in seemingly
112 suboptimal secretion of fermentation byproducts, which could otherwise be incorporated into
113 the biomass. One hypothesis is that overflow metabolism occurs due to the limited capacity of
114  the enzymes involved in respiration and redox balance (21-23). As the ETFL formulation
115  considers the limited enzymatic capacity through the catalytic constraints, we investigated the
116  ability of ecETFL to capture overflow metabolism in E. coli as a further test of the quality of
117  the model (Figure 1b). At growth rates above a critical growth rate, which is strain specific but
118  estimated to be around 0.42 h'!, E. coli cells secrete acetate while consuming oxygen, known
119  as overflow metabolism in E. coli. ecETFL predicted the shift in metabolic fluxes at high
120 growth rates, albeit delayed with respect to the experimental data. The model captured the
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121 decrease in acetate secretion and oxygen consumption at growth rates above 0.58 h!. The same
122 delay in the predicted onset of overflow metabolism was observed in Saccharomyces cerevisiae
123 using yETFL (16). In that paper, we discussed that improvements such as the inclusion of
124 regulatory constraints or the integration of more growth-dependent parameters could further

125  reconcile model predictions and experimental data (16).

126  Quantifying the allocation of resources to the expression of heterologous genes

127 rETFL has three additional parameters that quantify the allocation of resources to
128  heterologous gene expression. The first two parameters, wécp and w! ;, are phenomenological
129  parameters that determine the basal level of RNA polymerases and ribosomes, respectively,

130  allocated for the heterologous gene / expression. a)écp characterizes the availability of the

131 promoter of the gene / and the affinity of RNA polymerase to this promoter. Similarly, w!
132 represents the affinity of ribosomes to the mRNA /. The third parameter, ¢, represents the
133 fraction of the heterologous proteins taking their share from the metabolism- and expression-
134 related (ME-) enzymes (see Methods for more details). Since ME enzymes synthesize biomass
135  building blocks and generate energy for various cellular processes, allocating a higher
136  proportion of the ME enzyme fraction to the heterologous proteins represents a higher
137  metabolic burden (24).

138 We used data on the fraction of RNA polymerase and ribosome assigned to the plasmid

139 (7)) to estimate a)écp and i, at different copy numbers for plasmid pMBI. Table SI
140  summarizes the estimated values of wécp and wl ;. It should be noted that the values of wécp

141 and w!,; might vary subject to different promoters and ribosomal binding sites. We observed
142 that the specific activity of RNA polymerase and ribosome decreased with increasing copy
143 number. We fitted the model to experimental data (7) to estimate ¢;,. For plasmid pMB1, we
144  obtained a proper fit to the data with ¢, = 0.2, implying that 20% of the heterologous proteins
145  recruit the resources allocated to the ME-enzymes.

146 In addition to the additional requirements for the expression of heterologous genes,
147  plasmid burden manifests itself in increased energy requirements for maintenance (3, 4). As a
148  result, plasmid-containing cells are less energetically efficient than wild-type cells. This
149  increase in global maintenance energy is attributed to plasmid maintenance. ATP maintenance
150 (ATPM) is an ATP hydrolysis reaction added to the model to account for global energy
151  maintenance. The level of ATPM is determined by fitting model predictions to experimental
152 growth (25). For E. coli, different levels of ATPM have been reported for different strains of
153  E. coli and different versions of GEMs (25, 26). For example, the ATPM is set to 3.15 mmol
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154  ¢gDW-!h'!iniJO1366 (26) and 8.39 in iAF1260 (25) for wild-type E. coli. To account for the
155  reduced energetic efficiency caused by the introduction of the plasmid, we estimated the ATPM
156  to be 15 mmol gDW-! h'! by fitting the model to the experimental growth in recombinant E.
157  coli containing pMBI1 (7).

158 The plasmid impact on growth rate

159 We used ecETFL and the fitted parameters to simulate the maximal growth of
160  recombinant E. coli containing different copy numbers of pMB1 (Figure 2a). At low copy
161  numbers, where a smaller fraction of resources was allocated to heterologous synthesis, the
162  metabolic load was dominated by energy requirements for plasmid maintenance. As copy
163  numbers increased, the fraction of resources allocated to plasmids also increased, and the
164  metabolic burden was mainly due to the additional requirements for the synthesis of plasmid-
165 related macromolecules. The recombinant ecETFL also predicted the relative heterologous
166  protein production according to the experimental data (Figure 2b). Heterologous protein
167  production increased non-linearly with increasing copy number and reached a maximum where

168  no more resources could be allocated to the plasmids.
169  The impact of plasmid copy number on biomass and product yields

170 The heterologous protein may benefit the host by providing a novel metabolic function
171  or enhancing an existing capacity. Applying evolutionary pressure can translate such benefits
172 into selective advantages. For example, appropriate evolutionary pressure stimulates higher
173 heterologous protein production in the host. For example, if the product protein confers
174  antibiotic resistance, adding antibiotics to the medium can further stimulate product
175  production. We simulated the stimulated product production using a multi-objective problem
176  with two objective functions, i.e., maximizing growth and maximizing heterologous protein

177  production:

product
max (Wgrowth,u + WproductMWhvh )

178 with Wgrowih and Wproquce denoting arbitrary weights assigned to the objectives such that

179 Wgrowth + Wproduet = 1, i is the specific growth rate, and MW, and v,? roduct represent the

180  molecular weight and the production rate of the heterologous protein, respectively. We
181  explored the trade-off between the two objectives by assigning different weights (Figure 3). As
182 expected, for Wgrowin = 1, the minimum product yield increased with increasing the copy
183  number. If the product was not beneficial to the host, increasing the copy number increased the

184  product yield, but at the expense of decreasing the biomass yield.
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185 On the other hand, if product production was the sole cellular objective, i.e., Wproduct =

186 1, increasing the copy number reduced the maximum product yield due to the additional
187  requirements for plasmid-related RNA and DNA synthesis. Indeed, when the objective
188  function stimulated the product production at low copy numbers, higher product yields were
189  achieved than when the production was enforced by increasing the copy number. Our results
190  suggest that the stimulated product production, e.g., by exerting proper selective pressure, is
191  more efficient than increasing the copy number because higher product and biomass yields are
192 achieved.

193 The impact of plasmid on consumption and secretion fluxes

194 For this study, we used rETFL to simulate the metabolic burden of plasmid pOri2 and
195 its effect on acetate secretion and oxygen consumption. Like pMBI1, pOri2 genes are
196  transcribed under the lac promoter. Therefore, we used the same values for RNA polymerase
197  and ribosome affinities for the plasmid genes, i.e., a)écp and w!,;, as was used for pMB1 (Table
198  S1). We varied the fraction of resources allocated to the plasmid-related proteins, ¢j, and the
199  ATPM so that the model fits the experimental growth of E. coli containing pOri2 (6). The
200  estimated values of ¢, and the ATPM were, respectively, 30% and 30 mmol gDW-! h'l.
201  Interestingly, the estimated value of ATPM obtained was close to that obtained in Zeng and
202  Yang using a phenomenological model (11). The ATPM found for pOri2 was significantly
203 higher than pMBI1 (15 mmol gDW-! h'!), indicating that pOri2 is energetically less efficient.
204 We then used ecETFL to compare the model predictions for oxygen consumption and
205  acetate secretion with the experimental data in the wild-type and plasmid-containing organisms
206  (Table 2). The model captured the impact of the plasmid on the exchange fluxes in agreement
207  with the experimental observations. Notably, the model predicted acetate production in the
208  plasmid-containing E. coli, whereas no acetate was produced in the wild-type organism.

209  Proteome comparison in the wild-type and recombinant organisms

210 By explicitly simulating the expression of individual proteins, we were able to use
211  rETFL to evaluate the differences in the proteomes of wild-type and recombinant E. coli. In
212 the recombinant organism, part of the proteome is allocated to the heterologous proteins,
213 limiting the resources available to the native proteins. We compared the levels of several
214  enzymes in wild-type and recombinant E. coli. We calculated a normalized expression score

215 (s;) for each protein according to this formula:
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(P -E")

216  where E]WT and EjRB are the concentrations of enzyme j in the wild-type and recombinant
217  organisms, respectively. If the enzyme j is upregulated due to the presence of the plasmid, s;
218 is positive, and if the enzyme j is downregulated, s; is negative (Figure 4). Out of the 1131
219  enzymes included in the model, 778 enzyme concentrations remained almost unaffected by the
220  presence of plasmid, i.e., —0.1 <'s; < 0.1. Due to the allocation of cellular resources to the
221  heterologous proteins, most of the remaining enzymes were slightly downregulated, including
222 251 enzymes with —0.3 <'s; < —0.1. We found that 34 enzymes were highly upregulated, i.c.,
223 0.5 <sj, and 29 were highly downregulated, i.e., s; < —0.5.

: . . K
224 The maximum catalytic capacity of an enzyme can be represented as Mi;tj pj, where p;
. . k .
225 is the mass concentration. As a result, for larger values of ﬁ, the cell requires smaller
j
226  amounts of enzymes to achieve the same catalytic capacity. We calculated the average ;ij\‘; to

]
227  be 3.68 mol g'! min! for the 34 enzymes upregulated in the recombinant E. coli, significantly

Kcat

228  higher than 0.22 mol g! min!, the average for the 29 downregulated enzymes. This

229  implies that the recombinant organism synthesizes enzymes with higher mass efficiencies
230  under more limited resource availability at the expense of switching to a suboptimal

231 metabolism.
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232  Conclusion

233 In this work, we presented rETFL, an extension of the ETFL formulation and code to
234 simulate the expression of heterologous genes in recombinant organisms. To this end, we
235  extended the ETFL formulation to account for the allocation of cellular resources and
236  expression machinery to plasmid-related activities. The new formulation allows us to account
237  for the energetic burden imposed by the plasmid by modifying ATP maintenance. We
238  demonstrated that rETFL could capture the plasmid burden and heterologous protein
239  production in recombinant E. coli. We also simulated the change in reaction fluxes due to the
240  presence of the plasmid in agreement with the experimental observations without directly
241  constraining the fluxes as in the previous constraint-based formulations of the plasmid burden
242 (4, 10).

243 rETFL allows the integration of different omics data, including transcriptomics,
244  proteomics, and metabolomics. Since the ETFL models can be readily developed for both
245  prokaryotic and eukaryotic organisms, rETFL can be used to simulate recombinant protein
246  expression in different hosts. Furthermore, like the original ETFL formulation, rETFL can be
247  extended to dynamic settings to capture time-dependent evolutions (15). The mechanistic
248  representation of the expression of individual enzymes in rETFL allows us to reveal the specific
249  pathways and enzymes affected by plasmids. rETFL is available as open-source code for
250  generating and analyzing models of recombinant organisms. We envision that rETFL can be a
251  versatile tool to simulate recombinant organisms and propose metabolic and protein
252  engineering strategies to design optimal hosts for biotechnological applications. In addition,
253  rETFL can simulate and support other types of genetic interventions, such as gene therapies in

254  humans and animals.

10
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255  Methods

256  Data Collection

257  The most recent version of iJO1366 was obtained from the BiGG database (27). The essential
258  metabolites to produce 1 gram of biomass were taken from the growth reaction and divided
259 into different types, including amino acids, nucleoside triphosphates, deoxynucleoside
260 triphosphates, lipids, peptidoglycans, lipopolysaccharides, ions, and cofactors. The percentage
261  of different macromolecules in the biomass was then calculated. Sequences of peptides and
262  mRNAs were obtained from the KEGG database (28). The functions from GECKO (29) were
263  used to obtain the turnover numbers (kcas). The composition and stoichiometry of the enzymes

264  were obtained from a previous ME-model for E. coli (12).

265 Updating the E. coli ETFL model

266  The E. coli ETFL model presented here, i.e., ecETFL, is improved in three main aspects. First,
267 we incorporated an additional constraint to determine the maximum proteome fraction
268  allocated to the ME-enzymes, as previously done for Saccharomyces cerevisiae (16). The
269 latest whole-cell proteomics data for E. coli was obtained from PaxDB to calculate the fraction
270  of the ME-enzymes (30). Second, we modified the GAM to avoid double counting the energy
271  requirements for peptide synthesis. According to the biomass reaction in 1JO1366, ~5.2 mmol
272  of amino acids are required to produce 1 gram of biomass. We know 3 mmol of ATP are
273  consumed to attach an amino acid to a peptide chain, including 1 mmol ATP for the tRNA
274  charging and 2 mmol ATP for the amino acid assembly (14, 16). In total, the energetic
275  requirement for peptide synthesis is 3 X 5.2 = 15.6 mmol gDW-! of ATP, which was removed
276  from the GAM. Third, we integrated more enzymes into the model such that the number of
277  enzymes in ecETFL is 1131, compared to 562 enzymes in the previous E. coli ETFL model.

278  Recently, we extended the ETFL formulation to account for multiple RNA polymerases and
279  ribosomes (16). Like other bacteria, E. coli has only one type of RNA polymerase. However,
280 it is observed that its RNA polymerase transcribes the sSRNAs much faster than the mRNAs
281  (31). We used the extended ETFL formulation to define two types of RNA polymerases in
282  ecETFL with identical compositions but different catalytic efficiencies. The faster RNA

283  polymerase was associated with the SRNAs, and the slower one with the mRNAs.

11
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284  Extending the formulation of ETFL

285  Expression

286  The original ETFL formulation simulates cell behavior under the optimality assumption where
287  growth is maximized. This means that the ETFL models, like other similar models, could only
288  predict the synthesis of proteins that contribute to the growth of the organism. Such models do
289  not predict the synthesis of proteins that are not beneficial for growth because in this way, a
290  higher fraction of the cellular protein content could be allocated to proteins with a positive
291  contribution to growth. However, the cell could produce gratuitous proteins that have no
292  function in the cell (32). Similarly, heterologous proteins transferred into a host often do not
293  have a positive impact on cellular activity (33). To allow the ETFL formulation to account for

294  the expression of nonfunctional proteins, we incorporated the following two constraints:

nt

'y —— G, < RNAP, (1)
LRNAP
rllt
Wiy EMI < Rib, 2)
1

295  Equations 1 and 2 impose a basal level for the RNA polymerases (RNAP,) and ribosomes (Rib;)
296  allocated to the template /. This basal level is defined based on the copy number of the gene /
297  (G;) or the mRNA transcript / (M;), the footprint of RNA polymerase (Lgrnap) Or ribosome
298  (Lgjp) in nucleotides, the length of the template in nucleotides (L}'), and the affinity of the
299  RNA polymerase or ribosome for the template / reflected in wécp and i, respectively. The
300  constraints in Equations 1 and 2 can be defined for both native and heterologous genes.
301 However, we applied Equations 1 and 2 only to the heterologous genes, as these genes are
302  present in the host in high copy numbers due to the high copy number of plasmids. We assumed
303  the basal level of RNA polymerases, and hence ribosomes, allocated to the native genes is
304 negligible, as these genes are usually present in a single copy.
305  Allocation
306  In ETFL models, we divide the native proteins into two groups: (i) the ME-enzymes and (ii)
307  the other proteins. The latter are not explicitly modeled in ETFL and are represented by a
308  modeling protein called dummy protein. Then, we add a constraint of the following form to
309  determine the fraction of the cellular protein content that can be allocated to the dummy protein
310 (16):

MWE; = ¢ - P™ 3)

j#dummy protein

12
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311 where MW; and E; are the molecular weight and molar concentration of jth protein,

312 respectively. P™ is the fraction of the cell weight that is protein, and ¢ is the fraction of total
313 protein allocated to the ME-enzymes. We used proteomics data to calculate this fraction as

314 ¢ =048g g;rlotein. Since the total protein content P™ is fixed, Equation 3 also defines the

315  share of dummy protein to be (1 — ¢) - P™.

316 A part of the protein content is allocated to the heterologous proteins in a recombinant cell.
317  However, since whole-cell proteomics data is not readily available for recombinant cells, it is
318  difficult to determine the influence of recombinant proteins on ¢. In the absence of proteomics

319  data, we modified Equation 3 as follows:

keHeterologous j#dummy protein, j¢Heterologous (3)

320 ¢y is a parameter representing the fraction of the heterologous proteins that take their share

321  from the ME-enzymes (Figure 5).
322 Estimation of w{cp and w{py
323  The parameters a)écp and w!, represent the RNA polymerase and ribosome affinity for the
324  gene and mRNA template /, respectively. Table S2 summarizes the fraction of RNA
325  polymerases (fanap) and ribosomes (fi;,) allocated to plasmid-related expression. These
326  fractions were calculated based on the available kinetic information. We varied a)écp and w!,
327  and solved the rETFL problem to calculate fiyap and fi;, subject to different plasmid copy
328  numbers. Figure S1 shows that fiiyp only depends on wj.,, while Figure S2 shows that fif;,
329  is impacted by variations in both w{cp and w},;. For each plasmid copy number, we selected
330 wécp and w!,; such that the following expression is minimized:

|fP§NAP - leiEI(j&nPl + wlfféib - ri'ilt()in
331  where fiinap and fiyy, are calculated by the rETFL problem, and éﬁi\np and fé'ilf)in are calculated
332 using the kinetic parameters (Table S2). To check if the variation in ¢, impacts fiyap and
333 fi.,, we calculated fiiyap and fi;, subject to different ¢,s. Figures S3 and S4 demonstrate that
334 finap and fu;, are independent of ¢@,.
335  Estimation of ¢ and ATP maintenance

336 We used the experimental data for growth to estimate ¢, and ATPM. We varied ¢, and ATPM

337  and maximized growth. We plotted the maximum growth rate for different values of ¢, and
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338  ATPM (Figure S5). At different copy numbers, changing ATPM had a uniform impact since
339  ATPM was independent of the amount of heterologous protein production. However, the
340  impact of ¢, was accentuated by increasing the copy number as more heterologous proteins
341  were produced. That is, the growth reduction at low copy numbers depended on ATPM, and
342  the slope of the reduction with increasing the copy number depended on ¢,. We then chose

343  ATPM and ¢}, for which we obtained the best fit to the experimental data.

344 Code Availability

345  The ecETFL model and the code used to create the models and perform the analyses is available

346  at https://github.com/EPFL-LCSB/ecetfl.
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355 Table 1: Properties of ecETFL

Growth upper bound (0) 1.5 h'
Number of bins (N) 128
Resolution (G/N) 0.0117 h't
Number of species
- Metabolites 1809
- mRNAs 1432
- Peptides 1432
- rRNAs 3
Number of enzymes
- Metabolic enzymes 1128
- RNA polymerases 2
- Ribosomes 1

Number of reactions

- Metabolic 1543
- Transport 733
- Exchange flux 330
- Transcription 1435
- Translation 1432
- Complexation 1131
- Degradation 2566
Thermodynamic data
- Number of metabolites AG 1737
- Number of reactions AG” * 1787

356
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357 Table 2: the predicted and experimental growth rate, oxygen consumption, and acetate secretion in wild-type E. coli (copy
358 number = 0) and recombinant E. coli containing pOri2 (copy number = 410). Glucose uptake was constrained by an upper
359 bound of 5.2 and 6.3 mmol gDW-! h'!, the values measured in the wild-type and recombinant cell, respectively. The

360 experimental data were obtained from Wang et al. (6). Abbreviations: Ex.: Experimental measurement; Mod.: Model

361 prediction.

Growth Acetate secretion | Oxygen uptake
(h1) (mmol gDW! h!) | (mmol gDW! h?)
Copy Glucose uptake
number | (mmol gDW?h?)
Mod. Ex. Mod. Ex. Mod. Ex.
0 5.2 0.44 0.46 0 0 11 11
410 6.3 0.29 0.29 5.5 4.4 13.2 12.2
362
363
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Figure 1: Benchmarking ecETFL against experimental data. a the simulation of maximum growth rate (h!) at different
glucose uptake rates (mmol gDW-! h'!). ecETFL captured that the growth rate plateaued at high glucose uptakes due to the
limited enzymatic capacities. The model predicted a maximum growth rate of 0.67 h'!, close to the experimental maximum
growth rate of 0.61 h''. b the simulation of overflow metabolism in E. coli. ecETFL predicted a shift in metabolic fluxes of
acetate secretion, glucose uptake, and oxygen consumption after a critical growth rate of 0.58 h'!. The model predictions were
in qualitative agreement with the experimental data, which showed the oxygen consumption decrease and the emergence of
acetate production after the growth rate of 0.42 h'!. The experimental data were taken from Vemuri et al. (17).
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Figure 2: Relative growth and product formation as a function of pMB1 copy number. a The presence of the plasmid
exerts a metabolic burden on the host due to extra resource requirements and energetic inefficiency. The metabolic burden
manifests as decreased growth rate. Increasing the plasmid copy number adversely affects biomass yield. b The amount of
heterologous protein produced from the plasmid, i.e., the product, increases with increasing the copy number. However, the
increase in the product level is nonlinear and reaches a maximum due to the saturation of expression enzymes.
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%7 Figure 3: Trade-off between biomass and product yields. We set the objective function as a weighted sum of growth rate
380 and heterologous protein concentration. We changed the objectives’ weights subject to different plasmid copy numbers to
381 explore the Pareto front. An increase in the copy number raised the minimum product yield but at the expense of reducing the
382 biomass yield. On the other hand, an increase in the copy number decreased the maximum product yield due to allocating
383 more resources to plasmid-related RNA and DNA. The most optimal solutions were obtained when the copy number was low,
384 but the product production was motivated by the objective function.
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Figure 4: Normalized comparison of expression of different enzymes in wild-type and recombinant E. coli. For the
normalized expression scores close to 0, the expression of the enzymes was not affected by the plasmid. The positive and
negative scores reflect up- and downregulation after inserting the plasmid. While most of the enzymes were unaftected by the
plasmid, a total number of 34 and 29 enzymes were highly up- and down-regulated, respectively. We assumed an enzyme
expression is highly up- or downregulated, respectively, if the normalized expression score was more than 0.5 or less than -
0.5. Comparing the turnover number (kca)) and molecular weight of the enzymes with significant changes in their expression,
we showed that the enzymes upregulated in recombinant E. coli are more mass efficient than the enzymes downregulated.
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394
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395

396 Figure 5: Schematic representation of the cellular composition. a wild-type cell and b recombinant cell. We assumed that
397 apart from the plasmid DNA share, which increases due to the plasmid integration, the composition of the recombinant cell
398 was the same as the wild-type cell. ¢ is a parameter representing the share of the total protein allocated to metabolism and
399 expression. In the recombinant cell, the fractions of the cellular weight allocated to RNA and protein also include the
400 heterologous RNAs and proteins, respectively. ¢, represents the fraction of the heterologous proteins taking their share from
401  the metabolism- and expression-related enzymes.
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