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ABSTRACT  

 

The tumor microenvironment (TME) and its multifaceted interactions with cancer cells are major targets for 

cancer treatment. Single-cell technologies have brought major insights into the TME, but the resulting 

complexity frequently precludes conclusions on function. Therefore, we combined single-cell RNA 

sequencing and spatial transcriptomic data to explore the relationship between different cancer-associated 

fibroblast (CAF) populations and immune cell exclusion in breast tumors. Our data show for the first time 

the degree of spatial organization of different CAF populations in breast cancer. We found that IL-iCAFs, 

Detox-iCAFs, and IFNγ-iCAFs tended to cluster together, while Wound-myCAFs, TGFβ-myCAFs, and 

ECM-myCAFs formed another group that overlapped with elevated TGF-β signaling. Differential gene 

expression analysis of areas with CD8+ T-cell infiltration/exclusion within the TGF-β signaling-rich zones 

identified elastin microfibrillar interface protein 1 (EMILIN1) as a top modulated gene. EMILIN1, a TGF-β 

inhibitor, was upregulated in IFNγ-iCAFs directly modulating TGFβ immunosuppressive function. 

Histological analysis of 74 breast cancer samples confirmed that high EMILIN-1 expression in the tumor 

margins was related to high CD8+ T-cell infiltration, consistent with our spatial gene expression analysis. 

High EMILIN-1 expression was also associated with better prognosis of patients with breast cancer, 

underscoring its functional significance for the recruitment of cytotoxic T cells into the tumor area. In 

conclusion, our data show that correlating TGF-β signaling to a CAF subpopulation is not enough because 

proteins with TGF-β-modulating activity originating from other CAF subpopulations can alter its activity. 

Therefore, therapeutic targeting should remain focused on biological processes rather than on specific CAF 

subtypes. 
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INTRODUCTION 

 

     Breast cancer (BC) is the second most frequent cause of cancer death in women worldwide1. Molecular 

and histological classifications of BC have significantly improved its clinical management. Today, 

histopathological assessment of needle biopsies for morphological type and histological grade determination 

are complemented by the assessment of estrogen receptor (ER), progesterone receptor (PgR), human 

epidermal growth factor receptor type 2 (HER2) status, and Ki-67 proliferative index2. Therefore, BC are 

classified into three types: (a) hormone receptor (ER and/or PgR)-positive and HER2-negative, (b) HER2-

positive, and (c) hormone receptor- and HER2-negative (triple negative breast cancer, TNBC)2. Based on 

this classification, drug treatment regimens for early invasive BC include endocrine therapy (a) and 

chemotherapy and anti-HER2 agents (b), alone or in combination3. No specific treatment is available for 

TNBC (c), and this represents a tremendous clinical challenge3,4. Indeed, no druggable vulnerability has been 

identified in TNBC cells to date, precluding their direct targeting4,5. 

     A complementary approach to cancer cell targeting is to target the environment in which they reside6 and 

that is called tumor microenvironment (TME). The TME consists of a cellular part (stroma) and a supportive 

extracellular matrix (ECM) with specific physical and chemical properties. The stroma is primarily 

composed of endothelial, immune and fibrotic components. All three have attracted considerable attention 

for novel drug development in solid tumors. Indeed, in some cancers, targeting endothelial and immune cells 

is more effective than killing cancer cells (e.g. melanoma7,8 and hepatocellular9 carcinoma). This 

demonstrates the potential of TME-directed therapies, possibly in combination with molecules against cancer 

cells. Despite these encouraging results, BC (like many other solid tumors) has not really benefited from 

TME targeting yet. Clinical trials produced rather mitigated results. For example, in BC, endothelial cells 

have been mainly targeted with anti-angiogenic drugs (e.g. anti-vascular endothelial growth factor (VEGF) 

antibodies), alone or in combination with chemotherapy10,11. Unfortunately, the survival benefit for patients 

with BC was minimal, and several potential resistance mechanisms were described12. The immune 

component of BC has been mainly targeted using novel monoclonal antibodies against immune checkpoint 

proteins (e.g. programmed cell-death protein 1 (PD-1) and its ligand PD-L1) with the aim of restoring the 

anti-tumor immunity. The immune checkpoint inhibitors (ICI) pembrolizumab (anti-PD-1) and atezolizumab 

(anti-PD-L1) have been clinically tested in patients with metastatic TNBC with heterogeneous results13,14. A 

good clinical response is achieved in a small subpopulation of patients, and no clear biomarker exists to 

predict which patients will respond. Patients with BC characterized by high mutational burden or with 

immunologically inflamed tumors (with high proportion of CD8+ T cells in the tumor center) might respond 

to ICIs15,16. Indeed, ICIs that activate cytotoxic T cells against tumors are now considered an important 

therapeutic tool17,18. Lastly, clinical trials on cancer-associated fibroblasts (CAFs) and the targeting of the 

tumor fibrotic component have not brought any conclusive results in BC, leaving this area unexplored. 

Despite the plethora of experimental data on CAF significance in BC progression19, very few targetable 
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molecules have been identified in CAFs. Additionally, recent data on CAF subpopulations in BC20 raise the 

question of whether specific subtypes should be targeted. 

     However, we believe that successful TME targeting should be process-oriented and not cell-oriented. 

Indeed, immune exclusion and angiogenesis are promoted and regulated by the concerted action of several 

stromal cell types, and therefore disrupting a specific cell population is unlikely to abolish such processes 

entirely. Conversely, it might be more relevant to target the potentially trans-cellular molecular network at 

the heart of a crucial tumor process. However, knowledge on this area is still limited. Particularly, it is 

crucial to understand how different stromal cells molecularly engage to support tumor-promoting programs. 

     Recent advances in spatial OMICS technologies have been a true game changer for characterizing the 

TME and tumor heterogeneity21. They have allowed, for the first time, to link the spatial occurrence of 

different TME cell subtypes and of cancer cells with enhanced proliferative or therapy-resistance features22. 

In the present study, we investigated the spatial distribution of CAF subpopulations in BC and their 

relationship with infiltrating cytotoxic T cells.  

 

MATERIALS AND METHODS 

 

Patient Material 

     Four patients with invasive ductal BC who underwent surgical resection at Gunma University Hospital 

(Gunma, Japan) in 2020-2021 were enrolled for the Visium Spatial Gene Expression experiments (clinical 

data are in Table S1). For immunohistochemical staining (validation study), 75 patients with invasive BC 

who underwent breast-conserving surgery or modified total mastectomy at Gunma University Hospital 

(Gunma, Japan) in 2020-2021 were enrolled (Table S2). Men with BC were not included in the study. None 

of the patients received neoadjuvant treatment. Their median age was 60 years (range, 35-82 years). 

Pathological tumor size, nodal status and lymphovascular invasion were determined using the pathological 

records. The present study was approved by the Gunma University Hospital Institutional Review Board 

(reference no. HS2021-071) and was conducted according to the tenets of the Declaration of Helsinki. All 

patients gave their consent via the opt-out system. 

 

Tissue Optimization 

     Tissue optimization was performed following the 10x Genomics Visium Spatial Tissue Optimization 

Reagents Kits User Guide (CG000238, 10x Genomics) to optimize the permeabilization time for the 

subsequent gene expression profiling. BC tissue cryosections (10 μm-thick) were placed on a Visium Spatial 

Tissue Optimization Slide (10x Genomics). Different permeabilization times were tested with different tissue 

sections on the slide with poly(dT) primers to capture the mRNA. After the permeabilization and the mRNA 

capture steps, reverse transcription followed by addition of fluorescently labeled oligonucleotides to the 

cDNA allowed detecting the resulting cDNAs as fluorescence signals. Hematoxylin and eosin (H-E) staining 

and the fluorescence signals were imaged with a BZ-X800 microscope (Keyence). The optimal 

permeabilization time was the incubation time that gave the strongest fluorescence signal. 
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Gene expression analysis library preparation 

     Spatial gene expression analysis was done with the Visium Spatial Gene Expression Reagent Kit (10x 

Genomics) following the manufacturer’s user guide (CG000239, 10x Genomics). BC tissue cryosections (10 

μm-thick) were placed on a Visium Spatial Gene Expression Slide (10x Genomics). Images of H-E-stained 

sections were taken with a BZ-X800 microscope (Keyence). After tissue permeabilization for the optimal 

time (see above), mRNA capture with the poly(dT) probes in the slide and reverse transcription resulted in 

the construction of the full-length cDNA. After second strand synthesis and denaturation, cDNAs were 

amplified in a Veriti 96-Well Thermal Cycler (Thermo Fisher Scientific) and quantified with a LabChip GX 

Touch HT Nucleic Acid Analyzer (PerkinElmer) to ensure that sufficient cDNA amounts were generated for 

the library construction. Enzymatic fragmentation and size selection with the SPRIselect reagent (Beckman 

Coulter) were used to optimize the cDNA fragment size for sequencing. Then, sample index PCR allowed 

preparing sequence-ready libraries. The final library quantification was done with LabChip GX. 

 

Sequencing 

     The MGIEasy Universal Library Conversion Kit (MGI Tech) was used to convert the libraries to 

DNBSEQ-compatible libraries. Sequencing was done by DNBSEQ-G400 (MGI Tech) with a DNBSEQ-

G400RS High-throughput Sequencing Set (App-A FCL PE100) following the manufacturer’s instructions. 

The resulting read lengths were as follows: Read1- 28 bp and Read2 - 100bp. 

 

Bioinformatics 

     The raw fastq files were processed with the SpaceRanger software 1.0 (10x Genomics) using the human 

genome reference set GRCh38-3.0.0 and default parameters. Data obtained from our four BC samples were 

complemented with published data23 retrieved from GEO (reference GSE176078). For our four samples, 

tissue areas were defined using the Seurat clustering default algorithm (functions FindNeighbors and 

FindClusters). The cluster number was adjusted to the maximum value where distinct, cluster-specific gene 

expression patterns were detected with the Seurat differential search tool (function FindAllMarkers). These 

tissue areas were named by referring to the original areas defined by a pathologist. For the publicly available 

datasets23, the original area definitions were used. Of note, these tumor areas played no role in the analysis, 

and they were defined only for reference and descriptive purposes. 

     The gene spatial expression analysis mainly relied on our library BulkSignalR24 and project-specific R 

scripts. Count matrices were filtered for non-expressed genes by imposing a minimum read count of 1 in at 

least 1% of the Visium spots. Subsequently, normalization was achieved by total count. Cell population-

specific gene signatures were retrieved from sequence data for BC general cell populations23 and for CAFs25. 

In all cases, the top 20 genes reported for each population were used. The spatial abundance of each cell 

population was estimated by applying BisqueRNA26 to these gene signatures due to the bulk nature of 

Visium spatial data. A first scoring of cycling cancer cells was obtained using BisqueRNA scores for the 

Cycling population23. An alternative score was provided by scoring a gene signature available from Seurat 
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(cc.genes.updated.2019$s.genes and cc.genes.updated.2019$g2m.genes). In this case, scoring was done 

using the BulkSignalR function scoreSignatures. The various plots reporting the localization of cell types or 

cycling cells were generated using BulkSignalR standard functions. 

     Several biological processes were scored using fast Gene Set Enrichment Analysis (fGSEA)27 spatial 

transcriptomic features. TGF-β signaling was scored with the BulkSignalR scoreSignatures function to 

generate dendrograms to relate this process to CAF subpopulations. TGF-β signaling genes were obtained 

from MSSigDB (c5.bp.v7.0.symbols.gmt.txt, 

GO_TRANSFORMING_GROWTH_FACTOR_BETA_RECEPTOR_SIGNALING_PATHWAY). Spatial 

co-localization between cell populations or between TGF-β and cell populations was determined using a 

Pearson correlation-based distance matrix (distance = 1 – correlation). Correlations within one sample were 

computed over the whole set of spots. 

     The differential gene expression analysis to compare CD8+ T cell-rich versus -poor areas with the top 

TGF-β signaling tumor areas was performed with edgeR (PMID: 22287627) and the following parameters: 

maximum false discovery rate of 5%, minimum fold-change of 1.5, and normalized read count >1 in at least 

25% of spots. For one sample (tumor 114223F), this last threshold was decreased to 20%. 

 

Immunohistochemistry  

     Paraffin-embedded BC specimens (n=75; 10 luminal A, 10 luminal B, 20 luminal HER2, 15 HER2, and 

20 TNBC) were cut into 4 µm-thick sections and mounted on glass slides. All sections were incubated at 

60ºC for 60�min, deparaffinized in xylene, rehydrated, and incubated with fresh 0.3% hydrogen peroxide in 

100% methanol at room temperature for 30�min to block endogenous peroxidase activity. After rehydration 

through a graded series of ethanol solutions, antigen retrieval was performed using an Immunosaver (Nishin 

EM, Tokyo, Japan) at 98º C-100°C for 30�min. Sections were passively cooled to room temperature and 

then incubated in Protein Block Serum-Free Reagent (Agilent (Dako), Santa Clara, CA, USA) for 30 min. 

This was followed by incubation with an anti-EMILIN-1 rabbit polyclonal antibody (x400, HPA002822; 

Sigma Aldrich, Saint Louis, MO, USA) in Dako REAL Antibody Diluent at 4°C for 24 h. According to the 

manufacturer's instructions, EMILIN-1 staining was visualized as a red color using the Histofine Simple 

Stain AP (Multi) Kit (Nichirei, Tokyo, Japan) and the FastRed II reagent (Nichirei, Tokyo, Japan). Then, 

sections were boiled in a microwave oven for 10 min to inactivate the antibodies and enzyme activity. Next, 

they were incubated with an anti-CD8 rabbit polyclonal antibody (x500, ab4055; Abcam, Cambridge, UK) in 

Dako REAL Antibody Diluent at 4°C for 24 h. CD8 staining was visualized as a brown color using the 

Histofine Simple Stain MAX-PO (Multi) Kit (Nichirei, Tokyo, Japan) and DAB substrate. Sections were 

lightly counterstained with hematoxylin and mounted. Negative controls were incubated without the primary 

antibody, and no staining was detected.  

EMILIN-1 expression was evaluated as staining intensity and staining ratio in 200x view fields from two 

tumor margin areas and one center area. Staining intensity was evaluated as 0 (none), 1 (weak), 2 (moderate), 

and 3 (strong). The ratio of EMILIN-1-stained area to the whole field of view was evaluated as 0 (none), 1 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2023. ; https://doi.org/10.1101/2023.09.12.557312doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.12.557312
http://creativecommons.org/licenses/by-nc/4.0/


 

7

(1%-25%), 2 (26%-50%), 3 (51%-75%), 4 (≧76%). The staining intensity and ratio were multiplied to obtain 

the EMILIN-1 score (0-12). BC samples with higher  EMILIN-1 score in the margin than central area were 

defined as a high EMILIN-1 group, and the others as low EMILIN-1 group. The total number of CD8+ cells 

was counted in the 200x view fields where the EMILIN-1 score was evaluated. 

 

Immunofluorescence analysis 

     Multicolor immunofluorescence staining was performed in tissue sections of BC surgically resected from 

five patients to detect EMILIN-1, CD8, and TGFBI expression and from seven patients to detect EMILIN-1, 

CD8, and Ki-67 using the Akoya Biosciences Opal Kit following the manufacturer’s instructions. All 

patients were selected from the validation group of BC samples.  In the first five samples, EMILIN-1 

staining (anti-EMILIN-1 rabbit polyclonal antibody: x400, HPA002822, Sigma) was visualized using the 

Opal 480 Fluorophore; CD8 staining (anti-CD8 rabbit polyclonal antibody: x500, ab4055, Abcam) with the 

Opal 570 Fluorophore; and TGFBI staining (anti-TGFBI rabbit polyclonal antibody: x400, 10188-1-AP; 

Proteintech, Rosemont, IL, USA) with the Opal 520 Fluorophore (Figure 5a). In the other seven BC 

samples, EMILIN-1 staining was visualized using the Opal 480 Fluorophore, CD8 staining with the Opal 

570 Fluorophore, as above, and Ki-67 staining (anti-Ki67 rabbit monoclonal antibody: x500, #9027; Cell 

Signaling Technology, Danvers, MA, USA) with the Opal 520 Fluorophore (Figure 5c). All sections were 

lightly counterstained with hematoxylin and examined under an All-in-One BZ-X710 fluorescence 

microscope (KEYENCE Corporation, Osaka, Japan).  

 

RESULTS 

     The integration of single-cell RNA-seq and spatial transcriptomic data unveils functional 

heterogeneity across BC samples. We generated spatial transcriptomic data from four untreated invasive 

BC samples (A1, B1, C1, and D; see Table S1 for the tumor classification). We also included published data 

on six BC samples (1160920F [TNBC], 1142243F [TNBC], CID4290 [ER+], CID4535 [ER+], CID4465 

[TNBC], CID44971 [TNBC])23. To gain a deeper insight into the cellular composition of each BC sample, 

we decided to assemble a single-cell RNA-seq BC atlas. To this end, we merged data from two recently 

published studies. The first one characterized all cell populations in 26 BC samples23, and the second one 

characterized >18,000 CAFs from 8 BC samples25. To avoid redundancy, we removed the CAF populations 

from the first study and kept only the CAF populations from the second study. The resulting atlas is featured 

in Figure 1a, and representative cell-specific markers are in Figure 1b. Then, we used this BC cell atlas to 

annotate spatial transcriptomic data for our ten BC samples and to project each cell population on 

histological sections (Figures S1-S10). The annotation relevance was verified relative to the presence of the 

typical histological structures observed in the H-E stained histological sections (e.g. vasculature, fibrosis, in 

situ versus invasive cancer). An example is shown in Figure 1c. This annotation process highlighted that 

individual cell types compartmentalized differently in different BC samples, suggesting significant 

functional heterogeneity. To assess this, we performed a spatial gene ontology (GO) analysis using fGSEA. 

All BC specimens (n=10) showed a significant modulation of >300 biological processes (data not shown) 
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that could be grouped in two to three spatial patterns per sample (Figures 1d & S11). Among the spatially 

modulated GO processes, those relating to ECM remodeling and immunity regulation were particularly 

relevant for studying the CAF-immune cell interactions. Both processes showed a clear tissue 

compartmentalization, suggesting that such interactions may be enriched in specific BC tissue regions 

(Figure 1d). TGF-β signaling was particularly interesting due to its capacity to suppress tumor immune 

response28. The T-cell and macrophage activation processes showed a distinct compartmentalization, but 

with a spatial pattern opposite to that of TGF-β signaling. However, some tumor regions were rich in both 

TGF-β signaling and T-cell activation. This finding was particularly intriguing and required additional 

analyses.  

 

    BC areas with low proliferation potential are characterized by high macrophage and CD8+ T-cell 

infiltration. The spatial transcriptomic data projection on histological sections (Figures S1-S10) showed 

that BC samples were composed of distinct and heterogeneously distributed cancer cell subtypes. However, 

we observed a high degree of spatial consistency among cycling cancer cells and regions characterized by 

high-proliferative potential (Figure S12, S+G2M score plots). Spatial deconvolution of the immune cell 

infiltrate indicated that CD8+ T cells and macrophages were abundant in regions with low proliferative 

capacity (Figure 2a-b). The correlation analysis confirmed this pattern in 9/10 BC spatial datasets (the only 

exception was CID4535). As CD8+ T cells have a crucial role in tumor growth inhibition, we next 

determined whether locoregional differences in TGF-β signaling were correlated with the differential 

presence of CD8+ T cells. Indeed, TGF-β is a well-known master regulator of normal and pathologic 

inflammation. We did not find any significant correlation between TGF-β signaling and CD8+ T-cell 

abundance (data not shown), suggesting a more complex relationship between immune exclusion and TGF-β 

signaling. CAFs are major TGF-β producers in tumors and also regulate TGF-β activity through the secretion 

of modulatory proteins29. Therefore, we hypothesized that CAF populations and their tissue distribution 

might explain the link between TGF-β activity and CD8+ T-cell exclusion. 

      

     ECM-myCAFs, wound-myCAFs and TGFβ-myCAFs are in regions with high TGF-β signaling. 

Recent single-cell studies25 determined that in BC, there are several major CAF subpopulations: ECM-

myCAFs, TGFβ-myCAFs, wound-myCAFs, IFNαβ-myCAFs, acto-myCAFs, IFNγ-iCAFs, detox-iCAFs, 

and IL-iCAFs. These CAF subpopulations are characterized by distinct gene expression profiles that suggest 

their involvement in specific cancer-relevant biological pathways. An overview of the GO enrichment 

analysis in each CAF subpopulations is provided in Figure S13. No significant acto-myCAF enrichment was 

observed. This was the smallest CAF population, at the periphery of the CAF cluster in Figure 1a. Next, we 

used single-cell RNA-seq data to spatially map CAF subpopulations in the BC samples. CAF subpopulations 

showed a rather compartmentalized distribution pattern (Figure 3a and Figures S1-S10). Overall, their 

distribution profiles could be classified in two main patterns (Figure 3a-b) that included ECM-myCAFs, 

wound-myCAFs and TGFβ-myCAFs (first pattern) and detox-iCAFs, IL-iCAFs and IFNγ-iCAFs (second 
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pattern). Conversely, IFNαβ-myCAFs frequently grouped separately. We also found that high TGF-β 

signaling was associated with the first pattern (ECM-myCAFs, wound-myCAFs and TGFβ-myCAFs). 

Having established a link between these three CAF subpopulations and TGF-β signaling, we wanted to 

understand its potential effect on the spatial localization of CD8+ T cells. Specifically, we asked why CD8+ T 

cells could accumulate in some BC areas that were rich in TGF-β signaling, although this is in contradiction 

with TGF-β immune suppressor role (Figure 4a). We spatially scored TGF-β signaling in each BC sample 

using a gene set (Materials and Methods), and defined a tumor-specific high TGF-β area that corresponded 

to the top TGF-β signaling scores. Independently, we defined CD8+ T cell-rich and -poor areas in each tumor 

sample (i.e. the locations with top and bottom quarter CD8+ T-cell abundance scores, respectively). By 

intersecting these areas, we compared gene expression in CD8+ T cell-rich versus -poor areas within high 

TGF-β signaling locations (Figure 4a). Differential gene analysis in each BC sample identified the top 

modulated genes and their frequency (Figure 4b). Two genes emerged as significantly modulated in most 

BC samples: EMILIN1 and COL3A1. Both are related to TGF-β signaling, but in a different fashion. 

COL3A1 is produced by fibroblasts in response to TGF-β activation30, whereas EMILIN1 is an inhibitor of 

TGF-β signaling31. We were particularly interested in EMILIN1 because its expression may modulate TGF-β 

activity and thus explain the selective CD8+ T-cell infiltration. A detailed comparison of EMILIN1 

expression in CD8+ T cell-low versus -high areas for each patient is provided in the Figure S14. Targeted 

analysis of the single-cell RNA-seq dataset reported by Wu et al.23 revealed that EMILIN1 was a bona fide 

CAF gene, and was expressed only by myCAFs (Figure 4c). A more detailed analysis using the dataset 

reported by Kieffer et al.25 showed that EMILIN1 was expressed by most CAF subpopulations, except IL-

iCAFs. The strongest expression was observed in IFNγ-iCAFs, followed by ECM-myCAFs, IFNαβ-

myCAFs and TGFβ-myCAFs (Figure 4d). Interestingly, wound-myCAFs, which showed the strongest 

expression of TGF-β signature genes (Figure 4e), displayed low EMILIN1 expression.         

      

     Spatial modulation of EMILIN-1 expression coincides with CD8+ T-cell infiltration and is 

predictive of patient survival. To support the hypothesis that EMILIN1 expression is locally inhibiting 

TGF-β signaling, we monitored EMILIN-1 and TGFBI spatial expression by immunofluorescence analysis 

in 5 patients with BC. We selected TGFBI because this protein is a known TGF-β activity reporter in 

cancer32 and its expression is inversely correlated with CD8+ T-cell tumor infiltration33. TGFBIhigh and 

EMILIN-1high CAFs constituted two distinct cell populations (Figure 5a). CD8+ T cells were predominantly 

found in the EMILIN-rich areas, while they were excluded from regions with high TGFBI expression. As 

EMILIN-1 expression is limited to CAFs and EMILIN-1 functions as TGF-β activity suppressor34, we 

examined its expression by immunohistochemistry in 75 patients with BC and its relationship with CD8+ T-

cell infiltration. We found that EMILIN-1 was clearly overexpressed in BC areas rich in infiltrating CD8+ T 

cells (Figure 5b-c). Moreover, EMILIN-1-rich areas had a significant proportion of Ki-67-negative cancer 

cells (Figure 5c-e), whereas many CD8+ T cells expressed Ki-67 (Figure 5c, yellow arrowheads). Lastly, 
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survival analysis showed that high EMILIN-1 expression in BC was associated with increased survival 

(Figure 5f). The results of the multivariate analysis of EMILIN-1 expression in this patient cohort are in 

Table S3.    

 

 

DISCUSSION 

     ICIs have been a major breakthrough for the systemic treatment of some tumor types and patient 

subpopulations. The success of immunotherapy is influenced by the tumor immunological status and the 

infiltration of cytotoxic CD8+ T cells. Although the underlying mechanisms of their infiltration are poorly 

understood, CD8+ T cells are one of the most relevant effector cell types recruited by ICIs35,36. To shed 

additional light on CD8+ T-cell infiltration, the present study used comprehensive single-cell RNA-seq BC 

datasets to project the different cell populations spatially in BC tissue sections. In accordance with the 

literature, we found a clear, opposite, spatial correlation between proliferating cancer cells and CD8+ T cells 

in BC. It has also been shown that the tissue localization of CD8+ T cells is important for the patient 

outcome. CD8+ T cell presence in the tumor margin correlates with better clinical outcome37,38. However, we 

do not know which stromal parameters influence CD8+ T-cell composition, infiltration extent, activation, or 

exhaustion in BC. This limits our ability to turn immunologically cold tumors into hot tumors and in 

consequence subject them to effective ICI treatment. TGF-β signaling in the tumor stroma mediates this 

immunomodulatory process. TGF-β is a potent immune suppressor with direct effects on the proliferation, 

differentiation and survival of various immune cell sub-populations39,40. Experiments in mice suggest that 

TGF-β restricts CD8+ T-cell trafficking into tumors by suppressing CXCR3 expression41. These and other 

findings motivated the design of clinical trials to assess TGF-β blockade in combination with ICIs. However, 

the results were rather contrasted and surprisingly modest, in sharp contrast to the clear importance of TGF-β 

in tumor immunity42. The reason for this failure remains unclear, and might be related to the actual TGF-β 

activity, which is difficult to measure in situ. Indeed, TGF-β activity is modulated by factors secreted from 

the TME29. Therefore, TGF-β expression level may not be necessarily directly related to its activity level. To 

try to shed light into TGF-β activity, we spatially correlated the relationship between CD8+ T-cell tumor 

infiltration, individual cancer cell populations, and TGF-β activity in BC. CAFs are a TME cell type with 

specific features: they are major TGF-β producers in the tumor and among the largest modulators of its 

activity by expressing soluble matrix proteins that can efficiently inhibit this cytokine43,44. Therefore, it is not 

surprising that recent studies highlighted CAFs and some CAF subpopulations as key modulators of T-cell 

exclusion45. In the present study, spatial differences were mainly observed between the broad myCAF and 

iCAF subtypes, and myCAF were frequently spatially associated with higher TGF-β signaling. This is in line 

with previous studies in pancreatic cancer where such spatial heterogeneity was first reported45,46. A finer 

spatial distinction between all CAF subpopulations was not accessible, possibly due to limitations of the 

current spatial and single-cell transcriptomic data depth. Therefore, we performed differential analysis not 

based on individual CAF subpopulations but on regions with high TGF-β signaling and different degrees of 
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CD8+ T-cell infiltration. This allowed us to propose a molecular explanation of the overlaps between TGF-β-

driven myCAFs and areas of CD8+ T-cell infiltration, despite the known immunosuppressing effect of TGF-

β. This analysis also highlighted a novel immune modulator protein, EMILIN-1, that was previously reported 

as a TGF-β inhibitor. We found that EMILIN-1 promotes CD8+ T-cell infiltration and is associated with 

better outcome in patients with BC. The results highlight the fact that different CAF populations cannot be 

simply categorized as immune-promoting or -suppressing cells and that their status is finely tuned by the 

expression of modulator genes. Such modulators can mitigate the activity of key cytokines, such as TGF-β. 

Moreover, this finding suggests that CAF subpopulations can be largely regarded as cell programing states, 

probably with few exceptions. Such exceptions may occur in organs/tissues where different CAF sources are 

possible because of the intrinsic presence of different fibroblast-like cells (e.g. stellate cells in liver). 

Viewing CAF heterogeneity as cell states rather than actual subpopulations implies that harnessing CAFs for 

therapy would require their re-programing rather than the elimination of a specific CAF subpopulation. In 

this regard the current study highlights EMILIN-1 as an important determinant of CAF anti-tumor program. 

Future studies should elucidate how EMILIN-1 expression is modulated and how it could be upregulated in 

CAFs.  
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FIGURE LEGENDS 

 

Figure 1: Breast cancer atlas for cellular and functional annotation of spatial single-cell RNA-seq data. (a) 

UMAP plot showing the breast cancer atlas based on two previously published single-cell RNA-seq 

datasets.21,23 (b) Verification of the cellular annotation of the newly generated breast cancer atlas using 

several cell-specific genes. (c) Deconvolution of two cell populations in the spatial single-cell RNA-seq data 

using the breast cancer cell atlas (left panels) and confirmation of the deconvolution by histology analysis 

(right panel). Different colors denote regions with certain predominant cell types, such as: cancer-associated 

fibroblasts (CAF), in-situ cancer cells (CC-is), invasive cancer cells (CC-inv) and immune cells (IC). (d) 

Spatial distribution of selected GO processes in BC samples (two representative samples are shown: C1 and 

1160920F; other samples are displayed in Figure S1). The following GO processes are displayed: ECM 

Structural Organization, Wound Healing, TGF-β Receptor Signaling, Regulation of Immune System, 

Macrophage Activation, and T-Cell Activation. 

 

Figure 2: Spatial analysis of proliferating cancer cells and immune infiltrate in breast cancer samples. (a) 

Histological annotation of two representative breast cancer samples (other samples are shown in Figure 

S12), and estimation of highly proliferative regions (S+G2M phases) (higher panels); actively cycling cancer 

cells and two immune populations (macrophages and CD8+ T cells) (middle and lower panels). The heath 

map shows the correlation analysis for these four populations. (b) Correlation analysis for the four selected 

cell populations in the other eight breast cancer samples. 

 

Figure 3: Spatial relationship of TGF-β signaling and CAF subpopulations in breast cancer. (a) Spatial 

distribution of genes implicated in TGF-β signaling (top) and spatial distribution of different CAF 

subpopulations in two breast cancer samples. The dendrogram (bottom, right) shows the spatial co-

occurrence between CAF subpopulations and TGF-β signaling. (b) Dendrograms showing the co-occurrence 

of different CAF populations and TGF-β signaling in the other eight breast cancer samples.  

 

Figure 4: Differential gene expression analysis of areas with high in TGF-β signaling and with/without 

CD8+ T-cell exclusion. (a) Spatial distribution of areas with high versus low TGF-β signaling and 
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presence/absence of CD8+ T cells in two breast cancer samples. (b) Differential gene expression analysis 

showing the frequency of top-modulated genes overexpressed in the areas where CD8+ T cells are present 

despite high TGF-β signaling. (c) EMILIN1 expression in the indicated cell subpopulation (from the breast 

cancer atlas in Figure 1a). (d) EMILIN1 expression in the indicated CAF subpopulations. (e) Upregulation 

of TGF-β signature genes in the indicated CAF subpopulations. The patient-wise statistical analysis of 

EMILIN1 overexpression in CD8+ cells with high TGF-β signaling regions is provided in Figure S14. 

 

Figure 5: EMILIN-1 is a good prognostic marker in breast cancer. (a) Multiplexed immunofluorescence 

analysis displaying the localization of CD8+ T cells (red) and EMILIN-1 expression (blue) in CAFs in a 

representative breast cancer sample (N=5). Expression of TGFBI, a TGF-β signaling activity marker, was in 

green. (b) Multiplexed immunohistochemistry analysis showing examples of EMILIN-1 (red) and CD8 

(brown) co-staining in breast cancer samples (N=75, all subtypes; for multivariate analysis see Table S2). (c) 

Low- and high-power views of the multiplexed immunofluorescence analysis displaying the localization of 

EMILIN-1, Ki-67 and CD8 in representative breast cancer samples (N=7). (d-e) Violin plots of CD8+ cell 

counts and Ki-67 positivity in areas of high versus low EMILIN-1 expression in breast cancer samples 

(N=75). (f) Survival analysis of patients with breast cancer (N=75) in function of EMILIN-1 expression level 

(high versus low) in the tumor.      Maybe you should remind what you used as cut-off for high/low levels. 

 

SUPPLEMENTARY TABLES AND FIGURES 

 

Table S1: Clinical and pathological information on the patients whose breast cancer samples (A1, B1, C1 

and D1) were used for the spatial analysis.  

 

Table S2: Clinical and pathological information on the patients whose breast cancer samples (N=75) were 

used for the validation analysis.  

 

Table S3: Multivariate analysis of EMILIN-1 expression and clinical-pathological variables in the cohort of 

75 patients with breast cancer. 

 

Figure S1-S10: Spatial distribution of different cellular populations in breast cancer samples. You need to 

specify in each figure which breast cancer sample you are showing. 

 

Figure S11: Spatial distribution of selected GO processes in the indicated ten breast cancer samples. Shown 

are the following GO processes: ECM Structural Organization, Wound Healing, TGF-β Receptor Signaling, 

Regulation of Immune System, Macrophage Activation, and T-Cell Activation. In some samples, some GO 

processes were not significantly enriched and are not shown.     
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Figure S12: Histological annotation of breast cancer samples (Reference tissue) and estimation of highly 

proliferative regions (S+G2M), actively cycling cancer cells and two immune populations (macrophages and 

CD8+ T cells) in the indicated ten breast cancer samples. 

 

Figure S13: Gene ontology analysis of the top 5 significantly enriched biological processes in the indicated 

CAF subpopulations. No significant enrichment was found for Acto-myCAFs.  

 

Figure S14: Box plots showing the patient-wise statistical analysis of EMILIN1 expression in CD8+ 

cells/TGFβ+ regions in the indicated ten breast cancer samples. 
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