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ABSTRACT

The tumor microenvironment (TME) and its multifaceted interactions with cancer cells are mgjor targets for
cancer treatment. Single-cell technologies have brought major insights into the TME, but the resulting
complexity frequently precludes conclusions on function. Therefore, we combined single-cell RNA
sequencing and spatial transcriptomic data to explore the relationship between different cancer-associated
fibroblast (CAF) populations and immune cell exclusion in breast tumors. Our data show for the first time
the degree of spatial organization of different CAF populations in breast cancer. We found that 1L-iCAFs,
Detox-iCAFs, and IFNy-iCAFs tended to cluster together, while Wound-myCAFs, TGF3-myCAFs, and
ECM-myCAFs formed another group that overlapped with elevated TGF-f signaling. Differential gene
expression analysis of areas with CD8" T-cell infiltration/exclusion within the TGF-B signaling-rich zones
identified elastin microfibrillar interface protein 1 (EMILIN1) as a top modulated gene. EMILINL, a TGF-8
inhibitor, was upregulated in IFNy-iCAFs directly modulating TGF immunosuppressive function.
Histological analysis of 74 breast cancer samples confirmed that high EMILIN-1 expression in the tumor
margins was related to high CD8" T-cell infiltration, consistent with our spatial gene expression analysis.
High EMILIN-1 expression was also associated with better prognosis of patients with breast cancer,
underscoring its functional significance for the recruitment of cytotoxic T cells into the tumor area. In
conclusion, our data show that correlating TGF-p signaling to a CAF subpopulation is not enough because
proteins with TGF--modulating activity originating from other CAF subpopulations can alter its activity.
Therefore, therapeutic targeting should remain focused on biological processes rather than on specific CAF
subtypes.
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INTRODUCTION

Breast cancer (BC) is the second most frequent cause of cancer death in women worldwide'. Molecular
and histological classifications of BC have significantly improved its clinical management. Today,
histopathological assessment of needle biopsies for morphological type and histological grade determination
are complemented by the assessment of estrogen receptor (ER), progesterone receptor (PgR), human
epidermal growth factor receptor type 2 (HER2) status, and Ki-67 proliferative index®. Therefore, BC are
classified into three types. (a) hormone receptor (ER and/or PgR)-positive and HER2-negative, (b) HER2-
positive, and (c) hormone receptor- and HER2-negative (triple negative breast cancer, TNBC)?. Based on
this classification, drug treatment regimens for early invasive BC include endocrine therapy (a) and
chemotherapy and anti-HER2 agents (b), alone or in combination®. No specific treatment is available for
TNBC (c), and this represents a tremendous clinical challenge®. Indeed, no druggable vulnerability has been
identified in TNBC cells to date, precluding their direct targeting®®.

A complementary approach to cancer cell targeting is to target the environment in which they reside® and
that is called tumor microenvironment (TME). The TME consists of a cellular part (stroma) and a supportive
extracellular matrix (ECM) with specific physical and chemical properties. The stroma is primarily
composed of endothelial, immune and fibrotic components. All three have attracted considerable attention
for novel drug development in solid tumors. Indeed, in some cancers, targeting endothelial and immune cells
is more effective than killing cancer cells (e.g. melanoma™® and hepatocellular® carcinoma). This
demonstrates the potential of TME-directed therapies, possibly in combination with molecules against cancer
cells. Despite these encouraging results, BC (like many other solid tumors) has not really benefited from
TME targeting yet. Clinical trials produced rather mitigated results. For example, in BC, endothelial cells
have been mainly targeted with anti-angiogenic drugs (e.g. anti-vascular endothelial growth factor (VEGF)
antibodies), alone or in combination with chemotherapy*®**. Unfortunately, the survival benefit for patients
with BC was minimal, and several potential resistance mechanisms were described?. The immune
component of BC has been mainly targeted using novel monoclonal antibodies against immune checkpoint
proteins (e.g. programmed cell-death protein 1 (PD-1) and its ligand PD-L1) with the aim of restoring the
anti-tumor immunity. The immune checkpoint inhibitors (1CI) pembrolizumab (anti-PD-1) and atezolizumab
(anti-PD-L1) have been clinically tested in patients with metastatic TNBC with heterogeneous results™>*. A
good clinical response is achieved in a small subpopulation of patients, and no clear biomarker exists to
predict which patients will respond. Patients with BC characterized by high mutational burden or with
immunologically inflamed tumors (with high proportion of CD8" T cells in the tumor center) might respond
to ICIS™*. Indeed, ICls that activate cytotoxic T cells against tumors are now considered an important
therapeutic tool*"*®. Lastly, clinical trials on cancer-associated fibroblasts (CAFs) and the targeting of the
tumor fibrotic component have not brought any conclusive results in BC, leaving this area unexplored.

Despite the plethora of experimental data on CAF significance in BC progression, very few targetable
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molecules have been identified in CAFs. Additionally, recent data on CAF subpopulations in BC? raise the
guestion of whether specific subtypes should be targeted.

However, we believe that successful TME targeting should be process-oriented and not cell-oriented.
Indeed, immune exclusion and angiogenesis are promoted and regulated by the concerted action of several
sromal cell types, and therefore disrupting a specific cell population is unlikely to abolish such processes
entirely. Conversely, it might be more relevant to target the potentially trans-cellular molecular network at
the heart of a crucial tumor process. However, knowledge on this area is gill limited. Particularly, it is
crucial to understand how different stromal cells molecularly engage to support tumor-promoting programs.

Recent advances in spatial OMICS technologies have been a true game changer for characterizing the
TME and tumor heterogeneity?. They have alowed, for the first time, to link the spatial occurrence of
different TME cell subtypes and of cancer cells with enhanced proliferative or therapy-resistance features.
In the present study, we investigated the spatial distribution of CAF subpopulations in BC and their
relationship with infiltrating cytotoxic T cells.

MATERIALSAND METHODS

Patient Material

Four patients with invasive ductal BC who underwent surgical resection at Gunma University Hospital
(Gunma, Japan) in 2020-2021 were enrolled for the Visium Spatial Gene Expression experiments (clinical
data are in Table S1). For immunohistochemical staining (validation study), 75 patients with invasive BC
who underwent breast-conserving surgery or modified total mastectomy at Gunma University Hospital
(Gunma, Japan) in 2020-2021 were enrolled (Table S2). Men with BC were not included in the study. None
of the patients received neoadjuvant treatment. Their median age was 60 years (range, 35-82 years).
Pathological tumor size, nodal status and lymphovascular invasion were determined using the pathological
records. The present study was approved by the Gunma University Hospital Institutional Review Board
(reference no. HS2021-071) and was conducted according to the tenets of the Declaration of Helsinki. All

patients gave their consent via the opt-out system.

Tissue Optimization

Tissue optimization was performed following the 10x Genomics Visium Spatial Tissue Optimization
Reagents Kits User Guide (CG000238, 10x Genomics) to optimize the permeabilization time for the
subsequent gene expression profiling. BC tissue cryosections (10 wm-thick) were placed on a Visium Spatial
Tissue Optimization Slide (10x Genomics). Different permeabilization times were tested with different tissue
sections on the slide with poly(dT) primersto capture the mRNA. After the permeabilization and the mRNA
capture steps, reverse transcription followed by addition of fluorescently labeled oligonucleotides to the
cDNA allowed detecting the resulting cDNAS as fluorescence signals. Hematoxylin and eosin (H-E) staining
and the fluorescence signals were imaged with a BZ-X800 microscope (Keyence). The optimal

permeabilization time was the incubation time that gave the strongest fluorescence signal.
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Gene expression analysislibrary preparation

Spatial gene expression analysis was done with the Visium Spatial Gene Expression Reagent Kit (10x
Genomics) following the manufacturer’s user guide (CG000239, 10x Genomics). BC tissue cryosections (10
um-thick) were placed on a Visium Spatial Gene Expression Slide (10x Genomics). Images of H-E-stained
sections were taken with a BZ-X800 microscope (Keyence). After tissue permeabilization for the optimal
time (see above), MRNA capture with the poly(dT) probes in the slide and reverse transcription resulted in
the construction of the full-length cDNA. After second strand synthesis and denaturation, cDNAs were
amplified in aVeriti 96-Well Thermal Cycler (Thermo Fisher Scientific) and quantified with a LabChip GX
Touch HT Nucleic Acid Analyzer (PerkinElmer) to ensure that sufficient cONA amounts were generated for
the library construction. Enzymatic fragmentation and size selection with the SPRIselect reagent (Beckman
Coulter) were used to optimize the cDNA fragment size for sequencing. Then, sample index PCR allowed
preparing sequence-ready libraries. The final library quantification was done with LabChip GX.

Sequencing

The MGIEasy Universal Library Conversion Kit (MGl Tech) was used to convert the libraries to
DNBSEQ-compatible libraries. Sequencing was done by DNBSEQ-G400 (MGI Tech) with a DNBSEQ-
G400RS High-throughput Sequencing Set (App-A FCL PE100) following the manufacturer’s instructions.
The resulting read lengths were as follows: Read1- 28 bp and Read2 - 100bp.

Bioinfor matics

The raw fastq files were processed with the SpaceRanger software 1.0 (10x Genomics) using the human
genome reference set GRCh38-3.0.0 and default parameters. Data obtained from our four BC samples were
complemented with published data®® retrieved from GEO (reference GSE176078). For our four samples,
tissue areas were defined using the Seurat clustering default algorithm (functions FindNeighbors and
FindClusters). The cluster number was adjusted to the maximum value where distinct, cluster-specific gene
expression patterns were detected with the Seurat differential search tool (function FindAllIMarkers). These
tissue areas were named by referring to the original areas defined by a pathologist. For the publicly available
datasets”, the original area definitions were used. Of note, these tumor areas played no role in the analysis,
and they were defined only for reference and descriptive purposes.

The gene spatial expression analysis mainly relied on our library BulkSignalR** and project-specific R
scripts. Count matrices were filtered for non-expressed genes by imposing a minimum read count of 1 in at
least 1% of the Visium spots. Subsequently, normalization was achieved by total count. Cell population-
specific gene signatures were retrieved from sequence data for BC general cell populations® and for CAFS™.
In all cases, the top 20 genes reported for each population were used. The spatia abundance of each cell
population was estimated by applying BisqueRNA? to these gene signatures due to the bulk nature of
Visium spatial data. A first scoring of cycling cancer cells was obtained using BisqueRNA scores for the

Cycling population®. An alternative score was provided by scoring a gene signature available from Seurat
5
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(cc.genes.updated.2019%s.genes and cc.genes.updated.2019%g2m.genes). In this case, scoring was done
using the BulkSignal R function scoreSignatures. The various plots reporting the localization of cell types or
cycling cells were generated using BulkSignal R standard functions.

Several biological processes were scored using fast Gene Set Enrichment Analysis (FGSEA)? spatial
transcriptomic features. TGF-B signaling was scored with the BulkSignalR scoreSignatures function to
generate dendrograms to relate this process to CAF subpopulations. TGF-B signaling genes were obtained
from MSSigDB (c5.bp.v7.0.symbols.gmt.txt,
GO_TRANSFORMING_GROWTH_FACTOR _BETA_RECEPTOR _SIGNALING _PATHWAY). Spatial
co-localization between cell populations or between TGF-B and cell populations was determined using a
Pearson correlation-based distance matrix (distance = 1 — correlation). Correlations within one sample were
computed over the whole set of spots.

The differential gene expression analysis to compare CD8" T cell-rich versus -poor areas with the top
TGF-B signaling tumor areas was performed with edgeR (PMID: 22287627) and the following parameters:
maximum false discovery rate of 5%, minimum fold-change of 1.5, and normalized read count >1 in at least
25% of spots. For one sample (tumor 114223F), this last threshold was decreased to 20%.

Immunohistochemistry

Paraffin-embedded BC specimens (n=75; 10 luminal A, 10 luminal B, 20 luminal HER2, 15 HERZ2, and
20 TNBC) were cut into 4 pm-thick sections and mounted on glass dides. All sections were incubated at
60°C for 6011 min, deparaffinized in xylene, rehydrated, and incubated with fresh 0.3% hydrogen peroxidein
100% methanol at room temperature for 30 _min to block endogenous peroxidase activity. After rehydration
through a graded series of ethanol solutions, antigen retrieval was performed using an Immunosaver (Nishin
EM, Tokyo, Japan) at 98° C-100°C for 30CJmin. Sections were passively cooled to room temperature and
then incubated in Protein Block Serum-Free Reagent (Agilent (Dako), Santa Clara, CA, USA) for 30 min.
This was followed by incubation with an anti-EMILIN-1 rabbit polyclonal antibody (x400, HPA002822;
Sigma Aldrich, Saint Louis, MO, USA) in Dako REAL Antibody Diluent at 4°C for 24 h. According to the
manufacturer's ingructions, EMILIN-1 staining was visualized as a red color using the Histofine Simple
Stain AP (Multi) Kit (Nichirei, Tokyo, Japan) and the FastRed Il reagent (Nichirei, Tokyo, Japan). Then,
sections were boiled in a microwave oven for 10 min to inactivate the antibodies and enzyme activity. Next,
they were incubated with an anti-CD8 rabbit polyclonal antibody (x500, ab4055; Abcam, Cambridge, UK) in
Dako REAL Antibody Diluent a 4°C for 24 h. CD8 staining was visualized as a brown color using the
Histofine Simple Stain MAX-PO (Multi) Kit (Nichirei, Tokyo, Japan) and DAB substrate. Sections were
lightly counterstained with hematoxylin and mounted. Negative controls were incubated without the primary
antibody, and no staining was detected.
EMILIN-1 expression was evaluated as staining intensity and staining ratio in 200x view fields from two
tumor margin areas and one center area. Staining intensity was evaluated as 0 (none), 1 (weak), 2 (moderate),
and 3 (strong). The ratio of EMILIN-1-stained area to the whole field of view was evaluated as 0 (none), 1
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(1%-25%), 2 (26%-50%), 3 (51%-75%), 4 (=76%). The staining intensity and ratio were multiplied to obtain
the EMILIN-1 score (0-12). BC samples with higher EMILIN-1 score in the margin than central area were
defined as a high EMILIN-1 group, and the others as low EMILIN-1 group. The total number of CD8" cells

was counted in the 200x view fields where the EMILIN-1 score was evaluated.

Immunofluor escence analysis

Multicolor immunofluorescence staining was performed in tissue sections of BC surgically resected from
five patients to detect EMILIN-1, CD8, and TGFBI expression and from seven patients to detect EMILIN-1,
CD8, and Ki-67 using the Akoya Biosciences Opal Kit following the manufacturer’s instructions. All
patients were selected from the validation group of BC samples. In the first five samples, EMILIN-1
staining (anti-EMILIN-1 rabbit polyclonal antibody: x400, HPA002822, Sigma) was visualized using the
Opal 480 Fuorophore; CD8 staining (anti-CD8 rabbit polyclonal antibody: x500, ab4055, Abcam) with the
Opal 570 Fluorophore; and TGFBI staining (anti-TGFBI rabbit polyclonal antibody: x400, 10188-1-AP;
Proteintech, Rosemont, IL, USA) with the Opal 520 Fluorophore (Figure 5a). In the other seven BC
samples, EMILIN-1 staining was visualized using the Opal 480 Fluorophore, CD8 staining with the Opal
570 Fluorophore, as above, and Ki-67 staining (anti-Ki67 rabbit monoclonal antibody: x500, #9027; Cell
Signaling Technology, Danvers, MA, USA) with the Opal 520 Fluorophore (Figure 5c). All sections were
lightly counterstained with hematoxylin and examined under an All-in-One BZ-X710 fluorescence
microscope (KEY ENCE Corporation, Osaka, Japan).

RESULTS
The integration of sngle-cedl RNA-seq and spatial transcriptomic data unveils functional
heter ogeneity across BC samples. We generated spatial transcriptomic data from four untreated invasive
BC samples (A1, B1, C1, and D; see Table Sl for the tumor classification). We also included published data
on six BC samples (1160920F [TNBC], 1142243F [TNBC], CID4290 [ER+], CID4535 [ER+], CID4465
[TNBC], CID44971 [TNBC])%. To gain a deeper insight into the cellular composition of each BC sample,
we decided to assemble a single-cell RNA-seq BC atlas. To this end, we merged data from two recently
published studies. The first one characterized al cell populations in 26 BC samples®, and the second one
characterized >18,000 CAFs from 8 BC samples”. To avoid redundancy, we removed the CAF populations
from the first study and kept only the CAF populations from the second study. The resulting atlas is featured
in Figure 1a, and representative cell-specific markers are in Figure 1b. Then, we used this BC cell atlas to
annotate spatial transcriptomic data for our ten BC samples and to project each cell population on
histological sections (Figures S1-S10). The annotation relevance was verified relative to the presence of the
typical histological structures observed in the H-E stained histological sections (e.g. vasculature, fibrosis, in
Stu versus invasive cancer). An example is shown in Figure 1c. This annotation process highlighted that
individual cell types compartmentalized differently in different BC samples, suggesting significant
functional heterogeneity. To assess this, we performed a spatial gene ontology (GO) analysis using fGSEA.
All BC specimens (n=10) showed a significant modulation of >300 hiological processes (data not shown)
7
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that could be grouped in two to three spatial patterns per sample (Figures 1d & S11). Among the spatially
modulated GO processes, those relating to ECM remodeling and immunity regulation were particularly
relevant for studying the CAF-immune cell interactions. Both processes showed a clear tissue
compartmentalization, suggesting that such interactions may be enriched in specific BC tissue regions
(Figure 1d). TGF-B signaling was particularly interesting due to its capacity to suppress tumor immune
response’®. The T-cell and macrophage activation processes showed a distinct compartmentalization, but
with a spatial pattern opposite to that of TGF-B signaling. However, some tumor regions were rich in both
TGF-B signaling and T-cell activation. This finding was particularly intriguing and required additional

analyses.

BC areas with low proliferation potential are characterized by high macrophage and CD8" T-cell
infiltration. The spatial transcriptomic data projection on histological sections (Figures S1-S10) showed
that BC samples were composed of distinct and heterogeneously distributed cancer cell subtypes. However,
we observed a high degree of gpatial consistency among cycling cancer cells and regions characterized by
high-proliferative potential (Figure S12, S+G2M score plots). Spatial deconvolution of the immune cell
infiltrate indicated that CD8" T cells and macrophages were abundant in regions with low proliferative
capacity (Figure 2a-b). The correlation analysis confirmed this pattern in 9/10 BC spatial datasets (the only
exception was CID4535). As CD8" T cells have a crucia role in tumor growth inhibition, we next
determined whether locoregional differences in TGF- signaling were correlated with the differential
presence of CD8" T cells. Indeed, TGF-B is a well-known master regulator of normal and pathologic
inflammation. We did not find any significant correlation between TGF-B signaling and CD8" T-cell
abundance (data not shown), suggesting a more complex relationship between immune exclusion and TGF-
signaling. CAFs are major TGF-f producers in tumors and also regulate TGF-3 activity through the secretion
of modulatory proteins. Therefore, we hypothesized that CAF populations and their tissue distribution
might explain the link between TGF-J activity and CD8" T-cell exclusion.

ECM-myCAFs, wound-myCAFs and TGFB-myCAFs are in regions with high TGF-f signaling.
Recent single-cell studies” determined that in BC, there are several major CAF subpopulations; ECM-
myCAFs, TGFB-myCAFs, wound-myCAFs, IFNaf-myCAFs, acto-myCAFs, IFNy-iCAFs, detox-iCAFs,
and IL-iCAFs. These CAF subpopulations are characterized by distinct gene expression profiles that suggest
their involvement in specific cancer-relevant biological pathways. An overview of the GO enrichment
analysisin each CAF subpopulationsis provided in Figure S13. No significant acto-myCAF enrichment was
observed. This was the smallest CAF population, at the periphery of the CAF clugter in Figure 1a. Next, we
used single-cell RNA-seq data to spatially map CAF subpopulations in the BC samples. CAF subpopulations
showed a rather compartmentalized distribution pattern (Figure 3a and Figures S1-S10). Overall, their
distribution profiles could be classified in two main patterns (Figure 3a-b) that included ECM-myCAFs,
wound-myCAFs and TGFB-myCAFs (first pattern) and detox-iCAFs, IL-iCAFs and IFNy-iCAFs (second

8
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pattern). Conversely, IFNof-myCAFs frequently grouped separately. We also found that high TGF-3
signaling was associated with the first pattern (ECM-myCAFs, wound-myCAFs and TGFB-myCAFs).
Having established a link between these three CAF subpopulations and TGF-$ signaling, we wanted to
understand its potential effect on the spatial localization of CD8" T cells. Specifically, we asked why CD8" T
cells could accumulate in some BC areas that wererich in TGF-B signaling, although thisisin contradiction
with TGF-B immune suppressor role (Figure 4a). We spatially scored TGF-3 signaling in each BC sample
using a gene set (Materials and Methods), and defined a tumor-specific high TGF-3 area that corresponded
to the top TGF-B signaling scores. Independently, we defined CD8" T cell-rich and -poor areas in each tumor
sample (i.e. the locations with top and bottom quarter CD8" T-cell abundance scores, respectively). By
intersecting these areas, we compared gene expression in CD8" T cell-rich versus -poor areas within high
TGF-B signaling locations (Figure 4a). Differential gene analysis in each BC sample identified the top
modulated genes and their frequency (Figure 4b). Two genes emerged as significantly modulated in most
BC samples. EMILIN1 and COL3Al. Both are related to TGF-B signaling, but in a different fashion.
COL3A1 is produced by fibroblasts in response to TGF-B activation®®, whereas EMILINL is an inhibitor of
TGF-B signaling®. We were particularly interested in EMILIN1 because its expression may modulate TGF-B
activity and thus explain the selective CD8" T-cell infiltration. A detailed comparison of EMILIN1
expression in CD8" T cell-low versus -high areas for each patient is provided in the Figure S14. Targeted
analysis of the single-cell RNA-seq dataset reported by Wu et al.”® revealed that EMILIN1 was a bona fide
CAF gene, and was expressed only by myCAFs (Figure 4c). A more detailed analysis using the dataset
reported by Kieffer et a.> showed that EMILIN1 was expressed by most CAF subpopulations, except |L-
iCAFs. The strongest expression was observed in IFNy-iCAFs, followed by ECM-myCAFs, IFNoj-
myCAFs and TGF3-myCAFs (Figure 4d). Interestingly, wound-myCAFs, which showed the strongest

expression of TGF-f signature genes (Figur e 4e), displayed low EMILINL expression.

Spatial modulation of EMILIN-1 expression coincides with CD8" T-cdl infiltration and is
predictive of patient survival. To support the hypothesis that EMILIN1 expression is locally inhibiting
TGF-B signaling, we monitored EMILIN-1 and TGFBI spatial expression by immunofluorescence analysis
in 5 patients with BC. We selected TGFBI because this protein is a known TGF-§ activity reporter in
cancer®? and its expression is inversely correlated with CD8" T-cell tumor infiltration®. TGFBI"" and
EMILIN-1"9" CAFs constituted two distinct cell populations (Figure 5a). CD8" T cells were predominantly
found in the EMILIN-rich areas, while they were excluded from regions with high TGFBI expression. As
EMILIN-1 expression is limited to CAFs and EMILIN-1 functions as TGF-B activity suppressor*, we
examined its expression by immunohistochemistry in 75 patients with BC and its relationship with CD8" T-
cell infiltration. We found that EMILIN-1 was clearly overexpressed in BC areas rich in infiltrating CD8" T
cells (Figure 5b-c). Moreover, EMILIN-1-rich areas had a significant proportion of Ki-67-negative cancer
cells (Figure 5c-e), whereas many CD8" T cells expressed Ki-67 (Figure 5¢, yellow arrowheads). Lastly,
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aurvival analysis showed that high EMILIN-1 expression in BC was associated with increased survival
(Figure 5f). The results of the multivariate analysis of EMILIN-1 expression in this patient cohort are in
Table S3.

DISCUSSION

ICls have been a mgjor breakthrough for the systemic treatment of some tumor types and patient
subpopulations. The success of immunotherapy is influenced by the tumor immunological status and the
infiltration of cytotoxic CD8" T cells. Although the underlying mechanisms of their infiltration are poorly
understood, CD8" T cells are one of the most relevant effector cell types recruited by ICIS®%®. To shed
additional light on CD8" T-cell infiltration, the present study used comprehensive single-cell RNA-seq BC
datasets to project the different cell populations spatially in BC tissue sections. In accordance with the
literature, we found a clear, opposite, spatial correlation between proliferating cancer cells and CD8"™ T cells
in BC. It has also been shown that the tissue localization of CD8" T cells is important for the patient
outcome. CD8" T cell presence in the tumor margin correlates with better clinical outcome®®, However, we
do not know which stromal parameters influence CD8" T-cell composition, infiltration extent, activation, or
exhaustion in BC. This limits our ability to turn immunologically cold tumors into hot tumors and in
consequence subject them to effective ICI treatment. TGF- signaling in the tumor stroma mediates this
immunomodulatory process. TGF-f is a potent immune suppressor with direct effects on the proliferation,
differentiation and survival of various immune cell sub-populations®“. Experiments in mice suggest that
TGF-B restricts CD8" T-cell trafficking into tumors by suppressing CXCR3 expression™. These and other
findings motivated the design of clinical trialsto assess TGF-§ blockade in combination with I1Cls. However,
the results were rather contrasted and surprisingly modest, in sharp contrast to the clear importance of TGF-8
in tumor immunity*. The reason for this failure remains unclear, and might be related to the actual TGF-
activity, which is difficult to measure in situ. Indeed, TGF- activity is modulated by factors secreted from
the TME?. Therefore, TGF-B expression level may not be necessarily directly related to its activity level. To
try to shed light into TGF-B activity, we spatially correlated the relationship between CD8" T-cell tumor
infiltration, individual cancer cell populations, and TGF-§3 activity in BC. CAFs are a TME cell type with
specific features. they are mgjor TGF-B producers in the tumor and among the largest modulators of its
activity by expressing soluble matrix proteins that can efficiently inhibit this cytokine™*. Therefore, it is not
surprising that recent studies highlighted CAFs and some CAF subpopulations as key modulators of T-cell
exclusion®™. In the present study, spatial differences were mainly observed between the broad myCAF and
iCAF subtypes, and myCAF were frequently spatially associated with higher TGF-B signaling. Thisisin line
with previous studies in pancreatic cancer where such spatial heterogeneity was first reported®“. A finer
gpatia distinction between al CAF subpopulations was not accessible, possibly due to limitations of the
current spatial and single-cell transcriptomic data depth. Therefore, we performed differential analysis not

based on individual CAF subpopulations but on regions with high TGF-§ signaling and different degrees of
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CD8" T-cell infiltration. This allowed us to propose a molecular explanation of the overlaps between TGF-f-
driven myCAFs and areas of CD8" T-cell infiltration, despite the known immunosuppressing effect of TGF-
B. Thisanalysis also highlighted a novel immune modulator protein, EMILIN-1, that was previously reported
as a TGF-B inhibitor. We found that EMILIN-1 promotes CD8" T-cell infiltration and is associated with
better outcome in patients with BC. The results highlight the fact that different CAF populations cannot be
simply categorized as immune-promoting or -suppressing cells and that their status is finely tuned by the
expression of modulator genes. Such modulators can mitigate the activity of key cytokines, such as TGF-f.
Moreover, this finding suggests that CAF subpopulations can be largely regarded as cell programing states,
probably with few exceptions. Such exceptions may occur in organs/tissues where different CAF sources are
possible because of the intrinsic presence of different fibroblast-like cells (e.g. stellate cells in liver).
Viewing CAF heterogeneity as cell states rather than actual subpopulations implies that harnessing CAFsfor
therapy would require their re-programing rather than the elimination of a specific CAF subpopulation. In
this regard the current study highlights EMILIN-1 as an important determinant of CAF anti-tumor program.
Future studies should elucidate how EMILIN-1 expression is modulated and how it could be upregulated in
CAFs.
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FIGURE LEGENDS

Figure 1. Breast cancer atlas for cellular and functional annotation of spatial single-cell RNA-seq data. (a)
UMAP plot showing the breast cancer atlas based on two previoudy published single-cell RNA-seq
datasets.?*® (b) Verification of the cellular annotation of the newly generated breast cancer atlas using
several cell-specific genes. (c) Deconvolution of two cell populations in the spatial single-cell RNA-seq data
using the breast cancer cell atlas (left panels) and confirmation of the deconvolution by histology analysis
(right panel). Different colors denote regions with certain predominant cell types, such as: cancer-associated
fibroblasts (CAF), in-situ cancer cells (CC-is), invasive cancer cells (CC-inv) and immune cells (IC). (d)
Spatial digtribution of selected GO processes in BC samples (two representative samples are shown: C1 and
1160920F; other samples are displayed in Figure S1). The following GO processes are displayed: ECM
Structural Organization, Wound Healing, TGF-3 Receptor Signaling, Regulation of Immune System,
Macrophage Activation, and T-Cell Activation.

Figure 2: Spatial analysis of proliferating cancer cells and immune infiltrate in breast cancer samples. (a)
Histological annotation of two representative breast cancer samples (other samples are shown in Figure
S12), and estimation of highly proliferative regions (S+G2M phases) (higher panels); actively cycling cancer
cells and two immune populations (macrophages and CD8" T cells) (middle and lower panels). The heath
map shows the correlation analysis for these four populations. (b) Correlation analysis for the four selected

cell populationsin the other eight breast cancer samples.

Figure 3. Spatia relationship of TGF-B signaling and CAF subpopulations in breast cancer. (a) Spatial
distribution of genes implicated in TGF-f signaling (top) and spatial distribution of different CAF
subpopulations in two breast cancer samples. The dendrogram (bottom, right) shows the spatial co-
occurrence between CAF subpopulations and TGF- signaling. (b) Dendrograms showing the co-occurrence

of different CAF populations and TGF-3 signaling in the other eight breast cancer samples.

Figure 4: Differential gene expression analysis of areas with high in TGF- signaling and with/without

CD8" T-cell exclusion. (a) Spatial distribution of areas with high versus low TGF- signaling and
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presence/absence of CD8" T cells in two breast cancer samples. (b) Differential gene expression analysis
showing the frequency of top-modulated genes overexpressed in the areas where CD8" T cells are present
despite high TGF-B signaling. (c) EMILIN1 expression in the indicated cell subpopulation (from the breast
cancer atlas in Figure 1a). (d) EMILINL expression in the indicated CAF subpopulations. (€) Upregulation
of TGF-B signature genes in the indicated CAF subpopulations. The patient-wise statistical analysis of
EMILIN1 overexpression in CD8" cells with high TGF-p signaling regionsis provided in Figure S14.

Figure 5: EMILIN-1 is a good prognostic marker in breast cancer. (a) Multiplexed immunofluorescence
analysis displaying the localization of CD8" T cells (red) and EMILIN-1 expression (blug) in CAFs in a
representative breast cancer sample (N=5). Expression of TGFBI, a TGF-3 signaling activity marker, was in
green. (b) Multiplexed immunohistochemistry analysis showing examples of EMILIN-1 (red) and CD8
(brown) co-staining in breast cancer samples (N=75, al subtypes, for multivariate analysis see Table S2). (c)
Low- and high-power views of the multiplexed immunofluorescence analysis displaying the localization of
EMILIN-1, Ki-67 and CD8 in representative breast cancer samples (N=7). (d-€) Violin plots of CD8" cell
counts and Ki-67 positivity in areas of high versus low EMILIN-1 expression in breast cancer samples
(N=75). (f) Survival analysis of patients with breast cancer (N=75) in function of EMILIN-1 expression level

(high versus low) in thetumor.  Maybe you should remind what you used as cut-off for high/low levels.

SUPPLEMENTARY TABLESAND FIGURES

Table S1: Clinical and pathological information on the patients whose breast cancer samples (A1, B1, C1
and D1) were used for the spatial analysis.

Table S2: Clinical and pathological information on the patients whose breast cancer samples (N=75) were
used for the validation analysis.

Table S3: Multivariate analysis of EMILIN-1 expression and clinical-pathological variablesin the cohort of
75 patients with breast cancer.

Figure S1-S10: Spatial digtribution of different cellular populations in breast cancer samples. You need to

specify in each figure which breast cancer sample you are showing.

Figure S11: Spatial distribution of selected GO processes in the indicated ten breast cancer samples. Shown
are the following GO processes. ECM Structural Organization, Wound Healing, TGF-B Receptor Signaling,
Regulation of Immune System, Macrophage Activation, and T-Cell Activation. In some samples, some GO

processes were not significantly enriched and are not shown.
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Figure S12: Histological annotation of breast cancer samples (Reference tissue) and estimation of highly
proliferative regions (S+G2M), actively cycling cancer cells and two immune populations (macrophages and
CD8" T cells) in the indicated ten breast cancer samples.

Figure S13: Gene ontology analysis of the top 5 significantly enriched biological processesin the indicated
CAF subpopulations. No significant enrichment was found for Acto-myCAFs.

Figure S14: Box plots showing the patient-wise dtatistical analysis of EMILIN1 expression in CD8"
cellTGFB+ regionsin the indicated ten breast cancer samples.
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