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Abstract: In an increasingly diverse world, including admixed individuals in genomic studies is
imperative for equity and portability. A crucial first step is precise local ancestry inference
(LAI). We have developed Orchestra, a LAI model with unprecedented accuracy, and trained on
over 10,000 single-origin individuals from 35 worldwide populations. We employed Orchestra to
delve into genetic relationships and demographic histories, with a focus on Latin Americans, a
prime example of admixture, and the Ashkenazi Jewish, whose origins have long been debated.
Finally, Orchestra enabled us to map signatures of selection, notably identifying trace
Scandinavian ancestry in British samples and unveiling an immune-rich region linked to
respiratory infections. Our work advances the field of LAI and holds promise for improvements
in future applications for admixed populations.

One-Sentence Summary: Orchestra unveils Latino and Ashkenazi ancestral roots and a
candidate Viking locus under selection in the British population
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Introduction

Despite vast differences in phenotypes, languages, and culture, any two humans living today
share over 98% of their DNA (/). The remainder, of which only 0.1% is due to SNPs, can tell us
the part of the world from which an individual, or their ancestors, originated. For decades,
population geneticists have used DNA to infer the history of humankind (2-4). Mating between
individuals in geographical proximity, coupled with genetic drift and divergent demographic
histories, helped shape our modern human genetic landscape, allowing us to reference any single
individual to well differentiated reference populations (5, 6).

However, as the movement of people across the globe has intensified in recent centuries, humans
have become more admixed, and an increasing number of people cannot be traced back to a
single reference population (7). While global ancestry inference (GAI) allows us to infer an
individual's overall admixture proportions, it fails to provide information about the fine-scale
patterns across the genome. Despite similar global admixture proportions, two individuals may
have very different ancestry compositions at any location within the genome (§). That is why in
admixed populations, local ancestry inference (LAI) becomes indispensable for various
downstream applications. Several LAI methods that infer the ancestry of different segments on
each chromosome have been developed over the years (9-7/7). LAI applied to admixed
populations has been used to boost power and resolution in GWAS (/2), improve GWAS and
expression quantitative trait loci (eQTL) colocalization (/3), and detect gene-gene and gene-
environment interactions (/4). In addition, LAI models have been leveraged to improve
polygenic risk scores (PRS) specifically for admixed individuals (/5, /6). However, these efforts
have mainly applied cross-continental resolution (e.g., European vs. African or East Asian).

Many human populations, despite being geographically close, are genetically heterogeneous.
Such regional variation can impact the genetic architecture of complex phenotypes. In Africa
alone, the genomic diversity is vast, showing extreme allele frequency divergence in many
medically relevant variants (/7). Similarly, genomic variability is extensive among Asians, who
comprise nearly 60% of the total world population, with unequal genetic disorder burden and
pharmacological susceptibility (/8). Subtle genetic clines can be observed even for Europeans
(19). In fact, the European North-South gradient in height is one of the best-documented
examples of how selective adaptation has shaped complex traits (20). Therefore, various
genomic disciplines may have a lot to gain from broadening the scope of LAI to include within-
continent diversity.

Results

Local Ancestry Deconvolution with Orchestra

Here, we present Orchestra (Optimal [re]combination of haplotypes to establish segmentation of
a target from reference ancestries), a novel LAI algorithm, and demonstrate its superiority to
other state-of-the-art LAI algorithms. We apply Orchestra to retrace the genetic history of Latin
Americans, as a prime example of admixture. We next explore the relationship between 35
worldwide populations and show that Orchestra can be used to estimate genetic closeness
between populations and shed light on their demographic history. Finally, we use Orchestra to
detect natural selection signatures.

Orchestra consists of a two-stage pipeline: a base layer and a smoothing module (Fig. 1A). The
base layer classifies genomic windows of predetermined size by generating a distance measure
between the target genome and each of the reference populations. This measure, recombination
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distance, is the minimum number of segments needed to reconstruct a target sequence from the
sequences present in each reference population. It approximates the number of crossover events
needed to reconstruct a given sequence. The base layer uses a greedy approach in which a
similarity matrix is calculated by an element-to-element comparison per position and per sample,
to obtain a vector of recombination distances across all reference populations. The smoothing
module is a deep learning model with convolutional and attention-based elements. The
convolutional element processes the base layer insights generated for each window using the
information from surrounding windows. The attention-based component provides a weak link to
global ancestry. This is reflective of real world genomes, since the presence of a certain ancestry
in one place of the genome increases the likelihood of finding that same ancestry in other
genomic regions. Combining the recombination distance base layer with a deep learning
smoothing module synergistically leads to a novel, state-of-the-art technique for accurate
ancestry deconvolution.

The accuracy of any ancestry model greatly depends on the quality of the reference panel. We
assembled a set of reference populations by merging data from more than 30 published studies,
combining both whole genome sequencing and array-based genotyping (table S1). A significant
fraction of the total samples comes from non-UK ancestries captured by the UK Biobank
(UKBB). With much shorter migratory distances just a few decades ago, we found that tracing
ancestral origins by birth-place and self-reported ethnicity of UKBB participants was a
sufficiently reliable proxy for ancestry (figs. S1-3). All retrieved samples underwent a series of
quality filtering steps. We kept a composite set of directly genotyped variants obtained by
combining all SNPs from array-based studies and filtered by a minor allele frequency (MAF) >
5% to minimize imputation-related biases (see Methods). Next we conducted two GWASs to
check if each SNP was associated with a genotyping platform or ancestry, and filtered out those
that ranked in the top high and low end, respectively, to minimize batch effects and retain
meaningful ancestry informative differences. We then used two separate dimensionality
reduction techniques to characterize relationships between samples and remove any samples that
showed a disagreement between reported ancestry and inferred genetic origin: 1) Principal
component analysis (PCA) followed by uniform manifold approximation and projection
(UMAP) (217) and 2) t-distributed stochastic neighbor embedding (t- SNE) (22) used on
genealogical nearest neighbor (GNN) statistics estimated with tsinfer (5). This resulted in a high-
quality reference panel of 10,169 non-admixed individuals from 35 world regions, which we
used as our reference populations (fig. S4; see table S2 for three-letter population abbreviations;
see Methods for more details).

We benchmarked Orchestra against other leading LAI algorithms, including RFmix (9), Gnomix
(1/0) and FLARE (/1), using two reference panels: 1) 1IKGP-16pops, a high-coverage WGS set
of non-admixed and unrelated samples collected by the 1000 Genomes Project (1KGP) with 16
populations and 2) custom-35pop, our larger, more diverse curated panel with 35 populations.
Both panels were split into test and training sets (20% and 80% of samples) and used to simulate
6 generations of random admixture using SLiM (23). Precision and recall were reported as
performance estimates on all chromosomes per generation and per population.

Orchestra substantially outperformed other LAI methods (Fig. 1B). When using the 1KGP-
16pops reference panel, Orchestra’s average recall and precision across generations was 90.17%
and 90.22%, respectively; an improvement of +15.89% and +14.03% compared to the second
best model, Gnomix. For the custom-35pops panel, the average recall and precision was 79.54%
and 80.54%, respectively, an improvement of +15.04% and +13.99% compared to the next best
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model, RFmix. Orchestra was the most accurate across 6 generations of admixture. As expected,
the accuracy decreased with an increasing number of generations. However Orchestra's

performance in the most admixed samples equaled or exceeded the best performance in the non-
admixed generations by other LAI methods.
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Fig. 1. Performance of Orchestra and other LAI methods. (A) Orchestra schematics. The input consists of a
target genome whose ancestry is unknown and a reference set of single-origin individuals grouped by population.
For each genomic window, the base layer generates the recombination distance as the minimum number of
segments needed to reconstruct the target from the sequences of each reference population # (filled circles represent
alternative alleles; green circles show correspondence between the reference genomes and the target). The
smoothing layer then processes these distance measures with a series of convolutional and attention layers using
information from surrounding windows and other regions of the genome, yielding the final probabilities for the N
reference ancestries. This procedure is repeated for all windows in the genome. (B) Recall and precision of
Orchestra, RFmix, Gnomix and FLARE across 6 generations. Star shapes refer to the number of generations of
simulated admixture (the more points the star has, the higher the generation). (C) Accuracy (%) per population for
the 16 populations in the IKGP dataset and the 35 populations in the larger custom dataset. Populations are ordered
by mean accuracy across all methods (cross). Accuracy is shown as synonymous with recall.

Orchestra retained high accuracy regardless of the reference population, with an ability to
distinguish between closely related ancestries. Orchestra achieved accuracy greater than 75% for
all populations within the 1KGP-16pops panel (Fig. 1C). For the custom-35pops panel,
Orchestra achieved an accuracy of over 50% for all populations, and over 75% for 26 out of 35
populations. The other three LAI models struggled with a third of the populations, with accuracy
below 50% (Fig. 1C). Orchestra’s accuracy was superior at both region-wide and continental
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levels, the recall exceeding 93.43 and 98.90% for 1KGP-16pops and 87.73% and 94.03% for
custom-35pops (figs. S5-8).

In addition to our two panels, we applied all LAI models to over 10,000 UK biobank samples
that were not included in the custom-35pops panel (fig. S9). Orchestra outperformed the other
LAI methods for 91% of the 103 evaluated countries.

Retracing Genetic Histories

Latin Americans are a prime example of admixture, as their DNA can be traced to three broad
sources, European, Sub-Saharan African and Amerindian. However, there is a wide fluctuation
in the proportion of these ancestries throughout the continent. In addition, the genetic makeup of
Latinos shows regional heterogeneity. For example, Colombians are more likely to have
Senegalese, Gambian or Guinean African ancestry, while Brazilians are more likely to have
ancestry from Angola and Congo. Similarly, while a lot of Latin Americans get their European
ancestry from Spain or Portugal, many Argentinians also have Italian roots (24).

To assess the accuracy of our LAI model in these populations, we simulated Latino individuals
from Southern (SPP and ITA) and Northern (FRG and BRI) Europeans, Western (GSE, GLS and
NGA) and Central and Southern (CSA) Africans and artificially-reconstructed Native Americans
(NAM). Simulations were performed by emulating genetic intermixing for 12 generations using
SLiM (23). Native American genomes were created in silico using the Latino samples from the
1KGP, keeping only the genomic segments identified as East Asian as a proxy for indigenous
ancestry (fig. S10). Simulations were adapted to the genetic makeup that can be found today in
three broad regions within Latin America: the Antilles, comprised of 55% European, 40%
African (specifically NGA) and 5% Native American ancestry (NAM); Mexico and Central
America, made up of 50% European, 10% African (GLS and GSE) and 40% Native American
ancestry (NAM); and South America, composed of 65%, 15% and 20% of European, African
(GLS, GSE and CSA) and Native American (NAM), respectively (24; fig. S11). For
benchmarking purposes, we compared our results against FLARE, Gnomix and RFmix (Fig.
2A). Orchestra achieved an overall precision and recall of 77.17% and 76.73%, respectively,
outperforming the other three LAI models in all three aforementioned regions.

This gave us confidence to apply our model to real life Latin American samples from the 1KGP
and UKBB datasets (Fig. 2B, fig. S12), where Orchestra was able to successfully retrace major
patterns in the genetic history of the Latin Americas. For example, the highest percentage of
Native American ancestry (NAM) was found in Bolivia, Peru, Ecuador and Mexico, matching
demographic and genetic reports from this region (24-26). The majority of African ancestry in
the Caribbeans was assigned to Nigerian (NGA) and next Ghanaian, Ivorian, Liberian & Sierra
Leonean (GLS) ancestry. In contrast, a larger portion of the African ancestry in Brazil was
assigned to Central, South & Southeast African (CSA) ancestry, which captures populations of
Bantu origin on the African continent. This is in agreement with historical records of Africans
being transported to Brazil primarily from Angola, a former Portuguese colony (24).

Orchestra captured a higher percentage of Spanish & Portuguese (SPP) ancestry in Mexico, the
Greater Antilles, Columbia and Venezuela. British & Irish ancestry (BRI) was more prevalent in
Bermuda and the Bahamas, Lesser Antilles and the Guianas. Italian (ITA) ancestry was more
prominent in Argentina, Brazil and Uruguay. These findings match known demographic and
historic evidence (27).
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Fig. 2. Orchestra’s performance in Latino American individuals. (A) Ancestral composition of 1KGP admixed
American populations and UKBB participants that were born in the Americas revealed by Orchestra. Proportions of
Native American (yellow), Southern European (green), Northern European (blue) and African (red) ancestries are
shown. (B) Orchestra was also able to detect trace ancestries that reflect known historical population displacements
and immigration events. Clockwise: Greater percentage of Central, South & Southeast African (CSA) ancestry in
Brazil, A relatively large percentage of various Indian ancestries in the Guianas (IND), greater percentage of
Ashkenazi Jewish (ASK) in Argentina, and Japanese & Korean (JPK) ancestry in Brazil and Peru. (C) Percent recall
and precision for ancestry deconvolution by FLARE (navy), Gnomix (light blue), RFmix (green), and Orchestra
(red) on Latinos simulations (equivalent to 12 generations of admixture; we adjusted the simulations to mimic the

actual genetic composition of different regions within the continent: CA = Central America, Cb = Caribbean, SA =
South America).
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Interestingly, Orchestra was able to detect several notable trace ancestries (Fig. 2C). In addition
to the aforementioned CSA in Brazil, these also include a high percentage of Indian ancestries
(IND = BNI, GUP, ISL, NIP) in the Guianas, reflecting the indenture system used in former
British colonies (28), a high percentage of Ashkenazi Jewish (ASK) ancestry in Argentina,
which hosts the largest Ashkenazi Jewish community in South America, as well as the Japanese
ancestry detected in Brazil and Peru (JPK), which experienced a large wave of Japanese
immigration over the first half of the 20th century (29).

We also applied this method to all UKBB samples not used in our reference panel (fig. S13) and
to samples belonging to ethnicities found in various datasets that were not included in the
custom-35pops panel (figs. S14-25).

Ancestral Mapping

Seeing that we were able to identify 35 different populations with unprecedented accuracy (Fig.
1), next we explored the relationships among these populations. We created 35 distinct reference
panels for each target population, where that target population was omitted from its own
reference panel. Orchestra was run to obtain admixture proportions, which were then converted
into a matrix of distances that were projected onto two-dimensional space using the SMACOF
algorithm. The resulting network (Fig. 3A) largely reflects geographical proximity and replicates
known relationships between various populations (/9, 30).

Ancestral mapping results for individual populations are shown in figures S26-60. For example,
when we removed our French & German (FRG) population from the reference panel, the FRG
samples were mapped as mostly British and Irish (BRI, 58.9 %), Scandinavian (SCA, 13.1 %),
Italian (ITA, 9.5 %) and Eastern European (EAE, 9.4 %), with the ITA ancestry more prevalent
in the French and the Swiss, while EAE ancestry was more common in Austrians and Germans
(fig. S32). Our Turkish, Iraqi, Iranian & Caucasian population (ICM) was reconstructed as
mostly Levantine (LEV, 65.2 %), North Indian & Pakistani (NIP, 11.9 %), Cypriot (CYP,

9.6 %), Central Asian (CEA, 6.4 %) and Greek & Balkan (GBA, 3.8 %). NIP ancestry was more
common in the East, in Iraqis and Iranians, while GBA was more present in the West, especially
in the Turks (fig. S44). In these and many other populations, we observed a genetic cline,
indicating there is genetic heterogeneity within most of our 35 populations.

The ancestry and origin of the Askenazi Jewish have been subject to heated debate over the last
two decades. Here we mapped our Ashkenazi Jewish as primarily Italian (ITA, 68 %), followed
by Levantine (LEV, 16.6 %), Turkish, Iraqi, Iranian or Caucasian (ICM, 7.2 %), Greek and
Balkan (GBA, 2.4 %) and Eastern European (EAE, 1.7 %) (Fig. 3B). This largely agrees with
several reports based on both modern and medieval Ashkenazi Jewish DNA (3/-33).
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Fig. 3. Ancestral mapping. (A) Ancestral map of 35 populations projected onto two-dimensional space using the
SMACOF algorithm applied to a matrix of distances derived from the proportions obtained in the analysis. Solid
lines connect neighboring populations. Dashed lines indicate populations separated by geographical barriers to
dispersion. Continent contours were illustrated by hand. (B) Inferred ancestry of the Ashkenazi Jewish (ASK)
population according to Orchestra when ASK was omitted from the custom-35-pops training set. ARB: Arab, ASK:
Ashkenazi Jewish, BRI: British & Irish, BNI: Bengali & East Indian, CEA: Central Asian, CHD: Chinese Dai, CHI:
Han Chinese, CSA: Central, South & Southeast African, CYP: Cypriot, EAE: Eastern European, FIL: Filipino, FIN:
Finish, FRG: French & German, GBA: Greek & Balkan, GLS: Ghanaian, Ivorian, Liberian & Sierra Leonean, GSE:
Gambian & Senegalese, GUP: Gujarati Patels, ICM: Turkish, Iraqi, Iranian & Caucasian, ISL: Southern Indian &
Sri Lankan, ITA: Italian, JPK: Japanese & Korean, LEV: Levantine, MAM: Manchurian & Mongolian, MEL:
Melanesian & Aboriginal Australian, NAF: North African, NAM: Native American, NEA: Northeast African, NEP:
Nepalese, NGA: Nigerian, NIP: North Indian & Pakistani, SCA: Scandinavian, SEA: Southeast Asian, SIB:
Siberian, SPP: Spanish & Portuguese, VIE: Vietnamese.
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Detecting Signatures of Natural Selection

To check if we could leverage our LAI model to detect signatures of natural selection, we first
aimed to replicate previously identified signals. We followed the methods described in Cuadros-
Espinosa et al. (2022) (34), where combined statistics based on admixture proportions (Fadm
and LAD) was used to scan genomes of admixed populations for selection signals. Out of the
seven admixed populations tested, we were able to completely replicate signals in four
populations and partially in one population (table S3, fig. S61). Some of the discrepancies may
be due to methodology. We used a reference panel with 35 different populations to detect
admixture, vs. only the populations involved in the admixture in the original study. However, the
fact that many of the signals were detectable, even when we used different datasets with fewer
samples suggests that these signals are robust to discovery with different methods. This also
suggests that Orchestra may be used to recover signals of natural selection at a local level.

We then proceeded to apply Orchestra to British samples (N = 415,859 ) in the UK biobank
dataset. Figure 4A shows the distribution of Scandinavian (SCA) ancestry in this population.
SCA ancestry was particularly enriched in the East of England and East Midlands, where we also
found the highest density of former tentative Viking settlements, inferred as settlement names
ending in -by, -thorpe or -toft, confirming previous reports of Scandinavian hotspots in Eastern
England (35, 36). Next we aimed to identify potential adaptive signals using the Fadm and LAD
framework. We found a significant enrichment of SCA ancestry on chromosome 10, region
10q11.21-22 (Fig. 4B-C, fig. S62). We identified significant variants in this region that have
been functionally linked to several immune-related genes and potential targets for natural
selection, including MAPKS, WASHC2C and MARCHS. Interestingly, both MAPKS and
WASHC2C have been linked to smallpox virus infection and replication rates (37, 38), which is
of note considering that the Vikings were reported to be carriers of smallpox-like viruses (39).
Apart from smallpox, these genes have also been linked to influenza, bacterial pneumonia,
tuberculosis (40), and other infectious diseases prominent in Middle Age Britain (4/).
Furthermore, the region displays an enrichment of GWAS hits where SCA ancestry is associated
with elevated erythrocyte and hemoglobin levels (fig. S63), and there is a higher prevalence of
SCA ancestry among UKBB participants reporting lower incidences of "respiratory infection"
and "influenza with pneumonia" (fig. S64).
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Scandinavian (SCA) ancestry percentage in UK and presumed Viking settlements, inferred from place name
endings: -by, -thorpe, or -toft. Inset shows the correlation between the total places with Viking-derived names and
average SCA ancestry per county. (B) Genome-wide adaptive admixture signals in 56,101 British individuals with
over 5% SCA ancestry. Larger points indicate variants surpassing the significance threshold (denoted by a
horizontal dotted line). The chrl10 signal detected is marked by a gray-shaded area. Inset, estimated ancestral
composition for this sample set. (C) Local percentages of BRI and SCA ancestries on chromosome 10 windows
(average percentage levels depicted by horizontal lines), alongside the Fadm score per variant and genes within the
region.
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Discussion

While our world is becoming increasingly admixed, genomic studies have largely focused on
non-admixed populations with a pronounced European bias (8, 4/, 45). This is an issue when we
consider that genomic models developed and trained in one population have poor portability
outside that population (45-47). Recently, strides have been made to address this gap, but most
have been limited to cross-continental resolution, due to limitations in LAI accuracy (/2-16).

To address this, we have developed Orchestra, a novel LAI model that can account for the
genetic heterogeneity in admixed populations. Orchestra can work with reference panels made of
many combined datasets, is able to accurately retrace demographic histories of complex admixed
populations, such as Latin Americans, and does so on a fine-grained regional scale. Further,
Orchestra can be used to elucidate relationships between different populations. We weigh in on
the ongoing debate about the origins of the Ashkenazi Jewish, supporting strong genetic ties to
the Italian Peninsula (3/-33).

Finally, Orchestra's local aspect enables us to apply it to downstream applications, such as
detecting signatures of selection. We trace Scandinavian ancestry in British UKBB samples,
which allows us to detect a potential immune-related signal on chromosome 10. This possibly
Viking-derived region may have provided an edge against respiratory infections, such as
smallpox, influenza or pneumonia. This region is, to this day, linked to a lower rate of respiratory
infections and influenza in UKBB participants.

There is potential for improving the accuracy of Orchestra by creating more sophisticated
reference panels. Some of the issues we had to overcome in this study were batch effects due to
diverse sequencing technologies and insufficient coverage in more dated datasets. No reference
panel can be perfect, as we are by definition breaking up genomic continuums into discrete
populations.We expect that improving the reference panel will generate further finer-scale
insights into recent admixture around the globe.

A limitation of Orchestra in its current iteration is its use of windows to infer local ancestry.
With admixture, genomic segments become increasingly smaller with each generation due to
cross-over and recombination. And while Orchestra is modeled on recombination to reconstruct
ancestry within a window, this results in a trade-off between accuracy and the ability to detect
signals from further back in time. Orchestra is relatively accurate at least up to around 12
generations of admixture and can detect trace ancestries from further back in time. This means it
is suited to reconstruct events of relatively recent admixture, within Modern and potentially
Medieval history. However, for reconstruction of Ancient history, other non-window based LAI
models would have a clear advantage (48, 49).

Orchestra advances the field of LAI enabling accurate detection of chromosomal segments at
regional levels. It also takes an important step towards a more equitable genomics, promising to
improve a range of downstream applications, such as long-range phasing and GWAS, and by
extent genomic and personalized medicine in admixed populations.
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