

1 ***Row1, a member of a new family of conserved fungal proteins involved in infection, is***
2 ***required for appressoria functionality in *Ustilago maydis****

3 María Dolores Pejenaute-Ochoa¹, Laura Tomás-Gallardo², José I. Ibeas^{1,3} and Ramón
4 R. Barrales^{1,3}

5
6

7
8 Affiliations:

9 1: Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta
10 de Andalucía, Ctra. Utrera km.1, 41013 Seville, Spain.

11 2: Proteomics and biochemistry platform. Centro Andaluz de Biología del Desarrollo (CABD),
12 Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013 Seville, Spain.

13 3: Corresponding authors

14

15 **Key words:** appressoria, fungal cell wall, secretion, virulence, biotrophic, *Ustilago maydis*.

16

17 Summary

18 The appressorium of phytopathogenic fungi is a specific structure with a crucial role in
19 plant cuticle penetration. Pathogens with melanized appressoria break the cuticle
20 through cell wall melanization and intracellular turgor pressure. However, in fungi with
21 non-melanized appressorium, the mechanisms governing cuticle penetration are poorly
22 understood. Here we characterize Row1, a previously uncharacterized appressoria-
23 specific protein of *Ustilago maydis* that localizes to membrane and secretory vesicles.
24 Deletion of *row1* decrease appressoria formation and plant penetration, thereby
25 reducing virulence. Specifically, the $\Delta row1$ mutant has a thicker cell wall that is more
26 resistant to glucanase degradation. We also observed that the $\Delta row1$ mutant has
27 secretion defects. Our data suggest that Row1 could modify the glucans that form the
28 fungal cell wall and may be involved in unconventional protein secretion, thereby
29 promoting both appressoria maturation and penetration. We show that Row1 is
30 functionally conserved at least among Ustilaginaceae and belongs to the Row family,
31 which consists of five other proteins that are highly conserved among Basidiomycota
32 fungi and are involved in *U. maydis* virulence. We observed similarities in localization
33 between Row1 and Row2, which is also involved in cell wall remodelling and secretion,
34 suggesting similar molecular functions for members of this protein family.

35

36 **INTRODUCTION**

37 The interaction between plants and pathogenic fungi involves sophisticated
38 mechanisms and elements from both organisms. Pathogens require invading strategies,
39 such as the development of specialized structures to penetrate the plant cuticle (Ryder &
40 Talbot, 2015; Shi *et al.*, 2023) and a camouflage machinery to prevent recognition by
41 their host (Uhse & Djamei, 2018; Yang, 2022). Plants prevent fungal infection by
42 recognizing pathogen-associated molecular patterns (PAMPs) through their pattern
43 recognition receptors (Boller & Felix, 2009), which activates PAMP-triggered
44 immunity (Dodds & Rathjen, 2010; Uhse & Djamei, 2018). To counteract PAMP-
45 triggered immunity, pathogens use effectors, secreted proteins that function either at the
46 interface between host and pathogen or inside host cells (Lanver *et al.*, 2017), which
47 activate effector-triggered immunity to suppress host defences and support infection
48 (Gupta *et al.*, 2015).

49 This plant-pathogen interaction is highly dependent on the fungal cell wall,
50 which is composed mainly of polysaccharides and proteins and serves as the initial
51 barrier between the two organisms (Gow *et al.*, 2017; Geoghegan *et al.*, 2017; Tanaka
52 & Kahmann, 2021). The inner layer of the cell wall consists predominantly of a chitin-
53 glucan core (Latgé, 2007; Gow *et al.*, 2017; Geoghegan *et al.*, 2017). Glucan constitutes
54 approximately 50–60% of the dry weight of fungal cell wall and consists mainly of long
55 linear chains of beta-1,3-linked glucose (Bowman & Free, 2006; Garcia-Rubio *et al.*,
56 2019), while chitin is present in lower abundance (10–20%) as beta-1,4-linked chains of
57 N-acetylglucosamine (Latgé, 2007; Gow *et al.*, 2017; Garcia-Rubio *et al.*, 2019). The
58 outer layer includes mannosylated proteins representing 20–30% of fungal cell wall
59 (Bowman & Free, 2006), and most of them are anchored to the plasma membrane by
60 the lipid glycosylphosphatidylinositol (GPI) (De Groot *et al.*, 2005; Vogt *et al.*, 2020).
61 Recent studies suggest that the GPI anchoring of these proteins is crucial for their
62 function, since loss of GPI compromises cell wall integrity and virulence in fungal
63 pathogens (Rittenour & Harris, 2013; Liu *et al.*, 2020). Moreover, the sugar fraction of
64 the mannosylated proteins is also essential for virulence, since alterations of their N- or
65 O-glycosylation pattern suppresses plant antifungal protein binding and killing activity,
66 and plant infection (Fernández-Álvarez *et al.*, 2009; 2012; 2013; Pejenaute-Ochoa *et al.*,
67 2021; Ma *et al.*, 2023). Given the location of mannoproteins on the surface of the cell
68 wall, they are thought to be involved in host adhesion, evasion of the host immune

69 response, and maintenance of cell wall integrity (Bowman & Free, 2006; Gow *et al.*,
70 2017; Garcia-Rubio *et al.*, 2019).

71

72 During the first stages of pathogenesis, fungi undergo dynamic cell wall
73 remodelling, which is facilitated by the activity of glycohydrolases (such as chitinases
74 and glucanases), chitin-deacetylases and transglycosylases (Gow *et al.*, 2017;
75 Geoghegan *et al.*, 2017; Gow & Lenardon, 2023). The absence of many of these
76 enzymes drastically reduces virulence (Mouyna *et al.*, 2005; Wawra *et al.*, 2016;
77 Samalova *et al.*, 2017; Bi *et al.*, 2021). This remodelling mechanism enables the fungus
78 to evade plant defence molecules (van den Burg *et al.*, 2006; Mentlak *et al.*, 2012;
79 Geoghegan *et al.*, 2017) and undergoes morphological changes to develop filaments,
80 penetrate the plant cuticle, invade host tissues and colonize successfully (Mendgen *et*
81 *al.*, 1996; Wang & Lin, 2012; Lin *et al.*, 2014). An essential morphological transition
82 for establishing virulence in pathogenic fungi is the formation of the appressorium, a
83 specialized structure that facilitates breaching of the plant cuticle, allowing effective
84 colonization of the host (Ryder & Talbot, 2015; Chethana *et al.*, 2021; Ryder *et al.*,
85 2022).

86

87 Different types of appressoria and their mechanisms of penetration have been
88 studied extensively in plant pathogens (O'Connell & Panstruga, 2006; Ryder & Talbot,
89 2015; Talbot, 2019; Chethana *et al.*, 2021). Dark appressoria in fungi like
90 *Colletotrichum* or *Magnaporthe* species are crucial for the infection process (de Jong *et*
91 *al.*, 1997; Perfect *et al.*, 1999; Tucker & Talbot, 2001) and require cell wall
92 melanization and glycerol accumulation for penetration (Mendgen *et al.*, 1996; de Jong
93 *et al.*, 1997; Wilson & Talbot, 2009). Appressoria melanization and turgor pressure,
94 which is coordinated with the secretion of plant-cell wall degrading enzymes
95 (PCWDEs) (Presti *et al.*, 2015; Wang & Wang, 2018; Yang, 2022), enable the fungus to
96 mechanically breach the host surface. Other cereal pathogens, such as *Blumeria*
97 *graminis*, *Phakopsora pachyrhizi* and *Ustilago maydis*, have non-melanized or slightly
98 melanized appressoria (Mendgen *et al.*, 1996; Lanver *et al.*, 2014; Chethana *et al.*,
99 2021; Ryder *et al.*, 2022). In these pathogens, secretion of PCWDEs and effectors is
100 particularly important for host invasion and for establishing disease progression
101 (Kubicek *et al.*, 2014; Bradley *et al.*, 2022).

102

103 In the plant pathogenic fungus *U. maydis*, many effectors and PCWDEs have
104 been identified and characterized (for examples see Lanver *et al.*, 2017; Zuo *et al.*,
105 2019; Ludwig *et al.*, 2021; Navarrete *et al.*, 2021; Moreno-Sánchez *et al.*, 2021; Ökmen
106 *et al.*, 2022; Bindics *et al.*, 2022). When this fungus penetrates the plant, it interacts
107 closely with the surrounding plant plasma (Doehlemann *et al.*, 2008), where it secretes
108 proteins that modify host cell structure and function (Win *et al.*, 2012; Lanver *et al.*,
109 2017). The fungus also modifies its own cell wall to improve its infectivity and to evade
110 the plant immune system (Mueller *et al.*, 2008; Ruiz-Herrera *et al.*, 2008; Lanver *et al.*,
111 2014). To do this, *U. maydis* uses several strategies, such as converting chitin to
112 chitosan (Rizzi *et al.*, 2021; Ma *et al.*, 2023), redecorating the surface of the hyphae by
113 blocking plant antifungal activity (Ma *et al.*, 2018), and reorganizing the fungal cell
114 wall structure (Tanaka *et al.*, 2020).

115 In this study, we characterize the protein Row1, remodelling of fungal cell wall
116 1. Here we show that deletion of *row1* leads to defects in appressoria formation and cell
117 wall structure and disrupts normal protein secretion. Moreover, we demonstrated that
118 Row1 belongs to a conserved protein family of five members that are also involved in
119 pathogenesis.

120 **MATERIALS AND METHODS**

121 **Plasmids and strain constructions, growth conditions and infection assays**

122 All *U. maydis* strains used in this study are listed in Supporting Information
123 Table S1. Southern Blot analysis was used to verify all deletion and complementation
124 mutants as previously described (Moreno-Sánchez *et al.*, 2021). Primers and plasmids
125 used in this study, and the cloning procedure used to generate them, are listed in Table
126 S2. Detailed cloning and strain generation, growth conditions and virulence assay are
127 provided in **Methods S1**. Gene accession number is provided in Table S3.

128 **Adhesion and stress assays**

129 Cell stress and cell wall integrity assays were developed with cultures grown at
130 28°C to exponential phase in CMD-2%glucose and spotted at OD₆₀₀ of 0.4 onto CM
131 plates supplemented with different stress-inducing agents. Specifically, Tunicamycin 1
132 µg/ml (Sigma-Aldrich) were used for reticulum stress, calcofluor white 10 µg/ml

133 (Sigma-Aldrich) and Congo Red 10mM (Sigma-Aldrich) for cell wall integrity, Sorbitol
134 1M (Sigma-Aldrich, and NaCl 0.5M (Sigma-Aldrich) for osmotic pressure, and H₂O₂
135 0.75 mM (Sigma-Aldrich) for oxidative stress. Plates were incubated for 48 h at 28°C.
136 Adhesion assay was performed as previously described (Fernández-Álvarez *et al.*,
137 2012).

138 **Fungal Biomass Analysis**

139 For fungal biomass quantification, 2cm long segments from the 3rd leaf of 8
140 different plants at 2, 4 and 6 dpi were cut 1cm below the infective puncture and treated
141 as previously described (Marín-Menguiano *et al.*, 2019). 60 ng of total DNA was used
142 as template for each reaction.

143 **Samples preparation for microscopy analysis**

144 For hyphae proliferation, infected leaves from 1, 3 and 5 dpi were stained with
145 wheat germ agglutinin-propidium iodide WGA-PI. Infected plants were distained with
146 ethanol, treated 4h at 60°C with 10% KOH, washed in PBS1X buffer and then stained
147 with PI to visualize plant tissues in red and WGA-AF488 to visualize the fungus in
148 green.

149 To detect chitin, filaments induced for 5 hours were stained with WGA as
150 explained (Fernández-Álvarez *et al.*, 2009). To visualize filamentation and septa
151 formation, cells were centrifugated and resuspended in Calcofluor White (CFW)
152 staining solution (4 µg/mL CFW). For appressoria formation, infected leaves were
153 stained with CFW (0.1 mg/mL) and observed 18h after plant inoculation. Chlorazole
154 Black staining was performed as described (Brachmann *et al.*, 2003) in leaves collected
155 at 1dpi. All samples were observed using Delta Vision microscopy.

156 For Lallzyme treatment, filament cultures induced for 5 hours were resuspended
157 in cold Lallzyme MMX® (0.015g/ml) as indicated (Fernández-Álvarez *et al.*, 2013).
158 Samples from all the examined strains were collected at 15 minutes and subjected to
159 microscopic imaging using a DeltaVision microscope.

160 For transmission electron microscopy, samples were fixed, processed, and
161 examined using a Zeiss Model Libra 120 transmission electron microscope in the
162 General Research Services of the University of Seville (CITIUS).

163 Row family proteins tagged with GFP or mCherry were observed using
164 DeltaVision microscope.

165 The features, filters and settings for microscopy are detailed in **Methods S1**.

166 **Protein and blotting assays**

167 For protein secretion extraction, proteins in supernatants were collected after
168 Trichloroacetic (TCA) – deoxycholate (DOC) precipitation. For cytosolic protein
169 extraction, pellets were ground into a powder using a mortar/pestle under liquid
170 nitrogen and were resuspended in lysis buffer (20 mM Tris-HCl, 0.5 M NaCl, pH 7.4)
171 with protease inhibitor cocktail and centrifuged at 14000 rpm for 30 min at 4°C and
172 supernatant was collected and quantified. 60 µg of each protein fraction was separated
173 by SDS-PAGE and detected by western blot analysis.

174 Changes in protein secretion were relative quantified with the isobaric standard
175 tandem tag (TMT) 10 plex labelling kit (Thermo Fisher Scientific).

176 Colony secretion assay was performed as previously described (Moreno-
177 Sánchez *et al.*, 2021).

178 The detailed protocols of protein extraction and Mass Spectrometry assay,
179 western blotting and data analysis can be found in **Methods S1**.

180 **Sequence Alignment, Phylogenetic Analysis and Predictive analysis tool**

181 BlastP was used to search for Row1 homologues sequences in *U. maydis* and
182 other fungi. For the Row1 Ustilaginaceae phylogenetic tree, reciprocal best hits blast
183 was used. Multiple sequence alignments were generated by MAFFT v7 and visualized
184 using Jalview. Phylogenetic analysis is explained in **Methods S1**. Predictive analysis
185 tool used to infer proteins characteristic is thoroughly explained in **Methods S1**.

186 **RESULTS**

187 **Row1 plays a role in appressoria progression inside plant tissues**

188 We previously identified several *U. maydis* glycoproteins with effects on plant
189 infection (Marín-Menguiano *et al.*, 2019). Umag_00309, hereafter Row1 (remodelling
190 of fungal cell wall protein 1), was an uncharacterized protein with no clear homology
191 with previously characterized proteins. To confirm the relevance of Row1 in
192 pathogenesis, we infected maize plants with two independent clones of *row1* deletion
193 mutants in the sexually compatible *U. maydis* strains FB1 (a1b1) and FB2 (a2b2)
194 (Banuett & Herskowitz, 1989)(Fig. S1a). We also performed $\Delta row1$ infection assays in
195 the solopathogenic *U. maydis* strain SG200 (Fig. S1b) (Bölker *et al.*, 1995), and in the
196 CL13 strain (Fig. S1c), a progenitor strain of SG200 that has attenuated virulence
197 (Bölker *et al.*, 1995). Deletion of *row1* compromises infection in all these strains. As the
198 results showed a greater effect in the CL13 background (Fig. S1), we reintroduced the
199 *row1* allele in the CL13 $\Delta row1$ mutant and observed a full recovery of its virulence
200 capacity, confirming a role for Row1 in infection (Fig. 1a). To ascertain the role
201 of Row1 in pathogenesis, we first evaluated if loss of *row1* leads to growth defects
202 under axenic conditions. We found no differences between the wild-type (WT) and a
203 $\Delta row1$ mutant strain in generation time (Fig. S2a), cell morphology and length (Fig.
204 S2b), or cellular adhesion ability (Fig. S2c). Furthermore, the $\Delta row1$ and WT strains
205 responded similarly to oxidative, saline and cell wall stresses (Fig. S3). These results
206 indicate that pathogenic defects in $\Delta row1$ infections are unlikely to be associated with
207 defects in non-pathogenic cell cycle progression, which suggests that Row1 may be
208 essential specifically to virulence. In agreement with this idea, we observed that *row1* is
209 induced during infection at 1 day post-inoculation (dpi) (Fig. 1b), which is consistent
210 with the previously developed global genomic profile of *U. maydis* (Lanver *et al.*,
211 2018).

212

213 As the first stages of the *U. maydis* pathogenic program require FB1xFB2
214 mating, we evaluated mating and filament capacity. However, we found no significant
215 differences between WT and mutant strains (Fig. 1c). Because Row1 is not required for
216 mating and its role in infection is more relevant in the CL13 background (Fig. 1a and
217 Fig. S1c), we used this strain, which facilitates the detection of modest differences in
218 virulence (Di Stasio *et al.*, 2009; Djamei *et al.*, 2011), for further infection experiments.
219 First, we studied the mutant's ability to proliferate inside the plant by analysing fungal

220 biomass at 2, 4, and 6 dpi. We observed at least 50% less fungal biomass in the mutant
221 compared to WT at all tested points (Fig. 1d). As we did not observe any structural
222 defects in the proliferative hyphae of the $\Delta row1$ mutant (Fig. 1e), we evaluated whether
223 its reduced abundance inside the host might be attributed to problems occurring at an
224 earlier step in its pathogenic development. Therefore, we studied filamentation,
225 appressoria formation, hyphal branching, and clamp cell formation by staining the
226 fungus with Chlorazol Black at 29 hours post-infection. Although we detected no major
227 morphological differences in these structures between the mutant and WT strains,
228 approximately 42% of the appressoria of the $\Delta row1$ mutant did not penetrate or were
229 arrested after penetration, in contrast to the 15% of those of the WT strain (Fig. 1f). Our
230 findings suggest that Row1 is important for appressoria progression, which facilitates
231 successful host tissue colonization and subsequent tumour formation.

232 **Row1 localizes to the secretory membrane system and accumulates at the**
233 **appressorium during the initial stages of host interaction**

234 We next aimed to uncover the role of Row1 in these pathogenesis defects. Using
235 different databases, we identified Row1 as a GPI effector protein comprising a signal
236 peptide (amino acids 1–21), a serine-rich region (297–401) with at least 14 putative
237 mannosylation sites, and an alpha-helix transmembrane domain (403–423) that exposes
238 the C-terminal domain of the protein to the extracellular region. Although we could not
239 predict well-defined structures or the signal peptide, the Ser-rich domain or the
240 transmembrane region, we predicted a globular structure with a central β -sheet in the
241 central domain (amino acids 100–300) (Fig. 2a). As we did not identify any functional
242 domains in Row1, we used the Sma3 tool (Casimiro-Soriguer *et al.*, 2017), based on
243 high-throughput annotation, to determine the protein's potential function, cellular
244 localization, biological process or protein structure. GO term annotation identified a
245 putative role for Row1 in the polysaccharide catabolic process (GO:0000272), the xylan
246 catabolic process (GO:0045493), hydrolase activity on glycosyl bonds (GO:0016798)
247 and transmembrane transport (GO:0055085). To complement this information, we also
248 studied protein localization. As previous data showed that *row1* is expressed at the
249 beginning of the pathogenic program, we expressed *Row1* labelled with green
250 fluorescent protein (GFP) under its own promoter in the AB33 strain, which harbours
251 the compatible bE2/bW1 genes under the control of the nitrate-inducible *nar1* promoter.

252 In this strain, filamentation, one of the first steps of the pathogenic program, is induced
253 in nitrate-containing medium (Brachmann *et al.*, 2001). When filamentation was
254 induced, Row1 localized at the endoplasmic reticulum (ER) and plasma membrane, co-
255 localizing with the ER marker mRFP::HDEL (Fig. 2b). In addition, Row1 was detected
256 as small dots with bidirectional movement along defined cellular tracks, reminiscent of
257 secretory vesicles (Fig. 2c). We confirmed the localization of Row1 in secretory
258 vesicles by colocalization with Yup1 (Fig. 3d), a protein receptor (t-SNARE) involved
259 in membrane fusion that is necessary for the delivery of cell wall components (Wedlich-
260 Söldner *et al.*, 2000; Fuchs *et al.*, 2006). We also observed that Row1 accumulates at
261 sites of active growth (Fig. 3e). Considering that *row1* is induced during the early stages
262 of infection, alongside appressoria formation, and that *Δrow1* cells exhibit defects in
263 appressoria formation, we hypothesized that the primary function of Row1 might be
264 during appressorium formation. Thus, we examined Row1::GFP localization during
265 appressorium formation by co-localization with the AM1::mCherry reporter, which is
266 specifically expressed in the tips of filaments that are differentiating to appressoria. Our
267 findings revealed specific Row1::GFP localization at appressoria, with no signal in the
268 filament before or after appressorium formation (Fig. 2f).

269

270 **Row1 is essential for proper cell wall architecture**

271 Based on the localization data and our prediction that Row1 is an effector
272 protein with a potential role in polysaccharide degradation, we postulated that Row1
273 may function as a secreted PCWDE involved in facilitating successful penetration. To
274 explore this possibility, we used a colony secretion assay (Krombach *et al.*, 2018) in an
275 SG200 background and induced the virulence program by growing the cells on Potato
276 Dextrose (PD)-Charcoal media. However, no Row1::GFP signal was detected in either
277 the pathogenic or non-pathogenic conditions (Fig. S4a). In addition, in a western blot
278 assay, we observed the signal for Row1::GFP in the cytosolic lysate under induction
279 conditions (Fig. S4b) but not in the secreted fraction. However, we detected several
280 bands that might indicate the secretion and processing of Row1 (Fig. S4b). As we could
281 not conclusively determine that Row1 is secreted, and many GPI proteins, as Row1 is
282 predicted to be, are involved in fungal cell wall remodelling (Mouyna *et al.*, 2005;

283 Samalova *et al.*, 2017; Bi *et al.*, 2021), we explored its role in fungal cell wall
284 remodelling.

285

286 To study cell wall composition, we stained filaments with the lectin WGA,
287 which specifically binds to the N-acetylglucosamine monomers that form chitin (Nagata
288 & Burger, 1974), conjugated to Alexa Fluor 488 (WGA-AF488). As has been
289 previously observed (Flor-Parra *et al.*, 2007), the WT filaments accumulated chitin at
290 the growing hyphal tip, which was restricted to the growing apex. However, WT and
291 mutant strains showed similar levels of accumulation (Fig. 3a). To determine if any
292 other component of the cell wall was affected, we stained the hyphae with calcofluor
293 white (CFW). CFW has affinity for the β -(1,4) glucans that connect the N-
294 acetylglucosamine monomers, rather than the monomers themselves. It also
295 demonstrates affinity for β -(1,3) glucans (Rasconi *et al.*, 2009) . In this case, we found
296 a stronger CFW signal in the $\Delta row1$ mutant than in the WT (Fig. 3b). At the same time,
297 $\Delta row1$ hyphae were more resistant than WT hyphae to Lallzyme MMX, a mix of glucan
298 digestion enzymes (Fig. 3c). These data could suggest that the loss of *row1* mainly
299 affects glucan composition or the structure of the cell wall during hyphae growth. We
300 next aimed to characterize the alterations in the cell wall that arise from *row1* deletion
301 using transmission electron microscopy. Although the glycoprotein-rich outer layer of
302 the cell wall showed no notable difference between the WT and mutant strains, the
303 glucan-chitin inner layer showed a brighter signal and was thicker in the $\Delta row1$ mutant
304 (Fig. 4), indicating a different cell wall structure.

305

306 Next, we assessed whether the changes in cell wall composition and structure
307 affected filament length and morphology. We measured filament length and counted
308 bipolar or irregularly shaped hyphae in WT and the $\Delta row1$ mutant. The filaments in
309 both strains had similar length and morphology (Fig. S5). These findings suggest that
310 although the proper length and morphology of the pathogenic filaments do not require
311 Row1, the loss of this protein leads to alterations in normal cell wall structure during the
312 induction of the virulence program.

313

314 **Row1 is involved in faithful appressorium formation and maintenance of its cell-**
315 **wall characteristics**

316

317 Since appressorium formation involves a substantial transformation of the fungal
318 cell wall, which transitions from a hyphal morphology to a dome-like structure (Ryder
319 & Talbot, 2015), we hypothesized that alteration of fungal cell wall features might
320 compromise the proper formation of this specialized structure. To investigate
321 appressorium formation *in vivo* upon the loss of *row1*, we used the SG200 strain, cells
322 of which form easily observable appressoria without mating. We quantified cells,
323 filaments without appressorium, and filaments with appressorium in the WT and $\Delta row1$
324 mutant strains. While no differences in filamentation between the strains were detected
325 (Fig. 5a, left), we found a lower percentage of filaments forming appressoria in the
326 $\Delta row1$ mutant strain than in the WT strain (Fig. 5a, right). In agreement with our
327 previous results, the appressoria exhibited a higher CFW signal in the $\Delta row1$ strain than
328 in the WT strain (Fig. 5b). Our findings indicate that *Row1* is important for the
329 appressorium, potentially by remodelling the appressorium wall, which necessary for its
330 formation and progression inside plant tissues.

331

332 **The $\Delta row1$ mutant exhibits impaired secretion**

333

334 As the *U. maydis* appressorium does not provide mechanical force for physical
335 penetration, secretion of other proteins is essential for proper penetration: PCWDEs
336 break down the host cell wall, while effectors manipulate host cell physiology and
337 promote fungal penetration, colonization, and tumour formation (Lanver *et al.*, 2017).
338 Since the $\Delta row1$ mutant strain has poorer appressorium formation and progression
339 inside plant tissues, and the cell wall is altered, we hypothesized that this mutant may
340 has altered secretion, thereby compromising appressorium biology.

341

342 To investigate the potential impact of *row1* deletion on secretion, we analyzed
343 the secretomes of a WT and the $\Delta row1$ mutant in pathogenic filamentous growth
344 conditions by Quantitative Mass Spectrometry. We observed an altered secretion profile
345 for the $\Delta row1$ mutant, with a decrease in secretion as the main variation. We identified
346 39 proteins for which the difference in secretion levels between the two strains was
347 statistically significant: 35 of the proteins were secreted less in the $\Delta row1$ mutant, while
348 four were secreted more (Fig. 6a upper left panel and Table S4). Among the 35 proteins
349 that were secreted less in the $\Delta row1$ mutant, we identified several membrane-related
350 transported proteins, such as the putative vacuolar ATP synthase subunit E, an ABC

351 transporter-domain containing protein, and an acyl-CoA binding domain (ACB) protein,
352 which represent one of the main targets of unconventional secretion pathways (Ponpuak
353 *et al.*, 2015). Two of the 35 proteins were related to lipids: an annexin and the Scp2
354 effector identified in peroxisomes in *U. maydis* (Krombach *et al.*, 2018). This group of
355 proteins also included the protein Snf7 of the ESCRT III complex, which is involved in
356 vesicle trafficking; one septin protein; a GH16 glucanase, which is involved in cell wall
357 modification; and Row1 itself, confirming our previous suspicions about its secretion.
358 Finally, this group of 35 proteins included several proteins associated with mitochondria
359 and three ribosomal subunits (Fig. 6a lower left panel, Table S4). Interestingly, most of
360 the categories in which the differentially secreted proteins were classified have been
361 associated with unconventional protein secretion (UPS) through extracellular vesicles
362 (EVs) (Rutter *et al.*, 2022) (Fig. 6a lower left panel, Table S4).

363

364 To investigate if these proteins were found specifically in EVs, we searched for
365 homologous proteins in pathogenic fungi in which EVs and their components have
366 already been purified, such as *Fusarium oxysporum*, *Candida albicans*, *Cryptococcus*
367 *neoforman*s and *Histoplasma capsulatum*, as well as in the yeast *Saccharomyces*
368 *cerevisiae* (Albuquerque *et al.*, 2008; Vargas *et al.*, 2015; Zhao *et al.*, 2019; Garcia-
369 Ceron *et al.*, 2021). Our analysis revealed that around 50% of the 35 proteins that were
370 secreted less in the Δ row1 mutant had homologues in the EVs of these fungi (Fig. 6a
371 right panel, Table S4). Although annexin did not have a homologue in these fungi, it is
372 found in the EVs of mammals (Rutter *et al.*, 2022). Curiously, we identified a
373 homologue of Row1 named MP88 as one of the most abundant proteins in *C.*
374 *neoforman*s EVs (Rizzo *et al.*, 2021). This suggests a function for these proteins in EV-
375 mediated processes and indicates that Row1 might play a role in this type of secretion.

376

377 We also found in the proteomics analysis that the effector protein chorismutase 1
378 (Cmu1) (Djamei *et al.*, 2011) was secreted less in the Δ row1 mutant than in the WT,
379 although the difference was not statistically significant. As Cmu1 and other effectors are
380 not expected to be secreted by the UPS pathway, we examined its secretion by colony
381 secretion assays under pathogenic conditions. Our results confirmed a decrease in Cmu1
382 secretion in the Δ row1 mutant compared with the WT (Fig. 6b). To validate this
383 finding, we isolated the secreted protein fraction and studied the Cmu1 amount by

384 western blotting. In agreement with our previous observations, we found a lower
385 amount of Cmu1 in the $\Delta row1$ mutant compared to the WT strain (Fig. 6b).

386

387

388 **Row1 is part of a fungal protein family with roles in *U. maydis* virulence**

389 Despite the proposed role for Row1 in crucial stages of *U. maydis* pathogenic
390 development such as appressorium formation and secretion, the loss of Row1 does not
391 lead to a massive reduction in virulence capacity, as $\Delta row1$ infections still cause tumour
392 formation (Fig. 1a). One plausible explanation is the potential presence of Row1
393 paralogues in *U. maydis*. Thus, we searched for proteins containing a similar sequence
394 to Row1 using BlastP analysis. We found five putative paralogues of Row1:
395 Umag_00961 (Row2), Umag_02921 (Row3), Umag_10474 (Row4), Umag_06162
396 (Row5), and Umag_03349 (Row6) (Fig. 7a, Fig. S6 and Table S5). The genes for all
397 five paralogues are located on different chromosomes and have a similar length, and the
398 proteins all contain a signal peptide, a serine-rich domain and O- and/or N-glycosylation
399 sites. Row1, Row4, Row5, and Row6 have a transmembrane region, and Row5 and
400 Row6 have a GPI-anchor site similar to that of Row1. Row2, Row3, and Row5 are
401 predicted to be effector and apoplastic proteins (Fig. 7a, Table S6). MAFFT multiple
402 alignment showed high conservation between all the paralogues, mostly in the central
403 region (approximately amino acids 100–300), and the Sma3 tool associated Row2–5
404 with the same GO annotations as Row1 (Fig. S6, Table S6).

405 To study if members of this family have conserved functional domains, which
406 would suggest similar roles, we conducted a structural prediction analysis using
407 AlphaFold. The predicted structures of Row1 and all five paralogues showed a main
408 domain corresponding to amino acids 100–300 that exhibited a high degree of
409 superposition among all the paralogues (Fig. S7a) except for Row6, which displayed the
410 most significant differences (Fig. S7b). To further explore the possibility that all these
411 proteins represent a protein family, we developed a phylogenetic study. All members
412 showed a common ancestor and small distance were represented between the five
413 members. While Row2, Row3, Row4, and Row5 were the most related sequences and
414 were grouped in the same clade, Row6 was placed on a separate branch (Fig. 7b). All

415 these findings led us to conclude that these genes are part of a gene family, which we
416 call the Row family.

417 To determine whether Row1 and the other members of the Row family are
418 conserved in other smut fungi or are specific to *U. maydis*, we first searched for
419 orthologues of Row1 in Ustilaginaceae (Zuo *et al.*, 2019). A homology search and
420 phylogenetic tree analysis, which included most representative smut fungi, revealed the
421 presence of Row1 homologues in all available genomes of smut fungi (Fig. 7c, Table
422 S7). To explore whether these orthologues are also functionally conserved, we
423 complemented the *U. maydis* *row1* deletion mutant by introducing orthologues from
424 *Sporisorium reilianum* and *Ustilago hordei* under the *row1* promoter of *U. maydis*. Both
425 orthologues could fully restore the virulence phenotype of the *row1* deletion mutant
426 (Fig. 7d).

427 After experimentally verifying that Row1 was conserved in Ustilaginales, we
428 extended the study to the rest of the Row family. The phylogenetic tree grouped the six
429 members of the family into six independent clades with a common ancestor (Fig. S8).
430 While we observed some variability between family members, such as Row3 not being
431 conserved in *Melanopsichium pennsilvanicum*, *Testicularia cyperi*, and *Kalmanozyma*
432 *brasiliensis*, Row6 not being conserved in *T. cyperi*, and Row4 and Row5 not being
433 present in *Moesziomyces aphidis*, the overall protein family is conserved within the
434 Ustilaginaceae clade (Table S8 and Table S9). Next, we carried out a full conservation
435 study of the Row protein family across fungi. We observed conservation specifically in
436 the Basidiomycota division (Fig. 8a, Table S10). We must highlight the presence of
437 Row family members in rust fungi, which belong to Pucciniomycotina such as
438 *Melampsora* spp., *Phakopsora pachyrhizi* and *Puccinia* spp. (Fisher *et al.*, 2012; Yang,
439 2022), members of the genus *Microbotryum* that infect flowers of different plants, and
440 *Mixia osmundae*, a fern parasite (MIX, 1947). In addition to being found in
441 Ustilaginales fungi (Fig. S8 and Fig. 7c), the Row family also appears in
442 Ustilaginomycotina species belonging to the Exobasidiomycetes order, such as *Tilletia*
443 spp., which infect wheat and triticale (Bishnoi *et al.*, 2020). The Row family is also
444 conserved in animal and human pathogenic fungi such as *Malassezia* and *Cryptococcus*
445 spp. (Heitman, 2011), where several members of the family have been partially
446 characterized. In *C. neoformans*, CNAG_00776 and CNAG_6000 showed similarity

447 mainly to Row5 and Row4 (Table S11), and their deletion resulted in growth defects
448 (Snelders *et al.*, 2022) and capsule formation problems (Han *et al.*, 2020), respectively.
449 CNAG_05312, which showed similarity mostly to Row2 (Table S11), was associated
450 with melanin granules in the *Cryptococcus* capsule (Camacho *et al.*, 2019) and was
451 identified in a PKA1 protein-induced screening, which is involved in the synthesis of
452 the cell wall (Geddes *et al.*, 2015).

453

454 The observed conservation of this protein family in pathogenic fungi, coupled
455 with our findings, suggests that Row1 is part of a family of proteins that may have
456 similar virulence-related functions. To scrutinize this hypothesis, we studied the
457 potential role of the Row family in infection by deleting each gene in the CL13
458 background of *U. maydis*. While we found no significant differences in stress responses
459 (Fig. S3), all mutants except $\Delta row3$ had reduced virulence compared to the WT,
460 exhibiting a phenotype similar to $\Delta row1$ (Fig. 8b and Fig. S9). Of all mutants, $\Delta row2$
461 presented the lowest virulence capacity. As $\Delta row2$ and $\Delta row4$ had the lowest capacity
462 for infection, and the expression profile of these genes during the first stages of
463 infection is similar to that of *row1* (Fig. S10), we considered the possibility that these
464 proteins have similar functions during pathogenic development. We found that the
465 $\Delta row1\Delta row2$ double mutant caused significantly less severe symptoms in infected
466 maize plants than did single mutants. The triple mutant $\Delta row1\Delta row2\Delta row4$ even
467 showed less severe symptoms than the double mutant (Fig. 8b), indicating that Row1,
468 Row2 and Row4 might have redundant functions during pathogenesis. These findings
469 support the hypothesis that Row1 and its homologues may have similar functions in
470 pathogenic development.

471

472 **Row2 has a similar localization to Row1 and is also important for secretion and**
473 **cell wall modification**

474

475 To further test the idea of similar functions across the Row family, we selected
476 Row2, which showed the highest virulence defect, to analyse cellular localization and
477 its possible role in secretion and cell wall structure. We observed a similar location for
478 Row2 and Row1, with predominant signals at the ER and plasma membrane and an
479 additional slight accumulation in the nucleus (Fig. 9a). Based on the predicted signal
480 peptide and its localization, we hypothesized that Row2 could be part of the secretory

481 pathway. We carried out a colony secretion assay that confirmed Row2 secretion (Fig.
482 9b). We then investigated if Row2 also plays a role in effector secretion. We observed a
483 decrease of the Cmu1 secreted fraction in the $\Delta row2$ mutant compared to WT,
484 suggesting that Row2 is required for efficient Cmu1 secretion (Fig. 9c). Since Row1
485 and Row2 share similar localization and both affect secretion, we investigated whether
486 they have redundant functions in the pathogenic process. We introduced an extra copy
487 of *row2* in the $\Delta row1$ mutant, thereby compensating for the loss of *row1*, which rescued
488 the pathogenic defects of the mutant (Fig. 9d). This suggests a functional redundancy
489 between the two proteins, indicating that they may have overlapping roles in
490 pathogenesis.

491

492 Based on these findings and considering that the double mutant had less
493 capability for infection than the single mutant (Fig. 9b), we generated a $\Delta row1\Delta row2$
494 double mutant in the AB33 strain to explore whether it would also display defects in
495 cell wall composition or structure. Analysis with CFW suggest an effect of Row2 on
496 glucans composition (Fig. 3b), and electron microscopy showed that this mutant had a
497 thicker inner layer than WT and $\Delta row1$ single mutant (Fig. 4a). We also observed a
498 decrease in WGA chitin intensity in the double mutant when compared with both the
499 WT and $\Delta row1$ mutant strains (Fig. 3a), which suggests that a thicker cell wall could
500 impede access of the stain to the chitin. These findings strongly indicate the
501 involvement of Row1 and Row2 in fungal cell wall remodelling and suggest a
502 cooperative relationship between the two proteins in this process.

503

504 **DISCUSSION**

505

506 Our findings highlight Row1 as important for appressorium cell wall
507 remodelling and protein secretion. We show that Row1 belongs to a conserved family
508 of proteins that are involved in virulence, are found predominantly in pathogenic fungi
509 of the Basidiomycota clade and have potential functional similarities with Row1.

510

511 **The role of Row1 in the infection process**

512

513 As Row1 is expressed mainly on appressoria, and its absence leads to defects in
514 appressoria formation and penetration and to alterations in the cell wall, it is tempting to

515 think that the defect in the cell wall observed in the $\Delta row1$ mutant may cause
516 appressoria penetration problems. In contrast to fungi with melanized appressoria such
517 as *M. oryzae*, fungi with non-melanized appressoria, such as *U. maydis*, rely on
518 PCWDEs and effector secretion to break the plant cuticle and establish pathogenic
519 development (Kubicek *et al.*, 2014; Lanver *et al.*, 2014; Chethana *et al.*, 2021; Bradley
520 *et al.*, 2022). Thus, the thicker cell wall observed in the $\Delta row1$ mutant may cause some
521 defect in secretion that leads to defective penetration. In agreement with this idea, we
522 found that the $\Delta row1$ mutant had a defect in the secretion of some important proteins
523 for infection than WT, including effectors such as Cmu1 and Scp2 (Table S4 and Fig.
524 6). This correlation between cell wall thickness and secretion has been already observed
525 in the pathogenic fungi *Aspergillus nidulans*, where a weak cell wall has been suggested
526 as the possible cause of higher secretion (Boppidi *et al.*, 2018). In addition, a defective
527 or absent cell wall has been reported as affecting secretion in *Neurospora crassa* and
528 *Aspergillus nidulans*, respectively, which supports the role of the fungal cell wall in
529 secretion (Peberdy, 1994; Sietsma *et al.*, 1997). In this scenario, Row1 may have an
530 active role in fungal cell wall modification, potentially acting as a catalytic enzyme.
531 Although most remodelling enzymes have annotated domains that involve carbohydrate
532 binding or enzymatic activity, neither Row1 nor the rest of the Row family members
533 have any annotated domain (Fig. 2a). However, this has also been observed in proteins
534 such as the effector Stal1 in *U. maydis* (Tanaka *et al.*, 2020) and the GPI proteins Pga13
535 and Pga31 in *C. albicans* (Plaine *et al.*, 2008; Gelis *et al.*, 2012), which lack annotated
536 glycoside hydrolases or carbohydrate-binding domains but have been suggested to have
537 an active role in cell wall processes. Furthermore, as we have shown here, Row1 has
538 sequence and structural homology to some proteins of species in Agaricomycotina (Fig.
539 8a). Some of these proteins, mostly in species in the Agaricales order, were annotated as
540 carbohydrate-binding module family proteins due to the presence of the CBM13
541 domain, which is commonly found in enzymes involved in the degradation of complex
542 carbohydrates (Fujimoto, 2013) such as glycosyl hydrolases (Boraston *et al.*, 2000;
543 Notenboom *et al.*, 2002)). However, the similarity between Row1 and these proteins did
544 not include the region corresponding to the CBM13 domain (Fig. S11), which could
545 have been lost in other Basidiomycota organisms or acquired later by Agaricales fungi.
546 We speculate that like these proteins, Row1 could play a role in cell wall modification,
547 potentially contributing to enzymatic activity independently of the CBM13 domain.
548 Supporting this hypothesis, Sma3 analysis predicted a putative involvement of Row1 in

549 polysaccharide catabolic processes and hydrolase activity on glycosyl bonds. As $\Delta row1$
550 mutant filaments had a thicker inner cell wall (Fig. 4), higher resistance to glucan
551 degradation (Fig. 3c), increased CFW accumulation in the tip of the filament and during
552 appressoria formation (Fig. 3b and 5b), but no chitin defects in WGA staining (Fig. 3a),
553 we speculate that Row1 is involved in glucan modification during appressoria
554 formation.

555

556 Nevertheless, as secretory pathways contribute to the structure of cell walls and
557 host interactions (Latgé, 2007), another possibility that cannot be ruled out is that Row1
558 has a role in the secretion process, thereby altering fungal cell wall architecture. While
559 the classical ER/Golgi-dependent pathway is responsible for the secretion of most
560 extracellular proteins, many proteins without a signal peptide follow either a vesicle-
561 independent or vesicle-dependent UPS route (Rabouille, 2017; Dimou & Nickel, 2018).
562 In the latter case, proteins can be released within EVs, which are small lipid-bilayer
563 compartments involved in transporting proteins, lipids, nucleic acids, and other
564 macromolecules outside the cell (Shoji *et al.*, 2014). These EVs are formed inside late
565 endosomes as intraluminal vesicles and then released when the late endosome fuses
566 with the plasma membrane (van Niel *et al.*, 2018; Vats & Galli, 2022). We show that
567 Row1 exhibits vesicular movement, accumulating mainly at the tip of the hyphae, with
568 partial co-localization with Yup1, a t-SNARE present in endosomes (Fig. 2d). These
569 observations and the specific pool of proteins that are secreted less in the $\Delta row1$ mutant
570 than in WT, rather than a general secretion problem (Fig. 6a), lead us to propose a
571 potential role for Row1 in these vesicular processes as an alternative possibility. In
572 agreement with this proposal, our mass spectrometry analysis showed less secretion of
573 EV-related proteins than the WT strain (Fig. 6a, Table S4). In addition, a significant
574 percentage of the differentially secreted proteins are mitochondrial components. It has
575 been demonstrated in mammals that cells selectively regulate the packaging of
576 mitochondrial protein into EVs to prevent the release of damaged components that
577 would otherwise act as pro-inflammatory damage-associated molecular patterns
578 (Todkar *et al.*, 2021). Mesenchymal stem cells also undergo mitophagy in response to
579 oxidative stress, packaging mitochondrial components in EVs for cellular transfer
580 (Phinney *et al.*, 2015). All these data suggest that Row1 may be involved in UPS
581 through EVs. The alteration in the secretion of these EVs would easily explain other
582 effects of the $\Delta row1$ mutant, such as cell wall and appressoria penetration defects. EVs

583 have been proposed to be involved in the remodelling of the cell wall to facilitate their
584 transit across it by carrying wall-remodelling enzymes as part of their cargo, such as β -
585 glucosidases, chitin-deacetylases or endochitinases (Rodrigues *et al.*, 2007;
586 Albuquerque *et al.*, 2008; Oliveira *et al.*, 2010; Brown *et al.*, 2015). In our analysis, we
587 detected lower levels of the GH16 glucanase and chitin-deacetylase 5 in the $\Delta row1$
588 mutant than in the WT, although the difference in the latter was not statistically
589 significant. We also found a decrease in the $\Delta row1$ secretion of the effector Scp2, which
590 is essential for proper appressorium formation (Krombach *et al.*, 2018), and annexin,
591 which is associated with the cell wall in the fungus *Phytophthora infestans* and plays a
592 crucial role in the penetration of this pathogen into the host tissue (Grenville-Briggs *et*
593 *al.*, 2010). In addition, we detected a defect in the $\Delta row1$ secretion of the effector Cmu1
594 (Fig. 6b), which should be secreted through the conventional secreted pathway. A recent
595 study demonstrates that effectors expressed during the infection of corn are contained
596 within the EVs of *Fusarium graminearum* (Garcia-Ceron *et al.*, 2021). This finding
597 raises the possibility that Cmu1 could also be present in unconventional secretion
598 pathways or be indirectly affected by the role of Row1 in UPS. In *C. neoformans*, one
599 of the major components of EV membranes is the protein MP88, which is homologous
600 with Row1 (Rizzo *et al.*, 2021) (Table S11), which suggest a direct role for Row1 in the
601 proper formation or maturation of EVs.

602

603 We have proposed two alternative scenarios regarding the potential function of
604 Row1: as a cell wall remodelling enzyme affecting secretion, or as a protein involved in
605 secretory pathways that affect the cell wall. However, these scenarios are not mutually
606 exclusive. Thus, we propose a third scenario that encompasses both hypotheses, in
607 which Row1 may be a component of EVs that facilitates glucan degradation for the cell
608 wall remodelling that is necessary for the proper secretion of EVs. In the absence of
609 Row1, EVs are unable to efficiently remodel the cell wall, leading to defects in their
610 own secretion. Since the components of EVs are crucial for pathogenesis
611 (GarciaCeron:2021bt, Albuquerque *et al.*, 2008; Vargas *et al.*, 2015), a reduction in
612 their secretion could result in deficiencies in pathogenesis, particularly during the
613 penetration stage.

614

615 **Functions of the Row family**

616

617 We have shown that Row1 belongs to a family of six Row proteins conserved in
618 Basidiomycota. All of these proteins except for Row3 have roles in infection in *U.*
619 *maydis* (Fig. 8b and Fig. S9). The conservation of the globular central domain, which
620 contains the possible glucan catabolic activity, is consistent with the idea that these
621 proteins all share a main role in cell wall remodelling. However, the similar membrane
622 localization and secretion defects observed for Row1 and Row2 indicate that a secretion
623 role for family members cannot be discounted. Our findings that phylogenetic analysis
624 demonstrates a common ancestor and that Row2 compensates for $\Delta row1$ defects in
625 tumour formation reinforce the idea of a shared main function for Row family members
626 (Fig. S8 and Fig. 9c). However, although they may share a main role, each protein
627 would have evolved to play a different specialized function during infection, likely at
628 different moments of infection. This is supported by the diverse expression pattern
629 during pathogenic development (Fig. S10): Row1 and Row2 are expressed at the first
630 stages, followed by Row3 and Row4, then Row6 during biotrophic establishment, and
631 finally Row5 when tumorigenesis begins (Fig. S10). Previous studies have exemplified
632 protein functional specialization in different fungal systems. For instance, a family of
633 three ferroxidases involved in iron uptake in *Mucor circinelloides* are differentially
634 expressed in yeast and hyphae forms (Navarro-Mendoza *et al.*, 2018). Cerato-platanins,
635 small cysteine-rich fungal secreted proteins (Pazzaglia *et al.*, 1999), have crucial roles in
636 various stages of the host-fungus interaction process and present distinct expression
637 profiles during the life cycle of different pathogen fungi (de O Barsottini *et al.*, 2013,
638 Gaderer *et al.*, 2014), similar to that observed for Row members.

639 Overall, we present here a new family of conserved proteins, the Row family,
640 with important roles in infection that may share a common function, probably in cell
641 wall remodelling or as UPS proteins. The Row family may represent a new group of
642 target proteins for the development of antifungal compound with a wide spectrum due
643 to the high conservation they have on pathogenic fungi.

644 **Acknowledgements**

645 We would like to thank the Genetics Department for their useful discussions and
646 comments. Victor Manuel Carranco, Sandra Romero, Blanca Navarrete and Adrián
647 Prieto for the technical assistant. Cristina Vaquero Aguilar from CITIUS (Universidad
648 de Sevilla) for technical support with Electron Microscopy. This research was supported

649 by MCIN/AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”,
650 grant number BIO2016-80180-P and MCIN/AEI/10.13039/501100011033/ grant
651 number PID2019-110477GB-I00 to JII.

652 **Data availability**

653 The data that support the findings of this study are openly available in
654 (repository name and URL will be available after acceptance), reference number
655 (reference number will be available after acceptance), and in the supplementary material
656 of this article.

657 **Competing interest**

658 The authors declare no competing interests.

659 **Author contributions**

660 MD.P-O, J.I.I and R.R.B planned and designed the research. MD.P-O generate
661 strains, performed the experiments, and analyzed the data. L.T.G performed Mass
662 Spectrometry experimental procedures. MD.P-O and R.R.B wrote the original
663 manuscript with input from all coauthors.

664 **ORCID**

665 Ramón Ramos Barrales: <https://orcid.org/0000-0002-5256-3222>
666 José Ignacio Ibeas Corcelles: <https://orcid.org/0000-0002-2394-7075>
667 María Dolores Pejenaute Ochoa: <https://orcid.org/0000-0001-9289-3077>
668 Laura Tomás Gallardo <https://orcid.org/0000-0001-9661-0521>

669 **References**

670 **Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-**
671 **Oliveira RM, Almeida IC, Nosanchuk JD. 2008.** Vesicular transport in *Histoplasma*
672 capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in
673 ascomycetes. *Cellular microbiology* **10**: 1695–1710.

674 **Banuett F, Herskowitz I. 1989.** Different alleles of *Ustilago maydis* are necessary for
675 maintenance of filamentous growth but not for meiosis. *Proceedings of the National
676 Academy of Sciences of the United States of America* **86**: 5878–5882.

677 **Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, Sanz AB, Arroyo J, Zhu W,
678 Masrati G, Sharon A. 2021.** The *Botrytis cinerea* Crh1 transglycosylase is a
679 cytoplasmic effector triggering plant cell death and defense response. *Nature
680 Communications*: 1–15.

681 **Bindics J, Khan M, Uhse S, Kogelmann B, Baggely L, Reumann D, Ingole KD,
682 Stirnberg A, Rybecky A, Darino M, et al. 2022.** Many ways to TOPLESS -
683 manipulation of plant auxin signalling by a cluster of fungal effectors. *New Phytologist*
684 **236**: 1455–1470.

685 **Bishnoi SK, He X, Phuke RM, Kashyap PL, Alakonya A, Chhokar V, Singh RP,
686 Singh PK. 2020.** Karnal Bunt: A Re-Emerging Old Foe of Wheat. *Frontiers in Plant
687 Science* **11**: 569057–18.

688 **Boller T, Felix G. 2009.** A renaissance of elicitors: perception of microbe-associated
689 molecular patterns and danger signals by pattern-recognition receptors. *Annual review
690 of plant biology* **60**: 379–406.

691 **Boppidi KR, Ribeiro LFC, Iambamrung S, Nelson SM, Wang Y, Momany M,
692 Richardson EA, Lincoln S, Srivastava R, Harris SD, et al. 2018.** Altered secretion
693 patterns and cell wall organization caused by loss of PodB function in the filamentous
694 fungus *Aspergillus nidulans*. *Scientific Reports* **8**: 11433–11.

695 **Boraston AB, Tomme P, Amadoron EA, Kilburn DG. 2000.** A novel mechanism of
696 xylan binding by a lectin-like module from *Streptomyces lividans* xylanase 10A. *The
697 Biochemical journal* **350 Pt 3**: 933–941.

698 **Bowman SM, Free SJ. 2006.** The structure and synthesis of the fungal cell wall.
699 *BioEssays : news and reviews in molecular, cellular and developmental biology* **28**:
700 799–808.

701 **Bölker M, Gein S, Lehmler C, Kahmann R. 1995.** Genetic regulation of mating and
702 dimorphism in *Ustilago maydis*. *Canadian Journal of Botany* **73**: 320–325.

703 **Brachmann A, Schirawski J, Müller P, Kahmann R. 2003.** An unusual MAP kinase
704 is required for efficient penetration of the plant surface by *Ustilago maydis*. *The EMBO
705 Journal* **22**: 2199–2210.

706 **Brachmann A, Weinzierl G, Kämper J, Kahmann R. 2001.** Identification of genes in
707 the bW/bE regulatory cascade in *Ustilago maydis*. *Molecular Microbiology* **42**: 1047–
708 1063.

709 **Bradley EL, Ökmen B, Doehlemann G, Henrissat B, Bradshaw RE, Mesarich CH.
710 2022.** Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of
711 Plant-Associated Fungi and Oomycetes. *Frontiers in Plant Science* **13**: 853106–16.

712 **Brown L, Wolf JM, Prados-Rosales R, Casadevall A. 2015.** Through the wall:
713 extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. : 1–11.

714 **Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O'Meally RN, Cordero**
715 **RJB, Cole RN, McCaffery JM, Stark RE, et al. 2019.** The structural unit of melanin
716 in the cell wall of the fungal pathogen *Cryptococcus neoformans*. *Journal of Biological*
717 *Chemistry* **294**: 10471–10489.

718 **Casimiro-Soriguer CS, Muñoz-Mérida A, Pérez-Pulido AJ. 2017.** Sma3s: A
719 universal tool for easy functional annotation of proteomes and transcriptomes.
720 *Proteomics* **17**: 1–4.

721 **Chethana KWT, Jayawardena RS, Chen Y-J, Konta S, Tibpromma S,**
722 **Abeywickrama PD, Gomdola D, Balasuriya A, Xu J, Lumyong S, et al. 2021.**
723 Diversity and Function of Appressoria. *Pathogens (Basel, Switzerland)* **10**: 1–23.

724 **De Groot PWJ, Ram AF, Klis FM. 2005.** Features and functions of covalently linked
725 proteins in fungal cell walls. *Fungal Genetics and Biology* **42**: 657–675.

726 **de Jong JC, McCormack BJ, Smirnoff N, Talbot NJ. 1997.** Glycerol generates
727 turgor in rice blast. *Nature* **389**: 244–244.

728 **de O Barsottini MR, de Oliveira JF, Adamoski D, Teixeira PJPL, do Prado PFV,**
729 **Tiezzi HO, Sforça ML, Cassago A, Portugal RV, de Oliveira PSL, et al. 2013.**
730 Functional diversification of cerato-platanins in *Moniliophthora perniciosa* as seen by
731 differential expression and protein function specialization. *Molecular plant-microbe*
732 *interactions: MPMI* **26**: 1281–1293.

733 **Di Stasio M, Brefort T, Mendoza-Mendoza A, Münch K, Kahmann R. 2009.** The
734 dual specificity phosphatase Rok1 negatively regulates mating and pathogenicity in
735 *Ustilago maydis*. *Molecular Microbiology* **73**: 73–88.

736 **Dimou E, Nickel W. 2018.** Unconventional mechanisms of eukaryotic protein
737 secretion. *Current Biology* **28**: R406–R410.

738 **Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T,**
739 **Fernie AR, Feussner I, et al. 2011.** Metabolic priming by a secreted fungal effector.
740 *Nature* **478**: 395–398.

741 **Dodds PN, Rathjen JP. 2010.** Plant immunity: towards an integrated view of plant-
742 pathogen interactions. *Nature Publishing Group* **11**: 539–548.

743 **Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A, Mohanty**
744 **A, Jackson D, Kahmann R. 2009.** Pep1, a secreted effector protein of *Ustilago*
745 *maydis*, is required for successful invasion of plant cells. *PLoS Pathogens* **5**: e1000290.

746 **Doehlemann G, Wahl R, Vranae M, de Vries RP, Kämper J, Kahmann R. 2008.**
747 Establishment of compatibility in the *Ustilago maydis*/maize pathosystem. *Journal of*
748 *plant physiology* **165**: 29–40.

749 **Fernández-Álvarez A, Elías-Villalobos A, Ibeas JI. 2009.** The O-mannosyltransferase
750 PMT4 is essential for normal appressorium formation and penetration in *Ustilago*
751 *maydis*. *The Plant Cell* **21**: 3397–3412.

752 **Fernández-Álvarez A, Elías-Villalobos A, Jiménez-Martín A, Marín-Menguiano**
753 **M, Ibeas JI.** 2013. Endoplasmic reticulum glucosidases and protein quality control
754 factors cooperate to establish biotrophy in *Ustilago maydis*. *The Plant Cell* **25**: 4676–
755 4690.

756 **Fernández-Álvarez A, Marín-Menguiano M, Lanver D, Jiménez-Martín A, Elías-**
757 **Villalobos A, Pérez-Pulido AJ, Kahmann R, Ibeas JI.** 2012. Identification of O-

758 mannosylated virulence factors in *Ustilago maydis*. *PLoS Pathogens* **8**: e1002563.

759 **Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr**
760 **SJ.** 2012. Emerging fungal threats to animal, plant and ecosystem health. *Nature* **484**:
761 186–194.

762 **Flor-Parra I, Castillo-Lluva S, Pérez-Martín J.** 2007. Polar growth in the infectious
763 hyphae of the phytopathogen *ustilago maydis* depends on a virulence-specific cyclin.
764 *The Plant Cell* **19**: 3280–3296.

765 **Fuchs U, Hause G, Schuchardt I, Steinberg G.** 2006. Endocytosis is essential for
766 pathogenic development in the corn smut fungus *Ustilago maydis*. *The Plant Cell* **18**:
767 2066–2081.

768 **Fujimoto Z.** 2013. Structure and function of carbohydrate-binding module families 13
769 and 42 of glycoside hydrolases, comprising a β-trefoil fold. *Bioscience, Biotechnology,*
770 *and Biochemistry* **77**: 1363–1371.

771 **Fujimoto Z, Kuno A, Kaneko S, Yoshida S, Kobayashi H, Kusakabe I, Mizuno H.**
772 **2000.** Crystal structure of *Streptomyces olivaceoviridis* E-86 beta-xylanase containing
773 xylan-binding domain. *Journal of molecular biology* **300**: 575–585.

774 **Garcia-Ceron D, Lowe RGT, McKenna JA, Brain LM, Dawson CS, Clark B,**
775 **Berkowitz O, Faou P, Whelan J, Bleackley MR, et al.** 2021. Extracellular Vesicles
776 from *Fusarium graminearum* Contain Protein Effectors Expressed during Infection of
777 Corn. *Journal of fungi (Basel, Switzerland)* **7**: 1–18.

778 **Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N.** 2019. The
779 Fungal Cell Wall: *Candida*, *Cryptococcus*, and *Aspergillus* Species. *Frontiers in*
780 *Microbiology* **10**: 2993–13.

781 **Gaderer R, Bonazza K, Seidl-Seiboth V.** 2014. Cerato-platanins: a fungal protein
782 family with intriguing properties and application potential. *Applied Microbiology and*
783 *Biotechnology* **98**: 4795–4803.

784 **Geddes JMH, Croll D, Caza M, Stoynov N, Foster LJ, Kronstad JW.** 2015.
785 Secretome profiling of *Cryptococcus neoformans* reveals regulation of a subset of
786 virulence-associated proteins and potential biomarkers by protein kinase A. *BMC*
787 *Microbiology* **15**: 206–26.

788 **Gelis S, De Groot PWJ, Castillo L, Moragues M-D, Sentandreu R, Gómez M-M,**
789 **Valentín E.** 2012. Pga13 in *Candida albicans* is localized in the cell wall and influences
790 cell surface properties, morphogenesis and virulence. *Fungal Genetics and Biology* **49**:
791 322–331.

792 **Geoghegan I, Steinberg G, Gurr S. 2017.** The Role of the Fungal Cell Wall in the
793 Infection of Plants. *Trends in Microbiology* **25**: 957–967.

794 **Grenville-Briggs LJ, Avrova AO, Hay RJ, Bruce CR, Whisson SC, van West P.**
795 **2010.** Identification of appressorial and mycelial cell wall proteins and a survey of the
796 membrane proteome of *Phytophthora infestans*. *Fungal Biology* **114**: 702–723.

797 **Gow NAR, Lenardon MD. 2023.** Architecture of the dynamic fungal cell wall. *Nature*
798 *Reviews Microbiology* **21**: 248–259.

799 **Gow NAR, Latgé J-P, Munro CA. 2017.** The Fungal Cell Wall: Structure,
800 Biosynthesis, and Function. *Microbiology spectrum* **5**: 1–25.

801 **Gupta R, Lee SE, Agrawal GK, Rakwal R, Park S, Wang Y, Kim ST. 2015.**
802 Understanding the plant-pathogen interactions in the context of proteomics-generated
803 apoplastic proteins inventory. *Frontiers in Plant Science*: 1–7.

804 **Han L-T, Wu L, Liu T-B. 2020.** A Predicted Mannoprotein Cmp1 Regulates Fungal
805 Virulence in *Cryptococcus neoformans*. *Pathogens (Basel, Switzerland)* **9**: 1–18.

806 **Heitman J. 2011. Microbial Pathogens in the Fungal Kingdom.** *Fungal Biology*
807 *Reviews* **25**: 48–60.

808 **Kämper J, Kahmann R, Böker M, Ma L-J, Brefort T, Saville BJ, Banuett F,**
809 **Kronstad JW, Gold SE, Müller O, et al. 2006.** Insights from the genome of the
810 biotrophic fungal plant pathogen *Ustilago maydis*. *Nature* **444**: 97–101.

812 **Krombach S, Reissmann S, Kreibich S, Bochen F, Kahmann R. 2018.** Virulence
813 function of the *Ustilago maydis* sterol carrier protein 2. *New Phytologist* **220**: 553–566.

814 **Kubicek CP, Starr TL, Glass NL. 2014.** Plant cell wall-degrading enzymes and their
815 secretion in plant-pathogenic fungi. *Annual Review of Phytopathology* **52**: 427–451.

816 **Lanver D, Berndt P, Tollot M, Naik V, Vranae M, Warmann T, Münch K, Rössel**
817 **N, Kahmann R. 2014.** Plant surface cues prime *Ustilago maydis* for biotrophic
818 development. *PLoS Pathogens* **10**: e1004272–14.

819 **Lanver D, Happel P, Schweizer G, Haas FB, Franitzka M, Pellegrin C, Reissmann**
820 **S, Atmüller J, Rensing SA, Kahmann R. 2018.** The Biotrophic Development of
821 *Ustilago maydis* Studied by RNA-Seq Analysis. *The Plant Cell* **30**: 300–323.

822 **Lanver D, Tollot M, Schweizer G, Presti Lo L, Reissmann S, Ma L-S, Schuster M,**
823 **Tanaka S, Liang L, Ludwig N, et al. 2017.** *Ustilago maydis* effectors and their impact
824 on virulence. *Nature Reviews Microbiology* **15**: 409–421.

825 **Latgé J-P. 2007.** The cell wall: a carbohydrate armour for the fungal cell. *Molecular*
826 *Microbiology* **66**: 279–290.

827 **Lin X, Alspaugh JA, Liu H, Harris S. 2014.** Fungal morphogenesis. *Cold Spring*
828 *Harbor perspectives in medicine* **5**: a019679–25.

829 **Liu C, Xing J, Cai X, Hendy A, He W, Yang J, Huang J, Peng Y-L, Ryder L, Chen**
830 **X-L. 2020.** GPI7-mediated glycosylphosphatidylinositol anchoring regulates
831 appressorial penetration and immune evasion during infection of *Magnaporthe oryzae*.
832 *Environmental Microbiology* **22**: 2581–2595.

833 **Ludwig N, Reissmann S, Schipper K, Gonzalez C, Assmann D, Glatter T, Moretti**
834 **M, Ma L-S, Rexer K-H, Snetselaar K, et al. 2021.** A cell surface-exposed protein
835 complex with an essential virulence function in *Ustilago maydis*. *Nature Microbiology*
836 **6**: 722–730.

837 **Ma L-S, Tsai W-L, Damei FA, Kalunke RM, Xu M-Y, Lin Y-H, Lee H-C. 2023.**
838 Maize Antifungal Protein AFP1 Elevates Fungal Chitin Levels by Targeting Chitin
839 Deacetylases and Other Glycoproteins. *mBio*: e0009323–18.

840 **Ma L-S, Wang L, Trippel C, Mendoza-Mendoza A, Ullmann S, Moretti M,**
841 **Carsten A, Kahnt J, Reissmann S, Zechmann B, et al. 2018.** The *Ustilago maydis*
842 repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize
843 proteins. *Nature Communications* **9**: 1711–15.

844 **Marín-Menguiano M, Moreno-Sánchez I, Barrales RR, Fernández-Álvarez A,**
845 **Ibeas JI. 2019.** N-glycosylation of the protein disulfide isomerase Pdi1 ensures full
846 *Ustilago maydis* virulence. *PLoS Pathogens* **15**: e1007687.

847 **Mendgen K, Hahn M, Deising H. 1996.** Morphogenesis and mechanisms of
848 penetration by plant pathogenic fungi. *Annual Review of Phytopathology* **34**: 367–386.

849 **Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R,**
850 **Nishizawa Y, Shibuya N, Thomma BPHJ, et al. 2012.** Effector-mediated suppression
851 of chitin-triggered immunity by *magnaporthe oryzae* is necessary for rice blast disease.
852 *The Plant Cell* **24**: 322–335.

853 **MIX AJ. 1947.** *Taphrina osmundae Nishida* and *Taphrina higginsii* sp. nov. *Mycologia*
854 **39**: 71–76.

855 **Moreno-Sánchez I, Pejenaute-Ochoa MD, Navarrete B, Barrales RR, Ibeas JI.**
856 **2021.** *Ustilago maydis* Secreted Endo-Xylanases Are Involved in Fungal Filamentation
857 and Proliferation on and Inside Plants. *Journal of fungi (Basel, Switzerland)* **7**: 1081.

858 **Mouyna I, Morelle W, Vai M, Monod M, Léchenne B, Fontaine T, Beauvais A,**
859 **Sarfati J, Prévost M-C, Henry C, et al. 2005.** Deletion of GEL2 encoding for a beta
860 (1-3) glucanosyl-transferase affects morphogenesis and virulence in *Aspergillus*
861 *fumigatus*. *Molecular Microbiology* **56**: 1675–1688.

862 **Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP. 2008.**
863 The secretome of the maize pathogen *Ustilago maydis*. *Fungal genetics and biology: FG & B* **45 Suppl 1**: S63–70.

865 **Nagata Y, Burger MM. 1974.** Wheat germ agglutinin. Molecular characteristics and
866 specificity for sugar binding. *Journal of Biological Chemistry* **249**: 3116–3122.

867 **Navarrete F, Grujic N, Stirnberg A, Saado I, Aleksza D, Gallei M, Adi H,**
868 **Alcântara A, Khan M, Bindics J, et al. 2021.** The Pleiades are a cluster of fungal
869 effectors that inhibit host defenses. *PLoS Pathogens* **17**: e1009641.

870 **Navarro-Mendoza MI, Pérez-Arques C, Murcia L, Martínez-García P, Lax C,**
871 **Sanchis M, Capilla J, Nicolás FE, Garre V.** 2018. Components of a new gene family
872 of ferroxidases involved in virulence are functionally specialized in fungal dimorphism.
873 *Scientific Reports* **8**: 7660–13.

874 **Notenboom V, Boraston AB, Williams SJ, Kilburn DG, Rose DR.** 2002. High-
875 resolution crystal structures of the lectin-like xylan binding domain from *Streptomyces*
876 *lividans* xylanase 10A with bound substrates reveal a novel mode of xylan binding.
877 *Biochemistry* **41**: 4246–4254.

878 **O'Connell RJ, Panstruga R.** 2006. Tête à tête inside a plant cell: establishing
879 compatibility between plants and biotrophic fungi and oomycetes. *New Phytologist* **171**:
880 699–718.

881 **Oliveira DL, Nakayasu ES, Joffe LS, Guimaraes AJ, Sobreira TJP, Nosanchuk JD,**
882 **Cordero RJB, Frases S, Casadevall A, Almeida IC, et al.** 2010. Characterization of
883 yeast extracellular vesicles: evidence for the participation of different pathways of
884 cellular traffic in vesicle biogenesis. *PLoS ONE* **5**: e11113–13.

885 **Ökmen B, Jaeger E, Schilling L, Finke N, Klemd A, Lee YJ, Wemhöner R, Pauly**
886 **M, Neumann U, Doeblemann G.** 2022. A conserved enzyme of smut fungi facilitates
887 cell-to-cell extension in the plant bundle sheath. *Nature Communications* **13**: 1–13.

888 **Pazzaglia L, Cappugi G, Manao G, Camici G, Santini A, Scala A.** 1999. Purification,
889 characterization, and amino acid sequence of cerato-platanin, a new phytotoxic protein
890 from *Ceratocystis fimbriata* f. sp. *platani*. *Journal of Biological Chemistry* **274**: 24959–
891 24964.

892 **Peberdy JF.** 1994. Protein secretion in filamentous fungi--trying to understand a highly
893 productive black box. *Trends in biotechnology* **12**: 50–57.

894 **Pejenaute-Ochoa MD, Santana-Molina C, Devos DP, Ibeas JI, Fernández-Álvarez**
895 **A.** 2021. Structural, Evolutionary, and Functional Analysis of the Protein O-
896 Mannosyltransferase Family in Pathogenic Fungi. *Journal of fungi (Basel, Switzerland)*
897 **7**: 328.

898 **Perfect SE, Hughes HB, O'Connell RJ, Green JR.** 1999. *Colletotrichum*: A model
899 genus for studies on pathology and fungal-plant interactions. *Fungal Genetics and*
900 *Biology* **27**: 186–198.

901 **Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stoltz DB,**
902 **Watkins SC, Di YP, Leikauf GD, et al.** 2015. Mesenchymal stem cells use
903 extracellular vesicles to outsource mitophagy and shuttle microRNAs. *Nature*
904 *Communications* **6**: 8472–15.

905 **Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NAR,**
906 **Gaillardin C, Munro CA, Richard ML.** 2008. Functional analysis of *Candida*
907 *albicans* GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity.
908 *Fungal genetics and biology : FG & B* **45**: 1404–1414.

909 **Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V.** 2015.
910 Secretory autophagy. *Current opinion in cell biology* **35**: 106–116.

911 **Presti Lo L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A,**
912 **Reissmann S, Kahmann R. 2015.** Fungal effectors and plant susceptibility. *Annual*
913 *review of plant biology* **66**: 513–545.

914 **Rabouille C. 2017.** Pathways of Unconventional Protein Secretion. *Trends in cell*
915 *biology* **27**: 230–240.

916 **Rasconi S, Jobard M, Jouve L, Sime-Ngando T. 2009.** Use of calcofluor white for
917 detection, identification, and quantification of phytoplanktonic fungal parasites. *Applied*
918 *and environmental microbiology* **75**: 2545–2553.

919 **Reyre J-L, Grisel S, Haon M, Navarro D, Ropartz D, Le Gall S, Record E, Sciara**
920 **G, Tranquet O, Berrin J-G, et al. 2022.** The Maize Pathogen *Ustilago maydis*
921 Secretes Glycoside Hydrolases and Carbohydrate Oxidases Directed toward
922 Components of the Fungal Cell Wall. *Applied and environmental microbiology* **88**:
923 e0158122–33.

924 **Rittenour WR, Harris SD. 2013.** Glycosylphosphatidylinositol-anchored proteins in
925 *Fusarium graminearum*: inventory, variability, and virulence. *PLoS ONE* **8**: e81603–18.

926 **Rizzi YS, Happel P, Lenz S, Urs MJ, Bonin M, Cord-Landwehr S, Singh R,**
927 **Moerschbacher BM, Kahmann R. 2021.** Chitosan and Chitin Deacetylase Activity
928 Are Necessary for Development and Virulence of *Ustilago maydis*. *mBio* **12**: 1–18.

929 **Rizzo J, Wong SSW, Gazi AD, Moyrand F, Chaze T, Commere P-H, Novault S,**
930 **Matondo M, Péhau-Arnaudet G, Reis FCG, et al. 2021.** Cryptococcus extracellular
931 vesicles properties and their use as vaccine platforms. *Journal of extracellular vesicles*
932 **10**: e12129–19.

933 **Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O,**
934 **Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. 2007.** Vesicular polysaccharide
935 export in *Cryptococcus neoformans* is a eukaryotic solution to the problem of fungal
936 trans-cell wall transport. *Eukaryotic Cell* **6**: 48–59.

937 **Ruiz-Herrera J, Ortiz-Castellanos L, Martínez AI, León-Ramírez C, Sentandreu**
938 **R. 2008.** Analysis of the proteins involved in the structure and synthesis of the cell wall
939 of *Ustilago maydis*. *Fungal genetics and biology : FG & B* **45 Suppl 1**: S71–6.

940 **Rutter BD, Chu T-T-H, Dallery J-F, Zajt KK, O'Connell RJ, Innes RW. 2022.** The
941 development of extracellular vesicle markers for the fungal phytopathogen
942 *Colletotrichum higginsianum*. *Journal of extracellular vesicles* **11**: e12216–23.

943 **Ryder LS, Talbot NJ. 2015.** Regulation of appressorium development in pathogenic
944 fungi. *Current Opinion in Plant Biology* **26**: 8–13.

945 **Ryder LS, Cruz-Mireles N, Molinari C, Eisermann I, Eseola AB, Talbot NJ. 2022.**
946 The appressorium at a glance. *Journal of Cell Science* **135**: 1–8.

947 **Samalova M, Mélida H, Vilaplana F, Bulone V, Soanes DM, Talbot NJ, Gurr SJ.**
948 **2017.** The β -1,3-glucanosyltransferases (Gels) affect the structure of the rice blast
949 fungal cell wall during appressorium-mediated plant infection. *Cellular microbiology*
950 **19**: 1–14.

951 **Shi T-T, Li G-H, Zhao P-J. 2023.** Appressoria-Small but Incredibly Powerful
952 Structures in Plant-Pathogen Interactions. *International Journal of Molecular Sciences*
953 **24:** 1–22.

954 **Shoji J-Y, Kikuma T, Kitamoto K. 2014.** Vesicle trafficking, organelle functions, and
955 unconventional secretion in fungal physiology and pathogenicity. *Current Opinion in*
956 *Microbiology* **20:** 1–9.

957 **Sietsma JH, Wosten HAB, Wessels JGH. 1997.** Cell wall growth and protein
958 secretion in fungi. : 1–8.

959 **Snelders E, Moyrand F, Sturny-Leclère A, Vernel-Pauillac F, Volant S, Janbon G,**
960 **Alanio A. 2022.** The role of glycosylphosphatidylinositol (gpi) anchored proteins in
961 *Cryptococcusneoformans*. *Microbes and Infection* **24:** 105016.

962 **Talbot NJ. 2019.** Appressoria. *Current biology : CB* **29:** R144–R146.

963 **Tanaka S, Kahmann R. 2021.** Cell wall-associated effectors of plant-colonizing fungi.
964 *Mycologia* **113:** 247–260.

965 **Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J, Vermeris W, Koenig S,**
966 **Feussner K, Feussner I, Kahmann R. 2014.** A secreted *Ustilago maydis* effector
967 promotes virulence by targeting anthocyanin biosynthesis in maize. *eLife* **3:** e01355.

968 **Tanaka S, Gollin I, Rössel N, Kahmann R. 2020.** The functionally conserved effector
969 Sta1 is a fungal cell wall protein required for virulence in *Ustilago maydis*. *New*
970 *Phylogist* **227:** 185–199.

971 **Todkar K, Chikhi L, Desjardins V, El-Mortada F, Pépin G, Germain M. 2021.**
972 Selective packaging of mitochondrial proteins into extracellular vesicles prevents the
973 release of mitochondrial DAMPs. *Nature Communications* **12:** 1971–12.

974 **Tucker SL, Talbot NJ. 2001.** Surface attachment and pre-penetration stage
975 development by plant pathogenic fungi. *Annual Review of Phytopathology* **39:** 385–417.

976 **Uhse S, Djamei A. 2018.** Effectors of plant-colonizing fungi and beyond. *PLoS*
977 *Pathogens* **14:** e1006992.

978 **van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM. 2006.**
979 *Cladosporium fulvum* Avr4 protects fungal cell walls against hydrolysis by plant
980 chitinases accumulating during infection. *Molecular plant-microbe interactions: MPMI*
981 **19:** 1420–1430.

982 **van Niel G, D'Angelo G, Raposo G. 2018.** Shedding light on the cell biology of
983 extracellular vesicles. *Nature Publishing Group* **19:** 213–228.

984 **Vargas G, Rocha JDB, Oliveira DL, Albuquerque PC, Frases S, Santos SS,**
985 **Nosanchuk JD, Gomes AMO, Medeiros LCAS, Miranda K, et al. 2015.**
986 Compositional and immunobiological analyses of extracellular vesicles released by
987 *Candida albicans*. *Cellular microbiology* **17:** 389–407.

988 **Vats S, Galli T. 2022.** Role of SNAREs in Unconventional Secretion-Focus on the
989 VAMP7-Dependent Secretion. *Frontiers in Cell and Developmental Biology* **10**:
990 884020–10.

991 **Vogt MS, Schmitz GF, Varón Silva D, Mösch H-U, Essen L-O. 2020.** Structural base
992 for the transfer of GPI-anchored glycoproteins into fungal cell walls. *Proceedings of the
993 National Academy of Sciences of the United States of America* **117**: 22061–22067.

994 **Wang L, Lin X. 2012.** Morphogenesis in Fungal Pathogenicity: Shape, Size, and
995 Surface. *PLoS Pathogens* **8**: e1003027–4.

996 **Wang Y, Wang Y. 2018.** Trick or Treat: Microbial Pathogens Evolved Apoplastic
997 Effectors Modulating Plant Susceptibility to Infection. *Molecular plant-microbe
998 interactions: MPMI* **31**: 6–12.

999 **Wawra S, Fesel P, Widmer H, Timm M, Seibel J, Leson L, Kesseler L, Nostadt R,
1000 Hilbert M, Langen G, et al. 2016.** The fungal-specific β -glucan-binding lectin FGB1
1001 alters cell-wall composition and suppresses glucan-triggered immunity in plants. *Nature
1002 Communications* **7**: 13188–11.

1003 **Wedlich-Söldner R, Böker M, Kahmann R, Steinberg G. 2000.** A putative
1004 endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus
1005 *Ustilago maydis*. *The EMBO Journal* **19**: 1974–1986.

1006 **Wilson RA, Talbot NJ. 2009.** Under pressure: investigating the biology of plant
1007 infection by *Magnaporthe oryzae*. *Nature Reviews Microbiology* **7**: 185–195.

1008 **Win J, Chaparro-Garcia A, Belhaj K, Saunders DGO, Yoshida K, Dong S,
1009 Schornack S, Zipfel C, Robatzek S, Hogenhout SA, et al. 2012.** Effector biology of
1010 plant-associated organisms: concepts and perspectives. *Cold Spring Harbor symposia
1011 on quantitative biology* **77**: 235–247.

1012 **Yang W. 2022.** Infection Strategies and Pathogenicity of Biotrophic Plant Fungal
1013 Pathogens. *fmicb-13-799396.tex*: 1–15.

1014 **Zhao K, Bleackley M, Chisanga D, Gangoda L, Fonseka P, Liem M, Kalra H,
1015 Saffar Al H, Keerthikumar S, Ang C-S, et al. 2019.** Extracellular vesicles secreted by
1016 *Saccharomyces cerevisiae* are involved in cell wall remodelling. *Communications
1017 Biology*: 1–13.

1018 **Zuo W, Ökmen B, Depotter JRL, Ebert MK, Redkar A, Misas Villamil J,
1019 Doehlemann G. 2019.** Molecular Interactions Between Smut Fungi and Their Host
1020 Plants. *Annual Review of Phytopathology* **57**: 411–430.

1021

1022 **Supporting information**

1023 **Fig. S1** $\Delta row1$ affects virulence in the genetic backgrounds FB1xFB2, CL13 and
1024 SG200

1025 **Fig. S2** Lack of Row1 does not affect growth, cell length or adhesion.

1026 **Fig. S3** $\Delta row1$ –6 mutants do not present cell growth defects under saline, oxidative, cell
1027 wall or reticular stresses.

1028 **Fig. S4** Row1 could be a secreted protein.

1029 **Fig. S5** $\Delta row1$ mutant does not exhibit defects in filament length or morphology.

1030 **Fig. S6** Row family sequence alignment.

1031 **Fig. S7** Row family structural alignment.

1032 **Fig. S8** Row family is conserved in Ustilaginales.

1033 **Fig S9** Row family members are involved in *U. maydis* virulence.

1034 **Fig. S10** Row family members are differentially expressed during infection.

1035 **Fig. S11** Row1 does not have a CBM13 domain, which is conserved in homologues
1036 belonging to the Agaricales order.

1037 **Methods S1** Plasmid cloning and strain generation; Strain growth conditions and
1038 virulence assay in maize; Microscopy analysis, sample preparation, and microscope
1039 characteristics and settings; Sample preparation for proteomic assay; Sequence
1040 alignment, phylogenetic analysis and predictive analysis tool.

1041 **Table S1** Strains used in this study.

1042 **Table S2** Plasmids used in this study.

1043 **Table S3** Accession numbers.

1044 **Table S4** Proteins that are differentially secreted in the $\Delta row1$ mutant and WT strains,
1045 and their homologues identified in EVs.

1046 **Table S5** Protein homologues of Row1 in *U. maydis*.

1047 **Table S6** Characteristics of Row family proteins.

1048 **Table S7** Protein homologues of Row1 in Ustilaginaceae.

1049 **Table S8** Row family conservation in Ustilaginaceae.

1050 **Table S9** Protein homologues of Row family members in Ustilaginaceae.

1051 **Table S10** Protein homologues of Row family members in Basidiomycota.

1052 **Table S11** Homologues of Row1 in *Cryptococcus neoformans*.

1053 **Main figures:**

1054 **Fig. 1 Row1 is important for appressoria progression by facilitating successful host**
1055 **tissue colonization and subsequent tumour formation.** **(a)** Quantification of symptoms
1056 for plants infected with indicated strains at 14 dpi (left panel). Total number of infected
1057 plants is indicated above each column. Error bars represent the standard deviation from
1058 three independent replicates. The Mann–Whitney statistical test was performed for each
1059 mutant versus the WT strain (ns, not significant; ****p*-value < 0.005). Representative
1060 images of the most prevalent tumour category are shown in the right panel. **(b)** *row1*
1061 expression levels relative to those of the *ppi1* gene measured by qRT-PCR. Error bars
1062 represent the standard deviation from three independent replicates. Student’s t-test
1063 statistical analysis was performed (**p*-value < 0.05). **(c)** Mating assay of the compatible
1064 *U. maydis* strains (FB1, FB2, FB1 Δ *row1* and FB2 Δ *row1*) spotted alone or in
1065 combination and incubated on PD-charcoal plates. The white fuzzy appearance of the
1066 filaments is indicative of successful mating and dikaryotic hyphae formation **(d)** Fungal
1067 relative biomass was calculated by comparing the *U. maydis* *ppi1* gene and the *Z. mays*
1068 *gadph* gene and was measured using RT-qPCR of genomic DNA extracted from leaves
1069 infected with WT, Δ *row1* mutant or water as mock treatment at 2, 4, and 6 dpi. Error
1070 bars represent the standard deviation from four independent replicates. Student’s t-test
1071 statistical analysis was performed (***p*-value < 0.005; **p*-value < 0.05). **(e)** Maize
1072 leaves from plants infected with WT and the Δ *row1* mutant at 4 dpi were stained with
1073 propidium iodide (red) for plant cell visualization and with WGA-AF-488 (green) for *U.*
1074 *maydis* hyphae visualization by fluorescence microscopy. Scale bar represents 20 μ m.
1075 **(f)** Leaf samples infected with WT and the Δ *row1* mutant were stained with Chlorazol
1076 Black and analysed by light microscopy 29 h after infection. In the left panel, the z-axis
1077 image projections show the site of appressorium formation and penetration (red)

1078 asterisk), the hyphae invading the plant cells (red arrows), and the clamp cells (black
1079 circle). In the right panel, the identified structures are quantified in each strain. Error
1080 bars represent the standard deviation from three independent replicates. The total
1081 number of infected plants is indicated above each column. The Mann–Whitney
1082 statistical test was performed for each versus the WT strain (ns, not significant; ****p*-
1083 value < 0.0001).

1084 **Fig. 2 Row1 localizes in the secretory pathways and is accumulated at the**
1085 **appressorium.** **(a)** 3D structure and domains of Row1. The 3D structure was obtained
1086 using AlphaFold. Left panel: Row1 has a signal peptide (SP; amino acids 1–21), a Ser-
1087 rich domain (amino acids 297–408) with several O-glycosylation sites (marked with
1088 three green spheres), a ω GPI anchor site (amino acid 400) and a transmembrane region
1089 (TM; amino acids 403–423). Right panel: Row1 is anchored to the plasma membrane
1090 through its TM region. The C-terminal region faces the extracellular space, while the N-
1091 terminal region faces the intracellular space. **(b)** Row1::GFP co-localization with the
1092 ER marker mRFP:HDEL is indicated by white arrows. Additional vesicles are marked
1093 with orange arrows. Scale bar represents 10 μ m. **(c)** Row1 localization on hypha (left
1094 panel) and Row1 vesicle movement across time indicated by black arrows (right panel).
1095 **(d)** Row1::GFP partial co-localization with Yup1::mCherry vesicles (left panel). The
1096 kymographs show vesicle movement over time (right panel). **(e)** Quantification of
1097 Row1::GFP signal intensity (upper panel) along the growing hypha (lower panel). **(f)**
1098 Co-localization of Row1 with the appressorium using the AM1-mCherry reporter,
1099 which is specifically expressed in the tips of filaments that differentiate to an
1100 appressorium. Infected leaves were stained with CFW and observed by confocal
1101 microscopy 18 h after infection. The appressorium is distinguished by the formation of
1102 a characteristic red crook-like structure.

1103

1104 **Fig. 3 Row1 is essential for proper cell wall architecture.** **(a)** Representative images of
1105 WGA-AF488 chitin staining in AB33, Δ row1 and Δ row1 Δ row2 hyphae after 5 h of
1106 induction visualized by confocal microscopy. WGA signal intensity was quantified
1107 using the FIJI software, drawing a line at the hypha tip with the width and length
1108 indicated in the figure. This analysis was performed on a single z-plane from each
1109 image by calculating the average value for each point collected along the line and
1110 represented in the graphs (left panel). The graph in the right panel represents the

1111 maximum intensity for each filament, obtained by subtracting the background intensity.
1112 Scale bar represents 10 μm . The total number of filaments is indicated above each
1113 column. Error bars represent the standard deviation from three independent replicates.
1114 The Student's t-test statistical analysis was performed (ns, no significant; *** p -value <
1115 0.0005; *** p -value < 0.0001). (b) Representative images of CFW glucan staining in
1116 AB33, Δrow1 and $\Delta\text{row1}\Delta\text{row2}$ hyphae after 5 h of induction visualized by confocal
1117 microscopy. The quantification and analysis of the CFW signal followed the same
1118 procedure as in panel (a). Scale bar represents 10 μm . The total number of filaments is
1119 indicated above each column. Error bars represent the standard deviation from three
1120 independent replicates. The Student's t-test statistical analysis was performed (ns not
1121 significant; * p -value < 0.05; *** p -value < 0.0001).

1122

1123 **Fig. 4 Δrow1 has a brighter and thicker inner layer and greater resistance to glucan**
1124 **degradation.** (a) Upper panel: Transmission electron microscopy examination of AB33,
1125 Δrow1 and $\Delta\text{row1}\Delta\text{row2}$ cell walls from filament cultures grown for 5 h. The outer
1126 layer contains mannoproteins (white circles), while the inner layer contains glucan and
1127 chitin (GC). Lower panel: The graphs represent the measurements of the inner layer's
1128 width and brightness intensity. The total number of filaments is indicated above each
1129 column. Error bars represent the standard deviation from three independent replicates.
1130 The Student's t-test statistical analysis was performed for each mutant (ns, not
1131 significant; * p -value < 0.05; ** p -value < 0.005; *** p -value < 0.0001). (b) Left panel:
1132 Quantification of filament structures formed during a time course of protoplast
1133 formation. Filaments were treated with Lallzyme at room temperature. Protoplast
1134 formation was observed by wide-field microscopy, and the indicated structures were
1135 quantified (left panel). The total number of filaments is indicated above each column.
1136 Error bars represent the standard deviation from three independent replicates. Scale bar
1137 represents 10 μm . The Student's t-test statistical analysis was performed (ns; no
1138 significant; *** p -value < 0.0005). Right panel: Representative images of the different
1139 filamentous structures formed at 15 min: normal filaments (blue arrows), filaments
1140 affected by the treatment (green arrows), and protoplasts or spheres (white arrows).

1141

1142 **Fig. 5 Row1 plays a role in appressoria formation and maintenance of its cell-wall**
1143 **characteristics.** (a) Frequency of filaments and appressoria formation on plants using
1144 strains carrying the appressorium-specific AM1::GFP marker. Plants were infected with

1145 the indicated strains, stained after 18 h with calcofluor white (CFW) and then analysed
1146 for AM1 marker expression (AM1::GFP). The graph shows the results of two
1147 independent experiments, and the total number of structures is indicated above each
1148 column. The Mann–Whitney statistical test was performed for the mutant versus WT
1149 strain (ns, no significant; * p -value < 0.05). Representative images of each structure are
1150 shown in the lower panel; scale bar represents 10 μ m. (b) Representative images of
1151 appressoria CFW glucan staining and AM1::GFP in SG200 and $\Delta row1$ mutant strains
1152 (left panel). Scale bar represents 10 μ m. The quantification of the CFW signal (lower
1153 panel) was performed using the same method as in Figure 4. The total number of
1154 appressoria is indicated above each column. Error bars represent the standard deviation
1155 from two independent replicates. The Student’s t-test statistical analysis was performed
1156 for each mutant versus the WT strain (ns, no significant; * p -value < 0.05).

1157

1158 **Fig. 6 Row1 affects secretion.** (a) Volcano plot of all proteins identified in the
1159 secretome of *U. maydis* after inducing filament conditions for 5 h. Proteins secreted less
1160 in the $\Delta row1$ mutant than in the WT are shown in green. The proteins represented by
1161 dark green points inside the green rectangle are differentially secreted proteins (fold
1162 change between -0.5 and 0.5, log2FC, and p -value ≤ 0.05). Proteins secreted more in the
1163 $\Delta row1$ mutant than in the WT are shown in red. The proteins represented by dark red
1164 points inside the red rectangle are differentially secreted proteins (fold change between -
1165 0.5 and 0.5, log2FC, and p -value ≤ 0.05). The percentage of these proteins in each
1166 established category is shown in the lower left panel. Right panel: The presence (green)
1167 or absence (red) of homologues identified in previously characterized and purified EVs
1168 from other organisms for each of the identified proteins. (b) Colony secretion assay of
1169 effector Cmu1::GFP in pathogenic conditions using PD-charcoal plates. SG200
1170 filaments expressing cytoplasmic GFP under control of the constitutive *otef* promoter
1171 served as a cell lysis control. The data show a single representative experiment out of
1172 three repeats, and quantifications are the averages and standard deviation of the mutant
1173 GFP signal relative to WT from three independent experiments. The western blot assay
1174 shows the secreted protein fraction of Cmu1::GFP in WT and $\Delta row1$ mutant
1175 backgrounds extracted from cells in axenic conditions. The data shown here is
1176 representative of a minimum of three repetitions, and the quantifications represent the
1177 average and standard deviation of the GFP signal relative to the stain-free control from
1178 three independent experiments.

1179

1180 **Fig. 7 Row1 has five paralogues and is functionally conserved in the related smut**
1181 **pathogens.** (a) Schematic picture of Row1 paralogues in the fungus *U. maydis*. (b)

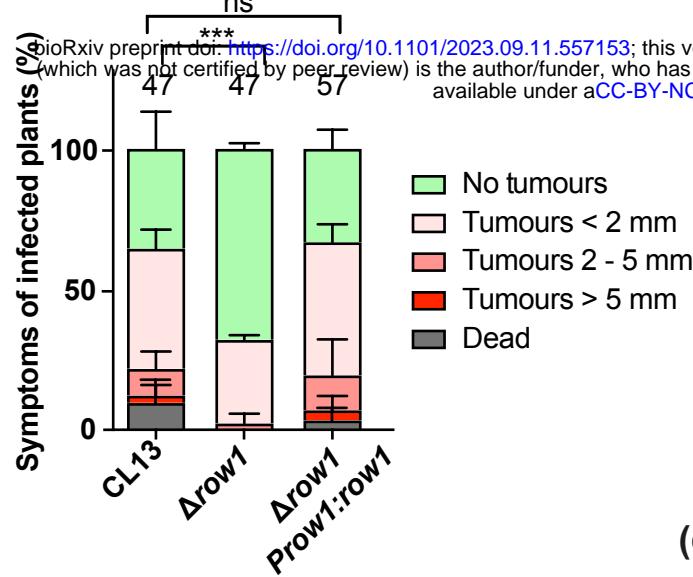
1182 Phylogenetic study of Row1, Row2, Row3, Row4, Row5 and Row6. Black circles at
1183 nodes indicate bootstraps higher than 90, and distances are indicated in blue above each
1184 branch. Umag_02751 was used as an outgroup. BlastP was used to search for Row1
1185 homologous sequences in *U. maydis*. The alignments were obtained using MAFFT v7.
1186 Phylogenetic analysis was inferred by using the maximum likelihood method. The
1187 phylogenetic trees were generated using Archaeopteryx.js and edited in iTOL. (c)

1188 Phylogenetic study of Row1 orthologues in the smut fungi Ustilaginalaceae family
1189 including *Sporisorium reilianum*, *S. scitamineum*, *Ustilago hordei*, *U. maydis*,
1190 *Melanopsichium pennsylvanicum*, *Testicularia cyperi* and *Violaceomyces palustris* as
1191 an outgroup. Bootstraps are indicated in green numbers down the nodes, and the nodes
1192 and distances are indicated in blue above each branch. (d) Left panel: Pathogenicity
1193 assay of *U. maydis* Δ row1 mutant complemented with *S. reilianum* and *U. hordei*
1194 orthologues. Quantification of symptoms for plants infected with indicated strains at 14
1195 dpi. The total number of infected plants is indicated above each column. Error bars
1196 represent the standard deviation from two independent replicates. The Mann–Whitney
1197 statistical test was performed for each mutant versus corresponding WT strain (ns, not
1198 significant; *** p -value < 0.005). Right panel: Representative images of the most
1199 prevalent tumour category.

1200

1201 **Fig. 8 The Row family is mostly conserved in pathogenic fungi and is involved in**
1202 ***U. maydis* virulence.** (a) The taxonomic tree of the Basidiomycota clade illustrates the
1203 conservation of the Row family across fungi. The Basidiomycota clade (purple)
1204 comprises three subdivisions: Agaricomycotina (blue), Pucciniomycotina (green), and
1205 Ustilagomycotina (pink), represented by nodes. Fungi belonging to these subdivisions
1206 are classified into four groups: non-pathogenic (cyan), saprophytic (blue),
1207 phytopathogenic (green), and animal pathogenic (pink). The highlighted genera include
1208 members of the Row family, and examples of species in which the family is conserved
1209 are written next to them. The taxonomic tree was obtained using the National Center for
1210 Biotechnology Information taxonomy browser. (b) Quantification of symptoms for
1211 plants infected with mutants Δ row1, Δ row2, Δ row3, Δ row4, Δ row5, Δ row6, the double
1212 mutant Δ row1 Δ row2 or the triple mutant Δ row1 Δ row2 Δ row4 at 14 dpi. The total

1213 number of infected plants is indicated above each column. Error bars represent the
1214 standard deviation from three independent replicates. The Mann–Whitney statistical test
1215 was performed for each mutant versus the WT strain (ns, not significant **p*-value <
1216 0.05, ***p*-value < 0.005, *****p*-value < 0.0001). Representative images of the most
1217 prevalent tumour category for WT and mutant strains are shown in the lower panel.


1218

1219 **Fig. 9 Row2 is a secreted protein with a similar localization to Row1 and is involved**
1220 **in secretion.** (a) Row1::mCherry co-localization with Row2::GFP in growing cells.
1221 Scale bar represents 10 μ m. (b) Colony secretion assay of Row2::GFP in non-
1222 pathogenic and pathogenic conditions using YPDU and PD-charcoal plates. The SG200
1223 WT strain and SG200 cells expressing cytoplasmic GFP under the control of the
1224 constitutive *otef* promoter served as cell lysis controls. (c) Colony secretion assay of
1225 Cmu1::GFP in WT and Δ row2 mutant backgrounds performed under pathogenic
1226 conditions using PD-charcoal plates. The data show a single representative experiment
1227 out of at least three repeats, and quantifications are the averages and standard deviation
1228 of the mutant GFP signal relative to WT from at least three independent experiments.
1229 (d) Infection assay of *U. maydis* Δ row1 mutant complemented with Row2 homologue at
1230 14 dpi. The total number of infected plants is indicated above each column. Two
1231 biological replicates were analysed. The Mann–Whitney statistical test was performed
1232 for each mutant versus the WT strain (ns, not significant; ****p*-value < 0.0005).

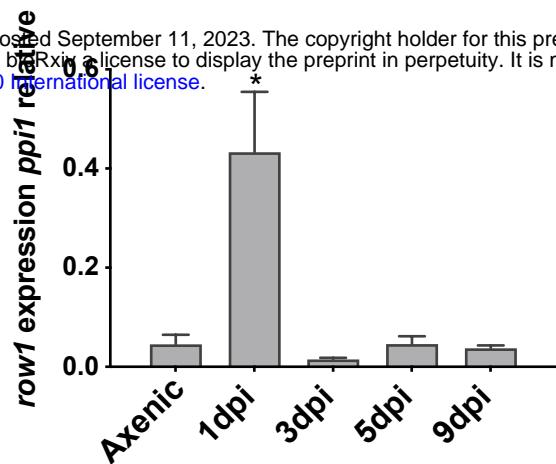
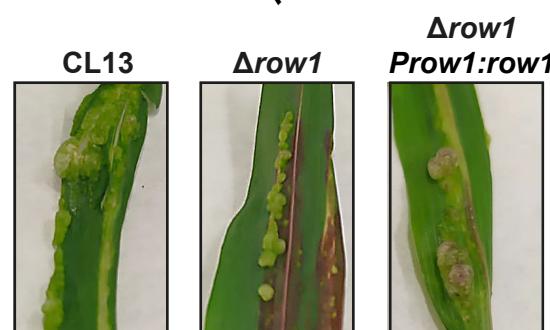
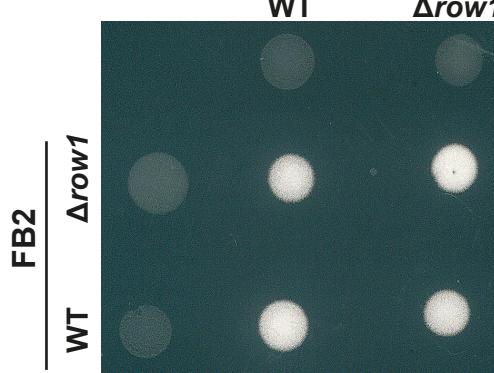
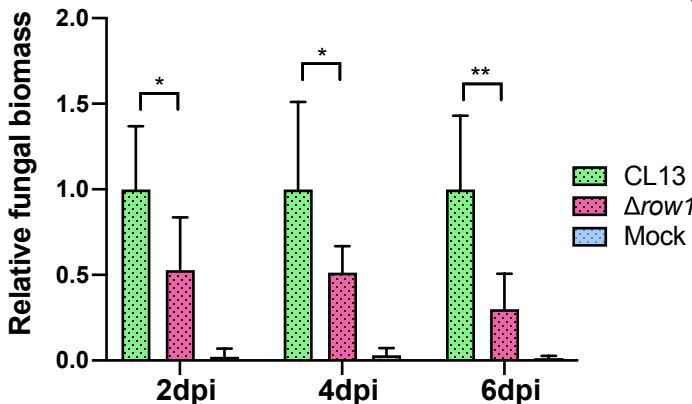
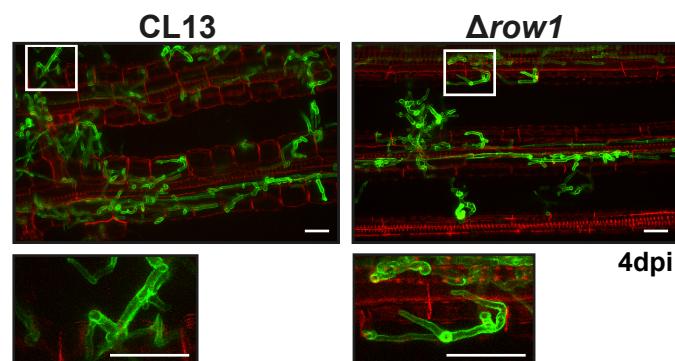

1233

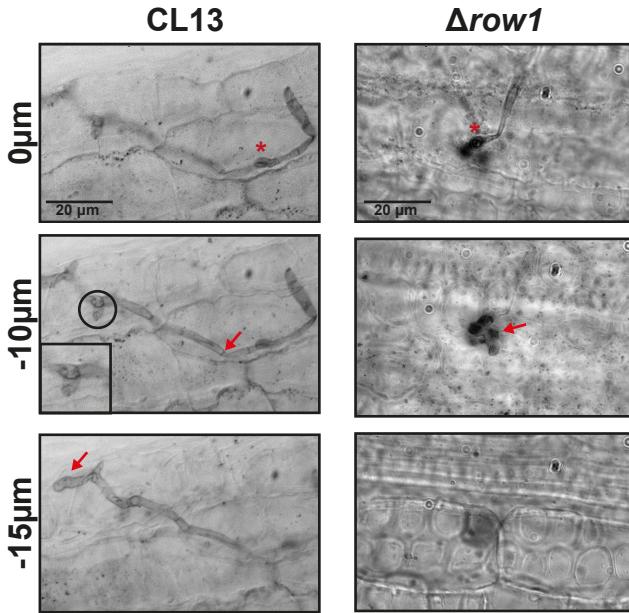
Figure 1

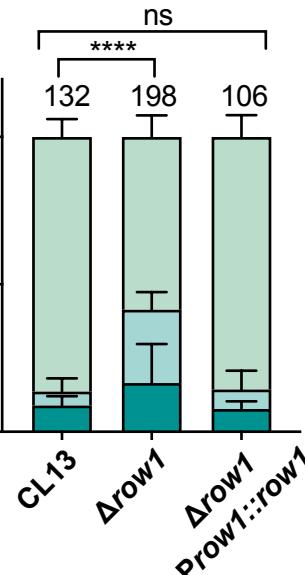

(a)


(b)

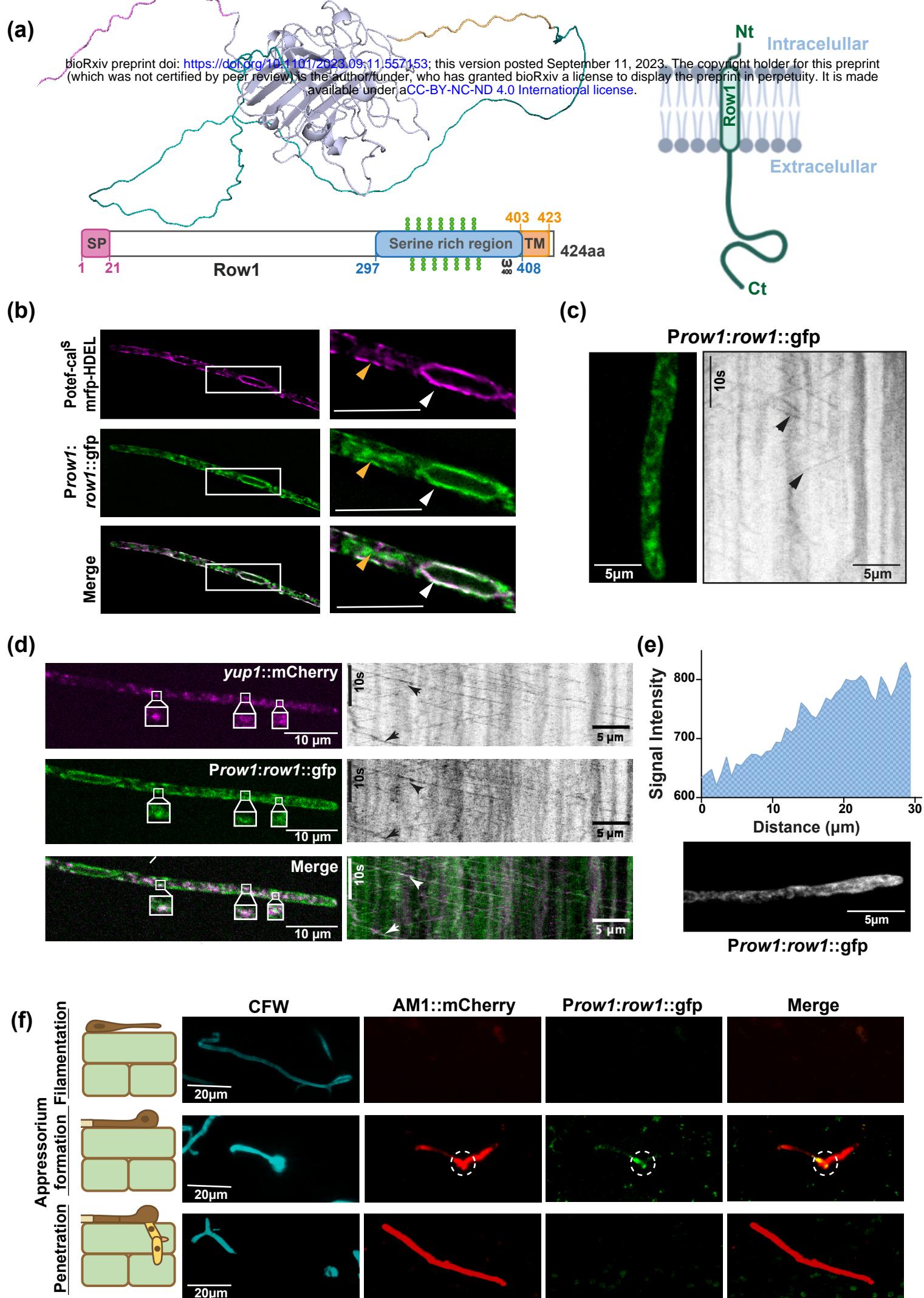

(c)

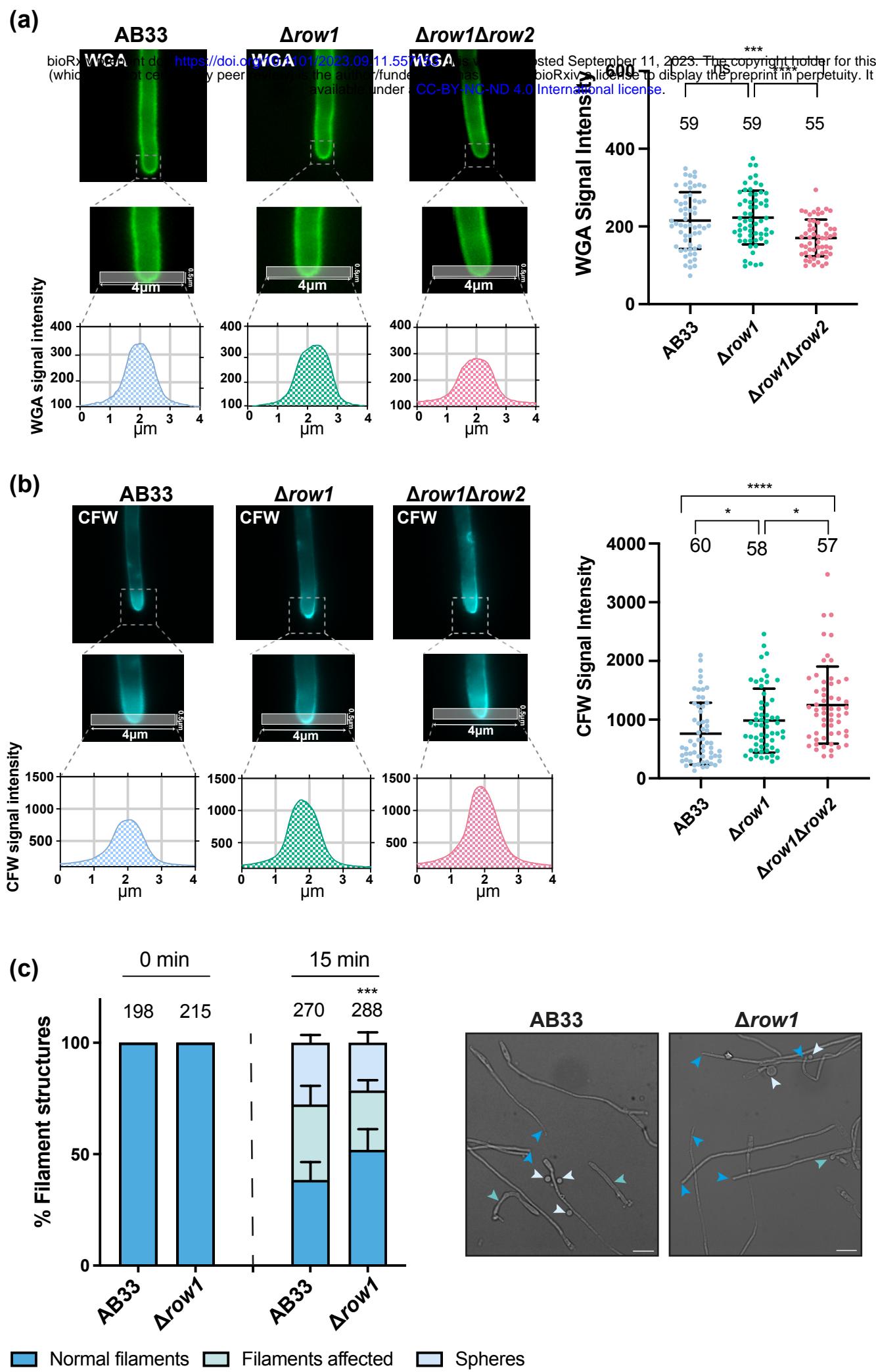

FB1


(d)


(e)

(f)


 Δrow1 Prow1:row1

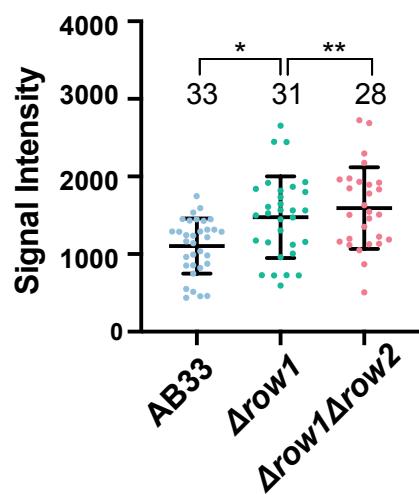
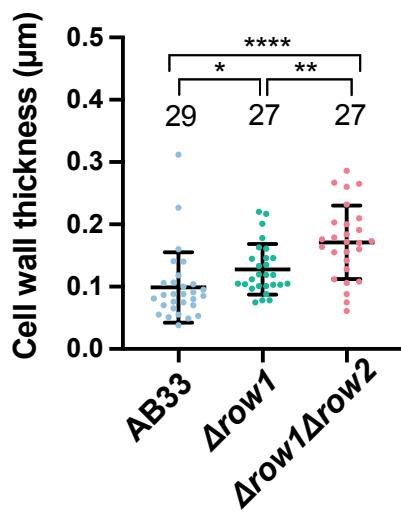
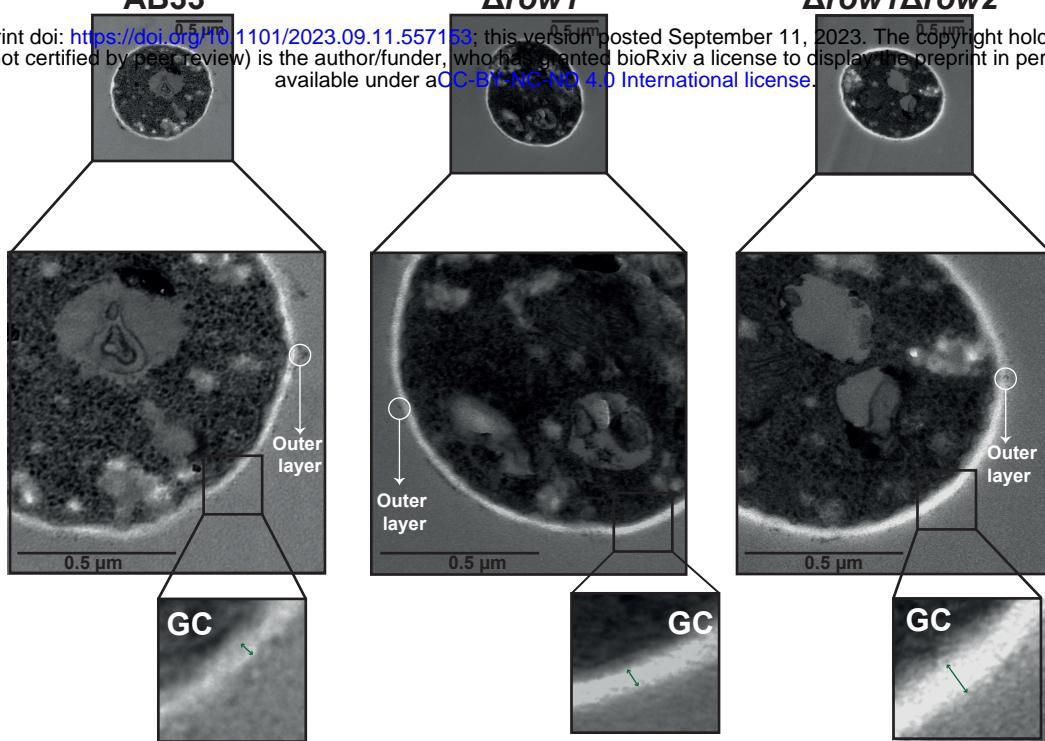
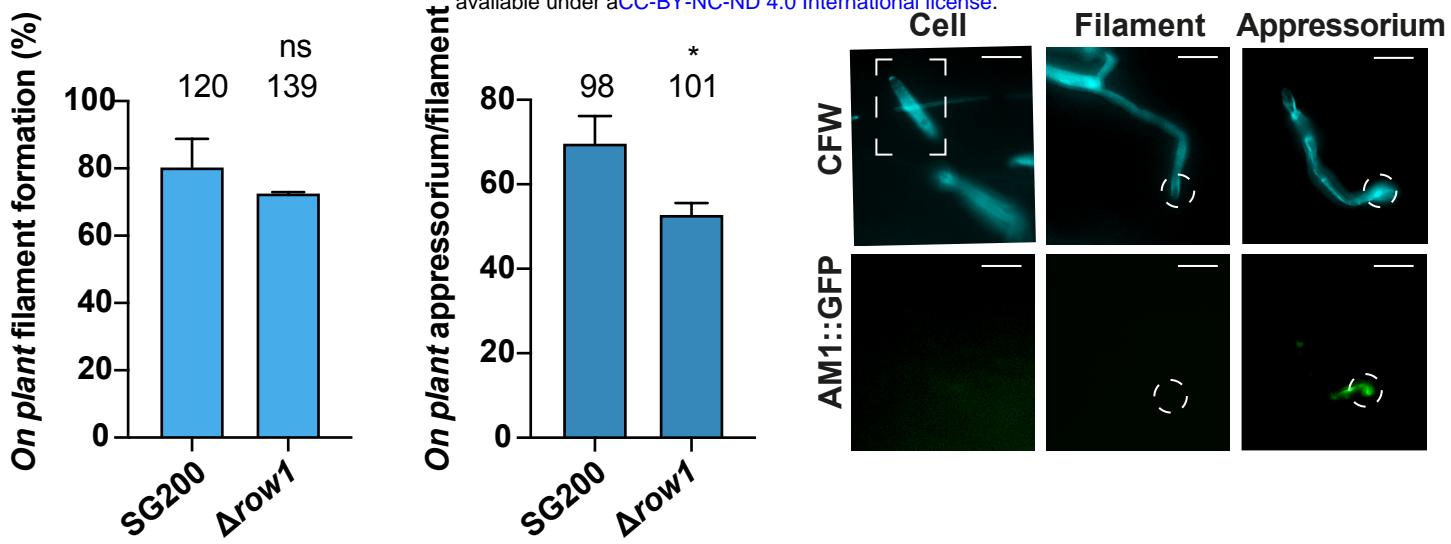

% Pathogenic structures formation

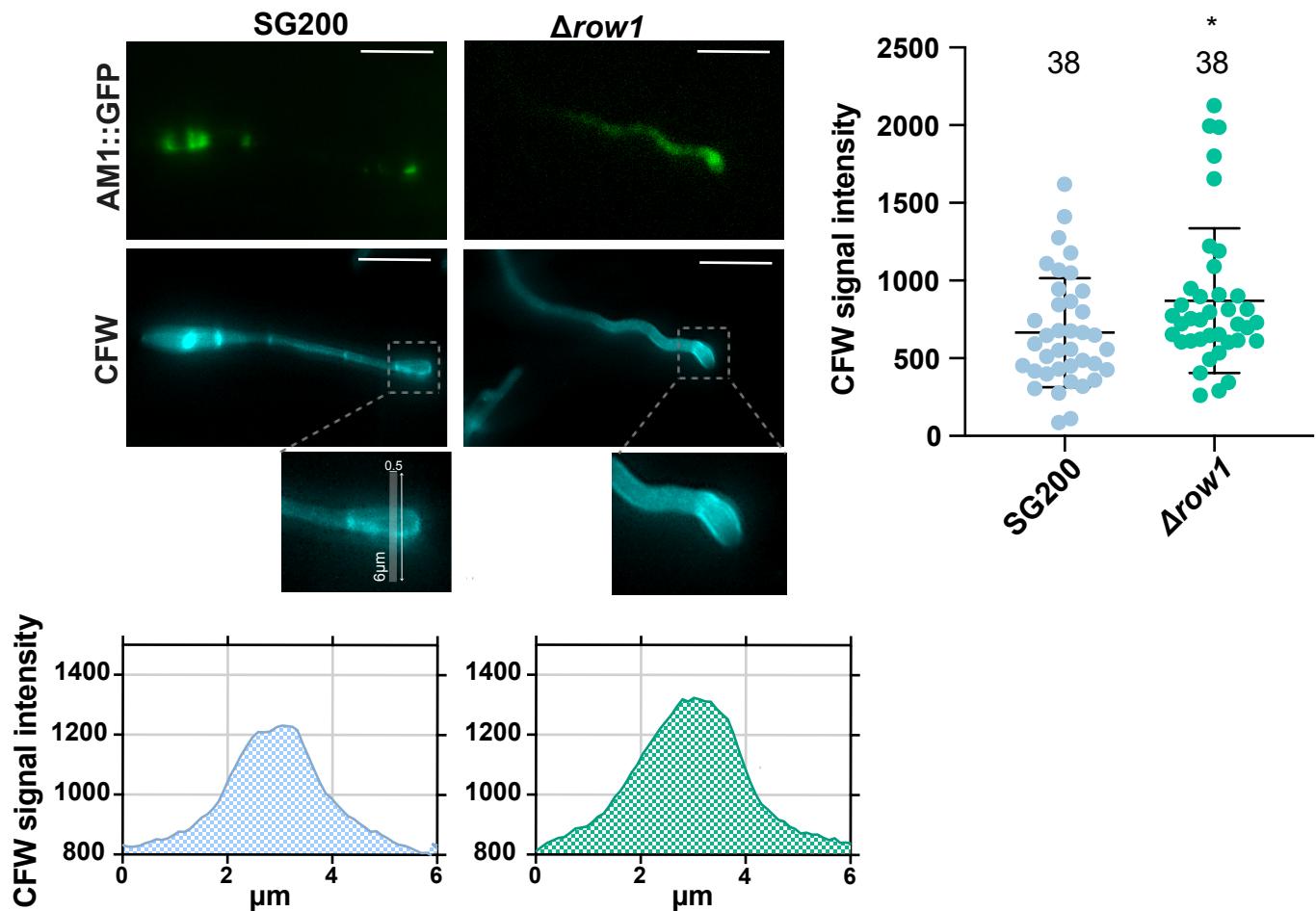
Legend for pathogenic structures formation:

- Appressorium not penetrated (dark teal)
- Appressorium penetrated but not progress (light teal)
- Appressorium penetrated and progress (light green)

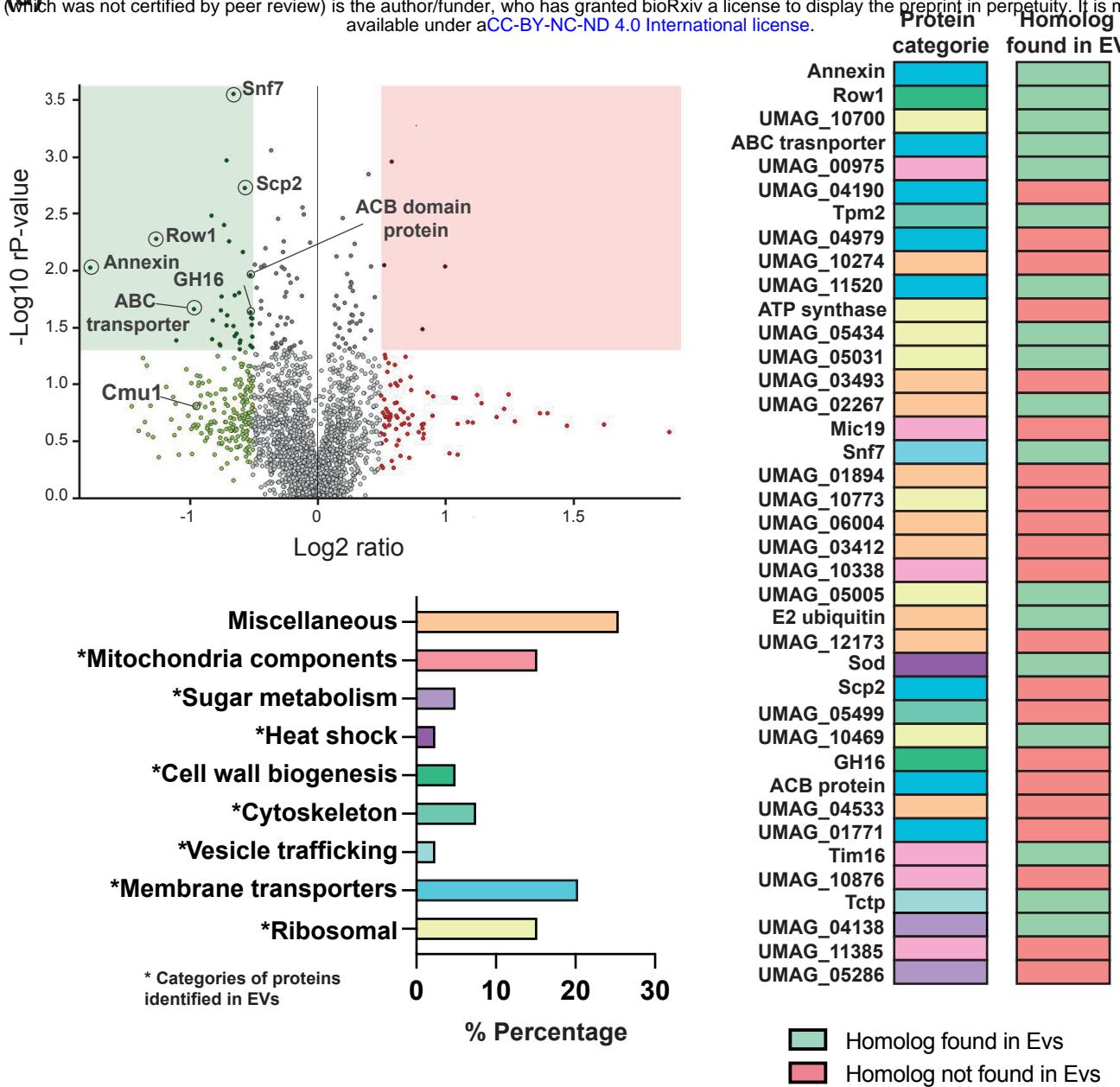
AB33 **Δ row1** **Δ row1 Δ row2**

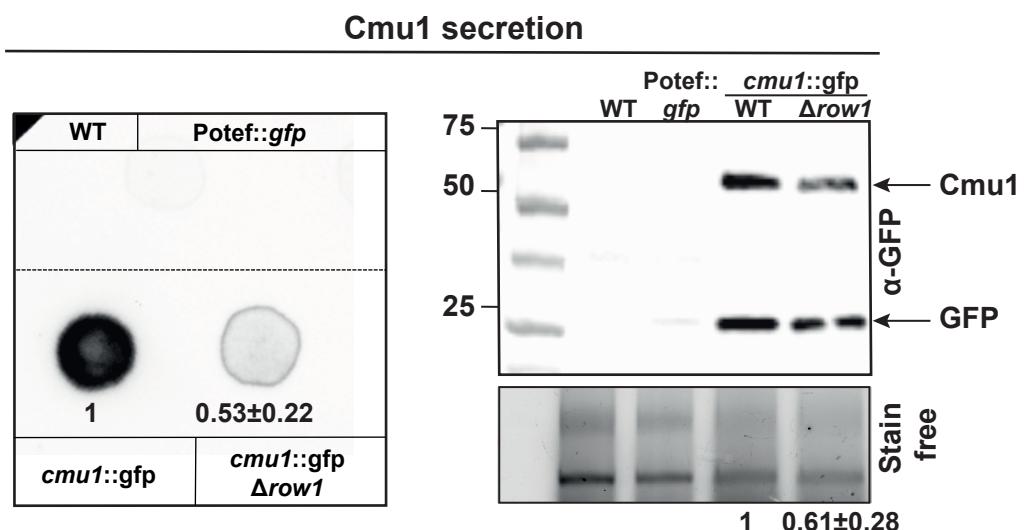
bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.11.557153>; this version posted September 11, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

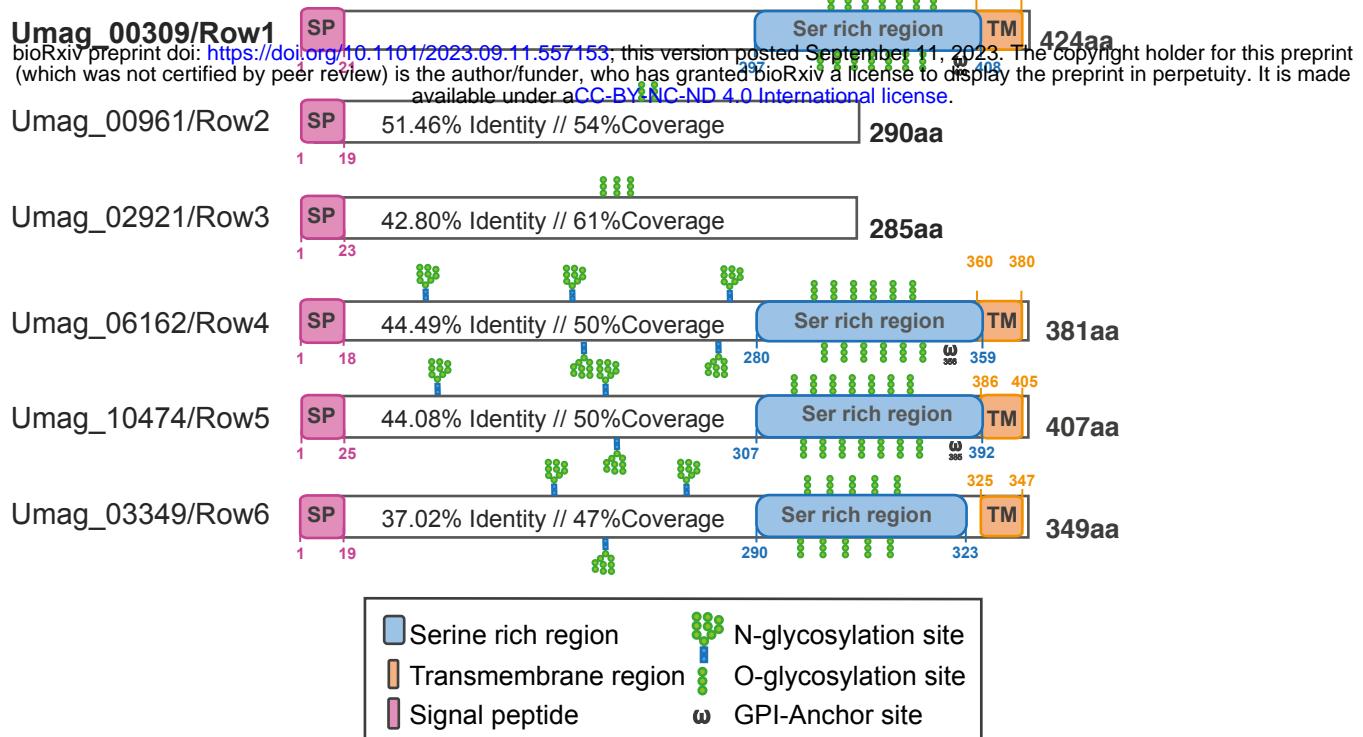






Figure 5

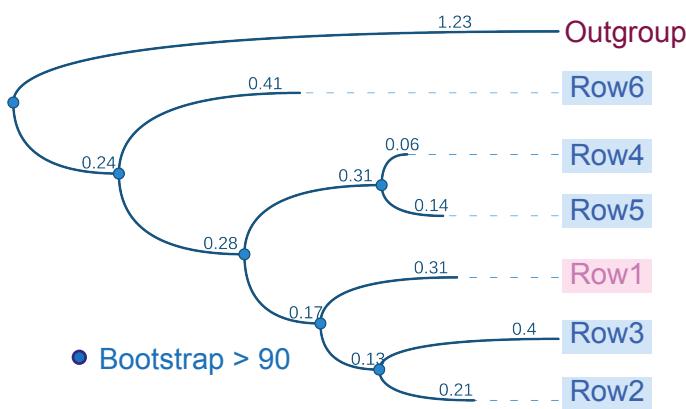
(a)


bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.11.557153>; this version posted September 11, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

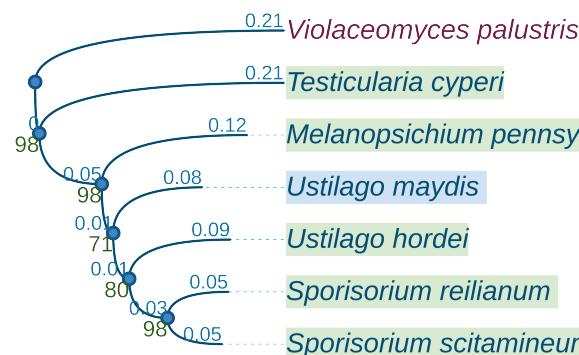

(b)


bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.11.557153>; this version posted September 11, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

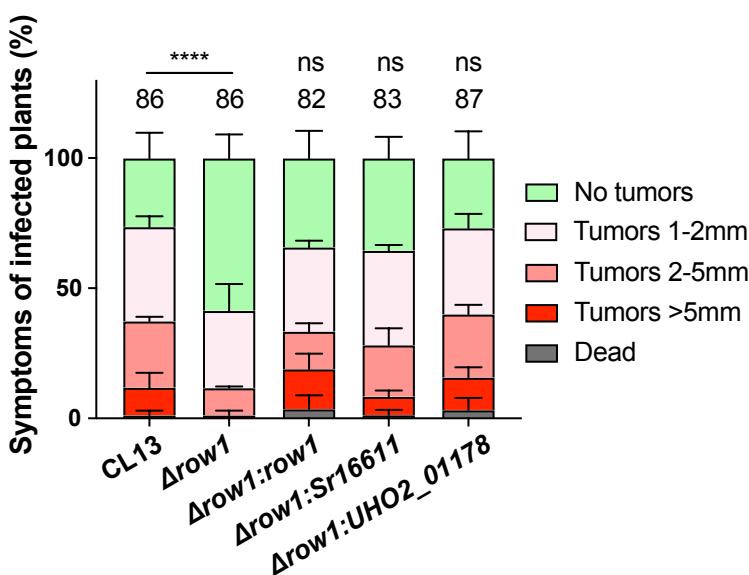
(b)



(a)


(b)

Tree scale 0.1



(c)

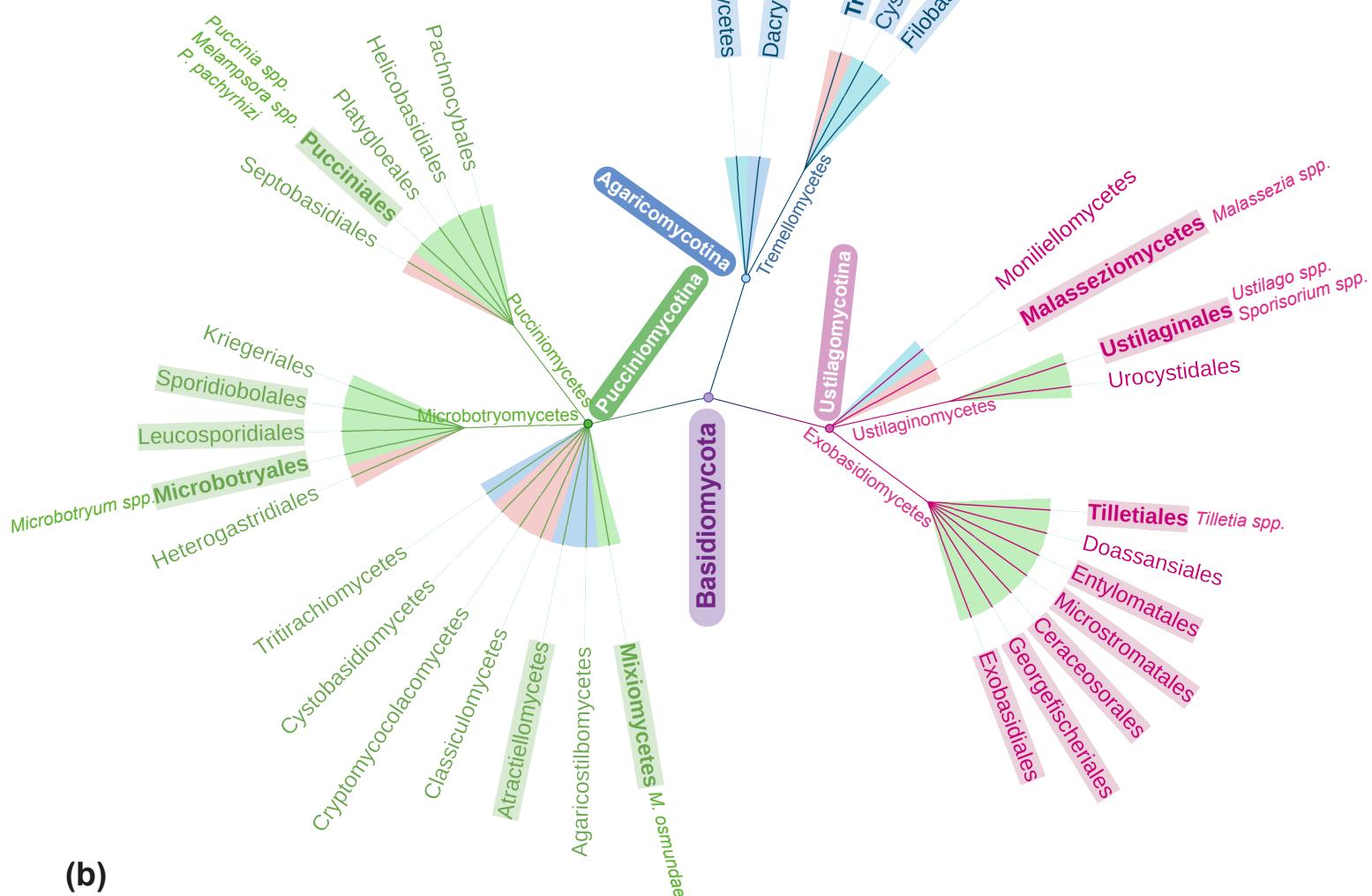
Tree scale 0.1

(d)

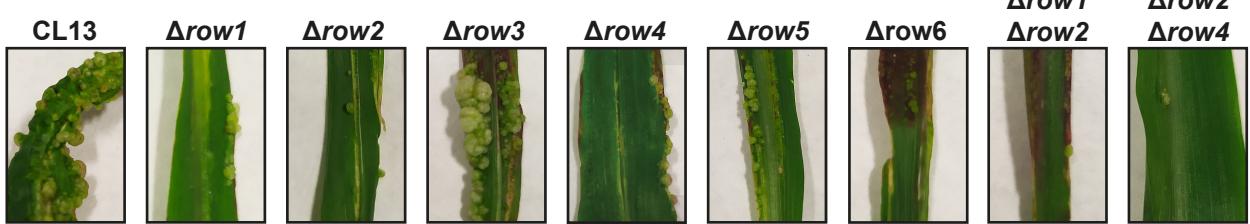
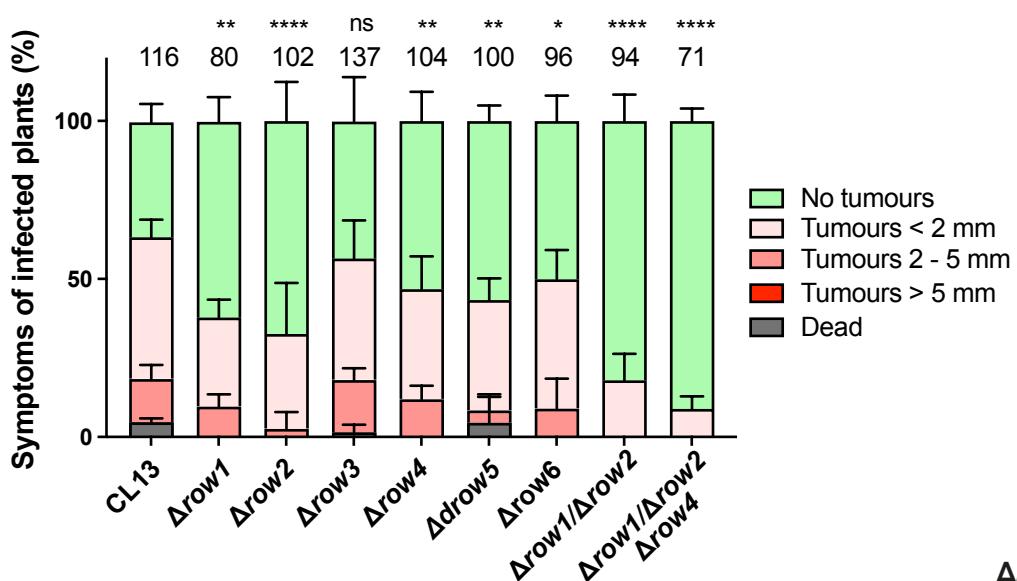
Ustilaginaceae

(a)

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.11.557153>; this version posted September 11, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

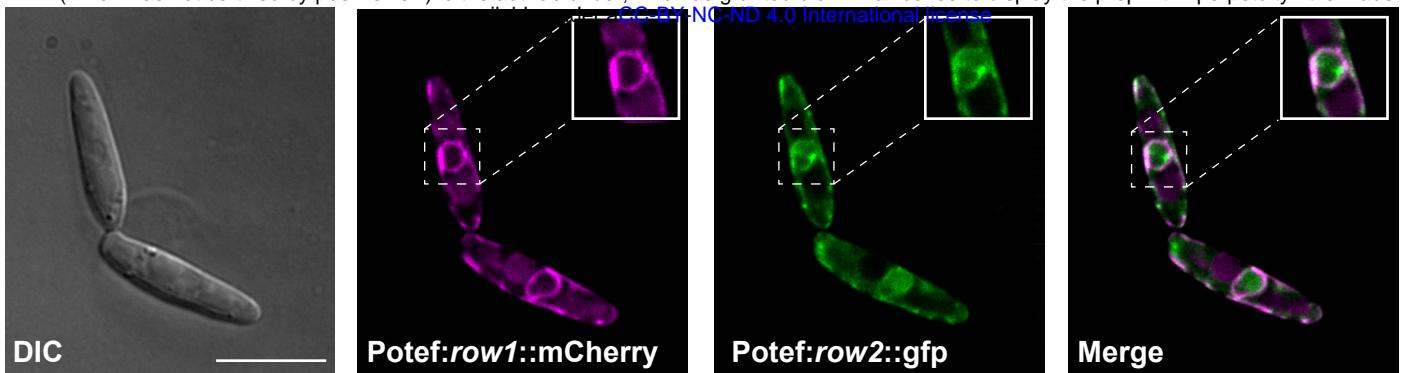
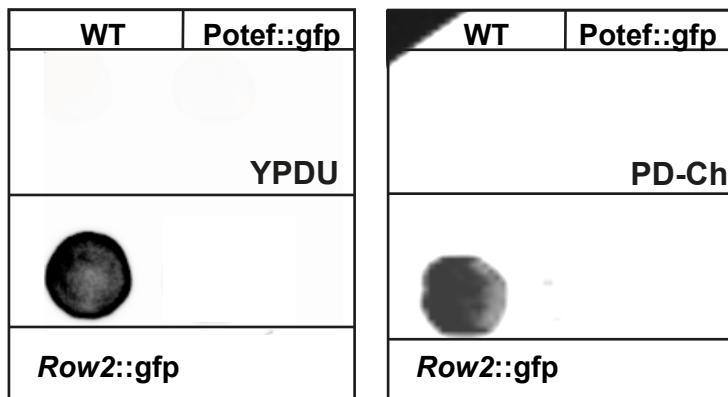
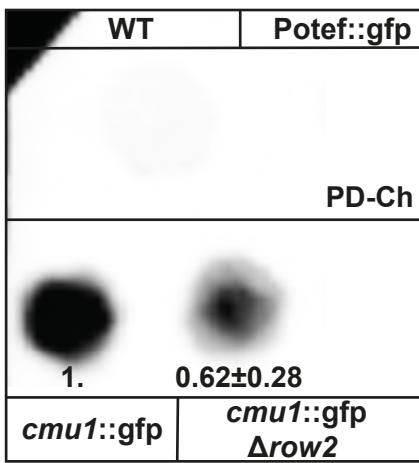
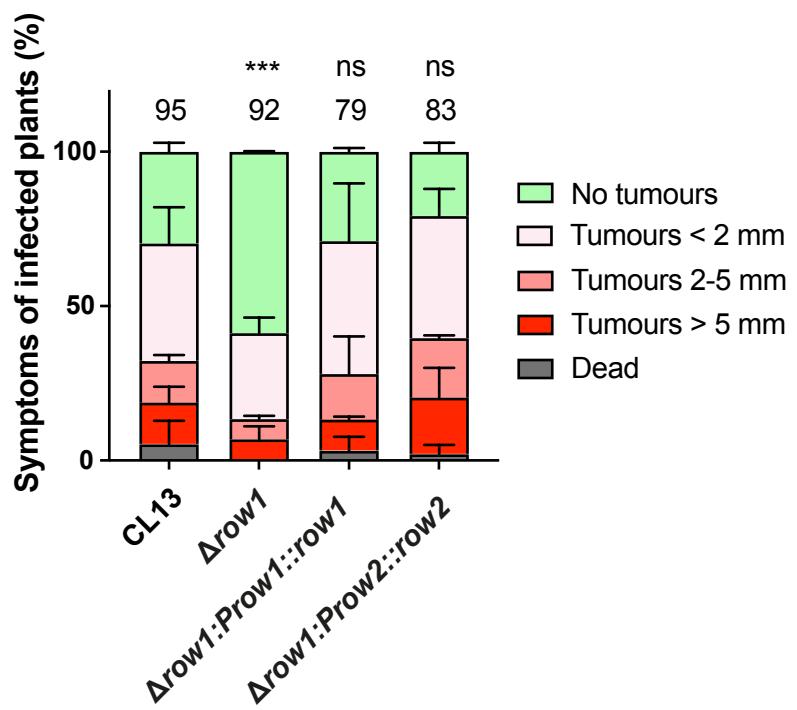

Non-pathogenic

Saprophytic



Phytopathogenic

Pathogenic

**Species highlighted contain Row family

(b)

Figure 9**(a)**

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.11.557153>; this version posted September 11, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-NC-ND 4.0 International license](#).

(b)**Row2 secretion****(c)****(d)**