

1 Asymmetric framework motion of

2 TCR $\alpha\beta$ controls load-dependent

3 peptide discrimination

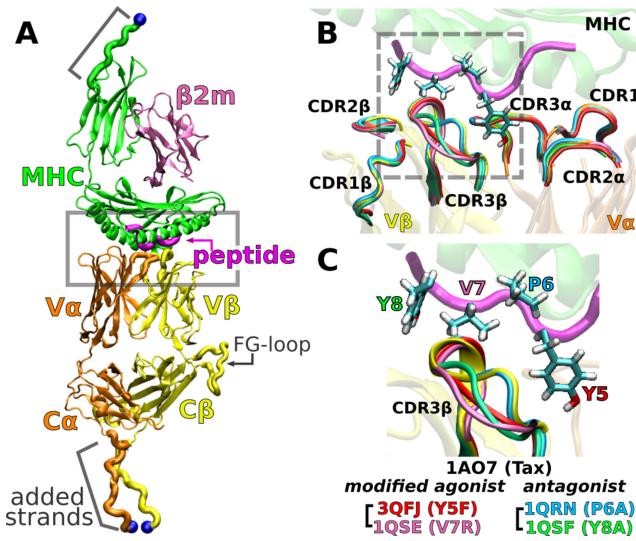
4 Ana C. Chang-Gonzalez¹, Robert J. Mallis^{4,6,7}, Matthew J. Lang^{8,9}, Ellis L.
5 Reinherz^{5,6,7}, Wonmuk Hwang^{*1,2,3}

*For correspondence:
hwm@tamu.edu (WH)

¹All authors were involved in project conceptualization and writing. A.C.C.G. prepared and performed the simulations. A.C.C.G. and W.H. carried out the analysis.

6 ¹Department of Biomedical Engineering, Texas A&M University, College Station, TX,
7 USA; ²Department of Materials Science & Engineering, Texas A&M University, College
8 Station, TX, USA; ³Dept. Phys. & Astronomy, Texas A&M Univ., College Station, TX, USA;
9 ⁴Dept. Dermatology, Harvard Medical School, Boston, MA, USA; ⁵Dept. Medicine,
10 Harvard Medical School, Boston, MA, USA; ⁶Lab. of Immunobio., Dana-Farber Cancer
11 Inst., Boston, MA, USA; ⁷Dept. Med. Oncology, Dana-Farber Cancer Inst., Boston, MA,
12 USA; ⁸Dept. Chem. and Biomolec. Eng., Vanderbilt Univ., Nashville, TN, USA; ⁹Dept.
13 Molec. Physiology and Biophys., Vanderbilt Univ., Nashville, TN, USA

14


15 **Abstract** Mechanical force is critical for the interaction between an $\alpha\beta$ T cell receptor (TCR) and
16 a peptide-bound major histocompatibility complex (pMHC) molecule to initiate productive T-cell
17 activation. However, the underlying mechanism remains unclear. We use all-atom molecular
18 dynamics simulations to examine the A6 TCR bound to HLA-A*02:01 presenting agonist or
19 antagonist peptides under different extensions to simulate the effects of applied load on the
20 complex, elucidating their divergent biological responses. We found that TCR α and β chains
21 move asymmetrically, which impacts the interface with pMHC, in particular the peptide-sensing
22 CDR3 loops. For the wild-type agonist, the complex stabilizes in a load-dependent manner while
23 antagonists destabilize it. Simulations of the C β FG-loop deletion, which reduces the catch bond
24 response, and simulations with *in silico* mutant peptides further support the observed behaviors.
25 The present results highlight the combined role of interdomain motion, fluctuating forces, and
26 interfacial contacts in determining the mechanical response and fine peptide discrimination by a
27 TCR, thereby resolving the conundrum of nearly identical crystal structures of TCR $\alpha\beta$ -pMHC
28 agonist and antagonist complexes.

29

30 **Introduction**

31 The $\alpha\beta$ TCR ($\alpha\beta$ TCR) consists of the heterodimeric receptor TCR $\alpha\beta$ formed by α and β chains each
32 containing the pMHC-binding variable (V) and constant (C) domains (**Figure 1A**), and the noncovalently
33 associated cluster of differentiation 3 (CD3) subunits that have cytoplasmic tails containing
34 motifs for downstream signaling (**Rudolph et al., 2006; Wang and Reinherz, 2012; Brazin et al.,**
35 **2018**). The TCR recognizes its cognate pMHC on the surface of an antigen presenting cell at low or
36 even single copy numbers from a pool of about 10^5 different self-pMHC molecules (**Sykulev et al.,**
37 **1996; Brameshuber et al., 2018**), while it also exhibits reactivity with certain closely related peptide
38 variants, with similar or strikingly altered functional T-cell responses (**Ding et al., 1999; Hausmann**
39 **et al., 1999; Lee et al., 2004; Borbulevych et al., 2009; Baker et al., 2012; Birnbaum et al., 2014**). Con-
40 sidering the μ M to hundreds of μ M TCR $\alpha\beta$ -pMHC equilibrium binding affinity (**Wang and Reinherz,**

Figure 1. A6 TCR $\alpha\beta$ -pMHC complex. (A) WT (Protein Data Bank, PDB 1AO7). The missing C α domain was added based on PDB 1QSE (Structure preparation). Blue spheres: terminal C α atoms held at set extensions during the simulation (Table 1). $\beta 2m$: $\beta 2$ microglobulin. (B) Overlay of the X-ray structures of the WT and four point mutants of the Tax peptide at the boxed region of panel A. The CDR loops take nearly identical conformations in different structures. (C) Magnified view of the dashed box in panel B, focusing on the conformation of CDR3 β . PDB names for A6 TCR $\alpha\beta$ -pMHC complexes containing mutant peptides are listed.

41 2012), several models have been proposed to account for the exquisite specificity and sensitivity
42 of the $\alpha\beta$ TCR (Chakraborty and Weiss, 2014; Brazin et al., 2015; Schamel et al., 2019; Zhu et al.,
43 2019; Mariuzza et al., 2020; Liu et al., 2021).

44 A critical factor for peptide discrimination is physiological force applied to the TCR $\alpha\beta$ -pMHC
45 complex (Reinherz et al., 2023). A cognate peptide antigen elicits a catch bond behavior where
46 the TCR $\alpha\beta$ -pMHC bond lifetime increases with force that peaks in the 10–20 pN range, and is ob-
47 served with the clonotypic ligand-binding TCR $\alpha\beta$ heterodimer in isolation or with the holoreceptor
48 $\alpha\beta$ TCR including the non-covalently associated CD3 signaling subunit dimers (CD3 $\epsilon\gamma$, CD3 $\epsilon\delta$, and
49 CD3 $\zeta\zeta$). The catch bond is coupled with a roughly 10-nm structural transition in both (Das et al.,
50 2015, 2016; Banik et al., 2021), which supports the notion that the $\alpha\beta$ TCR acts as a mechanosensor
51 (Kim et al., 2009, 2012; Brazin et al., 2015, 2018; Choi et al., 2023; Reinherz et al., 2023). In our
52 previous molecular dynamics (MD) study (Hwang et al., 2020), instead of enforcing dissociation of
53 the complex with high force, as done in steered MD simulations (Sibener et al., 2018; Wu et al.,
54 2019), we applied pN-level forces and examined the behavior of the JM22 TCR complexed with an
55 HLA-A*02:01 molecule presenting a peptide from an influenza virus matrix protein. We found that
56 the TCR $\alpha\beta$ -pMHC complex is in a loosely-bound state in the absence of load, which allows domain
57 motion. Application of a 16-pN force suppresses the motion and overall enhances the fit among
58 domains. We proposed a model where the TCR $\alpha\beta$ -pMHC catch bond arises due to stabilization of
59 the interface by altering the conformational motion of TCR $\alpha\beta$.

60 An important question regards the generality of this dynamic mechanism in other TCRs. To
61 this end, we study the A6 TCR, which recognizes the Tax peptide (LLFGYPVYV) of the human T
62 lymphotropic virus type 1 (Garboczi et al., 1996b) bound to HLA-A*02:01, the same MHC as for
63 JM22. We perform all-atom MD simulations with the Tax peptide (wild type; WT) (Garboczi et al.,
64 1996a) and four mutant peptides with a single-residue substitution: Y5F (Scott et al., 2011), V7R,
65 P6A, and Y8A (Ding et al., 1999). Below, we call the TCR $\alpha\beta$ -pMHC complex by the name of the
66 corresponding peptide. For example, Y5F refers to the complex with the Y5F peptide (PDB 3QFJ),
67 *Figure 1C*.

68 While the crystallographic structures of these complexes are very similar (Ding et al., 1999; Scott
69 et al., 2011) (Figure 1C), they differ in immunogenicity. P6A and Y8A are weak antagonists because
70 they inhibit T-cell function only at 1000-times higher molar concentration than that needed by the
71 WT for activation (Hausmann et al., 1999; Ding et al., 1999). We refer to them simply as “antag-
72 onists.” Y5F is similar to WT in terms of equilibrium binding affinity and T-cell activation *in vitro*
73 (Hausmann et al., 1999; Scott et al., 2011). V7R induces effector functions comparable to WT at
74 10- to 100-times higher concentrations (Ding et al., 1999). We call Y5F and V7R as “modified ago-

75 nists." There have been several experimental and computational studies comparing the effects of
76 peptide modifications or pMHC binding on A6 TCR (*Baker et al., 2000; Michielin and Karplus, 2002;*
77 *Davis-Harrison et al., 2005; Cuendet and Michielin, 2008; Borbulevych et al., 2009; Cuendet et al.,*
78 *2011; Scott et al., 2011; Ayres et al., 2016; Fodor et al., 2018*), but load was not explicitly consid-
79 ered. To simulate a complex under load, we held the distance between the terminal C_{α} atoms of
80 the complex (*Figure 1A*) at a set extension for the duration of the simulation. This was done by
81 applying harmonic positional restraints so that the terminal C_{α} atoms were allowed to fluctuate in
82 position, hence resulting in instantaneous fluctuation in the applied force akin to loading in exper-
83 iments. We refer to a simulation as either low or high load based on the average load, which was
84 around the physiological 10–20 pN range (*Table 1*). To our knowledge, the present study is the first
85 to elucidate the dynamic mechanism of the A6 complex harboring different peptides under load.

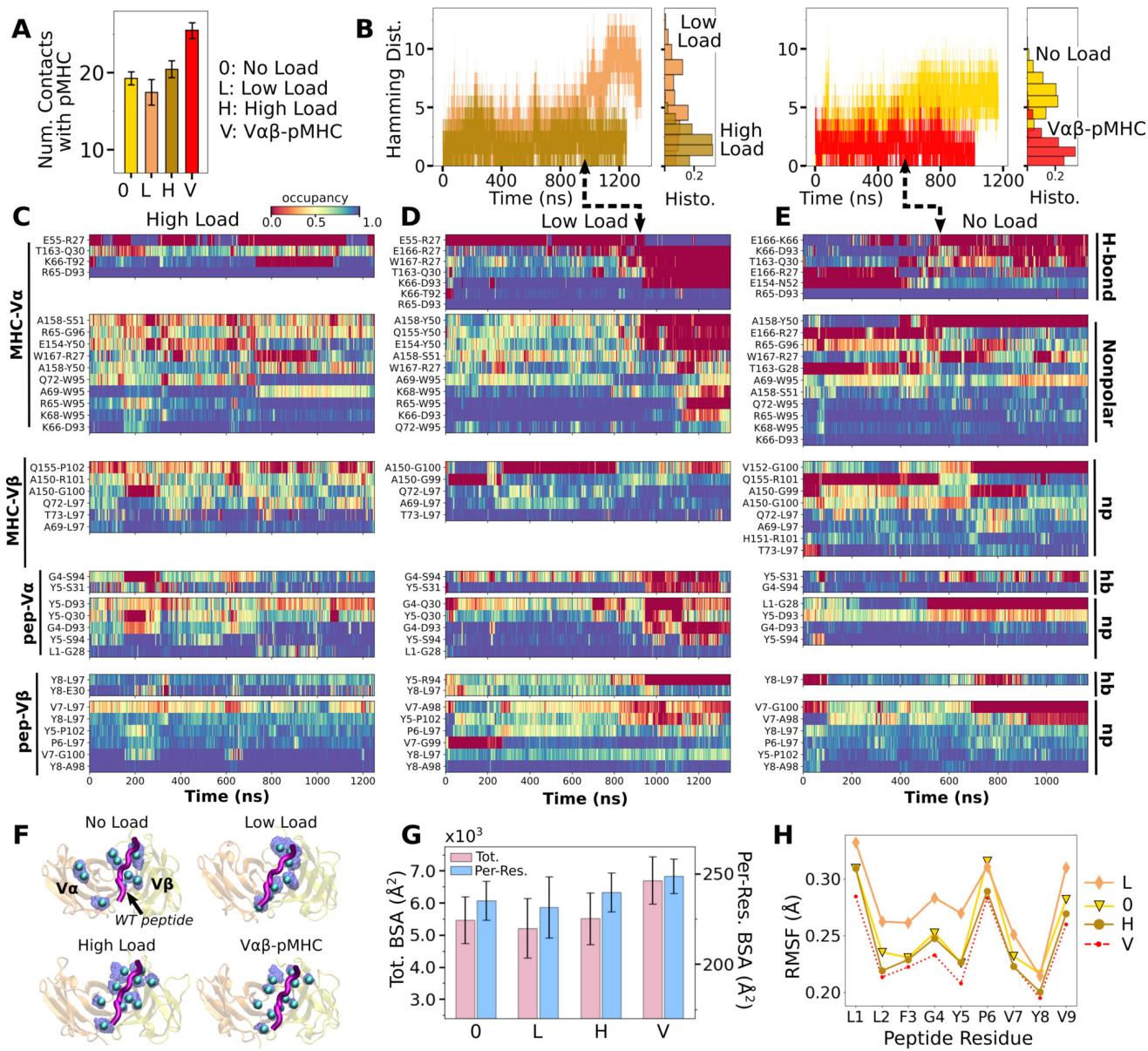

86 We found that differences between the WT and peptide mutants lie in dynamic responses to
87 applied load. In the WT, physiological level load stabilized the TCR $\alpha\beta$ -pMHC interface as well as
88 the subdomain motion within TCR $\alpha\beta$. Modified agonists maintained stable contacts, yet high loads
89 led to destabilization. Antagonists had less stable interfaces under load as the mutated residues
90 disrupted surrounding interfacial contacts. Motion within the TCR, such as the V α -V β scissoring
91 as observed in *Hwang et al. (2020)*, and an asymmetric bending of the V-module relative to the
92 C-module, were coupled to the interactions between the variable domains and pMHC such that a
93 single-residue mutation in the peptide affected the conformational behavior of the whole TCR. The
94 present results suggest that the conserved TCR $\alpha\beta$ framework motion is leveraged when determin-
95 ing the mechanically matched pMHC, a mechanism that is broadly applicable to different TCR $\alpha\beta$
96 systems.

Table 1. Simulations of TCR $\alpha\beta$ -pMHC complexes. Load is average after 500 ns (See Selecting extensions).

Peptide	PDB	Extension (Å)	Time (ns)	Load (pN)	Label	Description
Tax (WT)	1AO7	–	1170	–	WT ⁰	wild-type
		182.6	1350	13.2	WT ^{low}	
		187.7	1250	18.2	WT ^{high}	
Tax (dFG-pMHC)	1AO7	180.5	1100	14.9	dFG ^{low}	dFG (<i>Table 2</i>) with pMHC
		188.9	1100	29.0	dFG ^{high}	
Y5F	3QFJ	–	1180	–	Y5F ⁰	modified agonists
		181.4	1200	8.24	Y5F ^{low}	
		186.2	1200	23.7	Y5F ^{high}	
V7R	1QSE	–	1020	–	V7R ⁰	weak antagonists
		177.5	1012	10.3	V7R ^{low}	
		186.2	1003	17.8	V7R ^{high}	
P6A	1QRN	–	1090	–	P6A ⁰	
		175.2	1018	8.81	P6A ^{low}	
		186.0	1020	13.5	P6A ^{high}	
Y8A	1QSF	–	1020	–	Y8A ⁰	
		176.5	1280	12.0	Y8A ^{low}	
		187.4	1330	18.1	Y8A ^{high}	

Table 2. Simulations of truncated structures from PDB 1AO7.

Label	Modification	Time (ns)
V $\alpha\beta$	V α -V β only (no pMHC)	1060
T $\alpha\beta$	TCR $\alpha\beta$ only (no pMHC)	1000
V $\alpha\beta$ -pMHC	V $\alpha\beta$ with pMHC (no C-module)	1020
dFG	T $\alpha\beta$ without the C β FG-loop (no pMHC)	1000

Figure 2. Load dependence of the WT TCR α β -pMHC interface. (A) Number of high-occupancy contacts (Contact analysis). Bars: std. (B) Hamming distance \mathcal{H} over time. Histograms are for the interval after 500 ns. Dashed arrows mark increase in \mathcal{H} , corresponding to contacts lost. (C–E) Contact occupancy heat maps for the interface with pMHC. H-bond/hb: hydrogen bonds, including salt bridges, and np: nonpolar (Contact analysis). (F) Location of C_α atoms of the residues whose contacts with pMHC have greater than 80% average occupancy. Cyan spheres: last frame of simulation. Transparent blue: locations rendered every 0.2 ns showing positional variability. (G) Total (pink) and per-residue (blue) BSA for interfacial residues with greater than 80% maximum instantaneous occupancy (BSA). Bars: std. (H) RMSF of backbone C_α atoms of the peptide after 500 ns.

Figure 2—figure supplement 1. Contact occupancy heat maps for V α β -pMHC.

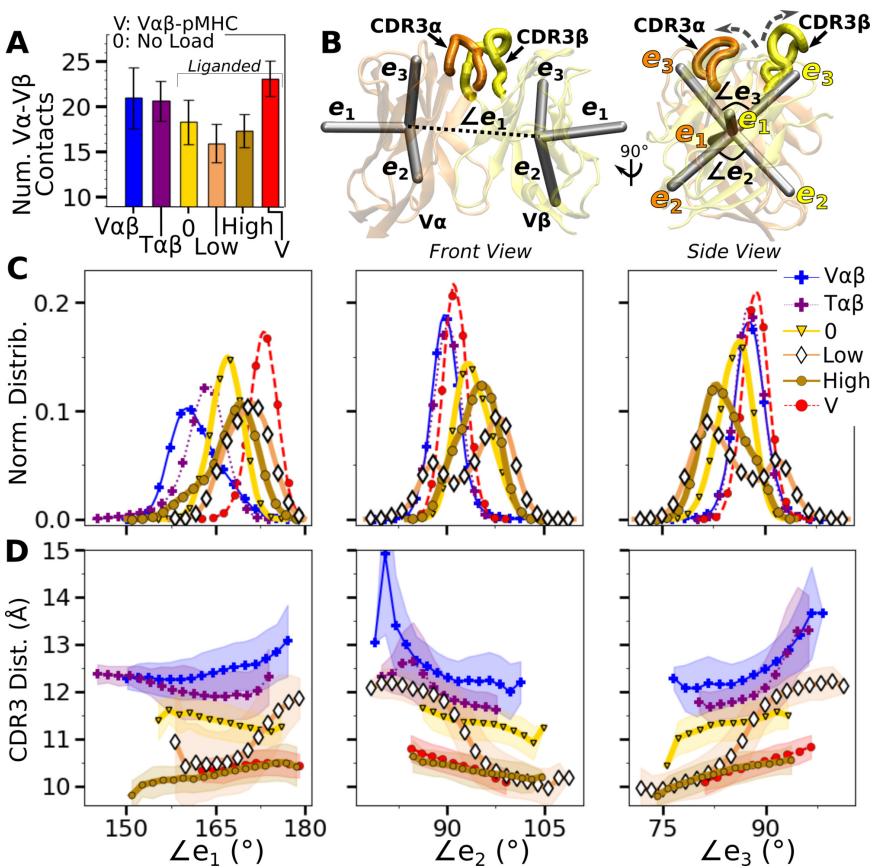
97 Results

98 We first study the WT-based systems to gain insight into the functional implications of TCR α β -pMHC
99 structural dynamics, followed by point mutations in the Tax peptide. Our analyses below involve
100 time-dependent inter-domain contact dynamics, domain motion, and their dependence on applied
101 load.

102 **Load stabilizes WT TCR $\alpha\beta$ -pMHC interfacial contacts**

103 We assessed the effect of load on WT first by counting high-occupancy contacts with pMHC (*Figure 2A; Contact analysis*). WT^{low} had the least number of contacts, followed by WT⁰ and WT^{high}, indicating low and high loads may have opposite effect on the interfacial stability. V $\alpha\beta$ -pMHC without the C-module formed the most contacts. This indicates that without a proper load, the C-module 106 is detrimental to the stability of the interface with pMHC, as we found previously for the JM22 TCR 107 (*Hwang et al., 2020*).

109 Time-dependent changes in the interfacial contacts were monitored using the Hamming distance H (*Hamming, 1950; Hwang et al., 2020*). H is the number of the initial high-occupancy contacts (those with greater than 80% average occupancy during the first 50 ns) that are subsequently 110 lost during the simulation. A low H means that such contacts persist while a high H means the 111 corresponding number of initial high-occupancy contacts are missing. Consistent with the contact 112 count, H remained low for WT^{high} and V $\alpha\beta$ -pMHC (*Figure 2B*). In WT⁰ and WT^{low}, H increased 113 after about 500 ns and 900 ns, respectively. Thus, the relatively high number of interfacial contacts 114 for WT⁰ (*Figure 2A*) is due to the formation of new contacts rather than by maintaining the initial 115 contacts.


118 Occupancy heat maps provide the time dependence of individual contacts. For WT^{high} and V $\alpha\beta$ - 119 pMHC, high-occupancy contacts persist throughout the simulation (blue regions in *Figure 2C* and 120 *Figure 2—figure Supplement 1*) while WT⁰ or WT^{low} exhibited breakage of contacts, especially when 121 H increased (dashed arrows in *Figure 2D,E*). Differences in the interfacial contacts also manifest 122 in their location. We displayed the backbone C_α atoms of V α and V β residues that form contacts 123 with pMHC with greater than 80% average occupancy (averaging was done after the initial 500 ns; 124 *Figure 2F*). In WT⁰, contacts are spread apart, and in WT^{low} they lie mostly along the length of the 125 peptide. These layouts potentially make interfacial contacts more prone to break via easier access 126 by water molecules. In WT^{high} and V $\alpha\beta$ -pMHC, high-occupancy contacts form more compact 127 clusters. Exposure to water of the TCR $\alpha\beta$ residues involved in those contacts was measured by their 128 buried surface area (BSA), which follows the same trend as the number of high occupancy contacts 129 (*Figure 2A* vs. G). Furthermore, this trend also applied to the root-mean square fluctuation (RMSF) 130 of Tax peptide backbone C_α atoms, even though RMSF values were small (*Figure 2H*).

131 Experimentally, the WT complex has a relatively strong affinity as a TCR $\alpha\beta$ (about 1 μ M) (*Ding* 132 *et al., 1999*), which may be why the interface with pMHC involved more contacts in WT⁰ compared 133 to WT^{low}. At low load, the short distance between restraints on the ends of the complex (*Figure 1A*) 134 allows wider transverse motion that in turn generates a shear stress or a bending moment at the 135 interface. Such a transverse stress will be less for WT⁰ where the end moves freely, and for WT^{high} 136 where lateral motion is suppressed. The high stability of V $\alpha\beta$ -pMHC and WT^{high} agree well with the 137 results for JM22 (*Hwang et al., 2020*).

138 **Influence of pMHC and load on V α -V β motion**

139 We analyzed the motion between V α and V β (V α -V β motion) to find its effect on the TCR $\alpha\beta$ -pMHC 140 interface. Compared to the unliganded systems (V $\alpha\beta$ and T $\alpha\beta$; *Table 2*), the number of high-occupancy 141 V α -V β contacts increased slightly in V $\alpha\beta$ -pMHC ('V' in *Figure 3A*), while it decreased in full TCR $\alpha\beta$ - 142 pMHC complexes ('0', 'Low', and 'High' in *Figure 3A*). This shows that the V α -V β interface is difficult 143 to organize with the restrictions imposed by the bound pMHC, except in the absence of the 144 constant domains. The number of V α -V β contacts in the liganded systems is the smallest for WT^{low}, 145 similar to the case for the number of contacts with pMHC (*Figure 2A*), again reflecting a destabilizing 146 effect with low load.

147 V α -V β motion was measured by assigning triads to the stably folded β -sheet cores of the two 148 domains and performing principal component analysis (PCA) on the trajectories of the two triads 149 (*Figure 3B; Variable domain triads and PCA*) (*Hwang et al., 2020*). The amplitude of PC1 is lower 150 when the number of V α -V β contacts is higher (*Figure 3A* vs. *Figure 3—figure Supplement 1A*). Directions of PCs differed to varying extents (arrows in *Figure 3—figure Supplement 1B*). Similarity of the

Figure 3. $V\alpha$ - $V\beta$ motion. (A) Number of high-occupancy contacts (Contact analysis). Bars: std. (B) Triads $\{e_1, e_2, e_3\}$ assigned to each domain. Angles between triad arms ($\angle e_1$, $\angle e_2$, and $\angle e_3$) are marked. CDR3 loops are represented as thick tubes. Dashed arrows indicate directions where the CDR3 distance increases via the scissor motion. (C) Histograms of the 3 angles between the triad arms. For WT^{low} , the smaller peaks in distributions of $\angle e_2$ and $\angle e_3$ arise from simulation trajectories after 1 μ s. (D) CDR3 distance vs. the 3 angles. Transparent band: std of the CDR3 distance in each bin. Statistics for bins deteriorate in large- or small-angle tails that contain very few frames.

Figure 3—figure supplement 1. PCA of $V\alpha$ - $V\beta$ motion.

Figure 3—figure supplement 2. Trajectories of the V-module motion.

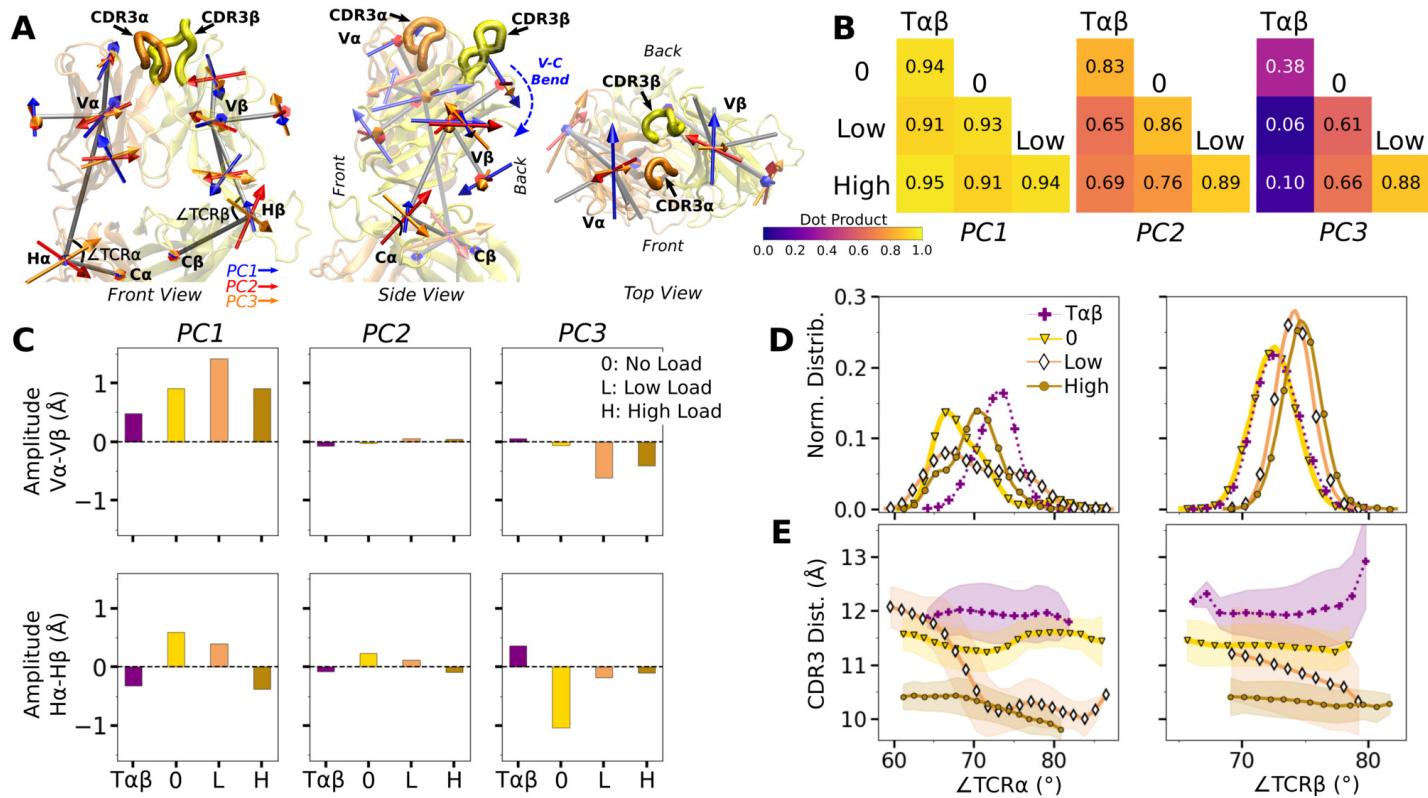
directions was measured by the absolute value of the dot product between PCs as 18-dimensional unit vectors (for the 6 arms from two triads) in different systems. A value of 1 corresponds to the same direction, and 0 means an orthogonal direction (**Figure 3—figure Supplement 1C**). For PC1, a high degree of similarity was observed between $T\alpha\beta$ and $V\alpha\beta$, which is consistent with their similarity in the number of $V\alpha$ - $V\beta$ contacts (**Figure 3A**) and PC amplitudes (**Figure 3—figure Supplement 1A**). Among triad systems with bound pMHC, WT^{low} differed significantly in the PC1 direction compared to others (**Figure 3—figure Supplement 1C**, darker colors). The dot products varied more for PC2 and PC3, which capture finer motions with smaller amplitudes (**Figure 3—figure Supplement 1C**).

To determine how the $V\alpha$ - $V\beta$ motion influences the interface with pMHC, we measured the distance between CDR3 loops (CDR3 distance), which play a central role in peptide discrimination (**Figure 1B,C** and **Figure 3—figure Supplement 2A-C**). Unliganded $T\alpha\beta$ and $V\alpha\beta$ had greater fluctuation in the CDR3 distance (larger std), as they are unrestrained by pMHC. Among the pMHC-bound systems, WT^{high} and $V\alpha\beta$ -pMHC had small CDR3 distance (averages of 10.3 and 10.5 Å, respectively; **Figure 3—figure Supplement 2B,C**). CDR3 distance was larger for WT^0 (11.3 Å), which reflects an altered interface with pMHC. For WT^{low} , the CDR3 distance varied more widely, with more than a 2-fold increase in standard deviation. The increase in CDR3 distance of WT^{low} happens after the in-

168 crease in \mathcal{H} (800 ns; **Figure 2B,D** and **Figure 3—figure Supplement 2C**), suggesting a loss of contacts
169 at the interface is related to the $V\alpha$ - $V\beta$ motion.

170 PCA decomposes the $V\alpha$ - $V\beta$ motion into mutually orthogonal directions. We made 2-dimensional
171 histograms of each of these projections versus the corresponding CDR3 distance (**Figure 3—figure**
172 **Supplement 1D**). If any of the PC modes is strongly correlated with the CDR3 distance, the corre-
173 sponding histogram would exhibit a slanted profile. However, no clear correlation could be seen
174 (**Figure 3—figure Supplement 1D**), suggesting that the changes in CDR3 distance may depend on
175 combinations of PCs. We addressed this possibility by considering angles between matching arms
176 of the two triads (**Figure 3B**). The e_1 - e_1 angle, herein called $\angle e_1$ (and similarly define $\angle e_2$ and $\angle e_3$;
177 **Figure 3B**), can change either by the e_1 arms turning up and down ("flap") or in and out of the page
178 ("twist") in **Figure 3B**. Angles $\angle e_2$ and $\angle e_3$ depend primarily on rotation indicated by dashed arrows
179 in **Figure 3B** ("scissor") (*Hwang et al., 2020*).

180 Histograms of the three angles (**Figure 3C**) show a clearer difference than individual PCs among
181 the systems tested, and the CDR3 distance varies with the angles (**Figure 3D**). The wider distribu-
182 tions for angles of WT^{low} and WT^{high} reflect their higher PC amplitudes (**Figure 3—figure Supple-**
183 **ment 1A**). The symmetric distributions of $\angle e_2$ and $\angle e_3$ can be seen from the two peaks for WT^{low} ,
184 which is due to the reciprocal behavior of the scissoring motion involving the two angles (**Figure 3B**,
185 side view, and **Figure 3C**, open diamonds). The two peaks are also related to the changes in the
186 CDR3 distance (**Figure 3D**), which reflects an agitating effect of the mild load on the scissor motion.
187 Given the definitions of the angles, the CDR3 distance will increase (dashed arrows in **Figure 3B**)
188 with larger $\angle e_1$ or $\angle e_3$, or with smaller $\angle e_2$ (**Figure 3D**). WT^0 , despite the apparent stability of the
189 interface, had a larger CDR3 distance than WT^{high} and $V\alpha\beta$ -pMHC, again indicating a disrupted in-
190 terface. These results show that the CDR3 motion is coupled to the $V\alpha$ - $V\beta$ motion, especially the
191 scissoring motion.


192 **Asymmetric V-C motion influences the load response of the complex**

193 We next analyzed the motion of the V-module relative to the C-module (V-C motion). The number
194 of high-occupancy $C\alpha$ - $C\beta$ contacts did not vary significantly (in the 31–34 range) and they were
195 more than the number of $V\alpha$ - $V\beta$ contacts, similar to the case for the JM22 TCR (*Hwang et al., 2020*).
196 The C-module thereby influences the V-module as a single unit. The V-C motion was analyzed by
197 performing PCA on the bead-on-chain (BOC) model constructed based on the β -sheet core of each
198 domain, and hinges between V- and C-domains denoted as $H\alpha$ and $H\beta$ (**Figure 4A**; V-C BOC and
199 PCA). Across different systems, amplitudes of PCs were similar (**Figure 4—figure Supplement 1A**).
200 PC1 (V-C bend; **Figure 4A**) was similar among systems, as seen by the values of dot products being
201 close to 1.0 (**Figure 4B**). Directions of higher PCs varied more, similarly as higher PCs for the $V\alpha$ - $V\beta$
202 motion.

203 We noticed that $V\alpha$ bends more compared to $V\beta$, as can be gleaned from the longer PC ar-
204 rows for $V\alpha$ (**Figure 4A**). We quantified this asymmetry by subtracting the amplitudes of motion
205 for domains in the β chain from those for the matching domains in the α chains, where positive
206 or negative values respectively indicate greater or less motion of the α compared to the β chain
207 (**Figure 4C**). Compared to $T\alpha\beta$, binding of pMHC increases the α -chain motion, which is the greatest
208 in WT^{low} (**Figure 4C**, PC1 in top row). The greater degree of $V\alpha$ - $C\alpha$ motion is consistent with the
209 smaller number of $V\alpha$ - $C\alpha$ contacts compared to $V\beta$ - $C\beta$ (**Figure 4—figure Supplement 1B,C**).

210 The asymmetry was further analyzed by measuring hinge angles $\angle TCR\alpha$ and $\angle TCR\beta$ (**Figure 4A**).
211 Distributions of $\angle TCR\alpha$ varied more compared to $\angle TCR\beta$ (**Figure 4D**). A wide distribution of $\angle TCR\alpha$
212 for WT^{low} is related to the increase in the CDR3 distance and concomitant changes in the triad arm
213 angles later during the simulation (**Figure 3—figure Supplement 2C**). For WT^{low} and WT^{high} , CDR3
214 distance decreases with increasing hinge angles, especially with $\angle TCR\alpha$ (**Figure 4E**), which suggests
215 that unbending of the V-module under load helps with bringing the CDR3 loops closer together.
216 In WT^{low} , this state is not maintained and $\angle TCR\alpha$ decreases (more bending) as the CDR3 distance
217 increases (**Figure 4E**) which happens after the increase in \mathcal{H} (**Figure 2B**). These results suggest a

218 mechanism by which the asymmetric response of the whole TCR $\alpha\beta$ to load affects the binding with
 219 pMHC by controlling the relative positioning between the CDR3 loops via the V α -V β motion. For this,
 220 the C β FG-loop plays a critical role, as simulations of the bound complex without the C β FG-loop
 221 resulted in a smaller \angle TCR β and an over-extended \angle TCR α (see Appendix 1).

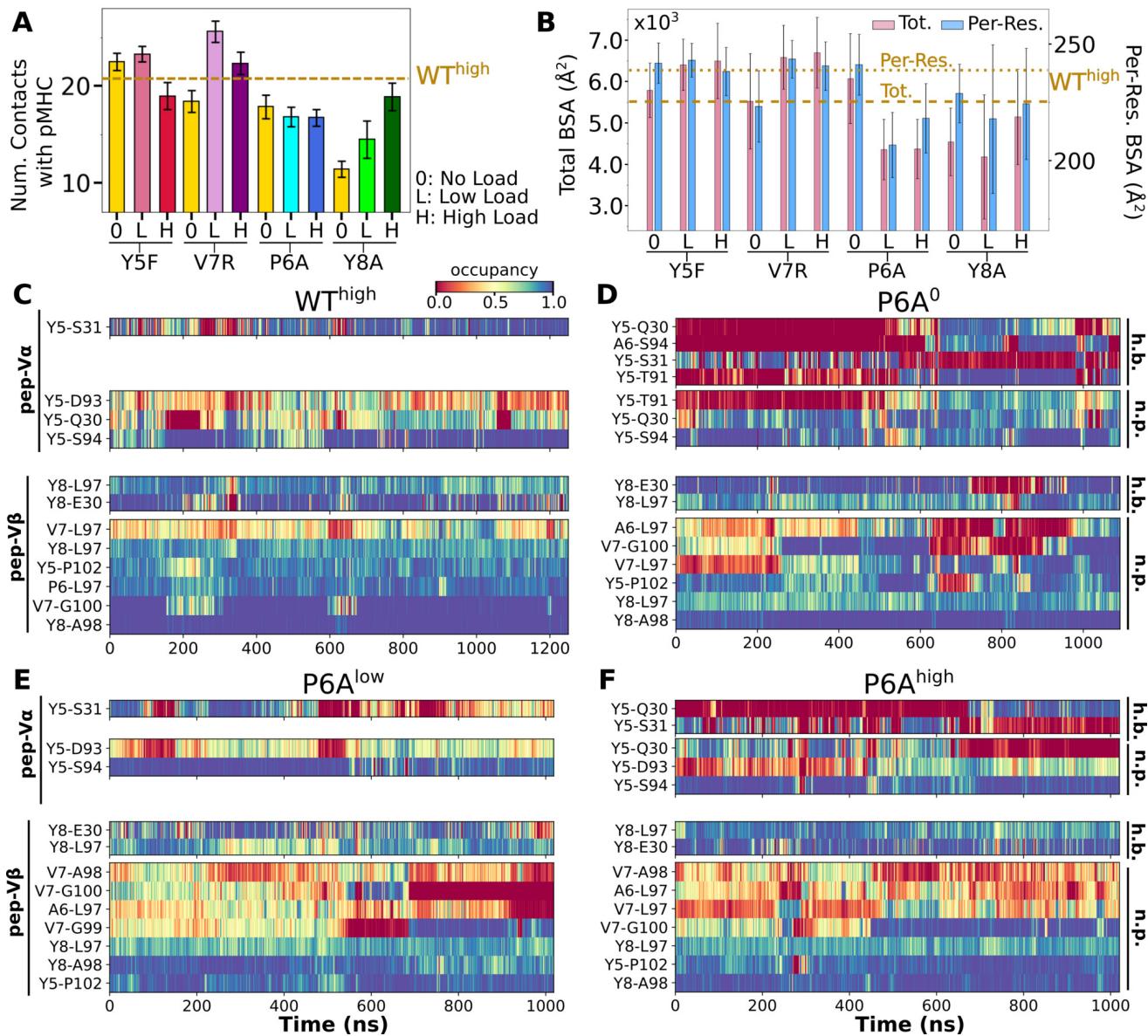

Figure 4. WT V-C dynamics. (A) Average BOC built from the unliganded T $\alpha\beta$. (B) Dot products computed between the BOC PCs in listed systems. Values closer to 1.0 denote similar V-C BOC direction of motion. (C) Difference in amplitude between the α and β chain motion measured between V α and V β (top), and H α and H β (bottom). PC amplitudes are proportional to the lengths of the arrows in panel A. (D) Histograms of hinge angles (defined in panel A) for each chain. (E) CDR3 distance vs. hinge angles.

Figure 4—figure supplement 1. V-C PC amplitude and contacts.

222 Effects of point mutations on the peptide

223 In the WT crystal structure, the side chain of Y5 in the Tax peptide is located between the CDR3 loops
 224 of V α and V β while V7 mainly contacts CDR3 β (Figure 1C). P6 makes one contact with CDR3 β . The
 225 side chain of Y8 is located between CDR3 β and the $\alpha 1$ helix of MHC. Crystal structures of point mu-
 226 tants of these four residues are very similar in terms of interfacial contacts, docking angle, and CDR
 227 loop conformations, with the only structurally observable difference located at CDR3 β (Figure 1B,C)
 228 (Ding *et al.*, 1999; Scott *et al.*, 2011). However, point mutations profoundly affect dynamics of the
 229 complex, as explained below.

230 Modified agonists Y5F and V7R had about the same number of contacts with pMHC as the
 231 WT complexes, but high load resulted in fewer contacts, indicating a potential slip bond behavior
 232 (Figure 5A), though loss of contacts in Y5F^{high} might have been due to a higher load experienced
 233 compared to other complexes at the same extension (23.7 pN; *Table 1*, Selecting extensions). An-
 234 tagonists P6A and Y8A had overall fewer contacts with pMHC without a consistent load dependence
 235 (Figure 5A). This trend was also seen in BSA profiles of residues forming high-occupancy contacts
 236 with pMHC (Figure 5B). For modified agonists, higher load also resulted in greater increase of \mathcal{H} ,
 237 whereas the trend was opposite for antagonists (Figure 5—figure Supplement 1). The large num-

Figure 5. Interface with pMHC containing mutant peptides. The same occupancy cutoffs were used as in **Figure 2**. (A) Number of contacts with pMHC. Dashed line: count for WT^{high} in **Figure 2A**, for reference. (B) Total (pink) and per-residue (blue) BSA. Dashed and dotted lines: values for WT^{high} (**Figure 2G**). (C-F) Contact heat maps for peptide residues 5 to 8. (C) WT^{high} (included in **Figure 2C**), and (D) P6A⁰, (E) P6A^{low}, and (F) P6A^{high}.

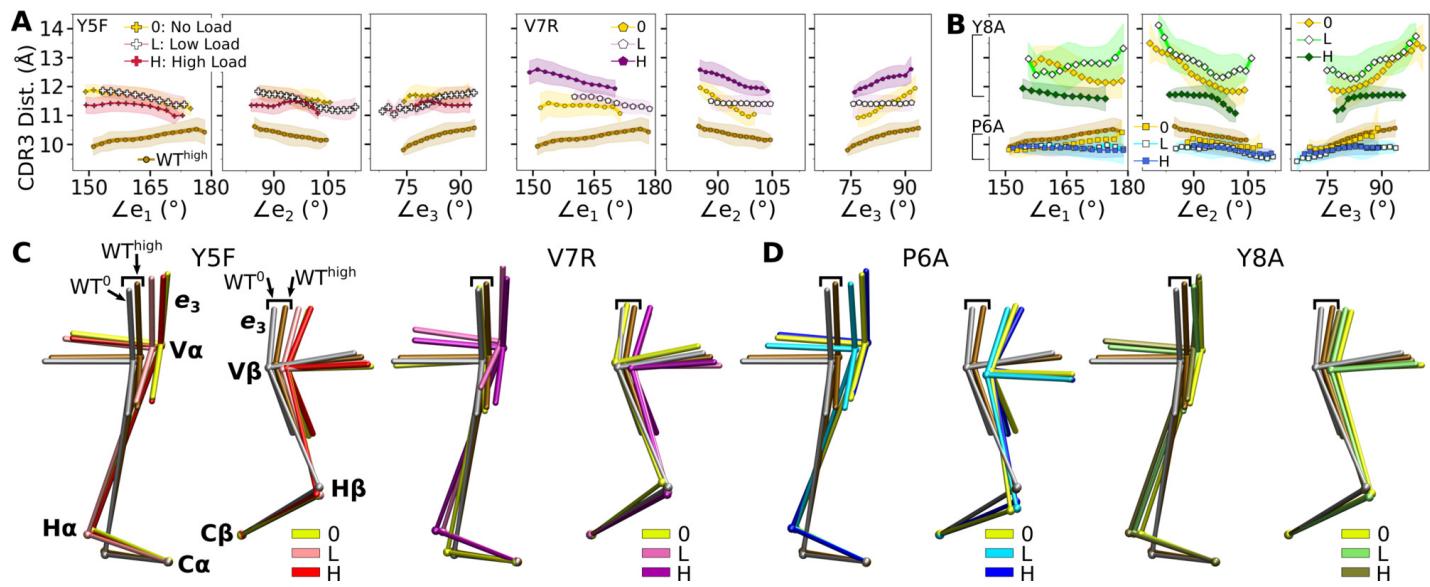

Figure 5—figure supplement 1. Trajectories of \mathcal{H} for mutant complexes.

Figure 5—figure supplement 2. Contact occupancy heat maps for residues 5–8 of Y5F, V7R, and Y8A.

Figure 5—figure supplement 3. Locations of high-occupancy contacts with pMHC in mutant systems.

ber of contacts with pMHC for modified agonists (**Figure 5A**) despite an increase in \mathcal{H} suggests an altered binding rather than maintaining the initial contacts.

In contact heat maps, the Y5 residue of the WT peptide forms a hydrogen bond with α S31 and nonpolar contacts with a few residues in both \alpha and \beta (**Figure 2C-E**, **Figure 5C**). In Y5F, the hydrogen bond with α S31 cannot form, and many of the nonpolar contacts with F5 break under load later during the simulation (**Figure 5—figure Supplement 2A**). The breakage coincides with the increase in \mathcal{H} (**Figure 5—figure Supplement 1A**). In addition, contacts involving Y8 and V7 also break in Y5F^{high} (**Figure 5—figure Supplement 2A**). Thus, the Y5- α S31 hydrogen bond may stabilize the interface with pMHC by arranging other nearby residues to form nonpolar contacts in favorable

Figure 6. Mutant effects on the conformational dynamics of TCR $\alpha\beta$. (A,B) CDR3 distance versus triad arm angles for (A) modified agonists and (B) antagonists. Plot for WT^{high} in **Figure 3D** is reproduced for comparison. (C,D) Average BOCs of labeled complexes oriented to the constant domains of WT^{high} (V-C BOC and PCA) for (C) modified agonists and (D) antagonists. Average BOCs for WT⁰ and WT^{high} are displayed for comparison (marked by angular brackets).

Figure 6—figure supplement 1. $V\alpha$ - $V\beta$ motion of mutant systems.

Figure 6—figure supplement 2. Distribution of triad arm angles in mutant systems.

Figure 6—figure supplement 3. Comparison of mutant average V-C BOCs and interfaces with those of WT^{high}.

Figure 6—figure supplement 4. V-C motion of mutants.

247 positions; its absence would make the nonpolar contacts more prone to break under load. The
 248 relative stability of Y5F⁰ can also be seen by the similarity in the locations of high-occupancy contact
 249 residues between WT and Y5F⁰ (**Figure 2F** vs. **Figure 5—figure Supplement 3A**). Experimentally,
 250 Y5F has kinetic and cytotoxicity profiles similar to WT (*Hausmann et al., 1999; Scott et al., 2011*).
 251 Its dependence on load needs further experimental analysis. On the other hand, V7 of the WT
 252 peptide forms nonpolar contacts with residues in CDR3 β (**Figure 2C–E**, **Figure 5C**). In V7R, nonpolar
 253 contacts with CDR3 β form with reduced occupancy, and contacts involving Y8 are also disrupted
 254 (**Figure 5C** vs. **Figure 5—figure Supplement 2B**).

255 For antagonists, more contacts broke, which again involve non-mutated residues such as Y5
 256 and V7 (**Figure 5D–F**, **Figure 5—figure Supplement 2C**). The greater number of contacts in Y8A^{high}
 257 compared to Y8A⁰ and Y8A^{low} (**Figure 5A**) despite smaller number of contacts involving key peptide
 258 residues Y5–A8 (**Figure 5—figure Supplement 2C**) suggests formation of additional contacts with
 259 other parts of MHC as a result of an altered interface. Experimentally, binding of the A6 TCR to
 260 pMHC containing the P6A or Y8A peptide was not detected *in vitro* (*Ding et al., 1999*). Thus, Y8A in
 261 principle could exhibit a catch bond, but forming the complex in the loaded state may be kinetically
 262 inaccessible.

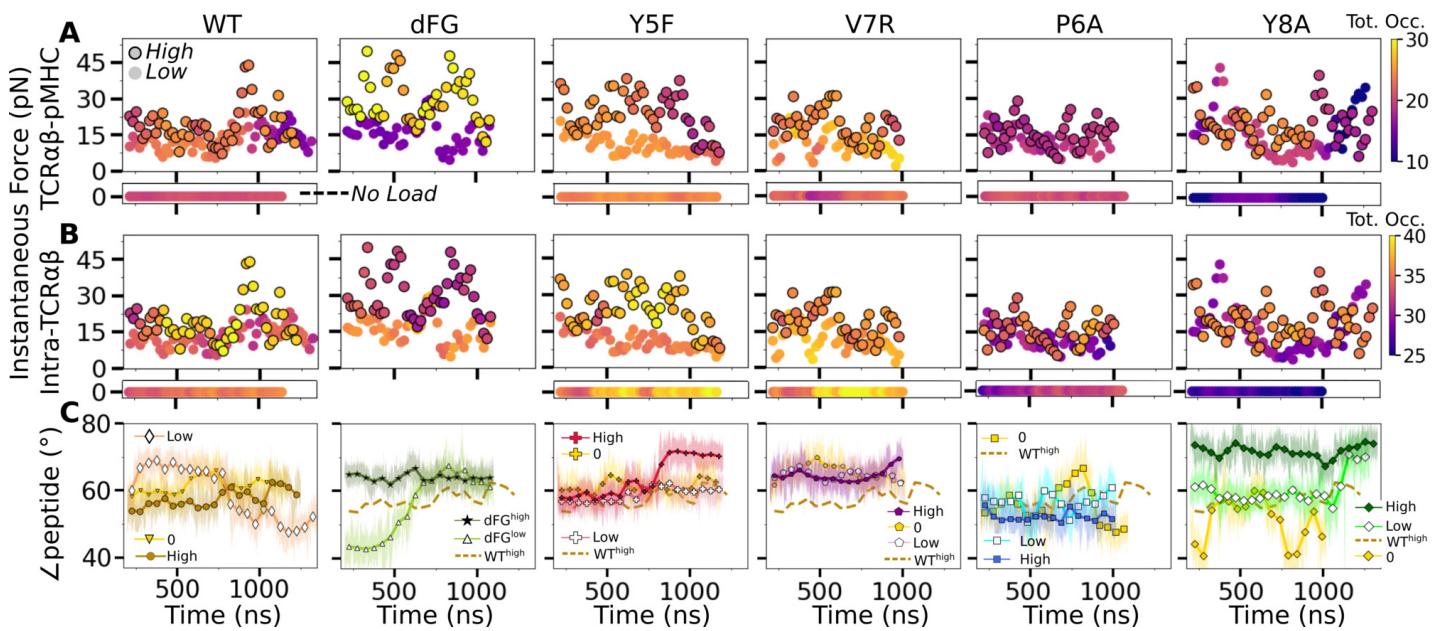
263 The modified agonists had more $V\alpha$ - $V\beta$ contacts than WT^{high} while the antagonists had fewer,
 264 except for Y8A^{high} (**Figure 6—figure Supplement 1A**). While the amplitude of $V\alpha$ - $V\beta$ motion was
 265 generally in a range similar to the WT systems (**Figure 3—figure Supplement 1A** vs. **Figure 6—figure**
 266 **Supplement 1B**), the CDR3 distance was larger for all mutant systems except for P6A, which had
 267 a weak dependence on triad angles (**Figure 6A–B**). The angles in turn varied among systems and
 268 loading conditions (**Figure 6—figure Supplement 2**). These results suggest that point mutations to
 269 the peptide cause alterations in the load-dependence of the interface and the $V\alpha$ - $V\beta$ motion.

270 The mutants affected the average V-C BOC similarly as that for dFG^{high} (**Figure 6C,D** vs. Appendix
 271 1—**Figure 1C**). Among them, Y8A^{high} had an average BOC approaching that of WT^{high}, which aligns

272 with the comparable number of contacts with pMHC (**Figure 5A**). However, the location of its $\text{H}\alpha$
273 differed (**Figure 6D**), and the CDR3 distance was larger (**Figure 6B**). To quantify deformation of the
274 average BOC, we measured displacements of centroids from the corresponding ones in WT^{high} .
275 They were overall greater for the α chain than the β chain (**Figure 6—figure Supplement 3A,B**).
276 Consistent with this, the mutants had fewer $\text{V}\alpha\text{-C}\alpha$ contacts than WT^{high} and a similar number of
277 $\text{V}\beta\text{-C}\beta$ contacts (**Figure 6—figure Supplement 3C,D**).

278 Similar to the WT systems, the greater motion of the α chain than the β chain was observed in
279 the mutant systems, as seen from the differences in V-C PC1 amplitudes (**Figure 6—figure Supple-**
280 **ment 4A,B**). However, dot products of the BOC PC1 between WT and mutants revealed that the
281 direction of motion differed by varying degrees, which was more for V7R^{high} and Y8A (**Figure 6—**
282 **figure Supplement 4C** vs. **Figure 4B**). Thus, point mutations on the WT peptide can affect the con-
283 formational motion of the whole $\text{TCR}\alpha\beta$, in addition to the average BOC.

284 To further test effects of point mutations, we introduced *in silico* point mutations P6A and Y8A to
285 the WT complex (WT to antagonists) and conversely introduced A6P and A8Y mutations to the P6A
286 and Y8A complexes, respectively (antagonists to WT). The *in silico* antagonists did exhibit reduction
287 in contacts with pMHC while the results were mixed for the *in silico* WT, especially for A8Y where
288 the introduced tyrosine is bulkier than the original alanine. Nevertheless, these tests support the
289 above results based on the original crystal structures (See Appendix 2 for details).


290 **Load- and time-dependent interfacial response**

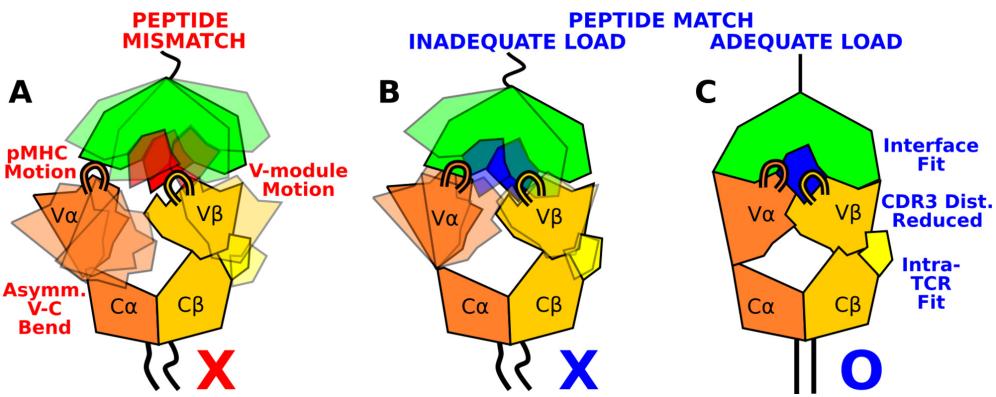
291 To probe the dynamic relation between the $\text{TCR}\alpha\beta$ -pMHC (intermolecular) interface and intra- $\text{TCR}\alpha\beta$
292 (intramolecular) interfaces formed between subdomains of the complex, we calculated the total
293 occupancy of the high-occupancy contacts in respective cases (**Figure 7A,B**). For the intramolecular
294 contacts, we excluded the $\text{C}\alpha\text{-C}\beta$ interface contacts since they are larger in number compared to
295 other interfaces and did not differ significantly across different systems, *i.e.*, the C-module moves
296 mostly as a single unit (**Hwang et al., 2020**).

297 For WT^0 , the intermolecular contact occupancy stayed at around 20 (WT in **Figure 7A**, horizontal
298 bar on the bottom) and for WT^{low} , it decreased later in simulation (WT in **Figure 7A**, darkening of
299 circles without outline). In comparison, the intramolecular contact occupancy remained relatively
300 constant for both WT^0 and WT^{low} (WT in **Figure 7B**, horizontal bar on the bottom and circles without
301 outline). For WT^{high} , the intermolecular contact occupancy was steady even with wider fluctuation
302 in force (WT in **Figure 7A**, outlined circles), and the intramolecular occupancy also remained high,
303 indicating the subdomains are held together tightly (WT in **Figure 7B**, outlined circles). For dFG^{low} ,
304 the intermolecular contact occupancy stayed low and intramolecular occupancy was relatively con-
305 stant (dFG in **Figure 7A,B**, circles without outline). In dFG^{high} , the contact occupancy with pMHC
306 increased (dFG in **Figure 7A**, outlined circles), but the intramolecular contact occupancy became
307 low (dFG in **Figure 7B**, outlined circles), which suggests that the complex is not as tightly coupled
308 compared to WT.

309 For modified agonists, the no load and low load cases had overall higher occupancy, both with
310 pMHC and within $\text{TCR}\alpha\beta$, but occupancy fluctuated more as can be seen by the changes in colors in
311 the occupancy trajectories (Y5F and V7R in **Figure 7A,B**, horizontal bars on the bottom and circles
312 without outlines). Under high load, intermolecular contact occupancy decreased over time (Y5F
313 and V7R in **Figure 7A**, darkening of outlined circles) while intramolecular contact occupancy either
314 increased (Y5F^{high}) or decreased (V7R^{high}) relative to the respective low load cases. For antagonists,
315 both occupancy measures were lower than the WT, and further reduction could be seen over time
316 in some cases (P6A and Y8A in **Figure 7A,B**, darkening of colors in outlined circles).

317 The stability of the $\text{TCR}\alpha\beta$ -pMHC interface also manifested into their relative motion, which
318 was quantified by the angle between the least-square fit line across the backbone C_α atoms of
319 the antigenic peptide and the unit vector formed between the centroids of $\text{V}\alpha$ and $\text{V}\beta$ (**Figure 7—**
320 **figure Supplement 1A-D**). For WT, the peptide angle fluctuated more for WT^{low} than WT^{high} (WT
321 in **Figure 7C**) where $58.4^\circ \pm 3.6^\circ$ (avg \pm std after 500 ns) for WT^{high} reflects a diagonal binding. For

Figure 7. Relationship between force and interfacial behavior. (A,B) The total contact occupancy measured in 40-ns overlapping intervals starting from 200 ns (Time-dependent behavior). (A) TCR $\alpha\beta$ -pMHC (intermolecular) and (B) intra-TCR $\alpha\beta$ (intramolecular) contacts excluding C α -C β . Cases without load are shown as horizontal bars below each panel. Plots for low load systems (**Table 1**) do not have outlines. (C) Angle between antigenic peptide and the line between centroids of the triads for V α and V β (Peptide and V-module angle). Thin lines: values at individual frames. Symbol: 50-ns running average.


Figure 7—figure supplement 1. Motion at the interface related to \angle peptide.

322 dFG^{low}, the peptide changed orientation by more than 20°, and for dFG^{high}, it stabilized, but at
 323 a higher value than WT^{high}, which also was reached in dFG^{low} later during simulation, suggesting
 324 a more orthogonal binding (dFG in **Figure 7C**). For modified agonists, similar to the behaviors of
 325 the total intra- and intermolecular contact occupancy, the peptide angle was affected more under
 326 high loads, again becoming more orthogonal compared to WT^{high} (Y5F and V7R in **Figure 7C**). For
 327 antagonists, the angle overall fluctuated more under no load or settled to different values under
 328 high load. Since the antagonists are loosely coupled (low occupancy in **Figure 7A,B**), settling of the
 329 angle does not indicate stabilization of the interface, as evident from the positional shift of the α 2
 330 helix of V7R^{high} or Y8A^{high} (**Figure 7—figure Supplement 1G,H**) compared to WT^{high} (**Figure 7—figure**
 331 **Supplement 1E**).

332 Concluding Discussion

333 The present study elucidates how the load-dependent TCR $\alpha\beta$ framework motion influences the
 334 dynamics of the TCR $\alpha\beta$ -pMHC interface (**Figure 8**). A main feature of the framework is the smaller
 335 number of contacts for the V α -C α compared to the V β -C β interface. This causes an asymmetric V-C
 336 motion, primarily bending, where V α moves more compared to V β relative to the C-module, which
 337 serves as a base. This in turn generates relative motion between V α and V β , which can destabilize
 338 the contacts with pMHC, especially by affecting the distance between CDR3 loops that play the
 339 most direct role for sensing the bound peptide (**Figure 8A,B**). Applying a physiological level force
 340 stabilizes the interface by straining the whole complex into a more tightly coupled state, as can be
 341 seen by the increase of both inter- and intramolecular contacts in WT^{high} (**Figure 7** and **Figure 8C**).

342 The CDR3 distance of WT^{high} (10.3±0.3 Å; **Figure 3—figure Supplement 2C**) was shorter than
 343 that of WT⁰ or WT^{low} (**Figure 3D**), and it is also shorter than the 10.9-Å CDR3 distance in the crystal
 344 structure (PDB 1AO7). The applied load slightly increases the spacing between pMHC and TCR $\alpha\beta$,
 345 which provides room for the CDR3 loops to adjust as well as allow other contacts to 'lock' into
 346 more stable states with higher and more persistent occupancy. Absence of load or low load do not

Figure 8. Model for peptide screening. (A) Non-matching pMHC or (B) matching pMHC but without adequate load do not stabilize the asymmetric V-C framework motion that affects the interfacial stability as measured by the CDR3 distance (CDR3 loops are shown above the V-module). (C) Matching pMHC with adequate load results in an overall tighter fit.

properly channel the framework motion and thereby increase exposure to water (*Figure 2F,G*) and destabilize the interface.

The $C\beta$ FG-loop stabilizes the $V\beta-C\beta$ interface, thereby contributing to the asymmetric V-C motion. It also controls the relative orientation between $V\beta$ and $C\beta$, hence it affects the orientation of the CDR loops of the V-module with respect to the loading direction (Appendix 1-*Figure 1C*). Consistency in these findings between the present study and our previous simulations using JM22 TCR (*Hwang et al., 2020*) underscores that the proposed mechanism based on the asymmetric framework motion is applicable to other TCR $\alpha\beta$ systems.

After engagement with a cognate pMHC under load, reversible transition to an extended state is possible which has been observed both in *in vitro* single-molecule experiment using TCR $\alpha\beta$ and on cell displaying the full $\alpha\beta$ TCR holoreceptor (*Das et al., 2015; Banik et al., 2021*). Since $V\alpha\beta$ -pMHC lacking the C-module forms a more stable binding (*Figure 2*) that was also observed in our previous simulations of the JM22 TCR (*Hwang et al., 2020*), the C-module likely undergoes partial unfolding in the extended state. Thus, while the folded C-module serves as the base for the asymmetric V-C motion screening for the matching pMHC, once a match is found, the reversible transitioning propelled by the partial unfolding of the C-module may agitate the membrane and activate the cytoplasmic domains of the surrounding CD3 subunits to initiate downstream signaling (*Reinherz et al., 2023*). A circumstantial evidence for the capacity of the C-module to unfold is that the $C\alpha$ domain as well as parts of $C\beta$ are occasionally unresolved in crystal structures, as in PDB 1AO7.

In addition to TCR $\alpha\beta$, MHC may also respond to load. *Wu et al. (2019)* suggested a partial separation of the MHC $\alpha 1-\alpha 2$ peptide-binding platform from $\beta 2m$ with the attendant lengthening of pMHC contributing to a longer bond lifetime. *Banik et al. (2021)* observed a catch bond for CAR-pMHC, where just MHC is being pulled with an antibody. While we did not find a clear load or peptide-dependence in contacts between subdomains of MHC, since the entire TCR $\alpha\beta$ -pMHC complex is under load, conformational changes in pMHC may contribute to the extended state of the complex. Yet, for T-cell based cancer immunotherapy, mechanistic knowledge of the mechanosensing through a TCR has a greater practical significance (*Reinherz et al., 2023*).

A recent study using a laminar flow chamber assay fit the measured bead survival distribution using Bell's equation to estimate the zero-force off rate K_{off} and the force sensitivity distance x_β (*Pettmann et al., 2022*). They found a negative correlation between K_{off} and x_β , to conclude that mechanical forces impair antigen discrimination. However, the force range tested was up to 100 pN, where even systems exhibiting catch bond in the 10–20-pN range will switch to a slip bond behavior. A catch bond exhibits a non-monotonic force versus bond lifetime profile, so that fitting with Bell's equation, an exponential function, leads to results that do not have a clear physical meaning. For example, x_β in *Pettmann et al. (2022)* was less than 1 Å in magnitude in all systems, which is shorter

382 than the length of a single covalent bond. They also performed steered MD simulation that applies
383 hundreds of pN forces, which is inadequate for studying behaviors of the system under loads in
384 the 10–20-pN range (*Hwang et al., 2020*). Use of a coarse grained model without appropriately
385 incorporating atomistic properties of the TCR further makes it difficult to compare their simulation
386 with experiment.

387 We earlier proposed that the residues of the antigenic peptide play a role more as “teeth of a
388 key” for screening the TCR $\alpha\beta$ -pMHC interaction fitness rather than bearing applied loads (*Hwang*
389 *et al., 2020; Reinherz et al., 2023*). The present study confirms this through simulations of mutant
390 systems, where several contacts across the interface with pMHC were impaired due to a single-
391 residue mutation on the peptide in ways that reflect the functional outcome of the mutation. In
392 considering how a T-cell may respond to an unknown peptide, the pMHC motion and the asymmet-
393 ric V-C motion are two points of guidance (*Figure 8*). Stabilization of the inter- and intramolecular
394 interfaces throughout the whole complex under 10–20-pN load would indicate a cognate TCR $\alpha\beta$ -
395 pMHC interaction (*Figure 7*). Since these features are based on overall TCR $\alpha\beta$ -pMHC complex dy-
396 namics, rather than changes to specific contacts or a particular conformational change, they can
397 be used to predict fitness of other TCR $\alpha\beta$ -pMHC combinations. Since such tests involve performing
398 many all-atom MD simulations and trajectory analyses, an *in silico* method would be needed that
399 efficiently predicts dynamic properties of the complex based on sequence and structural data only.
400 Atomistic insights gained from the present study will be helpful for developing such a method in
401 future studies.

402 Computational Methods

403 Structure preparation

404 Structure preparation was done using CHARMM (*Brooks et al., 2009*). Simulation systems were
405 based on PDB 1AO7 (*Garboczi et al., 1996a*); 1QSE, 1QRN, and 1QSF (*Ding et al., 1999*); and 3QFJ
406 (*Scott et al., 2011*) (*Figure 1C*). Residues from the TCR α - and β -chains were renumbered sequen-
407 tially from the original non-sequential numbering in the PDB. Throughout the paper we use the
408 renumbered index to refer to a residue. Residues differing at a few locations in some of the PDB
409 files were converted so that all systems have identical sequences except for point mutations in-
410 troduced in the Tax peptide (details are given below). Disulfide bonds between cysteine residues
411 were introduced as noted in the PDB file. Histidine protonation sites were determined based on
412 the 1QSE crystal structure to promote hydrogen bond formation with neighboring residues. Where
413 neighboring residues were unlikely to hydrogen bond, we assigned the water-facing nitrogen of his-
414 tidine as charged. This led to protonation of the N^{δ} atom for all histidine residues except for MHC
415 H263 and β 2m H84, where the N^{ϵ} atom was protonated. For truncated structures, crystal waters
416 within 2.8 Å from the protein atoms were kept in the initially built system. For full structures, all
417 crystal waters were kept.

418 We extended the termini of the TCR $\alpha\beta$ -pMHC complex as handles for applying positional re-
419 straints (*Figure 1*, “added strands”) (*Hwang et al., 2020*). For MHC, we used the sequence from
420 UniProt P01892, where $^{276}\text{LSSQPTIPI}^{284}$ was added after E275. For TCR $\alpha\beta$, sequences for the added
421 strands were from GenBank ABB89050.1 (TCR α) and AAC08953.1 (TCR β), which were $^{201}\text{PESSCDVK}$
422 LVEKSFETDT^{218} and $^{246}\text{CGFTSESYQQGVLSA}^{260}$, respectively. After adding the strands, a series of en-
423 ergy minimization and a short MD simulation in the FACTS implicit solvent environment (*Haberthür*
424 *and Caflisch, 2008*) were performed to relax them and bring together the C-terminal ends of the
425 two TCR chains. The first two N-terminal residues of TCR β were missing in all structures except for
426 3QFJ, so they were added and briefly energy minimized.

427 **1AO7 (Tax peptide):** In the original PDB 1AO7, coordinates for the $\text{C}\alpha$ domain (D116–S204) and
428 parts of $\text{C}\beta$ (E130–T143, K179–R188, S219–R228) are missing. The coordinates listed are based on
429 the renumbered indices. These were built using PDB 1QSE. For the $\text{C}\alpha$ domain, we aligned the $\text{V}\alpha$
430 domain of 1AO7 and 1QSE (K1–P115) based on their backbone C_α atoms and added the missing

431 α domain residue coordinates to 1AO7. After this, we performed a brief energy minimization on
432 the added domain while fixing positions of all other atoms of 1AO7. For missing residues in the β
433 domain, we used backbone C_{α} atoms of two residues each before and after the missing part to align
434 1QSE to 1AO7 and filled in coordinates, followed by a brief energy minimization of the added part
435 in 1AO7. In this way, the TCR $\alpha\beta$ -pMHC interface of the original 1AO7 is preserved. By comparison,
436 previous simulations mutated PDB 1QRN back to WT (*Ayres et al., 2016*), which corresponds to
437 to the A6P *in silico* WT system (Appendix 2), or converted a high-affinity variant of A6 (PDB 4FTV)
438 by mutating β -chain residues, in particular nearly the entire CDR3 loop (*Rangarajan et al., 2018*).
439 Compared to our approach, those preparation methods thereby introduce more perturbation to
440 the interface with pMHC.

441 The β 2m residues C67 and C91 were reverted (C67Y, C91K) based on UniProt P61769 referenced
442 in PDB 1AO7. These agree with the β 2m sequence in other structures.

443 **1QRN (P6A):** Except for the two N-terminal residues of TCR β , there were no missing coordinates.
444 This also applies to 1QSE and 1QSF. The following conversions were made to match the sequence
445 with other structures: K150S (TCR α), and A133E and E134A (TCR β).

446 **1QSE (V7R):** No residue conversion was made.

447 **1QSF (Y8A):** The following conversions were made: A219R (MHC) and A225T (TCR β).

448 **3QFJ (Y5F):** There were no missing residues. We made the D204N conversion in TCR β .

449 **WT truncated complexes:** For truncation, we used the constructed 1AO7 complex.

- 450 • $V\alpha\beta$: the last residues were α D111 and β E116.
- 451 • $T\alpha\beta$: the last residues were α D206 and β G247 (no C-terminal strands).
- 452 • $V\alpha\beta$ -pMHC: includes $V\alpha\beta$, peptide, β 2m, and MHC. The last residue of MHC was L276.
- 453 • WT^0 : WT complex without the added C-terminal strands, as for $T\alpha\beta$.
- 454 • dFG: residues β L218- β P231 removed from the corresponding WT complex. β G217 and β V232
455 were covalently joined.

456 **MD simulation protocol**

457 Solvation and equilibration of simulated systems

458 We used CHARMM (*Brooks et al., 2009*) to prepare simulation systems before the production
459 run. The solvation boxes were orthorhombic for systems with pMHC and cubic for those without
460 pMHC. For TCR $\alpha\beta$ -pMHC, the size of the initial water box was such that protein atoms were at least
461 12 Å away from the nearest transverse face of the box and 25 Å from each longitudinal face. The
462 extra space in the longitudinal direction was to initially test and select extensions of the complex
463 for longer simulations in *Table 1*. For solvation, we used the TIP3P water. Water molecules with
464 their oxygen atoms less than 2.8 Å from protein heavy atoms were removed. Neutralization of the
465 system was done using Na^+ and Cl^- ions at about 50 mM concentration. Crystal water molecules
466 were kept in this procedure.

467 After neutralization, a 5-stage energy minimization was applied where protein backbone and
468 side chain heavy atoms were progressively relaxed (*Hwang et al., 2020*). This was followed by heating
469 from 30 K to 300 K for 100 ps and equilibration at 300 K for 200 ps. Backbone heavy atoms
470 were positionally restrained with 5-kcal/[mol·Å²] harmonic spring constant during heating and equi-
471 libration, except for structures involving 1AO7 that originally had more missing residues, where a
472 2-kcal/[mol·Å²] restraint was used. We then performed a 2 ns CPT (constant pressure and temper-
473 ature) simulation at 1 atm and 300 K. We applied a 0.001-kcal/[mol·Å²] restraint on backbone C_{α}
474 atoms. The CHARMM DOMDEC module (*Hynninen and Crowley, 2014*) was used to parallelize the
475 simulation. We applied the SHAKE method to fix the length of covalent bonds involving hydrogen
476 atoms, and used a 2-fs integration time step.

477 Production runs

478 Production runs were performed using OpenMM (*Eastman et al., 2017*). We used the CHARMM
479 param36 all-atom force field (*Huang and MacKerell Jr, 2013*) and the particle-mesh Ewald method
480 to calculate electrostatic interactions. We used an Ewald error tolerance of 10^{-5} which is 1/50 of
481 the default value in OpenMM, for accuracy. The cutoff distance for nonbonded interactions was
482 12 Å, and the Nose-Hoover integrator of OpenMM at 300 K was used, with a 2-fs integration time
483 step. We ran OpenMM on GPUs with mixed floating point precision. Below are specific steps of
484 the MD protocol relevant to individual systems in **Table 1** and **Table 2**.

485 TCR $\alpha\beta$ -pMHC with load

486 Laddered extension with added strands

487 To apply load, C_{α} atoms of the C-terminal ends of the added strands in the complex (**Figure 1A**, blue
488 spheres) were held by 1-kcal/[mol·Å²] harmonic positional restraint at a given extension during the
489 simulation. Restraints were applied to the C_{α} atom of MHC I284 and to the center of mass of two
490 C_{α} atoms of α T218 and β A260. A flat-bottom distance restraint was applied to the latter two atoms
491 to prevent large separation. It was activated when the distance of the two C_{α} atoms was greater
492 than 10 Å, where a 1.0-kcal/[mol·Å²] harmonic potential was applied. Starting with the initially
493 built complex, we performed a 4-ns run then increased the extension by shifting centers of the
494 positional restraints on terminal atoms by 2 Å at each end, for a total 4 Å added at each extension,
495 for the next 4-ns run. The process continued to yield 4–6 extensions.

496 After each extension run, we truncated the water box such that the length of the box was
497 12 Å larger than the maximum span of the complex on each side, and re-neutralized the system.
498 A representative water box size is 218x97x90 Å³ for WT^{high}, containing 187,250 atoms. Since the
499 system was already equilibrated from the previous run, we used a simpler energy minimization
500 scheme where backbone and side chain heavy atoms were restrained by 10-kcal/[mol·Å²] and 5-
501 kcal/[mol·Å²] harmonic potentials, respectively, and 200 steps of steepest descent followed by 200
502 steps of adopted-basis Newton-Raphson energy minimization was performed. Heating, equilibra-
503 tion, and the initial 2-ns dynamic runs with positional restraints were carried out as explained
504 above. We then carried out 60–100 ns production runs for each extension and selected two or
505 three extensions to continue for longer than 1000 ns.

506 Selecting extensions

507 We measured the average force on the complex during each 60–100-ns simulation, then selected
508 two extensions where the average force generated was representative of a “low” (around 10 pN)
509 and “high” (over 15 pN) load on the TCR. These values were based on the experimental 10–20-pN
510 catch bond activation force range (*Das et al., 2015; Liu et al., 2016*).

511 In some cases, in particular at low extensions, the flexible added strand either folded onto itself
512 or made contacts with the C-module of TCR $\alpha\beta$, effectively shortening the span of the complex. Fac-
513 tors such as this, together with differences in conformational behaviors of the complex, affected
514 the average force for a given extension. Thus we had to test and choose among different exten-
515 sions for each system. We also ran 1–2 replicate simulations of comparable length (~1 μ s) at given
516 extensions except for systems involving dFG and *in silico* mutants. However, even with nearly the
517 same extensions used, measured forces in replicate simulations varied. The final selection and
518 average forces are in **Table 1**.

519 Other systems

520 TCR $\alpha\beta$ -pMHC without load

521 These systems include WT⁰ and complexes with point mutations to the Tax peptide. To prevent
522 the complex from turning transversely in the elongated orthorhombic box, we applied a weak 0.2-
523 kcal/[mol·Å²] harmonic positional restraint on select C_{α} atoms in the MHC α 3 domain that had RMSF

524 below about 0.5 Å in both WT^{low} and WT^{high}, which were P185-T187, L201-Y209, F241-V247, and
525 T258-H263.

526 $\text{V}\alpha\beta$ -pMHC

527 We applied a 0.01-kcal/[mol·Å²] harmonic restraint to the backbone C_α atoms of the MHC α 3 do-
528 main (residues P185-L276) to prevent the complex from turning transversely in the orthorhombic
529 box. The restraints are 20 times weaker than those used for TCR $\alpha\beta$ -pMHC complexes mentioned
530 above. This was because $\text{V}\alpha\beta$ -pMHC is smaller in both size and aspect ratio.

531 $\text{V}\alpha\beta$, $\text{T}\alpha\beta$, dFG

532 No positional restraints were applied. A representative system size is, for $\text{T}\alpha\beta$, a 92.8-Å³ cubic water
533 box containing 75,615 atoms.

534 dFG-pMHC

535 The FG-loop deletion was done after initially preparing (solvation and neutralization) the WT com-
536 plex in the extended water box. After deletion, the system was re-neutralized. Subsequently, ladd-
537 ered extension, selecting extensions for high and low load cases, and longer production runs
538 were performed as explained above.

539 *In silico* mutants

540 Each *in silico* mutation (Appendix 2—**Table 1**) was performed for low and high load extensions of
541 the complex. To use similar extensions as in the original complexes, we used the last frame of
542 the 4-ns laddered extension simulation. After introducing the *in silico* mutation, we inspected the
543 structure to ensure there was no steric clash with neighboring residues or water molecules. We
544 performed a short energy minimization to relax the modified residue while keeping coordinates
545 of all other residues except for residues immediately before and after the mutated one on the
546 peptide. We then truncated the water box and re-neutralized the system, after which steps from
547 the initial energy minimization up to the final production run followed the same procedure as
548 explained above.

549 **Trajectory Analysis**

550 Coordinates were saved every 20 ps (0.02 ns) during production runs, resulting in 50,000 coordi-
551 nate frames for 1000 ns. We excluded the initial 500 ns when calculating averages and standard
552 deviations in the number of contacts, CDR3 distance, BSA, PCA values, and angle data. Since all
553 systems were simulated for a minimum of 1 μ s, this leaves at least 25,000 frames. We report data
554 prior to 500 ns in trajectory plots and contact occupancy heat maps (e.g., *Figure 2B–E*).

555 Calculating force

556 Force on a restrained atom or the center of mass of the C-terminal atoms of the added strands
557 in TCR $\alpha\beta$ was calculated based on the deviation of its average position from the center of the har-
558 monic potential, multiplied by the spring constant used (*Hwang et al., 2020*). Average force in **Ta-
559 ble 1** was computed from 500 ns to the end of the simulation. Instantaneous force in *Figure 7A,B*
560 was computed in 40-ns overlapping intervals starting from 200 ns, *i.e.*, 200–240 ns, 220–260 ns,
561 240–280 ns, *etc.*

562 RMSF

563 RMSF for backbone C_α atoms of a domain was calculated by aligning the C_α atoms to the structure
564 at the beginning of the production run. Coordinate frames after the initial 500 ns were used.

565 CDR3 distance

566 The CDR3 distance (e.g. *Figure 3—figure Supplement 2A–C*) was measured using the midpoint
567 between backbone C_α atoms of two residues at the base of each CDR3 loop. They were: T92 and
568 K97 for CDR3 α , and R94 and E103 for CDR3 β .

569 Contact analysis

570 We used our previously developed method (*Hwang et al., 2020*). Briefly, H-bonds (including salt
571 bridges) were identified with the 2.4-Å donor-acceptor distance cutoff. Nonpolar contacts were
572 identified for atom pairs that are within 3.0 Å and both have partial charges less than $0.3e$ ($e = 1.6 \times$
573 10^{-19} C) in magnitude. The average occupancy was measured as the fraction of frames over which
574 a bond is present during the measurement period. Instantaneous occupancy was measured as a
575 40-frame (0.8-ns) rolling average. The average occupancy of a contact represents its abundance
576 during the simulation period while the instantaneous occupancy represents its temporal intensity.

577 For counting the number of contacts (e.g., *Figure 2A*, *Figure 3A*, *Figure 4—figure Supplement 1B,C*),
578 we used contacts with the average occupancy greater than 50% and at least an 80% maximum in-
579 stantaneous occupancy after the initial 500 ns. Contact occupancy heat maps (e.g., *Figure 2C-E*)
580 report those with the overall average occupancy greater than 30%, and the maximum instanta-
581 neous occupancy during the simulation greater than 80%.

582 The Hamming distance H (e.g. *Figure 2B*) was measured using contacts with greater than 80%
583 average occupancy during the first 50 ns.

584 BSA

585 For the BSA calculation (e.g. *Figure 2G*), we used residues in the V-module with the maximum
586 instantaneous contact occupancy with pMHC greater than 80%. We calculated the surface area for
587 the selected residue contacts and added them to get the total BSA. Per-residue BSA is the total BSA
588 divided by the number of residues forming the contacts in the given time interval. The reported
589 values (e.g. *Figure 2G*) are respective averages after 500 ns.

590 Variable domain triads and PCA

591 Triads (orthonormal unit vectors) were constructed for $V\alpha$ and $V\beta$ by modifying the procedure in
592 *Hwang et al. (2020)* for the A6 V-module. We used the backbone C_α atoms of six residues from the
593 central four β -strands that make up the stably folded β -sheet core of each variable domain: for $V\alpha$,
594 S19-Y24, F32-Q37, Y70-I75, Y86-T91, and for $V\beta$, T20-Q25, S33-D38, F74-L79, V88-S93. The C_α atoms
595 of these residues have RMSF in WT^{high} near or less than 0.5 Å, and they correspond to two matching
596 segments on each of the inner and outer β -sheets of the immunoglobulin fold. The center of mass
597 of the C_α atoms of the selected residues was used for the centroid of each triad. The e_3 arm of the
598 triad was assigned along the major axis of the least-square fit plane of the selected atoms in each
599 domain, which is parallel to the β -strands and points to the CDR3 loop (*Figure 3B*). The e_1 arm was
600 assigned by taking the direction from the center of masses of the selected atoms from the inner
601 to the outer β -sheets of each variable domain and making it perpendicular to e_3 . The e_2 arm was
602 then determined as $e_2 = e_3 \times e_1$.

603 PCA was performed on the trajectory of the two triads using a custom FORTRAN95 program
604 (*Hwang et al., 2020*). The PC amplitude (e.g. *Figure 3—figure Supplement 1A*) corresponds to
605 the rotational motion of these arms in units of radians. The PC vector for the 6 arms of the two
606 triads is an 18-dimensional unit vector. To compare directions of two PCs (e.g. *Figure 3—figure*
607 *Supplement 1C*), the absolute value of the dot product between them was calculated, which ranges
608 between 0 and 1. To project the $V\alpha$ - $V\beta$ triad for a given frame to a PC direction (*Figure 3—figure*
609 *Supplement 1D*), the average triad calculated after the initial 500-ns was subtracted from the triad,
610 then a dot product was formed with the PC vector.

611 V-C BOC and PCA

612 The V-C BOC (*Figure 4A*) was assigned based on the method we developed previously (*Hwang et al.,*
613 *2020*). For beads representing the V-module, centroids of the two triads were used. For the C-
614 module, the center of mass of backbone C_α atoms of the following residues in each domain were
615 used: for $C\alpha$, A118-R123, V132-D137, Y153-T158, S171-S176, and for $C\beta$, T143-A148, L158-N163,
616 S192-V197, F209-Q214. We used α N114 for $H\alpha$, and for $H\beta$, the center of mass between β D117
617 and β L118 was used, which had large RMSF in WT^{high} .

618 We aligned coordinate frames for all simulations to the first frame of WT^{high} based on atoms
619 used to assign beads for the C-module. In this way, motion of the V-module relative to the C-module
620 can be analyzed. Also, by using a common reference structure (first frame of WT^{high}), average
621 BOCs can be compared, as in **Figure 6C,D**. PCA of the V-C BOC was performed using the 6 beads
622 representing the centroids and hinges. PCA for the V-module triads was done separately. Since
623 the reference of motion is the C-module, directions of PCs for the V-module triads indicate motion
624 of the V-module relative to the C-module (arrows on triad arms in **Figure 4A**), which complements
625 the direction of the V-module centroids obtained from PCA of the V-C BOC (arrows on centroids in
626 **Figure 4A**).

627 **Time-dependent behavior**

628 For the total occupancy in **Figure 7A,B**, we only considered contacts with greater than 50% overall
629 occupancy and over 80% maximum instantaneous occupancy during the entire simulation period.
630 In this way, changes in high-quality contacts under fluctuating force for a given trajectory can be
631 monitored. For each 40-ns window, we calculated the average occupancy of selected contacts
632 and added them to obtain the total occupancy. For intermolecular contacts, interfaces between
633 MHC-V α , MHC-V β , peptide-V α , and peptide-V β were considered. For intramolecular contacts, V α -V β ,
634 V α -C α , and V β -C β were considered.

635 **Peptide and V-module angle**

636 For **Figure 7C**, at each coordinate frame we calculated the least-square fit line for the peptide back-
637 bone C α atoms and calculated a dot product of its direction with a unit vector pointing from the
638 centroid for the triad of V α to that of V β .

639 **Acknowledgments**

640 This work was funded by US NIH Grants P01AI143565 and R01AI136301. Simulations were per-
641 formed by using computers at the Texas A&M High Performance Research Computing facility.

642 **References**

643 **Ayres CM**, Scott DR, Corcelli SA, Baker BM. Differential utilization of binding loop flexibility in T cell receptor
644 ligand selection and cross-reactivity. *Sci Rep.* 2016; 6(1):1-14.

645 **Baker BM**, Gagnon SJ, Biddison WE, Wiley DC. Conversion of a T cell antagonist into an agonist by repairing a
646 defect in the TCR/peptide/MHC interface: Implications for TCR signaling. *Immunity.* 2000; 13(4):475-484.

647 **Baker BM**, Scott DR, Blevins SJ, Hawse WF. Structural and dynamic control of T-cell receptor specificity, cross-
648 reactivity, and binding mechanism. *Immunol Rev.* 2012; 250(1):10-31.

649 **Banik D**, Hamidinia M, Brzostek J, Wu L, Stephens HM, MacAry PA, Reinherz EL, Gascoigne NR, Lang MJ. Single
650 molecule force spectroscopy reveals distinctions in key biophysical parameters of $\alpha\beta$ T-cell receptors com-
651 pared with chimeric antigen receptors directed at the same ligand. *J Phys Chem Lett.* 2021; 12(31):7566-7573.

652 **Birnbaum ME**, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J, Özkan E, Davis MM, Wucherpfennig KW,
653 Garcia KC. Deconstructing the peptide-MHC specificity of T cell recognition. *Cell.* 2014; 157(5):1073-1087.

654 **Borbulevych OY**, Piepenbrink KH, Gloor BE, Scott DR, Sommese RF, Cole DK, Sewell AK, Baker BM. T cell recep-
655 tor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. *Immunity.*
656 2009; 31(6):885-896.

657 **Brameshuber M**, Kellner F, Rossboth BK, Ta H, Alge K, Sevcik E, Göhring J, Axmann M, Baumgart F, Gascoigne
658 NR, Davis SJ, Stockinger H, Schütz GJ, Huppa JB. Monomeric TCRs drive T cell antigen recognition. *Nat Im-
659 munol.* 2018; 19(5):487-496.

660 **Brazin KN**, Mallis RJ, Boeszoermenyi A, Feng Y, Yoshizawa A, Reche PA, Kaur P, Bi K, Hussey RE, Duke-Cohan JS,
661 Song L, Wagner G, Arthanari H, Lang MJ, Reinherz EL. The T cell antigen receptor α transmembrane domain
662 coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. *Immunity.*
663 2018; 49(5):829-841.

664 **Brazin KN**, Mallis RJ, Das DK, Feng Y, Hwang W, Wang Jh, Wagner G, Lang MJ, Reinherz EL. Structural features
665 of the $\alpha\beta$ TCR mechanotransduction apparatus that promote pMHC discrimination. *Front Immunol.* 2015;
666 6:441.

667 **Brooks BR**, Brooks III CL, Mackerell Jr AeD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch
668 Sao. CHARMM: the biomolecular simulation program. *J Comput Chem.* 2009; 30(10):1545–1614.

669 **Chakraborty AK**, Weiss A. Insights into the initiation of TCR signaling. *Nat Immunol.* 2014; 15(9):798–807.

670 **Choi HK**, Cong P, Ge C, Natarajan A, Liu B, Zhang Y, Li K, Rushdi MN, Chen W, Lou J, Krogsgaard M, Zhu C. Catch
671 bond models may explain how force amplifies TCR signaling and antigen discrimination. *Nat Commun.* 2023;
672 14(1):2616.

673 **Cuendet MA**, Michelin O. Protein-protein interaction investigated by steered molecular dynamics: The TCR-
674 pMHC complex. *Biophys J.* 2008; 95(8):3575–3590.

675 **Cuendet MA**, Zoete V, Michelin O. How T cell receptors interact with peptide-MHCs: A multiple steered molec-
676 ular dynamics study. *Proteins: Struct Funct Genet.* 2011; 79(11):3007–3024.

677 **Das DK**, Feng Y, Mallis RJ, Li X, Keskin DB, Hussey RE, Brady SK, Wang JH, Wagner G, Reinherz EL, Lang MJ.
678 Force-dependent transition in the T-cell receptor β -subunit allosterically regulates peptide discrimination
679 and pMHC bond lifetime. *Proc Natl Acad Sci USA.* 2015; 112(5):1517–1522.

680 **Das DK**, Mallis RJ, Duke-Cohan JS, Hussey RE, Tetteh PW, Hilton M, Wagner G, Lang MJ, Reinherz EL. Pre-T Cell
681 Receptors (Pre-TCRs) Leverage V β Complementarity Determining Regions (CDRs) and Hydrophobic Patch in
682 Mechanosensing Thymic Self-ligands. *J Biol Chem.* 2016; 291(49):25292–25305.

683 **Davis-Harrison RL**, Armstrong KM, Baker BM. Two different T cell receptors use different thermodynamic
684 strategies to recognize the same peptide/MHC ligand. *J Mol Biol.* 2005; 346(2):533–550.

685 **Ding YH**, Baker BM, Garboczi DN, Biddison WE, Wiley DC. Four A6-TCR/peptide/HLA-A2 structures that generate
686 very different T cell signals are nearly identical. *Immunity.* 1999; 11(1):45–56.

687 **Eastman P**, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, Simmonett AC, Harrigan
688 MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS. OpenMM 7: Rapid development of high performance
689 algorithms for molecular dynamics. *PLoS Comput Biol.* 2017; 13(7):e1005659.

690 **Fodor J**, Riley BT, Borg NA, Buckle AM. Previously hidden dynamics at the TCR-peptide-MHC interface revealed.
691 *J Immunol.* 2018; 200(12):4134–4145.

692 **Garboczi DN**, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. Structure of the complex between human T-cell
693 receptor, viral peptide and HLA-A2. *Nature.* 1996; 384(6605):134–141.

694 **Garboczi DN**, Utz U, Ghosh P, Seth A, Kim J, VanTienhoven E, Biddison WE, Wiley DC. Assembly, specific binding,
695 and crystallization of a human TCR- $\alpha\beta$ with an antigenic Tax peptide from human T lymphotropic virus type
696 1 and the class I MHC molecule HLA-A2. *J Immunol.* 1996; 157(12):5403–5410.

697 **Haberthür U**, Caflisch A. FACTS: Fast analytical continuum treatment of solvation. *J Comput Chem.* 2008;
698 29(5):701–715.

699 **Hamming RW**. Error detecting and error correcting codes. *Bell Sys Tech J.* 1950; 29(2):147–160.

700 **Hausmann S**, Biddison WE, Smith KJ, Ding YH, Garboczi DN, Utz U, Wiley DC, Wucherpfennig KW. Peptide
701 recognition by two HLA-A2/Tax11-19-specific T cell clones in relationship to their MHC/peptide/TCR crystal
702 structures. *J Immunol.* 1999; 162(9):5389–5397.

703 **Huang J**, MacKerell Jr AD. CHARMM36 all-atom additive protein force field: Validation based on comparison to
704 NMR data. *J Comput Chem.* 2013; 34(25):2135–2145.

705 **Hwang W**, Mallis RJ, Lang MJ, Reinherz EL. The $\alpha\beta$ TCR mechanosensor exploits dynamic ectodomain allostery
706 to optimize its ligand recognition site. *Proc Natl Acad Sci USA.* 2020; 117(35):21336–21345.

707 **Hynninen AP**, Crowley MF, New faster CHARMM molecular dynamics engine. *Wiley Online Library;* 2014.

708 **Kim ST**, Shin Y, Brazin K, Mallis RJ, Sun ZYJ, Wagner G, Lang MJ, Reinherz EL. TCR mechanobiology: Torques and
709 tunable structures linked to early T cell signaling. *Front Immunol.* 2012; 3:76.

710 **Kim ST**, Takeuchi K, Sun ZYJ, Touma M, Castro CE, Fahmy A, Lang MJ, Wagner G, Reinherz EL. The $\alpha\beta$ T cell
711 receptor is an anisotropic mechanosensor. *J Biol Chem.* 2009; 284(45):31028–31037.

712 **Lee JK**, Stewart-Jones G, Dong T, Harlos K, Di Gleria K, Dorrell L, Douek DC, Van Der Merwe PA, Jones EY,
713 McMichael AJ. T cell cross-reactivity and conformational changes during TCR engagement. *J Exp Med.* 2004;
714 200(11):1455–1466.

715 **Liu B**, Kolawole EM, Evavold BD. Mechanobiology of T Cell Activation: To Catch a Bond. *Annu Rev Cell Dev Biol.*
716 2021; 37:65–87.

717 **Liu Y**, Blanchfield L, Ma VPY, Andargachew R, Galior K, Liu Z, Evavold B, Salaita K. DNA-based nanoparticle
718 tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity.
719 *Proc Natl Acad Sci USA.* 2016; 113(20):5610–5615.

720 **Mariuzza RA**, Agnihotri P, Orban J. The structural basis of T-cell receptor (TCR) activation: An enduring enigma.
721 *J Biol Chem.* 2020; 295(4):914–925.

722 **Michielin O**, Karplus M. Binding free energy differences in a TCR-peptide-MHC complex induced by a peptide
723 mutation: A simulation analysis. *J Mol Biol.* 2002; 324(3):547–569.

724 **Pettmann J**, Awada L, Rózycki B, Huhn A, Faour S, Kutuzov M, Limozin L, Weikl TR, van der Merwe PA,
725 Robert P, Dushek O. Mechanical forces impair antigen discrimination by reducing differences in T-cell
726 receptor/peptide–MHC off-rates. *EMBO J.* 2022; p. e2500.

727 **Rangarajan S**, He Y, Chen Y, Kerzic MC, Ma B, Gowthaman R, Pierce BG, Nussinov R, Mariuzza RA, Orban J.
728 Peptide–MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communica-
729 tion between pMHC- and CD3-binding sites. *J Biol Chem.* 2018; 293(41):15991–16005.

730 **Reinherz EL**, Hwang W, Lang MJ. Harnessing $\alpha\beta$ T cell receptor mechanobiology to achieve the promise of
731 immuno-oncology. *Proc Natl Acad Sci USA.* 2023; 120(27):e2215694120.

732 **Rudolph MG**, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. *Annu Rev Immunol.*
733 2006; 24(1):419–466.

734 **Schamel WW**, Alarcon B, Minguez S. The TCR is an allosterically regulated macromolecular machinery changing
735 its conformation while working. *Immunol Rev.* 2019; 291(1):8–25.

736 **Scott DR**, Borbulevych OY, Piepenbrink KH, Corcelli SA, Baker BM. Disparate degrees of hypervariable loop flex-
737 ibility control T-cell receptor cross-reactivity, specificity, and binding mechanism. *J Mol Biol.* 2011; 414(3):385–
738 400.

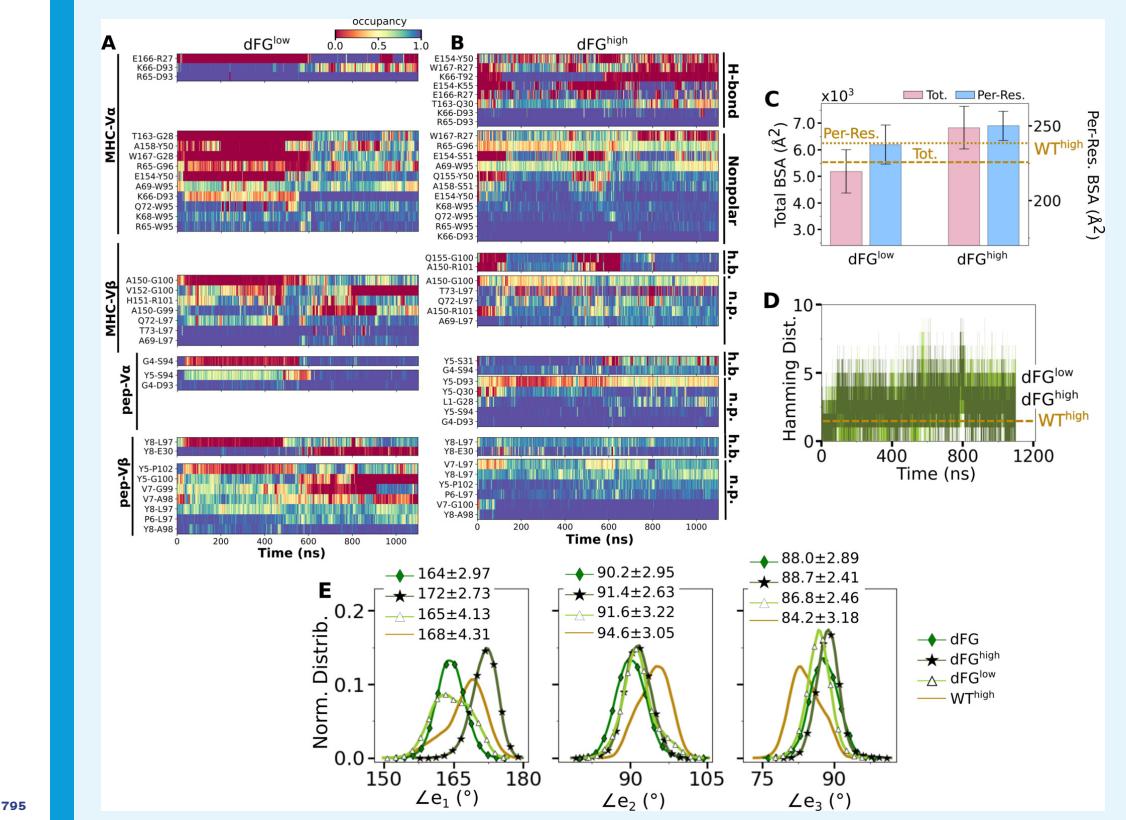
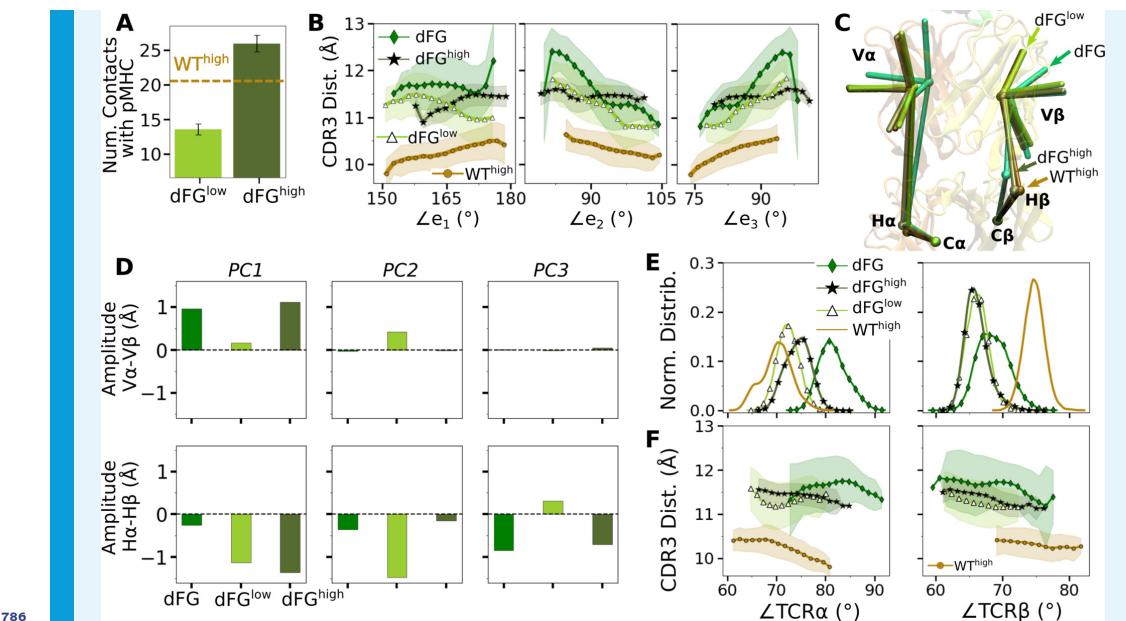
739 **Sibener LV**, Fernandes RA, Kolawole EM, Carbone CB, Liu F, McAfee D, Birnbaum ME, Yang X, Su LF, Yu W, Dong
740 S, Gee MH, Jude KM, Davis MM, Groves JT, Goddard WA, Heath JR, Evavold BD, Vale RD, Garcia KC. Isolation
741 of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. *Cell.* 2018;
742 174(3):672–687.

743 **Sykulev Y**, Joo M, Vturina I, Tsomides TJ, Eisen HN. Evidence that a single peptide–MHC complex on a target
744 cell can elicit a cytolytic T cell response. *Immunity.* 1996; 4(6):565–571.

745 **Wang Jh**, Reinherz EL. The structural basis of $\alpha\beta$ T-lineage immune recognition: TCR docking topologies,
746 mechanotransduction, and co-receptor function. *Immunol Rev.* 2012; 250(1):102–119.

747 **Wu P**, Zhang T, Liu B, Fei P, Cui L, Qin R, Zhu H, Yao D, Martinez RJ, Hu W, An C, Zhang Y, Liu J, Shi J, Fan J, Yin
748 W, Sun J, Zhou C, Zeng X, Xu C, et al. Mechano-regulation of peptide-MHC class I conformations determines
749 TCR antigen recognition. *Mol Cell.* 2019; 73(5):1015–1027.

750 **Zhu C**, Chen W, Lou J, Rittase W, Li K. Mechanosensing through immunoreceptors. *Nat Immunol.* 2019;
751 20(10):1269–1278.



752 **Appendix 1**

753 **Allosteric effect of the C β FG-loop deletion**

754 The higher number of V β -C β contacts (*Figure 4—figure Supplement 1B,C*) and smaller range
755 of \angle TCR β (*Figure 4D,E*) in the WT TCR suggests that the β chain mainly bears the load while
756 the α chain adjusts to accommodate different loading conditions. Our previous experimental
757 (*Das et al., 2015*) and computational (*Hwang et al., 2020*) studies showed that the C β
758 FG-loop plays a critical allosteric role for the catch bond formation. To examine its role in
759 A6 TCR, we performed simulations of dFG in isolation (*Table 2*) and under low and high
760 loads (*Table 1*). Similar to the WT, the number of contacts with pMHC increased with load
761 (Appendix 1—*Figure 1A* and Appendix 1—*Figure 2A,B*). The BSA for high-occupancy residues
762 contacting pMHC was also greater for high load (Appendix 1—*Figure 2C*). Thus, dFG may
763 also possess a catch bond behavior, which agrees with experiment where a subdued catch
764 bond was observed (*Das et al., 2015*). However, \mathcal{H} increased early on and was slightly larger
765 than that for WT^{high} (Appendix 1—*Figure 2D*), and the CDR3 distance was higher compared
766 to WT^{high} (Appendix 1—*Figure 1B*), which indicate an altered interface.

767 The conformation of the whole dFG was also affected. Relative to the C-module, the aver-
768 age BOC for the unliganded dFG was substantially different from those of dFG^{low} and dFG^{high},
769 where the latter was similar to that of WT^{high} (Appendix 1—*Figure 1C*). In particular, V β of the
770 unliganded dFG is more tilted, as there is a lack of support from the FG-loop (*Hwang et al.,*
771 *2020*). When load is applied to the dFG-pMHC complex, dFG becomes less bent. Its tendency
772 to return to the bent conformation would impose a strain on the interface with pMHC. This
773 can be seen by the higher average load on dFG-pMHC complexes than WT-pMHC complexes
774 under similar extensions (*Table 1*). Comparing between the amplitudes of PCs of α and β
775 chains, a notable difference from the WT systems (*Figure 4C*) is that H β moves more than H α
776 for loaded dFG systems (Appendix 1—*Figure 1D*, bottom row). Also, distributions of \angle TCR α
777 and \angle TCR β shift to larger and smaller values, respectively (Appendix 1—*Figure 1E*). These in-
778 dicate alterations in the conformation and motion of dFG. Furthermore, the CDR3 distance
779 of dFG is elevated regardless of load or V-C angle (Appendix 1—*Figure 1F*), suggesting a re-
780 duced allosteric control by the V-C motion.

781 The altered conformation of dFG causes the interface with pMHC to tilt as observed in
782 our previous study of JM22, which is detrimental to the stability of the complex (*Hwang*
783 *et al., 2020*). The increased motion of H β may also deliver more agitation to the interface
784 with pMHC. Thus, even though full dissociation with pMHC was not observed within the sim-
785 ulation time, the dFG-pMHC complex is likely to be less stable compared to the WT complex.

Appendix 1—figure 2. Effects of the $C\beta$ FG-loop deletion on the interface with pMHC. The same criteria were used to plot as for the WT systems in the corresponding figures. (A–B) Contact occupancy heat maps (*Figure 2C,D*). (C) BSA (*Figure 2G*). (D) Hamming distance (*Figure 2B*). (E) Distribution of $V\alpha$ - $V\beta$ angles. Numbers are $\text{avg} \pm \text{std}$ in respective cases (*Figure 3C*). In (C–E), data for WT^{high} are shown as reference.

802 **Appendix 2**

803 ***In silico* peptide mutants mimic the behaviors of target systems**

804 We tested whether behaviors of different systems are interchangeable by making point mutations on peptides *in silico*, for which WT and antagonists were used (Appendix 2-**Table 1**).
805 For example, for $^{Y8A}WT^{high}$ (Y8A under high load switched to WT), we took $Y8A^{high}$ at the begin-
806 ning of its production run and mutated A8 to Y8 (see *In silico* mutants in Methods). A
807 main question is whether the *in silico* mutants attain behaviors of the switched systems
808 during the finite simulation time. We found this to be the case although behaviors were
809 not recapitulated perfectly. Compared to WT^{high} , the number of contacts with pMHC be-
810 came lower for $^{WT}P6A$ (Appendix 2-**Figure 1A**). Note that $^{WT}P6A^{low}$ had a higher force than
811 $^{WT}P6A^{high}$ (24.7 vs. 19.5 pN; Appendix 2-**Table 1**). This was because the low extension in
812 the former case allowed the loose C-terminal strands (**Figure 1A**) to form extensive nonpo-
813 lar contacts with the C-module, especially with $C\beta$. This effectively shortened the length of
814 the complex, which led to a higher average force as the extension was kept the same (Se-
815 lecting extensions). Among the original systems, $Y5F^{high}$ had average force comparable to
816 $^{WT}P6A^{low}$ (23.7 pN; **Table 1**), yet it had 1.8-fold more contacts, suggesting that the latter does
817 behave like an antagonist (**Figure 5A** vs. Appendix 2-**Figure 1A**). For *in silico* WT, the number
818 of contacts with pMHC was comparable to that of WT^{high} except for $^{Y8A}WT^{high}$ (Appendix 2-
819 **Figure 1A**). In the original $Y8A^{high}$, even though the number of contacts was at the level of
820 WT^{high} (**Figure 5A**), the smaller size of A8 caused $CDR3\beta$ to extend. The altered interface can
821 be seen by the initial rapid increase in H (**Figure 5—figure Supplement 1D**). Mutating A8 to
822 Y8 thereby forces the bulkier Y8 side chain to take an orientation different from that of WT.
823 Thus, an *in silico* mutation of a residue to a comparable or smaller one is better tolerated
824 than mutating to a bulkier one.

825
826 **Appendix 2—table 1.** Simulations of $TCR\alpha\beta$ with *in silico* mutations on the peptide. Load reported is
827 average after 500 ns.

PDB ID	Mutation	Extension (Å)	Time (ns)	Load (pN)	Label
1AO7	P6A	182.9	1140	24.7	$^{WT}P6A^{low}$
		187.5	1040	19.5	$^{WT}P6A^{high}$
	Y8A	182.3	1000	16.5	$^{WT}Y8A^{low}$
		187.1	1000	28.6	$^{WT}Y8A^{high}$
1QRN	A6P	175.2	1000	10.9	$^{P6A}WT^{low}$
		186.2	1060	31.8	$^{P6A}WT^{high}$
1QSF	A8Y	176.7	1000	10.0	$^{Y8A}WT^{low}$
		187.4	1040	11.5	$^{Y8A}WT^{high}$

828
829 For $^{WT}Y8A$ and ^{P6A}WT , a higher load led to more contacts with pMHC (Appendix 2-**Figure 1A**).
830 For $^{WT}Y8A^{high}$, the number was comparable to WT^{high} , which agrees with the case for the
831 original $Y8A^{high}$ (**Figure 5A**). The BSA profiles of *in silico* mutants also followed a trend simi-
832 lar to the number of contacts with pMHC, which was lower for antagonists and higher for
833 WT (Appendix 2-**Figure 2A**). Differences in binding with pMHC can also be seen in the
834 positional distribution of high-occupancy contacts, where ^{P6A}WT had a relatively compact and
835 evenly distributed contacts (Appendix 2-**Figure 2B**), although not as extensive as $V\alpha\beta$ -pMHC
836 or WT^{high} (**Figure 2F**).

837
838 Regarding the $V\alpha$ - $V\beta$ interface, there were overall less contacts in the *in silico* antagonists
839 than *in silico* WT (Appendix 2-**Figure 2C**). However, a higher load did not result in greater
840 number of $V\alpha$ - $V\beta$ contacts. The $CDR3$ distance was higher for *in silico* antagonists (Appendix

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

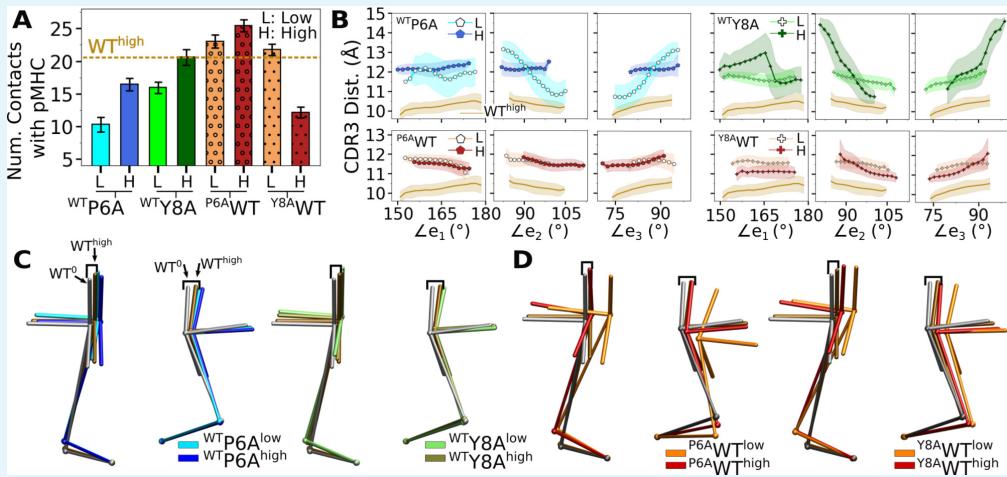
853

854

855

856

857


858

859

860

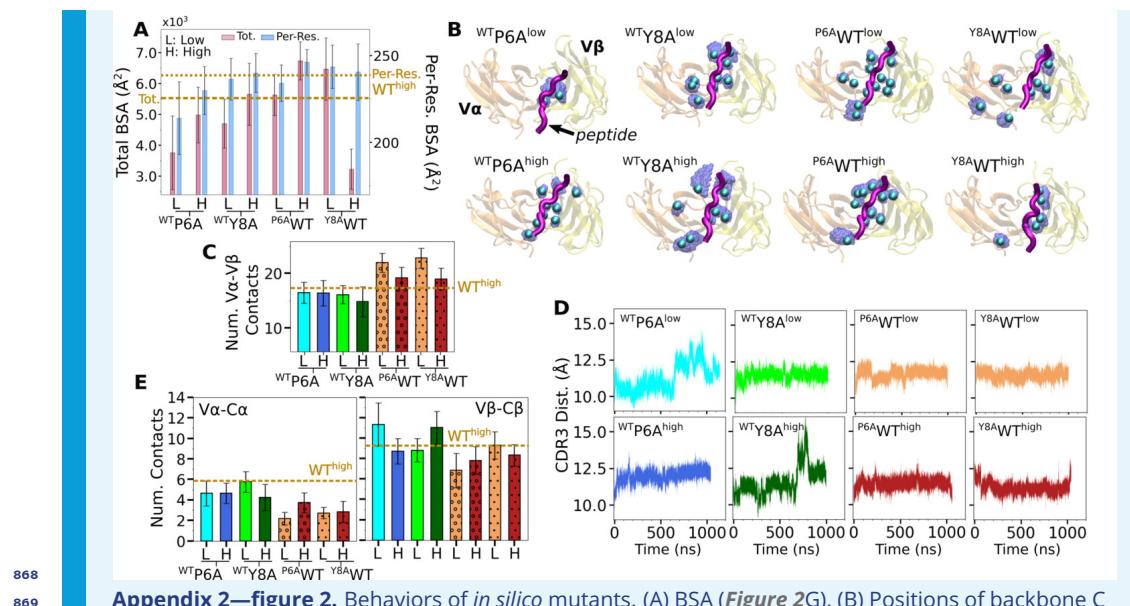
2—**Figure 1B**, top), while for *in silico* WT their range became narrower, to 11–12 Å which is similar to that for the modified agonist Y5F (**Figure 6A** vs. Appendix 2—**Figure 1B**, bottom row). The CDR3 distance also stabilized over time in all *in silico* WT, which was less so for *in silico* antagonists (Appendix 2—**Figure 2D**). However, similarly as the number of V α -V β contacts, there was no consistent load-dependence between the CDR3 distance and triad arm angles. On the other hand, there was a stronger load dependence in the average V-C BOC. The *in silico* antagonists that were built based on WT bent towards those of the corresponding antagonists, though the extent was not large (**Figure 6D** vs. Appendix 2—**Figure 1C**). The *in silico* WT in low load had average BOCs similar to those of the original antagonists whereas average BOCs of high-load *in silico* WT approached those of the actual WT (Appendix 2—**Figure 1D**). For Y^{8A} WT, this happened even though the forces experienced at the two extensions were only marginally different (10.0 vs. 11.5 pN; Appendix 2—**Table 1**). The V α -C α and V β -C β contacts were respectively lower for *in silico* WT than *in silico* antagonists, suggesting effects of the *in silico* mutations of the peptide did not propagate sufficiently to the whole TCR $\alpha\beta$ during the simulation time (Appendix 2—**Figure 2E**). The lower number of V-C contacts in *in silico* WT would have made it easier to unbend under higher load or extension.

The above results suggest that the *in silico* mutants behave like the target system to varying extents. This is likely because the rearranged interface between the V-module and pMHC of the base system cannot immediately be adjusted upon *in silico* mutation in loaded states.

Appendix 2—figure 1. Simulations of *in silico* peptide mutants bound to A6. (A) Number of contacts with pMHC. Counts were made in the same way as in **Figure 2A**. Dashed line: average value for WT^{high}. Bars: std. (B) CDR3 distance vs. triad arm angles (**Figure 3D** and **Figure 6A,B**). (C,D) Average BOCs of (C) *in silico* antagonists, and (D) *in silico* WT. Average BOCs of WT⁰ and WT^{high} are shown as reference, marked by angular brackets (**Figure 6C,D**).

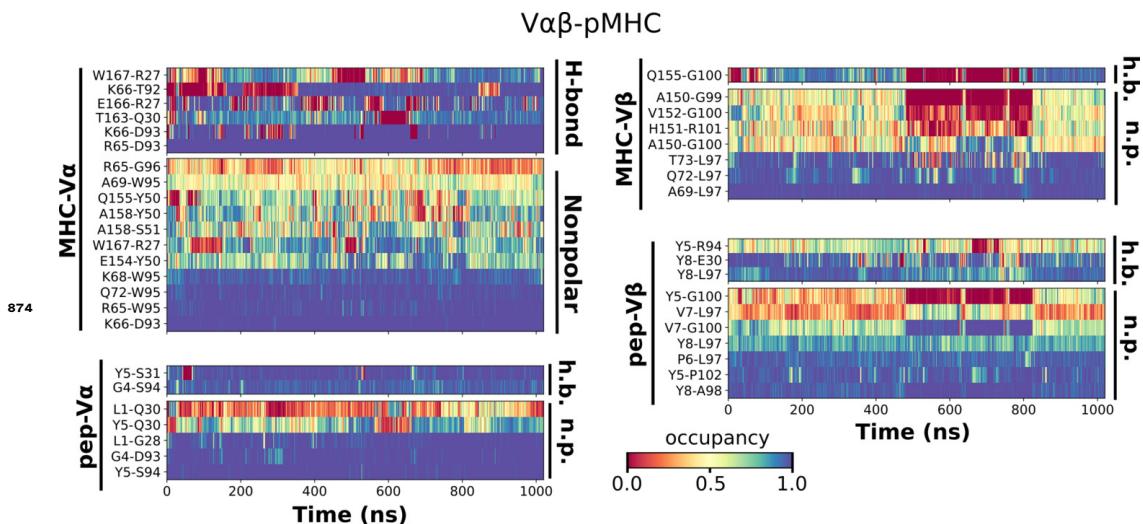
861

862

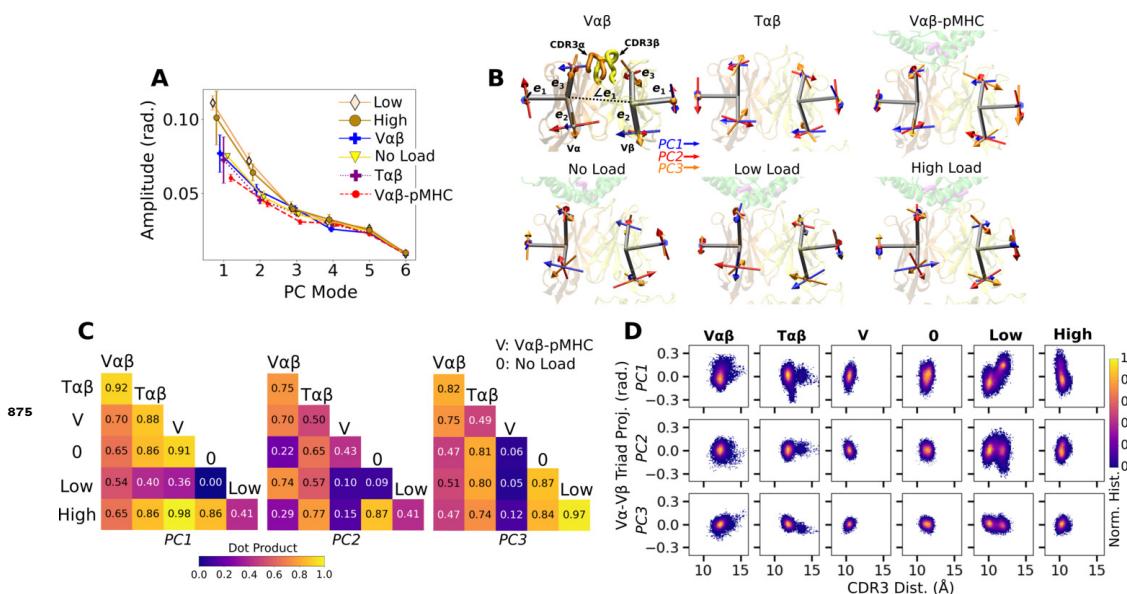

863

864

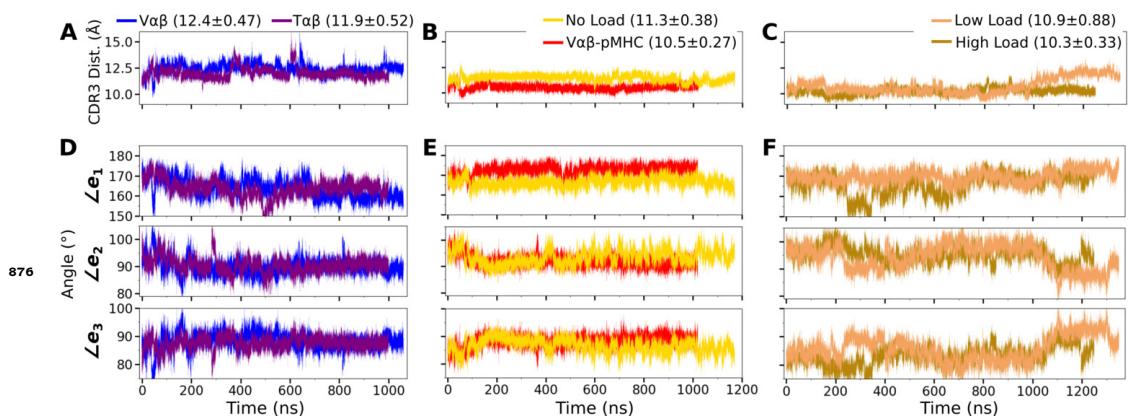
865

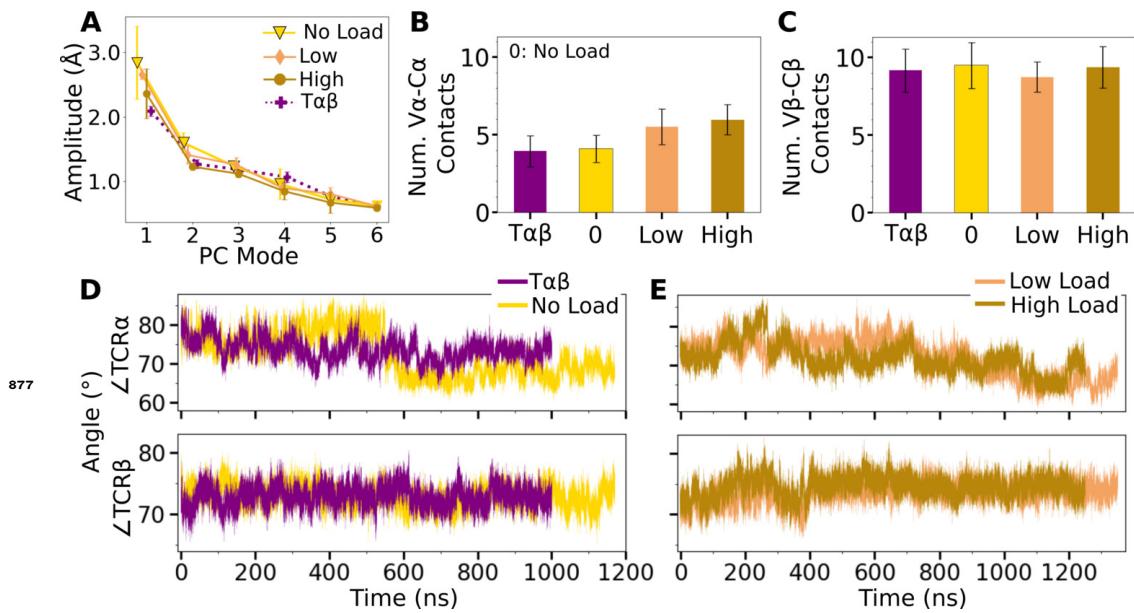

866

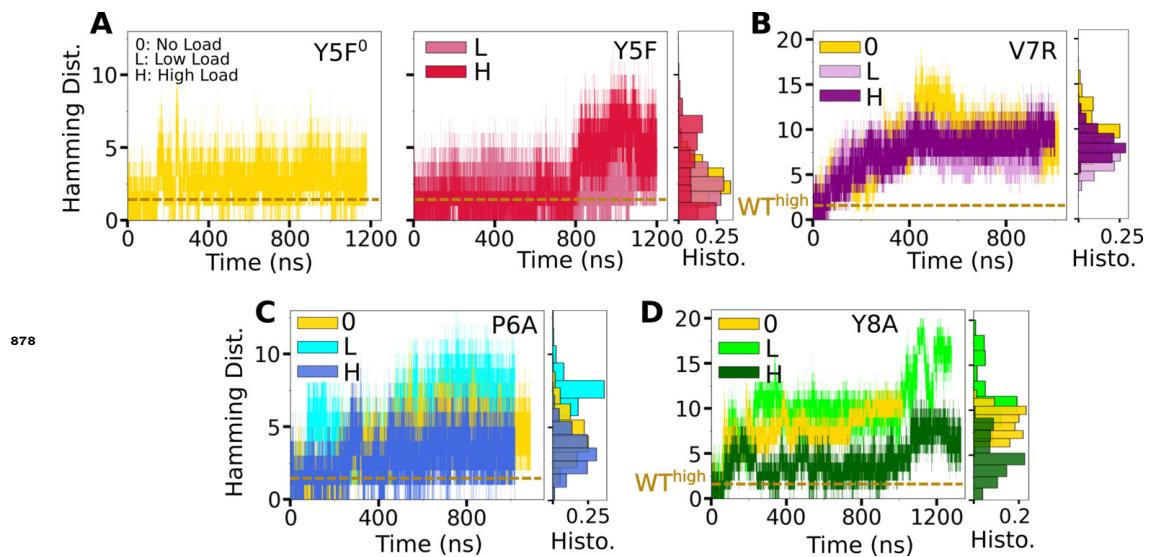
867

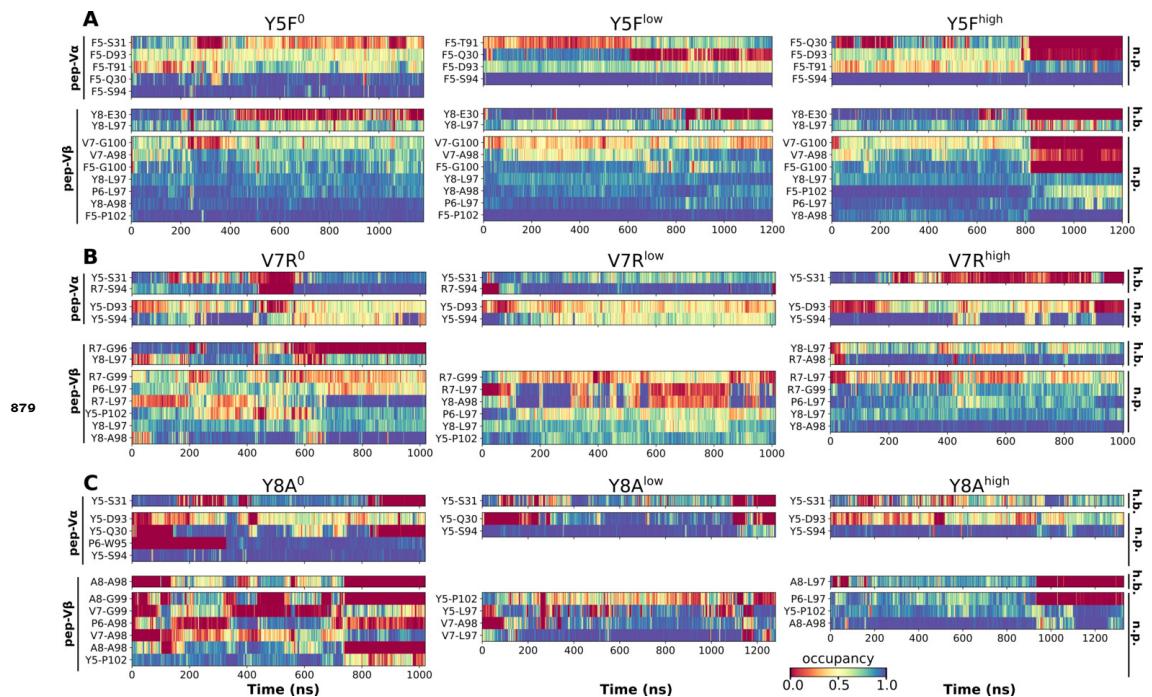


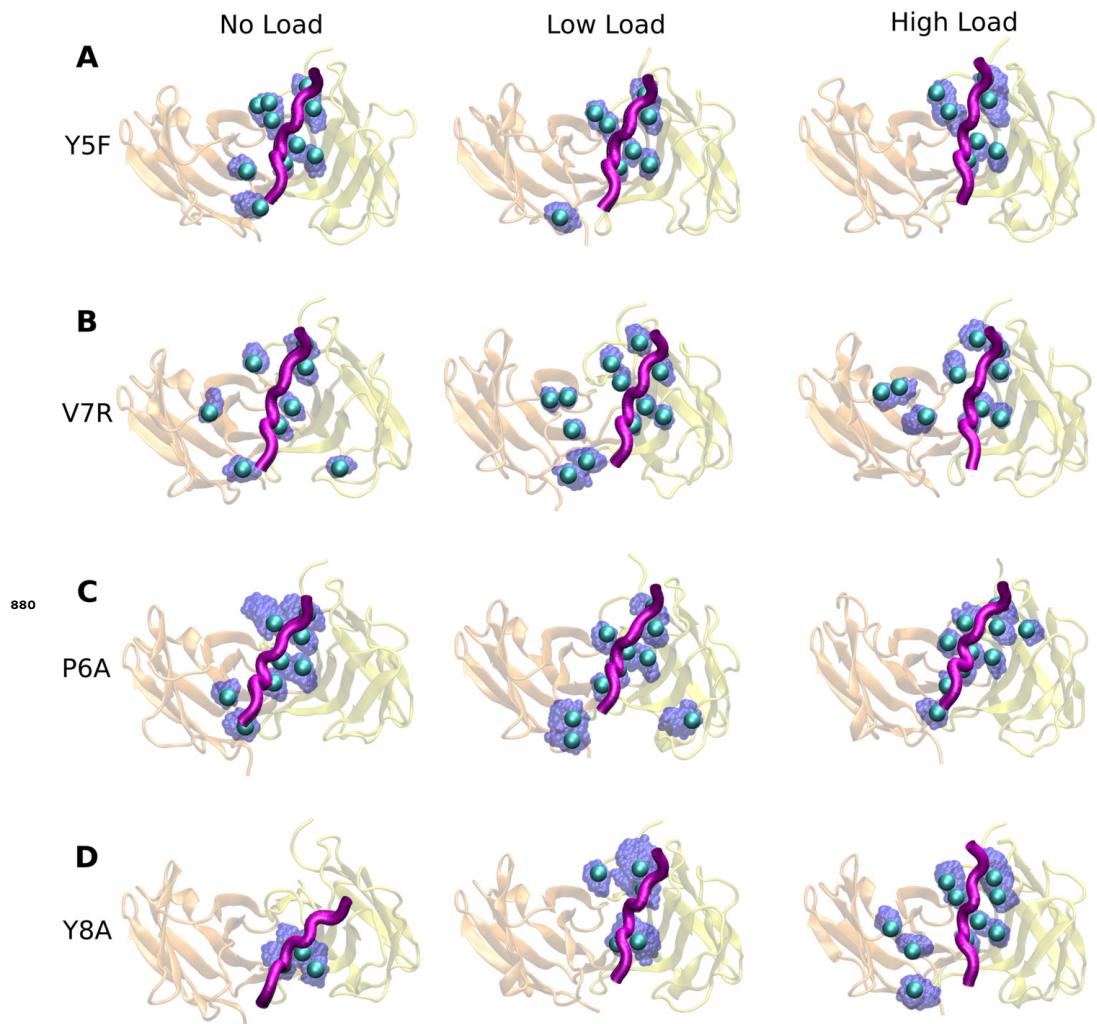
Appendix 2—figure 2. Behaviors of *in silico* mutants. (A) BSA (Figure 2G). (B) Positions of backbone C α atoms of high contact occupancy residues (Figure 2F). (C) V α -V β contact count (Figure 3A). (D) CDR3 distance trajectory (Figure 3—figure Supplement 2A–C). (E) V α -C α and V β -C β contact counts (Figure 4—figure Supplement 1B,C).

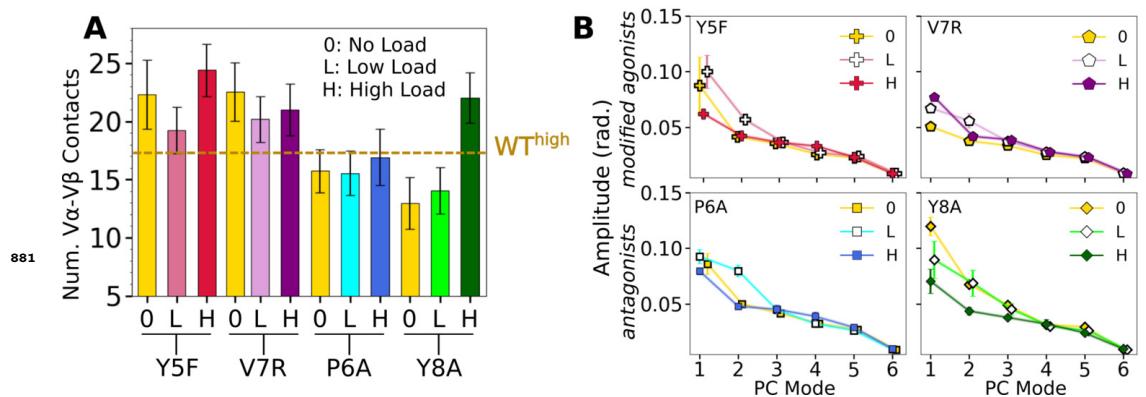

868
869
870
871
872
873

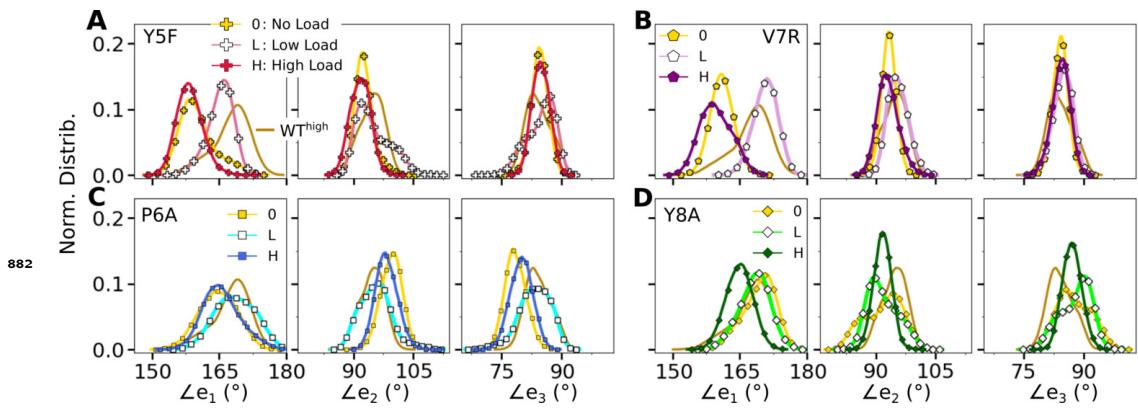

Figure 2—figure supplement 1. Contact occupancy heat maps for $V\alpha\beta$ -pMHC. The same occupancy cutoffs as in **Figure 2C-E** were used.

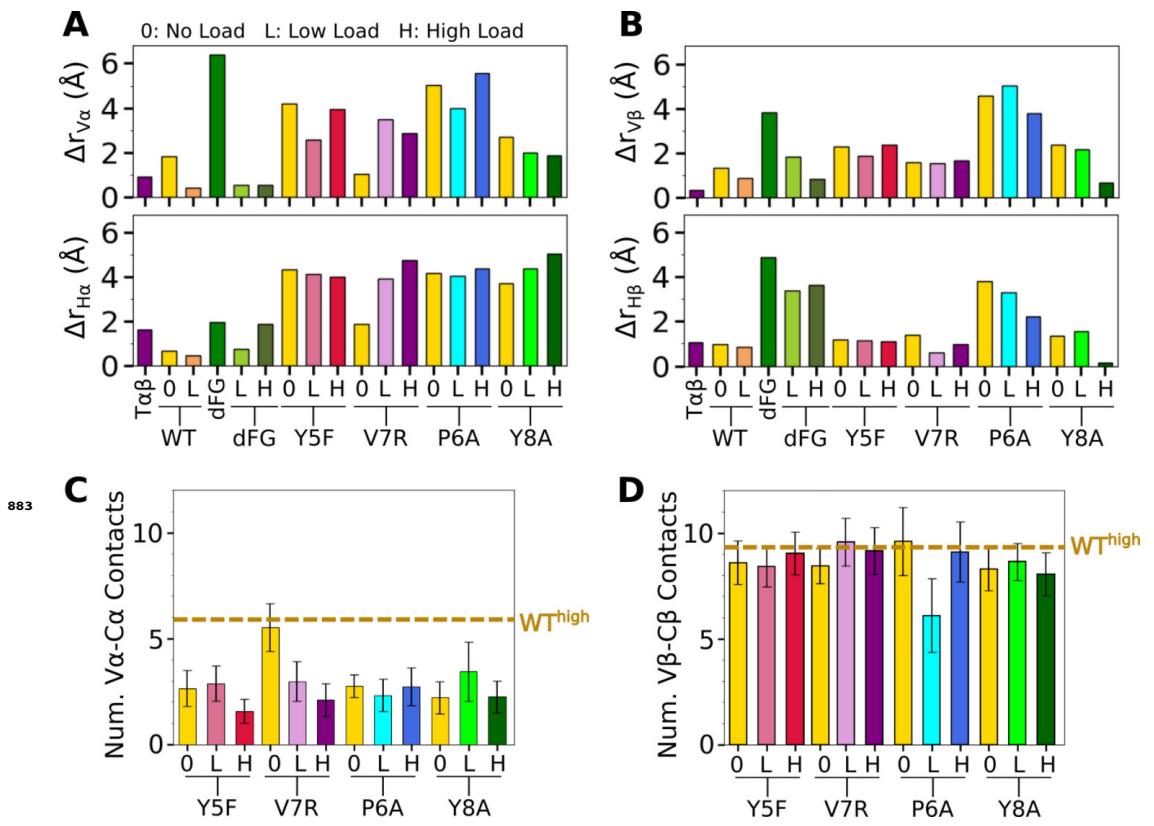

Figure 3—figure supplement 1. PCA of $V\alpha$ - $V\beta$ motion. (A) PC amplitudes. Bars: std for PCA performed in 3 overlapping intervals from 500 ns to the end of simulation. (B) Direction of motion for the first three PC modes. (C) Absolute values of dot products between the unit PC vectors in listed systems. Values range from 0 (orthogonal) to 1.0 (identical PC directions). (D) 2-dimensional histograms of the projections of the $V\alpha$ - $V\beta$ triads in each frame onto the first three PC directions versus the CDR3 distance.

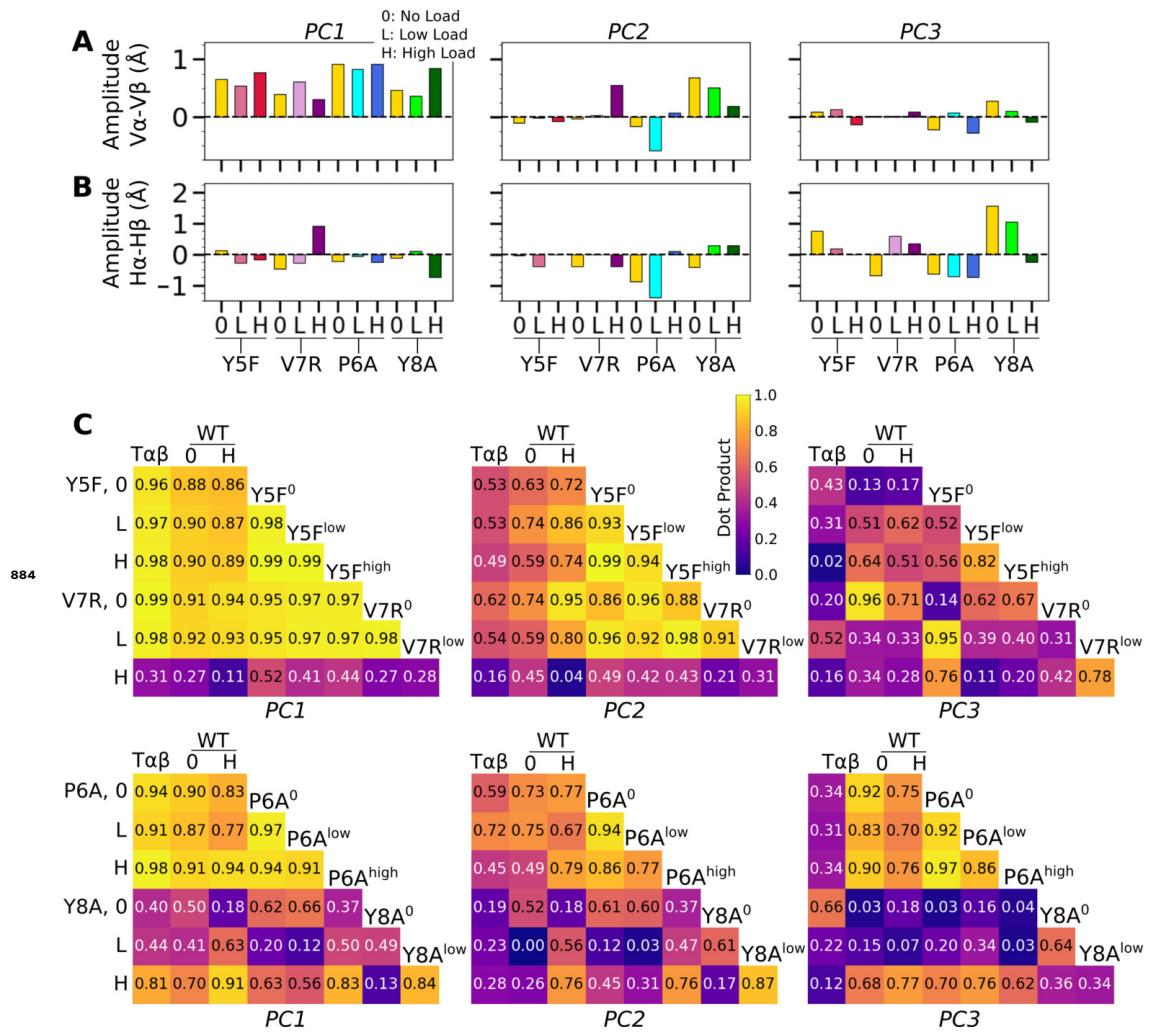

Figure 3—figure supplement 2. Trajectories of the V-module motion. (A-C) CDR3 distances and (D-F) triad angles. (A,D) V α β and T α β , (B,E) V α β -pMHC and WT⁰, and (C,F) WT^{low} and WT^{high}. Labels include average and standard deviation of the CDR3 distance after 500 ns.


Figure 4—figure supplement 1. V-C PC amplitude and contacts. (A) Amplitude of the first six PCs. Bars: std for PCA performed in 3 overlapping intervals from 500 ns to the end of simulation. (B,C) Number of contacts with greater than 50% average occupancy and 80% maximum instantaneous occupancy for (B) V α -C α and (C) V β -C β . Bars: std. (D,E) Trajectories of hinge angles versus time.


Figure 5—figure supplement 1. Trajectories of \mathcal{H} for mutant complexes. (A,B) Modified agonists. (C,D) Antagonists. The same cutoff criteria were used to calculate initial contacts as in **Figure 2B**. Data after 500 ns were used for histograms on the right of each panel.


Figure 5—figure supplement 2. Contact occupancy heat maps for residues 5-8 of the mutant peptides. (A) Y5F, (B) V7R, and (C) Y8A. Corresponding heat maps for WT^{high} and P6A are in **Figure 5C-F**.


Figure 5—figure supplement 3. Locations of high-occupancy contacts with pMHC in mutant systems. (A) Y5F, (B) V7R, (C) P6A, and (D) Y8A. Compared to WT^{high} or V α β -pMHC (Figure 2F), contacts are overall unevenly distributed or dispersed. The same occupancy cutoffs as in Figure 2F were used for selecting residues.


Figure 6—figure supplement 1. V α -V β motion of mutant systems. (A) Number of V α -V β contacts, counted in the same way as in Figure 3A. Dashed line is the average for WT^{high}. (B) V α -V β PC amplitudes. Calculated the same way as in Figure 3—figure Supplement 1A.

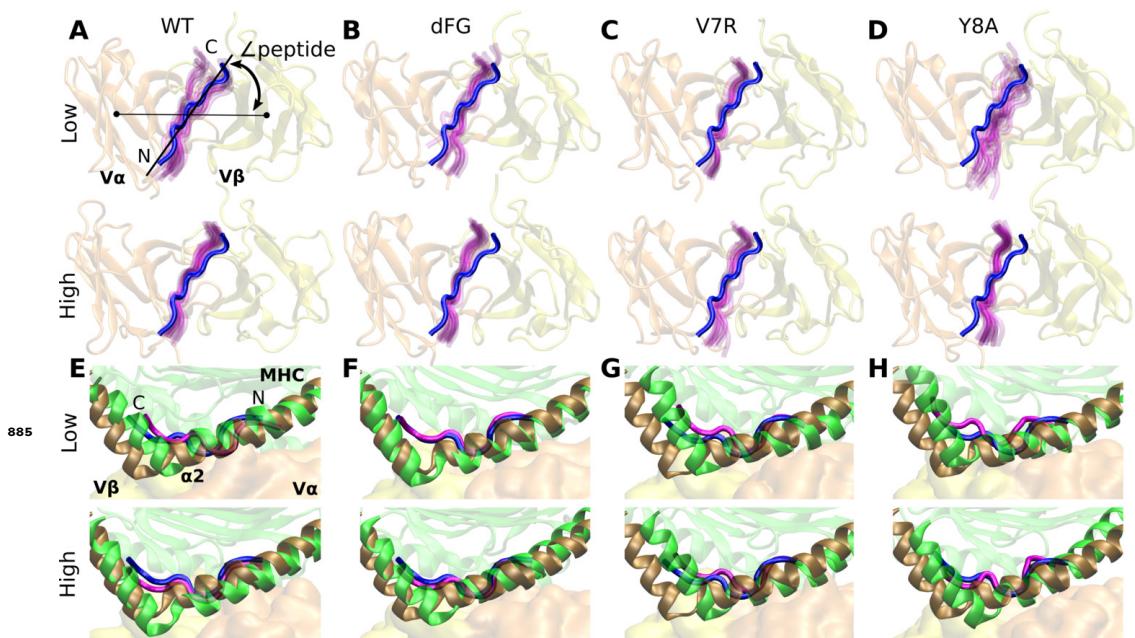

Figure 6—figure supplement 2. Distribution of triad arm angles in mutant systems. (A,B) Modified agonists and (C,D) antagonists. Respective plot for WT^{high} in **Figure 3C** is included in all panels (without markers) for comparison.

Figure 6—figure supplement 3. Comparison of mutant average V-C BOCs and interfaces with those of WT^{high} . All BOCs are aligned to the C-module of WT^{high} . (A,B) Distances of beads for (A) $V\alpha$ and $H\alpha$, and (B) $V\beta$ and $H\beta$ from those of WT^{high} , revealing the extent of deformation. (C,D) Number of V-C contacts for each chain. Dashed line denotes respective value for WT^{high} in **Figure 4—figure Supplement 1B,C**.

Figure 6—figure supplement 4. V-C motion of mutants. (A,B) Differences in PC amplitude between BOC PC of (A) $V\alpha$ vs. $V\beta$ and (B) $H\alpha$ vs. $H\beta$. Compare with **Figure 4C** for WT systems. (C) Dot products between BOC PC vectors for the listed systems.

Figure 7—figure supplement 1. Motion at the interface related to $\angle\text{peptide}$. (A–D) View of interface from the top of the V-module. The peptide from the crystal structure (blue) of each respective system is overlaid on frames of the peptide during simulation (magenta) rendered every 50-ns from 500 ns to the end. (E–H) Positional shift of pMHC. Side view showing MHC α 2 helix (brown) and peptide (blue) from the crystal structure overlaid with MHC α 2 helix (green) and peptide (magenta) of the last rendered frame from panels A–D.