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ABSTRACT

The accelerating growth of scientific literature overwhelms our capacity to manually distil
complex phenomena like molecular networks linked to diseases. Moreover, biases in biomedical
research and database annotation limit our interpretation of facts and generation of hypotheses.
ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) offers a
time- and resource-efficient alternative to manual literature curation and database mining.
ENQUIRE reconstructs and expands co-occurrence networks of genes and biomedical ontologies
from user-selected input corpora and network-inferred PubMed queries. The integration of text
mining, automatic querying, and network-based statistics mitigating literature biases makes
ENQUIRE unique in its broad-scope applications. For example, ENQUIRE can generate co-
occurrence gene networks that reflect high-confidence, functional networks. When tested on case
studies spanning cancer, cell differentiation and immunity, ENQUIRE identified interlinked
genes and enriched pathways unique to each topic, thereby preserving their underlying diversity.
ENQUIRE supports biomedical researchers by easing literature annotation, boosting hypothesis
formulation, and facilitating the identification of molecular targets for subsequent
experimentation.
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INTRODUCTION

Curated gene networks are of high interest to prime the analysis of biomedical omics data,
identification of disease-specific regulatory modules, and therapy-oriented studies like drug
repurposing' ™. However, the growing biomedical literature corpus makes curation of biomolecular
pathways challenging. Annotating molecular interactions from literature requires domain expertise,
yet that same background knowledge could entail predispositions towards partial pictures of faceted
biomedical problems®. In contrast, relation extraction from databases often omits the contextual
information of gene interactions and can bias the results towards ubiquitously expressed, commonly
investigated, and richly annotated genes®®. This can make systematic comparisons of biomedical
research topics inconclusive or unattractive from an expenditure perspective. Recently, there have been
significant investments in the automatic annotation of scientific corpora. The knowledgebase
immuneXpresso indexes textmined interactions among immune cells and cytokines’, while SimText
provides a framework to interactively explore the content of a user-provided corpus of literature'°.
These and other tools rely on natural language processing methods like named-entity recognition'!
(NER), part-of-speech recognition'?, directionality assignment'®, relationship detection, and co-
occurrence scoring'*!°. These efforts in biomedical text mining aim at detecting meta-features and co-
occurrences in literature corpora. However, assessing the statistical significance and confidence level
of a text-mined relation in dense, literature-based co-occurrence networks must be better addressed '*!7.
We find this striking, considering the well-documented reproducibility crisis'®2°. In this context, we
envisioned ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) to
achieve automatic reconstruction and expansion of biomedical co-occurrence networks from a user-
defined PubMed literature corpus. ENQUIRE applies a state-of-the-art random graph model to retrieve
context-specific, significant co-occurrences, i.e. dependent on the input corpus and its occurrence
distribution of biomedical entities?'??. This distinctive element in our methodology allows ENQUIRE
to control for literature biases. ENQUIRE processes scientific articles by extracting Medical Subject
Headings (MeSH) and gene mentions from article abstracts, thus enriching gene-gene co-occurrence
networks with gene-MeSH and MeSH-MeSH relations. ENQUIRE also automatically generates
PubMed queries from connected biomedical entities in the network, contextually expanding the
underlying corpus and, in turn, the co-occurrence network. To our knowledge, ENQUIRE is the first
tool that integrates textmining, network reconstruction, and automatic literature querying into a single,
resource efficient software. Here, we showcase ENQUIRE’s broad-scope applications and
effectiveness in identifying relevant biomedical relations in different contexts and case scenarios.

RESULTS

A Tool to Generate Co-Occurrence Networks from Literature

ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) is an algorithm
that reconstructs and expands co-occurrence networks of Homo sapiens genes and biomedical
ontologies (MeSH), using a corpus of PubMed articles as input. The method iteratively annotates
MeSH and gene mentions from abstracts, statistically assesses their importance, and generates
network-informed PubMed queries, until it obtains a connected network of genes and MeSH terms (or
meets another exit condition). ENQUIRE’s pipeline implements a loop consisting of serial modules
with the following structure (Fig. 1):

a) The user supplies an input literature corpus in the form of at least three PubMed identifiers (PMIDs).
b) The algorithm indexes the MeSH terms associated to the PMIDs listed. Next, their abstracts are
parsed, and gene normalization is performed using a lookup table of gene aliases and abstract-specific
blocklists of ambiguous terms.
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77  ¢) ENQUIRE annotates and weights co-occurrences between gene and MeSH entities, accounting for
78  the expected number of co-occurrences across the literature corpus.
79 d) The method selects significant co-occurrences and generates an undirected, simple graph, basing
80 the test statistic on a random graph null model of unbiased mining of the input corpus.
81  e) Next, nodes are weighted, and “information-dense” maximal cliques, i.e. clusters of high-weight
82 nodes all connected to each other, are selected to reconstruct network communities from the
83  corresponding nodes.
84 ) ENQUIRE identifies optimal sets of community-connecting graphlets via an approximate solution
85  to the “travelling salesman problem” (TSP).
86  g) Finally, the algorithm uses the entity nodes corresponding to the identified community-connecting
87  graphlets into PubMed queries to find additional, relevant articles. Should ENQUIRE find new articles,
88  their PMIDs are joined with the previous ones and automatically provided to module a), starting a new
89 iteration.
90 Whenever ENQUIRE reconstructs a network from the union of old and new PMIDs, the previously
91  reconstructed network is joined with the new one. The joined network has recomputed edge and node
92  weights in accordance to its expanded literature corpus and connectivity. The rationale is to prioritize
93 the original reconstruction, while also leveraging the expanded literature corpus. Users can tune five
94  options to tailor the workflow, namely: 1) Restricting the target entities to annotate genes or MeSH
95  only — default: both; 2) representativeness threshold t to disregard subgraphs characterized by poor
96 overlap with the literature corpus — default: 1% overlap; 3) query size k to control the number of
97 entities that must be simultaneously used in a PubMed query — default: 4 entities; 4) query attempts A
98 to choose the number of attempts at connecting network communities by querying — default: 2
99 attempts; and 5) connectivity criterion K to exclude newly found entities not having edges with nodes
100 from K communities previously generated at step (e) — default: 2 communities. ENQUIRE’s goal is to
101  generate a gene/MeSH network and its respective gene- and MeSH-only subgraphs that individually
102 consist of a single, connected component. The loop terminates if i) the network is empty after module
103  d); ii) no clique can be found in step e); iii) the clique network consists of only one community; iv) all
104  generated queries return empty results. With default parameters, ENQUIRE outputs node and edge
105  lists of a gene/MeSH co-occurrence network and the respective gene- and MeSH-only subgraphs at
106  each iteration. The final ENQUIRE results include additional tabulated data, graphics, and links to
107  collected resources for subsequent analyses and reproducibility. For instance, it is possible to extract
108  subsets of the literature corpus that support a gene/MeSH relation of interest and access the articles via
109  hyperlinks redirecting to PubMed.
110  See Supp. Fig. 1 and Mat.Met. for a comprehensive description of the algorithm.

111 An Exemplary ENQUIRE Run

112 To showcase ENQUIRE, we set up a small-scale case study in which we looked for literature-based
113 relationships between the immune system and ferroptosis, a form of programmed cell death?’. We
114  selected 27 papers obtained from the PubMed query (“Ferroptosis’[MeSH terms] AND “Immune
115  System”’[MeSH terms]) NOT “review ”[Publication Type] ” — queried on 14.04.23. We increased the
116  number of attempts A to 3, as we expected few query-matching PMID. The expansion process is
117 depicted in Fig. 2A, using the Cytoscape package DyNet?*?°. The original reconstructed network
118  consists of four connected components. The first expansion led to additional, significant co-
119  occurrences and newly found entities that connected the four components into a single one. The
120  algorithm stopped after obtaining a single, connected gene/MeSH network and not finding additional
121 query-matching PMIDs. Using up to 6 CPU cores, ENQUIRE finished in 16 minutes using less than
122 0.4 GB of RAM (Supp. Fig. 2). Next, we applied context-specific gene set annotation on the original
123 gene/MeSH co-occurrence networks, as described in Mat.Met. We identified non-trivial, descriptive
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124 gene sets (Fig. 2C-left), including ferroptosis-dependent inflammation supported by immune-related
125  adaptor proteins (blue, top left), antineoplastic effects of the ferroptosis-inducer sulfasalazine acting
126  on the amino acid transport system (magenta), and cross-talk between ferroptosis and autophagy
127 (pink), in accordance with previous findings*®2%. We also performed context-aware pathway
128  enrichment analysis using the gene-gene co-occurrence subgraphs and the approach described in
129  Mat.Met. We summarized the results in Fig. 2C-right, which depicts 30 Reactome pathways whose
130  adjusted p-values were below 5% FDR for at least one network, sorted by Reactome category. In the
131  original network, we obtained enrichments of pathways centered around Toll-like receptor and MAP
132 kinases signaling cascades (e.g. R-HSA-975138). In the expanded networks, the metabolic pathway
133 Glutathione conjugation (R-HSA-156590) and additional innate immunity-related and programmed
134  cell death pathways were enriched. Taken together, the ENQUIRE-generated output highlights
135  potential molecular axes between iron-regulated cell death and proliferation, metabolism, and immune
136  response?®!.

137 ENQUIRE’s Gene Normalization Strategy is Precise and Efficient

138  ENQUIRE is intended to consume abstracts from studies in H. sapiens and M. musculus. We therefore
139  evaluated ENQUIRE’s precision and recall using the abstracts in the NLM-Gene corpus mentioning at
140  least one M. musculus or H. sapiens gene — 479 out of 550 entries*2. ENQUIRE’s maximum F1 score
141 s 0.747, corresponding to 0.822 precision and 0.683 recall, using as little as 0.36 GB of RAM and
142 with speeds up to 0.03 seconds per abstract (Table 1). The Schwartz-Hearst abbreviation-definition
143  detection algorithm improves precision of tokenization and normalization by 2%, without major loss
144  in recall nor higher computational requirements>?. In some use cases, it could be necessary to exclude
145 gene mentions associated to cell entities, such as “CD8+ lymphocytes”. The scispaCy’s
146  en_ner_jnlpba_md model removes unwanted gene-matching cell mentions, at the cost of about 2%
147  reduction in recall**. It should be noted, however, that the latter metric is affected by the fact that gene
148  mentions included in cell entities are counted as true positives in the NLM-Gene corpus. We also
149  compared ENQUIRE’s performance to GNorm2, a state-of-the-art deep-learning model for gene entity
150  recognition and normalization®>. We tested ENQUIRE’s most resource-intensive configuration (both
151  en_ner _jnlpba md and Schwartz-Hearst modules enabled) against GNorm2’s implementation of
152  Bioformer, a deep-learning model based on BERT, but 60% smaller in size*®. Table 2 shows that
153  GNorm?2 is considerably slower and has a higher resource usage than ENQUIRE. If ENQUIRE were
154  to implement GNorm2 for gene normalization, this would impair its usage in scenarios with limited
155  resources and computing time: for example, we verified that GNorm2 cannot be run on the CPU-based
156  computer with 16GB of RAM used for the exemplary case study (Supp. Fig. 3 and Supp.
157  Information). In this terms, ENQUIRE’s in-house gene normalization is more suitable for textmining
158 large input corpora on a variety of devices beyond CPU-based computer clusters.

159 ENQUIRE Networks Support Ranking of Genes Relevant to the Input Literature.

160  To evaluate ENQUIRE’s ability in inferring genes relevant to the input corpus, we extracted H. sapiens
161  pathways, their belonging genes, and corresponding primary literature references from the Reactome
162  Graph Database’’. We used the lists of references as inputs and performed a single gene entity-
163  restricted co-occurrence network reconstruction for each pathway. Out of 967 examined pathways,
164  ENQUIRE successfully reconstructed a gene co-occurrence network from the reference literature of
165 733 of them. We evaluated the effect of input corpus size, pathway size and average entity co-
166  occurrence per paper on the accuracy of the resulting networks (Table 3). As expected, precision and
167  recall show opposite Spearman’s correlation trends concerning corpus and pathway sizes, but average
168  gene-gene co-occurrence per article appears uncorrelated. The negative correlation between corpus
169  size and precision is -0.18, suggesting a low impact of large input corpora on the output. Next, we
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170  explored if the ENQUIRE-computed weight W, an aggregated measure of network centrality and
171  literature support of its connections, is a useful measure of gene relevance regarding the input corpus
172 (Mat.Met.). To this end, we analyzed the above-mentioned gene-scope co-occurrence networks. In
173 Fig. 3, we compare the pan-pathway-aggregated distributions of true-positive (top panel) and false-
174  positive (middle panel) ENQUIRE-derived genes as a function of W (x-axis). We subdivided the
175  distribution into four evenly spaced intervals, performed a chi-square test of independence, which
176  resulted to be significant, and extracted the standardized Pearson residuals for true positives and false
177  positives (colored boxes beneath the distributions). True positives tend to have higher node weights
178  than false positives. An over-representation of node weights higher than 0.75 is observed in the true-
179  positive distribution, as indicated by the color gradient in Pearson residuals. This suggests one can use
180  the node weights W to rank a set of ENQUIRE-derived genes based on their relevance to the literature
181  corpus in question.

182 ENQUIRE Recovers Genes with High Chances of Showing Biochemical Interrelations.

183  We hypothesized that ENQUIRE-derived gene co-occurrence networks could be enriched in molecular
184  gene-gene interactions annotated in databases. To test this, we queried PubMed with all possible cross-
185  pairs of Diseases and Genetic Phenomena MeSH terms. We further processed the 3098 queries that
186  retrieved 50-500 matching PMIDs and extracted their gene-gene co-occurrence networks obtained
187  after one network reconstruction. We then inspected whether their respective protein-coding genes can
188  produce significant functional association networks based on STRING’s protein-protein interaction
189  (PPI) database’® (see Mat.Met.). Table 4 indicates that for 1336 (43.1%) MeSH pairs, both ENQUIRE
190 and STRING generated a minimal network with at least three genes and two edges. In a subset of 733
191 network with degree sequences allowing at least ten different graph realizations, we assessed
192  ENQUIRE’s capability of reflecting functional interactions. Then, we then generated two empirical
193  random probability distributions for STRING’s edge count and DeltaCon similarity score®” (see
194  Mat.Met.). Within the tested networks, 730 protein-coding gene networks (99.6%) produced a
195  STRING network with a higher edge count than 95% of equal-sized random STRING networks (PPI
196  score). At the same time, 439 networks (59.9%) showed concordance with STRING-derived PPI
197  networks based on statistically significant DeltaCon similarities. After p-value adjustment, (1% FDR,
198  Table 3), 722 (98.5%) and 344 (46.9%) ENQUIRE networks still show significantly high PPI scores
199  and DeltaCon similarities, respectively. To evaluate the effect of network size, we subdivided the 733
200  suitable networks into quartiles based on their node number and mapped the respective unadjusted p-
201  value distributions of the above-described test sets. The edge-count-associated p-values increased with
202  network size (Fig. 4A). At the same time, the observed DeltaCon similarity values monotonically
203  decrease with network size (Table 5). This is in accordance with DeltaCon’s implementation of edge
204  importance and zero-property>’, as differences in edge counts and number of connected components
205 between ENQUIRE and STRING increase with the number of nodes. Nevertheless, we did not find a
206  negative correlation between network size and p-values of observed DeltaCon similarities; instead, the
207  quartile corresponding to the largest network also shows the largest relative proportion of significant
208  adjusted p-values (Fig. 4B). Taken together, our results suggest that ENQUIRE generates networks
209 that frequently contain established, high-confidence functional relations.

210 ENQUIRE Improves the Context Resolution of Topology-Based Pathway Enrichment
211 Analyses.

212 We also analyzed ENQUIRE’s ability to generate and expand co-occurrence networks with distinctive
213  biological and biomedical signatures by literature querying. In particular, we evaluated the context
214 resolution of ENQUIRE-generated gene networks, i.e. their ability to preserve differences and
215  similarities in gene mention content from different corpora. To this end, we applied the complete
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ENQUIRE pipeline with default parameters to a comprehensive set of case studies, spanning cancer,
cell differentiation, innate immunity, autoimmune diseases, and a positive control (Table 6). Notice
that each case study's input corpus is a perfect subset of the positive control corpus, which corresponds
to a Szymkiewicz-Simpson overlap coefficient (OC) of 100% - see Mat.Met.. Despite that, the positive
control network does not always exhibit an OC of 100% with non-expanded networks, in terms of both
nodes and edges (Supp. Fig. 4). This shows that ENQUIRE’s network reconstruction is sensitive to
the input corpus. Fig. SA depicts the expected dendrogram of the different case studies and respective
expansions, based on their major topics and original input corpora. Fig. SB shows the observed
clustering based on ENQUIRE-informed, topology-based pathway enrichment analysis using KNet*°
(see Post Hoc Analyses in Mat.Met. and Supp. Fig. 2). The 50 pathways with at least one significant,
adjusted p-value (5% FDR) and highest p-value variances across case studies are depicted. The heat-
map suggests that the case studies primarily cluster based on the affinities between their major topics,
in agreement with the expected dendrogram. For example, pathways categorized under Diseases of
Metabolism, Diseases of Immune System, and Innate Immune System are predominantly enriched in
networks originated from the case study ‘“Macrophage’s signal transduction during M. tuberculosis
infection” (MP-ST) and the major topic “Antigen Presentation in Autoimmune Diseases”. Similarly,
some of Chromatin Organization and Developmental Biology pathways are almost exclusively
enriched in the networks corresponding to oligodendrocyte differentiation. Interestingly, a set of
pathways linked to cell cycle like Cyclin D associated events in GI (R-HSA-69231) are enriched in
the oligodendrocyte case study and reported to be also relevant in glioblastoma*'~*. All case studies
appear constitutively enriched in a cluster of Pathways in Cancer annotated downstream of Diseases
of signal transduction by growth factor receptors and second messengers (R-HSA-5663202). We
investigated this potential limitation in context-resolution and found that i) KNet-employed, binned
network distances between genes in R-HSA-5663202 subpathways are not significantly smaller than
those within other tested pathways; ii) Spearman correlations between p-values and network or corpus
sizes are equivalent in all tested pathways; iii)) R-HSA-5663202 subpathway categorization is
associated with lower p-values both globally and within the same major topic (Supp. Fig. 5). Perhaps
unsurprisingly, we concluded that proteins from these pathways like MAP-kinases and PKB are
generally involved in the explored case studies; this also suggests that the observed clustering of
cancer-related studies is not exclusively dependent on the enrichment of cancer pathways. Finally, we
quantitatively assess the context resolution of the ENQUIRE-informed enrichment (Fig. SC). To this
end, we performed a permutation test on the observed Baker’s gamma correlation value between
dendrograms (Fig. SA-B), which allows to statistically assess their similarity*’. We benchmarked its
significance against two other methods, namely gene set over-representation analysis (ORA), and
topology-based pathway enrichment analysis using STRING’s high-confidence functional
associations, instead of ENQUIRE-generated co-occurrences, to compute the Q node scores (see
Mat.Met.). All methods generated a dendrogram significantly closer than expected to the reference.
In our analysis, topology-based enrichments outperform ORA, with the ENQUIRE-informed score
moderately improving the performance over the STRING-informed equivalent (0.69 and 0.64,
respectively). Taken together, these results suggest that ENQUIRE-generated networks can effectively
represent contextual, biological differences and similarities between case study corpora. While
ENQUIRE-annotated genes are sufficient for context resolution, the use of topology-based methods
that incorporate corpus-specific co-occurrence information improves the performance.
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DISCUSSION

ENQUIRE is a novel computational framework that combines textmining, network reconstruction, and
literature querying, offering an alternative to manual literature curation and database mining.
ENQUIRE interrelates gene mentions and biomedical concepts through co-occurrence networks and
tabulated references while accounting for biases in the input literature corpus. Its framework enables
post hoc analyses that infer contextual gene sets and enriched molecular pathways. ENQUIRE can
enhance the biological interpretation of omics data, suggest relevant processes and components for
computational models, and motivate the selection of molecular targets for biological experiments and
in scenarios like molecular tumor boards. We opted for a compromise between coverage of
unannotated article abstracts (gene normalization) and high-fidelity, pre-computed concept annotations
(MeSH retrieval). ENQUIRE’s gene normalization strategy is appropriate for reconstructing co-
occurrence gene networks with affordable computational requirements, and scales well with large input
corpora, without the need of restricting the analysis to databases of pre-annotated gene mentions*. The
combination of a curated lookup table with abstract-specific blocklists enhances precision, thus leading
to co-occurrence networks with fewer false positives, compared to recall-oriented approaches like
BERN23#7. An added value of ENQUIRE is that the obtained gene/MeSH co-occurrence network can
prime further information retrieval beyond textmining. Differently from previous works on
gene/MeSH relations, our statistical framework is independent of the user scope (genes or MeSH can
be mined separately) and is not immutable with respect to a species or general topic (e.g. diseases)*®
3! Instead, ENQUIRE automatically constructs PubMed queries from network-derived genes and
MeSH to expand the input corpus, and in turn the network. We also assessed ENQUIRE’s performance
using real-world case scenarios. For example, we investigated the relationship between ENQUIRE-
suggested co-occurrences and database-annotated gene interactions. Our results indicate that
ENQUIRE-generated gene co-occurrence networks reflect experimental and database-annotated
functional gene associations. At the same time, ENQUIRE can also generate networks with previously
unannotated wirings that can encourage novel explorative analyses (Fig. 4B). We also analyzed the
feasibility of corroborating ENQUIRE-suggested relations by mapping co-occurrence information
onto a mechanistic reference network. Since there is no generalizable method to project a network of
indirect relations (co-occurrences) onto a mechanistic network>>>®, we designed a function to score a
physical interaction network using ENQUIRE-generated networks. This allowed us to verify that the
enriched pathways in original and expanded ENQUIRE networks reflect their contexts and enable the
comparison of multiple case studies. This strategy still poses some limitations in terms of choosing a
reference network and pathways to be tested. We designed ENQUIRE as a series of modular, open-
source components that can be combined and expanded to tune its performance. For instance, one
could insert a part-of-speech recognition parser upstream of the co-occurrence detection step to
strengthen its criteria®’. Similarly, one can implement a propensity matrix into the random graph model
to further weight a co-occurrence with its textual context'*?!. As gene normalization relies on the
utilized lookup table of reference gene symbols and aliases, ENQUIRE’s accuracy depends on how
comprehensive and free of ambiguities this table is. The current version of our algorithm only performs
normalization of human genes and corresponding mouse orthologs. Still, it can be adapted to perform
gene normalization of any other species by supplying an appropriate lookup table, such as those
provided by the STRING database’®. Our main objective was to construct a robust textmining, network
reconstruction, and automatic querying pipeline accessible to bioinformaticians and systems biologists
with affordable computational requirements. Since the standalone version of the algorithm requires
some background in computer programming, we are working to provide a web version of ENQUIRE
to ease its adoption among biomedical researchers.
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306 DATA AVAILABILITY

307 ENQUIRE’s main program and the standalone scripts to perform the post hoc analyses are included in
308 an Apptainer/Singularity image file (SIF), available for download at
309 https://figshare.com/articles/software/ENQUIRE/24434845 (DOI:
310  10.6084/m9.figshare.24434845.v3). Installation and running instructions, gene-symbol-to-alias lookup
311  table, input and output files from the exemplary case study, and data underlying the results (Supp.
312  Information) can be found at https://github.com/Muszeb/ENQUIRE (DOL:
313  10.5281/zenodo.10692274). All the individual scripts are also available upon request.
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326 MATERIALS AND METHODS
327 Description of the ENQUIRE algorithm
328  Extraction of Article Metadata

329 ENQUIRE uses the NCBI’s e-utilities to query and fetch information from the PubMed database™.
330  Epost is used to request a collection of PMIDs, efetch to extract their metadata in XML format, and
331  esearch to construct PubMed queries.

332 MeSH Term and Article Abstract Extraction

333  For each MEDLINE-indexed, input PMID, if the MeSH entity scope is selected, ENQUIRE retrieves
334  MeSH main headings (“descriptors”) and subheadings (“qualifiers”) from their respective efetch-
335 retrieved XML files. These MeSH terms are further selected to match biomedically relevant, non-
336 redundant categories, by exploiting the tree-like, hierarchical structure of the MeSH vocabulary. By
337  default, ENQUIRE only retains members downstream of the MeSH categories A (Anatomy), C
338  (Diseases), D (Chemicals and Drugs), and G (Phenomena and Processes), except for sub-categories
339  GO1 (Physical Phenomena), G02 (Chemical Phenomena) and G17 (Mathematical Concepts).

340 Gene Normalization from Article Abstracts

341  For each input PMID, if the gene entity scope is selected, ENQUIRE retrieves article abstracts from
342  their respective efetch-retrieved XML files. As other authors have shown that the proportion of gene
343  mentions does not significantly differ between abstracts and full-body texts®’, we only mine the
344  abstracts for gene mentions. In contrast to standard named entity recognition of genes (NER), whose
345  taskis to exactly match the character span of a gene mention, ENQUIRE’s textmining framework aims
346  at detecting least one gene alias per unique reference gene mentioned in an abstract. We therefore
347  designed a “Swiss cheese model” for gene normalization, in which multiple methods complement each
348  other to improve the global precision. In brief, ENQUIRE applies up to two algorithms to each
349  unprocessed abstract: 1) the Schwartz-Hearst algorithm to detect single-word abbreviations and their
350 respective definitions®’; ii) the optional scispaCy model (en_ner jnlpba_md) to identify words
351 classified as “CELL_LINE” or “CELL_TYPE”**. This allows ENQUIRE to construct abstract-specific
352  blocklists that discard 1) ambiguous abbreviations whose definitions are not similar to any gene alias
353  from a pre-annotated lookup table, and ii) ambiguous or unwanted mentions to cell entities containing
354  gene aliases, such as “CD8+ T cell”. Finally, a tokenization module generates potential gene-alias-
355  matching tokens and redirects them to a unique, reference gene symbol using the lookup table.

356  Construction of the Lookup Table of Reference Gene Names and Respective Aliases

357  Similar to previous approaches®', ENQUIRE performs NER of Homo sapiens and Mus musculus gene
358 mentions, while also redirecting the latter to their respective human homologues using MGI’s
359  mouse/human orthology table®?. Each reference gene name corresponds to HGNC approved symbol®3.

29 <¢

360  Additional mouse and human gene aliases were pooled from HGNC (“previous symbols”, “previous

e 1Y

361 names”, “alias symbols”, “alias names”), ENSEMBL (“gene stable ID”, “gene description”, “gene
362 name”), Uniprot (“gene names”, “protein names”), and miRBase (“ID”, “alias”, “name”)%¢. We
363  manually inspected sources of ambiguities and lack of spelling variants: for example, we added
364 miRNA names without species suffixes (e.g. “miR-335” from “hsa-miR-335"), multiple spellings for

365 Inc- and mi-RNAs (e.g. “LNC/Lnc/Inc”, “miR/mir”) and removed aliases identical to common
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366  acronyms for experimental techniques (e.g. “MRI”, “NMR”, “TEM”). We converted Greek letters to
367 their literal spelling. We resolved ambiguities due to aliases reported under more than one reference
368  symbol, by either assigning the alias to a single reference, or by excluding the alias.

369  Abstract Tokenization for Named-Entity Recognition of Genes

370  ENQUIRE mostly performs named-entity recognition of genes (NER) from article abstracts by exact
371  matches between gene aliases and space- or punctuation-separated word tokens. We exclude general-
372 purpose English words annotated in the English-words Python library to reduce the computational
373  burden of mapping gene mentions. Greek letters are converted to their literal spelling. Special attention
374  is put to hyphen- and slash-containing tokens, tracing their usage as integral parts of gene aliases (e.g.
375  “TNF-alpha”) or separators (e.g. “FcyR-TLR Cross-Talk” — PMID 31024565, “Akt/PI3K/mTOR
376  signaling pathway” — PMID 35802302). When cases of the latter kind occur, the algorithm requires all
377  hyphen- or slash-separated words to be gene aliases, in order to be considered individual tokens. Then,
378 ENQUIRE tokenizes the abstract into single-word tokens and interprets unambiguous tokens as the
379  corresponding reference gene symbol if they match an alias in the lookup table. Multiple mentions of
380 the same gene within an abstract count as one.

381  Abstract-Specific Blocklists Using Cell Entity Mentions and Abbreviation-Definition Pairs

382  Any token that exactly matches an alias from the lookup table is redirected to the respective reference
383  symbol, except when that same token is either classified as part of “CELL_LINE” or “CELL_TYPE”
384  entities, or as an abbreviation, by scispaCy en_ner jnlpba md and Schwartz-Hearst models. In the
385  former exception, the token is added to a blocklist and any of its mentions within the abstract text are
386  excluded from further gene normalization steps. In the latter exception, we evaluate the validity of an
387 alias-matching abbreviation by means of its definition, as inferred by Schwartz-Hearst. We perform
388  string comparison to calculate alignment scores between the definition and any recorded alias of the
389  same reference symbol matched by the abbreviation. To this end, we implemented the Needleman-
390  Wunsch algorithm for global alignment, with match score equal to 1, gap opening and mismatch
391 penalties equal to -1, and gap extension penalty equal to -0.5%7. Next, we calibrated a threshold for
392  either retaining or discarding an alias-matching abbreviation according to its optimal alignment score.
393  We used a dataset of abbreviation-description pairs from more than 300 abstracts and generated a
394  distribution of scores by aligning any description to any annotated alias. Intuitively, there could only
395  be a handful of alignments between an actual gene description and the aliases referring to that same
396  gene, as opposed to several alignments between that same description and unrelated aliases. Therefore,
397  we treated the above derived distribution as a model describing false positive alignments between
398  descriptions and gene aliases. Finally, we identified a range between 0.1 and 0.2 that respectively
399  correspond to 95th and 99th percentiles of the distribution of alignment scores as a sensible interval
400  for choosing the threshold. We opted for a threshold of 0.15. Therefore, for any description whose
401  abbreviation matches a gene alias, ENQUIRE records a gene mention only if the maximal alignment
402  score against any alias of that same gene is higher or equal to this threshold; else, the abbreviation is
403  added to the blocklist and all of its mentions within the text are excluded. Notice that the blocklist is
404  independently computed for each abstract, thus making ENQUIRE’s gene normalization moderately
405  adaptive with respect to syntactical context.

406  Annotation and Weighting of Co-Occurrences
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407  ENQUIRE records the occurrences of MeSH and gene entities within each input article. Then, it counts
408  pairwise co-occurrences by enumerating the subset of PMIDs associated to both entities in each pair.
409  For each pair of entities g; and g; that co-occur in at least one article, we define the weights w and

410  distances W accounting for the sheer co-occurrence X (g;, g;) as follows:

411

e Wgig; "= Y(X(g: gj);)_(), Wg,g; € (0,1]
4 ng,g,- =1- Wgig;

4 X(g9:9;) = |{P 1919 € EP}pepvins |
415

416  Where X is the mean co-occurrence between any two entities in the corpus, W(+,X) is the zero-
417  truncated, Poisson cumulative density function with a lambda of X, and E? is the set of all entities
418  annotated within the PMID P that belongs to the submitted PMIDS corpus. This scoring system
419  assigns higher relevance to co-occurrences that appear more often than average.

420  Reconstruction of a Weighted Network of Significant Co-Occurrences

421  ENQUIRE converts the recorded co-occurrences into an undirected multi-graph, where gene or MeSH
422  terms become nodes, and each recorded co-occurrence between two entities becomes an edge. Thus,
423  the network has as many nodes as the number of unique MeSH and gene symbols, with as many edges
424  between two nodes as the number of PMIDs in which they co-occur. ENQUIRE implements the
425  Casiraghi-Nanumyan’s soft-configuration model applied to undirected, unweighted edge counts to
426  select significant co-occurrences among entities, adjusted to 1% FDR?!. The test statistics follows a
427  multivariate hypergeometric distribution, under the null hypothesis of observing a random graph whose
428  expected degree sequence correspond to the observed one. This allows us to condition the testing to
429  the sheer, per-entity occurrence, which serves as a proxy for leveraging literature biases in the corpus.
430  Itis important to note that the null model does not assume independence of individual edges, but merely
431  their equiprobability, and is unaffected by the weights w. This selection results in an undirected, single
432  node-to-node edge co-occurrence graph (i.e. a simple graph). For each pair of adjacent entities g; and
433 gj in the simple network, we assign the weights wg, g and distances Wg, g o their mutual edge.

434  Additionally, we prune poorly connected nodes by modularity-based, w-weighted Leiden clustering®®
435  and removal of communities that consist of a single node. From the resulting gene/MeSH network, we
436  also extract the respective gene- and MeSH-only subnetworks.

437  ENQUIRE-generated gene/MeSH networks can consist of multiple connected components, i.e.
438  subgraphs. To exclude unimportant components, a subgraph S is retained for subsequent computations
439  only if the fraction of corpus articles covered by S is higher than a threshold value, as formally defined
440 n

441
P{EPNES+0

442 Tg:= Rt |PMIDS|}PEPMIDS| >t, Ts€(0,1]

443

444  where P denotes a PMID belonging to PMIDS, and E? and E* refer to the sets of gene or MeSH
445  entities recorded in either P or S. Therefore, T reflects the representativeness of S with respect to the
446  entirety of the submitted corpus. The value of t can be set by the user. To avoid introducing irrelevant
447  entities, ENQUIRE stops without further network expansion if the gene/MeSH network and the
448  respective gene- and MeSH-only subnetworks individually contain only a single, connected
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component with Ts > t. We compute the weight of a node g in the connected graph S utilizing the
composite function W, which is the product of normalized metrics for betweenness centrality (b) and
w-weighted degree strength (d):

W(g,S):=Fy(b(g,5)) Fq(d(g,5)), W e (0,1]

Here, F, denotes the empirical cumulative density function for the corresponding x parameter,
calculated over S.

Construction of Communities from “Information-Dense” Cliques

To identify the most relevant parts of the gene/MeSH network, ENQUIRE first identifies the maximal
cliques of order three or more. By definition, these are graphlets whose nodes are all adjacent to each
other and not a subset of a larger clique. Applying the KNet function from the SANTA R package*’ to
the gene/MeSH network having distances Wy, g We select cliques that form significant clusters of

associated entities. The permutation test procedure internal to KNet allows us to consider the network
topology and adjust each maximal clique’s significance, in case many other cliques of similar size exist
in the network. We set the significance level for this test to 1% FDR. Subsequently, ENQUIRE
generates a pruned network C containing only statistically significant cliques. Here, ENQUIRE stops
if the gene/MeSH network contains less than two significant cliques according to KNet. Next,
ENQUIRE identifies communities in the C network using modularity-based, w-weighted Leiden
clustering. ENQUIRE stops if it detects a single community that encompasses all nodes in C.

Identification of Community-Connecting Entities

For any two disjoint communities C; and C;, we select the set of community-connecting, weighted
graphlets Teic (Vi, Li,—1) satisfying the properties: i) all nodes g; in the k-sized set V}, belong to either
C; or Cj; 1i) the intersections between Vj and C; or C; are non-empty; iii) the w-weighted, k — 1 edges
L, _, are sufficient to obtain a single connected component; iv) there is only one edge lgi.gj that

connects nodes belonging to distinct communities. Here, k is a parameter chosen by the user.
This allows us to rank the set of community-connecting entities V,in any graphlet Fcl-,c,- by means of

the distance metric R:

R (Te,,(Vio Lin) ) := —log (ﬂgﬁvk wige| |

Vi eCGUC,VinC; #0, Vi nC; 0
|{lgi,gj lgi€Cigj€ Cj}lgi,gjeLk_1| =1

ng,gj>’ RER;o
lyilijLk—l

The smaller R, the closer two communities connected by V), are.
Retrieval of New PMIDs via PubMed Queries Based on Optimal Connections

To evaluate which genes and MeSH terms are particularly suited for expansion querying, ENQUIRE
constructs a multigraph M where network communities become nodes and all R-weighted connections
between two communities become edges. R-weighted edges that do not fulfil the triangle inequality
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487 R (Fci,cj) < R(FCL.,CZ) + R (FCZ'C].),V i,j,z are excluded. Then, we solve the travelling salesman

488  problem (TSP) utilizing Christofides’ approximate solution as implemented in the Python package
489  Networkx®. Via the visited edges, this yields an optimal path across communities and a corresponding
490  collection of V}, entity sets. Each selected k-sized set Vj, results in a PubMed query formulated via the
491  NCBI’s esearch utility”. We condition the search terms representing gene aliases and MeSH with
492  “[Title/Abstract]” and “[MeSH Terms]”, respectively, and exclude review articles from the results.
493  The constructed PubMed queries require a match for all the k entities in the optimal path — e.g.
494  “melanoma/immunology”[MeSH Terms] AND (“ILIB”[Title/Abstract] OR “interleukin I-
495  beta”[Title/Abstract] [...]) AND [...]. If all queries involving a subset of the network communities
496 lead to empty results, we prune all previously used edges from M, compute a new TSP solution, and
497  submit newly generated queries, provided at least one entity per query belongs to such community
498  subset. This process is repeated A times, where A is a parameter specified by the user. If at least 1 new
499  PMID matches any of the constructed queries, ENQUIRE starts a new analysis from the union of new
500 and old PMIDs; otherwise, it stops. The rationale behind merging old and new PMIDs is to account
501 for the original corpus when computing the statistics on new co-occurrences.

502 Post-hoc Analyses
503 Context-Aware Gene Sets.

504  To reconstruct contextual gene sets using gene/MeSH co-occurrence networks, we adapt network-
505 based relational data to the method described by Khan ez al.’’. To this end, we first construct the inverse
506 log-weighted similarity matrix between the gene/MeSH network nodes’'. This metric prioritizes nodes
507 sharing many lower degree neighbors rather than few higher degree ones. We derive a Euclidean
508  distance matrix from the similarity matrix, after applying a Z-score standardization; then, we use the
509 R package DynamicTreeCut and Ward’s clustering to identify initial clusters and create an initial
510 membership degree matrix’>’*. Finally, we detect fuzzy clusters of genes and MeSH terms by applying
511  Fuzzy C-means clustering to the Euclidean distance matrix, using the R package ppclust2. The
512  resulting membership degree matrix allows annotating genes with desired cluster membership degrees
513  and extracting the linked MeSH terms to characterize the gene set.

514  Context-Aware Pathway Enrichment Analysis.

515  We designed a method to map any text-mined co-occurrence network G onto a mechanistic reference
516 network N and infer context-specific enrichment of molecular pathways. With this strategy, we
517  attempt to mechanistically explain the indirect relationships that constitute the co-occurrence network.
518 To this end, we define the fitness score Q for every gene g in N with non-zero node degree d:

519
— - -6¢(9i.9;
>20 Q(g) = d(g,N)™" - Z Z e~cloi) sy igi+on(agy)<zgg) @ € Reo
giEV(6) gjev(6)
521

522 Here, 8;(g;, 9 ;) and 6y (g;, g;) are the W-weighted and unweighted distances from g; to g; in the
523  graphs G and N, respectively. The indicator function 1 implies that non-text-mined genes without at
524  least two text-mined nodes as neighbors have Q equal to zero. We normalize all scores to decorrelate
525  Q from the node degree d, similarly to other approaches in network propagation’*’>. As a mechanistic
526  reference network, we chose STRING’s (release 11.5) H. sapiens network of protein-coding,


https://doi.org/10.1101/2023.09.10.556351

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.10.556351; this version posted February 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

527  physically interacting genes®. We exclusively combined the “experimental” and “database” channels
528  to calculate STRING’s confidence score, then pruned all edges with score below the 90™ percentile.
529  After removing zero-degree nodes, we obtain a reference, unweighted network of 9,482 nodes and
530 88,333 edges. Then, we calculate Q scores for protein-coding genes in the STRING reference network
531  (N), using the ENQUIRE-generated gene network (G). We test for associations between predefined
532 gene sets and high-scoring node clusters using SANTA’s KNet function®’. KNet takes as input the
533  STRING reference network, its nodes’ Q scores, and a gene set; it then tests if the latter is enriched,
534  based on scores and graph distances of protein-coding genes belonging to both the network and the
535 gene set. This way, we aim at capturing known experimentally or database-derived molecular
536 interactions relevant to ENQUIRE’s input literature corpus, using topology-based enrichment analysis.
537  We test for enrichment on gene sets derived from Reactome pathways, obtained via the Reactome
538  Graph database’’. See Supp. Fig. 2 for an example of Q score weighting.

539
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540 Benchmarks and Case Studies
541  Assessment of ENQUIRE’s Gene Normalization Accuracy and Performance

542  We evaluated ENQUIRE’s gene normalization precision and recall using abstracts from the NLM-
543  Gene corpus mentioning at least one M. musculus or H. sapiens gene — 479 out of 550 entries*>. We
544  tested the four module combinations obtained by either including or excluding the cell entity
545  recognition module en_ner jnlpba_md and the Schwartz-Hearst abbreviation-definition algorithm?®334,
546  We compared the computational performance of ENQUIRE’s gene normalization method using both
547  en_ner jnlpba md and Schwartz-Hearst against GNorm2 implementation of Bioformer®®%. We
548  computed wall time by accounting for both text processing and loading of required data such as gene
549  alias lookup tables and machine learning models. RAM usage was measured using resident set size
550  (RSS) measurements returned by the Linux built-in function ps. We ran the computations on a Linux
551  computer with 20 CPUs (3.1 GHz) and 252 GB of RAM. Up to 8 cores were used for parallelization.

552 Inference of Reactome Gene Sets from Reference Literature.

553  We extracted annotated genes and reference literature for all H. sapiens Reactome pathways from the
554  Reactome Graph database®’. We employed NCBI’s esearch and elink utilities to retrieve primary
555  research articles cited by review articles®®. After excluding pathways with less than three primary
556 literature references or only one annotated human gene, we obtained a set of 967 pathways. For each
557  pathway literature corpus, ENQUIRE performed one network reconstruction, set to only extract gene
558 mentions from article abstracts. We evaluated the effects of corpus size, pathway size, and average
559  gene-gene co-occurrence per abstract on precision and recall of ENQUIRE’s gene normalization and
560 network reconstruction. We also evaluated the correlation between true positives and the corpus- and
561 network-based node weight W.

562 Estimate of Molecular Interrelations.

563  We automatically generated a list of case studies by crossing leaf nodes downstream of Diseases and
564  Genetic Phenomena (G05) MeSH categories. We then constructed a PubMed query from each pair by
565 “AND” concatenation. Examples of such queries are “Stomach Neoplasm”’[MeSH Terms] AND
566  “Chromosomes, human, pair 18" [MeSH Terms], and “Acquired immunodeficiency syndrome”[MeSH
567  Terms] AND “Polymorphism, single nucleotide”[MeSH Terms]. For each query result with a size
568  between 50 and 500 articles, we executed one network reconstruction. If obtaining a gene-gene co-
569  occurrence network, we investigated whether its set of genes produced a network with more functional
570 interactions than expected by chance. To obtain background distributions of edge counts for each gene
571  set size observed with ENQUIRE, we sampled one million random gene sets and cumulated their
572  interconnecting edges in STRING’s v. 11.5 H. sapiens functional protein network. We only included
573  functional associations from experiments, co-expression, and third-party databases with a cumulative
574  score higher than 0.7 between proteins. The significance of each ENQUIRE-generated gene set’s edge
575  count was computed from the right-tailed probability of the empirical distribution.

576  Moreover, we compared the ENQUIRE-generated gene-gene wirings to STRING-derived associations
577  using the DeltaCon similarity measure in a permutation test*. To this end, we generated 10,000 random
578  graphs for each observed ENQUIRE network. Each random graph was obtained through 300 random
579  edge-swapping attempts while preserving the degree sequence of the original network. To obtain
580 sensible probability densities, we focused on ENQUIRE-generated networks with degree sequences
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581 allowing at least ten different realizations of a graph. We followed the formula []}* d;!, where d; is the
582  degree of the i-th node of a graph containing n nodes.

583  Assessment of Context Resolution by Topology-Based Enrichment of Molecular Pathways.

584  To show that ENQUIRE preserves context-specific molecular signatures, we designed a broad panel
585  of case studies (Table 1). Each corpus consisted of the union of references contained in three
586 independent reviews accessible via NCBI’s elink utility’’. We selected reviews from the results of
587  PubMed search queries consisting of two or three MeSH terms (e.g. “Melanoma” [MeSH Terms] AND
588  “Signal Transduction”[MeSH Terms]), favoring PubMed-ranked best matches when possible. We also
589 included an unspecific positive control group consisting of the union of all context-specific corpora.
590  This experimental design allowed us to construct a reference dendrogram that clusters the case studies
591  only based on baseline biological knowledge, expecting expanded networks of a case study to cluster
592  together with the originally reconstructed one. Then, we applied ENQUIRE with default parameters to
593  each case study and analyzed all resulting gene-gene networks, i.e., from original and expanded
594  corpora. We computed pairwise similarities between node and edge sets of the constructed networks
595  using Szymkiewicz-Simpson overlap coefficient (OC):

596
597 OC(X,Y)= XNyl OoC € [0,1]

’ min(|X], [Y])’ ’
598

599  Where X and Y are either two node sets or two edge sets. An OC of 0 indicates no overlap, while an
600 OC of 1 indicates the smaller node or edge set is a subset of the larger one. By construction, same-
601  case-study original and expanded networks possess OCs of 1 with each other. We applied the post hoc,
602  context-aware pathway enrichment analysis described above to all generated networks. We tested the
603  enrichment of Reactome pathways with sizes ranging from 3 to 100 genes, categorized as in the
604  database’s Top-Level Pathways and disease ontologies®’. We performed hierarchical clustering of the
605 networks using Euclidean distance and Kendall’s correlation based on network-specific, KNet-
606  generated p-values. We compared the resulting dendrogram to the expected one by a permutation test
607  of Baker’s gamma correlation using one million permutations of the original dendrogram*. We also
608  compared the results to two alternative statistics: 1) over-representation analysis of nodes from the
609 ENQUIRE-generated networks (the collection of all genes observed in any case study was used as the
610  “universe”); i) KNet statistics, using Q scores based on STRING’s high-confidence functional
611  association network (described above) and ENQUIRE-derived gene nodes.
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776  TABLES

777  Table 1. Selection of case studies for assessment of context resolution at the molecular pathway
778  level. We obtained PubMed queries by “AND” concatenation of up to three MeSH terms and further
779  filters to retrieve review articles only. The Corpus sizes refer to the non-redundant union of
780  publications cited by three independent review articles, reported under the “References” column.

Major Topic Case Study PubMed Query Corpus References
(abbreviation) MeSH 1 MeSH 2 MeSH3 %€ (pmiID)

Signal Melanoma (MM-ST) Signal Melanoma 944 25587943,
transduction transduction 32605090,
in solid tumors 34924562
Uveal melanoma (UM- Signal Uveal 218 25296731,
ST) transduction neoplasms 25113308,
28223438

Colorectal cancer (COL) Signal Colorectal 556 34884633,

transduction neoplasms 34742312,

35836256

Breast cancer (BRE-ST) Signal Breast 522 29455658,

transduction neoplasms 31752925,

32245065

Macrophage’s Macrophage signal Signal Macrophages Mycobacterium 470 32849525,
signal transduction transduction tuberculosis 33558322,
transduction  upon infection (MP-ST) 34502407

in disease Tumor-associated Signal Tumor 386 33365025,
Macrophages (MP-TA) transduction associated 35844605,
macrophages 35740975

Antigen Inflammatory bowel Antigen Inflammatory 445 28534191,
presentation in disease (IBD-AP) presentation bowel 33584726,
autoimmune diseases 33800865

diseases Rheumatoid arthritis Antigen Arthritis, 452 27225300,
(RA_AP) presentation rheumatoid 28451787,
30589082

Psoriasis (PSO-AP) Antigen Psoriasis 435 26215033,
presentation 29316717,
33050592

Oligodendrocyte Oligodendrocyte (ODC) Cell Oligodendroglia 355 24979526,
differentiation differentiation 30770136,
31614602

Positive control All case studies (CTR) All queries (“OR” concatenation) 3606 All of the above

781
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Table 2. Performance of ENQUIRE’s gene normalization algorithm. The gene normalization task
is here defined as detecting at least one gene alias per unique reference gene mentioned in an abstract.
Precision, recall, and their harmonic mean (F1) are based on annotated abstracts from the NLM-Gene
corpus containing at least one mention to a H. sapiens or M. musculus gene (479 abstracts). We ran the
computations on a Linux computer with 20 CPUs (3.1 GHz) and 252 GB of RAM. Up to 8 cores were
used for parallelization. We tested different gene normalization methods by adding or removing filters
for excluding predicted cell entities (en_ner jnlpba _md) and ambiguous abbreviation-definition pairs
(Schwartz-Hearst). Maximum RAM usage is measured as resident set size (RSS). Estimated time in
seconds per abstract (sec/abstract) also accounts for loading the gene alias lookup table and machine
learning models. The best value for each parameter setting is highlighted in bold.

Gene normalization Precision  Recall! F1 Computing performance
Method Resource Cores
usage 1 4 8
, 0.823 0.662 0.734 Max. RSS 1.95 1.95 1.95
en_ner_jnlpba md + GB
Schwartz-Hearst + (GB)
ENQUIRE sec/abstract 0.172 0.0656 0.0488

tokenizer/dictionary

Schwartz-Hearst + 0.822 0.683 0.747 Max. RSS 0.359 0.359 0.361

(GB)

E.NQU.IR.E sec/abstract 0.125 0.0435 0.0318

tokenizer/dictionary
. 0.804 0.666 0.728 Max. RSS 1.95 1.95 1.95

en_ner_jnlpba_md + GB

ENQUIRE /( b : 0.148 0.0651 0.0481
tokenizer/dictionary sec/abstract ) ) )

ENQUIRE 0.802 0.688 0.741 Maé.];QSS 0.360 0.359 0.359
tokenizer/dictionary (GB)

sec/abstract 0.105 0.0400 0.0280

!Gene mentions contained in cell entities such as “CD8+ T cell” are true positives in the NLM-Gene
corpus. Text spans tagged as cell entities by the en_ner jnlpba model are removed without being
processed by the tokenizer module, affecting recall.
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Table 3. Differences in computing performance between ENQUIRE’s gene normalization
algorithm and GNorm2-Bioformer. We ran the computations on a Linux computer with 20 CPUs
(3.1 GHz) and 252 GB of RAM. Up to 8 cores were used for parallelization. Maximum RAM usage
was measured as resident set size (RSS). Estimated time in seconds per process abstract (sec/abstract)
also accounts for loading of gene alias lookup table and machine learning models.

Gene normalization Corpus Computing performance
method size  Resource usage Threads
1 4 8
en_ner jnlpba_md + 26 Max. RSS (GB) 1.95 1.95 1.95
Schwartz-Hearst +
ENQUIRE sec/abstract 0.573 0.509 0.513
tokenizer/dictionary
GNorm?2-Bioformer Max. RSS (GB) 17.3 16.4 17.4
sec/abstract 4.310 4.150 2.73
en_ner jnlpba_md + 130 Max. RSS (GB) 2.08 1.95 1.95
Schwartz-Hearst +
ENQUIRE sec/abstract 0.205 0.134 0.125
tokenizer/dictionary
GNorm?2-Bioformer Max. RSS (GB) 25.1 25.1 24.7
sec/abstract 2.500 1.260 1.070
en_ner jnlpba_md + 1300 Max. RSS (GB) 5.9 291 2.71
Schwartz-Hearst +
ENQUIRE sec/abstract 0.118 0.044 0.030
tokenizer/dictionary
GNorm?2-Bioformer Max. RSS (GB) 25.0 24.8 249
sec/abstract 2.370 1.050 0.835
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Table 4. Effect of relevant covariates on quality indicators of ENQUIRE’s gene entity
recognition. We evaluated the effect of corpus size (input), Reactome’s pathway size (number of genes
to be retrieved) and average gene-gene co-occurrence per article, using Spearman’s correlation
coefficients, for each measure. FPR: false positive rate.

Metric Corpus Size Pathway Size Average co-occurrence
Precision -0.18 0.49 -0.06
Recall 0.46 -0.35 0.14
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Table 5. Relevant quality indicators of functional associations in 3098 case studies. PPI: protein-
protein interaction score, as number of observed edges over the STRING-inferred network. FDR: false
discovery rate, expressed in percentage. Percentages reported for PPI and DeltaCon significance
independently refer to the set of 733 tested networks, i.e. those with 10 or more possible realizations
with the same degree sequence as ENQUIRE-derived networks.

Property Subset Raw count Percentage over Percentage over
the preceding total (3098)
step
Network At least 3 genes and 2 edges in 1336 / 43.1%
topology both ENQUIRE and STRING
networks
At least 10 possible realizations 733 54.9% 23.7%

of the same degree sequence

Significance  Edge count p- <0.05 730 99.6% 23.6%
value

<1% FDR 722 98.5% 23.3%

DeltaCon <0.05 439 59.9% 14.2%
p-value

<1% FDR 344 46.9% 11.1%
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810 Table 6. Empirical quantiles of DeltaCon similarities, ENQUIRE- and STRING-based edges
811  counts, sorted by number of genes in the network. Median values with respect to each metric and
812  range of gene counts are highlighted in bold.

Metric Range of Quantiles
gene
counts 0% 25% 50% 75% 100%
DeltaCon 4-9 0.75 0.83 0.87 0.94 1.00
10-14 0.67 0.78 0.81 0.83 1.00
15-23 0.65 0.74 0.77 0.79 0.87
24-119 0.56 0.65 0.69 0.72 0.81
Edge count - 4-9 4 6 7 8 16
ENQUIRE
10-14 6 8 10 13 43
15-23 8 13 17 22 66
24-119 18 36 49 77 295
Edge count - 4-9 4 6 8 10 23
STRING
10-14 6 11 15 20 50
15-23 10 21 28 37 94
24-119 19 54 89 146 591
Connected 4-9 1 2 2 3 5
components -
ENQUIRE 10-14 1 3 4 5 8
15-23 1 4 6 7 12
24-119 1 4 6 7 15
Connected 4-9 1 1 2 2 5
components -
STRING 10-14 1 2 2 3 6
15-23 1 2 3 4 8
24-119 1 2 2 4 12

813


https://doi.org/10.1101/2023.09.10.556351

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.10.556351; this version posted February 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

FIGURES

l

a) Literature corpus
(PMIDs)

V
b) Recognition of MeSH (m) and E | V

gene (g) entities

- T

g) Graphlet-inferred PubMed queries

- Abstract
“BA -8B

- Abstract
- MeSH B - Abstract { “ga [Title/Abstract] AND [MeSH terms] ...”}
iy - MeSH gf’f_'."g”._., “m, [MeSH terms] AND . [MeSH terms] ...”

*m,

{ “gc [Title/Abstract] AND g [Title/Abstract] ...”}

*m;

- MeSH

*m;

*my

/
\J‘, Communities (nodes) -
¢) Annotation and weighting of Reconstruction Q1 -
co-occurrences 02 o z »
03
-9 g 00\04 o
/O ;o
//~
. L
Expansion ®.
f) Construction of community-
y connecting graphlets
\ %
000
e )
oog r A i . (¢]
¥ 95 40 Communities (cliques) -
0Gene Y PV o1 (o}
(-} o 09 °© ® o o
00 o) ()
OMeSH Lofte e R 2 °
o o
8 3 a 3 [} 4
00 Q
o /B0 g ° O 4 «
o9 sRye. AR —
L., DB\ 0 AR~ Stronger connections ®
0, 0 9500 o
pa » 5o ‘ )
0
> 00 o° ° o
o
0% o = )
° Weaker connections ©

d) Selection of significant gene/MeSH co-occurrences,

e) Detection of communities from
"information-dense" cliques

with respect to a random graph model

[ EXIT CONDITIONS ]
1

Fig. 1. Overview of ENQUIRE methodology. ENQUIRE accepts a set of PubMed identifiers
as input, together with optional, user-specified parameters. The pipeline iteratively orchestrates
reconstruction and expansion of literature-derived co-occurrence networks, until an exit
condition is fulfilled. Additional information about each alphabetically indexed module and
output is provided in the Mat.Met. section. For a more detailed flowchart, see Supp. Fig. 1.



https://doi.org/10.1101/2023.09.10.556351

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.10.556351; this version posted February 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A Gene/MeSH Network, original Gene/MeSH Network, original Gene/MeSH Network, original
41 genes, 199 MeSH, 1253 edges, 46 genes, 231 MeSH, 1675 edges, 56 genes, 252 MeSH, 2005 edges,
27 PMID 36 PMID 40 PMID

Case Study Case Study
I Expansion Ferroptosis and Immune System

Expansion
0

1

| H

Reactome Category

. Adaptive Immune System
Diseases of Programmed Cell Death
Gene Expression (Transcription)
Infectious Disease

" Innate Immune System
Metabolism

e . Programmed Cell Death

Signal Transduction

[ ] ][]

-log10 P-value
12

© Acetaminophen, Brain Neoplasms, Cation Trans... ) Actins, Cell Line, Collagen Type i 10
@ Adaptor Prot..., Cyclohexytam..., Inflammation @ Allografts, Cell Movement, Glyoogen Syn...

@ Amino Add T... e Cd36 Antigens, Fatty Acids 8
© Bacterial To..., Endothelial ..., Heart Ventri... O BasioLeucin..., Drug Resista..., Triple Negat... 6
O Biomarkers ..., Carcinoma Pa., Cell Transfo... ) CaBusitive..., Endoplasmic ..., Autophagy '%0
© Coloni Heme Oxygena.., O Other MeSH %

4

Q, 2 (5% FDR)
600

% 0
Fig. 2. Example of ENQUIRE’s network reconstruction, expansion and post-hoc analyses.
We used the PubMed identifiers (PMIDs) obtained from the query (“Ferroptosis”[MeSH
terms] AND “Immune System”[MeSH terms]) NOT “review ”[Publication Type] as input. A:
visualization of ENQUIRE’s network expansion process. Newly found nodes and edges are
indicated in red at each expansion. B: output of the automatic gene set reconstruction, using
the original Gene/MeSH network as input and fuzzy c-means. For simplicity, only nodes
referring to genes are enlarged and labelled, and a shortened description of computed gene sets
of size 2 or bigger is provided. Sector sizes of the pie-chart-shaped nodes reflect their relative
membership degree with respect to each cluster. C: topology-based enrichment analysis of
Reactome pathways, using original and expanded networks, as described in the Methods
section. 30 pathways whose adjusted p-value was significant in at least two networks are
depicted. Reactome pathways are grouped based on “Top-Level Pathway” and “Disease”
categories. FDR: Holm’s family wise error rate.
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Fig. 3. Node weight distribution of ENQUIRE-derived gene networks correlate with
relevance to the input literature corpus. We defined true and false positives genes according
to their presence or absence in a Reactome pathway, whose reference literature was used to
retrieve gene mentions via ENQUIRE’s gene normalization and network reconstruction. The
statistics shows the aggregated results from 720 Reactome-derived input corpora. The
aggregated distributions for true and false positive genes are segmented into quartiles. We
defined four ranges of the node score W, indicated by squares, whose colors reflect Pearson
standardized residuals resulting from a significant chi-square statistic. The lower chart depicts
the enrichment of true positive genes, after pruning ENQUIRE-derived networks based on
different values of . Values are relative to the original proportion of true positives.
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Fig. 4. Protein-coding genes from ENQUIRE-generated graphs significantly share
functional associations. Panels (A) and (B) respectively report the unadjusted p-value density
distributions of STRING-informed edge counts and DeltaCon similarities, arranged by number
of protein-coding genes (network size). We used the H. sapiens functional association network
from STRING to evaluate ENQUIRE-derived networks of protein-coding genes. We tested
733 networks having 10 or more possible network realizations given the observed degree
sequence. For each observed network size and degree sequence of ENQUIRE-generated gene
networks, 1,000,000 and 10,000 samples were respectively generated to perform a test statistic
on the observed edge counts and DeltaCon similarities. See Mat.Met. for additional
information. The 733 tested networks are apportioned into quartiles based on network size, and
for each the exact size is indicated (n). Within each network size interval, grey and red areas
respectively highlight insignificant and significant p-values with respect to a globally-applied
Benjamini-Hochberg correction (BH), and a percentage is indicated for those below 1% FDR.
Diamonds indicate the observed data.
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Fig. 5. ENQUIRE-generated graphs enhance the context resolution of pathway
enrichment analyses. A: reference dendrogram showcasing the expected categorization of the
case studies described in Table 1. The number following a case study abbreviated name
indicates the expansion counter. Network expansions that did not yield any new gene were
excluded. B: Topology-based pathway enrichment, obtained by applying Q score propagation
and SANTA’s KNet function on ENQUIRE-informed gene-gene associations (see Post Hoc
Analyses under Mat.Met.). The heatmap shows the unadjusted p-values for the 50 enriched
Reactome pathways with at least one significant, adjusted p-value (5% FDR) and highest
variance across case studies (the dendrogram was computed on the complete statistic).
Pathways are clustered according to Reactome’s internal hierarchy. We respectively
apportioned the dendrograms into 5 and 15 partitions to visualize their coherence to Major
Topic and Reactome Categories. Legends for expansions, rounded corpus size, and p-values
ranges are provided. C: Permutation tests of Baker’s gamma correlation between the reference
dendrogram (A) and clustering obtained from alternative pathway enrichment analyses, as in
B. Colored areas indicated probability intervals obtained from simulating correlations between
reference and sampled dendrograms. See Mat.Met. for further details.
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Supplementary Figure 1. ENQUIRE’s flowchart. The pipeline’s schematics is described
with respect to start and end points (grey ellipses), input, parameters, and generated data (blue
parallelograms), algorithms (green rectangles), filtering (red triangles), pre-computed data
(pink halfpipes), and branching points (yellow diamonds). NER: named-entity recognition.
PMID: PubMed identifier. MeSH: Medical Subject Heading. Detailed explanation of the
parameters and algorithms is provided in the main text.
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Supplementary Figure 2. Example of Q score weighting. The top row shows three simulated
co-occurrence networks G with the same set of textmined genes (squares), generated with
progressively higher edge-forming probability, and sampling edge weights W from a uniform
distribution in [0,1]. Genes from an immutable reference network N containing both textmined
and non-textmined genes (circles) are weighted by the Q score. For each gene g in N, its
weight Q is a function of the textmined genes in the g-neighbourghood and their W-weighted
distances in the network G. Nodes with relatively more connections to textmined nodes in the
reference network possess higher @ scores, irrespective of being textmined or having a high
node degree. See the non-textmined node Y and the textmined node J as an example.
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Supplementary Figure 3 Memory and CPU usage of a typical ENQUIRE run. The chart
shows the performance monitoring of the exemplary ENQUIRE run described in Results and
Fig. 2, in which 2 expansions for a total of three iterations were performed. We used a Linux
computer with 8 CPUs (2.5 GHz) and 16 GB of RAM. 6 cores were used for parallelization.
Each dot represents a submodule launched by ENQUIRE, with the elapsed time at which it
terminated as x-coordinate, and the maximum registered RAM usage, in the form of Resident
Set Size (RSS, in megabytes), as y-coordinate. Cumulative elapsed time at the end of each
reconstruction-expansion cycle is indicated. Lines in-between processes are colored by the
maximum CPU usage, which is defined as the used CPU time divided by the time the process
has been running, in percentage. This estimate does not typically add up to 100%. Higher CPU
usage imply higher workload for each of the utilized cores. Resource usage of parallel socket
cluster (PSOCK) protocol can be underestimated, as this protocol generates parallel processes
whose process identifiers (PIDs) are independent of ENQUIRE’s PID and not monitored.
Nevertheless, ENQUIRE restricts the memory usage of PSOCK-based parallel processes, so
that their aggregated memory usage is always less than 25% of the available RAM at a given
time, possibly reducing the effective number of cores used.
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Supplementary Figure 4. Diversity in nodes and edges from reconstructed and expanded
networks generated by ENQUIRE. We computed similarity measures between ENQUIRE-
inferred, co-occurrence gene networks based on the case studies described in Tsable 1. The
number following a case study abbreviated name indicates the expansion counter. Network
expansions that did not yield any new gene were excluded. Panel A depicts similarities between
the networks’ node sets, while panel B depicts similarities between edge sets. Numbers and
color gradient report Szymkiewicz-Simpson overlap coefficient percentages (OC). An OC of
0 % indicates no overlap, while an OC of 100% indicates the smaller node or edge set is a
subset of the larger one. By construction, same-case-study original and expanded networks
possess OCs of 100% with each other. OC between the positive control (CTR) and other case
study networks are highlighted in red
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Supplementary Figure 5. Constitutively enriched subpathways of Diseases of signal
transduction by growth factor receptors and second messengers (R-HSA-5663202). A:
differences in network distances between genes belonging to R-HSA-5663202 subpathways
and other Reactome pathways, based on STRING’s reference physical network
(FDR-adjusted p-value = 0.27, Mann-Whitney U test). The binned network distances are
used by KNet to compute a topology-based pathway enrichment. B: differences in Spearman
correlations between KNet p-values and network size, in R-HSA-5663202 subpathways and
other Reactome pathways ( FDR-adjusted p-value = 0.79, Mann-Whitney U test). C:
differences in Spearman correlations between KNet p-values and corpus size, in R-HSA-
5663202 subpathways and other Reactome pathways (FDR-adjusted p-value = 0.23, Mann-
Whitney U test). D: differences in p-value distributions between R-HSA-5663202 subpathways
and other pathways, across all case studies (FDR-adjusted p-value = 6.5-107°, mixed
model ANOVA). E: differences in p-value distributions between R-HSA-5663202

subpathways and other pathways, for each major topic
(  FDR-adjusted p-value (Positive Control) = 0.04 -  Mann-Whitney U test,
FDR-adjusted p-value (Oligodendrocyte Differentiation) = 1.3 - 1072 ,
FDR-adjusted p-value (Signal Transduction in Solid Tumors) = 1.4-10™* ,
FDR-adjusted p-value (Antigen Presentation in Autoimmune Diseases) = 2.3-107° ,

FDR-adjusted p-value (Macrophage's Signal Transduction in Disease) = 3.9 - 10™* -
mixed model ANOVA). See Supp. Information for details on the test statistics.
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