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ABSTRACT 12 

The accelerating growth of scientific literature overwhelms our capacity to manually distil 13 
complex phenomena like molecular networks linked to diseases. Moreover, biases in biomedical 14 
research and database annotation limit our interpretation of facts and generation of hypotheses. 15 
ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) offers a 16 
time- and resource-efficient alternative to manual literature curation and database mining. 17 
ENQUIRE reconstructs and expands co-occurrence networks of genes and biomedical ontologies 18 
from user-selected input corpora and network-inferred PubMed queries. The integration of text 19 
mining, automatic querying, and network-based statistics mitigating literature biases makes 20 
ENQUIRE unique in its broad-scope applications. For example, ENQUIRE can generate co-21 
occurrence gene networks that reflect high-confidence, functional networks. When tested on case 22 
studies spanning cancer, cell differentiation and immunity, ENQUIRE identified interlinked 23 
genes and enriched pathways unique to each topic, thereby preserving their underlying diversity. 24 
ENQUIRE supports biomedical researchers by easing literature annotation, boosting hypothesis 25 
formulation, and facilitating the identification of molecular targets for subsequent 26 
experimentation. 27 
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INTRODUCTION 32 

Curated gene networks are of high interest to prime the analysis of biomedical omics data, 33 
identification of disease-specific regulatory modules, and therapy-oriented studies like drug 34 
repurposing1–4. However, the growing biomedical literature corpus makes curation of biomolecular 35 
pathways challenging. Annotating molecular interactions from literature requires domain expertise, 36 
yet that same background knowledge could entail predispositions towards partial pictures of faceted 37 
biomedical problems5. In contrast, relation extraction from databases often omits the contextual 38 
information of gene interactions and can bias the results towards ubiquitously expressed, commonly 39 
investigated, and richly annotated genes6–8. This can make systematic comparisons of biomedical 40 
research topics inconclusive or unattractive from an expenditure perspective. Recently, there have been 41 
significant investments in the automatic annotation of scientific corpora. The knowledgebase 42 
immuneXpresso indexes textmined interactions among immune cells and cytokines9, while SimText 43 
provides a framework to interactively explore the content of a user-provided corpus of literature10. 44 
These and other tools rely on natural language processing methods like named-entity recognition11 45 
(NER), part-of-speech recognition12, directionality assignment13, relationship detection, and co-46 
occurrence scoring14,15. These efforts in biomedical text mining aim at detecting meta-features and co-47 
occurrences in literature corpora. However, assessing the statistical significance and confidence level 48 
of a text-mined relation in dense, literature-based co-occurrence networks must be better addressed16,17. 49 
We find this striking, considering the well-documented reproducibility crisis18–20. In this context, we 50 
envisioned ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) to 51 
achieve automatic reconstruction and expansion of biomedical co-occurrence networks from a user-52 
defined PubMed literature corpus. ENQUIRE applies a state-of-the-art random graph model to retrieve 53 
context-specific, significant co-occurrences, i.e. dependent on the input corpus and its occurrence 54 
distribution of biomedical entities21,22. This distinctive element in our methodology allows ENQUIRE 55 
to control for literature biases. ENQUIRE processes scientific articles by extracting Medical Subject 56 
Headings (MeSH) and gene mentions from article abstracts, thus enriching gene-gene co-occurrence 57 
networks with gene-MeSH and MeSH-MeSH relations. ENQUIRE also automatically generates 58 
PubMed queries from connected biomedical entities in the network, contextually expanding the 59 
underlying corpus and, in turn, the co-occurrence network. To our knowledge, ENQUIRE is the first 60 
tool that integrates textmining, network reconstruction, and automatic literature querying into a single, 61 
resource efficient software. Here, we showcase ENQUIRE’s broad-scope applications and 62 
effectiveness in identifying relevant biomedical relations in different contexts and case scenarios. 63 

RESULTS 64 

A Tool to Generate Co-Occurrence Networks from Literature 65 

ENQUIRE (Expanding Networks by Querying Unexpectedly Inter-Related Entities) is an algorithm 66 
that reconstructs and expands co-occurrence networks of Homo sapiens genes and biomedical 67 
ontologies (MeSH), using a corpus of PubMed articles as input. The method iteratively annotates 68 
MeSH and gene mentions from abstracts, statistically assesses their importance, and generates 69 
network-informed PubMed queries, until it obtains a connected network of genes and MeSH terms (or 70 
meets another exit condition). ENQUIRE’s pipeline implements a loop consisting of serial modules 71 
with the following structure (Fig. 1): 72 
a) The user supplies an input literature corpus in the form of at least three PubMed identifiers (PMIDs). 73 
b) The algorithm indexes the MeSH terms associated to the PMIDs listed. Next, their abstracts are 74 
parsed, and gene normalization is performed using a lookup table of gene aliases and abstract-specific 75 
blocklists of ambiguous terms. 76 
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c) ENQUIRE annotates and weights co-occurrences between gene and MeSH entities, accounting for 77 
the expected number of co-occurrences across the literature corpus. 78 
d) The method selects significant co-occurrences and generates an undirected, simple graph, basing 79 
the test statistic on a random graph null model of unbiased mining of the input corpus. 80 
e) Next, nodes are weighted, and “information-dense” maximal cliques, i.e. clusters of high-weight 81 
nodes all connected to each other, are selected to reconstruct network communities from the 82 
corresponding nodes. 83 
f) ENQUIRE identifies optimal sets of community-connecting graphlets via an approximate solution 84 
to the “travelling salesman problem” (TSP). 85 
g) Finally, the algorithm uses the entity nodes corresponding to the identified community-connecting 86 
graphlets into PubMed queries to find additional, relevant articles. Should ENQUIRE find new articles, 87 
their PMIDs are joined with the previous ones and automatically provided to module a), starting a new 88 
iteration. 89 
Whenever ENQUIRE reconstructs a network from the union of old and new PMIDs, the previously 90 
reconstructed network is joined with the new one. The joined network has recomputed edge and node 91 
weights in accordance to its expanded literature corpus and connectivity. The rationale is to prioritize 92 
the original reconstruction, while also leveraging the expanded literature corpus. Users can tune five 93 
options to tailor the workflow, namely: 1) Restricting the target entities to annotate genes or MeSH 94 
only – default: both; 2) representativeness threshold 𝑡 to disregard subgraphs characterized by poor 95 
overlap with the literature corpus – default: 1% overlap; 3) query size 𝑘 to control the number of 96 
entities that must be simultaneously used in a PubMed query – default: 4 entities; 4) query attempts 𝐴 97 
to choose the number of attempts at connecting network communities by querying – default: 2 98 
attempts; and 5) connectivity criterion 𝐾 to exclude newly found entities not having edges with nodes 99 
from 𝐾 communities previously generated at step (e) – default: 2 communities. ENQUIRE’s goal is to 100 
generate a gene/MeSH network and its respective gene- and MeSH-only subgraphs that individually 101 
consist of a single, connected component. The loop terminates if i) the network is empty after module 102 
d); ii) no clique can be found in step e); iii) the clique network consists of only one community; iv) all 103 
generated queries return empty results. With default parameters, ENQUIRE outputs node and edge 104 
lists of a gene/MeSH co-occurrence network and the respective gene- and MeSH-only subgraphs at 105 
each iteration. The final ENQUIRE results include additional tabulated data, graphics, and links to 106 
collected resources for subsequent analyses and reproducibility. For instance, it is possible to extract 107 
subsets of the literature corpus that support a gene/MeSH relation of interest and access the articles via 108 
hyperlinks redirecting to PubMed. 109 
See Supp. Fig. 1 and Mat.Met. for a comprehensive description of the algorithm. 110 

An Exemplary ENQUIRE Run 111 

To showcase ENQUIRE, we set up a small-scale case study in which we looked for literature-based 112 
relationships between the immune system and ferroptosis, a form of programmed cell death23. We 113 
selected 27 papers obtained from  the PubMed query (“Ferroptosis”[MeSH terms] AND “Immune 114 
System”[MeSH terms]) NOT “review”[Publication Type]” – queried on 14.04.23. We increased the 115 
number of attempts 𝐴 to 3, as we expected few query-matching PMID. The expansion process is 116 
depicted in Fig. 2A, using the Cytoscape package DyNet24,25. The original reconstructed network 117 
consists of four connected components. The first expansion led to additional, significant co-118 
occurrences and newly found entities that connected the four components into a single one. The 119 
algorithm stopped after obtaining a single, connected gene/MeSH network and not finding additional 120 
query-matching PMIDs. Using up to 6 CPU cores, ENQUIRE finished in 16 minutes using less than 121 
0.4 GB of RAM (Supp. Fig. 2). Next, we applied context-specific gene set annotation on the original 122 
gene/MeSH co-occurrence networks, as described in Mat.Met. We identified non-trivial, descriptive 123 
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gene sets (Fig. 2C-left), including ferroptosis-dependent inflammation supported by immune-related 124 
adaptor proteins (blue, top left), antineoplastic effects of the ferroptosis-inducer sulfasalazine acting 125 
on the amino acid transport system (magenta), and cross-talk between ferroptosis and autophagy 126 
(pink), in accordance with previous findings26–28. We also performed context-aware pathway 127 
enrichment analysis using the gene-gene co-occurrence subgraphs and the approach described in 128 
Mat.Met. We summarized the results in Fig. 2C-right, which depicts 30 Reactome pathways whose 129 
adjusted p-values were below 5% FDR for at least one network, sorted by Reactome category. In the 130 
original network, we obtained enrichments of pathways centered around Toll-like receptor and MAP 131 
kinases signaling cascades (e.g. R-HSA-975138). In the expanded networks, the metabolic pathway 132 
Glutathione conjugation (R-HSA-156590) and additional innate immunity-related and programmed 133 
cell death pathways were enriched. Taken together, the ENQUIRE-generated output highlights 134 
potential molecular axes between iron-regulated cell death and proliferation, metabolism, and immune 135 
response29–31. 136 

ENQUIRE’s Gene Normalization Strategy is Precise and Efficient 137 

ENQUIRE is intended to consume abstracts from studies in H. sapiens and M. musculus. We therefore 138 
evaluated ENQUIRE’s precision and recall using the abstracts in the NLM-Gene corpus mentioning at 139 
least one M. musculus or H. sapiens gene – 479 out of 550 entries32. ENQUIRE’s maximum F1 score 140 
is 0.747, corresponding to 0.822 precision and 0.683 recall, using as little as 0.36 GB of RAM and 141 
with speeds up to 0.03 seconds per abstract (Table 1). The Schwartz-Hearst abbreviation-definition 142 
detection algorithm improves precision of tokenization and normalization by 2%, without major loss 143 
in recall nor higher computational requirements33. In some use cases, it could be necessary to exclude 144 
gene mentions associated to cell entities, such as “CD8+ lymphocytes”. The scispaCy’s 145 
en_ner_jnlpba_md model removes unwanted gene-matching cell mentions, at the cost of about 2% 146 
reduction in recall34. It should be noted, however, that the latter metric is affected by the fact that gene 147 
mentions included in cell entities are counted as true positives in the NLM-Gene corpus. We also 148 
compared ENQUIRE’s performance to GNorm2, a state-of-the-art deep-learning model for gene entity 149 
recognition and normalization35. We tested ENQUIRE’s most resource-intensive configuration (both 150 
en_ner_jnlpba_md and Schwartz-Hearst modules enabled) against GNorm2’s implementation of 151 
Bioformer, a deep-learning model based on BERT, but 60% smaller in size36. Table 2 shows that 152 
GNorm2 is considerably slower and has a higher resource usage than ENQUIRE. If ENQUIRE were 153 
to implement GNorm2 for gene normalization, this would impair its usage in scenarios with limited 154 
resources and computing time: for example, we verified that GNorm2 cannot be run on the CPU-based 155 
computer with 16GB of RAM used for the exemplary case study (Supp. Fig. 3 and Supp. 156 
Information). In this terms, ENQUIRE’s in-house gene normalization is more suitable for textmining 157 
large input corpora on a variety of devices beyond CPU-based computer clusters. 158 

ENQUIRE Networks Support Ranking of Genes Relevant to the Input Literature. 159 

To evaluate ENQUIRE’s ability in inferring genes relevant to the input corpus, we extracted H. sapiens 160 
pathways, their belonging genes, and corresponding primary literature references from the Reactome 161 
Graph Database37. We used the lists of references as inputs and performed a single gene entity-162 
restricted co-occurrence network reconstruction for each pathway. Out of 967 examined pathways, 163 
ENQUIRE successfully reconstructed a gene co-occurrence network from the reference literature of 164 
733 of them. We evaluated the effect of input corpus size, pathway size and average entity co-165 
occurrence per paper on the accuracy of the resulting networks (Table 3). As expected, precision and 166 
recall show opposite Spearman’s correlation trends concerning corpus and pathway sizes, but average 167 
gene-gene co-occurrence per article appears uncorrelated. The negative correlation between corpus 168 
size and precision is -0.18, suggesting a low impact of large input corpora on the output. Next, we 169 
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explored if the ENQUIRE-computed weight 𝑊 , an aggregated measure of network centrality and 170 
literature support of its connections, is a useful measure of gene relevance regarding the input corpus 171 
(Mat.Met.). To this end, we analyzed the above-mentioned gene-scope co-occurrence networks. In 172 
Fig. 3, we compare the pan-pathway-aggregated distributions of true-positive (top panel) and false-173 
positive (middle panel) ENQUIRE-derived genes as a function of 𝑊  (x-axis). We subdivided the 174 
distribution into four evenly spaced intervals, performed a chi-square test of independence, which 175 
resulted to be significant, and extracted the standardized Pearson residuals for true positives and false 176 
positives (colored boxes beneath the distributions). True positives tend to have higher node weights 177 
than false positives. An over-representation of node weights higher than 0.75 is observed in the true-178 
positive distribution, as indicated by the color gradient in Pearson residuals. This suggests one can use 179 
the node weights 𝑊 to rank a set of ENQUIRE-derived genes based on their relevance to the literature 180 
corpus in question. 181 

ENQUIRE Recovers Genes with High Chances of Showing Biochemical Interrelations. 182 

We hypothesized that ENQUIRE-derived gene co-occurrence networks could be enriched in molecular 183 
gene-gene interactions annotated in databases. To test this, we queried PubMed with all possible cross-184 
pairs of Diseases and Genetic Phenomena MeSH terms. We further processed the 3098 queries that 185 
retrieved 50-500 matching PMIDs and extracted their gene-gene co-occurrence networks obtained 186 
after one network reconstruction. We then inspected whether their respective protein-coding genes can 187 
produce significant functional association networks based on STRING’s protein-protein interaction 188 
(PPI) database38 (see Mat.Met.). Table 4 indicates that for 1336 (43.1%) MeSH pairs, both ENQUIRE 189 
and STRING generated a minimal network with at least three genes and two edges. In a subset of 733 190 
network with degree sequences allowing at least ten different graph realizations, we assessed 191 
ENQUIRE’s capability of reflecting functional interactions. Then, we then generated two empirical 192 
random probability distributions for STRING’s edge count and DeltaCon similarity score39 (see 193 
Mat.Met.). Within the tested networks, 730 protein-coding gene networks (99.6%) produced a 194 
STRING network with a higher edge count than 95% of equal-sized random STRING networks (PPI 195 
score). At the same time, 439 networks (59.9%) showed concordance with STRING-derived PPI 196 
networks based on statistically significant DeltaCon similarities. After p-value adjustment, (1% FDR, 197 
Table 3), 722 (98.5%) and 344 (46.9%) ENQUIRE networks still show significantly high PPI scores 198 
and DeltaCon similarities, respectively. To evaluate the effect of network size, we subdivided the 733 199 
suitable networks into quartiles based on their node number and mapped the respective unadjusted p-200 
value distributions of the above-described test sets. The edge-count-associated p-values increased with 201 
network size (Fig. 4A). At the same time, the observed DeltaCon similarity values monotonically 202 
decrease with network size (Table 5). This is in accordance with DeltaCon’s implementation of edge 203 
importance and zero-property39, as differences in edge counts and number of connected components 204 
between ENQUIRE and STRING increase with the number of nodes. Nevertheless, we did not find a 205 
negative correlation between network size and p-values of observed DeltaCon similarities; instead, the 206 
quartile corresponding to the largest network also shows the largest relative proportion of significant 207 
adjusted p-values (Fig. 4B). Taken together, our results suggest that ENQUIRE generates networks 208 
that frequently contain established, high-confidence functional relations. 209 

ENQUIRE Improves the Context Resolution of Topology-Based Pathway Enrichment 210 
Analyses. 211 

We also analyzed ENQUIRE’s ability to generate and expand co-occurrence networks with distinctive 212 
biological and biomedical signatures by literature querying. In particular, we evaluated the context 213 
resolution of ENQUIRE-generated gene networks, i.e. their ability to preserve differences and 214 
similarities in gene mention content from different corpora. To this end, we applied the complete 215 
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ENQUIRE pipeline with default parameters to a comprehensive set of case studies, spanning cancer, 216 
cell differentiation, innate immunity, autoimmune diseases, and a positive control (Table 6). Notice 217 
that each case study's input corpus is a perfect subset of the positive control corpus, which corresponds 218 
to a Szymkiewicz-Simpson overlap coefficient (OC) of 100% - see Mat.Met.. Despite that, the positive 219 
control network does not always exhibit an OC of 100% with non-expanded networks, in terms of both 220 
nodes and edges (Supp. Fig. 4). This shows that ENQUIRE’s network reconstruction is sensitive to 221 
the input corpus. Fig. 5A depicts the expected dendrogram of the different case studies and respective 222 
expansions, based on their major topics and original input corpora. Fig. 5B shows the observed 223 
clustering based on ENQUIRE-informed, topology-based pathway enrichment analysis using KNet40 224 
(see Post Hoc Analyses in Mat.Met. and Supp. Fig. 2). The 50 pathways with at least one significant, 225 
adjusted p-value (5% FDR) and highest p-value variances across case studies are depicted. The heat-226 
map suggests that the case studies primarily cluster based on the affinities between their major topics, 227 
in agreement with the expected dendrogram. For example, pathways categorized under Diseases of 228 
Metabolism, Diseases of Immune System, and Innate Immune System are predominantly enriched in 229 
networks originated from the case study “Macrophage’s signal transduction during M. tuberculosis 230 
infection” (MP-ST) and the major topic “Antigen Presentation in Autoimmune Diseases”. Similarly, 231 
some of Chromatin Organization and Developmental Biology pathways are almost exclusively 232 
enriched in the networks corresponding to oligodendrocyte differentiation. Interestingly, a set of 233 
pathways linked to cell cycle like Cyclin D associated events in G1 (R-HSA-69231) are enriched in 234 
the oligodendrocyte case study and reported to be also relevant in glioblastoma41–44. All case studies 235 
appear constitutively enriched in a cluster of Pathways in Cancer annotated downstream of Diseases 236 
of signal transduction by growth factor receptors and second messengers (R-HSA-5663202). We 237 
investigated this potential limitation in context-resolution and found that i) KNet-employed, binned 238 
network distances between genes in R-HSA-5663202 subpathways are not significantly smaller than 239 
those within other tested pathways; ii) Spearman correlations between p-values and network or corpus 240 
sizes are equivalent in all tested pathways; iii) R-HSA-5663202 subpathway categorization is 241 
associated with lower p-values both globally and within the same major topic (Supp. Fig. 5). Perhaps 242 
unsurprisingly, we concluded that proteins from these pathways like MAP-kinases and PKB are 243 
generally involved in the explored case studies; this also suggests that the observed clustering of 244 
cancer-related studies is not exclusively dependent on the enrichment of cancer pathways. Finally, we 245 
quantitatively assess the context resolution of the ENQUIRE-informed enrichment (Fig. 5C). To this 246 
end, we performed a permutation test on the observed Baker’s gamma correlation value between 247 
dendrograms (Fig. 5A-B), which allows to statistically assess their similarity45. We benchmarked its 248 
significance against two other methods, namely gene set over-representation analysis (ORA), and 249 
topology-based pathway enrichment analysis using STRING’s high-confidence functional 250 
associations, instead of ENQUIRE-generated co-occurrences, to compute the 𝑄  node scores (see 251 
Mat.Met.). All methods generated a dendrogram significantly closer than expected to the reference. 252 
In our analysis, topology-based enrichments outperform ORA, with the ENQUIRE-informed score 253 
moderately improving the performance over the STRING-informed equivalent (0.69 and 0.64, 254 
respectively). Taken together, these results suggest that ENQUIRE-generated networks can effectively 255 
represent contextual, biological differences and similarities between case study corpora. While 256 
ENQUIRE-annotated genes are sufficient for context resolution, the use of topology-based methods 257 
that incorporate corpus-specific co-occurrence information improves the performance. 258 

259 
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DISCUSSION 260 

ENQUIRE is a novel computational framework that combines textmining, network reconstruction, and 261 
literature querying, offering an alternative to manual literature curation and database mining. 262 
ENQUIRE interrelates gene mentions and biomedical concepts through co-occurrence networks and 263 
tabulated references while accounting for biases in the input literature corpus. Its framework enables 264 
post hoc analyses that infer contextual gene sets and enriched molecular pathways. ENQUIRE can 265 
enhance the biological interpretation of omics data, suggest relevant processes and components for 266 
computational models, and motivate the selection of molecular targets for biological experiments and 267 
in scenarios like molecular tumor boards. We opted for a compromise between coverage of 268 
unannotated article abstracts (gene normalization) and high-fidelity, pre-computed concept annotations 269 
(MeSH retrieval). ENQUIRE’s gene normalization strategy is appropriate for reconstructing co-270 
occurrence gene networks with affordable computational requirements, and scales well with large input 271 
corpora, without the need of restricting the analysis to databases of pre-annotated gene mentions46. The 272 
combination of a curated lookup table with abstract-specific blocklists enhances precision, thus leading 273 
to co-occurrence networks with fewer false positives, compared to recall-oriented approaches like 274 
BERN235,47. An added value of ENQUIRE is that the obtained gene/MeSH co-occurrence network can 275 
prime further information retrieval beyond textmining. Differently from previous works on 276 
gene/MeSH relations, our statistical framework is independent of the user scope (genes or MeSH can 277 
be mined separately) and is not immutable with respect to a species or general topic (e.g. diseases)48–278 
51. Instead, ENQUIRE automatically constructs PubMed queries from network-derived genes and 279 
MeSH to expand the input corpus, and in turn the network. We also assessed ENQUIRE’s performance 280 
using real-world case scenarios. For example, we investigated the relationship between ENQUIRE-281 
suggested co-occurrences and database-annotated gene interactions. Our results indicate that 282 
ENQUIRE-generated gene co-occurrence networks reflect experimental and database-annotated 283 
functional gene associations. At the same time, ENQUIRE can also generate networks with previously 284 
unannotated wirings that can encourage novel explorative analyses (Fig. 4B). We also analyzed the 285 
feasibility of corroborating ENQUIRE-suggested relations by mapping co-occurrence information 286 
onto a mechanistic reference network. Since there is no generalizable method to project a network of 287 
indirect relations (co-occurrences) onto a mechanistic network52–56, we designed a function to score a 288 
physical interaction network using ENQUIRE-generated networks. This allowed us to verify that the 289 
enriched pathways in original and expanded ENQUIRE networks reflect their contexts and enable the 290 
comparison of multiple case studies. This strategy still poses some limitations in terms of choosing a 291 
reference network and pathways to be tested. We designed ENQUIRE as a series of modular, open-292 
source components that can be combined and expanded to tune its performance. For instance, one 293 
could insert a part-of-speech recognition parser upstream of the co-occurrence detection step to 294 
strengthen its criteria57. Similarly, one can implement a propensity matrix into the random graph model 295 
to further weight a co-occurrence with its textual context14,21. As gene normalization relies on the 296 
utilized lookup table of reference gene symbols and aliases, ENQUIRE’s accuracy depends on how 297 
comprehensive and free of ambiguities this table is. The current version of our algorithm only performs 298 
normalization of human genes and corresponding mouse orthologs. Still, it can be adapted to perform 299 
gene normalization of any other species by supplying an appropriate lookup table, such as those 300 
provided by the STRING database58. Our main objective was to construct a robust textmining, network 301 
reconstruction, and automatic querying pipeline accessible to bioinformaticians and systems biologists 302 
with affordable computational requirements. Since the standalone version of the algorithm requires 303 
some background in computer programming, we are working to provide a web version of ENQUIRE 304 
to ease its adoption among biomedical researchers. 305 
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DATA AVAILABILITY 306 

ENQUIRE’s main program and the standalone scripts to perform the post hoc analyses are included in 307 
an Apptainer/Singularity image file (SIF), available for download at 308 
https://figshare.com/articles/software/ENQUIRE/24434845 (DOI: 309 
10.6084/m9.figshare.24434845.v3). Installation and running instructions, gene-symbol-to-alias lookup 310 
table, input and output files from the exemplary case study, and data underlying the results (Supp. 311 
Information) can be found at https://github.com/Muszeb/ENQUIRE (DOI: 312 
10.5281/zenodo.10692274). All the individual scripts are also available upon request. 313 
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MATERIALS AND METHODS 326 

Description of the ENQUIRE algorithm 327 

Extraction of Article Metadata 328 

ENQUIRE uses the NCBI’s e-utilities to query and fetch information from the PubMed database59. 329 
Epost is used to request a collection of PMIDs, efetch to extract their metadata in XML format, and 330 
esearch to construct PubMed queries. 331 

MeSH Term and Article Abstract Extraction 332 

For each MEDLINE-indexed, input PMID, if the MeSH entity scope is selected, ENQUIRE retrieves 333 
MeSH main headings (“descriptors”) and subheadings (“qualifiers”) from their respective efetch-334 
retrieved XML files. These MeSH terms are further selected to match biomedically relevant, non-335 
redundant categories, by exploiting the tree-like, hierarchical structure of the MeSH vocabulary. By 336 
default, ENQUIRE only retains members downstream of the MeSH categories A (Anatomy), C 337 
(Diseases), D (Chemicals and Drugs), and G (Phenomena and Processes), except for sub-categories 338 
G01 (Physical Phenomena), G02 (Chemical Phenomena) and G17 (Mathematical Concepts). 339 

Gene Normalization from Article Abstracts 340 

For each input PMID, if the gene entity scope is selected, ENQUIRE retrieves article abstracts from 341 
their respective efetch-retrieved XML files. As other authors have shown that the proportion of gene 342 
mentions does not significantly differ between abstracts and full-body texts60, we only mine the 343 
abstracts for gene mentions. In contrast to standard named entity recognition of genes (NER), whose 344 
task is to exactly match the character span of a gene mention, ENQUIRE’s textmining framework aims 345 
at detecting least one gene alias per unique reference gene mentioned in an abstract. We therefore 346 
designed a “Swiss cheese model” for gene normalization, in which multiple methods complement each 347 
other to improve the global precision. In brief, ENQUIRE applies up to two algorithms to each 348 
unprocessed abstract: i) the Schwartz-Hearst algorithm to detect single-word abbreviations and their 349 
respective definitions33; ii) the optional scispaCy model (en_ner_jnlpba_md) to identify words 350 
classified as “CELL_LINE” or “CELL_TYPE”34. This allows ENQUIRE to construct abstract-specific 351 
blocklists that discard i) ambiguous abbreviations whose definitions are not similar to any gene alias 352 
from a pre-annotated lookup table, and ii) ambiguous or unwanted mentions to cell entities containing 353 
gene aliases, such as “CD8+ T cell”. Finally, a tokenization module generates potential gene-alias-354 
matching tokens and redirects them to a unique, reference gene symbol using the lookup table. 355 

Construction of the Lookup Table of Reference Gene Names and Respective Aliases 356 

Similar to previous approaches61, ENQUIRE performs NER of Homo sapiens and Mus musculus gene 357 
mentions, while also redirecting the latter to their respective human homologues using MGI’s 358 
mouse/human orthology table62. Each reference gene name corresponds to HGNC approved symbol63. 359 
Additional mouse and human gene aliases were pooled from HGNC (“previous symbols”, “previous 360 
names”, “alias symbols”, “alias names”), ENSEMBL (“gene stable ID”, “gene description”, “gene 361 
name”), Uniprot (“gene names”, “protein names”), and miRBase (“ID”, “alias”, “name”)64–66. We 362 
manually inspected sources of ambiguities and lack of spelling variants: for example, we added 363 
miRNA names without species suffixes (e.g. “miR-335” from “hsa-miR-335”), multiple spellings for 364 
lnc- and mi-RNAs (e.g. “LNC/Lnc/lnc”, “miR/mir”) and removed aliases identical to common 365 
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acronyms for experimental techniques (e.g. “MRI”, “NMR”, “TEM”). We converted Greek letters to 366 
their literal spelling. We resolved ambiguities due to aliases reported under more than one reference 367 
symbol, by either assigning the alias to a single reference, or by excluding the alias. 368 

Abstract Tokenization for Named-Entity Recognition of Genes 369 

ENQUIRE mostly performs named-entity recognition of genes (NER) from article abstracts by exact 370 
matches between gene aliases and space- or punctuation-separated word tokens. We exclude general-371 
purpose English words annotated in the English-words Python library to reduce the computational 372 
burden of mapping gene mentions. Greek letters are converted to their literal spelling. Special attention 373 
is put to hyphen- and slash-containing tokens, tracing their usage as integral parts of gene aliases (e.g. 374 
“TNF-alpha”) or separators (e.g. “FcγR-TLR Cross-Talk” – PMID 31024565, “Akt/PI3K/mTOR 375 
signaling pathway” – PMID 35802302). When cases of the latter kind occur, the algorithm requires all 376 
hyphen- or slash-separated words to be gene aliases, in order to be considered individual tokens. Then, 377 
ENQUIRE tokenizes the abstract into single-word tokens and interprets unambiguous tokens as the 378 
corresponding reference gene symbol if they match an alias in the lookup table. Multiple mentions of 379 
the same gene within an abstract count as one. 380 

Abstract-Specific Blocklists Using Cell Entity Mentions and Abbreviation-Definition Pairs 381 

Any token that exactly matches an alias from the lookup table is redirected to the respective reference 382 
symbol, except when that same token is either classified as part of “CELL_LINE” or “CELL_TYPE” 383 
entities, or as an abbreviation, by scispaCy en_ner_jnlpba_md and Schwartz-Hearst models. In the 384 
former exception, the token is added to a blocklist and any of its mentions within the abstract text are 385 
excluded from further gene normalization steps. In the latter exception, we evaluate the validity of an 386 
alias-matching abbreviation by means of its definition, as inferred by Schwartz-Hearst. We perform 387 
string comparison to calculate alignment scores between the definition and any recorded alias of the 388 
same reference symbol matched by the abbreviation. To this end, we implemented the Needleman-389 
Wunsch algorithm for global alignment, with match score equal to 1, gap opening and mismatch 390 
penalties equal to -1, and gap extension penalty equal to -0.567. Next, we calibrated a threshold for 391 
either retaining or discarding an alias-matching abbreviation according to its optimal alignment score. 392 
We used a dataset of abbreviation-description pairs from more than 300 abstracts and generated a 393 
distribution of scores by aligning any description to any annotated alias. Intuitively, there could only 394 
be a handful of alignments between an actual gene description and the aliases referring to that same 395 
gene, as opposed to several alignments between that same description and unrelated aliases. Therefore, 396 
we treated the above derived distribution as a model describing false positive alignments between 397 
descriptions and gene aliases. Finally, we identified a range between 0.1 and 0.2 that respectively 398 
correspond to 95th and 99th percentiles of the distribution of alignment scores as a sensible interval 399 
for choosing the threshold. We opted for a threshold of 0.15. Therefore, for any description whose 400 
abbreviation matches a gene alias, ENQUIRE records a gene mention only if the maximal alignment 401 
score against any alias of that same gene is higher or equal to this threshold; else, the abbreviation is 402 
added to the blocklist and all of its mentions within the text are excluded. Notice that the blocklist is 403 
independently computed for each abstract, thus making ENQUIRE’s gene normalization moderately 404 
adaptive with respect to syntactical context. 405 

Annotation and Weighting of Co-Occurrences 406 
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ENQUIRE records the occurrences of MeSH and gene entities within each input article. Then, it counts 407 
pairwise co-occurrences by enumerating the subset of PMIDs associated to both entities in each pair. 408 
For each pair of entities 𝑔௜ and 𝑔௝ that co-occur in at least one article, we define the weights 𝑤 and 409 
distances 𝑤෥  accounting for the sheer co-occurrence 𝑋(𝑔௜ , 𝑔௝) as follows: 410 

 411 
𝒘𝒈𝒊,𝒈𝒋

∶= 𝚿൫𝑿൫𝒈𝒊, 𝒈𝒋൯, 𝑿ഥ൯, 𝒘𝒈𝒊,𝒈𝒋
∈ (𝟎, 𝟏] 412 

𝒘෥ 𝒈𝒊,𝒈𝒋
= 𝟏 − 𝒘𝒈𝒊,𝒈𝒋

 413 

𝑿൫𝒈𝒊, 𝒈𝒋൯ = ห {𝑷 ∣∣ 𝒈𝒊, 𝒈𝒋 ∈ 𝑬𝑷}𝑷∈PMIDS ห 414 

 415 
Where 𝑋ത  is the mean co-occurrence between any two entities in the corpus, Ψ(⋅, 𝑋ത)  is the zero-416 
truncated, Poisson cumulative density function with a lambda of 𝑋ത, and 𝐸௉ is the set of all entities 417 
annotated within the PMID 𝑃  that belongs to the submitted PMIDS corpus. This scoring system 418 
assigns higher relevance to co-occurrences that appear more often than average. 419 

Reconstruction of a Weighted Network of Significant Co-Occurrences 420 

ENQUIRE converts the recorded co-occurrences into an undirected multi-graph, where gene or MeSH 421 
terms become nodes, and each recorded co-occurrence between two entities becomes an edge. Thus, 422 
the network has as many nodes as the number of unique MeSH and gene symbols, with as many edges 423 
between two nodes as the number of PMIDs in which they co-occur. ENQUIRE implements the 424 
Casiraghi-Nanumyan’s soft-configuration model applied to undirected, unweighted edge counts to 425 
select significant co-occurrences among entities, adjusted to 1% FDR21. The test statistics follows a 426 
multivariate hypergeometric distribution, under the null hypothesis of observing a random graph whose 427 
expected degree sequence correspond to the observed one. This allows us to condition the testing to 428 
the sheer, per-entity occurrence, which serves as a proxy for leveraging literature biases in the corpus. 429 
It is important to note that the null model does not assume independence of individual edges, but merely 430 
their equiprobability, and is unaffected by the weights w. This selection results in an undirected, single 431 
node-to-node edge co-occurrence graph (i.e. a simple graph). For each pair of adjacent entities g୧ and 432 
g୨  in the simple network, we assign the weights w୥౟, ୥ౠ

and distances w෥ ୥౟, ୥ౠ
 to their mutual edge. 433 

Additionally, we prune poorly connected nodes by modularity-based, w-weighted Leiden clustering68 434 
and removal of communities that consist of a single node. From the resulting gene/MeSH network, we 435 
also extract the respective gene- and MeSH-only subnetworks. 436 
ENQUIRE-generated gene/MeSH networks can consist of multiple connected components, i.e. 437 
subgraphs. To exclude unimportant components, a subgraph 𝑆 is retained for subsequent computations 438 
only if the fraction of corpus articles covered by 𝑆 is higher than a threshold value, as formally defined 439 
in 440 
 441 

𝑻𝑺 ∶=
ห {𝑷 ∣∣ 𝑬𝑷 ∩ 𝑬𝑺 ≠ ∅}𝑷∈PMIDS ห

|PMIDS|
≥ 𝒕, 𝑻𝑺 ∈ (𝟎, 𝟏] 442 

 443 
where 𝑃 denotes a PMID belonging to PMIDS, and 𝐸௉  and 𝐸ௌ  refer to the sets of gene or MeSH 444 
entities recorded in either 𝑃 or 𝑆. Therefore, 𝑇ௌ reflects the representativeness of 𝑆 with respect to the 445 
entirety of the submitted corpus. The value of 𝑡 can be set by the user. To avoid introducing irrelevant 446 
entities, ENQUIRE stops without further network expansion if the gene/MeSH network and the 447 
respective gene- and MeSH-only subnetworks individually contain only a single, connected 448 
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component with 𝑇ௌ ≥ 𝑡. We compute the weight of a node 𝑔 in the connected graph 𝑆 utilizing the 449 
composite function 𝑊, which is the product of normalized metrics for betweenness centrality (𝑏) and 450 
𝑤-weighted degree strength (𝑑): 451 
 452 

𝑾(𝒈, 𝑺) ∶= 𝑭𝒃൫𝒃(𝒈, 𝑺)൯ ⋅ 𝑭𝒅൫𝒅(𝒈, 𝑺)൯,  𝑾 ∈ (𝟎, 𝟏] 453 
 454 
Here, 𝐹௫  denotes the empirical cumulative density function for the corresponding 𝒙  parameter, 455 
calculated over 𝑆. 456 

Construction of Communities from “Information-Dense” Cliques 457 

To identify the most relevant parts of the gene/MeSH network, ENQUIRE first identifies the maximal 458 
cliques of order three or more. By definition, these are graphlets whose nodes are all adjacent to each 459 
other and not a subset of a larger clique. Applying the KNet function from the SANTA R package40 to 460 
the gene/MeSH network having distances w෥ ୥౟, ୥ౠ

, we select cliques that form significant clusters of 461 

associated entities. The permutation test procedure internal to KNet allows us to consider the network 462 
topology and adjust each maximal clique’s significance, in case many other cliques of similar size exist 463 
in the network. We set the significance level for this test to 1% FDR. Subsequently, ENQUIRE 464 
generates a pruned network 𝐶 containing only statistically significant cliques. Here, ENQUIRE stops 465 
if the gene/MeSH network contains less than two significant cliques according to KNet. Next, 466 
ENQUIRE identifies communities in the 𝐶  network using modularity-based, 𝑤 -weighted Leiden 467 
clustering. ENQUIRE stops if it detects a single community that encompasses all nodes in 𝐶. 468 

Identification of Community-Connecting Entities 469 

For any two disjoint communities 𝐶௜  and 𝐶௝ , we select the set of community-connecting, weighted 470 
graphlets Γ஼೔,஼ೕ

(𝑉௞ , 𝐿௞ିଵ) satisfying the properties: i) all nodes 𝑔௜ in the 𝑘-sized set 𝑉௞ belong to either 471 

𝐶௜ or 𝐶௝; ii) the intersections between 𝑉௞ and 𝐶௜ or 𝐶௝ are non-empty; iii) the 𝑤-weighted, 𝑘 − 1 edges 472 
𝐿௞ିଵ  are sufficient to obtain a single connected component; iv) there is only one edge 𝑙௚೔,௚ೕ

 that 473 

connects nodes belonging to distinct communities. Here, 𝑘 is a parameter chosen by the user. 474 
This allows us to rank the set of community-connecting entities 𝑉௞in any graphlet Γ஼೔,஼ೕ

 by means of 475 

the distance metric 𝑅: 476 
 477 

𝑹 ൬𝚪𝑪𝒊,𝑪𝒋
(𝑽𝒌, 𝑳𝒌ି𝟏)൰ ∶= − 𝐥𝐨𝐠 ൭ෑ 𝑾(𝒈𝒊,⋅) ෑ 𝒘𝒈𝒊,𝒈𝒋

𝒍𝒈𝒊,𝒈𝒋
∈𝑳𝒌ష𝟏𝒈𝒊∈𝑽𝒌

൱ , 𝑹 ∈ ℝஹ 𝟎 478 

𝑽𝒌 ∈ 𝑪𝒊 ∪ 𝑪𝒋, 𝑽𝒌 ∩ 𝑪𝒊 ≠ ∅, 𝑽𝒌 ∩ 𝑪𝒋 ≠ ∅ 479 

ቚ{𝒍𝒈𝒊,𝒈𝒋
∣ 𝒈𝒊 ∈ 𝑪𝒊, 𝒈𝒋 ∈ 𝑪𝒋}𝒍𝒈𝒊,𝒈𝒋

∈𝑳𝒌ష𝟏
ቚ = 𝟏 480 

 481 
The smaller 𝑅, the closer two communities connected by 𝑉௞ are. 482 

Retrieval of New PMIDs via PubMed Queries Based on Optimal Connections 483 

To evaluate which genes and MeSH terms are particularly suited for expansion querying, ENQUIRE 484 
constructs a multigraph 𝑀 where network communities become nodes and all 𝑅-weighted connections 485 
between two communities become edges. 𝑅-weighted edges that do not fulfil the triangle inequality 486 
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𝑅 ቀΓ஼೔,஼ೕ
ቁ ≤ 𝑅൫Γ஼೔,஼೥

൯ +  𝑅 ቀΓ஼೥,஼ೕ
ቁ , ∀ 𝑖, 𝑗, 𝑧  are excluded. Then, we solve the travelling salesman 487 

problem (TSP) utilizing Christofides’ approximate solution as implemented in the Python package 488 
Networkx69. Via the visited edges, this yields an optimal path across communities and a corresponding 489 
collection of 𝑉௞ entity sets. Each selected 𝑘-sized set 𝑉௞ results in a PubMed query formulated via the 490 
NCBI’s esearch utility59. We condition the search terms representing gene aliases and MeSH with 491 
“[Title/Abstract]” and “[MeSH Terms]”, respectively, and exclude review articles from the results. 492 
The constructed PubMed queries require a match for all the 𝑘  entities in the optimal path – e.g. 493 
“melanoma/immunology”[MeSH Terms] AND (“IL1B”[Title/Abstract] OR “interleukin 1-494 
beta”[Title/Abstract] […]) AND […]. If all queries involving a subset of the network communities 495 
lead to empty results, we prune all previously used edges from 𝑀, compute a new TSP solution, and 496 
submit newly generated queries, provided at least one entity per query belongs to such community 497 
subset. This process is repeated 𝐴 times, where 𝐴 is a parameter specified by the user. If at least 1 new 498 
PMID matches any of the constructed queries, ENQUIRE starts a new analysis from the union of new 499 
and old PMIDs; otherwise, it stops. The rationale behind merging old and new PMIDs is to account 500 
for the original corpus when computing the statistics on new co-occurrences. 501 

Post-hoc Analyses 502 

Context-Aware Gene Sets. 503 

To reconstruct contextual gene sets using gene/MeSH co-occurrence networks, we adapt network-504 
based relational data to the method described by Khan et al.70. To this end, we first construct the inverse 505 
log-weighted similarity matrix between the gene/MeSH network nodes71. This metric prioritizes nodes 506 
sharing many lower degree neighbors rather than few higher degree ones. We derive a Euclidean 507 
distance matrix from the similarity matrix, after applying a Z-score standardization; then, we use the 508 
R package DynamicTreeCut and Ward’s clustering to identify initial clusters and create an initial 509 
membership degree matrix72,73. Finally, we detect fuzzy clusters of genes and MeSH terms by applying 510 
Fuzzy C-means clustering to the Euclidean distance matrix, using the R package ppclust1,2. The 511 
resulting membership degree matrix allows annotating genes with desired cluster membership degrees 512 
and extracting the linked MeSH terms to characterize the gene set. 513 

Context-Aware Pathway Enrichment Analysis. 514 

We designed a method to map any text-mined co-occurrence network G onto a mechanistic reference 515 
network 𝑁  and infer context-specific enrichment of molecular pathways. With this strategy, we 516 
attempt to mechanistically explain the indirect relationships that constitute the co-occurrence network. 517 
To this end, we define the fitness score 𝑄 for every gene 𝑔 in 𝑁 with non-zero node degree 𝑑: 518 

 519 

𝑸(𝒈) ∶= 𝒅(𝒈, 𝑵)ି𝟏 ⋅ ෍  

𝒈𝒊∈𝑽(𝑮)

෍ 𝒆ି𝜹෩𝑮൫𝒈𝒊,𝒈𝒋൯

𝒈𝒋∈𝑽(𝑮)

⋅ 𝟙{𝛅𝑵(𝒈𝒊,𝒈)ା𝛅𝑵൫𝒈,𝒈𝒋൯ஸ𝟐,𝒈𝒊ஷ𝒈𝒋}, 𝑸 ∈ ℝஹ 𝟎 520 

 521 
Here, 𝛿ሚீ(𝑔௜ , 𝑔௝) and 𝛿ே(𝑔௜ , 𝑔௝) are the 𝑤෥ -weighted and unweighted distances from 𝑔௜  to 𝑔௝  in the 522 
graphs 𝐺 and 𝑁, respectively. The indicator function 𝟙 implies that non-text-mined genes without at 523 
least two text-mined nodes as neighbors have 𝑄 equal to zero. We normalize all scores to decorrelate 524 
Q from the node degree 𝑑, similarly to other approaches in network propagation74,75. As a mechanistic 525 
reference network, we chose STRING’s (release 11.5) H. sapiens network of protein-coding, 526 
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physically interacting genes38. We exclusively combined the “experimental” and “database” channels 527 
to calculate STRING’s confidence score, then pruned all edges with score below the 90th percentile. 528 
After removing zero-degree nodes, we obtain a reference, unweighted network of 9,482 nodes and 529 
88,333 edges. Then, we calculate 𝑄 scores for protein-coding genes in the STRING reference network 530 
(𝑁), using the ENQUIRE-generated gene network (G). We test for associations between predefined 531 
gene sets and high-scoring node clusters using SANTA’s KNet function40. KNet takes as input the 532 
STRING reference network, its nodes’ 𝑄 scores, and a gene set; it then tests if the latter is enriched, 533 
based on scores and graph distances of protein-coding genes belonging to both the network and the 534 
gene set. This way, we aim at capturing known experimentally or database-derived molecular 535 
interactions relevant to ENQUIRE’s input literature corpus, using topology-based enrichment analysis. 536 
We test for enrichment on gene sets derived from Reactome pathways, obtained via the Reactome 537 
Graph database37. See Supp. Fig. 2 for an example of 𝑄 score weighting. 538 

  539 
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Benchmarks and Case Studies 540 

Assessment of ENQUIRE’s Gene Normalization Accuracy and Performance 541 

We evaluated ENQUIRE’s gene normalization precision and recall using abstracts from the NLM-542 
Gene corpus mentioning at least one M. musculus or H. sapiens gene – 479 out of 550 entries32. We 543 
tested the four module combinations obtained by either including or excluding the cell entity 544 
recognition module en_ner_jnlpba_md and the Schwartz-Hearst abbreviation-definition algorithm33,34. 545 
We compared the computational performance of ENQUIRE’s gene normalization method using both 546 
en_ner_jnlpba_md and Schwartz-Hearst against GNorm2 implementation of Bioformer36,35. We 547 
computed wall time by accounting for both text processing and loading of required data such as gene 548 
alias lookup tables and machine learning models. RAM usage was measured using resident set size 549 
(RSS) measurements returned by the Linux built-in function ps. We ran the computations on a Linux 550 
computer with 20 CPUs (3.1 GHz) and 252 GB of RAM. Up to 8 cores were used for parallelization. 551 

Inference of Reactome Gene Sets from Reference Literature. 552 

We extracted annotated genes and reference literature for all H. sapiens Reactome pathways from the 553 
Reactome Graph database37. We employed NCBI’s esearch and elink utilities to retrieve primary 554 
research articles cited by review articles59. After excluding pathways with less than three primary 555 
literature references or only one annotated human gene, we obtained a set of 967 pathways. For each 556 
pathway literature corpus, ENQUIRE performed one network reconstruction, set to only extract gene 557 
mentions from article abstracts. We evaluated the effects of corpus size, pathway size, and average 558 
gene-gene co-occurrence per abstract on precision and recall of ENQUIRE’s gene normalization and 559 
network reconstruction. We also evaluated the correlation between true positives and the corpus- and 560 
network-based node weight 𝑊.  561 

Estimate of Molecular Interrelations. 562 

We automatically generated a list of case studies by crossing leaf nodes downstream of Diseases and 563 
Genetic Phenomena (G05) MeSH categories. We then constructed a PubMed query from each pair by 564 
“AND” concatenation. Examples of such queries are “Stomach Neoplasm”[MeSH Terms] AND 565 
“Chromosomes, human, pair 18”[MeSH Terms], and “Acquired immunodeficiency syndrome”[MeSH 566 
Terms] AND “Polymorphism, single nucleotide”[MeSH Terms] . For each query result with a size 567 
between 50 and 500 articles, we executed one network reconstruction. If obtaining a gene-gene co-568 
occurrence network, we investigated whether its set of genes produced a network with more functional 569 
interactions than expected by chance. To obtain background distributions of edge counts for each gene 570 
set size observed with ENQUIRE, we sampled one million random gene sets and cumulated their 571 
interconnecting edges in STRING’s v. 11.5 H. sapiens functional protein network. We only included 572 
functional associations from experiments, co-expression, and third-party databases with a cumulative 573 
score higher than 0.7 between proteins. The significance of each ENQUIRE-generated gene set’s edge 574 
count was computed from the right-tailed probability of the empirical distribution. 575 
Moreover, we compared the ENQUIRE-generated gene-gene wirings to STRING-derived associations 576 
using the DeltaCon similarity measure in a permutation test39. To this end, we generated 10,000 random 577 
graphs for each observed ENQUIRE network. Each random graph was obtained through 300 random 578 
edge-swapping attempts while preserving the degree sequence of the original network. To obtain 579 
sensible probability densities, we focused on ENQUIRE-generated networks with degree sequences 580 
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allowing at least ten different realizations of a graph. We followed the formula ∏ 𝑑௜!
௡
௜ , where 𝑑௜ is the 581 

degree of the 𝑖-th node of a graph containing 𝑛 nodes. 582 

Assessment of Context Resolution by Topology-Based Enrichment of Molecular Pathways. 583 

To show that ENQUIRE preserves context-specific molecular signatures, we designed a broad panel 584 
of case studies (Table 1). Each corpus consisted of the union of references contained in three 585 
independent reviews accessible via NCBI’s elink utility59. We selected reviews from the results of 586 
PubMed search queries consisting of two or three MeSH terms (e.g. “Melanoma”[MeSH Terms] AND 587 
“Signal Transduction”[MeSH Terms]), favoring PubMed-ranked best matches when possible. We also 588 
included an unspecific positive control group consisting of the union of all context-specific corpora. 589 
This experimental design allowed us to construct a reference dendrogram that clusters the case studies 590 
only based on baseline biological knowledge, expecting expanded networks of a case study to cluster 591 
together with the originally reconstructed one. Then, we applied ENQUIRE with default parameters to 592 
each case study and analyzed all resulting gene-gene networks, i.e., from original and expanded 593 
corpora. We computed pairwise similarities between node and edge sets of the constructed networks 594 
using Szymkiewicz-Simpson overlap coefficient (OC): 595 
 596 

OC(X,Y)=
|X ∩ Y|

min
 

(|X|, |Y|)
, OC ∈ [0,1] 597 

 598 
Where 𝑋 and 𝑌 are either two node sets or two edge sets. An OC of 0 indicates no overlap, while an 599 
OC of 1 indicates the smaller node or edge set is a subset of the larger one. By construction, same-600 
case-study original and expanded networks possess OCs of 1 with each other. We applied the post hoc, 601 
context-aware pathway enrichment analysis described above to all generated networks. We tested the 602 
enrichment of Reactome pathways with sizes ranging from 3 to 100 genes, categorized as in the 603 
database’s Top-Level Pathways and disease ontologies37. We performed hierarchical clustering of the 604 
networks using Euclidean distance and Kendall’s correlation based on network-specific, KNet-605 
generated p-values. We compared the resulting dendrogram to the expected one by a permutation test 606 
of Baker’s gamma correlation using one million permutations of the original dendrogram45. We also 607 
compared the results to two alternative statistics: i) over-representation analysis of nodes from the 608 
ENQUIRE-generated networks (the collection of all genes observed in any case study was used as the 609 
“universe”); ii) KNet statistics, using 𝑄  scores based on STRING’s high-confidence functional 610 
association network (described above) and ENQUIRE-derived gene nodes.  611 
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TABLES 776 

Table 1. Selection of case studies for assessment of context resolution at the molecular pathway 777 
level. We obtained PubMed queries by “AND” concatenation of up to three MeSH terms and further 778 
filters to retrieve review articles only. The Corpus sizes refer to the non-redundant union of 779 
publications cited by three independent review articles, reported under the “References” column. 780 

Major Topic Case Study 
(abbreviation) 

PubMed Query Corpus
size 

References 

MeSH 1 MeSH 2 MeSH 3 (PMID) 

Signal 
transduction 

in solid tumors 

Melanoma (MM-ST) Signal 
transduction 

Melanoma  944 25587943, 
32605090, 
34924562 

Uveal melanoma (UM-
ST) 

Signal 
transduction 

Uveal 
neoplasms 

 218 25296731, 
25113308, 
28223438 

Colorectal cancer (COL) Signal 
transduction 

Colorectal 
neoplasms 

 556 34884633, 
34742312, 
35836256 

Breast cancer (BRE-ST) Signal 
transduction 

Breast 
neoplasms 

 522 29455658, 
31752925, 
32245065 

Macrophage’s 
signal 

transduction 
in disease 

Macrophage signal 
transduction 

upon infection (MP-ST) 

Signal 
transduction 

Macrophages Mycobacterium 
tuberculosis 

470 32849525, 
33558322, 
34502407 

Tumor-associated 
Macrophages (MP-TA) 

Signal 
transduction 

Tumor 
associated 

macrophages 

 386 33365025, 
35844605, 
35740975 

Antigen 
presentation in 

autoimmune 
diseases 

Inflammatory bowel 
disease (IBD-AP) 

Antigen 
presentation 

Inflammatory 
bowel 

diseases 

 445 28534191, 
33584726, 
33800865 

Rheumatoid arthritis 
(RA_AP) 

Antigen 
presentation 

Arthritis, 
rheumatoid 

 452 27225300, 
28451787, 
30589082 

Psoriasis (PSO-AP) Antigen 
presentation 

Psoriasis  435 26215033, 
29316717, 
33050592 

Oligodendrocyte 
differentiation 

Oligodendrocyte (ODC) Cell 
differentiation

Oligodendroglia  355 24979526, 
30770136, 
31614602 

Positive control All case studies (CTR) All queries (“OR” concatenation) 3606 All of the above 
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Table 2. Performance of ENQUIRE’s gene normalization algorithm. The gene normalization task 782 
is here defined as detecting at least one gene alias per unique reference gene mentioned in an abstract. 783 
Precision, recall, and their harmonic mean (F1) are based on annotated abstracts from the NLM-Gene 784 
corpus containing at least one mention to a H. sapiens or M. musculus gene (479 abstracts). We ran the 785 
computations on a Linux computer with 20 CPUs (3.1 GHz) and 252 GB of RAM. Up to 8 cores were 786 
used for parallelization. We tested different gene normalization methods by adding or removing filters 787 
for excluding predicted cell entities (en_ner_jnlpba_md) and ambiguous abbreviation-definition pairs 788 
(Schwartz-Hearst). Maximum RAM usage is measured as resident set size (RSS). Estimated time in 789 
seconds per abstract (sec/abstract) also accounts for loading the gene alias lookup table and machine 790 
learning models. The best value for each parameter setting is highlighted in bold. 791 

Gene normalization 
Method 

Precision Recall1 F1 Computing performance 
Resource 

usage 
Cores 

1 4 8 

en_ner_jnlpba_md + 
Schwartz-Hearst + 

ENQUIRE 
tokenizer/dictionary 

0.823 0.662 0.734 Max. RSS 
(GB) 

1.95 1.95 1.95 

sec/abstract 0.172 0.0656 0.0488 

Schwartz-Hearst + 
ENQUIRE 

tokenizer/dictionary 

0.822 0.683 0.747 Max. RSS 
(GB) 

0.359 0.359 0.361 

sec/abstract 0.125 0.0435 0.0318 

en_ner_jnlpba_md + 
ENQUIRE 

tokenizer/dictionary 

0.804 0.666 0.728 Max. RSS 
(GB) 

1.95 1.95 1.95 

sec/abstract 0.148 0.0651 0.0481 

ENQUIRE 
tokenizer/dictionary 

0.802 0.688 0.741 Max. RSS 
(GB) 

0.360 0.359 0.359 

sec/abstract 0.105 0.0400 0.0280 
  792 
                                                           
1Gene mentions contained in cell entities such as “CD8+ T cell” are true positives in the NLM-Gene 
corpus. Text spans tagged as cell entities by the en_ner_jnlpba model are removed without being 
processed by the tokenizer module, affecting recall.  
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Table 3. Differences in computing performance between ENQUIRE’s gene normalization 793 
algorithm and GNorm2-Bioformer. We ran the computations on a Linux computer with 20 CPUs 794 
(3.1 GHz) and 252 GB of RAM. Up to 8 cores were used for parallelization. Maximum RAM usage 795 
was measured as resident set size (RSS). Estimated time in seconds per process abstract (sec/abstract) 796 
also accounts for loading of gene alias lookup table and machine learning models. 797 

Gene normalization 
method 

Corpus 
size 

Computing performance 
Resource usage Threads 

1 4 8 

en_ner_jnlpba_md + 
Schwartz-Hearst + 

ENQUIRE 
tokenizer/dictionary 

26 Max. RSS (GB) 1.95 1.95 1.95 

sec/abstract 0.573 0.509 0.513 

GNorm2-Bioformer Max. RSS (GB) 17.3 16.4 17.4 

sec/abstract 4.310 4.150 2.73 

en_ner_jnlpba_md + 
Schwartz-Hearst + 

ENQUIRE 
tokenizer/dictionary 

130 Max. RSS (GB) 2.08 1.95 1.95 

sec/abstract 0.205 0.134 0.125 

GNorm2-Bioformer Max. RSS (GB) 25.1 25.1 24.7 

sec/abstract 2.500 1.260 1.070 

en_ner_jnlpba_md + 
Schwartz-Hearst + 

ENQUIRE 
tokenizer/dictionary 

1300 Max. RSS (GB) 5.9 2.91 2.71 

sec/abstract 0.118 0.044 0.030 

GNorm2-Bioformer Max. RSS (GB) 25.0 24.8 24.9 

sec/abstract 2.370 1.050 0.835 
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Table 4. Effect of relevant covariates on quality indicators of ENQUIRE’s gene entity 799 
recognition. We evaluated the effect of corpus size (input), Reactome’s pathway size (number of genes 800 
to be retrieved) and average gene-gene co-occurrence per article, using Spearman’s correlation 801 
coefficients, for each measure. FPR: false positive rate. 802 

Metric Corpus Size Pathway Size Average co-occurrence 

Precision -0.18 0.49 -0.06 

Recall 0.46 -0.35 0.14 
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Table 5. Relevant quality indicators of functional associations in 3098 case studies. PPI: protein-804 
protein interaction score, as number of observed edges over the STRING-inferred network. FDR: false 805 
discovery rate, expressed in percentage. Percentages reported for PPI and DeltaCon significance 806 
independently refer to the set of 733 tested networks, i.e. those with 10 or more possible realizations 807 
with the same degree sequence as ENQUIRE-derived networks. 808 

Property Subset Raw count Percentage over 
the preceding 

step 

Percentage over 
total (3098) 

Network 
topology 

At least 3 genes and 2 edges in 
both ENQUIRE and STRING 

networks 

1336 / 43.1% 

At least 10 possible realizations 
of the same degree sequence 

733 54.9% 23.7% 

Significance Edge count p-
value 

< 0.05 730 
 

99.6% 23.6% 
 

< 1% FDR 722 98.5% 23.3% 

 DeltaCon 
p-value 

< 0.05 439 
 

59.9% 14.2% 

< 1% FDR 344 46.9% 11.1% 
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Table 6. Empirical quantiles of DeltaCon similarities, ENQUIRE- and STRING-based edges 810 
counts, sorted by number of genes in the network. Median values with respect to each metric and 811 
range of gene counts are highlighted in bold. 812 

Metric Range of 
gene 

counts 

Quantiles 

0% 25% 50% 75% 100% 
DeltaCon 4-9 0.75 0.83 0.87 0.94 1.00 

10-14 0.67 0.78 0.81 0.83 1.00 

15-23 0.65 0.74 0.77 0.79 0.87 

24-119 0.56 0.65 0.69 0.72 0.81 

       

Edge count - 
ENQUIRE 

4-9 4 6 7 8 16 

10-14 6 8 10 13 43 

15-23 8 13 17 22 66 

24-119 18 36 49 77 295 

       

Edge count - 
STRING 

4-9 4 6 8 10 23 

10-14 6 11 15 20 50 

15-23 10 21 28 37 94 

24-119 19 54 89 146 591 

       

Connected 
components -  

ENQUIRE 

4-9 1 2 2 3 5 

10-14 1 3 4 5 8 

15-23 1 4 6 7 12 

24-119 1 4 6 7 15 

       

Connected 
components -  

STRING 

4-9 1 1 2 2 5 

10-14 1 2 2 3 6 

15-23 1 2 3 4 8 

24-119 1 2 2 4 12 
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FIGURES 

 
Fig. 1. Overview of ENQUIRE methodology. ENQUIRE accepts a set of PubMed identifiers 
as input, together with optional, user-specified parameters. The pipeline iteratively orchestrates 
reconstruction and expansion of literature-derived co-occurrence networks, until an exit 
condition is fulfilled. Additional information about each alphabetically indexed module and 
output is provided in the Mat.Met. section. For a more detailed flowchart, see Supp. Fig. 1. 
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Fig. 2. Example of ENQUIRE’s network reconstruction, expansion and post-hoc analyses. 
We used the PubMed identifiers (PMIDs) obtained from the query (“Ferroptosis”[MeSH 
terms] AND “Immune System”[MeSH terms]) NOT “review”[Publication Type] as input. A: 
visualization of ENQUIRE’s network expansion process. Newly found nodes and edges are 
indicated in red at each expansion. B: output of the automatic gene set reconstruction, using 
the original Gene/MeSH network as input and fuzzy c-means. For simplicity, only nodes 
referring to genes are enlarged and labelled, and a shortened description of computed gene sets 
of size 2 or bigger is provided. Sector sizes of the pie-chart-shaped nodes reflect their relative 
membership degree with respect to each cluster. C: topology-based enrichment analysis of 
Reactome pathways, using original and expanded networks, as described in the Methods 
section. 30 pathways whose adjusted p-value was significant in at least two networks are 
depicted. Reactome pathways are grouped based on “Top-Level Pathway” and “Disease” 
categories. FDR: Holm’s family wise error rate. 
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Fig. 3. Node weight distribution of ENQUIRE-derived gene networks correlate with 
relevance to the input literature corpus. We defined true and false positives genes according 
to their presence or absence in a Reactome pathway, whose reference literature was used to 
retrieve gene mentions via ENQUIRE’s gene normalization and network reconstruction. The 
statistics shows the aggregated results from 720 Reactome-derived input corpora. The 
aggregated distributions for true and false positive genes are segmented into quartiles. We 
defined four ranges of the node score 𝑊, indicated by squares, whose colors reflect Pearson 
standardized residuals resulting from a significant chi-square statistic. The lower chart depicts 
the enrichment of true positive genes, after pruning ENQUIRE-derived networks based on 
different values of 𝑊. Values are relative to the original proportion of true positives. 
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Fig. 4. Protein-coding genes from ENQUIRE-generated graphs significantly share 
functional associations. Panels (A) and (B) respectively report the unadjusted p-value density 
distributions of STRING-informed edge counts and DeltaCon similarities, arranged by number 
of protein-coding genes (network size). We used the H. sapiens functional association network 
from STRING to evaluate ENQUIRE-derived networks of protein-coding genes. We tested 
733 networks having 10 or more possible network realizations given the observed degree 
sequence. For each observed network size and degree sequence of ENQUIRE-generated gene 
networks, 1,000,000 and 10,000 samples were respectively generated to perform a test statistic 
on the observed edge counts and DeltaCon similarities. See Mat.Met. for additional 
information. The 733 tested networks are apportioned into quartiles based on network size, and 
for each the exact size is indicated (n). Within each network size interval, grey and red areas 
respectively highlight insignificant and significant p-values with respect to a globally-applied 
Benjamini-Hochberg correction (BH), and a percentage is indicated for those below 1% FDR. 
Diamonds indicate the observed data. 
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Fig. 5. ENQUIRE-generated graphs enhance the context resolution of pathway 
enrichment analyses. A: reference dendrogram showcasing the expected categorization of the 
case studies described in Table 1. The number following a case study abbreviated name 
indicates the expansion counter. Network expansions that did not yield any new gene were 
excluded. B: Topology-based pathway enrichment, obtained by applying 𝑄 score propagation 
and SANTA’s KNet function on ENQUIRE-informed gene-gene associations (see Post Hoc 
Analyses under Mat.Met.). The heatmap shows the unadjusted p-values for the 50 enriched 
Reactome pathways with at least one significant, adjusted p-value (5% FDR) and highest 
variance across case studies (the dendrogram was computed on the complete statistic). 
Pathways are clustered according to Reactome’s internal hierarchy. We respectively 
apportioned the dendrograms into 5 and 15 partitions to visualize their coherence to Major 
Topic and Reactome Categories. Legends for expansions, rounded corpus size, and p-values 
ranges are provided. C: Permutation tests of Baker’s gamma correlation between the reference 
dendrogram (A) and clustering obtained from alternative pathway enrichment analyses, as in 
B. Colored areas indicated probability intervals obtained from simulating correlations between 
reference and sampled dendrograms. See Mat.Met. for further details. 
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EXTENDED DATA (SUPPLEMENTARY FIGURES) 

 

Supplementary Figure 1. ENQUIRE’s flowchart. The pipeline’s schematics is described 
with respect to start and end points (grey ellipses), input, parameters, and generated data (blue 
parallelograms), algorithms (green rectangles), filtering (red triangles), pre-computed data 
(pink halfpipes), and branching points (yellow diamonds). NER: named-entity recognition. 
PMID: PubMed identifier. MeSH: Medical Subject Heading. Detailed explanation of the 
parameters and algorithms is provided in the main text. 
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Supplementary Figure 2. Example of Q score weighting. The top row shows three simulated 
co-occurrence networks 𝐺  with the same set of textmined genes (squares), generated with 
progressively higher edge-forming probability, and sampling edge weights 𝑤෥  from a uniform 
distribution in [0,1]. Genes from an immutable reference network 𝑁 containing both textmined 
and non-textmined genes (circles) are weighted by the 𝑄  score. For each gene 𝑔 in 𝑁 , its 
weight 𝑄 is a function of the textmined genes in the 𝑔-neighbourghood and their 𝑤෥-weighted 
distances in the network 𝐺. Nodes with relatively more connections to textmined nodes in the 
reference network possess higher 𝑄 scores, irrespective of being textmined or having a high 
node degree. See the non-textmined node Y and the textmined node J as an example. 
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Supplementary Figure 3 Memory and CPU usage of a typical ENQUIRE run. The chart 
shows the performance monitoring of the exemplary ENQUIRE run described in Results and 
Fig. 2, in which 2 expansions for a total of three iterations were performed. We used a Linux 
computer with 8 CPUs (2.5 GHz) and 16 GB of RAM. 6 cores were used for parallelization. 
Each dot represents a submodule launched by ENQUIRE, with the elapsed time at which it 
terminated as x-coordinate, and the maximum registered RAM usage, in the form of Resident 
Set Size (RSS, in megabytes), as y-coordinate. Cumulative elapsed time at the end of each 
reconstruction-expansion cycle is indicated. Lines in-between processes are colored by the 
maximum CPU usage, which is defined as the used CPU time divided by the time the process 
has been running, in percentage. This estimate does not typically add up to 100%. Higher CPU 
usage imply higher workload for each of the utilized cores. Resource usage of parallel socket 
cluster (PSOCK) protocol can be underestimated, as this protocol generates parallel processes 
whose process identifiers (PIDs) are independent of ENQUIRE’s PID and not monitored. 
Nevertheless, ENQUIRE restricts the memory usage of PSOCK-based parallel processes, so 
that their aggregated memory usage is always less than 25% of the available RAM at a given 
time, possibly reducing the effective number of cores used. 
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Supplementary Figure 4. Diversity in nodes and edges from reconstructed and expanded 
networks generated by ENQUIRE. We computed similarity measures between ENQUIRE-
inferred, co-occurrence gene networks based on the case studies described in Tsable 1. The 
number following a case study abbreviated name indicates the expansion counter. Network 
expansions that did not yield any new gene were excluded. Panel A depicts similarities between 
the networks’ node sets, while panel B depicts similarities between edge sets. Numbers and 
color gradient report Szymkiewicz-Simpson overlap coefficient percentages (OC). An OC of 
0 % indicates no overlap, while an OC of 100% indicates the smaller node or edge set is a 
subset of the larger one. By construction, same-case-study original and expanded networks 
possess OCs of 100% with each other. OC between the positive control (CTR) and other case 
study networks are highlighted in red  
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Supplementary Figure 5. Constitutively enriched subpathways of Diseases of signal 
transduction by growth factor receptors and second messengers (R-HSA-5663202). A: 
differences in network distances between genes belonging to R-HSA-5663202 subpathways 
and other Reactome pathways, based on STRING’s reference physical network 
(FDR-adjusted p-value = 0.27, Mann-Whitney U test). The binned network distances are 
used by KNet to compute a topology-based pathway enrichment. B: differences in Spearman 
correlations between KNet p-values and network size, in R-HSA-5663202 subpathways and 
other Reactome pathways ( FDR-adjusted p-value = 0.79 , Mann-Whitney U test). C: 
differences in Spearman correlations between KNet p-values and corpus size, in R-HSA-
5663202 subpathways and other Reactome pathways (FDR-adjusted p-value = 0.23, Mann-
Whitney U test). D: differences in p-value distributions between R-HSA-5663202 subpathways 
and other pathways, across all case studies (FDR-adjusted p-value =  6.5 ∙ 10ିହ , mixed 
model ANOVA). E: differences in p-value distributions between R-HSA-5663202 
subpathways and other pathways, for each major topic 
( FDR-adjusted p-value (Positive Control) = 0.04 – Mann-Whitney U test, 
FDR-adjusted p-value (Oligodendrocyte Differentiation) = 1.3 ∙ 10ିଶ , 
FDR-adjusted p-value (Signal Transduction in Solid Tumors) = 1.4 ∙ 10ିସ , 
FDR-adjusted p-value (Antigen Presentation in Autoimmune Diseases) = 2.3 ∙ 10ିହ , 
FDR-adjusted p-value (Macrophage's Signal Transduction in Disease) = 3.9 ∙ 10ିସ – 
mixed model ANOVA). See Supp. Information for details on the test statistics. 
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