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Abstract

Models have always been central to inferring molecular evolution and to reconstructing

phylogenetic trees. Their use typically involves the development of a mechanistic framework

reflecting our understanding of the underlying biological processes, such as nucleotide substitu-

tions, and the estimation of model parameters by maximum likelihood or Bayesian inference.

However, deriving and optimizing the likelihood of the data is not always possible under complex

evolutionary scenarios or tractable for large datasets, often leading to unrealistic simplifying

assumptions in the fitted models. To overcome this issue, we couple stochastic simulations

of genome evolution with a new supervised deep learning model to infer key parameters of

molecular evolution. Our model is designed to directly analyze multiple sequence alignments

and estimate per-site evolutionary rates and divergence, without requiring a known phylogenetic

tree. The accuracy of our predictions matches that of likelihood-based phylogenetic inference,

when rate heterogeneity follows a simple gamma distribution, but it strongly exceeds it under

more complex patterns of rate variation, such as codon models. Our approach is highly scalable

and can be efficiently applied to genomic data, as we show on a dataset of 26 million nucleotides

from the clownfish clade. Our simulations also show that the per-site rates obtained by deep

learning increase the likelihood of the true tree and could therefore lead to more accurate

phylogenetic inference. We propose that future advancements in phylogenetic analysis will

benefit from a semi-supervised learning approach that combines deep-learning estimation of
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substitution rates, which allows for more flexible models of rate variation, and probabilistic

inference of the phylogenetic tree, which guarantees interpretability and a rigorous assessments

of statistical support.
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Introduction1

Since the seminal work by J. Felsenstein (1973) to infer phylogenetic trees by maxi-2

mum likelihood, evolutionary models based on probabilistic approaches have been the central3

modeling framework in phylogenetics. This has led to a tremendous increase in our ability to4

infer evolutionary relationships, to investigate the dynamics of molecular evolution, to model5

the evolution of complex traits across lineages and to test evolutionary hypotheses to advance6

our understanding of the factors shaping the tree of life (Felsenstein, 2003; Lemey et al., 2009).7

While other methods based on genetic distances or parsimony criteria are still employed, for8

instance, to initialize phylogenetic tree inference or to provide a fast preliminary description of9

evolutionary processes, probabilistic approaches are widely seen as the best practice in the field.10

One of the main challenges with the development of probabilistic models of evolution is11

to ensure that the parameters incorporated in the models are valid and identifiable when applied12

to real biological data. Yet, it is difficult, and in most cases even impossible, to experimentally13

generate data that would allow us to observe evolution in action and validate the estimates of the14

model parameters inferred from the outcome of such experiments. Indeed, while experimental15

evolution is applicable to some organisms with short generation times (e.g. for bacteria; Lenski,16

2017), simultaneously capturing the evolutionary dynamics that result in genome evolution and17

the traits involved in adaptation, remains impossible for the most part. This means that validating18

evolutionary models is challenging and, when analyzing these evolutionary dynamics, we are19

inherently unable to compare our model estimates with a ground truth.20

To overcome this limitation, most methods to infer evolutionary processes use simula-21

tions to assess the identifiability of model parameters and assess the robustness of the estimation.22

These simulations are synthetic realizations of evolutionary processes that are obtained through23

stochastic simulations. In a phylogenetic framework, we can use birth-death processes to generate24

phylogenetic trees and apply Markov models of nucleotide substitutions to simulate the evolution25

of a DNA sequence along the tree. Then, the same stochastic processes are typically used to also26

derive a likelihood-based model to estimate the generating parameter values from the simulation27

outcomes. For instance, we can derive the likelihood of a phylogenetic tree under a birth-death28

process and use it to estimate the speciation and extinction rates (Nee et al., 1994; Gernhard,29

2008). We can also derive the likelihood of a DNA sequence alignment under a Markov process30
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of evolution and use it to infer the underlying tree (Felsenstein, 1981). Comparisons between1

simulated and estimated parameter values (e.g., the true vs inferred phylogenetic tree) are then2

used to assess the accuracy of likelihood-based inference. This approach is routinely used for3

molecular evolution (e.g. Zaheri et al., 2014), phenotypic evolution of quantitative and discrete4

traits (e.g. Harmon et al., 2010; Maddison and FitzJohn, 2015), phylogenetic inference (e.g.5

Salamin et al., 2005), species diversification (Rabosky, 2006; Stadler, 2011), fossil preserva-6

tion (Heath et al., 2014; Silvestro et al., 2019), biogeographic inference (Landis et al., 2013;7

Hauffe et al., 2022).8

Despite its apparent circularity, this is a robust approach to validate the ability of a9

likelihood-based model to recover the parameters of the generative process correctly and can be10

used to verify their identifiability (e.g. Ree and Sanmartín, 2018; Silvestro et al., 2018; Louca11

and Pennell, 2020). Further, simulations generated while violating model assumptions can help12

quantifying the limits of our models and the conditions where the models will fail. A potential13

limitation of this use of simulations is that they tend to be oversimplified realizations of the14

biological process, which can impact our assessments of model accuracy (Nute et al., 2019).15

Beside the use of likelihood-based models to infer the biological processes of interest,16

there is a growing interest in machine learning approaches to detect patterns associated with17

evolutionary processes. The use of Deep Learning (DL) has quickly expanded into a wealth18

of applications across scientific fields (e.g., Jumper et al., 2021). In evolutionary biology, deep19

neural networks have been proposed to infer speciation and extinction rates (Silvestro et al.,20

2020; Lambert et al., 2023), to study coevolution (see Sapoval et al., 2022, for a review), but21

also, for example, to infer phylogenetic trees using quartets (Zou et al., 2019; Suvorov et al.,22

2019; Kulikov et al., 2023), perform substitution model testing (Abadi et al., 2020) or place new23

samples on an existing phylogenetic tree (Jiang et al., 2022). However, the development of DL24

in phylogenetics and evolutionary models is restricted because training datasets are scarce or25

cannot be generated unless we restrict our focus to short-term evolutionary processes. Further,26

DL approaches often consist of (or are viewed as) over-parameterized black-box models that do27

not allow a direct interpretation of the parameters, contrary to probabilistic approaches (Sapoval28

et al., 2022).29

Although probabilistic inference and DL can be seen as very different methodologies30

to analyse data, there are analogies in how model validation is performed. Indeed, generative31
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models of evolution based on stochastic simulations can be coupled with supervised DL models,1

just like the same simulations are used to benchmark likelihood-based models. We show here2

that this use of DL models can complement likelihood-based approaches to estimate parameters3

that are interpretable and relevant for evolutionary models (Fig. 1).4

In this paper, we develop a DL model to infer the rates of molecular evolution from5

a multiple species alignment of DNA sequences. We couple stochastic simulations with a6

new supervised learning model based on recurrent neural networks and sparse networks with7

parameter sharing. Our model and results show that the conceptual differences between standard8

unsupervised likelihood-based models and supervised DL are smaller than generally assumed9

in the context of molecular evolution. Predictions of site-specific substitution rates are robust10

across a range of evolutionary scenarios, with accuracy matching or exceeding that of state-of-11

the-art likelihood estimations. Our approach can efficiently analyze millions of sites to compare12

evolutionary rates at genomic scales. Finally, we show that the predicted rates have the potential13

to improve the likelihood-based estimation of phylogenetic trees, indicating that the application14

of this approach might have broader implications in phylogenetic inference.15

Going forward, we propose that DL methods can be integrated within unsupervised16

likelihood approaches to help incorporating more realistic evolutionary scenarios in phylogenetic17

inference.18

Figure 1: Schematic representation of the workflow used to estimate parameters of interest
within an unsupervised model used within a likelihood framework (left) and a supervised model
used with a DL framework (right). Both models use alignments of orthologous sequences of
nucleotides (empirical or simulated data) to infer substitution rates and genetic distances. The
simulations are used differently in the two cases, to either validate the model in a likelihood
framework or to simulate training datasets in the DL framework.
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METHODS1

A deep learning model to infer molecular evolution2

We developed a DL framework to estimate the total amount of divergence across a set of3

nucleotide sequences and site-specific substitution rates. The sequences are assumed to be part4

of an alignment of orthologous genes or genomic regions sampled across multiple species.5

Our implementation includes two modules: a simulator that can efficiently generate6

realistic datasets of aligned nucleotide sequences and a DL module that can be trained on these7

datasets to make predictions from empirical data. Although we employed standard substitution8

models for generating nucleotide alignments, we incorporated a diverse array of modes of9

rate heterogeneity across sites, only a few of which are currently available in likelihood-based10

phylogenetic software. We used this to show that our framework can help identifying patterns11

that would otherwise be difficult to parameterize in a likelihood context.12

Simulating molecular evolution13

We simulated the evolution of orthologous sequences within a phylogenetic framework14

assuming an independent Markov process of substitution at each site. We first generated a15

phylogenetic tree with a random topology and assigned exponentially distributed branch lengths16

sampled from ν ∼ Exp(λ ) with log(λ ) ∼ U (log(0.0002), log(0.2)). The total length of the17

phylogenetic tree was therefore T =∑i(νi), where i∈{1, ...2N−1} was the index of each branch18

in a tree of N species. We simulated the evolution of nucleotides based on three substitution19

models (JC, HKY, GTR; Jukes and Cantor, 1969; Hasegawa et al., 1985; Tavaré, 1986) using20

the program Seq-Gen (Rambaut and Grass, 1997) through its Python interface implemented21

in Dendropy (v.4.5.2 Sukumaran and Holder, 2010). Across simulations, we varied the model22

parameters, i.e. base frequencies and instantaneous substitution rates, by sampling them from23

distributions chosen to reflect a broad range of evolutionary scenarios (Table S1).24

Since we focused our DL model on the inference of site-specific evolutionary rates, we25

implemented different distributions of rate heterogeneities across sites. Regardless of the mode of26

rate heterogeneity (Figs. S1, S2), site-specific evolutionary rates were always rescaled to relative27

rates, such that their mean across all sites equals 1 (Yang, 1994). First, we implemented a gamma28

4

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.08.556821doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556821
http://creativecommons.org/licenses/by-nc/4.0/


mode, where site-specific relative rates were drawn from a gamma distribution, ri ∼ Γ(α,β ) with1

the shape and rate parameters set equal and drawn from log(α) = log(β )∼U (log(0.1), log(2)).2

This setting generated rates with an average value of 1, with increasing heterogeneity when the3

shape and rate parameters were small (Yang, 1993). This mode of rate heterogeneity reflects4

the standard gamma model of rate heterogeneity, which is however typically discretized in5

four or more rate classes (Yang, 1994), and which is almost ubiquitously used in phylogenetic6

inference. Second, we implemented a bimodal mode of rate heterogeneity where sites are7

randomly assigned a high or a low rate based on log(ri)∼ {−m,m} with m sampled from an8

exponential distribution Exp(1). Third, we implemented a spike-and-slab mode as a variation9

of the bimodal model, in which most sites evolve under low rates and few sites evolve under10

high rates. The low background rates were drawn from a log-normal distribution such that11

log(ri) ∼ N (0,0.1), while high rates were obtained by multiplying the background rates12

by a factor m ∼ U (2,10). Sites were assigned to a high rate randomly with probability r,13

with log(r) ∼ U (log(0.01), log(0.1)). Fourth, we simulated rates based on a non-stationary14

distribution obtained through a geometric Brownian motion process. In this case, a vector of15

rates was sampled from a geometric Brownian process such that log(ri+1) ∼ N (log(ri),σ),16

with σ ∼ U (0.02,0.2). Fifth, we implemented a codon mode of rate heterogeneity, in which17

triplets of nucleotides were assigned low, very low, and high rates, for the first, second and third18

positions, respectively (Nielsen and Yang, 1998). We sampled the rate of the second position19

from a log-normal distribution, such that for triplet i, log(r(2)i )∼ N (0,0.1). Rates for the first20

and third positions were then obtained as r(1)i = m× r(2)i , with m ∼ U (1,5) and r(3)i = n× r(2)i ,21

with n ∼ U (5,15), respectively.22

We additionally simulated datasets with rates varying among a variable number of blocks23

of adjacent sites, thus introducing auto-correlation in rate heterogeneity (Fig. S2). We drew the24

number of blocks from a geometric distribution with a mean of 100 and truncated at 1000 (i.e. the25

number of sites in the alignments), and randomly sampled the sizes of the blocks. We then26

applied rate variation among blocks using the gamma, bimodal, spike-and-slab and geometric27

Brownian modes described above. Finally, we included datasets generated under mixed modes28

of rate heterogeneity (Fig. S2), in which the alignment was split into two blocks of random size,29

each with its own randomly selected rate heterogeneity mode.30
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Architecture and training of the deep learning model1

We implemented a DL model (hereafter called phyloRNN) that takes an alignment of2

nucleotides as input and returns two outputs: site-specific relative rates of evolution and the3

expected number of substitutions per site, which is equivalent to the sum of all branch lengths4

in a phylogenetic inference framework. For simplicity, hereafter we will refer to this second5

output as total tree length, even though our model does not use any tree representation. We built6

our model based on a recurrent neural network (RNN) to capture the sequential nature of the7

input data. Specifically, we used a bidirectional long short-term memory architecture (bLSTM;8

Hochreiter and Schmidhuber, 1997; Graves and Schmidhuber, 2005; Gers et al., 2000), with a9

site-specific output, which is a multidimensional representation of the initial alignment. Each10

site-specific output of the bLSTM layer fed into two individual fully connected deep neural11

networks with parameters shared across all sites. The first network returned a site-specific12

relative rate. The output of the second network was instead concatenated across all sites and13

fed into a fully connected layer to return a prediction of the total tree length. A schematic14

representation of the model is shown in Fig. S3.15

After preliminary testing based on validation accuracy, we chose the following archi-16

tecture for our experiments: two bLSTM layers of 128 and 64 nodes, respectively, with a tanh17

activation function and sigmoid recurrent activation. The output of the second bLSTM layer, for18

each alignment, was thus of shape (n. sites × 64) and served as input to the two deep networks19

that output site-specific rates and tree length. For the site-specific rates, we used a neural network20

with two hidden layers of 64 and 32 nodes and a swish activation function (Ramachandran21

et al., 2017), followed by an output layer with 1 node and a softplus output function (Szandała,22

2021), reflecting a distribution of rates constrained to positive values. The concatenated output23

(one value for each site), was then subjected to a rescaling function dividing each value by the24

mean across all sites. This rescaling ensures that the estimated rates had a mean equal to 1, thus25

transforming them into relative rates. The output of the second bLSTM layer was also used to26

infer the log-transformed total tree length, by feeding into site-specific deep networks with two27

hidden layers of 64 and 1 nodes and swish activation functions. As for the site-specific rates28

all networks shared the same parameter values. Their output (of size 1 for each site) was then29

concatenated across sites and fed into a fully connected hidden layer with 8 nodes and swish30
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activation function. The output layer had one node and a linear activation function reflecting1

the negative-to-positive plausible range of values for the log-transformed tree length.2

We trained our model based on 10,000 simulated alignments of 50 species and 1,0003

sites, each with a randomly selected mode of rate heterogeneity, of which 80% were used as a4

training and 20% as validation set. We used the same phyloRNN model trained on an equal mix5

of simulated datasets for all the comparisons outlined below. Each alignment was transformed6

into a series of two-dimensional arrays of numbers after one-hot-encoding the sequence of7

nucleotides. The data fed to the model was thus composed of 1,000 two-dimensional arrays8

(one per site in the alignment) with each a size defined by the number of species times the9

one-hot encoding of each nucleotide present at a single site (i.e. 50 species×4 states = 200).10

These two-dimensional arrays were then stacked on a third dimension representing the number11

of instances (i.e. batches used in the training or datasets used for testing) analysed to create the12

final input for our model (n. instances, n. sites, n. species × n. bases).13

The training and validation losses were calculated as the sum of the mean squared errors14

(MSE) computed across per-site rates and total tree length. We log-transformed tree lengths to15

reduce the range of loss values and improve the efficiency of the optimization. We trained the16

model over multiple epochs with a batch size of 100 and monitoring the validation loss with a17

patience parameter set to 20 epochs. The model was calibrated in fewer than 100 epochs, after18

reaching the lowest validation accuracy combining the loss functions assigned to the per-site19

relative substitution rates and the log-transformed tree length, (Fig. S4). We kept the model20

parameters inferred from the epoch with lowest validation loss. We implemented our model21

based on the Functional API of the Tensorflow module (Abadi et al., 2015) and trained it using22

the RMSprop optimizer with learning rate set to 1e−3. Our phyloRNN model and the associated23

scripts are available in a open-source repository: github.com/phyloRNN.24

Accuracy of rate and tree length estimates25

We validated the performance of our model based on a test set of 600 alignments26

simulated under the different modes of rate heterogeneity described above. We compared the27

accuracy of the estimated per-site relative rates and number of substitutions based on our28

phyloRNN model with those obtained through maximum likelihood phylogenetic inference.29

Specifically, we analyzed each alignment with PhyML v.3.3 (Guindon et al., 2010) running a30
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maximum likelihood optimization. In a typical phylogenetic analysis, model testing is carried1

out first to select the best fitting substitution model (Abadi et al., 2019). Here, we assumed that2

the true substitution model (here one among JC, HKY, and GTR; Table S1) was known and3

we used it in the PhyML optimization to reduce computing time. We repeated the phylogenetic4

analyses under two rate heterogeneity models: i) the discrete gamma model (Yang, 1994) –by far5

the most commonly used in phylogenetic inference– and ii) the more flexible –but less frequently6

used– free-rates model, which allows for a number of rates to be inferred without making a7

specific assumption about their distribution (Soubrier et al., 2012). We obtained the marginal8

per-site rates using the –print_site_lnl command in PhyML (column Posterior mean in9

the output file). We quantified the average number of substitutions per site as the sum of all10

branch lengths from the inferred phylogenetic tree.11

After obtaining the relative rates and average number of substitutions per site under12

both phyloRNN and the two likelihood models (discrete gamma and free-rates), we compared13

them against the respective true values to quantify their accuracy. We used MSE across all14

sites and all simulations to quantify the performance of the different models and additionally15

computed the coefficient of determination R2 for each alignment to compare the estimated16

pattern of rate variation across sites against the true rates. To further explore the results, we17

divided the test set into subsets based on the rate heterogeneity model that was used to generate18

them (Figures S1, S2) and calculated MSE and R2 for each subset. We calculated the same19

summary statistics to evaluate the accuracy of the estimated tree length.20

Impact of rate estimated by phyloRNN on tree inference21

We evaluated the potential effects of using phyloRNN estimates of rate heterogeneity in22

phylogenetic inference. Since standard phylogenetic software does not allow tree inference with23

predefined per-site rates, we used two indirect approaches to approximate the impact of using24

phyloRNN rates as opposed to the two existing models implemented in PhyML (discrete gamma25

and free-rates).26

First, we compared the likelihood obtained on the true tree using the estimated rates27

and the true simulated per-site rates. We computed the likelihood while fixing the topology28

and branch lengths to their true values (i.e., the simulated tree) and using 1) the true simulated29
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per-site rates, 2) the marginal per-site rates estimated by PhyML under the discrete gamma1

and free-rates models, and 3) the per-site rates estimated with phyloRNN. We recomputed the2

likelihood of the true tree based on the fixed rates per site and the true parameters for the3

substitution model (script available at github.com/phyloRNN/phyloRNN). For each simulated4

alignment, we compared the likelihood obtained by the true versus estimated rates by calculating5

the difference in log-likelihood. We summarized these comparisons by computing the proportion6

of datasets in which the likelihood of the true tree substantially decreased (i.e. more than 27

log-likelihood unit differences) using estimated versus true rates and interpreted them as a8

measure of the potential impact of the gamma, free-rates, and phyloRNN models on the accuracy9

of tree inference.10

Second, we compared, for each model used to estimate rates per site, the likelihood of11

the true tree against the likelihoods of a posterior sample of trees obtained from a Bayesian12

analysis. To this aim, we first obtained a posterior sample of 50 trees for each test dataset using13

MrBayes (Ronquist et al., 2012) under a GTR + gamma model and default prior settings. We14

then recomputed the likelihood of both the set of sampled trees and the true tree based on the15

rates inferred under the gamma and free-rates models (as inferred with PhyML) and under the16

phyloRNN model. Finally, we ranked all trees by their likelihood to assess whether the likelihood17

of the true tree falls within the ranged of sampled values in the posterior set of trees.18

If the estimated rates adequately reflected the true rate variation in the data, we expected19

the likelihood of the true tree to rank somewhere within the range of likelihoods of the sampled20

trees, as this would indicate that the true tree is likely to be included in the posterior distribution21

obtained under a gamma model. In contrast, if in a substantial proportion of simulations the22

likelihood of the true tree was lower than that of the sampled trees, then the estimated rates23

might be inadequate by assigning significantly higher likelihood to solutions that differ from the24

truth. Finally, if in a substantial proportion of simulations the likelihood of the true tree is higher25

than that of the sampled trees, then the rates, e.g. estimated through a free-rates or phyloRNN26

model, would favor sampling the true tree over alternatives sampled under a discrete gamma27

model.28

Since the trees were obtained under a gamma model, we expected the likelihood of29

the true tree based on rates from the gamma model to be found within the sampled range or30

lower (if the rates are inadequate). A higher likelihood is still possible, however, if the subset of31

9

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2023. ; https://doi.org/10.1101/2023.09.08.556821doi: bioRxiv preprint 

https://github.com/phyloRNN/phyloRNN
https://doi.org/10.1101/2023.09.08.556821
http://creativecommons.org/licenses/by-nc/4.0/


50 trees does not capture the actual upper boundary of the posterior distribution of likelihood1

values. With rates inferred from the free-rates or phyloRNN models, we instead expected a larger2

proportion of simulations in which the true tree returned a higher likelihood than the sampled3

ones because of the better fit to the underlying true mode of rate heterogeneity.4

Analysis of the clownfish genomes5

We applied our model to a genomic dataset of 28 species of clownfish representing6

the first chromosome (Marcionetti and Salamin, 2023). Even though phyloRNN does allow7

for gaps in an alignment, we decided for simplicity to filter out positions in the alignment8

containing gaps and ambiguities reducing the initial dataset of over 46 millions nucleotides to a9

total of 26,294,222 aligned nucleotides. We trained a new model containing 10,000 simulated10

datasets to match the input of 28 taxa and 1,000 nucleotides. We used it to predict per-site11

relative substitution rates and total tree length (as a measure of overall divergence across the12

chromosome) through non-overlapping sliding windows of 1,000 sites. We generated histograms13

of the rate heterogeneity across a random subset of exons (filtering out those of length smaller14

than 500 nucleotides) to visually assess whether a gamma distribution adequately approximates15

the empirical distribution of rates. Finally, we tested whether protein-coding regions showed16

consistently lower substitution rates compared with neighboring non-coding regions as expected17

if they are functionally constrained. We estimated the mean substitution rate for each exon18

(filtering out those of length smaller than 250 nucleotides; results did not change if the limit was19

set to 100 nucleotides) as well as the mean rates of the directly adjacent non-coding regions20

selecting 250 nucleotides before and after the start or end of each exon selected. We performed21

paired t-tests to test whether the rates were significantly different between exons and directly22

adjacent regions.23

RESULTS24

Performance of the phyloRNN model25

We measured MSE and R2 values for the rate predictions obtained from the trained26

model on the test set and the rates estimated by PhyML with the gamma and free-rates models.27
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The results showed that our model provided substantially more accurate estimations of the1

per-site rates compared with maximum likelihood estimates obtained through a gamma model2

of rate heterogeneity (lower MSE and higher R2 values; Table 1). The phyloRNN model also3

outperformed maximum likelihood estimations based on the more flexible free-rates model4

under most scenarios, especially the more complex heterogeneity modes (Table 1), although5

the difference was smaller than with the gamma model. After breaking down the results by6

the simulated mode of rate heterogeneity, we found that the improvement in rate estimation is7

particularly strong in the case of codon mode of rate heterogeneity (MSE values decreasing8

by one order of magnitude when using phyloRNN) and in the case of autocorrelated rates9

(Fig. 2). The phyloRNN estimates appeared to consistently outperform maximum likelihood10

estimates particularly in their ability to recover multimodal distributions of rates across sites11

(Figs. 2, S5–S7).12

Although the phyloRNN model did not use (or attempt to estimate) a phylogenetic tree,13

its estimation of the total tree length is unbiased (Fig. 3) and showed comparable accuracy with14

the estimates obtained from a maximum likelihood analysis based on a gamma model of rate15

heterogeneity, while the free-rates model generally produced the most accurate estimations. The16

accuracy of tree length estimation was high in most simulations with mean absolute percentage17

errors generally below 15% (Table 2). Tree lengths were inferred with higher error for simulations18

based on mixed modes of rate heterogeneity and this was the case across all three inference19

methods.20

Impact on tree estimation21

In our simulations, the likelihood of the true tree based on the true per-site rates substan-22

tially exceeded (∆ logL > 2) the likelihood of the same tree using a discrete gamma model of23

rate heterogeneity in 90.2% of the datasets. This means that, in a large fraction of the simulations,24

a gamma model decreased the likelihood of the correct underlying phylogenetic tree (Table S2).25

We observed a similar outcome under the free-rates model, where the likelihood of the true tree26

decreased in 89.6% of the simulations. In contrast, phyloRNN rates resulted in a substantially27

lower likelihood for the true tree only in 29.7% of the simulations, suggesting that the use of28

these rates in phylogenetic inference might result in more accurate estimated trees (Table S2).29
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A change in absolute likelihood does not necessarily imply that a model is less likely to1

sample the true tree in phylogenetic inference, because it could simply reflect a homogeneous2

shift in the likelihood surface. We therefore also evaluated the ranking of the true tree within a3

posterior sample of trees for each testing dataset described above. We sampled 50 trees from the4

posterior samples of MrBayes and ranked them in decreasing order based on their likelihood5

recomputed under predicted rates from the gamma, free-rates and phyloRNN models as above.6

We then compared the likelihood of the true tree obtained with the same models with the ranked7

sampled trees. Under the gamma model, the likelihood of the true tree was found within the8

range of sampled trees in 86.0% of the simulations and ranked first in 1.8% of the cases. In the9

latter case, the mean difference in log-likelihood between the true tree and the best tree from the10

posterior samples was small (ranging from -0.130 to -7.757, median of -1.857), which suggests11

that the true tree would in fact be included in a more extensive posterior sample including more12

than the 50 trees considered here. However, the true tree ranked last, and thus was outside the13

sampled range, in 12.2% of the simulations, with a range of log-likelihood differences between14

the true tree and the worst tree from the posterior samples ranging from 0.146 to 2129.50615

(median of 24.137). This indicates that, for most of these cases, the true tree was unlikely to be16

sampled by the Bayesian algorithm, and thus excluded from the estimated posterior distribution17

of trees.18

In contrast, under the rates estimated with phyloRNN, the true tree ranked last in only19

3.7% of the simulations (log-likelihood difference ranging from 0.309 to 3602.207 with a median20

of 16.141), while it ranked first in 13.5% (log-likelihood difference ranging from -0.006 to21

-1841.836 with a median of -38.206). This suggests that in a substantial proportion of datasets,22

the phyloRNN rates would favor the true tree over the trees sampled under a gamma model. For23

comparison, the free-rates model performed similarly to phyloRNN, with 3.2% of simulations24

with the true tree ranking last (log-likelihood difference ranging from 0.033 to 2806.083 with a25

median of 10.348) and 12.2% of the simulations with the true tree ranking first (log-likelihood26

difference ranging from -0.125 to -1341.208 with a median of -20.146).27

The rank of the true tree in all these comparisons did not depend strongly on the mode28

of rate heterogeneity, the model of substitution or the tree length used in the simulations which29

were not significant when analysed with a linear model. However, we did find that instance30

where the true tree ranked last under a gamma model (therefore being excluded from the sampled31
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posterior distribution of tree) were associated with significantly higher error in both estimated1

per-site rates and tree length (Fig. S8). This corroborates the idea that an improved estimation of2

these parameters can lead to a more accurate tree estimation.3

Evolutionary rates and divergence in clownfish4

The estimated substitution rates along chromosome 1 in clownfish showed a substantial5

degree of heterogeneity across sites, with 99% of the values ranging between 0.09 and 0.69, thus6

encompassing a 7-fold rate variation (Fig. 4 a). The overall distribution of rate heterogeneity7

across all ∼26M sites followed quite closely a gamma distribution (Fig. 4 a), indicating that a8

gamma model should approximate well the true rate variation at a broad genomic scale. However,9

the distributions of substitution rates across smaller genomic regions showed that across-site10

rate heterogeneity often diverged substantially from a gamma distribution, showing multimodal11

patterns and heavy-tailed distributions (Fig. 4 b-i).12

The degree of clownfish divergence (the total tree length) estimated within blocks of13

1,000 sites revealed up to ∼4-fold variation in estimated number of substitutions across the14

chromosome. The distribution of substitution rates per site also highlighted regions in the15

chromosome spanning several thousands of sites that are more conserved (i.e. low average rates)16

and others characterized by much higher rates (Fig. 5).17

When comparing the substitution rates between coding and non-coding regions, we found18

substitution rates in exons to be lower than the rates in adjacent regions in the chromosome in19

82% of the 854 exons analyzed. The mean rate in exons was on average ∼14% lower than in the20

adjacent non-coding regions (Fig. 5). Paired t-tests showed that this rate difference was overall21

significant (p-value < 1e−90,T <−23.00, 95% confidence interval: [-0.06, -0.05]), while the22

left and right adjacent regions did not differ from one another (p-value = 0.26,T <−1.12, 95%23

confidence interval: [-0.01, 0]).24

DISCUSSION25
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A new deep learning model to infer molecular evolutionary rates1

We presented a new framework using stochastic simulations to train a DL model and2

estimate site-specific rates of evolution and total tree length from an alignment of nucleotide3

sequences. We specifically designed the architecture of our model to reflect the characteristics4

of molecular data and assumptions behind the evolution of DNA sequences. Indeed, the bLSTM5

layers capture the sequential nature of DNA data, while the use of site-specific networks with6

parameter sharing reflects the fact that each feature in the input layer is an instance of the same7

nature (i.e. a nucleotide).8

Our implementation allowed us to estimate with high accuracy the evolutionary rates for9

each site of an alignment together with the total evolutionary divergence in the alignment, which,10

in a phylogenetic context, is quantified by the tree length. This was done using solely the infor-11

mation from the alignment and without the addition of a defined phylogenetic tree in the input12

to our phyloRNN model. We showed that our model outperforms likelihood estimations based13

on the standard gamma distribution of rate heterogeneity and that it matched or outperformed,14

depending on the rate heterogeneity mode used, the estimates from the more parameter-rich and15

less frequently used free-rates model. The computational efficiency of our approach makes it16

highly scalable, allowing for the analysis of large-scale genomic data.17

Evolutionary inference using phyloRNN18

While rate heterogeneity is generally considered as a nuissance parameter in phylogenetic19

inference (Yang, 1994), an accurate estimation of substitution rates per site can be used to identify20

genomic regions that are under evolutionary constraints or deviate from the average pattern21

across genomic regions (Mayrose et al., 2005). It can also be used to identify protein coding22

genes because of the significantly reduced rate of evolution compared with adjacent genomic23

regions, as we found in the clownfish dataset (Fig. 5). These results could be coupled with other24

approaches used in genomics to help annotate de novo genome assemblies or to identify regions25

of interest that show unexpected levels of conservation outside of the protein-coding genes.26

The analyses of the genomic data for clownfish allowed us to look at the distribution27

of rates across a large empirical dataset. Although the distribution of rates corresponds to a28

gamma distribution when the full set of ca. 26 million sites are considered, the distributions29
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for individual exons can drastically differ from a gamma distribution (Fig. 4). A similar pattern1

had been previously shown in the distribution of average rates across genes (Bevan et al., 2007)2

instead of individual sites like in our study, or in datasets with low level of variation (Jia et al.,3

2014). To tackle such cases in a likelihood framework, complex mixture of gamma distributions4

can be used to model this distribution of rate heterogeneity (Mayrose et al., 2005), but at the cost5

of additional complexity during the optimization process (Bevan et al., 2007). In contrast, our6

phyloRNN model can easily account for complex distributions through the simulation of various7

types of rate heterogeneity.8

The gamma distribution to model rate heterogeneity was introduced in a landmark paper9

by Z. Yang in 1994 (Yang, 1994) and led to a substantial improvement in likelihood-based tree10

inference across most empirical datasets. Although the fit of models of evolution including a11

gamma distribution is drastically improved when compared to models without rate heterogeneity,12

the use of a gamma distribution is not based on a biological assumption. Additionally, our13

results showed that deviations from the gamma distribution can have a large impact on the basic14

estimates of rates per site or tree length (Tables 1, 2). Alternative models have been proposed to15

include more biological realism (Heaps et al., 2020), and allow for more flexible distributions,16

like the free-rates model which is implemented in some phylogenetic software (e.g., the PhyML17

program used here and IQTREE (Minh et al., 2020)). Other programs use a discrete-rates CAT18

model, implemented in RAxML (Stamatakis, 2014) and FastTree2 (Price et al., 2010), which19

is more efficient computationally than fitting a gamma distribution. Finally a full Bayesian20

method to simultaneously estimate the substitution model and rate at each site has also been21

proposed (Wu et al., 2013), but it involves a large number of parameters with unclear effects22

on tree inference. The model we developed here could lead to an alternative, potentially more23

efficient, approach, where rates per site are inferred prior to phylogenetic inference and without24

assuming any specific distribution. This approach would reduce the number of free parameters25

in the phylogenetic inference model and potentially have a beneficial impact on its accuracy.26

Impact on phylogenetic inference27

Including rate heterogeneity has been shown to have a large impact on phylogenetic28

inference (Yang, 1994; Sullivan and Swofford, 1997; Abadi et al., 2019). Our simulations29

further demonstrated that an accurate modeling of the rate variation across site will also affect,30
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sometimes drastically, the estimation of the tree likelihood. The effect is not simply a monotonic1

increase or decrease of the likelihood surface, but shows also an impact on the ranking of2

the trees. We showed it indirectly by comparing the likelihood of sampled trees computed by3

assigning rates per sites estimated using the gamma, free-rates and phyloRNN models. The4

changes in log-likelihood values demonstrate that an inaccurate estimation of the rates per site5

can bias tree inference and result in significantly lower likelihood of the true tree compared to6

alternative hypotheses.7

In likelihood-based phylogenetic inference, nucleotide frequencies are routinely set equal8

to their empirical values calculated from the alignment, rather then estimated in the analysis. This9

is done to reduce the number of free parameters in likelihood optimization or posterior sampling10

algorithms. Similarly, per-site rates could be estimated from the alignment using our phyloRNN11

model before fixing them during the likelihood search. Flexible and modular phylogenetic12

programs like RevBayes (Höhna et al., 2016) or BEAST (Bouckaert et al., 2019) could easily13

accommodate rates obtained independently a priori within their tree search algorithms or even14

include a DL rate estimation as the first step to phylogenetic inference with limited additional15

computational burden.16

Performance of phyloRNN on big data17

Our application of the phyloRNN model to chromosome 1 of 28 clownfish species showed18

that a trained model can rapidly estimate per-site substitution rates across large genomic datasets19

with a small computational footprint. The current implementation supports CPU parallelization20

of the simulations required for model training and allows for the generation of new models21

for the size of the datasets that we used in this study within few hours on a 64-CPU cluster.22

The use of GPU computing for model training is likely to further accelerate both training and23

prediction tasks (Abadi et al., 2015). On a standard laptop-grade CPU and without parallelization,24

we obtained predictions across 26 million sites in ≈20 minutes, requiring less than 10 Gb of25

RAM. Performing these estimations with a standard phylogenetic software would be much26

more challenging both in terms of memory usage and CPU time. Our tests on a subset of the27

clownfish genomic data using PhyML indicate that a comparable analysis uses up to several tens28

of Gb of RAM depending on the number of site patterns present in the alignment and exceeds29
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40 hours, even with a fixed tree topology and optimization limited to branch lengths and model1

parameters.2

Effects of violations of model assumptions3

A common critique to supervised DL models over their unsupervised likelihood-based4

alternatives in regression and other inference tasks, is their unpredictably erroneous behavior5

when presented with data that differ from the training data (Marcus, 2018). In the case in which6

the training data were simulated under a generative model, like in our study, differences between7

training and empirical data could be driven by violations of the assumptions of the generative8

model in real world evolution. However, violations of the model assumptions have also been9

shown to lead to wrong estimations in likelihood-based inference of evolutionary models. For10

instance, simplistic substitution models assuming equal substitution rates among nucleotides11

(an assumption clearly violated by the real evolutionary process), have long been known to lead12

to wrong tree topologies (D’Erchia et al., 1996; Sullivan and Swofford, 1997). More recently,13

Meyer et al. (2019) found that the presence of co-evolving sites in an alignment, which violates14

the common assumption of site independence, can bias in unpredictable ways phylogenetic15

inference, affecting the accuracy of both tree topology and branch lengths. Similar misbehavior16

in likelihood-based inference has been shown in the context of models of trait evolution Duchen17

et al. (2021) and species diversification (Louca and Pennell, 2020). Thus, phylogenetic and18

macroevolutionary analyses are likely to be generally sensitive to model violations.19

Recent research has shown that the current models of nucleotide evolution might be20

inadequately reproducing realistic nucleotide sequence alignments (Trost et al., 2023), although21

the effects of this inadequacy on phylogenetic inference remains to be fully explored. While in22

likelihood-based models the assumptions about how evolutionary mechanisms play out are built23

directly into the likelihood function itself, in our phyloRNN framework the same assumptions are24

encoded in the simulation module (Fig. 1). This architectural difference makes it substantially25

easier to relax these assumptions in a model like phyloRNN that couples stochastic simulations26

with DL. We have demonstrated this through the implementation and training of a single model27

able to account for a range of heterogeneity patterns, including auto-correlated rates and codon28

models, each of which would require a specific parameterization in a likelihood framework. In29

the phyloRNN framework, the inclusion of additional heterogeneity patterns is straightforward as30
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long as such patterns can be simulated, thus facilitating its extension to more diverse evolutionary1

scenarios.2

Why we still need likelihood-based evolutionary models3

While DL is now permeating many research fields in biology (Sapoval et al., 2022), we4

think that well-principled and fully interpretable likelihood models will continue to play a key5

role in evolutionary biology, for several reasons. First, likelihood-based methods are (arguably)6

more suitable for the estimation of complex parameters. In contrast, most of DL models are7

designed to infer simple output parameters (e.g., continuous values in regression tasks or categor-8

ical variables in classification tasks). Their application to more complex parameters such as the9

phylogenetic tree topology is instead less straightforward to implement in a standard output layer10

beyond small scale implementations (e.g., Zou et al., 2019; Sapoval et al., 2022). Additionally,11

although we showed that a single DL model can be used to jointly infer different parameters,12

supervised models will typically not benefit from a joint parameter estimation (Marcus, 2018),13

unlike likelihood-based, and especially hierarchical Bayesian models (Gelman et al., 2013).14

Second, likelihood-based methods provide a more direct and robust assessment of15

parameter uncertainty, e.g. through bootstrap values, confidence interval estimates or posterior16

probabilities (e.g., in phylogenetic inference, Felsenstein, 1985; Yang and Rannala, 1997;17

Huelsenbeck and Ronquist, 2001; Heled and Drummond, 2009; Lemoine et al., 2018; Meyer18

et al., 2019). While Bayesian implementations and other methods to approximate confidence19

intervals around the predictions exist for DL models, they are not easily scalable for large models20

or offer limited robustness in the estimation of uncertainties (Blundell et al., 2015; Gal and21

Ghahramani, 2016; Polson and Sokolov, 2017; Silvestro and Andermann, 2020). Part of the22

reason for this stems from the fact that artificial intelligence research, unlike evolutionary biology,23

has for the most part focused on accuracy scores rather than on the estimation uncertainty (Koch24

et al., 2021).25

Third, hypothesis testing is a crucial aspect in evolutionary biology and this is more26

directly implemented within a probabilistic framework. The statistical comparison between27

alternative hypotheses typically involves a probabilistic approach, which does not easily have an28

equivalent in machine learning. Furthermore, delving into the significance of different nodes29

within a network and comprehending their influence on model performance with a specific30
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dataset assumes an elevated level of complexity. The intricate and nonlinear decision bound-1

aries that are inherent in deep neural networks combined with their extensively parameterized2

architecture foster an impressive predictive accuracy, but also contribute to the challenge of3

interpreting them compared to other likelihood-based models.4

Toward a semi-supervised approach to phylogenetic inference5

In light of these considerations, we propose that coupling DL with likelihood-based6

methods can result in more accurate, robust and interpretable estimations of macroevolutionary7

parameters. We showed that DL can provide accurate estimates of evolutionary rates that are8

generally considered as nuance parameters in phylogenetic inference (Yang, 1994). Supervised9

models can efficiently predict these parameters (e.g. per site rates), which can then feed into a10

likelihood-based inference of the phylogenetic tree. An integrated approach combining DL and11

likelihood-based inference, can be seen as a form of semi-supervised learning (Zhu, 2005), in12

which supervised and unsupervised parts of the overall model are applied to different sets of13

parameters.14

The application of this approach to phylogenetic inference reduces the number of free15

parameters for a likelihood model to optimize, thus reducing its computing costs. For example,16

gamma or free-rates models typically require re-computing the likelihood of the data at least four17

times at each optimization or MCMC iteration, i.e. once for each rate category. If per-site rates18

are instead independently and quickly predicted through a supervised model, the likelihood only19

needs to be computed one time for each iteration. Our experiments showed that this approach can20

also potentially improve the accuracy of likelihood-based phylogenetic estimation, by providing21

higher resolution of rate heterogeneity, and more frequently favoring the true tree against22

alternative ones. Thus, we envision a new generation of semi-supervised phylogenetic models23

that integrate likelihood-based and DL components to improve model efficiency and scalability,24

while relaxing some of the assumptions currently made for mathematical convenience, paving25

the way for a better understanding of macro-evolutionary processes.26
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TABLES

Table 1: Accuracy of site-specific rates estimated under different models calculated across a
test set of 600 datasets generated under different modes of rate heterogeneity. The accuracy is
quantified a mean squared error and as R2 (in parenthesis), comparing the true rates with those
predicted through two maximum likelihood models (gamma and free-rates) and through DL
(phyloRNN). DL rate estimates consistently outperform those from a gamma model, in most
cases matching or slightly exceeding the accuracy of the free-rates model. DL substantially
outperforms likelihood methods in simulations with autocorrelated rates or based on codon
models.

Mode of rate heterogeneity Gamma model Free-rates phyloRNN
All combined 0.833 (0.175) 0.705 (0.206) 0.614 (0.347)

Gamma 1.869 (0.409) 1.311 (0.598) 1.64 (0.446)
Bimodal 0.454 (0.143) 0.28 (0.139) 0.332 (0.063)
Spike-and-slab 0.538 (0.161) 0.32 (0.484) 0.517 (0.08)
Geometric Brownian 1.469 (0.337) 1.408 (0.387) 1.387 (0.268)
Codon 0.379 (0.341) 0.405 (0.316) 0.076 (0.942)

Gamma autocorrelated 1.578 (0.465) 1.613 (0.584) 0.755 (0.798)
Bimodal autocorrelated 0.329 (0.133) 0.25 (0.112) 0.178 (0.294)
Spike-and-slab autocorrelated 0.387 (0.032) 0.323 (0.03) 0.271 (0.109)
Geometric Brownian autocorrelated 0.276 (0.034) 0.27 (0.028) 0.113 (0.457)
Mixed 1.882 (0) 1.656 (0) 1.689 (0)
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Table 2: Accuracy of total tree length estimated under different models calculated across a
test set of 600 datasets generated under different modes of rate heterogeneity. The accuracy
is quantified a mean absolute percentage error and as R2 (in parentheses), comparing the true
rates with those predicted through two maximum likelihood models (gamma and free-rates) and
through DL (phyloRNN). The accuracy of DL tree length estimates is generally similar to that
obtained from maximum likelihood methods, notably outperforming the gamma model when
the underlying data are simulated with gamma-distributed rate heterogeneity model. Maximum
likelihood inference outperforms DL in simulations based on bimodal, codon, and geometric
Brownian autocorrelated models.

Heterogeneity model Gamma model Free-rates phyloRNN
All combined 0.106 (0.933) 0.075 (0.955) 0.152 (0.902)

Gamma 0.147 (0.977) 0.083 (0.987) 0.158 (0.902)
Bimodal 0.105 (0.936) 0.047 (0.999) 0..115 (0.953)
Spike-and-slab 0.066 (0.993) 0.055 (0.998) 0.117 (0.986)
Geometric Brownian 0.118 (0.955) 0.102 (0.929) 0.150 (0.934)
Codon 0.056 (0.999) 0.051 (0.999) 0.103 (0.971)

Gamma autocorrelated 0.156 (0.952) 0.085 (0.921) 0.173 (0.791)
Bimodal autocorrelated 0.091 (0.925) 0.057 (0.996) 0.161 (0.957)
Spike-and-slab autocorrelated 0.057 (0.995) 0.053 (0.976) 0.103 (0.971)
Geometric Brownian autocorrelated 0.055 (0.999) 0.052 (0.999) 0.177 (0.98)
Mixed 0.471 (0.605) 0.459 (0.681) 0.493 (0.60)
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Figure 2: Example of simulated and estimated per-site rates based on our DL model. Plots on the
left show per-site rates (note that the estimated rates are shifted slightly to the right for clarity).
Histograms show the true distribution of rates across 1000 sites in an alignment (the bottom
right is in log space for clarity) and the distribution of estimated rates. The simulations show
an example of different modes of rate heterogeneity: gamma (a), codon (b), and spike-and-slab
autocorrelated (c).
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Figure 3: Estimated total tree length (log-transformed) under maximum likelihood models
assuming a gamma heterogeneity model (a) and a free-rates model (b), and through our DL
model (c). The results are shown for a test set of 600 datasets generated under different modes
of rate heterogeneity (more details in Table 2).

Figure 4: Estimated rate heterogeneity across sites plotted for all sites in chromosome 1 in the
clownfish genome (a) and across a random sample of eight exons (b–i). The red lines show
gamma distributions fitted to the data shown in the histogram. The rates match well a gamma
distribution of rate heterogeneity across all 26+ million sites (a), consistently to the heterogeneity
models typically used in likelihood-based phylogenetic analyses. However, at the exon level,
the rate distribution often diverges substantially from that of a gamma distribution, displaying
multimodal or heavy-tailed distributions. For improved visualization, rates > 1 (N = 34,085, or
∼0.12%) are not shown in panel a).
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Figure 5: Estimated number of substitutions per site inferred through our RNN model across
the first 10 million nucleotides of the clownfish genomes (28 species, chromosome 1). Left
panel: Substitutions per site as function of chromosomic position, rates are averaged across
blocks of 1,000 nucleotides. Right panel: Box-plots of substitutions per site for exonic region
(random sample of 854 exons, minimum of 250 nucleotides) and adjacent non-exonic regions
(250 nucleotides before and after the start or end of each exon).
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SUPPLEMENTARY INFORMATION

Supplementary tables

Table S1: Parameter of the evolutionary models. Note that base frequencies only apply to HKY
and GTR models the transition-transversion ratio (Ts / Tv) only applies to the HKY model,
while the instantaneous rates only apply to the GTR model.

Parameter Distribution
Substitution model {JC, HKY, GTR}
Base frequencies Dir(α,α,α,α), with α = 5
Instantaneous rates 6×Dir(α,α,α,α,α,α), with α = 5
Ts / Tv ratio U (2,12)

Table S2: Log-likelihood under the true tree. 600 simulations (rows) under different
heterogeneity models and tree length. For each simulation, Log-likelihood of the simu-
lated data is computed given the true tree, given the nucleotide matrix estimated under
gamma rates, and given site-specific rates. Site-specific rates are either posteriors under
gamma model, posteriors under free-rates model, estimated by phyloRNN or finally the
true rates (used as input of the simulation). The full table (600 rows) is available at
github.com/phyloRNN/SupplementaryMaterials/blob/main/table_S2.csv

Replicate Heterogeneity model Tree length LnL gamma rates LnL free-rates LnL phyloRNN rates LnL true rates

0 GBM uncorrelated 0.048 -1735.990 -1735.770 -1717.994 -1735.399
1 Gamma autocorrelated 0.617 -5252.660 -5246.910 -5055.227 -5095.449
2 Bimodal uncorrelated 0.235 -2665.980 -2664.470 -2585.512 -2573.566
3 Spike-and-slab uncorrelated 0.560 -4718.620 -4713.730 -4625.221 -4686.640
4 GBM uncorrelated 0.064 -1895.890 -1877.200 -1797.892 -1800.167
5 Codon uncorrelated 1.189 -7821.070 -7817.960 -7488.423 -7497.536
6 GBM uncorrelated 16.565 -17096.470 -16919.200 -16074.284 -15844.467
7 Bimodal uncorrelated 4.568 -17651.340 -17359.680 -16690.113 -16597.409
8 Bimodal uncorrelated 2.719 -13303.310 -13201.690 -12596.996 -12568.510
9 GBM uncorrelated 3.089 -14481.340 -14437.670 -13647.083 -13678.580
10 Spike-and-slab autocorrelated 5.565 -23700.900 -23694.690 -23443.449 -23478.195
...

...
...

...
...

...
...

Supplementary figures
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Figure S1: Examples of site-specific rates (plots on the left) and their distribution (histograms
on the right) based on simulations with 5,000 sites generated under different modes of rate
heterogeneity : a) gamma, b) bimodal, c) spike-and-slab, d) geometric Brownian, e) codon (see
Text for more details). Note that for clarity a variable number of sites are shown in the plots and
the Y-axis in histogram c) is log-transformed.
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Figure S2: Examples of site-specific rates (plots on the left) and their distribution (histograms
on the right) based on simulations with 5,000 sites generated under different autocorrelated
modes of rate heterogeneity: a) gamma, b) bimodal, c) spike-and-slab, d) geometric Brownian,
e) mixed (see Text for more details). Note that for clarity the Y-axis in histograms c) and e) is
log-transformed.
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Figure S3: Architecture of the DL model used to infer site-specific rates and total tree length,
here show for a toy example with the input being an alignment of 5 sequences of 3 sites. The
shape of the input is: (n. sites = 3, n. sequences × 4 = 20, with 4 representing the four one-
hot-encoded nucleotides. The first dimension indicated with None represents the number of
instances, e.g. the number of alignments in the training or test sets.
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Figure S4: Training history of our DL model. The early stopping point reflects the epoch with
the lowest validation loss, which combined the mean squared error of the per-site relative
substitution rates and the mean squared error of the total tree length (log-transformed).
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Figure S5: Examples of estimated rates (red) obtained under a maximum likelihood framework
using a gamma model of rate heterogeneity. True rates are shown in blue. the estimates are
shown as per-site rate (1,000 sites in each dataset) and as histograms.
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Figure S6: Examples of estimated rates (red) obtained under a maximum likelihood framework
using a free-rates model of rate heterogeneity. True rates are shown in blue. the estimates are
shown as per-site rate (1,000 sites in each dataset) and as histograms.
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Figure S7: Examples of estimated rates (red) obtained under our DL framework using the
phyloRNN model. True rates are shown in blue. the estimates are shown as per-site rate (1,000
sites in each dataset) and as histograms.
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Figure S8: Comparison of Mean-squared error (MSE) across 600 simulations between true
values and estimated values (under gamma model). MSE for the rates per site (left) and tree
length (right). For each simulation, the likelihood of the true tree is compared to the likelihoods
of a posterior sample of 50 trees obtained from a Bayesian analysis (GTR + gamma model).
Each of 600 simulations is thus classified whether the true tree is the worst (n=73), inside
(n=516) or the best (n=11) of the posterior sampled trees. Comparison of MSE between each
pairs of class (worst, inside, best) is performed with t-test of independence. P-values accounting
for Bonferroni correction; ns: 0.05 < p <= 1; ***: 1e-04 < p <= 1e-03; ****: p <= 1e-04. Mean
of MSE for each class (worst, inside, best) is represented as a red dot.
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