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Abstract

Digital PCR (dPCR) is a highly accurate and precise technique for the quantifica-
tion of target nucleic acid(s) in a biological sample. This digital quantification relies
on the binomial or Poisson distribution to estimate the amount of target molecules
based on positive and negative partitions. However, the implementation of these
distributions require adherence to underlying assumptions that are often neglected,
leading to a suboptimal (too optimistic) variance estimation of the target concentra-
tion, especially when considering the multiple sources of variation in experimental
dPCR setups. Moreover, these parametric methods cannot be easily used for down-
stream statistical inference when more advanced analysis are required, such as for
copy number variation.

We evaluated the performance of three new statistical methods (BootsVar, Non-
PVar, BinomVar) in both simulations and real-life datasets for target and variance
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estimation in dPCR setups while taking into account a combination of commonly
observed sources of experimental variability that can interfere with the underlying
assumptions of the current parametric methods.

The results demonstrate the capability of the new methods for variance estima-
tion and present a more accurate reflection of the true variability over the classical
binomial approach. In addition, these statistical methods are flexible and generic in
the way that they work well for the variance estimation of non-linear statistics that
work with ratios (e.g. CNV) and for multiplex dPCR setups.

In this study, we provide guidelines when to use the binomial-assumption based
methods and when the non-parametric one is better to achieve more accurate variance
estimates.

Keywords: digital PCR; standard error; binomial-assumption based methods;
non-parametric method

1. INTRODUCTION

The use of digital PCR (dPCR) has markedly increased in the last decade. The
method, involving massive partitioning of samples, renders each partition an isolated
reactor. Few template DNA molecules will end up in the same partition due to the
very large number of partitions and su�ciently diluted samples. dPCR has demon-
strated many attractive characteristics, for example, inherently high accuracy, no
need of calibration standards and providing unsurpassed repeatability [1]. Thanks
to this, dPCR is becoming the advised method for absolute DNA or RNA quantifi-
cation, concentration estimation and copy number variation determination [2, 3, 4].

In a dPCR, the binary outcome, i.e. positive or negative, of a partition is an-
alyzed. Quantification is based on Poisson statistics depending on the counts of
positive partitions. Many papers have discussed how to estimate the concentration
and the variability of the estimates [5, 6, 7]. Very often a binomial distribution for the
number of positive partitions is assumed and a confidence interval is derived accord-
ingly [8]. However, this assumption may not be valid with other sources of variation
present [9]. Besides, this method is not very convenient for non-linear functions, e.g.
a ratio or a fraction.

The binomial (for singleplex) or multinomial (for multiplex) assumption for the
number of positive partitions stands when there is only sampling variation present
(approximately Poisson distribution since an individual sample is very small com-
pared to the experiment subject, such as human body, or animals). This is not
realistic because other sources of bias and variability will come in before or during
the dPCR experiments [9]. For example, there may be pipetting error in mixing
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the material, or misclassification of partitions after the amplification process. The
binomial/multinomial assumption will thus be violated and the existing methods fail
to provide correct results.

Variance estimation of a ratio between targets is particularly problematic in
dPCR experiments. [10] provided two methods for constructing confidence inter-
vals for CNV. One way is to build a histogram of the ratio by binning and adding up
the joint probabilities of all possible combinations of concentrations in each bin of
the sampling distributions of the target and reference concentrations. This method
has no restriction on the sampling distributions of target or reference concentration,
but some prior knowledge on the distribution of the proportions of positive parti-
tions is required. Another method is to use explicit formulas for standard errors
and confidence intervals. This method is faster though less accurate than the first
one since it assumes that the sampling distribution of the concentration is known.
[11] first log transformed the ratio and derived the confidence interval, then the esti-
mates are backtransformed to the original scale. This method makes the assumption
that the distribution of the log-ratio is (approximately) normal. The derivation of
a formula for the variance estimation of a log ratio can also be analytically di�-
cult. [12] provides a flexible method to account for between-replicate variability by
fitting a generalized linear mixed model. This method incorporates the between-
replicate variability as a random e↵ect in the statistical model. The replicate e↵ect
is described by a normal distribution. So far, this method can be only applied for
absolute quantification and CNV.

A limitation of some of the above mentioned methods is that they rely on the
assumption of independence of the two variables in the ratio. However, when there
is a correlation between the variables, the independent sampling or approximation
formulas will be incorrect. For example, dPCR methods aiming to quantify linkage
disequilibrium or DNA quality, e.g. the DNA shearing index (DSI), DNA fragmenta-
tion [13] will result in a correlation between the measured variables, as these assays
are intended to quantify the ratio of linked versus unlinked sequences.

This paper will focus on methods for variance (or standard error) estimation and
confidence intervals for the target parameter of a dPCR experiment (e.g. absolute
quantifiction, CNV, . . . ). To tackle the above problems, we propose three methods
among which two are bootstrap methods that use simulations that mimic the dPCR
partitioning process. Two of the methods do not rely on any distributional assump-
tion. Our methods are generic and can be easily applied to many statistics such as
ratios and proportions.
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Figure 1: Schematic overview of the random steps (random sampling or partitioning by straight
arrows) and calculation steps (label partitions as positive or negative, count the positive partitions
and calculate the concentration by curly arrow) in a dPCR experiment with r replicates. The num-
bers 1 and 2 refer to the two random processes (1) random sampling over r replicates; (2) random
partitioning. (A) single target in detail where µ is the concentration of the target (specimen), Mi

is the total number of molecules in a sample, y⇤ij is the exact number of molecules in partition j of
sample i, yij is the binary outcome of a partition (positive or negative), ki is the count of positive
partitions, �i is the average number of molecules in a partition (B) multiple targets where A and
B represent di↵erent targets

2. Methodology

2.1. A Conditional Bootstrap Method for Standard Errors

The first bootstrap method does not rely on strong distributional assumptions
and can be used for standard error calculation when no replicate is available. The
method will be referred to as BootsVar. The only assumption that we make, is that
the partitioning of molecules is a complete random process. Under these conditions,
within a single dPCR run, the conditional distribution of the number of positive
partitions, given the total number of partitions n and the total number of molecules
m, is given by Eq.S7 in SI.
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Consider the variance estimation of the estimate of the average number of molecules
per partition in a single dPCR run. This average is denoted by � (which is also the
Poisson parameter), and its estimate by �̂ (based on the Poisson approximation, see
Eq.S6 in SI).

For a given m and n, and for a large number B (e.g. B = 1000), the simulation
method in pseudo-code is given as follows:

1. set l = 1, and initiate a vector K[] of length B
2. randomly sample a number from the set {1, 2, . . . , n}. Each number is sampled

with equal chance of 1
n . Repeat the same process m times; let A denote the

set with the unique numbers out of m numbers that are sampled
3. K[l] #A
4. if l < B, then l  l + 1 and return to step 2; otherwise stop the procedure.

The resulting vector K[ ] contains B randomly sampled counts of positive partitions
from the correct conditional distribution; see Eq.S7 in SI. The proof is straight-
forward: step 2 randomly samples one partition (out of the n partitions) for each
molecule (with replacement and hence a partition may contain more than one molecule).
The set A contains the unique partitions that were sampled and hence its size #A
(step 3) is the number of positive partitions. Our simulation method basically mimics
the partitioning process, for a given m and a given n.

For each of the B elements of the vector K[ ], say Kb, an estimate of � can be
computed, say �̂b (b = 1, . . . , B). The empirical variance of the B estimates �̂b is

an approximation of the true variance Var
n
�̂ | m,n

o
. The approximation becomes

better as B increases. In the limit, as B ! 1 the approximation converges in
probability to the true variance (weak law of large numbers).

2.2. Binomial Bootstrap for Standard Errors

When r replicates are available, we need to account for yet another level of
variation: the numbers of molecules loaded on r replicated dPCR runs show sampling
variability which is caused by sampling (pipetting) from a specimen (a larger volume).
The number of molecules is thus a random variable, and will be denoted by Mi,
for i = 1, . . . , r, with r the number of replicates. The distribution function of Mi

is denoted by FM(·;µ), with µ the expected number of molecules in a sample of
constant volume Vd. We refer to this random step as level 1 in Fig. 1.

Starting from Mi, the molecules are randomly partitioned over n partitions,
resulting in Ki as the number of positive partitions in replicate i. As this is a
random step, but conditional on Mi, we will write it explicitly as Ki | Mi, ni ⇠
FK|Mn(·;Mi, ni). An important di↵erence with level 1 is that the distribution FK|Mn
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is known; it is again Eq.S7 in SI. This random step is referred to as level 2 in Fig.1.
To simplify the notation we will drop the explicit conditioning on the number of
partitions ni. The variance of �̂i is thus composed of two levels of variability: (1) the
random sampling of Mi, and (2) given Mi, the random partitioning process. Hence,

we write VarKM

n
�̂i

o
to stress the two random processes.

In this scenario, it is the parameter µ that is of interest and needs to be esti-
mated. With Vd the volume loaded in the reaction and Vp the partition volume, this
parameter can be estimated as

µ̂ =
Vd

Vpr

rX

i=1

�̂i.

Taking into account both the random partitioning and sampling, the distribution
of Ki can be formulated as,

P (Ki = k | ni) =
1X

m=0

P(Ki = k | M = m,ni)P (M = m | ni). (1)

This would be the appropriate distribution for deriving the standard error of �̂, but
it can only be used if the distribution of M is known.

Upon assuming that the number of molecules Mi are distributed over the repli-
cates as a Poisson distribution with mean µ, the distribution of the number of posi-
tives K, given ni, is approximated by a binomial distribution. This follows from ap-
plying Eq.1; see SI Section Binomial Distribution of Positive Partitions for a
proof. This binomial distribution Binom(ni, ⇡i) has parameters ni and ⇡i = 1�e�µ/ni ,
the probability that a partition is positive in replicate i.

Since �̂i is a (nonlinear) function of Ki, the variance of �̂i (or the variance of
a function of the �i, i = 1, . . . , r) can be obtained from this binomial distribution.
The conventional method is to apply the delta method, which essentially linearises
this nonlinear function (see Eq.S9 in SI). However, here we propose a parametric
bootstrap method by resampling numbers of positive partitions from this binomial
distribution with the unknown parameter µ replaced with its estimate. In particular,
this bootstrap algorithm works as follows. With B a large number (e.g. B = 1000):

1. estimate µ̂ as Vd
Vpr

Pr
i=1 �̂i, with �̂i the traditional estimate of �i based on the

Poisson approximation. This equation simplifies to the ordinary mean in most
cases.

2. set i = 1
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3. randomly sample B observations from Binom(ni, ⇡i) with ⇡i = 1 � e�µ̂/ni .
These are denoted as kb, b = 1, . . . , B. For each bootstrap sample b, computer
�̂b
i .

4. based on the B estimates �̂b
i , calculate its sample variance �̂2

i

5. if i < r, then i i+ 1 and return to step 3; otherwise stop the procedure.
6. average �̂2

i over the r replicates

With S2
� the result of the averaging in step 6, the variance of µ̂ is estimated as

S2
µ =

V 2
d

V 2
p rS

2
�.

This bootstrap method will be referred to as BinomVar.
Based on the estimated standard error, normal confidence intervals for � can

be computed [10, 11, 12], which are expected to work well when the estimator �̂ is
approximately normally distributed.

2.3. A Simple Nonparametric Estimator of the Variance

When one is uncertain about the distribution of the number of molecules M , Eq.1
cannot be used.

We propose a simple nonparametric method that does not rely on such a distri-
butional assumption and is therefore expected to be more robust than the previous
method (and the delta method) in case of violation of the Poisson assumption (e.g
when additional sources of error or variability are involved). Our method only relies
on the assumption of random partitioning, i.e. the entry of a molecule to a partition
is totally random and the chance is the same for all partitions. In particular, we

propose to estimate the variance of �̂i, Var
n
�̂i | ni

o
,as

S2
� =

1

r � 1

rX

i=1

⇣
�̂i � �̄

⌘2

with �̄ the sample mean of the estimates �̂i. This method will be referred to as
NonPVar.

Confidence intervals can be constructed based on the asymptotic normality of the
estimator µ̂, but as a small-sample (i.e. small number of replicates r) improvement,
we suggest to use quantiles of a t-distribution with r � 1 degrees of freedom. In
particular, a 1� ↵ confidence interval of µ is obtained as

⇥
µ̂� Sµtr�1;↵/2, µ̂+ Sµtr�1;↵/2

⇤

with S2
µ =

V 2
d

V 2
p rS

2
�.
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2.4. Additional Sources of Variability and Bias

Both the binomial bootstrap and the delta method assume a binomial distribution
for the number of positive partitions K, which is derived from a Poisson-distributed
M . This assumption stands when sampling variability is the sole source of variation
in M . However, as illustrated in Fig.2, there may be other sources of variability.
For example pipetting error, which adds extra variability to the number of molecules
loaded on the dPCR, violates the Poisson assumption and therefore invalidating the
delta and BinomVar methods.

Figure 2: A schematic overview of the dPCR workflow with indications of sources of variability and
bias

The NonPVar method, on the other hand, does not make a distributional as-
sumption on M . The between-replicate variance is empirically estimated and should
therefore cover the sampling variation and other sources of variability. Hence, in
situations where the Poisson assumption of M is violated, NonPVar is expected to
outperform the BinomVar and delta methods.

2.5. Absolute Quantification

For absolute quantification, the target parameter is the average number of copies
per partition �. Here, only one type of target molecules needs to be quantified (see
Fig.3A). We also allow for technical replicates.
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For all replicates i = 1, . . . , r, we can calculate �̂i from Ki as in Eq.S6 in SI. Since
we have replicates, the final estimator of � becomes �̂ = 1

r

Pr
i=1 �̂i with variance

VarKM

n
�̂
o
=

1

r2

rX

i=1

VarKM

n
�̂i | ni

o
.

For the estimation of VarKM

n
�̂i

o
we use the BinomVar procedure as in Section

Binomial Bootstrap for Standard Errors or nonparametrically estimate the
between-replicate variability of �̂ with the NonPVar method as described in Section

A Simple Nonparametric Estimator of the Variance.

2.6. CNV in Singleplex

BinomVar and NonPVar can also be applied to CNV estimation. CNV is defined
as large-scale losses and gains of DNA fragments and is one of the major classes
of genetic variation [14]. It quantifies how the number of copies of a target gene
varies from a reference. In a CNV singleplex set-up, the target (A) and reference (B)
molecules are quantified in separate experiments (Fig.3B).

Relying on the same notation as in the previous sections (with obvious exten-
sions), we now consider the estimators

\CNV ij = \CNV (KAi,MAi, KBj,MBj) =
µ̂Ai

µ̂Bj
=

�̂Ai

�̂Bj

Vdi/Vpi

Vdj/Vpj

based on replicate i (j) for molecule A (B). Very often it is reasonable to have Vdi

equal to Vdj and Vpi equal to Vpj. It will turn out to be convenient if we estimate the
log-CNV instead,

✓̂ij = ✓̂(XAi,MAi, XBj,MBj) = ln
�̂Ai

�̂Bj

= ln �̂Ai � ln �̂Bj.

The final estimator of the log-CNV is given by (assuming equal numbers of replicates)

✓̂ =
1

r2

rX

i=1

rX

j=1

✓̂ij =
1

r

rX

i=1

⇣
ln �̂Ai � ln �̂Bi

⌘
.

Upon relying on the independence between the singleplex experiments, the variance
of ✓̂ is given by

VarKM

n
✓̂
o
=

1

r2

rX

i=1

VarKM

n
ln �̂Ai | ni

o
+

1

r2

rX

i=1

VarKM

n
ln �̂Bi | ni

o
.
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For both terms we apply the same procedures as in Section Absolute Quantifi-

cation. Note that the non-linearity of the log-transformation does not complicate
the procedure.

2.7. CNV in Duplex, Mutational Load and DSI

In the CNV duplex set-up, the target and reference are typically quantified in the
same dPCR run and thus the number of partitions is the same and other sources of
errors are shared. There is matching between the replicates for A and B (see Fig.3B).
We consider the estimator

\CNV i = \CNV (KAi,MAi, KBi,MBi) =
�̂Ai

�̂Bi

based on replicate i for molecules A and B. With the r replicates, the final estimator
becomes [CNV = 1

r

Pr
i=1

[CNVi with variance

VarKM

n
\CNV

o
=

1

r2

rX

i=1

VarKM

n
\CNV i | ni

o
.

the same procedures as in Section Absolute Quantification can also be applied
here.

Fractional abundance of a mutation is the component of genetic load attributed
to fitness reduction caused by new and recent deleterious mutations [15]. It quantifies
the proportion of the mutant type to the total amount of wild and mutant (Fig.3B).
The estimator for replicate i is as follows,

bFi = bF (KAi,MAi, KBi,MBi) =
�̂Ai

�̂Ai + �̂Bi

based on replicate i for mutant-type A and wild-type B. As it typically is a duplex
experiment, both mutant and wild type are quantified in the same experiment. We
apply here the same procedures as for the CNV duplex. Note that if the mutant
type and wild type are quantified in separate experiments, the estimation procedure
will not be the same. NonPVar cannot be applied here due to individual errors
and dependency, however, the bootstrap procedure BinomVar is generic and can be
extended in this scenario. We can sample from the estimated binomial distributions
of the mutant and wild type, calculate the fractional abundance and estimate the
variance of the sampled.

DNA shearing index (DSI) is also a proportion and it measures how many DNA
fragments are sheared in the preparation stage or during the experiment in order to
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Figure 3: Illustration of the dPCR designs considered in the simulation study: (A) absolute quan-
tification, (B) CNV with singleplex and duplex, and fractional abundance of a mutation in duplex
setting, (C) DSI. R1 up to R3 refer to replicated experiments

evaluate gene or genome integrity (Fig.3C). [16] proposed a method for estimating
DSI, but for such a complicated proportion function, it is di�cult to use the delta
method or GLMMs [12] to evaluate variability. BinomVar and NonPVar, however,
take into account this correlation. For replicate i, now consider the estimator,

[DSI i = [DSI(K1i, K2i, K3i, K4i,MAi,MBi,MABi) =
(�̂Ai + �̂Bi)/2

((�̂Ai + �̂Bi)/2) + �̂ABi

where K1i, K2i, K3i, K4i are the partition numbers for single positive A, double pos-
itive, double negative and single positive B of replicate i respectively, and �̂Ai, �̂Bi

and �̂ABi are the corresponding estimated average numbers of target molecules per
partition. The same procedures as for CNV in duplex can be applied here.

2.8. Simulation Study

The new methods are evaluated and compared to a few competitor methods in
a simulation study. Realistic simulations of numbers of positive partitions allow us
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to assess methods under various scenarios. Moreover, by repeatedly simulating data
for a single scenario, the statistical properties of the methods can be evaluated.

We start with a setup of a single replicate to investigate the estimator of the
conditional variance given a fixed m and n, as described in Section A Conditional

Bootstrap Method for Standard Errors. For multiple replicates, we follow the
simulation pipeline of [9]; see also Fig. 2. In the first scenario the number of molecules
M is randomly sampled from a Poisson distribution, and next, given M , the number
of positive partitions are generated by random partitioning of the molecules over
n partitions. Subsequent scenarios add additional sources of variation and bias to
the data generating process, as illustrated in Fig. 2. See SI Section Simulation

Settings for a detailed description of the scenarios.
These scenarios were used for evaluating the performance of the methods for the

following target parameters: absolute quantification and CNV, both in singleplex,
and for CNV, fractional abundance of a mutation and DSI, all in duplex. As com-
petitor methods we included the delta and the GLMM [12] methods for absolute
quantification and CNV in singleplex and duplex. For the fractional abundance of a
mutation and DSI, however, there are no competitor methods to our knowledge.

For each scenario, the methods were evaluated based on 1000 simulation runs, and
within each run the bootstrap methods were applied with 1000 bootstrap runs. The
performance of the variance estimators is evaluated in terms of the bias (relative bias
or absolute bias w.r.t. the true variance), and the performance of the 95% confidence
intervals is assessed in terms of the empirical coverage (i.e. the relative frequency,
over the 1000 simulation runs, that the true target parameter falls within the CI).

2.9. Implementation

The data analysis was performed in R (version 4.2.0). The codes can be found at
https://github.com/emmachenlingo/dpcr-flexible-methods-for-standard-error-calculation/
tree/digital-PCR. A Shiny web application is also available at https://dpcr-ugent.
shinyapps.io/variance_estimate/ that does not require knowledge about pro-
gramming, and relies on a spreadsheet-like data input and point and click interface.

3. RESULTS and DISCUSSION

3.1. Without Replicate

Through the simulation runs, the total number of molecules (m) and partitions
(n) are held constant.

The results (see Table S1 in SI) show that, except for very low concentrations
(⇡ 0.005 molecules per partition on average), the BootsVar variance estimator is
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nearly unbiased. The BinomVar, delta and GLMM methods overestimate the vari-
ance estimates because these methods are all based on the binomial assumption of
the positive partitions, which does not stand with a fixed m. Consequently, Binom-
Var, Delta and GLMM give too wide confidence interval (see Fig.S1 in SI). We also
compared the computation time of those methods (see Table S2 in SI). BootsVar,
with embedded 1000 Bootstrap iterations, will take longer time than other methods.
But for small-to-medium size dataset, it can still handle.

3.2. With Replicates

For absolute quantification, all methods give nearly unbiased estimators of �,
except in the presence of partition size variation and misclassification (see Fig.S2
to S7 in SI). The e↵ect of partition size variation is limited, but misclassification
has a larger impact; this agrees with the findings of [9]. Regarding the latter, as-
suming constant false positive and false negative rates for all replicated experiments,
the estimates will be consistently biased downwards or upwards depending on the
concentration.

Fig.4A shows that with only sampling variability and random partitioning, all
methods give good CIs. In the presence of pipetting error, both the delta method
and BinomVar cover the true value with a probability of less than 50% when � > 0.5
(Fig.4B). The NonPVar method is more robust against such errors and performs the
best. The GLMM method is the runner-up.

In terms of the variance estimation, NonPVar has very low relative bias in all
scenarios. With additional pipetting error, the NonPVar variance estimator is much
less biased than its competitors. The absolute bias and the distribution of the vari-
ance estimates (over the simulation runs) are also checked (see Fig.S8 to S19 in SI).
However, the boxplots of the variance estimates show that the NonPVar estimates
have a larger variance than the alternative methods. This is probably because Non-
PVar estimates the variance empirically based on only a limited number of replicates,
whereas the other methods rely on a distributional assumption for the variance es-
timation. With additional pipetting error, only variance estimates by NonPVar and
GLMM are close to the true value. The BinomVar and Delta methods underes-
timate the variance. Partition size variation and misclassification have an impact
on the coverage of confidence interval, especially misclassification. All methods fail
to cover the true value when partitions are misclassified and the error is consistent
through all replicates.

For CNV in singleplex, target and reference molecules are quantified separately.
That means that additional sources of variability such as pipetting error will be
di↵erent for target and reference genes. Fig.S20 in SI shows similar pattern as in
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Figure 4: Empirical coverage of the 95% CIs (solid lines, left axis) and relative bias (dashed lines,
right axis) for absolute quantification in di↵erent scenarios. X-axis represents varying concentration
of target molecules from low to high. (A) only sampling variation and random partitioning with
3 replicates (B) 3% pipetting error (C) 20% partition loss (D) coe�cient of variation of 10% in
partition size (E) misclassification with 0.01% false positive rate and 5% false negative rate (F)
all variation included. The reference (black solid line) for empirical coverage is set at 95%. The
constructed CIs are supposed to cover the true values in 95% of the time. The closer other solid
lines are to this reference, the better the CIs are. The reference (black dashed line) is set at 0%.
The closer other dashed lines are to this reference, the lower the relative bias is.
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absolute quantification. The results suggest that NonPVar performs at least as good
as the other methods in terms of empirical coverage, while its relative bias remains
quite low.

In multiplexing experiment, all target DNA molecules are quantified within the
same reaction, and thus additional sources of variation apply equally to them.

In the simulations for DSI, the concentration and intactness percentage are varied
from low to high. Results in Fig.5 (see also Fig.S61 and S62 in SI) show that the
e↵ect of pipetting error, which commonly have a big impact on the variation and
confidence interval of the estimates in absolute quantification or CNV singleplex set-
up, is now canceled out. The empirical coverage of BinomVar is very high, even with
the presence of pipetting error. The relative biases of NonPVar and BinomVar are
both close to 0. However, the NonPVar estimates are less precise (see Fig.S49 to S60
in SI) because of its empirical nature for estimating the variance (in the absence of
distributional assumptions).

For fractional abundance of a mutation, results in Fig.S40 in SI show that without
classification error, the performance of NonPVar and BinomVar is quite comparable.
With misclassified partitions, the empirical coverage of BinomVar is similar to that
of NonPVar in low or medium concentration scenarios, but it is considerably lower
in the high concentration scenarios.

Results for CNV duplex (see Fig.S39 in SI) show similar patterns as DSI and
fractional abundance of a mutation. The e↵ect of misclassification is not found,
because in this scenario the numbers of target and reference genes coincide and so
the e↵ect is simply canceled out.

3.3. Case Study

In the case study, we investigated two types of real-life data: CNV in singleplex
and mutations. To assess the variance, replicates of samples were analyzed.

The Dataset of mutations comes from [17] and 3 types of samples were included:
(i) patient samples with a very high mutation load (samples 1– 13); (ii) homoplasmic
wild-type samples from a healthy volunteer (samples 14–16); and (iii) samples under-
going nuclear transfer, thus carrying a low mutation load due to mtDNA carry-over
(samples 17–23). 3 technical replicates were obtained for 6 samples.

Results in Fig.6 show that for some samples, the two confidence intervals are
quite di↵erent and for others, they are comparable. In a sense of absolute value,
the di↵erence is not very large. The sample concentrations of this dataset are low.
And from the simulation results, it is observed that in low concentration, the random
sampling variability is dominating and other sources of error, such as misclassification
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Figure 5: Empirical coverage of the 95% CIs (solid lines, left axis) and relative bias (dashed lines,
right axis) for low DSI (=20%, that is, 20% of the target molecules got sheared) in di↵erent scenarios.
X-axis represents varying concentration of intact molecules from low to high. (A) only sampling
variation and random partitioning with 3 replicates (B) 3% pipetting error (C) 20% partition loss
(D) coe�cient of variation of 10% in partition size (E) misclassification with 0.01% false positive
rate and 5% false negative rate (F) all variation included. The reference (black solid line) for
empirical coverage is set at 95%. The constructed CIs are supposed to cover the true values in 95%
of the time. The closer other solid lines are to this reference, the better the CIs are. The reference
(black dashed line) is set at 0%. The closer other dashed lines are to this reference, the lower the
relative bias is.
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Figure 6: Fractional abundance of a mutation in sample 1,2,6,14,18 and 23 from the dataset in [17]
estimated with BinomVar and NonPVar.

whose e↵ect will not cancel out, do not have a big impact yet. In this scenario,
BinomVar would give more precise variance estimates, thus should be preferred.

For the CNV dataset, overall, confidence intervals given by BinomVar, delta
method and GLMM are close (see Fig.S63 and S64 for more details). One possibility
is that those three methods behave more similarly in lower range of concentrations
(the average number of target molecules per partition in sample 15 ranges from 0.097
to 0.19 over the genes with a mean of 0.13). In the low concentrations, the number
of molecules in a sample is likely still to follow a Poisson distribution, so BinomVar,
Delta and GLMM would be recommended. The running time (Table S3 in Section

Real-life data analysis) shows that all methods except for GLMM are really fast.
However, for small-to-medium size datasets, computation time of GLMM is quite
acceptable.

3.4. Impact of Di↵erent Sources of Variability

The types of dPCR data are generated in di↵erent ways. For singleplex experi-
ments, there is no dependency among the di↵erent types of molecules. For duplex
or higher order multiplexing, there is a natural dependency. No dependency implies
that we should consider variability such as pipetting error separately while depen-
dency means those sources of errors are shared for all target molecules. Both the
NonPVar and BinomVar methods are generic and manage to give a good estimate
of the confidence interval with or without dependency.

In the simulation study we show that the binomial assumption of positive par-
titions is violated with the presence of pipetting error. Confidence intervals relying
on this assumption therefore may fail to cover the true value most of the time. The
NonPVar method is more robust against such error. Note that di↵erent sources of
variability have di↵erent impacts on the variance estimates (Fig.4, 5, S20, S39, S40).
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In absolute quantification and the CNV singleplex set-up, ignoring pipetting error
will result in underestimation of the variance and inaccurate confidence interval. For
CNV duplex, fractional abundance of a mutation or DNA shearing index, most of the
additional errors cancel. The e↵ect of varying partition size does not disappear even
in duplex or multiplex set-up, because all methods make use of Poisson statistics
to calculate � which is built upon the assumption of random partitioning and equal
chance to enter any partition. This assumption is violated if the partition volume
is not constant. Our finding aligns with previous studies [18, 19, 20, 9, 8, 21]. It
indicates that information about partition-volume is needed to reduce the estimation
bias. We also notice that the impact of misclassification cancels out only when the
numbers of target and reference molecules has a ratio of 1:1 or when half of the
intact fragments get sheared. When the ratio is not close to 1, the e↵ect of misclas-
sification is no longer negligible. This indicates a clear need to use a good partition
classification method for higher multiplexing.

3.5. Suggestion on Variance Estimation Methods

NonPVar is a data-driven method and does not rely on a distributional assump-
tion of positive partitions. Errors are inferred from the data. Since the method makes
use of replicates, the estimation accuracy depends on the number of replicates. Par-
ticularly the NonPVar method, despite being unbiased on many scenarios, requires
a su�cient number of replicates to give precise variance estimates. The sample size
can be calculated based on the required precision [22]. The BinomVar method gives
more precise estimates, because it relies on the Poisson assumption for the sampling
distribution of the number of molecules over the replicates. The price that BinomVar
pays is that it becomes less robust when this distributional assumption is violated.

Results also show that in low concentration scenarios, other sources of errors
such as pipetting error do not have a very big impact and BinomVar is the better
choice. In summary, we would suggest choosing estimation methods by the type of
experiments, concentration levels and replicates number, see Table 1.
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Concentration levels Types of experiment Recommended methods

Low
Singleplex BinomVar, GLMM or Delta method
Duplex/Multiplex BinomVar, GLMM or Delta method

High
Singleplex NonPVar

Duplex/Multiplex

Depends on the classification. If the clusters
are well-separated, then BinomVar, GLMM or
Delta method. Otherwise, misclassification error
will be high and NonPVar is a better choice.

Table 1: Suggestion on estimation methods. The choice of methods also depends on the sample size.
If the precision requirement is met, NonPVar will be as good as other methods in duplex/multiplex
scenarios. Note there is no exact threshold to define low or high concentration levels. According
to our simulation studies, � < 0.1 can be considered as low concentration level. However, it also
depends on the quality of the data. If there is less pipetting error and targets are accurately
quantified, then the threshold should be higher.

4. CONCLUSION

We propose three new methods (BootsVar, NonPVar and BinomVar) for variance
estimation with dPCR data. BootsVar mimics the random partitioning process in
the dPCR experiment through a bootstrap procedure and can be used for variance
estimation when replicates are not available. The NonPVar method accounts for
inner variability (induced by the technology itself) and between-replicate variability
(sampling variability and also other sources of variation). BinomVar uses a Bootstrap
procedure that is based on a binomial assumption. The methods circumvent the
mathematical formulation of the variance formula, which makes them generic and
easy to use. The NonPVar method often outperforms the other methods in terms
of empirical coverage of the confidence interval and the relative bias. However, it
gives less precise estimates than the BinomVar method. We suggest that in the lower
range of concentrations, the distributional assumptions based methods (BinomVar,
the delta method or GLMM) are used, and for the high concentrations or in the
presence of other sources of variability, the NonPVar method should be used.
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[15] B. M. Henn, L. R. Botigué, C. D. Bustamante, A. G. Clark, S. Gravel, Esti-
mating the mutation load in human genomes, Nature Reviews Genetics 16 (6)
(2015) 333–343.

[16] D. Gleerup, Y. Chen, W. Van Snippenberg, O. Thas, W. Trypsteen,
W. De Spiegelaere, dna shearing with dpcr: The benefits of probability calcula-
tions, Analytica Chimica Acta XX (XX) (2023 (Unpublished results)) XXXX–
XXXX.

[17] O. Tytgat, M.-X. Tang, W. van Snippenberg, A. Boel, R. R. Guggilla, Y. Ganse-
mans, M. Van Herp, S. Symoens, W. Trypsteen, D. Deforce, et al., Digital
polymerase chain reaction for assessment of mutant mitochondrial carry-over
after nuclear transfer for in vitro fertilization, Clinical Chemistry 67 (7) (2021)
968–976.

[18] S. Bhat, J. Herrmann, P. Armishaw, P. Corbisier, K. R. Emslie, Single molecule
detection in nanofluidic digital array enables accurate measurement of dna copy
number, Analytical and bioanalytical chemistry 394 (2) (2009) 457–467.

[19] L. Dong, Y. Meng, Z. Sui, J. Wang, L. Wu, B. Fu, Comparison of four digital pcr
platforms for accurate quantification of dna copy number of a certified plasmid
dna reference material, Scientific reports 5 (1) (2015) 1–11.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.556592doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556592
http://creativecommons.org/licenses/by-nc-nd/4.0/


[20] J. F. Huggett, S. Cowen, C. A. Foy, Considerations for digital pcr as an accurate
molecular diagnostic tool, Clinical chemistry 61 (1) (2015) 79–88.

[21] M. Vynck, O. Thas, Reducing bias in digital pcr quantification experiments: the
importance of appropriately modeling volume variability, Analytical chemistry
90 (11) (2018) 6540–6547.

[22] J. M. Bland, The tyranny of power: is there a better way to calculate sample
size?, Bmj 339 (2009).

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.556592doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556592
http://creativecommons.org/licenses/by-nc-nd/4.0/

