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Abstract 23 

Prochlorococcus are the smallest and most abundant photosynthetic organisms on Earth, 24 

contributing up to 50% of the chlorophyll in the oligotrophic oceans. Despite being important 25 

in regulating the carbon cycle in today’s ocean, the ecological significance of 26 

Prochlorococcus in Earth’s history remains elusive. Our new robustly calibrated molecular 27 

clock analysis reveals that Prochlorococcus emerged in the deep photic zone of the Tonian 28 

(1,000-720 Mya) oceans. The classical light-harvesting antenna complex in Cyanobacteria, 29 

i.e., the phycobilisome, was replaced in Prochlorococcus by the chlorophyll�based antenna, 30 

enabling more efficient use of blue light that penetrates into deeper water. Importantly, 31 

Prochlorococcus colonization of deep water enhanced access to phosphate, which was 32 

abundant in upwelled seawater, but likely scarce in the Tonian surface ocean, promoting 33 

expansion of Prochlorococcus, displacement of incumbent low-light adapted anoxygenic 34 

photoferrotrophs, and associated increases in photosynthetic oxygen production. Colonization 35 

of deeper waters would also have improved access to ammonium, leading to the neutral loss 36 

of nitrate utilization genes. Our research thus documents the conspicuous emergence of new 37 

photosynthetic bacterial lineages in the run-up to the Neoproterozoic oxygenation event, 38 

implying an additional layer of eco-evolutionary complexity during this pivotal interval in 39 

Earth’s history.  40 
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Introduction 41 

Prochlorococcus host more than half of the chlorophyll biomass in oligotrophic oceans 42 

(Partensky and Garczarek, 2010). As key primary producers in the modern ocean, 43 

Prochlorococcus fix as much as four gigatons of carbon each year and are the foundation of 44 

the marine carbon cycle and food web (Flombaum et al., 2013). The success of 45 

Prochlorococcus in today’s oceans has been attributed to multiple physiological features. 46 

Importantly, Prochlorococcus use divinyl chlorophyll (DVChl) for harnessing light energy 47 

(Ralf and Repeta, 1992). DVChl harvests blue light much more efficiently than the more 48 

common monovinyl chlorophyll used by other cyanobacterial lineages and it thus enables 49 

Prochlorococcus to thrive in the deepest layers of the euphotic zone, where blue light 50 

dominates (Ito and Tanaka, 2011). Prochlorococcus is also the smallest photosynthetic 51 

organism on Earth (Partensky et al., 1999). As a result, their high surface-to-volume ratio 52 

provides enhanced nutrient acquisition efficiency, which together with effective blue-light 53 

absorption promotes photosynthesis by Prochlorococcus in oligotrophic tropical and 54 

subtropical oceans (Partensky et al., 1999). In today’s ocean, Prochlorococcus is also the 55 

dominant phototroph in more nutrient-rich, oxygen-depleted anoxic marine zones (AMZ) in 56 

the eastern tropical North and South Pacific Oceans (Goericke et al., 2000; Lavin et al., 2010). 57 

Since the AMZ lineages represent the earliest-split branches of Prochlorococcus, it has been 58 

proposed that Prochlorococcus emerged in low-oxygen environments and, by extension, 59 

contributed to early ocean oxygenation (Ulloa et al., 2021).  60 

The emergence of an early branch of Prochlorococcus (named SBE-LCA) during the 61 

Cryogenian based on our recent study (Zhang et al. 2021) implies the origin of the total 62 
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Prochlorococcus group earlier in the Proterozoic Eon. Such an earlier origin then suggests 63 

that Prochlorococcus might have contributed to the cyanobacterial dominated primary 64 

production that supported marine biogeochemical cycles and underpinned dynamic ocean 65 

chemistry in the run-up to the Sturtian Snowball Earth glaciation. This was an important 66 

period in Earth’s history that ultimately led to an Earth system succession and the rise of 67 

eukaryotes with algae emerging as key primary producers before the end of the Cryogenian 68 

(Brocks et al. 2017). Deciphering the potential role, if any, that Prochlorococcus might have 69 

played depends critically on an accurate estimate of the origin time for Prochlorococcus.  70 

By far, however, the divergence time of Prochlorococcus remains contentious from ~200 71 

Mya to ~1,000 Mya (Sánchez-Baracaldo et al., 2014; Sánchez-Baracaldo, 2015; 72 

Schirrmeister et al., 2015; Sánchez-Baracaldo et al., 2017; Boden et al., 2021; Fournier et al., 73 

2021; Martinez-Gutierrez et al., 2023). The discrepancies in Prochlorococcus divergence 74 

times are likely caused by variable use of fossils and other time calibrations and the use of 75 

alternative gene sets, clock models, and tree topologies (Warnock et al., 2012; Duchêne et al., 76 

2014; dos Reis et al., 2015) (see Supplementary Discussion). Despite their importance, these 77 

factors were rarely tested rigorously thus making it difficult to evaluate the accuracy of age 78 

estimates in previous studies. Importantly, even if all these factors are well tested and 79 

controlled, the rarity of cyanobacterial fossils poses a notable challenge in determining the 80 

antiquity of Prochlorococcus, particularly considering the lack of maximum age information 81 

when only cyanobacterial fossils were used (Zhang et al., 2021). Indeed, applying maximum 82 

age constraints at the calibration nodes strongly impacts posterior age estimates of 83 

uncalibrated lineages (Hedges et al., 2018; Morris et al., 2018; Wang and Luo, 2021). 84 
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However, informative maximum age constraints are typically missing from microbial fossils 85 

and can only be found in some animal and plant fossils. Moreover, the recent availability of 86 

several genome sequences of uncultivated basal Prochlorococcus lineages (Ulloa et al., 2021) 87 

requires re-estimation of the antiquity of Prochlorococcus, which should also include an 88 

evaluation of the factors that influence the accuracy of posterior ages. 89 

Here, we leverage the abundant plant and algal fossils and the well-established plant 90 

plastid endosymbiosis theory to develop a new pipeline that systematically tests the factors 91 

that influence the accuracy of posterior ages and thus yields robust estimates of 92 

Prochlorococcus antiquity. The plant plastid endosymbiosis theory states that the origin of all 93 

plastids in photosynthetic eukaryotes, except for the photosynthetic amoeba Paulinella 94 

(Marin et al., 2005), can be traced back to an ancient primary endosymbiosis involving a 95 

eukaryote and a cyanobacterium (Gray, 1992; Bhattacharya and Medlin, 1995; Keeling, 2013; 96 

Ponce-Toledo et al., 2017). Plant plastid endosymbiosis theory thus ties the evolutionary 97 

histories of cyanobacteria to those of photosynthetic eukaryotes. Eukaryotic fossils are indeed 98 

being increasingly used in dating the evolution of Cyanobacteria (Shih et al., 2016; Sánchez-99 

Baracaldo et al., 2017; Fournier et al., 2021). Our strategy builds on these by: 1) using more 100 

fossil-based age constraints (including maximum age constraints) on eukaryotic lineages with 101 

more complete taxonomic sampling including lineages that have undergone secondary 102 

endosymbiosis; and 2) applying a Bayesian sequential dating approach to better constrain the 103 

divergence time of eukaryotic lineages thereby propagating more accurate time information 104 

to Cyanobacteria, including Prochlorococcus. Note that the Bayesian sequential method used 105 

here is different from the commonly used secondary dating method (using time estimates 106 
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from previous studies as calibrations) (Heckman et al., 2001; Aoki et al., 2013; Chriki-Adeeb 107 

and Chriki, 2016) for two reasons. First, the time prior used in sequential dating analysis 108 

follows a specific probability distribution, but secondary calibrations ignore the uncertainties 109 

on age estimates. Second, the sequential dating analysis contains two steps each based on a 110 

distinct set of molecular data, while secondary dating analysis largely relies on the same 111 

molecular dataset (gene alignments) (dos Reis et al., 2018). These joint analyses led us to 112 

conclude that Prochlorococcus arose in the Tonian (1,000-720 Mya) oceans. Further, 113 

population genetic analysis implies that Prochlorococcus was born through a founder effect, 114 

and this strengthens the idea that Prochlorococcus emerged in the deep photic zone, a unique 115 

niche separated from upper waters where its ancestors (i.e., the last common ancestor of 116 

Prochlorococcus and its sister clade in the genus Synechococcus) thrived. 117 

 118 

Results and Discussion 119 

Prochlorococcus originated in the Tonian ocean 120 

We implemented a Bayesian sequential dating method that takes advantage of the 121 

abundant fossil records (Fig. 1a; Fig. S1a) available from photosynthetic eukaryotes to 122 

calibrate the evolution of Cyanobacteria. In our implementations, the posterior ages of 123 

eukaryotic lineages derived from the first-step of the sequential analysis were used as the 124 

time priors to calibrate Cyanobacteria evolution where only a few time constraints are 125 

available. To achieve this goal, we first implemented the genome-scale dating analysis of the 126 

eukaryotic lineages and confirmed that the posterior ages of the crown eukaryotic group were 127 

consistent with the previous estimates at ~1.6 Gya (Parfrey et al., 2011; Betts et al., 2018; 128 
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Wang and Luo, 2021) (Fig. S1b). We then compared the posterior age distributions of 129 

eukaryotic nodes from the first-step analysis to the distributions of the effective time prior on 130 

the corresponding nodes in the second-step analysis. The nearly identical distributions found 131 

in the comparisons suggest that the Bayesian sequential dating approach works well in these 132 

cases (Fig. S2).  133 

Our dating analysis implies that the last common ancestor (LCA) of Prochlorococcus 134 

(denoted as “Proch-AMZI/II/III-LCA”) emerged within the Tonian period at 878 Mya (95% 135 

HPD: 987-767 Mya) (Fig. 1b). Meanwhile, the LCA of Prochlorococcus clades HL, LL and 136 

AMZI/II (denoted as “Proch-AMZI/II-LCA”) evolved at 787 Mya (95% HPD: 896-687 Mya), 137 

which coincided with the early stage of the Neoproterozoic Oxygenation Event (NOE; 800-138 

550 Mya) (Fig. 1b). In this case, the branch leading to the LCA of Prochlorococcus HL, LLI, 139 

and LLII/III clades (denoted as “SBE-LCA” to keep consistency with (Zhang et al., 2021)) 140 

spanned the time that encompassed the duration of the Neoproterozoic Snowball Earth events 141 

(645-635 Mya for Marinoan glaciation and 717-659 Mya for Sturtian glaciation), supporting 142 

the main conclusion of the previous study, which used the traditional cyanobacterial fossil-143 

based strategy (Zhang et al., 2021).  144 

To validate the evolutionary timeline of Prochlorococcus, we performed a series of tests 145 

by using different molecular data, clock models, fossil calibrations and species tree 146 

topologies. The posterior ages estimated with all these alternative settings are largely 147 

consistent with that estimated with the focal strategy (detailed above) and fully support the 148 

origin of Prochlorococcus (Proch-AMZI/II/III-LCA) in the Tonian period (1,000-720 Mya), 149 

even when the maximum root age changed from 3.8 Gya to 4.5 Gya (Fig. S3). Moreover, the 150 
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emergence of Proch-AMZI/II-LCA was consistently estimated to occur in the early stages of 151 

the NOE (800-550 Mya) (Fig. S4), and that the branch leading to the SBE-LCA encompasses 152 

the Snowball Earth events in all the dating analyses (Fig. S5; see Supplementary Results).  153 

 154 

The emergence of Prochlorococcus is associated with a founder effect 155 

The method for inferring selection efficiency in deep time was developed (Zhang, 2000) 156 

and recently improved (Luo et al., 2017), which involves nonsynonymous substitutions only 157 

and compares the rate of nonsynonymous substitutions leading to replacements of 158 

physicochemically dissimilar amino acids (i.e., radical changes; dR) to the rate of 159 

nonsynonymous substitutions leading to replacements of physicochemically similar amino 160 

acids (i.e., conservative changes; dC). Since radical changes are more likely to be deleterious 161 

than conservative changes (E. Zuckerkandl, 1965; Dayhoff, 1972), an excess of the radical 162 

changes in a deeply branching lineage compared to its sister lineage suggests random fixation 163 

of deleterious mutations by genetic drift in the former. Using this method, we found a 164 

significant increase of the dR/dC ratio across the genomic regions in the branch leading to 165 

Proch-AMZI/II/III-LCA relative to the branch leading to the LCA of Synechococcus clade 5.1 166 

(Fig. 2a), indicating that the emergence of Prochlorococcus was accompanied by a significant 167 

reduction of the efficiency of purifying selection and a potentially severe reduction in the 168 

effective population size (Ne), allowing for an accelerated accumulation of deleterious 169 

mutations through genetic drift.  170 

We propose that the colonization of the deep photic zone by Prochlorococcus started by a 171 

seed population that obtained the ability to use divinyl chlorophylls. Therefore, the reduced 172 
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Ne upon the emergence of Prochlorococcus was likely caused by a “founder effect”, which 173 

suggests that a new population was established by a few individuals from a larger ancestral 174 

population (Barton et al., 1984). Note that this mechanism is different from population 175 

bottleneck, which is often caused by the environmental disasters. The latter has been used to 176 

explain the reduced Ne occurring on the branch leading to SBE-LCA (Zhang et al., 2021). 177 

That conclusion is confirmed here with the inclusion of new SAG genomes, as the dR/dC 178 

values in the branch leading to SBE-LCA were significantly elevated compared to the those 179 

in the branches leading to Prochlorococcus LLIV and AMZ clades (Fig. 2b) 180 

 181 

Prochlorococcus genomic changes and niche adaptation 182 

As the only phytoplankton group using divinyl chlorophyll (DVChl) for harvesting light 183 

energy (Ralf and Repeta, 1992), Prochlorococcus lost the gene bciB that performs the 184 

conversion of DVChl to MVChl (monovinyl chlorophyll) at Proch-AMZI/II/III-LCA, thereby 185 

promoting the accumulation of DVChl in their membranes (Ito et al., 2008). Compared to the 186 

MVChl used by Synechococcus, DVChl more efficiently absorbs blue light that penetrates to 187 

deeper waters than other photosynthetically active radiation (Ito and Tanaka, 2011). Likewise, 188 

the gain of the PcCao gene for the synthesis of chlorophyll b (Satoh and Tanaka, 2006) in 189 

Proch-AMZI/II/III-LCA also enables Prochlorococcus ancestors to efficiently harvest blue 190 

light at exceedingly low intensities characteristic of deep waters (Hess et al., 2001) (Fig. 1b). 191 

These genomic changes would have enabled Prochlorococcus ancestors to explore the deep 192 

photic zone, a niche where its Synechococcus ancestor would not thrive.  193 

We infer that dwelling in deeper waters confers competitive advantages upon 194 
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Prochlorococcus. A well-known advantage emerges under conditions of strong phosphorus (P) 195 

limitation, whereby deep-dwelling low-light adapted phototrophs gain first access to 196 

upwelling phosphorus (Jones et al., 2015; Ozaki et al., 2019). The low-light advantage 197 

conferred on the earliest Prochlorococcus cells through the adoption of divinyl chlorophyll 198 

would have enhanced their access to P, relative to contemporary algae and its own ancestors. 199 

It would also have increased access to NH4
+ upwelling from deeper anoxic waters obviating 200 

the need for nitrate assimilation (Michiels et al., 2017) (Fig. 1c). 201 

Unlike most cyanobacteria, which use the phycobilisome as the photosynthetic antenna, 202 

the main light-harvesting antenna of Prochlorococcus is made up of prochlorophyte 203 

chlorophyll-binding (Pcb) protein (Biller et al., 2015). By reconstructing the gene 204 

evolutionary paths with Prochlorococcus SAGs included, we found that the phycobilisome 205 

genes (apcACDEF, cpcEFG, and cpeCES) were present in both Proch-AMZI/II/III-LCA and 206 

Proch-AMZI/II-LCA and lost at SBE-LCA. Using the same approach, we found that the 207 

cholorophyll-binding protein (encoded by pcbD) was obtained at Proch-AMZI/II-LCA. The 208 

replacement of the photosynthetic antenna thus did not co-occur with the emergence of 209 

Prochlorococcus. We note that gene absence in SAGs could result from the incomplete nature 210 

of the SAG genomes, however, in this case, simultaneous absence of the pcbD gene in all the 211 

five SAGs that are more than 80% complete seems unlikely. 212 

The phycobilisome constitutes as much as 50%-60% of the soluble proteins in 213 

Synechococcus (Grossman et al., 1993). The loss of the phycobilisome was thought to reduce 214 

nitrogen (N) investments by at least 40% in Prochlorococcus (Ting et al., 2002). Therefore, 215 

the losses of phycobilisome genes was once considered to be favored by Prochlorococcus 216 
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conferred advantages to inhabiting oligotrophic oceans (Ting et al., 2002). However, since the 217 

colonization of Prochlorococcus in the deep photic zone of the Tonian ocean conferred them 218 

advantages in acquiring the limiting nutrients like ammonium and phosphate upwelled from 219 

the deep ocean (Jones et al., 2015; Michiels et al., 2017; Ozaki et al., 2019), the loss of the 220 

phycobilisome in Prochlorococcus was unlikely driven by selection for metabolic efficiency. 221 

Instead, as the chlorophyll�based light�harvesting complex gradually became the primary 222 

photosynthetic antenna in Prochlorococcus, the phycobilisome genes were more likely 223 

subject to relaxed purifying selection and thus neutral losses. 224 

Despite the absence of the nitrate utilization genes in most Prochlorococcus isolates, 225 

some uncultivated Prochlorococcus lineages contain these genes (Martiny et al., 2009; 226 

Berube et al., 2015; Berube et al., 2019). By including Prochlorococcus SAGs that contain 227 

the assimilatory nitrate transporter gene (nrtB) and the assimilatory nitrate reductase gene 228 

(narB) in our reconstructions, we inferred the presence of both genes in Proch-AMZI/II/III-229 

LCA and Proch-AMZI/II-LCA and the losses of these genes at SBE-LCA (Fig. 1b). The 230 

absence of nitrate utilization genes (narB and nrtB) in cultured Prochlorococcus strains has 231 

been attributed to biased taxon sampling, since the Prochlorococcus were primarily cultured 232 

from ocean regions where P instead of  N is the primarily limiting nutrient (Berube et al., 233 

2015). However, phylogenetic analysis that included both Prochlorococcus and 234 

Synechococcus showed topological congruence of the narB gene tree with the species tree, 235 

suggesting vertical narB gene inheritance (Berube et al., 2019). By including 236 

Prochlorococcus SAGs that contain the assimilatory nitrate transporter gene (nrtB) and the 237 

assimilatory nitrate reductase gene (narB) in our reconstructions, we inferred the presence of 238 
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both genes in Proch-AMZI/II/III-LCA and Proch-AMZI/II-LCA and the losses of these genes 239 

at SBE-LCA (Fig. 1b). The mechanism underlying the loss of nitrate utilization genes in 240 

Prochlorococcus was once attributed to relaxed selection efficiency due to the low level of 241 

nitrate caused by intensive denitrification and anammox (anaerobic ammonium oxidation) 242 

activity (Canfield et al., 2008; Johnston et al., 2009). However, since Prochlorococcus 243 

originated in the deep photic zone where ammonium would likely have been supplied 244 

through upwelling (Fig. 1c) (Michiels et al., 2017), the loss of the nitrate utilization genes in 245 

early Prochlorococcus is more likely to be the result of a switch of its N source from nitrate 246 

to ammonium, which was again a neutral process. 247 

In addition to the nitrate utilization genes, we inferred the losses of molybdopterin 248 

biosynthesis genes at SBE-LCA. Since these genes are known to co-locate with the nitrate 249 

reductase genes in Synechococcus (Rubio et al., 1998; Palenik et al., 2003), they may 250 

function as the cofactor of nitrate reductase in Prochlorococcus. Therefore, the loss of nitrate 251 

reductase in Prochlorococcus likely rendered the molybdopterin dispensable and thus led to 252 

the losses of molybdopterin biosynthesis genes (moaABCDE, mobA and moeA) at SBE-LCA. 253 

 254 

Geochemical context that supports the emergence of Prochlorococcus in Tonian ocean  255 

A Tonian, pre-Sturtian, age for the emergence of the Prochlorococcus lineage would 256 

have been set against the backdrop of dynamic ocean chemistry characterized by a variably 257 

oxygenated surface ocean that was co-populated by diverse microbial eukaryotes, including 258 

phytoplankton and the earliest metazoans (Erwin et al., 2011) (Fig. 1c). Multi-proxy data, 259 

collected from geographically diverse sites, converge on Tonian deep oceans that were 260 
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pervasively anoxic across 60-80% of the ocean floor, or more (Tahata et al., 2015; Lau et al., 261 

2017). The deep anoxic oceans were predominantly ferruginous in nature, albeit with 262 

evidence for transient, spatially restricted euxinia, and possibly even brief (<0.5 Myr) 263 

episodes of pervasive deep ocean oxygenation (Stolper and Keller, 2018; Tostevin and Mills, 264 

2020). Surface waters, by contrast, were modestly, though perhaps increasingly, oxygenated 265 

across the Tonian with evidence for the episodic and persistent intrusion of anoxic deep 266 

waters into the surface oceans (Zhang et al., 2022; Clarkson et al., 2023), with corresponding 267 

implications for nutrient cycling and availability and for marine life in the euphotic zone. 268 

In this way, the emergence of the Prochlorococcus would have restricted the flux of 269 

nutrients to surface waters and limited the contributions of higher-light adapted 270 

phytoplankton like algae to primary production. This is supported through the biomarker 271 

record, which indicates a dominance of cyanobacterial primary production until after the 272 

Sturtian glaciation (Brocks, 2018). It is also supported by the Tonian N-isotope record, which 273 

implies a limited contribution from nitrate assimilation to primary production at this time 274 

(Kang et al., 2023). Importantly, the adaptation of the Prochlorococcus LCA to lower-light 275 

would also allow it to better compete with low-light adapted anoxygenic phototrophs that 276 

would likely have populated anoxic regions of the Tonian euphotic zone with strong potential 277 

to cause ocean oxygenation (Johnston et al., 2009; Jones et al., 2015; Ozaki et al., 2019). 278 

Competition between oxygenic photosynthetic cyanobacteria and anoxygenic phototrophs 279 

that oxidize ferrous iron (photoferrotophs), is known to limit photosynthetic oxygen 280 

production (Jones et al., 2015; Ozaki et al., 2019). Whereas the accumulation of O2 produced 281 

through photosynthesis ultimately depends on organic matter burial (Berner, 1991), oxygen 282 
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production fluxes through organic matter burial scale with the fraction of total photosynthetic 283 

production that is oxygenic rather than anoxygenic (Johnston et al., 2009; Ozaki et al., 2019). 284 

In this way, the capacity of the Prochlorococcus LCA to grow in deeper waters would have 285 

enhanced its ability to access upwelling phosphorus thereby increasing the oxygenic fraction 286 

of total photosynthesis with potential to initiate a positive feedback on oxygenation (Ozaki et 287 

al., 2019).  288 

 289 

Implications for Neoproterozoic biogeochemical cycling 290 

In accordance with previous research (Ulloa et al., 2021), our analysis suggests that 291 

Prochlorococcus diverged before transitioning from the use of the phycobilisome to the 292 

chlorophyll�based light�harvesting complex. Therefore, while the divinyl pigment synthesis 293 

gene was obtained at the earliest Prochlorococcus (i.e., Proch-AMZI/II/III-LCA) to enable 294 

their exploration of the deep photic zone, our analyses imply that Prochlorococcus would not 295 

have strongly influenced the Neoproterozoic Earth system until the emergence of Proch-296 

AMZI/II-LCA lineage during which the photosynthetic antenna was replaced. Our dating 297 

analysis shows that the emergence of this lineage indeed broadly coincides with geochemical 298 

signals for the early stages of Neoproterozoic Oxygenation Event (NOE).  299 

The NOE is widely considered the second stage of Earth’s protracted oxygenation history, 300 

during which atmospheric and marine oxygen concentrations rose to levels exceeding those 301 

that characterized the proceeding mid-Proterozoic (Och and Shields-Zhou, 2012; Lyons et al., 302 

2014). This rise in atmospheric oxygen ultimately promoted the emergence of large and 303 

complex animal life (Knoll and Nowak, 2017). The initiation of the NOE was previously 304 
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linked to eukaryotic algae (Lyons et al., 2014; Brocks et al., 2017) or marine 305 

picocyanobacteria (Sánchez-Baracaldo et al., 2014; Braakman et al., 2017). Our results show 306 

support for the latter assumption and indicate that early Prochlorococcus may have played a 307 

role in enhancing oxygen production, with potential to initiate the NOE, which was likely 308 

ultimately accelerated through increasing efficiency in the biological carbon pump driven by 309 

a progressively a larger role for eukaryotes. Such an elevated role for eukaryotes is clearly 310 

marked in the geologic record through an increase in sterane-hopane ratios following the 311 

Sturtian glaciation (Brocks et al., 2017). Pre-Sturtian, Tonian oxygenation, was thus likely 312 

driven by bacterially dominated carbon cycling, the timing of which strongly coincides with 313 

the emergence of low-light adapted Prochlorococcus, their ensuing colonization of the deep 314 

photic zone, and capacity to displace incumbent anoxygenic photoferrotrophs thereby 315 

increasing oxygen production. This hypothesis could be further tested through geochemical 316 

analyses that help refine estimates for Tonian ocean oxygen contents and through 317 

biogeochemical models that can quantify the potential effects of Prochlorococcus emergence 318 

on the global carbon and oxygen cycles. Note that the inference of the roles of 319 

Prochlorococcus in facilitating Neoproterozoic biogeochemical cycle relies on the accurate 320 

molecular dating analysis. Given the heavy debate about the antiquity of Cyanobacteria, 321 

including Prochlorococcus, we have extensively discussed the previous dating analyses and 322 

pointed out their methodological deficiencies (see details in Supplementary Discussion). 323 

 324 

Concluding remarks 325 

We have integrated molecular clocks, evolutionary genetic analyses, and comparative 326 
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genomics along with knowledge of paleo-geochemistry to reconstruct the early evolution of 327 

Prochlorococcus and infer their possible impact on the evolution of the Neoproterozoic Earth 328 

system. The abundant fossil calibrations ‘borrowed’ from photosynthetic eukaryotes and the 329 

new and robust molecular dating pipeline pinpoint the origin of Prochlorococcus to the 330 

Tonian oceans. Comparative genomics suggests that gains and losses of a few important 331 

genes conferred the early ancestral Prochlorococcus with an unprecedented ability to absorb 332 

the blue light that effectively penetrates water, empowering early Prochlorococcus to 333 

colonize the deep photic zone, a niche distinctly different from the better illuminated surface 334 

waters supporting other phytoplankton groups including its Synechococcus ancestor and early 335 

Eukaryotes. The use of the evolutionary genetic proxy, dR/dC, implies that the earliest 336 

Prochlorococcus had a highly reduced effective population size compared to its 337 

Synechococcus ancestor, likely reflecting a founder effect and strengthening the idea that the 338 

deep photic zone was an ecological niche uniquely accessible to the earliest Prochlorococcus. 339 

This niche differentiation allowed the earliest Prochlorococcus to avoid fierce competition 340 

with its Synechococcus ancestor and other phytoplankton groups and gave them easy access 341 

to phosphate that otherwise strongly limited primary productivity in the Tonian oceans. While 342 

all of these co-existing planktonic groups are likely to have contributed to the NOE, the 343 

emergence of Prochlorococcus in a previously uncolonized habitat with a unique light regime 344 

and a higher phosphate accessibility, followed by the acquisition of a more efficient light-345 

harvesting system, may have facilitated a potentially rapid population expansion, which 346 

ultimately enhanced the oxygen production in Tonian oceans and facilitated the initiation of 347 

the Neoproterozoic Oxygenation Event.  348 
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 349 

Materials and Methods 350 

The nuclear-encoded and plastid-encoded protein sequences of eukaryotic representatives 351 

were obtained from Dicots PLAZA (5.0) database and NCBI RefSeq release of plastid 352 

database and were used for the first-step and the second-step Bayesian sequential dating 353 

analysis, respectively. The genomic sequences of Cyanobacteria (including Prochlorococcus 354 

SAGs), Vampirovibrionia and Sericytochromatia were also used for the second-step 355 

sequential dating analysis, which were obtained from GenBank and Integrated Microbial 356 

Genomes (IMG) database (Supplementary Data 1).  357 

For the first-step sequential dating analysis, the orthologous gene families shared by 358 

eukaryotic species were identified by searching against a pre-compiled eukaryotic nuclear 359 

gene dataset (Strassert et al., 2021). Since genome-scale dating of eukaryotic lineages is very 360 

slow with fully partitioned molecular data and is prone to have reduced coverage probability 361 

(the probability that the 95% HPD interval of posterior ages contains the true age) due to the 362 

large number of partitions (Angelis et al., 2018), we clustered the eukaryotic gene families 363 

into 1-, 3-, 5-, 7-, and 9-partitions by using Gaussian Mixture Model (GMM) clustering 364 

method based on their estimated evolutionary rates (see details in Supplementary Methods). 365 

The 5-partition data was finally adopted for the first-step dating analysis because of the 366 

lowest Akaike Information Criterion (AIC) value (Fig. S1b) and the high similarity between 367 

the derived distributions of posterior ages and effective time prior (Fig. S2). The eukaryotic 368 

fossil-based calibrations used in this first-step dating analysis were adapted from published 369 

studies (Fig. S1a; Table S1; See details in Supplementary Methods).  370 
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For the second-step sequential dating analysis, the orthologous gene families were firstly 371 

identified by searching against a pre-compiled plastid marker gene dataset (Ponce-Toledo et 372 

al., 2017) and then sorted by ∆LL (i.e., the difference in log-likelihood values of the gene tree 373 

constructed with and without the backbone species tree topology) and evolutionary rate 374 

difference (Supplementary Data 2) (Fig. S6). In addition to the fossil-based calibrations 375 

adapted from published studies, we used the posterior age distributions derived from the first-376 

step dating analysis to calibrate the overlapping nodes in the species tree containing both 377 

eukaryotes and Cyanobacteria (Fig. S1c; Table S1; Table S2). Note that we placed the 378 

cyanobacterial-fossil based calibrations at the total group of Nostocales and Pleurocapsales 379 

by taking into account the incomplete taxon sampling of their early-split lineages, as well as 380 

the possibility that their fossils belong to the stem lineages rather than the crown groups. In 381 

this way, we allow for the posterior ages of crown Nostocales and Pleurocapsales groups to 382 

be younger than the known fossil records.  383 

Our molecular dating analysis was conducted using MCMCTree with the best-fit clock 384 

model, which was selected using the program "mcmc3r" following published studies 385 

(McGowen et al., 2019; Wang and Luo, 2021). For calibrations and species tree topology that 386 

remain disputed, we took all the possibilities in our analysis for comparison (Fig. S4). We 387 

also tested the necessity for using Bayesian sequential dating approach and hard bound 388 

calibration strategy in our analysis (Fig. S7; see details in Supplementary Discussion) and 389 

tested the convergence of the posterior age estimates (Fig. S8).  390 

The gains and losses of Prochlorococcus orthologous gene families were inferred with a 391 

gene tree-species tree reconciliation approach according to our recent studies (Zhang et al., 392 
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2024). The best-fit reconciliation tool was selected through a comprehensive simulation-393 

based benchmarking analysis [see Fig. S5 in (Zhang et al., 2024)]. In our implementations, 394 

we performed the reconstruction first without using the SAGs to avoid the false prediction of 395 

genomic events due to the relatively low completeness of the SAGs (e.g., 81.9% for AMZI-396 

B-ETNP) and then used the same reconstruction methods to validate these evolutionary 397 

events when SAGs were included.  398 

The reduction of Prochlorococcus selection efficiency in ancient time was inferred by 399 

comparing the genome-wide dR/dC (i.e., the relative rate of radical versus conservative 400 

nonsynonymous substitutions) between the target lineage and its sister lineage based on our 401 

recent study (Luo et al., 2017) (see details in Supplementary Methods). 402 

 403 

Code availability 404 

The custom scripts used to analyze the data are available in the online GitHub repository 405 

(https://github.com/luolab-cuhk/Prochl-NOE). 406 
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Figure Legends 604 

Fig. 1 The evolutionary timeline of Prochlorococcus estimated with plastid-based 605 

strategy. (a) The diagram shows the phylogenetic relations among Cyanobacteria and 606 

eukaryotic species. The green solid line, black solid line and green dashed line in the 607 

cladogram leading to the tip of oxygenic Cyanobacteria, anoxygenic Vampirovibrionia and 608 

Sericytochromatia and eukaryotic species, respectively. The calibrated nodes in molecular 609 

clock analysis are marked with orange circle (see calibration justifications in Supplementary 610 

Methods). (b) (left) The Prochlorococcus evolutionary timeline estimated with the focal 611 

molecular dating strategy using Bayesian sequential dating approach based on the 5-partition 612 

eukaryotic genome-scale data (in the first step dating analysis) and fully partitioned 12-gene 613 

dataset “T30” (in the second step dating analysis) under independent rate clock model. The 614 

posterior age distribution is provided next to the ancestral node. The atmospheric oxygen 615 

level at the geological time scale is adapted from Lyons et al., 2014, which is represented by 616 

the percent of present atmospheric oxygen level (PAL). The vertical bars with green, orange 617 

and blue colors represent the time of Tonian, the time of NOE, and the time of Sturtian (left) 618 

and Marinoan (right) glaciation, respectively. (right) Phyletic pattern of key gene families. 619 

Solid square, solid circle and open circle next to each analyzed genome represent multi-copy 620 

gene family, single-copy gene family and absence of the gene family, respectively, in the 621 

extant genomes. Gene families marked with asterisk (*) were consistently estimated to be 622 

gained or lost by using both AnGST and GeneRax. (c) Diagram illustrating the 623 

biogeochemical environments when Prochlorococcus arose from its Synechococcus ancestor. 624 

 625 
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Fig. 2 Diagram illustrating the schemes and the results of dR/dC comparison. The 626 

genome-wide means of dR/dC values at the ancestral branches (‘Target’) leading to (a) Proch-627 

AMZI/II/III-LCA and (b) SBE-LCA compared with that at the sister lineages (‘Control’). 628 

The dR/dC values were classified based on the physicochemical classification of the amino 629 

acids by charge or by volume and polarity, and were either GC-corrected by codon frequency 630 

(blue), GC-corrected by amino acid (AA) frequency (red) or uncorrected (gray). Error bars of 631 

dR/dC represent the standard error of the mean. 632 
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