

1

2 **Emergence of *Prochlorococcus* in the Tonian oceans and the initiation of Neoproterozoic
3 oxygenation**

4 Hao Zhang^{1,2^}, Sishuo Wang^{2^}, Tianhua Liao², Sean A. Crowe³, Haiwei Luo^{2,4,5*}

5 ¹Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000,
6 China

7 ²Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key
8 Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong
9 Kong SAR

10 ³Departments of Microbiology and Immunology, and Earth, Ocean, and Atmospheric
11 Sciences, University of British Columbia, Vancouver, British Columbia, Canada

12 ⁴Earth and Environmental Sciences Programme, The Chinese University of Hong Kong,
13 Shatin, Hong Kong SAR

14 ⁵Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong,
15 Shatin, Hong Kong SAR

16 [^] These authors contributed equally to this study

17

18 ***Corresponding author:** Haiwei Luo

19 **Email:** haiweiluo@cuhk.edu.hk

20 **Competing Interest Statement:** The authors declare no competing interests.

21 **Key words:** *Prochlorococcus*, Neoproterozoic oxygenation event, molecular dating, plastid,
22 cyanobacteria

23 **Abstract**

24 *Prochlorococcus* are the smallest and most abundant photosynthetic organisms on Earth,
25 contributing up to 50% of the chlorophyll in the oligotrophic oceans. Despite being important
26 in regulating the carbon cycle in today's ocean, the ecological significance of
27 *Prochlorococcus* in Earth's history remains elusive. Our new robustly calibrated molecular
28 clock analysis reveals that *Prochlorococcus* emerged in the deep photic zone of the Tonian
29 (1,000-720 Mya) oceans. The classical light-harvesting antenna complex in Cyanobacteria,
30 i.e., the phycobilisome, was replaced in *Prochlorococcus* by the chlorophyll \square based antenna,
31 enabling more efficient use of blue light that penetrates into deeper water. Importantly,
32 *Prochlorococcus* colonization of deep water enhanced access to phosphate, which was
33 abundant in upwelled seawater, but likely scarce in the Tonian surface ocean, promoting
34 expansion of *Prochlorococcus*, displacement of incumbent low-light adapted anoxygenic
35 photoferrotrophs, and associated increases in photosynthetic oxygen production. Colonization
36 of deeper waters would also have improved access to ammonium, leading to the neutral loss
37 of nitrate utilization genes. Our research thus documents the conspicuous emergence of new
38 photosynthetic bacterial lineages in the run-up to the Neoproterozoic oxygenation event,
39 implying an additional layer of eco-evolutionary complexity during this pivotal interval in
40 Earth's history.

41 **Introduction**

42 *Prochlorococcus* host more than half of the chlorophyll biomass in oligotrophic oceans
43 (Partensky and Garczarek, 2010). As key primary producers in the modern ocean,
44 *Prochlorococcus* fix as much as four gigatons of carbon each year and are the foundation of
45 the marine carbon cycle and food web (Flombaum et al., 2013). The success of
46 *Prochlorococcus* in today's oceans has been attributed to multiple physiological features.
47 Importantly, *Prochlorococcus* use divinyl chlorophyll (DVChl) for harnessing light energy
48 (Ralf and Repeta, 1992). DVChl harvests blue light much more efficiently than the more
49 common monovinyl chlorophyll used by other cyanobacterial lineages and it thus enables
50 *Prochlorococcus* to thrive in the deepest layers of the euphotic zone, where blue light
51 dominates (Ito and Tanaka, 2011). *Prochlorococcus* is also the smallest photosynthetic
52 organism on Earth (Partensky et al., 1999). As a result, their high surface-to-volume ratio
53 provides enhanced nutrient acquisition efficiency, which together with effective blue-light
54 absorption promotes photosynthesis by *Prochlorococcus* in oligotrophic tropical and
55 subtropical oceans (Partensky et al., 1999). In today's ocean, *Prochlorococcus* is also the
56 dominant phototroph in more nutrient-rich, oxygen-depleted anoxic marine zones (AMZ) in
57 the eastern tropical North and South Pacific Oceans (Goericke et al., 2000; Lavin et al., 2010).
58 Since the AMZ lineages represent the earliest-split branches of *Prochlorococcus*, it has been
59 proposed that *Prochlorococcus* emerged in low-oxygen environments and, by extension,
60 contributed to early ocean oxygenation (Ulloa et al., 2021).
61 The emergence of an early branch of *Prochlorococcus* (named SBE-LCA) during the
62 Cryogenian based on our recent study (Zhang et al. 2021) implies the origin of the total

63 *Prochlorococcus* group earlier in the Proterozoic Eon. Such an earlier origin then suggests
64 that *Prochlorococcus* might have contributed to the cyanobacterial dominated primary
65 production that supported marine biogeochemical cycles and underpinned dynamic ocean
66 chemistry in the run-up to the Sturtian Snowball Earth glaciation. This was an important
67 period in Earth's history that ultimately led to an Earth system succession and the rise of
68 eukaryotes with algae emerging as key primary producers before the end of the Cryogenian
69 (Brocks et al. 2017). Deciphering the potential role, if any, that *Prochlorococcus* might have
70 played depends critically on an accurate estimate of the origin time for *Prochlorococcus*.

71 By far, however, the divergence time of *Prochlorococcus* remains contentious from ~200
72 Mya to ~1,000 Mya (Sánchez-Baracaldo et al., 2014; Sánchez-Baracaldo, 2015;
73 Schirrmeyer et al., 2015; Sánchez-Baracaldo et al., 2017; Boden et al., 2021; Fournier et al.,
74 2021; Martinez-Gutierrez et al., 2023). The discrepancies in *Prochlorococcus* divergence
75 times are likely caused by variable use of fossils and other time calibrations and the use of
76 alternative gene sets, clock models, and tree topologies (Warnock et al., 2012; Duchêne et al.,
77 2014; dos Reis et al., 2015) (see Supplementary Discussion). Despite their importance, these
78 factors were rarely tested rigorously thus making it difficult to evaluate the accuracy of age
79 estimates in previous studies. Importantly, even if all these factors are well tested and
80 controlled, the rarity of cyanobacterial fossils poses a notable challenge in determining the
81 antiquity of *Prochlorococcus*, particularly considering the lack of maximum age information
82 when only cyanobacterial fossils were used (Zhang et al., 2021). Indeed, applying maximum
83 age constraints at the calibration nodes strongly impacts posterior age estimates of
84 uncalibrated lineages (Hedges et al., 2018; Morris et al., 2018; Wang and Luo, 2021).

85 However, informative maximum age constraints are typically missing from microbial fossils
86 and can only be found in some animal and plant fossils. Moreover, the recent availability of
87 several genome sequences of uncultivated basal *Prochlorococcus* lineages (Ulloa et al., 2021)
88 requires re-estimation of the antiquity of *Prochlorococcus*, which should also include an
89 evaluation of the factors that influence the accuracy of posterior ages.

90 Here, we leverage the abundant plant and algal fossils and the well-established plant
91 plastid endosymbiosis theory to develop a new pipeline that systematically tests the factors
92 that influence the accuracy of posterior ages and thus yields robust estimates of
93 *Prochlorococcus* antiquity. The plant plastid endosymbiosis theory states that the origin of all
94 plastids in photosynthetic eukaryotes, except for the photosynthetic amoeba *Paulinella*
95 (Marin et al., 2005), can be traced back to an ancient primary endosymbiosis involving a
96 eukaryote and a cyanobacterium (Gray, 1992; Bhattacharya and Medlin, 1995; Keeling, 2013;
97 Ponce-Toledo et al., 2017). Plant plastid endosymbiosis theory thus ties the evolutionary
98 histories of cyanobacteria to those of photosynthetic eukaryotes. Eukaryotic fossils are indeed
99 being increasingly used in dating the evolution of Cyanobacteria (Shih et al., 2016; Sánchez-
100 Baracaldo et al., 2017; Fournier et al., 2021). Our strategy builds on these by: 1) using more
101 fossil-based age constraints (including maximum age constraints) on eukaryotic lineages with
102 more complete taxonomic sampling including lineages that have undergone secondary
103 endosymbiosis; and 2) applying a Bayesian sequential dating approach to better constrain the
104 divergence time of eukaryotic lineages thereby propagating more accurate time information
105 to Cyanobacteria, including *Prochlorococcus*. Note that the Bayesian sequential method used
106 here is different from the commonly used secondary dating method (using time estimates

107 from previous studies as calibrations) (Heckman et al., 2001; Aoki et al., 2013; Chriki-Adeeb
108 and Chriki, 2016) for two reasons. First, the time prior used in sequential dating analysis
109 follows a specific probability distribution, but secondary calibrations ignore the uncertainties
110 on age estimates. Second, the sequential dating analysis contains two steps each based on a
111 distinct set of molecular data, while secondary dating analysis largely relies on the same
112 molecular dataset (gene alignments) (dos Reis et al., 2018). These joint analyses led us to
113 conclude that *Prochlorococcus* arose in the Tonian (1,000-720 Mya) oceans. Further,
114 population genetic analysis implies that *Prochlorococcus* was born through a founder effect,
115 and this strengthens the idea that *Prochlorococcus* emerged in the deep photic zone, a unique
116 niche separated from upper waters where its ancestors (i.e., the last common ancestor of
117 *Prochlorococcus* and its sister clade in the genus *Synechococcus*) thrived.

118

119 **Results and Discussion**

120 *Prochlorococcus* originated in the Tonian ocean

121 We implemented a Bayesian sequential dating method that takes advantage of the
122 abundant fossil records (Fig. 1a; Fig. S1a) available from photosynthetic eukaryotes to
123 calibrate the evolution of Cyanobacteria. In our implementations, the posterior ages of
124 eukaryotic lineages derived from the first-step of the sequential analysis were used as the
125 time priors to calibrate Cyanobacteria evolution where only a few time constraints are
126 available. To achieve this goal, we first implemented the genome-scale dating analysis of the
127 eukaryotic lineages and confirmed that the posterior ages of the crown eukaryotic group were
128 consistent with the previous estimates at ~1.6 Gya (Parfrey et al., 2011; Betts et al., 2018;

129 Wang and Luo, 2021) (Fig. S1b). We then compared the posterior age distributions of
130 eukaryotic nodes from the first-step analysis to the distributions of the effective time prior on
131 the corresponding nodes in the second-step analysis. The nearly identical distributions found
132 in the comparisons suggest that the Bayesian sequential dating approach works well in these
133 cases (Fig. S2).

134 Our dating analysis implies that the last common ancestor (LCA) of *Prochlorococcus*
135 (denoted as “Proch-AMZI/II/III-LCA”) emerged within the Tonian period at 878 Mya (95%
136 HPD: 987-767 Mya) (Fig. 1b). Meanwhile, the LCA of *Prochlorococcus* clades HL, LL and
137 AMZI/II (denoted as “Proch-AMZI/II-LCA”) evolved at 787 Mya (95% HPD: 896-687 Mya),
138 which coincided with the early stage of the Neoproterozoic Oxygenation Event (NOE; 800-
139 550 Mya) (Fig. 1b). In this case, the branch leading to the LCA of *Prochlorococcus* HL, LLI,
140 and LLII/III clades (denoted as “SBE-LCA” to keep consistency with (Zhang et al., 2021))
141 spanned the time that encompassed the duration of the Neoproterozoic Snowball Earth events
142 (645-635 Mya for Marinoan glaciation and 717-659 Mya for Sturtian glaciation), supporting
143 the main conclusion of the previous study, which used the traditional cyanobacterial fossil-
144 based strategy (Zhang et al., 2021).

145 To validate the evolutionary timeline of *Prochlorococcus*, we performed a series of tests
146 by using different molecular data, clock models, fossil calibrations and species tree
147 topologies. The posterior ages estimated with all these alternative settings are largely
148 consistent with that estimated with the focal strategy (detailed above) and fully support the
149 origin of *Prochlorococcus* (Proch-AMZI/II/III-LCA) in the Tonian period (1,000-720 Mya),
150 even when the maximum root age changed from 3.8 Gya to 4.5 Gya (Fig. S3). Moreover, the

151 emergence of Proch-AMZI/II-LCA was consistently estimated to occur in the early stages of
152 the NOE (800-550 Mya) (Fig. S4), and that the branch leading to the SBE-LCA encompasses
153 the Snowball Earth events in all the dating analyses (Fig. S5; see Supplementary Results).

154

155 The emergence of *Prochlorococcus* is associated with a founder effect

156 The method for inferring selection efficiency in deep time was developed (Zhang, 2000)
157 and recently improved (Luo et al., 2017), which involves nonsynonymous substitutions only
158 and compares the rate of nonsynonymous substitutions leading to replacements of
159 physicochemically dissimilar amino acids (i.e., radical changes; d_R) to the rate of
160 nonsynonymous substitutions leading to replacements of physicochemically similar amino
161 acids (i.e., conservative changes; d_C). Since radical changes are more likely to be deleterious
162 than conservative changes (E. Zuckerkandl, 1965; Dayhoff, 1972), an excess of the radical
163 changes in a deeply branching lineage compared to its sister lineage suggests random fixation
164 of deleterious mutations by genetic drift in the former. Using this method, we found a
165 significant increase of the d_R/d_C ratio across the genomic regions in the branch leading to
166 Proch-AMZI/II/III-LCA relative to the branch leading to the LCA of *Synechococcus* clade 5.1
167 (Fig. 2a), indicating that the emergence of *Prochlorococcus* was accompanied by a significant
168 reduction of the efficiency of purifying selection and a potentially severe reduction in the
169 effective population size (N_e), allowing for an accelerated accumulation of deleterious
170 mutations through genetic drift.

171 We propose that the colonization of the deep photic zone by *Prochlorococcus* started by a
172 seed population that obtained the ability to use divinyl chlorophylls. Therefore, the reduced

173 N_e upon the emergence of *Prochlorococcus* was likely caused by a “founder effect”, which
174 suggests that a new population was established by a few individuals from a larger ancestral
175 population (Barton et al., 1984). Note that this mechanism is different from population
176 bottleneck, which is often caused by the environmental disasters. The latter has been used to
177 explain the reduced N_e occurring on the branch leading to SBE-LCA (Zhang et al., 2021).
178 That conclusion is confirmed here with the inclusion of new SAG genomes, as the d_R/d_C
179 values in the branch leading to SBE-LCA were significantly elevated compared to those
180 in the branches leading to *Prochlorococcus* LLIV and AMZ clades (Fig. 2b)
181

182 *Prochlorococcus* genomic changes and niche adaptation

183 As the only phytoplankton group using divinyl chlorophyll (DVChl) for harvesting light
184 energy (Ralf and Repeta, 1992), *Prochlorococcus* lost the gene *bciB* that performs the
185 conversion of DVChl to MVChl (monovinyl chlorophyll) at Proch-AMZI/II/III-LCA, thereby
186 promoting the accumulation of DVChl in their membranes (Ito et al., 2008). Compared to the
187 MVChl used by *Synechococcus*, DVChl more efficiently absorbs blue light that penetrates to
188 deeper waters than other photosynthetically active radiation (Ito and Tanaka, 2011). Likewise,
189 the gain of the *PcCao* gene for the synthesis of chlorophyll b (Satoh and Tanaka, 2006) in
190 Proch-AMZI/II/III-LCA also enables *Prochlorococcus* ancestors to efficiently harvest blue
191 light at exceedingly low intensities characteristic of deep waters (Hess et al., 2001) (Fig. 1b).
192 These genomic changes would have enabled *Prochlorococcus* ancestors to explore the deep
193 photic zone, a niche where its *Synechococcus* ancestor would not thrive.

194 We infer that dwelling in deeper waters confers competitive advantages upon

195 *Prochlorococcus*. A well-known advantage emerges under conditions of strong phosphorus (P)
196 limitation, whereby deep-dwelling low-light adapted phototrophs gain first access to
197 upwelling phosphorus (Jones et al., 2015; Ozaki et al., 2019). The low-light advantage
198 conferred on the earliest *Prochlorococcus* cells through the adoption of divinyl chlorophyll
199 would have enhanced their access to P, relative to contemporary algae and its own ancestors.
200 It would also have increased access to NH_4^+ upwelling from deeper anoxic waters obviating
201 the need for nitrate assimilation (Michiels et al., 2017) (Fig. 1c).

202 Unlike most cyanobacteria, which use the phycobilisome as the photosynthetic antenna,
203 the main light-harvesting antenna of *Prochlorococcus* is made up of prochlorophyte
204 chlorophyll-binding (Pcb) protein (Biller et al., 2015). By reconstructing the gene
205 evolutionary paths with *Prochlorococcus* SAGs included, we found that the phycobilisome
206 genes (*apcACDEF*, *cpcEFG*, and *cpeCES*) were present in both Proch-AMZI/II/III-LCA and
207 Proch-AMZI/II-LCA and lost at SBE-LCA. Using the same approach, we found that the
208 chlorophyll-binding protein (encoded by *pcbD*) was obtained at Proch-AMZI/II-LCA. The
209 replacement of the photosynthetic antenna thus did not co-occur with the emergence of
210 *Prochlorococcus*. We note that gene absence in SAGs could result from the incomplete nature
211 of the SAG genomes, however, in this case, simultaneous absence of the *pcbD* gene in all the
212 five SAGs that are more than 80% complete seems unlikely.

213 The phycobilisome constitutes as much as 50%-60% of the soluble proteins in
214 *Synechococcus* (Grossman et al., 1993). The loss of the phycobilisome was thought to reduce
215 nitrogen (N) investments by at least 40% in *Prochlorococcus* (Ting et al., 2002). Therefore,
216 the losses of phycobilisome genes was once considered to be favored by *Prochlorococcus*

217 conferred advantages to inhabiting oligotrophic oceans (Ting et al., 2002). However, since the
218 colonization of *Prochlorococcus* in the deep photic zone of the Tonian ocean conferred them
219 advantages in acquiring the limiting nutrients like ammonium and phosphate upwelled from
220 the deep ocean (Jones et al., 2015; Michiels et al., 2017; Ozaki et al., 2019), the loss of the
221 phycobilisome in *Prochlorococcus* was unlikely driven by selection for metabolic efficiency.
222 Instead, as the chlorophyll-based light-harvesting complex gradually became the primary
223 photosynthetic antenna in *Prochlorococcus*, the phycobilisome genes were more likely
224 subject to relaxed purifying selection and thus neutral losses.

225 Despite the absence of the nitrate utilization genes in most *Prochlorococcus* isolates,
226 some uncultivated *Prochlorococcus* lineages contain these genes (Martiny et al., 2009;
227 Berube et al., 2015; Berube et al., 2019). By including *Prochlorococcus* SAGs that contain
228 the assimilatory nitrate transporter gene (*nrtB*) and the assimilatory nitrate reductase gene
229 (*narB*) in our reconstructions, we inferred the presence of both genes in Proch-AMZI/II/III-
230 LCA and Proch-AMZI/II-LCA and the losses of these genes at SBE-LCA (Fig. 1b). The
231 absence of nitrate utilization genes (*narB* and *nrtB*) in cultured *Prochlorococcus* strains has
232 been attributed to biased taxon sampling, since the *Prochlorococcus* were primarily cultured
233 from ocean regions where P instead of N is the primarily limiting nutrient (Berube et al.,
234 2015). However, phylogenetic analysis that included both *Prochlorococcus* and
235 *Synechococcus* showed topological congruence of the *narB* gene tree with the species tree,
236 suggesting vertical *narB* gene inheritance (Berube et al., 2019). By including
237 *Prochlorococcus* SAGs that contain the assimilatory nitrate transporter gene (*nrtB*) and the
238 assimilatory nitrate reductase gene (*narB*) in our reconstructions, we inferred the presence of

239 both genes in Proch-AMZI/II/III-LCA and Proch-AMZI/II-LCA and the losses of these genes
240 at SBE-LCA (Fig. 1b). The mechanism underlying the loss of nitrate utilization genes in
241 *Prochlorococcus* was once attributed to relaxed selection efficiency due to the low level of
242 nitrate caused by intensive denitrification and anammox (anaerobic ammonium oxidation)
243 activity (Canfield et al., 2008; Johnston et al., 2009). However, since *Prochlorococcus*
244 originated in the deep photic zone where ammonium would likely have been supplied
245 through upwelling (Fig. 1c) (Michiels et al., 2017), the loss of the nitrate utilization genes in
246 early *Prochlorococcus* is more likely to be the result of a switch of its N source from nitrate
247 to ammonium, which was again a neutral process.

248 In addition to the nitrate utilization genes, we inferred the losses of molybdopterin
249 biosynthesis genes at SBE-LCA. Since these genes are known to co-locate with the nitrate
250 reductase genes in *Synechococcus* (Rubio et al., 1998; Palenik et al., 2003), they may
251 function as the cofactor of nitrate reductase in *Prochlorococcus*. Therefore, the loss of nitrate
252 reductase in *Prochlorococcus* likely rendered the molybdopterin dispensable and thus led to
253 the losses of molybdopterin biosynthesis genes (*moaABCDE*, *mobA* and *moeA*) at SBE-LCA.

254

255 Geochemical context that supports the emergence of *Prochlorococcus* in Tonian ocean

256 A Tonian, pre-Sturtian, age for the emergence of the *Prochlorococcus* lineage would
257 have been set against the backdrop of dynamic ocean chemistry characterized by a variably
258 oxygenated surface ocean that was co-populated by diverse microbial eukaryotes, including
259 phytoplankton and the earliest metazoans (Erwin et al., 2011) (Fig. 1c). Multi-proxy data,
260 collected from geographically diverse sites, converge on Tonian deep oceans that were

261 pervasively anoxic across 60-80% of the ocean floor, or more (Tahata et al., 2015; Lau et al.,
262 2017). The deep anoxic oceans were predominantly ferruginous in nature, albeit with
263 evidence for transient, spatially restricted euxinia, and possibly even brief (<0.5 Myr)
264 episodes of pervasive deep ocean oxygenation (Stolper and Keller, 2018; Tostevin and Mills,
265 2020). Surface waters, by contrast, were modestly, though perhaps increasingly, oxygenated
266 across the Tonian with evidence for the episodic and persistent intrusion of anoxic deep
267 waters into the surface oceans (Zhang et al., 2022; Clarkson et al., 2023), with corresponding
268 implications for nutrient cycling and availability and for marine life in the euphotic zone.

269 In this way, the emergence of the *Prochlorococcus* would have restricted the flux of
270 nutrients to surface waters and limited the contributions of higher-light adapted
271 phytoplankton like algae to primary production. This is supported through the biomarker
272 record, which indicates a dominance of cyanobacterial primary production until after the
273 Sturtian glaciation (Brocks, 2018). It is also supported by the Tonian N-isotope record, which
274 implies a limited contribution from nitrate assimilation to primary production at this time
275 (Kang et al., 2023). Importantly, the adaptation of the *Prochlorococcus* LCA to lower-light
276 would also allow it to better compete with low-light adapted anoxygenic phototrophs that
277 would likely have populated anoxic regions of the Tonian euphotic zone with strong potential
278 to cause ocean oxygenation (Johnston et al., 2009; Jones et al., 2015; Ozaki et al., 2019).
279 Competition between oxygenic photosynthetic cyanobacteria and anoxygenic phototrophs
280 that oxidize ferrous iron (photoferrotrophs), is known to limit photosynthetic oxygen
281 production (Jones et al., 2015; Ozaki et al., 2019). Whereas the accumulation of O₂ produced
282 through photosynthesis ultimately depends on organic matter burial (Berner, 1991), oxygen

283 production fluxes through organic matter burial scale with the fraction of total photosynthetic
284 production that is oxygenic rather than anoxygenic (Johnston et al., 2009; Ozaki et al., 2019).
285 In this way, the capacity of the *Prochlorococcus* LCA to grow in deeper waters would have
286 enhanced its ability to access upwelling phosphorus thereby increasing the oxygenic fraction
287 of total photosynthesis with potential to initiate a positive feedback on oxygenation (Ozaki et
288 al., 2019).

289

290 Implications for Neoproterozoic biogeochemical cycling

291 In accordance with previous research (Ulloa et al., 2021), our analysis suggests that
292 *Prochlorococcus* diverged before transitioning from the use of the phycobilisome to the
293 chlorophyll- α based light-harvesting complex. Therefore, while the divinyl pigment synthesis
294 gene was obtained at the earliest *Prochlorococcus* (i.e., Proch-AMZI/II/III-LCA) to enable
295 their exploration of the deep photic zone, our analyses imply that *Prochlorococcus* would not
296 have strongly influenced the Neoproterozoic Earth system until the emergence of Proch-
297 AMZI/II-LCA lineage during which the photosynthetic antenna was replaced. Our dating
298 analysis shows that the emergence of this lineage indeed broadly coincides with geochemical
299 signals for the early stages of Neoproterozoic Oxygenation Event (NOE).

300 The NOE is widely considered the second stage of Earth's protracted oxygenation history,
301 during which atmospheric and marine oxygen concentrations rose to levels exceeding those
302 that characterized the proceeding mid-Proterozoic (Och and Shields-Zhou, 2012; Lyons et al.,
303 2014). This rise in atmospheric oxygen ultimately promoted the emergence of large and
304 complex animal life (Knoll and Nowak, 2017). The initiation of the NOE was previously

305 linked to eukaryotic algae (Lyons et al., 2014; Brocks et al., 2017) or marine
306 picocyanobacteria (Sánchez-Baracaldo et al., 2014; Braakman et al., 2017). Our results show
307 support for the latter assumption and indicate that early *Prochlorococcus* may have played a
308 role in enhancing oxygen production, with potential to initiate the NOE, which was likely
309 ultimately accelerated through increasing efficiency in the biological carbon pump driven by
310 a progressively a larger role for eukaryotes. Such an elevated role for eukaryotes is clearly
311 marked in the geologic record through an increase in sterane-hopane ratios following the
312 Sturtian glaciation (Brocks et al., 2017). Pre-Sturtian, Tonian oxygenation, was thus likely
313 driven by bacterially dominated carbon cycling, the timing of which strongly coincides with
314 the emergence of low-light adapted *Prochlorococcus*, their ensuing colonization of the deep
315 photic zone, and capacity to displace incumbent anoxygenic photoferrotrophs thereby
316 increasing oxygen production. This hypothesis could be further tested through geochemical
317 analyses that help refine estimates for Tonian ocean oxygen contents and through
318 biogeochemical models that can quantify the potential effects of *Prochlorococcus* emergence
319 on the global carbon and oxygen cycles. Note that the inference of the roles of
320 *Prochlorococcus* in facilitating Neoproterozoic biogeochemical cycle relies on the accurate
321 molecular dating analysis. Given the heavy debate about the antiquity of Cyanobacteria,
322 including *Prochlorococcus*, we have extensively discussed the previous dating analyses and
323 pointed out their methodological deficiencies (see details in Supplementary Discussion).

324

325 **Concluding remarks**

326 We have integrated molecular clocks, evolutionary genetic analyses, and comparative

327 genomics along with knowledge of paleo-geochemistry to reconstruct the early evolution of
328 *Prochlorococcus* and infer their possible impact on the evolution of the Neoproterozoic Earth
329 system. The abundant fossil calibrations ‘borrowed’ from photosynthetic eukaryotes and the
330 new and robust molecular dating pipeline pinpoint the origin of *Prochlorococcus* to the
331 Tonian oceans. Comparative genomics suggests that gains and losses of a few important
332 genes conferred the early ancestral *Prochlorococcus* with an unprecedented ability to absorb
333 the blue light that effectively penetrates water, empowering early *Prochlorococcus* to
334 colonize the deep photic zone, a niche distinctly different from the better illuminated surface
335 waters supporting other phytoplankton groups including its *Synechococcus* ancestor and early
336 Eukaryotes. The use of the evolutionary genetic proxy, d_R/d_C , implies that the earliest
337 *Prochlorococcus* had a highly reduced effective population size compared to its
338 *Synechococcus* ancestor, likely reflecting a founder effect and strengthening the idea that the
339 deep photic zone was an ecological niche uniquely accessible to the earliest *Prochlorococcus*.
340 This niche differentiation allowed the earliest *Prochlorococcus* to avoid fierce competition
341 with its *Synechococcus* ancestor and other phytoplankton groups and gave them easy access
342 to phosphate that otherwise strongly limited primary productivity in the Tonian oceans. While
343 all of these co-existing planktonic groups are likely to have contributed to the NOE, the
344 emergence of *Prochlorococcus* in a previously uncolonized habitat with a unique light regime
345 and a higher phosphate accessibility, followed by the acquisition of a more efficient light-
346 harvesting system, may have facilitated a potentially rapid population expansion, which
347 ultimately enhanced the oxygen production in Tonian oceans and facilitated the initiation of
348 the Neoproterozoic Oxygenation Event.

349

350 **Materials and Methods**

351 The nuclear-encoded and plastid-encoded protein sequences of eukaryotic representatives
352 were obtained from Dicots PLAZA (5.0) database and NCBI RefSeq release of plastid
353 database and were used for the first-step and the second-step Bayesian sequential dating
354 analysis, respectively. The genomic sequences of Cyanobacteria (including *Prochlorococcus*
355 SAGs), Vampirovibrionia and Sericytochromatia were also used for the second-step
356 sequential dating analysis, which were obtained from GenBank and Integrated Microbial
357 Genomes (IMG) database (Supplementary Data 1).

358 For the first-step sequential dating analysis, the orthologous gene families shared by
359 eukaryotic species were identified by searching against a pre-compiled eukaryotic nuclear
360 gene dataset (Strassert et al., 2021). Since genome-scale dating of eukaryotic lineages is very
361 slow with fully partitioned molecular data and is prone to have reduced coverage probability
362 (the probability that the 95% HPD interval of posterior ages contains the true age) due to the
363 large number of partitions (Angelis et al., 2018), we clustered the eukaryotic gene families
364 into 1-, 3-, 5-, 7-, and 9-partitions by using Gaussian Mixture Model (GMM) clustering
365 method based on their estimated evolutionary rates (see details in Supplementary Methods).
366 The 5-partition data was finally adopted for the first-step dating analysis because of the
367 lowest Akaike Information Criterion (AIC) value (Fig. S1b) and the high similarity between
368 the derived distributions of posterior ages and effective time prior (Fig. S2). The eukaryotic
369 fossil-based calibrations used in this first-step dating analysis were adapted from published
370 studies (Fig. S1a; Table S1; See details in Supplementary Methods).

371 For the second-step sequential dating analysis, the orthologous gene families were firstly
372 identified by searching against a pre-compiled plastid marker gene dataset (Ponce-Toledo et
373 al., 2017) and then sorted by ΔLL (i.e., the difference in log-likelihood values of the gene tree
374 constructed with and without the backbone species tree topology) and evolutionary rate
375 difference (Supplementary Data 2) (Fig. S6). In addition to the fossil-based calibrations
376 adapted from published studies, we used the posterior age distributions derived from the first-
377 step dating analysis to calibrate the overlapping nodes in the species tree containing both
378 eukaryotes and Cyanobacteria (Fig. S1c; Table S1; Table S2). Note that we placed the
379 cyanobacterial-fossil based calibrations at the total group of Nostocales and Pleurocapsales
380 by taking into account the incomplete taxon sampling of their early-split lineages, as well as
381 the possibility that their fossils belong to the stem lineages rather than the crown groups. In
382 this way, we allow for the posterior ages of crown Nostocales and Pleurocapsales groups to
383 be younger than the known fossil records.

384 Our molecular dating analysis was conducted using MCMCTree with the best-fit clock
385 model, which was selected using the program "mcmc3r" following published studies
386 (McGowen et al., 2019; Wang and Luo, 2021). For calibrations and species tree topology that
387 remain disputed, we took all the possibilities in our analysis for comparison (Fig. S4). We
388 also tested the necessity for using Bayesian sequential dating approach and hard bound
389 calibration strategy in our analysis (Fig. S7; see details in Supplementary Discussion) and
390 tested the convergence of the posterior age estimates (Fig. S8).

391 The gains and losses of *Prochlorococcus* orthologous gene families were inferred with a
392 gene tree-species tree reconciliation approach according to our recent studies (Zhang et al.,

393 2024). The best-fit reconciliation tool was selected through a comprehensive simulation-
394 based benchmarking analysis [see Fig. S5 in (Zhang et al., 2024)]. In our implementations,
395 we performed the reconstruction first without using the SAGs to avoid the false prediction of
396 genomic events due to the relatively low completeness of the SAGs (e.g., 81.9% for AMZI-
397 B-ETNP) and then used the same reconstruction methods to validate these evolutionary
398 events when SAGs were included.

399 The reduction of *Prochlorococcus* selection efficiency in ancient time was inferred by
400 comparing the genome-wide d_R/d_C (i.e., the relative rate of radical versus conservative
401 nonsynonymous substitutions) between the target lineage and its sister lineage based on our
402 recent study (Luo et al., 2017) (see details in Supplementary Methods).

403

404 **Code availability**

405 The custom scripts used to analyze the data are available in the online GitHub repository
406 (<https://github.com/luolab-cuhk/Prochl-NOE>).

407

408 **Acknowledgements**

409 This work is supported by the Natural Science Foundation of China (42293294), the Hong
410 Kong Research Grants Council (RGC) General Research Fund (GRF) (14110820), the
411 Natural Science Foundation of Guangdong Province, China (2022A1515010844 to HZ), the
412 China Postdoctoral Science Foundation (2021M702296 to HZ), and the CUHK Direct Grant
413 (4053551).

414

415 **References**

416 Angelis, K., Álvarez-Carretero, S., Dos Reis, M., and Yang, Z. (2018) An Evaluation of
417 Different Partitioning Strategies for Bayesian Estimation of Species Divergence Times. *Syst
418 Biol* **67**: 61-77.

419 Aoki, S., Ito, M., Iwasaki, W.J.M.b., and evolution (2013) From β -to α -proteobacteria: the
420 origin and evolution of rhizobial nodulation genes nodIJ. **30**: 2494-2508.

421 Barton, N.H., Charlesworth, B.J.A.r.o.e., and systematics (1984) Genetic revolutions, founder
422 effects, and speciation. **15**: 133-164.

423 Berner, R.A. (1991) A model for atmospheric CO₂ over Phanerozoic time. *American Journal
424 of Science* **291**: 339-376.

425 Berube, P.M., Rasmussen, A., Braakman, R., Stepanauskas, R., and Chisholm, S.W. (2019)
426 Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus.
427 *eLife* **8**: e41043.

428 Berube, P.M., Biller, S.J., Kent, A.G., Berta-Thompson, J.W., Roggensack, S.E., Roache-
429 Johnson, K.H. et al. (2015) Physiology and evolution of nitrate acquisition in
430 Prochlorococcus. *Isme j* **9**: 1195.

431 Betts, H.C., Puttick, M.N., Clark, J.W., Williams, T.A., Donoghue, P.C., Pisani, D.J.N.e., and
432 evolution (2018) Integrated genomic and fossil evidence illuminates life's early evolution and
433 eukaryote origin. **2**: 1556-1562.

434 Bhattacharya, D., and Medlin, L.J.J.P. (1995) Phylogeny of plastids A review based on
435 comparisons of small subunit ribosomal RNA coding regions. **31**: 487-496.

436 Biller, S.J., Berube, P.M., Lindell, D., and Chisholm, S.W. (2015) Prochlorococcus: the
437 structure and function of collective diversity. *Nature Reviews Microbiology* **13**: 13.

438 Boden, J.S., Konhauser, K.O., Robbins, L.J., and Sánchez-Baracaldo, P. (2021) Timing the
439 evolution of antioxidant enzymes in cyanobacteria. *Nature Communications* **12**: 1-12.

440 Braakman, R., Follows, M.J., and Chisholm, S.W. (2017) Metabolic evolution and the self-
441 organization of ecosystems. *Proceedings of the National Academy of Sciences* **114**: E3091-
442 E3100.

443 Brocks, J.J. (2018) The transition from a cyanobacterial to algal world and the emergence of

444 animals. *Emerging topics in life sciences* **2**: 181-190.

445 Brocks, J.J., Jarrett, A.J., Sirantoin, E., Hallmann, C., Hoshino, Y., and Liyanage, T. (2017)

446 The rise of algae in Cryogenian oceans and the emergence of animals. *Nature* **548**: 578.

447 Canfield, D.E., Poulton, S.W., Knoll, A.H., Narbonne, G.M., Ross, G., Goldberg, T., and

448 Strauss, H. (2008) Ferruginous conditions dominated later Neoproterozoic deep-water

449 chemistry. *Science* **321**: 949-952.

450 Chriki-Adeeb, R., and Chriki, A.J.E.B. (2016) Estimating divergence times and substitution

451 rates in Rhizobia. *EBO*. S39070.

452 Clarkson, M.O., Sweere, T.C., Chiu, C.F., Hennekam, R., Bowyer, F., and Wood, R.A.J.E.-

453 S.R. (2023) Environmental controls on very high $\delta^{238}\text{U}$ values in reducing sediments:

454 Implications for Neoproterozoic seawater records. 104306.

455 Dayhoff, M.O. (1972) A model of evolutionary change in proteins. *Atlas of protein sequence*

456 *and structure* **5**: 89-99.

457 dos Reis, M., Gunnell, G.F., Barba-Montoya, J., Wilkins, A., Yang, Z., and Yoder, A.D. (2018)

458 Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on

459 divergence time estimation: primates as a test case. *Systematic biology* **67**: 594-615.

460 dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, Maximilian J., Donoghue, Philip C.J.,

461 and Yang, Z. (2015) Uncertainty in the Timing of Origin of Animals and the Limits of

462 Precision in Molecular Timescales. *Current Biology* **25**: 2939-2950.

463 Duchêne, S., Lanfear, R., and Ho, S.Y.W. (2014) The impact of calibration and clock-model

464 choice on molecular estimates of divergence times. *Molecular Phylogenetics and Evolution*

465 **78**: 277-289.

466 E. Zuckerkandl, L.P. (1965) Evolutionary divergence and convergence in proteins. In

467 *Evolving genes and proteins*: Elsevier, pp. 97-166.

468 Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D., and Peterson, K.J.

469 (2011) The Cambrian conundrum: early divergence and later ecological success in the early

470 history of animals. *Science* **334**: 1091-1097.

471 Flombaum, P., Gallegos, J.L., Gordillo, R.A., Rincón, J., Zabala, L.L., Jiao, N. et al. (2013)

472 Present and future global distributions of the marine Cyanobacteria Prochlorococcus and

473 Synechococcus. *Proceedings of the National Academy of Sciences* **110**: 9824-9829.

474 Fournier, G., Moore, K., Rangel, L., Payette, J., Momper, L., and Bosak, T. (2021) The
475 Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. *Proceedings*
476 *of the Royal Society B* **288**: 20210675.

477 Goericke, R., Olson, R., and Shalapyonok, A. (2000) A novel niche for Prochlorococcus sp.
478 in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific.
479 *Deep Sea Research Part I: Oceanographic Research Papers* **47**: 1183-1205.

480 Gray, M.W.J.I.r.o.c. (1992) The endosymbiont hypothesis revisited. **141**: 233-357.

481 Grossman, A.R., Schaefer, M.R., Chiang, G.G., and Collier, J.L. (1993) The phycobilisome, a
482 light-harvesting complex responsive to environmental conditions. *Microbiology and*
483 *Molecular Biology Reviews* **57**: 725-749.

484 Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L., and Hedges, S.B.J.s.
485 (2001) Molecular evidence for the early colonization of land by fungi and plants. **293**: 1129-
486 1133.

487 Hedges, S.B., Tao, Q., Walker, M., and Kumar, S.J.P.o.t.N.A.o.S. (2018) Accurate timetrees
488 require accurate calibrations. **115**: E9510-E9511.

489 Hess, W.R., Rocap, G., Ting, C.S., Larimer, F., Stilwagen, S., Lamerdin, J., and Chisholm,
490 S.W. (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative
491 genomics. *Photosynthesis Research* **70**: 53-71.

492 Ito, H., and Tanaka, A. (2011) Evolution of a divinyl chlorophyll-based photosystem in
493 Prochlorococcus. *Proceedings of the National Academy of Sciences* **108**: 18014-18019.

494 Ito, H., Yokono, M., Tanaka, R., and Tanaka, A. (2008) Identification of a novel vinyl
495 reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp.
496 PCC6803. *Journal of Biological Chemistry* **283**: 9002-9011.

497 Johnston, D.T., Wolfe-Simon, F., Pearson, A., and Knoll, A.H. (2009) Anoxygenic
498 photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. *Proceedings*
499 *of the National Academy of Sciences* **106**: 16925-16929.

500 Jones, C., Nomosatryo, S., Crowe, S.A., Bjerrum, C.J., and Canfield, D.E.J.G. (2015) Iron
501 oxides, divalent cations, silica, and the early earth phosphorus crisis. **43**: 135-138.

502 Kang, J., Gill, B., Reid, R., Zhang, F., and Xiao, S. (2023) Nitrate limitation in early
503 Neoproterozoic oceans delayed the ecological rise of eukaryotes. *Science advances* **9**:
504 eade9647.

505 Keeling, P.J. (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic
506 evolution. *Annu Rev Plant Biol* **64**: 583-607.

507 Knoll, A.H., and Nowak, M.A. (2017) The timetable of evolution. *Science Advances* **3**:
508 e1603076.

509 Lau, K.V., Macdonald, F.A., Maher, K., and Payne, J.L. (2017) Uranium isotope evidence for
510 temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. *Earth and*
511 *planetary science letters* **458**: 282-292.

512 Lavin, P., González, B., Santibáñez, J.F., Scanlan, D.J., and Ulloa, O. (2010) Novel lineages
513 of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South
514 Pacific. *Environmental microbiology reports* **2**: 728-738.

515 Luo, H., Huang, Y., Stepanauskas, R., and Tang, J. (2017) Excess of non-conservative amino
516 acid changes in marine bacterioplankton lineages with reduced genomes. *Nature*
517 *microbiology* **2**: 17091.

518 Lyons, T.W., Reinhard, C.T., and Planavsky, N.J. (2014) The rise of oxygen in Earth's early
519 ocean and atmosphere. *Nature* **506**: 307.

520 Marin, B., M. Nowack, E.C., and Melkonian, M. (2005) A Plastid in the Making: Evidence
521 for a Second Primary Endosymbiosis. *Protist* **156**: 425-432.

522 Martinez-Gutierrez, C.A., Uyeda, J.C., and Aylward, F.O.J.E. (2023) A timeline of bacterial
523 and archaeal diversification in the ocean. *12*: RP88268.

524 Martiny, A.C., Kathuria, S., and Berube, P.M. (2009) Widespread metabolic potential for
525 nitrite and nitrate assimilation among Prochlorococcus ecotypes. *Proceedings of the National*
526 *Academy of Sciences* **106**: 10787-10792.

527 McGowen, M.R., Tsagkogeorga, G., Álvarez-Carretero, S., dos Reis, M., Struebig, M.,
528 Deaville, R. et al. (2019) Phylogenomic Resolution of the Cetacean Tree of Life Using Target
529 Sequence Capture. *Systematic Biology* **69**: 479-501.

530 Michiels, C.C., Darchambeau, F., Roland, F.A., Morana, C., Llirós, M., García-Armisen, T. et

531 al. (2017) Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of
532 Proterozoic oceans. *Nature geoscience* **10**: 217-221.

533 Morris, J.L., Puttick, M.N., Clark, J.W., Edwards, D., Kenrick, P., Pressel, S. et al. (2018) The
534 timescale of early land plant evolution. *115*: E2274-E2283.

535 Och, L.M., and Shields-Zhou, G.A. (2012) The Neoproterozoic oxygenation event:
536 Environmental perturbations and biogeochemical cycling. *Earth-Science Reviews* **110**: 26-57.

537 Ozaki, K., Thompson, K.J., Simister, R.L., Crowe, S.A., and Reinhard, C.T. (2019)
538 Anoxygenic photosynthesis and the delayed oxygenation of Earth's atmosphere. *Nature
539 communications* **10**: 3026.

540 Palenik, B., Brahamsha, B., Larimer, F., Land, M., Hauser, L., Chain, P. et al. (2003) The
541 genome of a motile marine *Synechococcus*. *424*: 1037-1042.

542 Parfrey, L.W., Lahr, D.J., Knoll, A.H., and Katz, L.A.J.P.o.t.N.A.o.S. (2011) Estimating the
543 timing of early eukaryotic diversification with multigene molecular clocks. *108*: 13624-
544 13629.

545 Partensky, F., and Garczarek, L. (2010) Prochlorococcus: advantages and limits of
546 minimalism. *Annual Review of Marine Science* **2**: 305-331.

547 Partensky, F., Hess, W.R., and Vaulot, D. (1999) Prochlorococcus, a marine photosynthetic
548 prokaryote of global significance. *Microbiol Mol Biol Rev* **63**: 106-127.

549 Ponce-Toledo, R.I., Deschamps, P., López-García, P., Zivanovic, Y., Benzerara, K., and
550 Moreira, D. (2017) An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids.
551 *Curr Biol* **27**: 386-391.

552 Ralf, G., and Repeta, D.J. (1992) The pigments of *Prochlorococcus marinus*: The presence of
553 divinylchlorophyll a and b in a marine prokaryote. *Limnology and Oceanography* **37**: 425-
554 433.

555 Rubio, L.M., Flores, E., and Herrero, A.J.J.o.b. (1998) The *narA* locus of *Synechococcus* sp.
556 strain PCC 7942 consists of a cluster of molybdopterin biosynthesis genes. *180*: 1200-1206.

557 Sánchez-Baracaldo, P. (2015) Origin of marine planktonic cyanobacteria. *Scientific reports* **5**:
558 17418.

559 Sánchez-Baracaldo, P., Ridgwell, A., and Raven, J.A. (2014) A neoproterozoic transition in

560 the marine nitrogen cycle. *Current Biology* **24**: 652-657.

561 Sánchez-Baracaldo, P., Raven, J.A., Pisani, D., and Knoll, A.H. (2017) Early photosynthetic

562 eukaryotes inhabited low-salinity habitats. *Proceedings of the National Academy of Sciences*:

563 201620089.

564 Satoh, S., and Tanaka, A. (2006) Identification of chlorophyllide a oxygenase in the

565 Prochlorococcus genome by a comparative genomic approach. *Plant and cell physiology* **47**:

566 1622-1629.

567 Schirrmeyer, B.E., Gugger, M., and Donoghue, P.C. (2015) Cyanobacteria and the Great

568 Oxidation Event: evidence from genes and fossils. *Palaeontology* **58**: 769-785.

569 Shih, P.M., Hemp, J., Ward, L.M., Matzke, N.J., and Fischer, W.W. (2016) Crown group

570 Oxyphotobacteria postdate the rise of oxygen. *Geobiology* **15**: 19-29.

571 Stolper, D.A., and Keller, C.B.J.N. (2018) A record of deep-ocean dissolved O₂ from the

572 oxidation state of iron in submarine basalts. *Nature* **553**: 323-327.

573 Strassert, J.F.H., Irisarri, I., Williams, T.A., and Burki, F. (2021) A molecular timescale for

574 eukaryote evolution with implications for the origin of red algal-derived plastids. *Nat*

575 *Commun* **12**: 1879.

576 Tahata, M., Sawaki, Y., Yoshiya, K., Nishizawa, M., Komiya, T., Hirata, T. et al. (2015) The

577 marine environments encompassing the Neoproterozoic glaciations: evidence from C, Sr and

578 Fe isotope ratios in the Hecla Hoek Supergroup in Svalbard. *Precambrian research* **263**: 19-

579 42.

580 Ting, C.S., Rocap, G., King, J., and Chisholm, S.W. (2002) Cyanobacterial photosynthesis in

581 the oceans: the origins and significance of divergent light-harvesting strategies. *Trends in*

582 *microbiology* **10**: 134-142.

583 Tostevin, R., and Mills, B.J.J.I.F. (2020) Reconciling proxy records and models of Earth's

584 oxygenation during the Neoproterozoic and Palaeozoic. *Nature* **10**: 20190137.

585 Ulloa, O., Henríquez-Castillo, C., Ramírez-Flandes, S., Plominsky, A.M., Murillo, A.A.,

586 Morgan-Lang, C. et al. (2021) The cyanobacterium Prochlorococcus has divergent light-

587 harvesting antennae and may have evolved in a low-oxygen ocean. *Proceedings of the*

588 *National Academy of Sciences* **118**.

589 Wang, S., and Luo, H. (2021) Dating Alphaproteobacteria evolution with eukaryotic fossils.

590 *Nature Communications* **12**: 3324.

591 Warnock, R.C., Yang, Z., and Donoghue, P.C.J.B.l. (2012) Exploring uncertainty in the

592 calibration of the molecular clock. **8**: 156-159.

593 Zhang, F., Stockey, R.G., Xiao, S., Shen, S.-z., Dahl, T.W., Wei, G.-Y. et al. (2022) Uranium

594 isotope evidence for extensive shallow water anoxia in the early Tonian oceans. *Earth and*

595 *planetary science letters* **583**: 117437.

596 Zhang, H., Hellweger, F.L., and Luo, H. (2024) Genome reduction occurred in early

597 Prochlorococcus with an unusually low effective population size. *Isme j* **18**.

598 Zhang, H., Sun, Y., Zeng, Q., Crowe, S.A., and Luo, H. (2021) Snowball Earth, population

599 bottleneck and Prochlorococcus evolution. *Proceedings of the Royal Society B: Biological*

600 *Sciences* **288**: 20211956.

601 Zhang, J. (2000) Rates of conservative and radical nonsynonymous nucleotide substitutions

602 in mammalian nuclear genes. *J Mol Evol* **50**: 56-68.

603

604 **Figure Legends**

605 **Fig. 1 The evolutionary timeline of *Prochlorococcus* estimated with plastid-based**
606 **strategy.** (a) The diagram shows the phylogenetic relations among Cyanobacteria and
607 eukaryotic species. The green solid line, black solid line and green dashed line in the
608 cladogram leading to the tip of oxygenic Cyanobacteria, anoxygenic Vampirovibrionia and
609 Sericytochromatia and eukaryotic species, respectively. The calibrated nodes in molecular
610 clock analysis are marked with orange circle (see calibration justifications in Supplementary
611 Methods). (b) (left) The *Prochlorococcus* evolutionary timeline estimated with the focal
612 molecular dating strategy using Bayesian sequential dating approach based on the 5-partition
613 eukaryotic genome-scale data (in the first step dating analysis) and fully partitioned 12-gene
614 dataset “T30” (in the second step dating analysis) under independent rate clock model. The
615 posterior age distribution is provided next to the ancestral node. The atmospheric oxygen
616 level at the geological time scale is adapted from Lyons et al., 2014, which is represented by
617 the percent of present atmospheric oxygen level (PAL). The vertical bars with green, orange
618 and blue colors represent the time of Tonian, the time of NOE, and the time of Sturtian (left)
619 and Marinoan (right) glaciation, respectively. (right) Phyletic pattern of key gene families.
620 Solid square, solid circle and open circle next to each analyzed genome represent multi-copy
621 gene family, single-copy gene family and absence of the gene family, respectively, in the
622 extant genomes. Gene families marked with asterisk (*) were consistently estimated to be
623 gained or lost by using both AnGST and GeneRax. (c) Diagram illustrating the
624 biogeochemical environments when *Prochlorococcus* arose from its *Synechococcus* ancestor.

625

626 **Fig. 2 Diagram illustrating the schemes and the results of d_R/d_C comparison.** The
627 genome-wide means of d_R/d_C values at the ancestral branches ('Target') leading to (a) Proch-
628 AMZI/II/III-LCA and (b) SBE-LCA compared with that at the sister lineages ('Control').
629 The d_R/d_C values were classified based on the physicochemical classification of the amino
630 acids by charge or by volume and polarity, and were either GC-corrected by codon frequency
631 (blue), GC-corrected by amino acid (AA) frequency (red) or uncorrected (gray). Error bars of
632 d_R/d_C represent the standard error of the mean.

Fig. 1

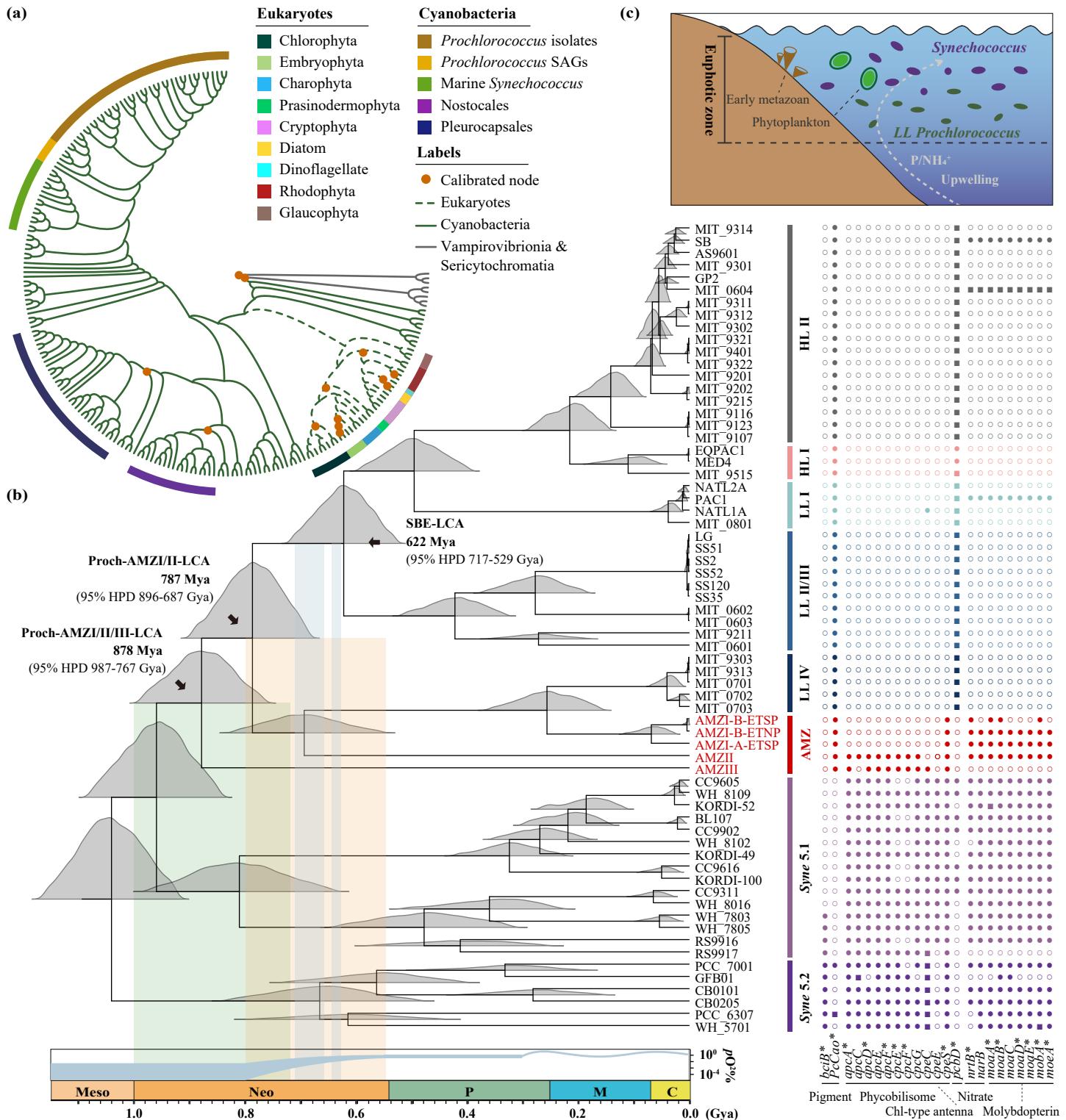
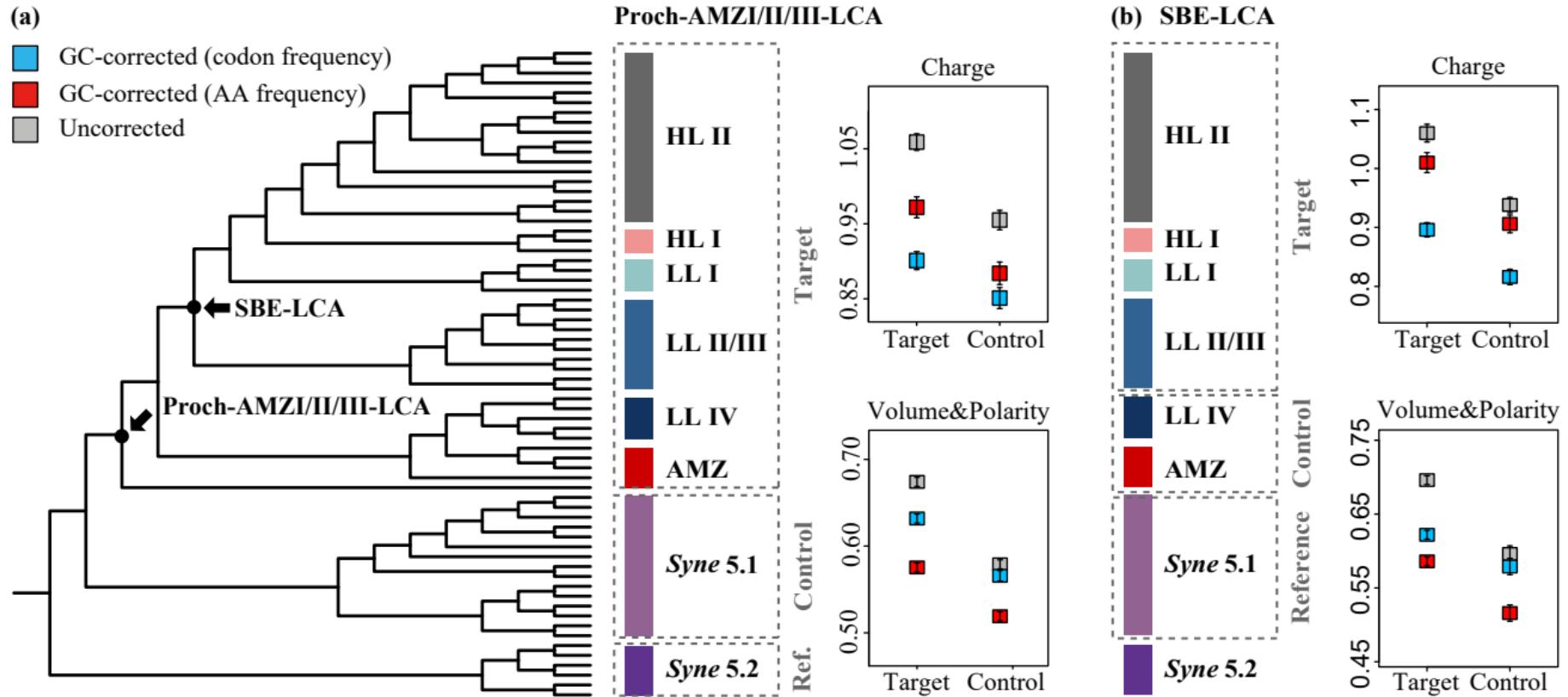



Fig. 2

