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Abstract:

Key functions of antibodies, such as viral neutralisation, depend on bivalent binding but the factors
that influence it remain poorly characterised. Here, we develop and employ a new bivalent model to
mechanistically analyse binding between >45 patient-isolated IgG1 antibodies interacting with SARS-
CoV-2 RBD surfaces. Our method reproduces the monovalent on/off-rates and enables measurements
of the bivalent on-rate and the molecular reach: the maximum antigen separation that supports bivalent
binding. We find large variations in these parameters across antibodies, including variations in reach
(22-46 nm) that exceed the physical antibody size (~15 nm) due to the antigen size. The bivalent
model integrates all parameters, including reach and antigen density, to predict an emergent binding
potency for each antibody that matches their neutralisation potency. Indeed, antibodies with similar
monovalent affinities to the same RBD-epitope but with different reaches display differences in emergent
bivalent binding that match differences in their neutralisation potency. Together, our work highlights that
antibodies within an isotype class binding the same antigen can display differences in molecular reach
that can substantially modulate their emergent binding and functional properties.

Lay Summary:

Antibodies are soluble proteins that can neutralise pathogens by sticking to them. They contain two
identical ‘arms’ that allow them to simultaneously bind two identical ‘antigen’ molecules on pathogen
surfaces. Although we know that bivalent binding is important for neutralisation, we don’t know how
different antibodies achieve it. We developed a new model to analyse the mechanism of bivalent binding
and used it to study over 45 antibodies from COVID-19 patients that bind the RBD antigen of SARS-
CoV-2. Unexpectedly, we found that the molecular reach of an antibody, which is the maximum antigen
separation that supports bivalent binding, varied widely between antibodies and exceeded their physical
size. We show how antibody binding emerges from the interplay of multiple factors, including reach,
and that this emergent binding predicts their neutralisation function. The ability to analyse and predict
bivalent binding should improve our understanding and exploitation of antibodies.

Graphical abstract:
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+ Introduction

2 Antibodies are multivalent molecules that contribute to immune responses by binding their antigens on
s the surfaces of pathogens. IgG antibodies have two identical antigen binding fragments (Fabs) fused to a
4 constant fragment (Fc). These Fabs enable antibodies to achieve high-affinity bivalent binding by simulta-
5 neously engaging two antigens. This is important because the monovalent Fab/antigen interaction is often
6 too weak to be effective and indeed, bivalent binding can dramatically increase the ability of antibodies to
7 neutralise pathogens (1-5). Although bivalent binding is important, we presently lack an understanding of
s the factors that influence it.

9 The ability of antibodies to bind an antigen surface is an emergent property that depends on several
10 factors. First, the monovalent on/off-rates determine initial antibody/antigen complex formation. Next, the
11 antibody/antigen complex can bind a second antigen when it is within the molecular reach, which is the
12 maximum antigen separation that supports bivalent binding. The rate of this second reaction is heavily
13 influenced by the antigen density (6—8). When an antibody unbinds from one antigen, it can rebind the same
14 or different antigen provided it is within reach and the epitope is not bound by another antibody. Although
15 methods to analyse multivalent antibody/antigen interactions are available when both are in solution (9), we
16 lack methods to analyse emergent binding with anchored antigen.

17 Existing methods to study antibody/antigen interactions have focused on isolating individual factors that
18 contribute to emergent binding. To determine monovalent kinetics, soluble monovalent antigen is injected
19 over immobilised antibodies in surface plasmon resonance (SPR). A simple ordinary differential equation
20 (ODE)-based binding model is fit to the monovalent SPR binding traces to determine the binding kinet-
21 ics (kon, Kofr) and dissociation constant (Kp) (10). While more physiological experiments can readily be
22 performed by injecting antibodies over randomly-coupled surface antigens (‘Bivalent SPR’), we lack meth-
23 ods to analyse the complex emergent binding that results. To reduce complexity and isolate the effect of
24 reach, precisely spaced model antigens have been used (11, 12). By measuring an apparent Kp for different
25 spacing, it has been estimated that antibodies can only bind antigen when spaced within ~16 nm, which is
26 consistent with atomic force microscopy and structural studies (13). However, we currently lack the ability
27 to easily estimate the molecular reach for antibodies interacting with physiological antigens. By removing
28 the dependency on antigen density, current methods that isolate individual factors limit our ability to predict
2s the emergent functional impact of antibodies in vivo, such as their ability to bind viral surface antigens at
s defined densities.

31 Here, we develop a method to mechanistically analyse complicated bivalent SPR binding traces gen-
s2 erated by soluble antibodies binding surface antigen. The method fits bivalent SPR data yielding accurate
33 estimates of the monovalent binding parameters (kopn, koff) and two additional biophysical parameters: the
34 bivalent on-rate (konp) and the molecular reach. Using this method, we study the factors that determine
35 emergent bivalent binding of patient-isolated antibodies specific for the receptor-binding-domain (RBD) of
s SARS-CoV-2.

s Results
s A particle-based model accurately fits bivalent SPR data highlighting the impact of molecu-
s lar reach on antibody binding

40 We first used SPR to study the monovalent interaction between the IgG1 FD-11A antibody and RBD (14)
41 (Fig. 1A, left). This standard method proceeds by injection of different concentrations of monovalent RBD
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42 over a surface immobilised with FD-11A. A monovalent ODE-based model is simultaneously fit to the entire
43 monovalent SPR data set, providing estimates of the ko, kofr, and Kp (Fig. 1B-left,C). We next reversed the
4 orientation to study the bivalent interaction by injecting FD-11A at different concentrations over an RBD
45 surface (Fig. 1A, Bivalent SPR). Standard SPR fitting software includes an ODE-based bivalent model that
4 can seemingly fit bivalent SPR data (Fig. 1B, middle). This model adds a second bivalent binding step with a
47 bivalent on-rate (kopp) and the same kg While the fit was not unreasonable, this model provided inaccurate
48 values for ko and Kp, which is likely the reason it is seldom used (Fig. 1C).

49 A key assumption of the ODE-based bivalent model is that the molecules involved are ‘well-mixed’.
so  While this assumption is reasonable for the first step, it becomes unreasonable for the second step because,
51 once the antibody is bound to a surface immobilised antigen, the monovalent antibody/antigen complex can
s2 only bind a second antigen within reach whereas the well-mixed condition of the model assumes it can bind
53 any free antigen on the surface. Moreover, the number of free antigens within reach is expected to be low
s4+ and to decrease over time as more antibody binds. As a result, deterministic ODE models also fail to capture
55 the local stochasticity of bivalent binding.

56 To address these limitations, we developed a more realistic stochastic and spatially resolved particle-
57 based model of bivalent antibodies interacting with a random distribution of antigens (’particles’) using the
ss  Gillespie method (15, 16) (Fig. 1A, right). In this model, once antibodies bind to a surface antigen with
se the usual monovalent kinetics, the antibody/antigen complex can only bind a second antigen if it is within
so reach (with rate konp per antigen within reach). If multiple antigens are within reach, when an antibody
s1 unbinds one antigen it can re-bind another enabling antibodies to migrate on the surface. We used the model
62 to simulate bivalent SPR traces to surfaces with the same (random) distribution of antigen but with three
es different reach distances (Fig. 1D). With a very short reach, antibodies could not bind a second antigen,
e4 resulting in monovalent binding with fast dissociation whereas increasing the reach allowed a larger fraction
es of antibodies to engage in bivalent binding, leading to much slower dissociation. This highlights the crucial
es role of molecular reach in determining antibody binding stability.

67 We developed a workflow to rapidly fit the particle-based model directly to bivalent SPR data (Fig. S1).
es This produced an excellent fit (Fig. 1B - right) and, unlike the ODE-based bivalent model, yielded kop, Kofr
ee and Kp values in agreement with those obtained by monovalent SPR (Fig. 1C). Importantly, the model fit
70 provided estimates of the bivalent on-rate and reach (Fig. 1E). We found the same binding parameters when
71 analysing bivalent SPR with different levels of RBD on the chip surface, which confirms that the particle-
72 model is correctly capturing how the antigen density impacts bivalent antibody binding (Fig. S2).

73 To further validate the model, we performed monovalent and bivalent SPR on four additional RBD
74 antibodies (Fig. S3). We confirmed that the particle-model correctly estimated the values of kg, koff, and
75 Kp across the 100-fold variation in affinity within these antibodies (Fig. 1F). As before, the particle model
76 also provided estimates of the bivalent on-rate and the reach (Fig. 1G).

77 Finally, we repeated the analysis with an antibody that recognises a different antigen, namely CD19
7 (Fig. S4A). Once again we found agreement between the ODE-based model analysing standard monovalent
79 SPR and the particle-based model analysing bivalent SPR (Fig. S4B).

80 In conclusion, a particle-based model accurately fits bivalent SPR data and allows measurement of
81 binding parameters crucial for understanding bivalent antibody binding.
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Figure 1: A particle-based model for emergent bivalent binding quantifies the impact of molecular reach and
accurately analyses bivalent SPR traces. (A) Schematic of the chemical reactions in models describing monovalent
and bivalent SPR. The ODE-based and particle-based bivalent models assume that any free antigen on the surface or
only free antigen within reach, respectively, can be bound by an antibody already bound to the surface with one arm
(grey shaded regions). (B) Representative monovalent (left) or bivalent (middle, right) SPR traces using the antibody
FD-11A interacting with RBD of SARs-CoV-2. The family of SPR traces are generated by 2-fold dilution of RBD
starting at 2000 nM (left) or by a 2-fold dilution of FD-11A starting at 300 nM (middle, right - same data but different
model fit). (C) The fitted binding parameters for monovalent (N = 4) and bivalent (N = 6) SPR experiments. (D)
Simulated SPR traces (bottom) for antibodies injected over a surface with a random distribution of antigen (top) but
with different values of reach. Antigens (circles) are coloured red if they are within reach of another antigen and blue
otherwise. Parameter values: kop = 0.05uM~1s™1, ko = 0.05571, konp = 1.0s71, and [RBD] = 0.0025 nm~2. (E) The
fitted bivalent binding parameters from the N = 6 bivalent SPR experiments. (F,G) Comparison of five antibodies
analysed using monovalent and bivalent SPR from /N > 3 independent experiments. (F) Comparison of the indicated
parameter using both methods with the dashed line displaying perfect agreement (y=x). (G) The bivalent binding
parameters. An F-test was used to determine a p-value for the null hypothesis that the dashed line and the fitted line
to log-transformed binding parameters were equal (F) and a t-test with Dunnett’s multiple comparison correction on
log-transformed values was used to determine p-values (C). Abbreviations: ns = p> 0.05, * = p<0.05, ** = p<0.01,
#% = p<0.001, #*** = p<0.0001.
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s2 The molecular reach is determined by both the antibody and the antigen

s3 The molecular reach distances that our analysis produced for the five RBD antibodies (~38 nm, Fig. 1G)
s+ and the CD19 antibody (53 nm, Fig. S4C) were notably larger than previous studies reporting that IgG1
85 antibodies can only bind bivalently when antigens were within ~16 nm (11-13). They were also larger than
ss estimates of the distance between the antigen-binding sites based on structural studies of whole antibod-
g7 ies (~15 nm) (1). Furthermore, molecular dynamic (MD) simulations of the FD-11A antibody produced
ss reaches of 3.46 to 17.58 nm with a mean of 13.05 nm (Fig. S7).

89 One possible explanation for these discrepancies is antigen size. Previous studies of molecular reach had
90 used small model antigens (e.g. 4-hydroxy-3-iodo-5-nitrophenylacetate (NIP, 320 Da) (11), digoxin (780
o1 Da) (13), 6x His-Tag (1100 Da) (12)) while we used much larger protein antigens (e.g. RBD is 51,100 Da).
92 To test this hypothesis, we injected an anti-phosphotyrosine antibody over a small phosphorylated peptide
93 antigen coupled to polyethylene glycol (PEG) linkers comprised of 3 or 28 PEG repeats with a size of 2234
94« Da and 3336 Da, respectively (Fig.2A,B, Fig.S5). Consistent with previous measurements using small
95 antigens, our analysis produced a reach of 10.3 nm using the PEG3 linker and 13.4 nm using the PEG28
o6 linker (Fig.2B). Similar results were obtained at different PEG3 concentrations (Fig. S6). Using a polymer
97 model, we were able to calculate the theoretical increase in molecular reach between PEG3 and PEG28 (see
e Methods), which agreed well with the experimentally measured increase (Fig. 2C).
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Figure 2: The molecular reach is similar to the predicted antibody reach when the antigen is small. (A) Repre-
sentative SPR traces of the anti-phosphotyrosine antibody (PY?20) injected over surfaces coupled to a small phospho-
rylated peptide linked to either 3 or 28 repeats of PEG. The antibody was injected at 8 concentrations (25 nM with
2-fold dilutions). (B) The fitted molecular reach (N = 9 for PEG3, N = 5 for PEG28; see Fig S5 for other fitted
parameters). (C) Comparison of the difference in reach between PEG3 and PEG28 estimated by the worm-like-chain
polymer model (see Methods) and by experiments from panel B.

99 To determine if a ~38 nm reach was plausible for RBD binding antibodies, we used coarse-grained
10 steered MD simulations. A coarse-grained representation of the FD-11A antibody bound to RBD was
101 constructed, modified to include the Lys15 biotinylation site used to anchor RBD to the SPR chip surface
102 (Fig.3A). One Lys15 position was held fixed while the other was pulled away at constant velocity. We
103 computed the fraction of native contacts at both paratope/epitope interfaces (Fig. 3B) and the exerted pulling
104 force (Fig. 3C). Unbinding events were identified based on a decrease in the fraction of native contacts and
105 this could be confirmed by visual inspection (Fig. 3D). At these events, the maximum distance between
106 Lys15 on the two RBDs before the antibody unbound were recorded. This steered MD procedure allowed
107 us to much more rapidly access extended conformations where FD-11A remained bound to both RBDs
108 at large separation distances. In contrast, unrestrained simulations initialised at these separation distances
10e  would rarely access these extended conformations, which we expect are readily accessed in experiments that
1o take place on the timescale of minutes.


https://doi.org/10.1101/2023.09.06.556503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.06.556503; this version posted April 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Huhn et al

111 We ran sets of simulations using different paratope/epitope interface strengths and as expected, increas-
112 ing the strength allowed the simulation to explore bivalent binding conformations with a larger maximum
113 RBD distance (Fig. 3E). Defining the molecular reach as the maximum distance achieved over different in-
114 terface strengths, we obtained a value of 34.4 nm for FD-11A, which agrees well with the 34.9 nm reach
115 estimated by bivalent SPR (Fig. 1E). We next repeated this procedure for the other antibodies we already
16 characterised and an additional therapeutic antibody (REGN10987, Fig.S8) finding agreement with the
117 SPR-determined reach (Fig. 3F).

118 Together, these findings demonstrate that our particle-based model provides accurate estimates of the
11e molecular reach from bivalent binding data and that reach is the maximum separation distance between
120 antigen anchoring points that support bivalent binding, which underlines the importance of antigen size.
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Figure 3: Molecular dynamic simulations reproduce the molecular reach obtained by bivalent SPR highlighting
the contribution of the antigen to reach. (A) Coarse-grained structure of IgG1 FD-11A bound to two RBD antigens
indicating the Lys15 biotinylation site (within an N-terminus AviTag), which anchors RBD to the SPR surface. The
anchor point of RBD forming interface 1 was fixed while the one forming interface 2 was moved at a constant velocity.
B The fraction of native contacts at the indicated interface (normalised to the number of contacts in the native structure)
and (C) the force required to maintain the constant velocity over time. (D) Snapshots from the simulations at the
indicated time points indicating the distance between Lys15 on each RBD. The maximum distance in this trajectory
was 34.4 nm. (E) The maximum Lys15-Lys15 distance from N = 50 independent trajectories over the interface
binding strength (n). The molecular reach is defined as the largest distance (horizontal dashed line). (F) The molecular
reach for the indicated antibody estimated by simulation or experiment (left) and the difference between these estimates
(right). A one-sample t-test is used to determine the p-value for the null hypothesis that the mean is 0.
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121 The molecular reach of patient-isolated RBD-specific antibodies is the best correlate of SARS-
122 CoV-2 neutralisation potency

123 We next investigated the functional implications of molecular reach using a panel of 80 RBD-specific IgG1
124 mAbs previously isolated from SARS-CoV-2 infected individuals with known epitopes and viral neutrali-
125 sation potencies (5) (Fig. 4A). The neutralisation potency is the antibody concentration required to produce
126 50% inhibition of infection (IC5p). We injected 3 concentrations of each antibody sequentially, analysing
127 up to 32 antibodies in a single 48 hour experiment (Fig. 4B). To re-use the same surface repeated, a high salt
128 injection (3M MgCl) was used to regenerate the surface between antibody injections without denaturing the
129 antigen. In a pre-screen, 7 out of 80 antibodies remained bound after regeneration, and so were excluded
130 from subsequent experiments. The FD-11A antibody was injected at the start and end of each of the 16 ex-
131 periments that we performed to confirm that the antibody binding capacity of the surface remained largely
132 intact over 48 hours despite multiple regeneration steps (Fig. SOA,B).

133 We next fitted the particle-based bivalent model and the ODE-based monovalent model to the bivalent
13« SPR data. We excluded 12 antibodies because they produced a poor fit to the particle-based model and
135 16 antibodies because the ODE-based model produced an accurate fit (Fig. SOC-G). We reasoned that an
136 accurate fit by the ODE-based model meant that the bivalent SPR data contained no useful information
137 about bivalent binding parameters. Possible explanations include an antibody that only binds monovalently
138 because of insufficient reach or an antibody that binds with very high affinity so that it does not unbind
139 during the experiment. In these cases, it is not possible to quantify the increase in binding that bivalency
140 provides.

141 The binding parameters for the remaining 45 antibodies displayed a 1000-fold variation in affinity
142 (Fig. 4C), which was primarily the result of variations in the off-rate (Fig. 4D). Interestingly, the molecular
143 reach exhibited large variations from 22 to 46 nm even though all antibodies shared the same IgG1 isotype
144 and interacted with the same RBD antigen (Fig.4D). The reach displayed some correlation with affinity
145 and off-rate (Fig. 4D), which is consistent with previous work suggesting that higher-affinity antibodies can
146 tolerate larger antigen distances when binding bivalently (11).

147 We found only modest correlations between neutralisation potency and the monovalent binding parame-
s ters (Fig. 5A-C). Given that binding parameters may independently contribute to predicting potency, we tried
149 multiple linear regression, but the correlation was similar to the affinity alone (Fig. 5C vs D). Examining the
150 additional bivalent parameters revealed no correlation with the bivalent on-rate (Fig. SE) but the molecular
151 reach displayed the best correlation of all single binding parameters (Fig. SF). This increased further using
152 a multiple linear regression model that included all the parameters (Fig. 5G). Together, this indicates that
153 antibodies with a longer reach are better able to neutralise virus.

154 We reasoned that the ability of reach to predict neutralisation may be a result of it’s ability to predict
155 bivalent binding and/or it’s ability to act as a proxy for the relevant blocking epitope. To test the latter, we
156 computed the distance of each antibody epitope from a reference epitope in the ACE2 binding site (Fig. 5H).
157 As expected, we found that neutralisation potency was gradually reduced for antibodies that bound further
158 from the blocking epitope interface (Fig. 5I). However, we found that the molecular reach did not correlate
159 with this blocking epitope distance (Fig.5J). We also used a previously reported epitope taxonomy but
160 again, found no difference in molecular reach depending on epitope location (Fig. S10). This suggested that
161 molecular reach predicts bivalent binding rather than the blocking epitope.
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162 The observation that both epitope distance and reach correlated with neutralisation potency but not with
163 each other suggested that each contained independent information relevant to viral neutralisation potency.
164 We first confirmed that including the blocking epitope distance with the monovalent binding parameters
165 improved the correlation (Fig. 5D vs K). In support of our hypothesis, we found that the correlation with all
166 the binding parameters improved further when including the blocking epitope distance (Fig. 5G vs L).

167 Taken together, these results show that the best single parameter predictor of neutralisation potency is
1es the molecular reach, and that increasing the molecular reach increases the neutralisation potency of RBD
169 antibodies by enhancing bivalent binding.
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Figure 4: High throughput analysis of patient-isolated antibodies using bivalent SPR reveals large 22-
46 nm variations in reach. (A) Schematic of antibody identification and characterisation. (B) Workflow for
high throughput bivalent SPR indicating that each antibody was injected at 3 concentrations with association
(A, 150 s), dissociation (D, 450 s), and surface regeneration (R) steps. (C) Complete set of binding param-
eters for 45 antibodies ordered by affinity (left) or displayed as distributions (right - mean with min/max
shown). (D) Parameter correlations.
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Figure 5: The molecular reach of RBD-specific antibodies correlates with neutralisation potency but
not with the ACE2 blocking epitope. (A-G) Single and multiple linear correlations between the indicated
parameters of 45 antibodies (individual data points) and their neutralisation potency (ICsg), the concentration
of antibody required to reduce in vitro SARS-CoV-2 infection by 50%. The 13 antibodies whose potency
was not determined (n.d) were excluded from the fit (top dashed line). (H) Structure of RBD showing the
ACE2 binding site (left, blocking epitope in green) and the epitope of each antibody on the structure (right).
The blocking epitope distance is calculated using the epitope for antibody 253, which is furthest at the top of
RBD, as the reference point. Images are taken from (5). (I,J) Correlation between blocking epitope distance
and (I) neutralisation potency or (J) reach. (K,L) Multiple regression with the blocking epitope distance
using (K) only the monovalent binding parameters or (L) all the binding parameters. The neutralisation
potency and epitope locations were previously determined (5). Multiple linear regression included only

main effects and all correlations were performed on log-transformed parameters except for molecular reach
and epitope distance.
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170 The emergent binding potency of antibodies predicted by the particle-model matches their
171 neutralisation potency at antigen densities found on the virion

172 The neutralisation potency of an antibody is an emergent property that depends on multiple factors including
173 its binding parameters (kon, Koff, Konp, reach), the epitope, and the antigen density on the pathogen surface.
174 With the exception of antigen density, these factors can be combined to predict neutralisation potency as
175 we have demonstrated (Fig. 5L) but this requires a panel of antibodies with a wide variation of measured
176 neutralisation potencies in order to fit a regression model in the first place. We reasoned that the particle-
177 model could incorporate all of these factors to directly calculate an emergent measure of antibody binding
178 potency without a priori data fitting. To do this, we developed a workflow that used the particle-model
179 to simulate the amount of free antigen on a two-dimensional surface for different antibody concentrations
180 from which the predicted binding potency (antibody concentration required to bind 50% of antigen) can be
181 calculated (Fig. 6A).

182 We first used the FD-11A antibody to validate the workflow. We simulated the amount of free antigen
183 at 60 minutes using the FD-11A binding parameters (Fig. 1C,E) for different FD-11A concentrations and
184 for surfaces with 7 antigen densities (Fig. 6B). To compare these simulations with data, we mixed different
185 concentrations of FD-11A IgG or Fab with live SARS-CoV-2 for 60 minutes before adding it to Vero cells
186 and determined infection at 20 hours (14) (Fig. 6C). We compared the predicted binding potency with the
187 experimental neutralisation potency (Fig. 6D).

188 At the lowest antigen densities, the model predicted a poor binding potency of ~600 nM that matched
189 the expected affinity of a bivalent antibody that can only bind a single antigen (Kp/2 = 614 nM, where
190 the factor of 2 accounts for the two antibody Fabs and Kp = 1228 nM is the monovalent affinity). This is
191 presumably because the average distance between antigens at this density (~352 nm) is much larger than the
192 molecular reach of FD-11A (34.9 nm) impairing bivalent binding. The predicted binding potency improved
193 by > 100-fold as the antigen density increased enabling FD-11A to bind bivalently and eventually matched
194 the experimental potency between the two highest densities tested. The Fab failed to neutralise virus even
195 at concentrations above 3000 nM, which likely reflects the fact that the monovalent antibody/RBD affinity
196 is much lower than the ACE2/RBD affinity (Kp ~75 nM (17)).

197 We next used the workflow to predict binding potency at different antigen concentrations for all 45
19e antibodies. The predicted and experimental potencies were similar at intermediate antigen densities of
199 0.0005-0.001 nm~2 (Fig.S11) and this could be further improved if only a subset of 24 antibodies were
200 included that bound near the blocking epitope (Fig. 6E). As above for FD-11A, we found that at very low
201 and very high antigen densities, the predicted binding potency was very low or very high for all antibodies
202 because all the antibodies were unable to reach two antigens or all antibodies could reach two antigens, re-
208 spectively, independent of their molecular reach. In contrast, the neutralisation potency matched the binding
204 potency at intermediate antigen densities (0.0005-0.001 nm~?2) where the mean distance between antigens
205 is ~18-25 nm, which is on the same scale as the measured molecular reach for these antibodies (Fig. 4C).
206 Importantly, these intermediate densities are similar to the estimated density of the Spike protein on the
207 surface of SARS-CoV-2 (Fig. 6F).

12


https://doi.org/10.1101/2023.09.06.556503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.06.556503; this version posted April 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Huhn et al
a . \
Bivalent SPR Model Input Simulation Predicting Binding Potency
'_ —
%) ’ [Antibody] kon N g ©
= = =) =
5 1 NS . 2 [Antibody] g
() T © T =
7] kel i =
(= ©
g - — £ ; — &
8 _8 1 p=}
o 5 | 8
Reach c
Time Tme T = [Antibody]
b Particle-model c _ Neutralisation Experiment d Experiment  Particle-model prediction
e
1.0 - I >3000
S Low anygen S 100 103
2 density 6
c X
< (mostly monovalent) oS
- =3 =
3 £ S 102
8 05+ 3 s
[ € 5049 3
> ~ o
5 - 3 T
s High an.tlgen 3 —e— FD-11AIgG
g density 7
© (mostly bivalent) » (£ =— FD-11AFab 3 o
w00 T T T [ T o < © T T T T T T 10° -
102 101 109 10! 102 10° 10¢ 105 108 @ 10% 102 107 10° 10! 102 10% 29%% 9o %83
L = © o < © o
Antibody Concentration (nM) [FD-11AIgG or Fab] (nM) e Y s s o o
Antigen density (nm?)
Low antigen density High antigen density Intermediate antigen density
e [Antigen] = 2.56 %106 nm2 [Antigen] = 0.04 nm™ [Antigen] = 5.0 x10* nm?
103 : 103 : 103 :
°° : : : S
S 102 ° ZY=EX S 102 ZYEX S 102 ay=x E
5 .’ 'X) - - ? Fkkk 5 L. : Hkrk 5 - E ns &=,
g 10 K P g 10° Pl g 101 o 2
o e® * e 7 S} 7 : $] : S
E 100 //, H B 100 ,’/n ° E 8 100 ° f g
o L s . H k3] , e e : o3
gt - Y L i BT o : £
a -~ R2=0.2416, o -~ R2=0.3130, |+ o -~ R2=0.5468, |: <
102+ T T — 102 T T — K 102 - T T — K
102 10" 109 10" nd 102 10" 100 10" nd 102 107 100 10"  nd Virion  Model
Neutralisation ICg, (nM) Neutralisation ICg, (nM) Neutralisation ICg, (nM)
Reach (nm) Reach (nm) Reach (nm)
47 44 41 38 35 32 29 26 23 20 47 44 41 38 35 32 29 26 23 20 47 44 41 38 35 32 29 26 23 20

Figure 6: The emergent antibody binding potency calculated by the particle-model equals the antibody
neutralisation potency determined by live virus experiments. (A) Schematic of workflow to determine
the predicted antibody binding potency defined as the concentration of antibody required to bind 50% of
antigen randomly distributed on a two-dimensional surface. The model input includes the antibody/antigen
concentrations and binding parameters. (B) Simulations of the fraction of free antigen after 60 minutes using
the FD-11A antibody binding parameters. (C) The ability of live SARS-CoV-2 virions to infect target cells
when pre-mixed for 60 minutes with different concentrations of FD-11A IgG (red) or Fab (black) determined
at 20 hours. (D) Fitted potency values (IC5p) from (B) simulations and (C) experiments. (E) Comparisons of
the predicted binding potency over the experimental neutralisation potency for 25 antibodies that bind within
2.37 nm of the blocking epitope for the indicated antigen concentrations (see Fig. S11 for all antibodies and
all antigen densities tested). A linear fit on log-transformed ICsp values (solid line) is compared to the
identity line (y=x) using an F-test. The shading of each point indicates the molecular reach of the respective
antibody. (F) Comparison of the Spike density on SARS-CoV-2 virion (18) with the intermediate antigen
density producing absolute agreement using the particle-model (0.00075 nm~2 [0.0005, 0.001])
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208 Finally, we wondered if emergent binding potency can explain discrepancies in neutralisation potency
200 based on monovalent binding. We identified two antibodies in our dataset that displayed large differences in
210 neutralisation potency despite binding with similar monovalent affinities to the same RBD-epitope (Fig. 7A).
211 Given that these antibodies also displayed differences in their bivalent binding parameters, we calculated
212 their emergent binding potency at different antigen densities finding that the model correctly differentiated
213 between them only at intermediate densities found on the virion (Fig. 7B,C). Therefore, antibodies with a
214 similar affinity to the same epitope can display large differences in function because of differences in their
215 propensity for bivalent binding.

216 Together, these results highlight the interplay between reach and antigen density/spacing in determining
217 emergent bivalent binding, and that if we know the antibody binding parameters and the antigen density
21s on the virion surface, it is possible to directly predict the concentration of antibody required to neutralise
219 SARs-CoV-2.
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Figure 7: Antibodies with similar monovalent affinity to a shared epitope can display large differences
in neutralisation potency because of differences in propensity for bivalent binding. (A) The experimen-
tal neutralisation and binding parameters of antibody 181 and 394. (B) Simulations of antibody 181 (blue)
and 394 (red) binding after 60 minutes using their measured binding parameters (vertical dashed lines indi-
cate IC5 binding potency). (C) Comparison of predicted binding potency and experimental neutralisation
potency.
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20  Discussion

221 The challenge of studying emergent antibody binding has motivated mathematical and experimental meth-
222 ods to isolate specific factors often by removing the dependence of binding on antigen density. Experimental
223 methods are routinely used to study monovalent kinetics by injecting soluble antigen over immobile anti-
224 bodies (10) and more recently, methods have been developed to study spatial tolerance by measuring an
225 apparent affinity for precisely spaced antigens (11, 12). Mathematical methods are also available in certain
226 limits (7, 9, 19, 20) but a method that can directly fit binding of antibodies to a random distribution of an-
227 chored antigen at a given density is presently unavailable. Here, we developed a fast spatial and stochastic
228 particle-based method to directly fit antibody binding to random antigens enabling estimates of monovalent
220 on/off-rates, the bivalent on-rate, and the molecular reach.

230 We validated the particle-based model in several ways. First, the model correctly identifies the monova-
231 lent kinetics and affinities for several antibodies across a large variation in affinity using two antigens: RBD
232 (Fig. 1) and CD19 (Fig. S4). Second, the model estimates the same parameter values at different antigen
233 densities (Fig. S2, Fig. S6), highlighting that it can accurately capture how antibody binding depends on
23+ antigen density. Lastly, MD simulations reproduce the fitted molecular reach (Fig. 3).

235 A unique feature of our analysis is that the complete set of binding parameters can be used to quantita-
236 tively predict emergent antibody binding. This enables estimates of the antibody concentration required to
237 bind 50% antigen on surfaces with different antigen densities. Interestingly, the predicted binding and ex-
238 perimental neutralisation potencies matched only when using the antigen density of Spike on the surface of
239 SARS-CoV-2 in our simulations. At this density, the mean distance between antigens was on the same scale
240 as the measured molecular reach (22-44 nm). A limitation of our method is that these calculations relied on
241 monomeric antigen but the Spike protein is trimeric and contains three RBDs that are closer together than
242 the molecular reaches that we report. This apparent discrepancy can be accounted for if the predominate
243 mechanism of bivalent binding involves two RBDs on different Spike trimers. Although there is evidence
244 that some antibodies can bind two RBDs within a Spike trimer (4, 21), a Spike trimer typically contains only
245 a single accessible RBD (18) and the lifetime of antibodies depends on the Spike concentration implying
246 inter-Spike binding (22). Moreover, directly resolving antibody/Spike binding revealed Spike cross-linking
247 (23). Therefore, our conclusions are consistent with antibodies predominately binding RBD across Spike
248 trimers.

249 The molecular reach we report (up to 46 nm) is much larger than previous reports (up to ~16 nm)
250 (11-13). We have shown this to be the result of differences in antigen sizes, with previous reports focused
251 on low molecular weight model antigens (<1100 Da) compared to the the RBD antigen we have used (51
252 kDa). This suggests that antibodies can simultaneously bind two antigens anchored much further apart than
253 the physical size of an antibody provided that the antigen is large and can display tilting flexibility relative
254 to the surface, which is the case for surface RBD/Spike (18). Moreover, the large variation in reach across
255 antibodies with the same IgG1 isotype that we report (22-44 nm) suggests that a universal reach value is
256 unlikely and that this critical parameter will need to be assessed for each antibody/antigen combination. The
257 importance of the molecular reach is underlined by the observation that it was the best single-parameter
258 predictor of viral neutralisation, with a correlation larger than the monovalent binding parameters and the
259 blocking epitope. This is consistent with molecular reach being a proxy for bivalent binding, which itself is
260 known to be important for SARS-CoV-2 neutralisation (3, 5).

261 While we have focused on analysing antibody binding by SPR, the model can readily be used to study
262 any bivalent molecule using any instrument that measures binding. In addition to providing the complete
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263 set of bivalent binding parameters and predicting antibody function, bivalent SPR also accelerates antibody
264 screens by enabling sequential injection of many antibodies over the same surface. In summary, the ability to
265 easily acquire and now analyse bivalent binding should improve the ability to study and engineer antibodies
266 and other native and synthetic bivalent molecules.
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s Materials & Methods

280 Proteins

290 Production of monovalent Streptavidin. Monovalent Streptavidin was produced using a method previ-
201 ously described to generate streptavidin tetramers of defined valency fused to Spycatcher (24). Two dif-
292 ferent streptavidin subunits were used: Streptavidin-SpyCatcher, which contains a functional streptavidin
203 monomer fused to SpyCatcher at its C terminus and a ’dead’ streptavidin, which contains a mutation in the
204 streptavidin monomer that has negligible biotin-binding activity. Individual subunits were expressed in E.
205 coli BL21-CodonPlus (DE3)-RIPL cells and refolded from inclusion bodies. Inclusion bodies were washed
206 in BugBuster (Merck Millipore 70921) supplemented with lysozyme, protease inhibitors, DNase I, and mag-
297 nesium sulphate as per the manufacturers’ instructions. To obtain monovalent streptavidin-SpyCatcher, the
208 subunits were mixed at a 3:1 molar ratio of dead streptavidin to streptavidin-SpyCatcher. Tetramers were
299 refolded by rapid dilution and precipitated using ammonium sulphate precipitation. Precipitated protein was
so0 resuspended in 20 mM Tris (pH 8.0), filtered (0.22-um filter), and loaded onto a Mono Q HR 5/5 column
sot (GE Healthcare Life Sciences). Desired tetramers were eluted using a linear gradient of 0-0.5 M NaCl in
sz 20 mM Tris (pH 8.0), concentrated, and buffer exchanged into 20 mM MES, 140 mM NaCl (pH 6.0).

303 Production of Biotinylated-RBD. Affinity purified SARS-CoV-2 (Wuhan) RBD was biotinylated using
sos  EZ-Link Sulfo-NHS-LC-biotin (Life Technologies, USA, A39257) accordingly to manufacturing protocol.
ss Biotinylated RBD was subjected to Zeba™ Spin Desalting Columns (7k MWCO) (Thermo Scientific, USA,
s06 catalogue 89889) to remove excess biotin.

307 Production of FD-11A, FD-5D, EY-6A, FI-3A, CR3022, REGN10987 antibodies. Monoclonal an-
sos tibodies were produced as previously described (14, 25). Expression plasmids were transfected into the
so9  ExpiCHO cell lines according to the manufacturer’s protocol (Thermo Fisher). Supernatant containing
si0 monoclonal antibodies were clarified by centrifugation (1,400g, Smin) and 0.45 uM filtered before purifi-
s11  cation. Monoclonal antibodies were affinity purified using a MabSelect SuRe (Cytiva) pre-packed column.
s12  Purified mAbs were then desalted using Zeba Spin Desalting Column (ThermoFisher) or diafiltered using a
s13 Amicon Untracentrifugation Column (50k MWCO).

314 Production of 80 mAbs specific for RBD. Antibodies for high-throughput screen used in the present
sts  study were produced previously (5). They all use the human IgG1 backbone paired with either « or A light
si6 chains.

317 Production of Spytag-CD19 antigen and antibody. Spytag-CD19 fused to Spytag was produced as
s1e  previously described (26). The extracellular domain of CD19 is expressed as a fusion protein with Spytag
s19 and Histag fused to its C-terminus, and the Sumo protein via a HRV cleavage site fused to its N-terminus
s20 (Sumo-HRV-CD19-Spytag-Histag). The protein SUMO was used to stabilise Spytag-CD19 during produc-
s21  tion. A CMV expression plasmid encoding Sumo-HRV-CD19-Spytag-Histag was transfected into Expi293F
s22  Cells (ThermoFisher) using the ExpiFectamine 293 Transfection Kit (ThermoFisher Scientific, A14524).
s2s Cells were incubated for 4-5 days for protein expression. Following, the supernatant was harvested, and
324 1in the first step the fusion protein was purified using Ni-NTA Agarose column. Next, the protein was con-
s2s centrated and loaded onto a Superdex 200 10/300 GL (Cytiva, 17-5175-01) size exclusion chromatography
326 column. Next, HRV 3C Protease Solution Kit (Pierce™, 88946) was used to cleave SUMO from the CD19
s27  fusion protein. The protease was removed via Glutathione Agarose (Pierce™, 16100), followed by Ni-NTA
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s2s  Agarose to remove SUMO. Finally, the protein was stored in size exclusion buffer (25 mM NaH2PO4 and
s2e 150 mM NaCl at pH 7.5) and frozen in suitable aliquots at —80°C.

330 The anti-CD19 antibody (clone SJ25C1) was purchased from BioLegend (cat no. 363001).

331 Production of PEG coupled phosphorylated peptide antigens and antibody. Phosphorylated peptide
s32 antigens were a custom commercial order (Protein Peptide Research Ltd, UK) with the following sequences:
sz Bio-(PEG)3-SVPEQTEY*ATIVFPSG (PEG3) and Bio-(PEG)25-SVPEQTEY*ATIVFPSG (PEG28), where
s« Bio indicates biotin, PEGx is X repeats of polyethylene glycol, and * indicates phosphorylation.

335 The anti-phosphotyrosine antibody (clone PY20) was purchased from Absolute Antibody (Ab00294-
sse  1.1).

a7 Surface plasmon resonance

s3s  Monovalent SPR for RBD antibodies. A BIAcore 8K (Cytiva) was used to measure the affinity and the
s39  Kkinetics of soluble RBD to immobilised antibody. Approximately 200 RU of antibody was captured onto
a0 a Protein A Series S Sensor Chip (Cytiva) along with 200 RU of an influenza mAb AG7C in a reference
s41  flow cell. Multi cycle kinetic analysis of binding was undertaken, using a two-fold serial dilution of RBD-H
a2 in HBS-P+ buffer (Cytiva) along with a reference sample containing only HBS-P+ buffer. Measurements
a3 were made with injection times of 90 s (30 ul/min) and dissociation times of 180 s or 600 s (30 ul/ml) at
s4as  37°C. Regeneration of the sensor chip was performed with 10 mM Glycine-HCI, pH 1.7 for 30s (30 ul/min)
a5 between RBD-H concentrations. For analysis, the sensograms were double reference subtracted and fitted
a6 with a 1:1 binding model using the BIAcore Insight Evaluation Software version 2.0.15.12933 (Cytiva).

347 Monovalent SPR for CD19 antibodies. Monavalent SPR of CD19 antibodies was conducted on BI-
ass  Acore T200 instrument (GE Healthcare Life Sciences). The experiment was run at 37 °C, HBS-EP was
a49 used as running buffer. An Fc capture chip was produced by amine coupling of anti-mouse IgG antibody
ss0  to a CMS5 chip using a commercial Fc Capture Kit (GE Healthcare). First, the chip was conditioned with
ss1 7 conditioning cycles using HBS-EP buffer. Next, the anti-CD19 antibody was injected for either 120 s or
a2 900 s, resulting in immobilisation levels of 500 RU and 1000 RU respectively. For the control flow cell, the
353 BBM1 antibody was immobilised to matching levels. CD19-SpyCatcher was injected for 150 s, followed
s« by a dissociation phase of 450 s at a flow rate of 50 pl/min. After each cycle, the chip was regenerated with
355 10 mM Glycine-HCI, pH1.7 for 90 s, which removed both CD19 and anti-CD19 antibody from the chip.
36 This was followed by the re-immobilisation of anti-CD19 antibody. Buffer was injected after every second
37 cycle. For data analysis, the SPR sensogram was double-referenced against an empty flow cell and buffer
sss  injections. Subsequently, we fitted the dissociation phase with a 1:1 binding model to obtain the mean ko
sse  value. Next, the mean k,, value was determined by fitting the association phase with a 1:1 binding model,
ss0 while constraining the kg parameter to the mean k¢ value determined in the first fitting step.

361 Bivalent SPR. A BIAcore T200 instrument (GE Healthcare Life Sciences) at 37°C and and a flow rate
sz of 100 pl/min. Running buffer was HBS-EP. Monovalent Streptavidin-SpyCatcher was coupled to CM5
ses  sensor chips using an amino coupling kit (GE Healthcare Life Sciences) to near saturation, typically around
se+ 7000 - 8000 response units (RU). Antigens, either biotinylated (RBD) or containing a SpyTag (CD19), were
ses  injected into the experimental flow cells (FCs) for different lengths of time to produce desired immobilisation
ses levels (typically 20 - 70 RU). The concentration of immobilised antigen was calculated using an empirical
se7 factor to convert the immobilisation level to a molar concentration. We used the formula: molar conc.
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sss = immobilisation level / (conversion factor x molecular weight). The conversion factor was previously
seo  determined to be 149 RU per g/liter (27). Usually, FC1 was kept blank as a reference for FC2, FC3,
sro and FC4. Excess streptavidin was blocked with two 40 s injections of 250 uM biotin (Avidity). Before
s71  antibody injections, the chip surface was conditioned with 2 injections of the running buffer. Dilution series
a2 of antibodies were injected simultaneously in all FCs, starting with the lowest concentration. Antibodies
szs were injected for 150s followed by a buffer injection of 450s at a flow rate of 100 ul/min. After each
sz cycle, the chip surface is regenerated with 3M MgCl (Cytiva) for 90 s at 30 ul/min to remove all remaining
s7zs  bound antibodies. A buffer injection was included after every 2 or 3 antibody injections; all binding data
sz were double-referenced by subtracting the response of the control flow cell and the closest buffer injection.
s77 Before running the high-throughput SPR experiment, we conducted an initial screen to determine whether
a7zs  the surface can be regenerated after each antibody injection. For this, each antibody was injected at a
s7e  concentration of 50 nM with an association phase of 150 sec followed by a dissociation phase of 475 sec
ss0 before injecting 3M MgCl (Cytiva) for 90 sec at a flow rate of 30 ul/min followed by a buffer injection. For
ss1 the high-throughput SPR experiments, up to 32 antibodies at 3 concentrations (typically between 30 and 100
ss2 nM) each were injected in sequence over the SPR chip surface. Buffer was injected after every third cycle.

s ODE-based monovalent model

As illustrated in Fig. 1A, the monovalent ODE model assumes soluble antigen can reversibly bind to im-
mobilised antibodies. Let [Ag] denote the concentration of antigen, [Ab] the concentration of antibodies
immobilised on the SPR chip, A the number of unbound antibody arms, and B the number of bound anti-
body arms. The monovalent reaction model is then

Kon[A
A [Ag] B
koff
with the corresponding mass action ODE model of
dA __dB
dt  dt

ss« All antibody arms are initially unbound, giving the initial condition that A(0) = 2[Ab] and B(0) = 0.

= —kon [Ag]A + koffB.

The monovalent SPR experiment is modelled by an association phase (t = 0 to ¢t = t,) followed by a
dissociation phase after the instantaneous removal of antigen in solution at time ¢, (i.e. setting [Ag] = 0 at
ts). The measured monovalent SPR response trace, R(t), is proportional to B(t). Analytically solving the
ODE model we then have that

0 = (Ot (L (olteiinty e <,
R(t7)e kar(t=t), t >t

ses where C}, denotes the constant of proportionality between R(¢) (in units of RU) and B(t) (in units of
ass concentration). The monovalent model for R(t) then has three unknown parameters to fit, C},, kop, and kog.

7 ODE-based bivalent model

As illustrated in Fig. 1A, the bivalent ODE model assumes soluble antibodies can reversibly bind to immo-
bilised antigens. We let [Ab] denote the concentration of antibodies in the solution, [Ag] the concentration of
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antigen immobilised on the SPR chip, A the concentration of these antigen that are not bound to an antibody,
B the concentration of antibody-antigen complexes in which the antibody has one arm bound (i.e. is ’singly-
bound”), and C' the concentration of antibodies with both arms bound to antigen (i.e. “doubly-bound”). The
well-mixed bivalent reaction model is then

Kon
4 2kon[Ab]

Kott

kon,b
A+B=—=—=0C
2koft

with the corresponding mass action ODE model of

dA

7 = ~2kon[AbJA + kot B — KonpAB + 2konC
dB

= 2Kon[AD|A — o B — ann AB + 2koniC
ac

E = kon,bAB - 2k’offcfy

sss  and the initial conditions that A(0) = [Ag], B(0) = 0, C(0) = 0. Note that here ko, and ko represent the
sss same physical rates used in the monovalent ODE model.

390 As with the monovalent SPR experiments, the bivalent SPR experiment is modelled by an association
sst  phase (t = 0tot = t,) followed by a dissociation phase after the instantaneous removal of antibodies in
sz solution at time ¢, (i.e. setting [Ab] = 0 at ;). The measured SPR response, R(t), is proportional to the
ses  amount of antibodies bound to immobilised antigen, and we assume R(t) = Cp(B(t) + C(t)). We then
s« obtain a final model with four parameters to fit, Kon, Koff, Konb» and a constant of proportionality C},. Note,
ses this model assumes that a singly-bound antibody can bind any free antigen on the surface (i.e. is *well-
sss mixed’) and therefore, does not contain a molecular reach parameter. The model was fit to bivalent SPR
sg7 data for FD-11A binding RBD (Fig. 1 A-C) using Isgcurvefit in Matlab (Mathworks, MA).

ss Particle-based bivalent model

sss The particle-based model modifies the bivalent ODE model by explicitly resolving the position and chemical
a00 state (i.e. free or antibody bound) of each individual antigen that is immobilised on the SPR chip. We model
s01 a small portion of the SPR chip by a cube with side lengths L containing Nag antigens that are uniformly
a2 (randomly) distributed.

403 Our model is given in terms of stochastic jump processes for the states of each individual antigen or
s04 antigen-antibody complex. Let x; denote the position of the ith antigen within the domain, 7 = 1,..., Na,.
a5 We denote by A;(t) € {0,1} the stochastic process that is one if the ith antigen is not bound to any
s06 antibody, and zero otherwise. Similarly, B;(¢) € {0,1} will denote the stochastic process that is one if
a07 the ith antigen is bound to an arm of an antibody for which the other arm is unbound, and zero otherwise.
s0s  Finally, Cy;(t) € {0,1} will denote the stochastic process that is one if the antigens at z; and x; are both
a0 bound to the same antibody, and zero otherwise.

We let ¢ label the reach of the reaction for the free arm of a singly-bound antibody-antigen complex to
bind a nearby free antigen. We assume the reaction can occur with rate ko, When the two antigen involved
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in the reaction are separated by less than €. For antigens at z; and x;, the rate of the reaction is given by a
Doi interaction model (28-30) as konp (o ¢)(z; — x;), where

1, |z;—zj| <e
1[055]($i _‘TJ) = {07 |$ _xA’p > 87
) 7 ilp

10 represents the indicator function of the interval [0, €], and |z; — ;| p represents the periodic distance between
411 x; and x;.

Our overall reaction model is then

2kon|AD]
EE—

Ai BZ‘, ’iG{l,...,NAg}

koff

konp 1 (0,e](z; —=z5)

A1+B Cmin{i,j},ma.x{@j}v (&S {17"'7NAg}>j € {1571 - 1ai+1a"'7NAg}a
CZ] % A; + By, ie{l,...,Nagh,je{i+1,...,Nag},
Ciji>Aj+Bi, i€{l,...,Nagh,j € {i+1,...,Nag},

412 where ko and kg should represent the same rates as in the monovalent and bivalent ODE models. The
ss  initial condition for each stochastic process is then A;(0) = 1 for all 4, B;(0) = 0 for all ¢, and C;;(0) = 0
414 for all 7 and j.

The corresponding mathematical model for the evolution of the stochastic jump processes is given by
Kurtz’s time-change representation (31, 32). Equivalently, the probability the processes are in a given state
can be described by the Chemical Master Equation (CME). Let Z = {(4,7) |7 # j,i = 1,...,Nag,Jj =

., Nag} denote the indices of all possible A; and B; pairs, and Z = {(4,5)|i = 1,..., Nag,j = i +

1,..., Nag} denote the indices of all distinct antigen pairs. For the time-change representation each possible

reaction is associated with a unit rate Poisson counting process, labelled by {Yu(t)}l s Yo ()},

{Y3,(t) }ijyez> and {Ya; j(t) } i j)ez- We can then represent the stochastic processes for the total number
of occurrences of the A; — B, B; — Ai, Ai + Bj = Cuin{ijy,max{ij}> a0 Cuinfi j},max{i,j} — Ai + Bj
reactions respectively as

¢
lei(t) = Yl,z' <2/€0n[Ab]/ Ai(sf) d8> , 7€ {1, . ,NAg}
0
¢
Noi(t) = Yo (koff/ Bi(s)d3> ; i €{1,..., Nag}
0
t
N3, j(t) =Y, (konb]l[o (@i — fﬁg)/ Ai(s7)Bj(s™) dS) : (i,j) €T
0
t
Nuij(t) =Y, <koff/ Crnin{i,j},max{ij} (57) d5> ; (4,7) € .
0
Our particle model is then given by
Ai(t)zl_le( +N2z ZNB,Z,] )+ZN4,i,j(t)a ’iE{l,...,NAg}
e J#i
Bl'(t) 2/\/’1,1( sz ZN&J% )+ZN4’j*i(t)’ 1€ {1,...,NAg}
JFi JF
Cij(t) = N3, j(t) + N3ji(t) — Nasij(t) — Naji(t), (i,5) € L.
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As with the ODE models, the particle-model includes an association phase from ¢t = 0 to ¢t = ¢,
followed by a dissociation phase after the assumed instantaneous removal of all antibodies in solution at the
switching time ¢ (i.e. setting [Ab] = 0 at t5). The measured SPR response, R(t), is proportional to the
average number of antibodies bound to immobilised antigen. That is, let

Nag
B(t) =) B;(t), Clty= Y Ci;(t)
J=1 (i.j)€T

be the stochastic processes for the number of singly- and doubly-bound antibodies in the system at time ¢.
Denoting averages by E[-], we assume that

Cr

R() = -

(E[B(®)] +E[C®)]),

where C;, denotes the constant of proportionality converting model concentrations to experimental response
units. Note, as only the antibody concentration is varied during a single bivalent SPR experiment, Nag
remains constant and we are simply defining a re-scaled constant of proportionality compared to the ODE
cases. The resulting model then has five unknown parameters to fit, koq, Koff, kon,bs €, and Cp.

Exact realizations of the system state, i.e. ({Ai(t)}glg, {Bi(t)}fv:’*f, {Ci; (t)}(l. j)ei)’ can be generated
by any of the many Stochastic Simulation Algorithms (SSAs) (16, 33) (also know as Gillespie methods,

Kinetic Monte Carlo methods, or Doob’s method). For all forward simulations we use an optimized imple-
mentation of the Gibson-Bruck Next Reaction Method (NRM) SSA (34).

Particle-model surrogate

While SSA simulations of the particle model (i.e. R(t)) can be directly fit to bivalent SPR data, we found
their computational expense to be the bottleneck in our experimental workflows. To avoid parameter esti-
mation becoming a rate-limiting step, we developed a surrogate model that approximated the particle-model
but allowed for rapid data fitting and hence, parameter estimation.

We first note that from the perspective of the particle model, the antibody solution concentration, [Ab],
only enters in setting an effective transition rate, i.e. probability per time, of kon = 2kon [Ab] for an individual
A; to become a B;. As such, in the surrogate model we treat this as one effective parameter. We then denote
by R

6 = (logy(kon), 10810 (Fotr); 1010 (Konb). €, 10810 (Cp)) (1]
the vector of particle model parameters to estimate from SPR traces, where we have log transformed the
transition rates for each possible reaction.

Let

_ G
= N
label the particle model’s predicted SPR trace for a given set of parameters. The surrogate model is a
function of ¢ and @ defined by

Ry(t;6) (E[B(t)] + E[C(#)])

Rs(ta 0) - CpS(t7917927‘93794)7 [2]

with S(t, 01,602, 03, 04) representing the surrogate’s predicated SPR response for C, = 1. S is given by a
five-dimensional linear interpolation table over (¢, 61, 602,03, 6,). For all surrogates in this work, we fixed
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Nag = 1000 and [Ag,] = 125 M. The domain length was then chosen to be consistent with this density
of antigen, i.e. for N denoting Avogadro’s number, L satisfied
Nag
3

mol

— -30
= [Agsur] X NA x 10 m

To construct the surrogate, (61, 2, 63, 64) were each varied over a range of values [6;, éi}, with samples of
each 0; uniformly spaced. That is, if parameter 6; was sampled at M; values, they were chosen as

6] =0, + jAG;, j=0,...,M;—1,

with A#; = (0; — 0;)/(M; — 1). The sampled reaction transition rates were then uniformly spaced in log
space. We similarly partitioned time such that ¢ € [0, 7] where 7" determined the time interval over which
to fit the SPR data. We again used uniform spacing in time, ¢t; = jAt, for At = T'/M;. For the surrogate
used in this work we chose (M, My, M3, M,) = (42,40, 30,30), At = 1s, T' = 600s, and M; = 600. ¢
was chosen to be 150s, consistent with the SPR protocol.

With C}, = 1, for each possible combination of parameters, 8 = (9{1 , 0%2, 9%3, 014, 1), we then saved the
values S
S(ty,07',02,05,07") = Ry(t4;0), k=0,...,M;

in a five-dimensional lookup table. Estimating Ry (tx; €) requires averaging SSA simulations of the particle
model. Let B™(t) and C™(t) denote the sampled values of B(¢) and C(¢) in the nth simulation, n =
17 R Nsims, with
1
Ry (ty;0) = —(B"(tg) + C"(tx))
Nag
the corresponding response. We then approximated

N
1 sims
Rp(tk;g) ~ N E Rg(tk;O).
sims 7

Our general protocol was to average over at least Ngjms = 15 SSA samples, continuing to add SSA samples
until either the estimated standard error of the samples, { Ry (tx; 0)}55:1"1‘5, was below .01 of the sample mean
at all ¢, or Ngipms = 250 SSA samples were reached.

Given_the table {S (¢, 0{1 ) 9%2, 9%3, 014)}%”;?]1212/[31]%2:%311\1&?1) S(t,01,02,0s,04) fort € (0,7) and all
6; € (6;,0;) could then be evaluated by linear interpolation of the bracketing tabulated values. In practice,
we evaluated the surrogate at general time and parameter values using the BSpline (Linear () ) option
from the Interpolations.jl library (35). For the sizes we used, (M;+1, My, My, M3, My) = (601, 42,40, 30, 30),
the table contained model responses for 1,512,000 parameter combinations, and required approximately
7.3GB of memory to store. Surrogates were generally constructed in a few hours using 500-2000 cores on

the Boston University Shared Computing Cluster.

Particle-model data fitting

Estimates for the log transformed parameters 6, defined in Eq. [1], were generated via minimization of the
squared error between surrogate predictions and experimental SPR responses for varying levels of [Ab].
Suppose I SPR traces are being simultaneously fit (e.g. traces with different antibody concentrations in-
jected over the same surface), with R(?) (t) labelling the ith SPR response trace for an experiment with
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antibody concentration [Ab(i)]. We assume a fixed and known antigen concentration, [Ag|, when simultane-
ously fitting multiple SPR traces generated using different antibody concentrations injected over the same
surface. The experimental traces are ordered such that

[AbM] < [ABP] < - .. < [AbW)].

Finally, given a current estimate for 8 arising during optimization, we define

Ab®
(@) = @
0 = (01 +10g10 ([ b(l)] 792703a04795

= (1 /%[Ab(i)] 10g10(Fofr), 10810 (kon ), €, 10810 (C,
= | 10g19 onm ;1ogyo(Kofr), log1o(Konp) €, 10g19 p) .

The overall loss function we then minimized was

I M 9

L0) =33 (RO() — Ru(ti:09)) .

=1 k=0

where Rg(t;0) is the surrogate response defined by Eq. [2]. In practice we minimized this loss using
the XNES natural evolution optimizer from BlackBoxOptim.jl via the Optimization.jl meta-package (36,
37). All optimization related parameters were left at their default values except the maximum number of
iterations, which was increased to 5000. As XNES is a stochastic optimizer, we generally applied it several
times and selected the estimated parameter set across all runs having the minimal loss as the consensus
estimate. For more details, see the section on “Data analysis for high-throughput bivalent SPR”.

As described in the previous section, the surrogate was constructed for a fixed concentration of antigen.
To avoid producing a new surrogate for each experiment, we conjectured that once our particle model system
was of sufficient size (i.e. sufficiently large number of antigens for a fixed antigen concentration), the antigen
concentration effectively set the average number of antigens that were within reach. In this way, we could fit
SPR data generated with any antigen concentration using a single surrogate (produced with a single antigen
concentration) but would need to transform the fitted reach based on the experimental antigen concentration.
In other words, the biophysical reach (¢pnys) can be calculated from the fitted reach (g4, = 64) by enforcing
that the average number of antigens within reach in the surrogate model and in the SPR experiment are the
same,

4 4
g 7T‘Sgur [Agsur] = gﬂ-gghys [Ag] :

We empirically confirmed that the model produced the same predicted SPR traces at different antigen densi-
ties ([Ag]=1, 10, and 100 M) provided that the physical molecular reach (epnys) was decreased according to
the above equation (Fig. S1). Therefore, the relationship between the fitted parameters € and the biophysical
parameters are as follows,

o — 20" Fon Kot = 1072, konp = 10%
on — [Ab(l)] - [Ab(l)]’ off — 9 on,b - Y

A 1/3
=0 ()=

(3]

These represent the final biophysical parameter estimates reported in this work.
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a3 Particle-model antibody binding potency predictions

a6+ To predict the concentration of antibody required to bind 50% of antigen (antibody binding potency), the
se5 particle model is simulated using the previously mentioned Next Reaction Method-based approach. The
s66 only modification to the model is that we used a 2D square with sides of length L to represent the 2D viral
a7 surface. As before, antigens are assumed to be uniformly (randomly) distributed in a 2D region with Nag
aes  set to 1000 and L chosen to enforce a specified antigen density.

469 For each antibody, the model was simulated with its fitted binding parameters (kon, Koff, Konb, and the
a7o  molecular reach ¢) for different antigen and antibody concentrations to a time of 60 minutes. For each
471 antibody concentration we averaged 20 independent simulations to estimate the average number of unbound
472 antigens at 60 minutes. The resulting dose-response curves for the fraction of unbound antigen (Ag,,pound)
a3 versus antibody concentration ([Ab]) were fit with an inhibitory Hill model (n < 0) to determine ICsp,

1

Agunbound - . [4]
I
14 ( C'50>

[Ab]

474 Particle-model software

a5 Codes for particle model forward simulation, surrogate construction, and fitting are available in our MIT-
476 licensed Julia library (38).

477 Worm-like-chain (WLC) model to estimate size of PEG-coupled antigen

azs The worm-like-chain (WLC) is a widely used polymer model that has previously been applied to PEG
a7e  polymers (39). The model provides an estimate for the mean end-to-end distance of the polymer as follows:
w0 2,/Npgaglcl, where Npgg is the number of PEG repeats, [ is the contour length of each repeat (0.4 nm),
a8t and [, is the persistence length of PEG (0.4 nm (39)). The WLC model predicts a mean length of 0.69 nm
a2 for PEG3 and 2.1 nm for PEG28 or a difference in length of 1.41 nm. The predicted increase in molecular
sss  reach when an antibody binds PEG28 instead of PEG3 would then be twice this difference to account for
s+ the two bound antigens involved in antibody binding (2.82 nm, Fig 2C).

sss  Molecular dynamics

ass  Construction of full-length all-atom antibody/RBD complex structures. The PDB structure (1HZH) of
as7  a full-length IgG1 antibody was rebuilt and minimized in CHARMM35 (40) based on SEQRES records to
sss  serve as a template for rebuilding of full-length antibodies specific for RBD. The crystal structures of the
ass  Fab/RBD complexes used are listed in Table S1. Each RBD structure was rebuilt to contain all residues
as0 of the N-terminal AviTag and signal sequence (24 residues total after cleavage) used in SPR experiments
a91  fused to RBD residues 331-526 (196 residues) resulting in a final construct of 220 residues in all cases.
a2 Any missing residues in the light or heavy chains of the Fabs were also rebuilt and all rebuilt sections of
a3 Fabs and RBD minimized in CHARMM35. Two copies of each Fab/RBD complex were then aligned to
s« the 1HZH all-atom model in Chimera v1.16 (41) using the MatchMaker tool based on the heavy and light
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ass chain only, with the relative orientations of the RBD and Fab structures maintained. Heavy chains from
496 these aligned structures were then merged with those of 1HZH based on MUSCLE (42) alignments of their
a7 sequences and inspection of the aligned structures. The three residues on either side of the new bond were
48 minimized in CHARMM35 with all other atomic positions held fixed. The final structure after 1,000 steps
a9 of unconstrained minimization in vacuo in Amber FF14SB (43) with OpenMM v7.5 (44) was accepted as
soo the final all-atom structure. We note that 1HZH contains one disulfide bond between the two heavy chains
sot in the hinge region rather than the usual two. We chose not rebuild the second disulfide bond so as not to
sz distort the overall structure and because the disulfide that limits the extension of the hinge is in place. The
so3  lengths of all chains within each antibody in the rebuilt full-length models are listed in Table S2.

Construction of topology-based coarse-grain models. Coarse-grain models were parameterized fol-
lowing a previously published protocol that represents each amino acid as a single interaction site centered
at the C,, coordinates of each atom. The potential energy of a conformation within this model is given by

E:Zkb( —179) —I—ZZ/C% (1 + cos [jp; — 045 —I—Z—fln{exp[ (k;a (ei_ea)2+€a)]
2 quje Tij NC Oij 2 Oij 10
i rTij

ije{NC} "
+4 J) + N 113 <J> — 18 <J> +4 <J> . [5]
<7“z‘j Z Y Tij Tig Tij
504 These forcefield terms, which represent contributions from bonds, dihedrals, angles, electrostatics, na-

ij¢{NC}
s05 tive contacts, and non-native contacts, have been described in detail previously (45). The strength of native
so6 contacts within this coarse-grain model is determined by the Lennard-Jones-like well depths for the native
so7 contact term. The well depth, eN . is computed as ejg ¢ = = Mij€HB + Neij, in which 7;; is the number
sos8  of hydrogen bonds between res1dues i and j, egp = 0.75 kcal/mol, ¢;; is the well-depth taken from the
so9  Betancourt-Thirumalai (46) pairwise potential for a contact between residues of types ¢ and j, and 7 is a
s10  scaling factor that increases the effective well depths. Increasing the value of 7 linearly increases the stabil-
s11 ity of all native contacts to which it is applied. Values of 7 were selected individually for each domain and
sz interface within the antibody-RBD complexes. We note that disulphide bonds are treated as harmonic bonds

sia with &, = 20 keal/(molx A2) rather than as native contacts.

514 Selection of 7 values for antibody domains and interfaces. All coarse-grain simulations were per-
st5  formed in OpenMM V7.5 using the LangevinMiddlelntegrator (47) with an integration time step of 15 fs, a
s16  friction coefficient of 0.050 ps~!, and an absolute temperature of 298 K. Values of 7 were selected based
517 on a previously published training set (48). To limit the number of domains and interfaces that required
s18  simultaneous parameter tuning, we used the same set of 7 values for all domains and interfaces within each
s19  antibody and for each RBD monomer (Table S3). The intra-domain values of 77 were taken in each case as
s20 the largest value from a training set (see (49) Table S5 ). Likewise, the largest training set value for interfaces
st was used for the HC1—LC1, HC2—LC2, and HC1:HC?2 interfaces. The HC1—LC2 interface, which likely
s22  represents a crystal packing interface, was assigned the training set average value of 1.507. Simulations of
523 FD-11A in isolation were performed using the values of n in Table S3 but with the RBD representations
524 deleted.

525 Coarse-grain steered molecular dynamics simulations of antibody molecular reach. Initial struc-
s26 tures for steered molecular dynamics were generated by aligning the coarse-grained RBD-antibody-RBD
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sz complexes such that one RBD Lys15 (i.e., the residue that is biotinylated and bound to streptavidin in the
528 experiment) was at the coordinate system origin and the other on the positive x-axis. A spherical harmonic
s29  restraint with force constant 50 kcal/(mol x A?) was applied to the Lys15 at the origin to hold it in place dur-
sso  ing pulling. A second spherical harmonic restraint with force constant 1 kcal/(mol x A?) was applied to the
sat  second Lys15 residues to serve as the trap for steered molecular dynamics. Flat-bottom Root Mean Square
ss2  Deviation (RMSD) restraints with force constant krmsp = 50 keal/(molx A2) and RMSD threshold of 5
s33 A were applied to residues in Fabl, Fab2, the Fc, as well as the globular portions of each RBD monomer
s34 to prevent overall unfolding while allowing structural fluctuations. Only the RBD linkers, antibody hinge,
sss  and epitope—paratope interfaces were left unrestrained. Each trajectory was then equilibrated for 1.5 ns to
ss6  allow the coordinates to randomize. After equilibration, the harmonic restraint on the second Lys15 residue
ss7  was pulled with a constant velocity of 1 nm/ns along the positive x-axis to a total displacement of +30
ss8 nm from its original position over the course of 30 ns. A total of 50 statistically independent trajectories
sss  were run for each of the six antibodies and each of seven different epitope—paratope interface 7 values,
s40 1 = 1.000,1.250,1.500, 1.750, 2.000, 2.250, 2.500 for a total of 2,100 statistically independent trajectories
541 (total simulation time 66 us). The molecular reach was computed from each trajectory as longest distance
s«2 at which both epitope—paratope interfaces have a non-zero fraction of native contacts, Q. Larger values
s43  of 1) sometimes result in unfolding of RBD or IgG domains during pulling due to the increased interaction
s44  strength at the epitope—paratope interfaces. We therefore applied a filter to discard trajectories that ever
55 have a Fab or RBD RMSD > 10 A. Varying this threshold value to 8 or 15 A was not found to strongly
s46  influence results. The mean maximum Lys15-Lys15 distance was then computed by averaging the value of
s47 those trajectories that remain reasonably well folded. The molecular reach estimate from the simulations
s48  was taken to be the maximum mean value across all 7 values.

ss9 SARS-CoV-2 neutralisation

sso  Neutralisation ICsq for the FD-11A antibody was measured with a microneutralization assay as previously
ss1  described (50). Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-
ss2. CoV-2 variants of concern. FD-11A was preincubated with SARS-CoV-2 for 60 min at room temperature
ss3 before being added to Vero CCL-81 cells. Level of infection was measured by counting the number of
ss4  infectious foci.

555 For anti-RBD antibodies used in the high-throughput SPR experiment, neutralisation ICsy was measured
ss6  using a Focus Reduction Neutralization Test as described in (5). Briefly, serially diluted antibody was
ss7  incubated with SARS- CoV-2 for 1 hr at 37°C, afterwards transfered to Vero cell monolayers. The level of
ss8  infection was measured using a focus forming assay.

sse  Data analysis for high-throughput bivalent SPR

seo In this section we explain the detailed workflow for analysis of the high-throughput bivalent SPR experi-
set ments (Fig. 4).

562 After double referencing the SPR curves for each antibody concentration, we aligned them to the start
ses  of the dissociation phase (setting it to £, = 150s) to improve curve alignment. To eliminate artefacts arising
se« from the start and end of the association phase (generally large spikes in RU arising from needle motion),
ses the first 5 seconds of the association phase, the last 4 seconds of the association phase, and the first 5
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se6  seconds of the dissociation phase were excluded from the data. We also excluded all SPR curves where the
567 maximum response across the entire injection was smaller than 6 RU because this minimal binding is within
ses  the systematic error for SPR experiments (typically 1 RU per 100 seconds of injection or 6 RU for our 600
se9 second experiments). Finally, to produce more manageable file sizes we reduced the temporal resolution
s70 from 10 Hz to 1 Hz and this did not impact our results because the kinetics of the SPR traces were much
s71 - slower than 1 Hz.

572 We then fitted the processed data for each antibody using the bivalent Particle-based model (see Particle-
s73 model data fitting section). The antigen and antibody concentrations for each SPR curve were provided
574 as input parameters for the fitting process. The surrogate model used in fitting contained the following
s75  parameter ranges: 1og;o(kon) € [—5.0,2.0] with M; = 42, log o (ko) € [—4.0,0.0] with My = 40,
576 10g10(konp) € [—3.0,1.5] with M3 = 30, and € € [2, 35] with M4 = 30. During fitting of the surrogate to
s77 SPR data, a box constraint that log,(C}) € [1.0, 4.0] was used. The fitting process was repeated 100 times,
578 and the parameters yielding the lowest fitness was recorded. The estimated bivalent model parameters from
579 the fitting process were converted into the corresponding biophysical parameters according to Eq. [3] using
sso the experimental antigen concentration. The bivalent SPR data was also fit with the ODE-based monovalent
ss1 - model (see ODE-based monovalent model section).

582 Finally, a quality control procedure was introduced to ensure the accuracy of the bivalent binding pa-
sss  rameters. First, we checked that the antigen surface could be regenerated after each antibody injection (7 out
s« of 80 antibodies could not be removed). Second, we only included data where the particle-model produces
sss  a close fit to the data (12 out of 80 antibodies could not be fit). Third, we only included data where the
sss  particle-model produced a fit that was better than the ODE-based monovalent model. We reasoned that SPR
ss7 data that could accurately be fit by the ODE-based monovalent model did not contain information that could
sss accurately determine bivalent binding (bivalent binding parameters of 16 out of 80 antibodies could not be
sss  determined).

590 Bivalent SPR data that passed all quality control measures for each antibody were averaged across SPR
se1  experiments. We report the geometric mean for parameters that varied on a logarithmic range in the model
522 (kon, kofrs Kb, Konb) and the mean for the molecular reach that varied on a linear range in the model.

ses  Statistical analysis

Multiple linear regression We fit a one way multiple linear model in Prism (v 9.5.1) with the following
formula:

Yy = Bo + iz + ... + Buzn

se4  where y is the predicted neutralisation ICs for each antibody, 3y is the y-intercept to fit, (1, . . . , x,,) are the
ses  values for log g (Kon), 10g1o(Koft), 10g19(KD), 10g1o(konb ), €, and the blocking epitope distance respectively,
see and (f1,...,[y) are the corresponding regression coefficients for each variable. Models contain either all
se7 variables, or a subset. A Least Squares regression type was used and models were compared using an
see Extra-Sum-of-Squares F test.
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Figure S1: Workflow for fitting the particle-model to bivalent SPR data. (A) A schematic of the particle-
model chemical reactions (left) used to perform simulations of the association and dissociation phase of
antibody binding in bivalent SPR (middle, red traces), which are averaged to produce the predicted SPR
trace for a given parameter set (middle, black traces). These averaged SPR traces are pre-tabulated for
different parameter values (kon, Koff, Konb, reach - €) using a computing cluster to produce a surrogate for
the particle-model that is used in data fitting (right). (B) The average number of antigens within reach of
an individual antigen depends on the molecular reach and the antigen density. (C) The relationship between
antigen density and molecular reach when the average number of antigens within reach is 0.02 (equation
plotted is from panel b). (D) The spatial distribution of antigen (top) and the corresponding predicted
bivalent SPR traces (bottom) for different antigen concentrations and molecular reach calculated using the
relationship in panel B. The SPR traces are effectively identical as shown by the small residuals (difference
between the indicated SPR curves) confirming that antibody binding depends on the average number of
antigens within reach, which can be achieved by a short reach at high antigen density or a long reach at
low antigen density. Simulations are performed using an antibody concentration of 1 nM with ko, = 0.05 p

M5, ko = 0.0257 L, and kopp = 1.07L.
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Figure S2: The fitted binding parameters for the IgG FD-11A antibody binding RBD determined by fitting
the particle-model to bivalent SPR data are independent of the RBD antigen density. The indicated parameter
is plotted over the RBD antigen density (N = 42). The coefficient of determination (R?) and the p-value for the

null hypothesis that the fitted line and a horizontal line (i.e. no relationship between the binding parameter and RBD
density) produce an equal fit to the data.
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Figure S3: Representative monovalent and bivalent SPR for the indicated IgG1 antibodies binding RBD. (A)
Representative monovalent SPR traces produced by injecting RBD (2000 nM with 2-fold dilutions) over surfaces
immobilised with the indicated antibody. (B) Representative bivalent SPR traces produced by injecting the indicated
antibodies over surfaces immobilised with RBD. Antibodies were injected using a 2-fold dilution series, with a top

concentration of 300 nM, 5 nM, 5 nM, 5 nM, 5 nM for FD-5D, FI-3A, CR3022, EY-6A and REGN 10987 respectively.
RBD was immobilised at 7 - 15 M.
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Figure S4: The particle-model accurately analyses bivalent SPR generated using the CD19 antigen re-
producing the monovalent binding parameters. Data is generated using purified Spytag-CD19 (antigen)
and an anti-CD19 antibody (SJ25C1). (A) Monovalent SPR (top) is produced by injecting Spytag-CD19
over a surface immobilised with SJ25C1 and bivalent SPR (bottom) is produced by injecting SJ25C1 over
a surface immobilised with Spytag-CD19 (through coupling to amine-coupled Spycatcher). The SPR traces
are generated by 2-fold dilution of CD19 starting at 175 nM (top) or by a 2-fold dilution of SJ25C1 starting
at 33 nM (bottom). Representative SPR traces (black) and model fit (red) are shown for 1 out of 2 rep-

resentative experiments. (B) The indicated parameter produced by monovalent or bivalent SPR. (C) The
indicated parameter produced by bivalent SPR.
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Figure S5: The fitted binding parameters of an anti-phosphotorysine antibody (PY20) interacting with a small
phosphorylated peptide antigen coupled to PEG3 or PEG28 linker. The indicated parameter from N=9 or N=5
independent experiments for PEG3 and PEG28 coupled phosphorylated peptide antigen, respectively. A t-test with a
Holm-Sidak correction for multiple comparison was used to determine p-values.
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Figure S6: The fitted binding parameters for an anti-phosphotorysine antibody (PY20) interacting with differ-
ent densities of a small phosphorylated peptide antigen coupled to PEG3. (A) Representative SPR traces (black)
and particle-based model fits (red) for the PY20 antibody injected over surfaces with the indicated concentration of
PEG3 coupled to a small phosphorylated peptide antigen. The antibody was injected at 8 different concentrations
using a 2-fold dilution from a top concentration of 25 nM. (B) The fitted binding parameters plotted over the density
of the small phosphorylated peptide antigen coupled to the SPR chip surface.
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Figure S7: The mean distance between the antigen-binding domains of the IgG1 FD-11A antibody is 13 nm.
The FD-11A Fab structure is used to generate a coarse-grain model of the complete IgG1 FD-11A antibody (see
methods) and is used in coarse-grained MD simulations. (A) Ensemble average time series (dark purple) computed
over five independent 1-us trajectories of the distance between the centres-of-mass of the coarse-grain interaction sites
that form the paratopes on each Fab binding arm (i.e. the distance between the antigen binding domains). The light
purple shaded region indicates the standard error over the five trajectories at each simulation frame. The dotted black
line indicates the distance between the antigen-binding sites in the structure. (B) Histogram of the inter-paratope or
inter-antigen binding domain distances over each of the five independent trajectories. (C) Block averaging analysis
of the merged trajectory indicates a block size of 1,000 frames is suitable. The mean inter-paratope distance is 13.05
+ 0.05 nm (error bar is estimated as the block standard error with a block size of 1000 frames). Block averaging
was performed on a merged trajectory consisting of the final 975 ns of the five independent runs. (D) Coarse-grain
structures of the reference structure (left), minimum reach structure from simulations (middle), and maximum reach
structure from simulations (right). The two heavy chains are colored dark and light blue, the two light chains are
colored red and pink, and the interactions sites constituting the paratopes are colored yellow. The dotted black line in
the leftmost structure indicates the distance between the centers-of-mass of the paratopes in the reference state (14.94
nm).
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Figure S8: Estimating the molecular reach of RBD-specific antibodies using coarse-grained molecular dynamic
simulations. (A) A representative coarse-grained MD simulation trajectory for the indiciated antibody (columns)
showing the calculated force along the pulling direction (F},), the fraction of native contacts for each antigen interface
(Q, interface 1 in pink and 2 in mauve), the RMSD as a function of time during the simulation for Fabs 1 and 2 (blue
and green, respectively), and the RMSD of RBD 1 and 2 (yellow and orange, respectively). (B) The structure from
the trajectories in panel A that produced the maximum distance between the Lys15 residues on RBD (shown below
the structure) whilst the antibody was bound bivalently. This structure was achieved at the time point indicated by
the vertical magenta lines in panel A. (C) The maximum Lys15-Lys15 distance over the interface binding strength
(n) calculated over the set of trajectories where unfolding does not take place during the MD simulations. Error bars
are 95% confidence intervals computed from bootstrapping with 10° independent samples. Missing data points for
CR3022 and FI3A indicate that all trajectories were unfolded. The molecular reach is defined as the maximum Lys15-
Lys15 distance over all 7 and indicated by the dashed horizontal line.
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Figure S9: Quality controls for high throughput analysis of 80 RBD antibodies using bivalent SPR. (A-B) Sur-
face stability of RBD was assessed by injecting FD-11A at the beginning and end of each experiment. Representative
SPR traces of the first and last injection of FD-11A (A) and fraction of FD-11A binding at end of the experiment (B).
The fraction is calculated as the RU at 150 s after injection of highest concentration in the first divided by the last
injection. (C) A summary of the antibodies that passed or failed quality control and hence included or excluded from
the analysis, respectively. (D-G) Examples of antibodies representing the four possible quality control outcomes. (D)
The antibody 170 was included because the particle-model produced a good fit and the monovalent model produced
a poor fit. (E) The antibody 170 displays complete regeneration (included) whereas antibody 280 shows only partial
regeneration (excluded). Partial regeneration can be observed by residual RU after the injection of 3 M MgCl, for 90
s at the end of each SPR cycle (see arrow). (F) The antibody 264 was excluded because the particle-model produced a
poor fit. (G) The antibody 150 was excluded because the particle-based model (left) and the ODE-based monovalent
model (right) produced an equally good fit.
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Figure S10: The previously introduced epitope taxonomy for RBD-binding antibodies does not stratify the
molecular reach. (A) The previously introduced epitope taxonomy for RBD antibodies based on five regions. Figure

adapted from (5). (B-D) Antibody neutralisation IC5( (B), epitope blocking distance (C), and molecular reach of each
antibody (D) organised by their taxonomic class.
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Huhn et al

Figure S11: The predicted antibody binding potency produces absolute agreement with the experimental neu-
tralisation potency at intermediate antigen densities. The particle-based model was used to predict the concentra-
tion of antibody required to bind 50% of antigen (Predicted ICs¢) to surfaces randomly distributed with the indicated
density of antigen for (A-I) all antibodies or (K-S) the subset of antibodies that bound within 2.37 nm of the blocking
epitope. A linear fit to the log-transformed IC5( values (solid line) is compared to a line of absolute agreement (dashed
black line - slope 1, y-intercept 0) using an F-test for the null hypothesis that the two lines have the same slope and
intercept. A Bonferroni multiple-comparison correction is applied by multiplying each p-value by 11 (number of anti-
gen densities test). (J,T) Display the slope (top) and intercept (bottom) of the fitted line for the 11 different antigen
densities tested.
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Table S1: All-atom model building details

Antibody FAB structure source  Chains used (heavy, light, RBD)

FD-11A PQZ A,B,E
FD-5D 7PRO H,L,E
REGN10987 6XDG C,AE
CR3022 6W41 H,L,C
EY6A 6ZDH H L A
FI3A 7PQY H,L,E
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Table S2: RBD-antibody-RBD chain lengths

Antibody Chain  Residues

HC1 1-459
LC1 1-221

HC2 1-459

FD-5D LC2 1-221
RBDI  1-220

RBD2  1-220

HC1 1-457

LC1 1-218

HC2 1-457

FD-T1A LC2 1-218
RBD1  1-220

RBD2  1-220

HC1 1-450

LC1 1-216

HC2 1-450

REGN10987 LCo 1216
RBDI  1-220

RBD2  1-220

HC1 1-449

LC1 1-221

HC2 1-449

CR3022 LC2 1-221
RBD1  1-220

RBD2  1-220

HC1 1-451

LC1 1-215

HC2 1-451

EY6A LC2 1-215
RBD1  1-220

RBD2  1-220

HC1 1-447

LC1 1-214

HC2 1-447

FI3A LC2 1-214
RBD1  1-220

RBD2  1-220
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Table S3: n values for all antibody and RBD domains and interfaces except the epitope—paratope interfaces.
*HC1 and LC2 share a small interface in the 1HZH crystal structure

Identity Structural Class i
HC1 I} 2.480
LCl1 I} 2.480
HC2 I} 2.480
LC2 I} 2.480
RBD 1 alB 1.916
RBD 2 alf 1.916
HC1—LCl1 interface - 2.124
HC2—LC?2 interface - 2.124
HC1—HC?2 interface - 2.124
HC1—LC2 interface* - 1.507
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