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Abstract:

Key functions of antibodies, such as viral neutralisation, depend on bivalent binding but the factors
that influence it remain poorly characterised. Here, we develop and employ a new bivalent model to
mechanistically analyse binding between >45 patient-isolated IgG1 antibodies interacting with SARS-
CoV-2 RBD surfaces. Our method reproduces the monovalent on/off-rates and enables measurements
of the bivalent on-rate and the molecular reach: the maximum antigen separation that supports bivalent
binding. We find large variations in these parameters across antibodies, including variations in reach
(22-46 nm) that exceed the physical antibody size (∼15 nm) due to the antigen size. The bivalent
model integrates all parameters, including reach and antigen density, to predict an emergent binding
potency for each antibody that matches their neutralisation potency. Indeed, antibodies with similar
monovalent affinities to the same RBD-epitope but with different reaches display differences in emergent
bivalent binding that match differences in their neutralisation potency. Together, our work highlights that
antibodies within an isotype class binding the same antigen can display differences in molecular reach
that can substantially modulate their emergent binding and functional properties.

Lay Summary:

Antibodies are soluble proteins that can neutralise pathogens by sticking to them. They contain two
identical ‘arms’ that allow them to simultaneously bind two identical ‘antigen’ molecules on pathogen
surfaces. Although we know that bivalent binding is important for neutralisation, we don’t know how
different antibodies achieve it. We developed a new model to analyse the mechanism of bivalent binding
and used it to study over 45 antibodies from COVID-19 patients that bind the RBD antigen of SARS-
CoV-2. Unexpectedly, we found that the molecular reach of an antibody, which is the maximum antigen
separation that supports bivalent binding, varied widely between antibodies and exceeded their physical
size. We show how antibody binding emerges from the interplay of multiple factors, including reach,
and that this emergent binding predicts their neutralisation function. The ability to analyse and predict
bivalent binding should improve our understanding and exploitation of antibodies.

Graphical abstract:
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Introduction1

Antibodies are multivalent molecules that contribute to immune responses by binding their antigens on2

the surfaces of pathogens. IgG antibodies have two identical antigen binding fragments (Fabs) fused to a3

constant fragment (Fc). These Fabs enable antibodies to achieve high-affinity bivalent binding by simulta-4

neously engaging two antigens. This is important because the monovalent Fab/antigen interaction is often5

too weak to be effective and indeed, bivalent binding can dramatically increase the ability of antibodies to6

neutralise pathogens (1–5). Although bivalent binding is important, we presently lack an understanding of7

the factors that influence it.8

The ability of antibodies to bind an antigen surface is an emergent property that depends on several9

factors. First, the monovalent on/off-rates determine initial antibody/antigen complex formation. Next, the10

antibody/antigen complex can bind a second antigen when it is within the molecular reach, which is the11

maximum antigen separation that supports bivalent binding. The rate of this second reaction is heavily12

influenced by the antigen density (6–8). When an antibody unbinds from one antigen, it can rebind the same13

or different antigen provided it is within reach and the epitope is not bound by another antibody. Although14

methods to analyse multivalent antibody/antigen interactions are available when both are in solution (9), we15

lack methods to analyse emergent binding with anchored antigen.16

Existing methods to study antibody/antigen interactions have focused on isolating individual factors that17

contribute to emergent binding. To determine monovalent kinetics, soluble monovalent antigen is injected18

over immobilised antibodies in surface plasmon resonance (SPR). A simple ordinary differential equation19

(ODE)-based binding model is fit to the monovalent SPR binding traces to determine the binding kinet-20

ics (kon, koff) and dissociation constant (KD) (10). While more physiological experiments can readily be21

performed by injecting antibodies over randomly-coupled surface antigens (‘Bivalent SPR’), we lack meth-22

ods to analyse the complex emergent binding that results. To reduce complexity and isolate the effect of23

reach, precisely spaced model antigens have been used (11, 12). By measuring an apparent KD for different24

spacing, it has been estimated that antibodies can only bind antigen when spaced within ∼16 nm, which is25

consistent with atomic force microscopy and structural studies (13). However, we currently lack the ability26

to easily estimate the molecular reach for antibodies interacting with physiological antigens. By removing27

the dependency on antigen density, current methods that isolate individual factors limit our ability to predict28

the emergent functional impact of antibodies in vivo, such as their ability to bind viral surface antigens at29

defined densities.30

Here, we develop a method to mechanistically analyse complicated bivalent SPR binding traces gen-31

erated by soluble antibodies binding surface antigen. The method fits bivalent SPR data yielding accurate32

estimates of the monovalent binding parameters (kon, koff) and two additional biophysical parameters: the33

bivalent on-rate (kon,b) and the molecular reach. Using this method, we study the factors that determine34

emergent bivalent binding of patient-isolated antibodies specific for the receptor-binding-domain (RBD) of35

SARS-CoV-2.36

Results37

A particle-based model accurately fits bivalent SPR data highlighting the impact of molecu-38

lar reach on antibody binding39

We first used SPR to study the monovalent interaction between the IgG1 FD-11A antibody and RBD (14)40

(Fig. 1A, left). This standard method proceeds by injection of different concentrations of monovalent RBD41
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over a surface immobilised with FD-11A. A monovalent ODE-based model is simultaneously fit to the entire42

monovalent SPR data set, providing estimates of the kon, koff, and KD (Fig. 1B-left,C). We next reversed the43

orientation to study the bivalent interaction by injecting FD-11A at different concentrations over an RBD44

surface (Fig. 1A, Bivalent SPR). Standard SPR fitting software includes an ODE-based bivalent model that45

can seemingly fit bivalent SPR data (Fig. 1B, middle). This model adds a second bivalent binding step with a46

bivalent on-rate (kon,b) and the same koff. While the fit was not unreasonable, this model provided inaccurate47

values for koff and KD, which is likely the reason it is seldom used (Fig. 1C).48

A key assumption of the ODE-based bivalent model is that the molecules involved are ‘well-mixed’.49

While this assumption is reasonable for the first step, it becomes unreasonable for the second step because,50

once the antibody is bound to a surface immobilised antigen, the monovalent antibody/antigen complex can51

only bind a second antigen within reach whereas the well-mixed condition of the model assumes it can bind52

any free antigen on the surface. Moreover, the number of free antigens within reach is expected to be low53

and to decrease over time as more antibody binds. As a result, deterministic ODE models also fail to capture54

the local stochasticity of bivalent binding.55

To address these limitations, we developed a more realistic stochastic and spatially resolved particle-56

based model of bivalent antibodies interacting with a random distribution of antigens (’particles’) using the57

Gillespie method (15, 16) (Fig. 1A, right). In this model, once antibodies bind to a surface antigen with58

the usual monovalent kinetics, the antibody/antigen complex can only bind a second antigen if it is within59

reach (with rate kon,b per antigen within reach). If multiple antigens are within reach, when an antibody60

unbinds one antigen it can re-bind another enabling antibodies to migrate on the surface. We used the model61

to simulate bivalent SPR traces to surfaces with the same (random) distribution of antigen but with three62

different reach distances (Fig. 1D). With a very short reach, antibodies could not bind a second antigen,63

resulting in monovalent binding with fast dissociation whereas increasing the reach allowed a larger fraction64

of antibodies to engage in bivalent binding, leading to much slower dissociation. This highlights the crucial65

role of molecular reach in determining antibody binding stability.66

We developed a workflow to rapidly fit the particle-based model directly to bivalent SPR data (Fig. S1).67

This produced an excellent fit (Fig. 1B - right) and, unlike the ODE-based bivalent model, yielded kon, koff68

and KD values in agreement with those obtained by monovalent SPR (Fig. 1C). Importantly, the model fit69

provided estimates of the bivalent on-rate and reach (Fig. 1E). We found the same binding parameters when70

analysing bivalent SPR with different levels of RBD on the chip surface, which confirms that the particle-71

model is correctly capturing how the antigen density impacts bivalent antibody binding (Fig. S2).72

To further validate the model, we performed monovalent and bivalent SPR on four additional RBD73

antibodies (Fig. S3). We confirmed that the particle-model correctly estimated the values of kon, koff, and74

KD across the 100-fold variation in affinity within these antibodies (Fig. 1F). As before, the particle model75

also provided estimates of the bivalent on-rate and the reach (Fig. 1G).76

Finally, we repeated the analysis with an antibody that recognises a different antigen, namely CD1977

(Fig. S4A). Once again we found agreement between the ODE-based model analysing standard monovalent78

SPR and the particle-based model analysing bivalent SPR (Fig. S4B).79

In conclusion, a particle-based model accurately fits bivalent SPR data and allows measurement of80

binding parameters crucial for understanding bivalent antibody binding.81
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Figure 1: A particle-based model for emergent bivalent binding quantifies the impact of molecular reach and
accurately analyses bivalent SPR traces. (A) Schematic of the chemical reactions in models describing monovalent
and bivalent SPR. The ODE-based and particle-based bivalent models assume that any free antigen on the surface or
only free antigen within reach, respectively, can be bound by an antibody already bound to the surface with one arm
(grey shaded regions). (B) Representative monovalent (left) or bivalent (middle, right) SPR traces using the antibody
FD-11A interacting with RBD of SARs-CoV-2. The family of SPR traces are generated by 2-fold dilution of RBD
starting at 2000 nM (left) or by a 2-fold dilution of FD-11A starting at 300 nM (middle, right - same data but different
model fit). (C) The fitted binding parameters for monovalent (N = 4) and bivalent (N = 6) SPR experiments. (D)
Simulated SPR traces (bottom) for antibodies injected over a surface with a random distribution of antigen (top) but
with different values of reach. Antigens (circles) are coloured red if they are within reach of another antigen and blue
otherwise. Parameter values: kon = 0.05µM−1s−1, koff = 0.05s−1, kon,b = 1.0s−1, and [RBD] = 0.0025 nm−2. (E) The
fitted bivalent binding parameters from the N = 6 bivalent SPR experiments. (F,G) Comparison of five antibodies
analysed using monovalent and bivalent SPR from N ≥ 3 independent experiments. (F) Comparison of the indicated
parameter using both methods with the dashed line displaying perfect agreement (y=x). (G) The bivalent binding
parameters. An F-test was used to determine a p-value for the null hypothesis that the dashed line and the fitted line
to log-transformed binding parameters were equal (F) and a t-test with Dunnett’s multiple comparison correction on
log-transformed values was used to determine p-values (C). Abbreviations: ns = p> 0.05, * = p≤0.05, ** = p≤0.01,
*** = p≤0.001, **** = p≤0.0001.
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The molecular reach is determined by both the antibody and the antigen82

The molecular reach distances that our analysis produced for the five RBD antibodies (∼38 nm, Fig. 1G)83

and the CD19 antibody (53 nm, Fig. S4C) were notably larger than previous studies reporting that IgG184

antibodies can only bind bivalently when antigens were within ∼16 nm (11–13). They were also larger than85

estimates of the distance between the antigen-binding sites based on structural studies of whole antibod-86

ies (∼15 nm) (1). Furthermore, molecular dynamic (MD) simulations of the FD-11A antibody produced87

reaches of 3.46 to 17.58 nm with a mean of 13.05 nm (Fig. S7).88

One possible explanation for these discrepancies is antigen size. Previous studies of molecular reach had89

used small model antigens (e.g. 4-hydroxy-3-iodo-5-nitrophenylacetate (NIP, 320 Da) (11), digoxin (78090

Da) (13), 6x His-Tag (1100 Da) (12)) while we used much larger protein antigens (e.g. RBD is 51,100 Da).91

To test this hypothesis, we injected an anti-phosphotyrosine antibody over a small phosphorylated peptide92

antigen coupled to polyethylene glycol (PEG) linkers comprised of 3 or 28 PEG repeats with a size of 223493

Da and 3336 Da, respectively (Fig. 2A,B, Fig. S5). Consistent with previous measurements using small94

antigens, our analysis produced a reach of 10.3 nm using the PEG3 linker and 13.4 nm using the PEG2895

linker (Fig. 2B). Similar results were obtained at different PEG3 concentrations (Fig. S6). Using a polymer96

model, we were able to calculate the theoretical increase in molecular reach between PEG3 and PEG28 (see97

Methods), which agreed well with the experimentally measured increase (Fig. 2C).98
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rylated peptide linked to either 3 or 28 repeats of PEG. The antibody was injected at 8 concentrations (25 nM with
2-fold dilutions). (B) The fitted molecular reach (N = 9 for PEG3, N = 5 for PEG28; see Fig S5 for other fitted
parameters). (C) Comparison of the difference in reach between PEG3 and PEG28 estimated by the worm-like-chain
polymer model (see Methods) and by experiments from panel B.

To determine if a ∼38 nm reach was plausible for RBD binding antibodies, we used coarse-grained99

steered MD simulations. A coarse-grained representation of the FD-11A antibody bound to RBD was100

constructed, modified to include the Lys15 biotinylation site used to anchor RBD to the SPR chip surface101

(Fig. 3A). One Lys15 position was held fixed while the other was pulled away at constant velocity. We102

computed the fraction of native contacts at both paratope/epitope interfaces (Fig. 3B) and the exerted pulling103

force (Fig. 3C). Unbinding events were identified based on a decrease in the fraction of native contacts and104

this could be confirmed by visual inspection (Fig. 3D). At these events, the maximum distance between105

Lys15 on the two RBDs before the antibody unbound were recorded. This steered MD procedure allowed106

us to much more rapidly access extended conformations where FD-11A remained bound to both RBDs107

at large separation distances. In contrast, unrestrained simulations initialised at these separation distances108

would rarely access these extended conformations, which we expect are readily accessed in experiments that109

take place on the timescale of minutes.110
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We ran sets of simulations using different paratope/epitope interface strengths and as expected, increas-111

ing the strength allowed the simulation to explore bivalent binding conformations with a larger maximum112

RBD distance (Fig. 3E). Defining the molecular reach as the maximum distance achieved over different in-113

terface strengths, we obtained a value of 34.4 nm for FD-11A, which agrees well with the 34.9 nm reach114

estimated by bivalent SPR (Fig. 1E). We next repeated this procedure for the other antibodies we already115

characterised and an additional therapeutic antibody (REGN10987, Fig. S8) finding agreement with the116

SPR-determined reach (Fig. 3F).117

Together, these findings demonstrate that our particle-based model provides accurate estimates of the118

molecular reach from bivalent binding data and that reach is the maximum separation distance between119

antigen anchoring points that support bivalent binding, which underlines the importance of antigen size.120

a

e f

RBD

FD11A

RBD

1 nm/ns
Fixed 
Lys15

0 5 10 15 20 25 30 35
-250

-125

0

125

250

Simulation time (ns)

 F
 (p

N
)

MD

SPR

EY6A
FD-5D
FD-11A
CR3022
FI-3A
REGN10987

Antibody clone

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

Ab
so

lu
te

 d
iff

er
en

ce
 

(S
PR

 - 
M

D
) (

nm
)

P = 0.9840

d

b c

Moved
Lys15

Interface 1 Interface 2

0 5 10 15 20 25 30 35
0.0

0.5

1.0

Simulation time (ns)

Fr
ac

tio
n 

of
 N

at
iv

e 
C

on
ta

ct
s,

 Q

2
1

Interface

1.5 ns
23.9 nm

3.7 ns
26.2 nm

7.5 ns
30.1 nm

11.8 ns
34.4 nm

15.0 ns
Unbound

1.0 1.5 2.0 2.5
20

25

30

35

40

 for epitope | paratope interfaces

M
ax

im
um

 L
ys

15
-L

ys
15

 
R

BD
 d

is
ta

nc
e 

(n
m

)

FD
-1

1A

FD
-5

D

C
R

30
22

FI
-3

A

R
E

G
N

10
98

7

E
Y

6A

0

10

20

30

40

50

M
ol

ec
ul

ar
 re

ac
h 

(n
m

)

Antibody clone

Molecular Reach

Time:
Distance: 

Figure 3: Molecular dynamic simulations reproduce the molecular reach obtained by bivalent SPR highlighting
the contribution of the antigen to reach. (A) Coarse-grained structure of IgG1 FD-11A bound to two RBD antigens
indicating the Lys15 biotinylation site (within an N-terminus AviTag), which anchors RBD to the SPR surface. The
anchor point of RBD forming interface 1 was fixed while the one forming interface 2 was moved at a constant velocity.
B The fraction of native contacts at the indicated interface (normalised to the number of contacts in the native structure)
and (C) the force required to maintain the constant velocity over time. (D) Snapshots from the simulations at the
indicated time points indicating the distance between Lys15 on each RBD. The maximum distance in this trajectory
was 34.4 nm. (E) The maximum Lys15-Lys15 distance from N = 50 independent trajectories over the interface
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The molecular reach of patient-isolated RBD-specific antibodies is the best correlate of SARS-121

CoV-2 neutralisation potency122

We next investigated the functional implications of molecular reach using a panel of 80 RBD-specific IgG1123

mAbs previously isolated from SARS-CoV-2 infected individuals with known epitopes and viral neutrali-124

sation potencies (5) (Fig. 4A). The neutralisation potency is the antibody concentration required to produce125

50% inhibition of infection (IC50). We injected 3 concentrations of each antibody sequentially, analysing126

up to 32 antibodies in a single 48 hour experiment (Fig. 4B). To re-use the same surface repeated, a high salt127

injection (3M MgCl) was used to regenerate the surface between antibody injections without denaturing the128

antigen. In a pre-screen, 7 out of 80 antibodies remained bound after regeneration, and so were excluded129

from subsequent experiments. The FD-11A antibody was injected at the start and end of each of the 16 ex-130

periments that we performed to confirm that the antibody binding capacity of the surface remained largely131

intact over 48 hours despite multiple regeneration steps (Fig. S9A,B).132

We next fitted the particle-based bivalent model and the ODE-based monovalent model to the bivalent133

SPR data. We excluded 12 antibodies because they produced a poor fit to the particle-based model and134

16 antibodies because the ODE-based model produced an accurate fit (Fig. S9C-G). We reasoned that an135

accurate fit by the ODE-based model meant that the bivalent SPR data contained no useful information136

about bivalent binding parameters. Possible explanations include an antibody that only binds monovalently137

because of insufficient reach or an antibody that binds with very high affinity so that it does not unbind138

during the experiment. In these cases, it is not possible to quantify the increase in binding that bivalency139

provides.140

The binding parameters for the remaining 45 antibodies displayed a 1000-fold variation in affinity141

(Fig. 4C), which was primarily the result of variations in the off-rate (Fig. 4D). Interestingly, the molecular142

reach exhibited large variations from 22 to 46 nm even though all antibodies shared the same IgG1 isotype143

and interacted with the same RBD antigen (Fig. 4D). The reach displayed some correlation with affinity144

and off-rate (Fig. 4D), which is consistent with previous work suggesting that higher-affinity antibodies can145

tolerate larger antigen distances when binding bivalently (11).146

We found only modest correlations between neutralisation potency and the monovalent binding parame-147

ters (Fig. 5A-C). Given that binding parameters may independently contribute to predicting potency, we tried148

multiple linear regression, but the correlation was similar to the affinity alone (Fig. 5C vs D). Examining the149

additional bivalent parameters revealed no correlation with the bivalent on-rate (Fig. 5E) but the molecular150

reach displayed the best correlation of all single binding parameters (Fig. 5F). This increased further using151

a multiple linear regression model that included all the parameters (Fig. 5G). Together, this indicates that152

antibodies with a longer reach are better able to neutralise virus.153

We reasoned that the ability of reach to predict neutralisation may be a result of it’s ability to predict154

bivalent binding and/or it’s ability to act as a proxy for the relevant blocking epitope. To test the latter, we155

computed the distance of each antibody epitope from a reference epitope in the ACE2 binding site (Fig. 5H).156

As expected, we found that neutralisation potency was gradually reduced for antibodies that bound further157

from the blocking epitope interface (Fig. 5I). However, we found that the molecular reach did not correlate158

with this blocking epitope distance (Fig. 5J). We also used a previously reported epitope taxonomy but159

again, found no difference in molecular reach depending on epitope location (Fig. S10). This suggested that160

molecular reach predicts bivalent binding rather than the blocking epitope.161
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The observation that both epitope distance and reach correlated with neutralisation potency but not with162

each other suggested that each contained independent information relevant to viral neutralisation potency.163

We first confirmed that including the blocking epitope distance with the monovalent binding parameters164

improved the correlation (Fig. 5D vs K). In support of our hypothesis, we found that the correlation with all165

the binding parameters improved further when including the blocking epitope distance (Fig. 5G vs L).166

Taken together, these results show that the best single parameter predictor of neutralisation potency is167

the molecular reach, and that increasing the molecular reach increases the neutralisation potency of RBD168

antibodies by enhancing bivalent binding.169
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The emergent binding potency of antibodies predicted by the particle-model matches their170

neutralisation potency at antigen densities found on the virion171

The neutralisation potency of an antibody is an emergent property that depends on multiple factors including172

its binding parameters (kon, koff, kon,b, reach), the epitope, and the antigen density on the pathogen surface.173

With the exception of antigen density, these factors can be combined to predict neutralisation potency as174

we have demonstrated (Fig. 5L) but this requires a panel of antibodies with a wide variation of measured175

neutralisation potencies in order to fit a regression model in the first place. We reasoned that the particle-176

model could incorporate all of these factors to directly calculate an emergent measure of antibody binding177

potency without a priori data fitting. To do this, we developed a workflow that used the particle-model178

to simulate the amount of free antigen on a two-dimensional surface for different antibody concentrations179

from which the predicted binding potency (antibody concentration required to bind 50% of antigen) can be180

calculated (Fig. 6A).181

We first used the FD-11A antibody to validate the workflow. We simulated the amount of free antigen182

at 60 minutes using the FD-11A binding parameters (Fig. 1C,E) for different FD-11A concentrations and183

for surfaces with 7 antigen densities (Fig. 6B). To compare these simulations with data, we mixed different184

concentrations of FD-11A IgG or Fab with live SARS-CoV-2 for 60 minutes before adding it to Vero cells185

and determined infection at 20 hours (14) (Fig. 6C). We compared the predicted binding potency with the186

experimental neutralisation potency (Fig. 6D).187

At the lowest antigen densities, the model predicted a poor binding potency of ≈600 nM that matched188

the expected affinity of a bivalent antibody that can only bind a single antigen (KD/2 = 614 nM, where189

the factor of 2 accounts for the two antibody Fabs and KD = 1228 nM is the monovalent affinity). This is190

presumably because the average distance between antigens at this density (∼352 nm) is much larger than the191

molecular reach of FD-11A (34.9 nm) impairing bivalent binding. The predicted binding potency improved192

by > 100-fold as the antigen density increased enabling FD-11A to bind bivalently and eventually matched193

the experimental potency between the two highest densities tested. The Fab failed to neutralise virus even194

at concentrations above 3000 nM, which likely reflects the fact that the monovalent antibody/RBD affinity195

is much lower than the ACE2/RBD affinity (KD ∼75 nM (17)).196

We next used the workflow to predict binding potency at different antigen concentrations for all 45197

antibodies. The predicted and experimental potencies were similar at intermediate antigen densities of198

0.0005-0.001 nm−2 (Fig. S11) and this could be further improved if only a subset of 24 antibodies were199

included that bound near the blocking epitope (Fig. 6E). As above for FD-11A, we found that at very low200

and very high antigen densities, the predicted binding potency was very low or very high for all antibodies201

because all the antibodies were unable to reach two antigens or all antibodies could reach two antigens, re-202

spectively, independent of their molecular reach. In contrast, the neutralisation potency matched the binding203

potency at intermediate antigen densities (0.0005-0.001 nm−2) where the mean distance between antigens204

is ≈18-25 nm, which is on the same scale as the measured molecular reach for these antibodies (Fig. 4C).205

Importantly, these intermediate densities are similar to the estimated density of the Spike protein on the206

surface of SARS-CoV-2 (Fig. 6F).207
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concentrations and binding parameters. (B) Simulations of the fraction of free antigen after 60 minutes using
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Finally, we wondered if emergent binding potency can explain discrepancies in neutralisation potency208

based on monovalent binding. We identified two antibodies in our dataset that displayed large differences in209

neutralisation potency despite binding with similar monovalent affinities to the same RBD-epitope (Fig. 7A).210

Given that these antibodies also displayed differences in their bivalent binding parameters, we calculated211

their emergent binding potency at different antigen densities finding that the model correctly differentiated212

between them only at intermediate densities found on the virion (Fig. 7B,C). Therefore, antibodies with a213

similar affinity to the same epitope can display large differences in function because of differences in their214

propensity for bivalent binding.215

Together, these results highlight the interplay between reach and antigen density/spacing in determining216

emergent bivalent binding, and that if we know the antibody binding parameters and the antigen density217

on the virion surface, it is possible to directly predict the concentration of antibody required to neutralise218

SARs-CoV-2.219
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tal neutralisation and binding parameters of antibody 181 and 394. (B) Simulations of antibody 181 (blue)
and 394 (red) binding after 60 minutes using their measured binding parameters (vertical dashed lines indi-
cate IC50 binding potency). (C) Comparison of predicted binding potency and experimental neutralisation
potency.
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Discussion220

The challenge of studying emergent antibody binding has motivated mathematical and experimental meth-221

ods to isolate specific factors often by removing the dependence of binding on antigen density. Experimental222

methods are routinely used to study monovalent kinetics by injecting soluble antigen over immobile anti-223

bodies (10) and more recently, methods have been developed to study spatial tolerance by measuring an224

apparent affinity for precisely spaced antigens (11, 12). Mathematical methods are also available in certain225

limits (7, 9, 19, 20) but a method that can directly fit binding of antibodies to a random distribution of an-226

chored antigen at a given density is presently unavailable. Here, we developed a fast spatial and stochastic227

particle-based method to directly fit antibody binding to random antigens enabling estimates of monovalent228

on/off-rates, the bivalent on-rate, and the molecular reach.229

We validated the particle-based model in several ways. First, the model correctly identifies the monova-230

lent kinetics and affinities for several antibodies across a large variation in affinity using two antigens: RBD231

(Fig. 1) and CD19 (Fig. S4). Second, the model estimates the same parameter values at different antigen232

densities (Fig. S2, Fig. S6), highlighting that it can accurately capture how antibody binding depends on233

antigen density. Lastly, MD simulations reproduce the fitted molecular reach (Fig. 3).234

A unique feature of our analysis is that the complete set of binding parameters can be used to quantita-235

tively predict emergent antibody binding. This enables estimates of the antibody concentration required to236

bind 50% antigen on surfaces with different antigen densities. Interestingly, the predicted binding and ex-237

perimental neutralisation potencies matched only when using the antigen density of Spike on the surface of238

SARS-CoV-2 in our simulations. At this density, the mean distance between antigens was on the same scale239

as the measured molecular reach (22-44 nm). A limitation of our method is that these calculations relied on240

monomeric antigen but the Spike protein is trimeric and contains three RBDs that are closer together than241

the molecular reaches that we report. This apparent discrepancy can be accounted for if the predominate242

mechanism of bivalent binding involves two RBDs on different Spike trimers. Although there is evidence243

that some antibodies can bind two RBDs within a Spike trimer (4, 21), a Spike trimer typically contains only244

a single accessible RBD (18) and the lifetime of antibodies depends on the Spike concentration implying245

inter-Spike binding (22). Moreover, directly resolving antibody/Spike binding revealed Spike cross-linking246

(23). Therefore, our conclusions are consistent with antibodies predominately binding RBD across Spike247

trimers.248

The molecular reach we report (up to 46 nm) is much larger than previous reports (up to ∼16 nm)249

(11–13). We have shown this to be the result of differences in antigen sizes, with previous reports focused250

on low molecular weight model antigens (<1100 Da) compared to the the RBD antigen we have used (51251

kDa). This suggests that antibodies can simultaneously bind two antigens anchored much further apart than252

the physical size of an antibody provided that the antigen is large and can display tilting flexibility relative253

to the surface, which is the case for surface RBD/Spike (18). Moreover, the large variation in reach across254

antibodies with the same IgG1 isotype that we report (22-44 nm) suggests that a universal reach value is255

unlikely and that this critical parameter will need to be assessed for each antibody/antigen combination. The256

importance of the molecular reach is underlined by the observation that it was the best single-parameter257

predictor of viral neutralisation, with a correlation larger than the monovalent binding parameters and the258

blocking epitope. This is consistent with molecular reach being a proxy for bivalent binding, which itself is259

known to be important for SARS-CoV-2 neutralisation (3, 5).260

While we have focused on analysing antibody binding by SPR, the model can readily be used to study261

any bivalent molecule using any instrument that measures binding. In addition to providing the complete262
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set of bivalent binding parameters and predicting antibody function, bivalent SPR also accelerates antibody263

screens by enabling sequential injection of many antibodies over the same surface. In summary, the ability to264

easily acquire and now analyse bivalent binding should improve the ability to study and engineer antibodies265

and other native and synthetic bivalent molecules.266
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Materials & Methods288

Proteins289

Production of monovalent Streptavidin. Monovalent Streptavidin was produced using a method previ-290

ously described to generate streptavidin tetramers of defined valency fused to Spycatcher (24). Two dif-291

ferent streptavidin subunits were used: Streptavidin-SpyCatcher, which contains a functional streptavidin292

monomer fused to SpyCatcher at its C terminus and a ’dead’ streptavidin, which contains a mutation in the293

streptavidin monomer that has negligible biotin-binding activity. Individual subunits were expressed in E.294

coli BL21-CodonPlus (DE3)-RIPL cells and refolded from inclusion bodies. Inclusion bodies were washed295

in BugBuster (Merck Millipore 70921) supplemented with lysozyme, protease inhibitors, DNase I, and mag-296

nesium sulphate as per the manufacturers’ instructions. To obtain monovalent streptavidin-SpyCatcher, the297

subunits were mixed at a 3:1 molar ratio of dead streptavidin to streptavidin-SpyCatcher. Tetramers were298

refolded by rapid dilution and precipitated using ammonium sulphate precipitation. Precipitated protein was299

resuspended in 20 mM Tris (pH 8.0), filtered (0.22-µm filter), and loaded onto a Mono Q HR 5/5 column300

(GE Healthcare Life Sciences). Desired tetramers were eluted using a linear gradient of 0–0.5 M NaCl in301

20 mM Tris (pH 8.0), concentrated, and buffer exchanged into 20 mM MES, 140 mM NaCl (pH 6.0).302

Production of Biotinylated-RBD. Affinity purified SARS-CoV-2 (Wuhan) RBD was biotinylated using303

EZ-Link Sulfo-NHS-LC-biotin (Life Technologies, USA, A39257) accordingly to manufacturing protocol.304

Biotinylated RBD was subjected to Zeba™ Spin Desalting Columns (7k MWCO) (Thermo Scientific, USA,305

catalogue 89889) to remove excess biotin.306

Production of FD-11A, FD-5D, EY-6A, FI-3A, CR3022, REGN10987 antibodies. Monoclonal an-307

tibodies were produced as previously described (14, 25). Expression plasmids were transfected into the308

ExpiCHO cell lines according to the manufacturer’s protocol (Thermo Fisher). Supernatant containing309

monoclonal antibodies were clarified by centrifugation (1,400g, 5min) and 0.45 µM filtered before purifi-310

cation. Monoclonal antibodies were affinity purified using a MabSelect SuRe (Cytiva) pre-packed column.311

Purified mAbs were then desalted using Zeba Spin Desalting Column (ThermoFisher) or diafiltered using a312

Amicon Untracentrifugation Column (50k MWCO).313

Production of 80 mAbs specific for RBD. Antibodies for high-throughput screen used in the present314

study were produced previously (5). They all use the human IgG1 backbone paired with either κ or λ light315

chains.316

Production of Spytag-CD19 antigen and antibody. Spytag-CD19 fused to Spytag was produced as317

previously described (26). The extracellular domain of CD19 is expressed as a fusion protein with Spytag318

and Histag fused to its C-terminus, and the Sumo protein via a HRV cleavage site fused to its N-terminus319

(Sumo-HRV-CD19-Spytag-Histag). The protein SUMO was used to stabilise Spytag-CD19 during produc-320

tion. A CMV expression plasmid encoding Sumo-HRV-CD19-Spytag-Histag was transfected into Expi293F321

Cells (ThermoFisher) using the ExpiFectamine 293 Transfection Kit (ThermoFisher Scientific, A14524).322

Cells were incubated for 4-5 days for protein expression. Following, the supernatant was harvested, and323

in the first step the fusion protein was purified using Ni-NTA Agarose column. Next, the protein was con-324

centrated and loaded onto a Superdex 200 10/300 GL (Cytiva, 17-5175-01) size exclusion chromatography325

column. Next, HRV 3C Protease Solution Kit (Pierce™, 88946) was used to cleave SUMO from the CD19326

fusion protein. The protease was removed via Glutathione Agarose (Pierce™, 16100), followed by Ni-NTA327
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Agarose to remove SUMO. Finally, the protein was stored in size exclusion buffer (25 mM NaH2PO4 and328

150 mM NaCl at pH 7.5) and frozen in suitable aliquots at –80°C.329

The anti-CD19 antibody (clone SJ25C1) was purchased from BioLegend (cat no. 363001).330

Production of PEG coupled phosphorylated peptide antigens and antibody. Phosphorylated peptide331

antigens were a custom commercial order (Protein Peptide Research Ltd, UK) with the following sequences:332

Bio-(PEG)3-SVPEQTEY*ATIVFPSG (PEG3) and Bio-(PEG)28-SVPEQTEY*ATIVFPSG (PEG28), where333

Bio indicates biotin, PEGX is X repeats of polyethylene glycol, and * indicates phosphorylation.334

The anti-phosphotyrosine antibody (clone PY20) was purchased from Absolute Antibody (Ab00294-335

1.1).336

Surface plasmon resonance337

Monovalent SPR for RBD antibodies. A BIAcore 8K (Cytiva) was used to measure the affinity and the338

kinetics of soluble RBD to immobilised antibody. Approximately 200 RU of antibody was captured onto339

a Protein A Series S Sensor Chip (Cytiva) along with 200 RU of an influenza mAb AG7C in a reference340

flow cell. Multi cycle kinetic analysis of binding was undertaken, using a two-fold serial dilution of RBD-H341

in HBS-P+ buffer (Cytiva) along with a reference sample containing only HBS-P+ buffer. Measurements342

were made with injection times of 90 s (30 µl/min) and dissociation times of 180 s or 600 s (30 µl/ml) at343

37◦C. Regeneration of the sensor chip was performed with 10 mM Glycine-HCl, pH 1.7 for 30s (30 ul/min)344

between RBD-H concentrations. For analysis, the sensograms were double reference subtracted and fitted345

with a 1:1 binding model using the BIAcore Insight Evaluation Software version 2.0.15.12933 (Cytiva).346

Monovalent SPR for CD19 antibodies. Monavalent SPR of CD19 antibodies was conducted on BI-347

Acore T200 instrument (GE Healthcare Life Sciences). The experiment was run at 37 ◦C, HBS-EP was348

used as running buffer. An Fc capture chip was produced by amine coupling of anti-mouse IgG antibody349

to a CM5 chip using a commercial Fc Capture Kit (GE Healthcare). First, the chip was conditioned with350

7 conditioning cycles using HBS-EP buffer. Next, the anti-CD19 antibody was injected for either 120 s or351

900 s, resulting in immobilisation levels of 500 RU and 1000 RU respectively. For the control flow cell, the352

BBM1 antibody was immobilised to matching levels. CD19-SpyCatcher was injected for 150 s, followed353

by a dissociation phase of 450 s at a flow rate of 50 µl/min. After each cycle, the chip was regenerated with354

10 mM Glycine-HCl, pH1.7 for 90 s, which removed both CD19 and anti-CD19 antibody from the chip.355

This was followed by the re-immobilisation of anti-CD19 antibody. Buffer was injected after every second356

cycle. For data analysis, the SPR sensogram was double-referenced against an empty flow cell and buffer357

injections. Subsequently, we fitted the dissociation phase with a 1:1 binding model to obtain the mean koff358

value. Next, the mean kon value was determined by fitting the association phase with a 1:1 binding model,359

while constraining the koff parameter to the mean koff value determined in the first fitting step.360

Bivalent SPR. A BIAcore T200 instrument (GE Healthcare Life Sciences) at 37◦C and and a flow rate361

of 100 µl/min. Running buffer was HBS-EP. Monovalent Streptavidin-SpyCatcher was coupled to CM5362

sensor chips using an amino coupling kit (GE Healthcare Life Sciences) to near saturation, typically around363

7000 - 8000 response units (RU). Antigens, either biotinylated (RBD) or containing a SpyTag (CD19), were364

injected into the experimental flow cells (FCs) for different lengths of time to produce desired immobilisation365

levels (typically 20 - 70 RU). The concentration of immobilised antigen was calculated using an empirical366

factor to convert the immobilisation level to a molar concentration. We used the formula: molar conc.367
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= immobilisation level / (conversion factor × molecular weight). The conversion factor was previously368

determined to be 149 RU per g/liter (27). Usually, FC1 was kept blank as a reference for FC2, FC3,369

and FC4. Excess streptavidin was blocked with two 40 s injections of 250 µM biotin (Avidity). Before370

antibody injections, the chip surface was conditioned with 2 injections of the running buffer. Dilution series371

of antibodies were injected simultaneously in all FCs, starting with the lowest concentration. Antibodies372

were injected for 150s followed by a buffer injection of 450s at a flow rate of 100 µl/min. After each373

cycle, the chip surface is regenerated with 3M MgCl (Cytiva) for 90 s at 30 µl/min to remove all remaining374

bound antibodies. A buffer injection was included after every 2 or 3 antibody injections; all binding data375

were double-referenced by subtracting the response of the control flow cell and the closest buffer injection.376

Before running the high-throughput SPR experiment, we conducted an initial screen to determine whether377

the surface can be regenerated after each antibody injection. For this, each antibody was injected at a378

concentration of 50 nM with an association phase of 150 sec followed by a dissociation phase of 475 sec379

before injecting 3M MgCl (Cytiva) for 90 sec at a flow rate of 30 µl/min followed by a buffer injection. For380

the high-throughput SPR experiments, up to 32 antibodies at 3 concentrations (typically between 30 and 100381

nM) each were injected in sequence over the SPR chip surface. Buffer was injected after every third cycle.382

ODE-based monovalent model383

As illustrated in Fig. 1A, the monovalent ODE model assumes soluble antigen can reversibly bind to im-
mobilised antibodies. Let [Ag] denote the concentration of antigen, [Ab] the concentration of antibodies
immobilised on the SPR chip, A the number of unbound antibody arms, and B the number of bound anti-
body arms. The monovalent reaction model is then

A
kon[Ag]−−−−⇀↽−−−−

koff

B

with the corresponding mass action ODE model of

dA

dt
= −dB

dt
= −kon[Ag]A+ koffB.

All antibody arms are initially unbound, giving the initial condition that A(0) = 2[Ab] and B(0) = 0.384

The monovalent SPR experiment is modelled by an association phase (t = 0 to t = ts) followed by a
dissociation phase after the instantaneous removal of antigen in solution at time ts (i.e. setting [Ag] = 0 at
ts). The measured monovalent SPR response trace, R(t), is proportional to B(t). Analytically solving the
ODE model we then have that

R(t) =

{
Cp

2kon[Ag][Ab]
kon[Ag]+koff

(
1− e−(kon[Ag]+koff)t

)
, t ≤ ts,

R(t−s )e
−koff(t−ts), t > ts,

where Cp denotes the constant of proportionality between R(t) (in units of RU) and B(t) (in units of385

concentration). The monovalent model for R(t) then has three unknown parameters to fit, Cp, kon, and koff.386

ODE-based bivalent model387

As illustrated in Fig. 1A, the bivalent ODE model assumes soluble antibodies can reversibly bind to immo-
bilised antigens. We let [Ab] denote the concentration of antibodies in the solution, [Ag] the concentration of
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antigen immobilised on the SPR chip, A the concentration of these antigen that are not bound to an antibody,
B the concentration of antibody-antigen complexes in which the antibody has one arm bound (i.e. is ”singly-
bound”), and C the concentration of antibodies with both arms bound to antigen (i.e. ”doubly-bound”). The
well-mixed bivalent reaction model is then

A
2kon[Ab]−−−−−⇀↽−−−−−

koff

B

A+B
kon,b−−⇀↽−−
2koff

C

with the corresponding mass action ODE model of

dA

dt
= −2kon[Ab]A+ koffB − kon,bAB + 2koffC

dB

dt
= 2kon[Ab]A− koffB − kon,bAB + 2koffC

dC

dt
= kon,bAB − 2koffC,

and the initial conditions that A(0) = [Ag], B(0) = 0, C(0) = 0. Note that here kon and koff represent the388

same physical rates used in the monovalent ODE model.389

As with the monovalent SPR experiments, the bivalent SPR experiment is modelled by an association390

phase (t = 0 to t = ts) followed by a dissociation phase after the instantaneous removal of antibodies in391

solution at time ts (i.e. setting [Ab] = 0 at ts). The measured SPR response, R(t), is proportional to the392

amount of antibodies bound to immobilised antigen, and we assume R(t) = Cp(B(t) + C(t)). We then393

obtain a final model with four parameters to fit, kon, koff, kon,b, and a constant of proportionality Cp. Note,394

this model assumes that a singly-bound antibody can bind any free antigen on the surface (i.e. is ’well-395

mixed’) and therefore, does not contain a molecular reach parameter. The model was fit to bivalent SPR396

data for FD-11A binding RBD (Fig. 1A-C) using lsqcurvefit in Matlab (Mathworks, MA).397

Particle-based bivalent model398

The particle-based model modifies the bivalent ODE model by explicitly resolving the position and chemical399

state (i.e. free or antibody bound) of each individual antigen that is immobilised on the SPR chip. We model400

a small portion of the SPR chip by a cube with side lengths L containing NAg antigens that are uniformly401

(randomly) distributed.402

Our model is given in terms of stochastic jump processes for the states of each individual antigen or403

antigen-antibody complex. Let xi denote the position of the ith antigen within the domain, i = 1, . . . , NAg.404

We denote by Ai(t) ∈ {0, 1} the stochastic process that is one if the ith antigen is not bound to any405

antibody, and zero otherwise. Similarly, Bi(t) ∈ {0, 1} will denote the stochastic process that is one if406

the ith antigen is bound to an arm of an antibody for which the other arm is unbound, and zero otherwise.407

Finally, Cij(t) ∈ {0, 1} will denote the stochastic process that is one if the antigens at xi and xj are both408

bound to the same antibody, and zero otherwise.409

We let ε label the reach of the reaction for the free arm of a singly-bound antibody-antigen complex to
bind a nearby free antigen. We assume the reaction can occur with rate kon,b when the two antigen involved
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in the reaction are separated by less than ε. For antigens at xi and xj , the rate of the reaction is given by a
Doi interaction model (28–30) as kon,b1[0,ε](xi − xj), where

1[0,ε](xi − xj) =

{
1, |xi − xj |p ≤ ε,

0, |xi − xj |p > ε

represents the indicator function of the interval [0, ε], and |xi − xj |p represents the periodic distance between410

xi and xj .411

Our overall reaction model is then

Ai
2kon[Ab]−−−−−⇀↽−−−−−

koff

Bi, i ∈ {1, . . . , NAg}

Ai +Bj

kon,b1[0,ε](xi−xj)−−−−−−−−−−→ Cmin{i,j},max{i,j}, i ∈ {1, . . . , NAg}, j ∈ {1, . . . , i− 1, i+ 1, . . . , NAg},

Cij
koff−−→ Ai +Bj , i ∈ {1, . . . , NAg}, j ∈ {i+ 1, . . . , NAg},

Cij
koff−−→ Aj +Bi, i ∈ {1, . . . , NAg}, j ∈ {i+ 1, . . . , NAg},

where kon and koff should represent the same rates as in the monovalent and bivalent ODE models. The412

initial condition for each stochastic process is then Ai(0) = 1 for all i, Bi(0) = 0 for all i, and Cij(0) = 0413

for all i and j.414

The corresponding mathematical model for the evolution of the stochastic jump processes is given by
Kurtz’s time-change representation (31, 32). Equivalently, the probability the processes are in a given state
can be described by the Chemical Master Equation (CME). Let I = {(i, j) | i ̸= j, i = 1, . . . , NAg, j =

1, . . . , NAg} denote the indices of all possible Ai and Bj pairs, and Î = {(i, j) | i = 1, . . . , NAg, j = i +
1, . . . , NAg} denote the indices of all distinct antigen pairs. For the time-change representation each possible
reaction is associated with a unit rate Poisson counting process, labelled by {Y1,i(t)}

NAg
i=1 , {Y2,i(t)}

NAg
i=1 ,

{Y3,i,j(t)}(i,j)∈I , and {Y4,i,j(t)}(i,j)∈I . We can then represent the stochastic processes for the total number
of occurrences of the Ai → Bi, Bi → Ai, Ai +Bj → Cmin{i,j},max{i,j}, and Cmin{i,j},max{i,j} → Ai +Bj

reactions respectively as

N1,i(t) = Y1,i

(
2kon[Ab]

∫ t

0
Ai(s

−) ds

)
, i ∈ {1, . . . , NAg}

N2,i(t) = Y2,i

(
koff

∫ t

0
Bi(s

−) ds

)
, i ∈ {1, . . . , NAg}

N3,i,j(t) = Y3,i,j

(
kon,b1[0,ε](xi − xj)

∫ t

0
Ai(s

−)Bj(s
−) ds

)
, (i, j) ∈ I

N4,i,j(t) = Y4,i,j

(
koff

∫ t

0
Cmin{i,j},max{i,j}(s

−) ds

)
, (i, j) ∈ I.

Our particle model is then given by

Ai(t) = 1−N1,i(t) +N2,i(t)−
∑
j ̸=i

N3,i,j(t) +
∑
j ̸=i

N4,i,j(t), i ∈ {1, . . . , NAg}

Bi(t) = N1,i(t)−N2,i(t)−
∑
j ̸=i

N3,j,i(t) +
∑
j ̸=i

N4,j,i(t), i ∈ {1, . . . , NAg}

Cij(t) = N3,i,j(t) +N3,j,i(t)−N4,i,j(t)−N4,j,i(t), (i, j) ∈ Î.
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As with the ODE models, the particle-model includes an association phase from t = 0 to t = ts,
followed by a dissociation phase after the assumed instantaneous removal of all antibodies in solution at the
switching time ts (i.e. setting [Ab] = 0 at ts). The measured SPR response, R(t), is proportional to the
average number of antibodies bound to immobilised antigen. That is, let

B(t) =

NAg∑
j=1

Bj(t), C(t) =
∑

(i,j)∈Î

Ci,j(t)

be the stochastic processes for the number of singly- and doubly-bound antibodies in the system at time t.
Denoting averages by E[·], we assume that

R(t) =
Cp

NAg
(E[B(t)] + E[C(t)]) ,

where Cp denotes the constant of proportionality converting model concentrations to experimental response415

units. Note, as only the antibody concentration is varied during a single bivalent SPR experiment, NAg416

remains constant and we are simply defining a re-scaled constant of proportionality compared to the ODE417

cases. The resulting model then has five unknown parameters to fit, kon, koff, kon,b, ε, and Cp.418

Exact realizations of the system state, i.e.
(
{Ai(t)}

NAg
i=1 , {Bi(t)}

NAg
i=1 , {Cij(t)}(i,j)∈Î

)
, can be generated419

by any of the many Stochastic Simulation Algorithms (SSAs) (16, 33) (also know as Gillespie methods,420

Kinetic Monte Carlo methods, or Doob’s method). For all forward simulations we use an optimized imple-421

mentation of the Gibson-Bruck Next Reaction Method (NRM) SSA (34).422

Particle-model surrogate423

While SSA simulations of the particle model (i.e. R(t)) can be directly fit to bivalent SPR data, we found424

their computational expense to be the bottleneck in our experimental workflows. To avoid parameter esti-425

mation becoming a rate-limiting step, we developed a surrogate model that approximated the particle-model426

but allowed for rapid data fitting and hence, parameter estimation.427

We first note that from the perspective of the particle model, the antibody solution concentration, [Ab],428

only enters in setting an effective transition rate, i.e. probability per time, of k̂on ≡ 2kon[Ab] for an individual429

Ai to become a Bi. As such, in the surrogate model we treat this as one effective parameter. We then denote430

by431

θ = (log10(k̂on), log10(koff), log10(kon,b), ε, log10(Cp)) [1]

the vector of particle model parameters to estimate from SPR traces, where we have log transformed the432

transition rates for each possible reaction.433

Let
Rp(t;θ) =

Cp

NAg
(E[B(t)] + E[C(t)])

label the particle model’s predicted SPR trace for a given set of parameters. The surrogate model is a434

function of t and θ defined by435

Rs(t;θ) = CpS(t, θ1, θ2, θ3, θ4), [2]

with S(t, θ1, θ2, θ3, θ4) representing the surrogate’s predicated SPR response for Cp = 1. S is given by a
five-dimensional linear interpolation table over (t, θ1, θ2, θ3, θ4). For all surrogates in this work, we fixed
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NAg = 1000 and [Agsur] = 125µM. The domain length was then chosen to be consistent with this density
of antigen, i.e. for NA denoting Avogadro’s number, L satisfied

NAg

L3
= [Agsur]×NA × 10−30 mol

(nm)3µM
.

To construct the surrogate, (θ1, θ2, θ3, θ4) were each varied over a range of values [
¯
θi, θ̄i], with samples of

each θi uniformly spaced. That is, if parameter θi was sampled at Mi values, they were chosen as

θji = ¯
θi + j∆θi, j = 0, . . . ,Mi − 1,

with ∆θi = (θ̄i −
¯
θi)/(Mi − 1). The sampled reaction transition rates were then uniformly spaced in log436

space. We similarly partitioned time such that t ∈ [0, T ] where T determined the time interval over which437

to fit the SPR data. We again used uniform spacing in time, tj = j∆t, for ∆t = T/Mt. For the surrogate438

used in this work we chose (M1,M2,M3,M4) = (42, 40, 30, 30), ∆t = 1s, T = 600s, and Mt = 600. ts439

was chosen to be 150s, consistent with the SPR protocol.440

With Cp = 1, for each possible combination of parameters, θ = (θj11 , θj22 , θj33 , θj44 , 1), we then saved the
values

S(tk, θ
j1
1 , θj22 , θj33 , θj44 ) = Rp(tk;θ), k = 0, . . . ,Mt

in a five-dimensional lookup table. Estimating Rp(tk;θ) requires averaging SSA simulations of the particle
model. Let Bn(t) and Cn(t) denote the sampled values of B(t) and C(t) in the nth simulation, n =
1, . . . , Nsims, with

Rn
p (tk;θ) =

1

NAg
(Bn(tk) + Cn(tk))

the corresponding response. We then approximated

Rp(tk;θ) ≈
1

Nsims

Nsims∑
n=1

Rn
p (tk;θ).

Our general protocol was to average over at least Nsims = 15 SSA samples, continuing to add SSA samples441

until either the estimated standard error of the samples, {Rn
p (tk;θ)}

Nsims
n=1 , was below .01 of the sample mean442

at all tk, or Nsims = 250 SSA samples were reached.443

Given the table {S(tk, θj11 , θj22 , θj33 , θj44 )}(Mt+1,M1,M2,M3,M4)
(k,j1,j2,j3,j4)=(1,1,1,1,1), S(t, θ1, θ2, θ3, θ4) for t ∈ (0, T ) and all444

θj ∈ (
¯
θj , θ̄j) could then be evaluated by linear interpolation of the bracketing tabulated values. In practice,445

we evaluated the surrogate at general time and parameter values using the BSpline(Linear()) option446

from the Interpolations.jl library (35). For the sizes we used, (Mt+1,M1,M2,M3,M4) = (601, 42, 40, 30, 30),447

the table contained model responses for 1,512,000 parameter combinations, and required approximately448

7.3GB of memory to store. Surrogates were generally constructed in a few hours using 500-2000 cores on449

the Boston University Shared Computing Cluster.450

Particle-model data fitting451

Estimates for the log transformed parameters θ, defined in Eq. [1], were generated via minimization of the
squared error between surrogate predictions and experimental SPR responses for varying levels of [Ab].
Suppose I SPR traces are being simultaneously fit (e.g. traces with different antibody concentrations in-
jected over the same surface), with R(i)(t) labelling the ith SPR response trace for an experiment with
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antibody concentration [Ab(i)]. We assume a fixed and known antigen concentration, [Ag], when simultane-
ously fitting multiple SPR traces generated using different antibody concentrations injected over the same
surface. The experimental traces are ordered such that

[Ab(1)] ≤ [Ab(2)] ≤ · · · ≤ [Ab(I)].

Finally, given a current estimate for θ arising during optimization, we define

θ(i) ≡

(
θ1 + log10

(
[Ab(i)]

[Ab(1)]

)
, θ2, θ3, θ4, θ5

)

=

(
log10

(
k̂on

[Ab(i)]

[Ab(1)]

)
, log10(koff), log10(kon,b), ε, log10(Cp)

)
.

The overall loss function we then minimized was

L(θ) =
I∑

i=1

Mt∑
k=0

(
R(i)(tk)−Rs(tk;θ

(i))
)2

,

where Rs(t;θ) is the surrogate response defined by Eq. [2]. In practice we minimized this loss using452

the XNES natural evolution optimizer from BlackBoxOptim.jl via the Optimization.jl meta-package (36,453

37). All optimization related parameters were left at their default values except the maximum number of454

iterations, which was increased to 5000. As XNES is a stochastic optimizer, we generally applied it several455

times and selected the estimated parameter set across all runs having the minimal loss as the consensus456

estimate. For more details, see the section on ”Data analysis for high-throughput bivalent SPR”.457

As described in the previous section, the surrogate was constructed for a fixed concentration of antigen.
To avoid producing a new surrogate for each experiment, we conjectured that once our particle model system
was of sufficient size (i.e. sufficiently large number of antigens for a fixed antigen concentration), the antigen
concentration effectively set the average number of antigens that were within reach. In this way, we could fit
SPR data generated with any antigen concentration using a single surrogate (produced with a single antigen
concentration) but would need to transform the fitted reach based on the experimental antigen concentration.
In other words, the biophysical reach (εphys) can be calculated from the fitted reach (εsur = θ4) by enforcing
that the average number of antigens within reach in the surrogate model and in the SPR experiment are the
same,

4

3
πε3sur[Agsur] =

4

3
πε3phys[Ag].

We empirically confirmed that the model produced the same predicted SPR traces at different antigen densi-458

ties ([Ag]=1, 10, and 100 µM) provided that the physical molecular reach (εphys) was decreased according to459

the above equation (Fig. S1). Therefore, the relationship between the fitted parameters θ and the biophysical460

parameters are as follows,461

kon =
10θ1

[Ab(1)]
=

k̂on

[Ab(1)]
, koff = 10θ2 , kon,b = 10θ3 ,

εphys = θ4

(
[Agsur]

[Ag]

)1/3

, Cp = 10θ5 .

[3]

These represent the final biophysical parameter estimates reported in this work.462
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Particle-model antibody binding potency predictions463

To predict the concentration of antibody required to bind 50% of antigen (antibody binding potency), the464

particle model is simulated using the previously mentioned Next Reaction Method-based approach. The465

only modification to the model is that we used a 2D square with sides of length L to represent the 2D viral466

surface. As before, antigens are assumed to be uniformly (randomly) distributed in a 2D region with NAg467

set to 1000 and L chosen to enforce a specified antigen density.468

For each antibody, the model was simulated with its fitted binding parameters (kon, koff, kon,b, and the469

molecular reach ε) for different antigen and antibody concentrations to a time of 60 minutes. For each470

antibody concentration we averaged 20 independent simulations to estimate the average number of unbound471

antigens at 60 minutes. The resulting dose-response curves for the fraction of unbound antigen (Agunbound)472

versus antibody concentration ([Ab]) were fit with an inhibitory Hill model (n < 0) to determine IC50,473

Agunbound =
1

1 +

(
IC50

[Ab]

)n . [4]

Particle-model software474

Codes for particle model forward simulation, surrogate construction, and fitting are available in our MIT-475

licensed Julia library (38).476

Worm-like-chain (WLC) model to estimate size of PEG-coupled antigen477

The worm-like-chain (WLC) is a widely used polymer model that has previously been applied to PEG478

polymers (39). The model provides an estimate for the mean end-to-end distance of the polymer as follows:479

2
√
NPEGlclp where NPEG is the number of PEG repeats, lc is the contour length of each repeat (0.4 nm),480

and lp is the persistence length of PEG (0.4 nm (39)). The WLC model predicts a mean length of 0.69 nm481

for PEG3 and 2.1 nm for PEG28 or a difference in length of 1.41 nm. The predicted increase in molecular482

reach when an antibody binds PEG28 instead of PEG3 would then be twice this difference to account for483

the two bound antigens involved in antibody binding (2.82 nm, Fig 2C).484

Molecular dynamics485

Construction of full-length all-atom antibody/RBD complex structures. The PDB structure (1HZH) of486

a full-length IgG1 antibody was rebuilt and minimized in CHARMM35 (40) based on SEQRES records to487

serve as a template for rebuilding of full-length antibodies specific for RBD. The crystal structures of the488

Fab/RBD complexes used are listed in Table S1. Each RBD structure was rebuilt to contain all residues489

of the N-terminal AviTag and signal sequence (24 residues total after cleavage) used in SPR experiments490

fused to RBD residues 331-526 (196 residues) resulting in a final construct of 220 residues in all cases.491

Any missing residues in the light or heavy chains of the Fabs were also rebuilt and all rebuilt sections of492

Fabs and RBD minimized in CHARMM35. Two copies of each Fab/RBD complex were then aligned to493

the 1HZH all-atom model in Chimera v1.16 (41) using the MatchMaker tool based on the heavy and light494
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chain only, with the relative orientations of the RBD and Fab structures maintained. Heavy chains from495

these aligned structures were then merged with those of 1HZH based on MUSCLE (42) alignments of their496

sequences and inspection of the aligned structures. The three residues on either side of the new bond were497

minimized in CHARMM35 with all other atomic positions held fixed. The final structure after 1,000 steps498

of unconstrained minimization in vacuo in Amber FF14SB (43) with OpenMM v7.5 (44) was accepted as499

the final all-atom structure. We note that 1HZH contains one disulfide bond between the two heavy chains500

in the hinge region rather than the usual two. We chose not rebuild the second disulfide bond so as not to501

distort the overall structure and because the disulfide that limits the extension of the hinge is in place. The502

lengths of all chains within each antibody in the rebuilt full-length models are listed in Table S2.503

Construction of topology-based coarse-grain models. Coarse-grain models were parameterized fol-
lowing a previously published protocol that represents each amino acid as a single interaction site centered
at the Cα coordinates of each atom. The potential energy of a conformation within this model is given by

E =
∑
i

kb (ri − r0)
2+
∑
i

4∑
j

kφij (1 + cos [jφi − δij ])+
∑
i

−1

γ
ln
{
exp

[
−γ
(
kα (θi − θα)

2 + εα

)]

+exp
[
−γkβ (θi − θβ)

2
]}

+
∑
ij

qiqje
2

4πε0εrrij
exp

[
−rij
lD

]
+

∑
ij∈{NC}

ϵNC
ij

[
13

(
σij
rij

)12

− 18

(
σij
rij

)10

+4

(
σij
rij

)6
]
+

∑
ij /∈{NC}

ϵNN
ij

[
13

(
σij
rij

)12

− 18

(
σij
rij

)10

+ 4

(
σij
rij

)6
]
. [5]

These forcefield terms, which represent contributions from bonds, dihedrals, angles, electrostatics, na-504

tive contacts, and non-native contacts, have been described in detail previously (45). The strength of native505

contacts within this coarse-grain model is determined by the Lennard-Jones-like well depths for the native506

contact term. The well depth, ϵNC
ij , is computed as ϵNC

ij = ηijϵHB + ηϵij , in which ηij is the number507

of hydrogen bonds between residues i and j, ϵHB = 0.75 kcal/mol, ϵij is the well-depth taken from the508

Betancourt-Thirumalai (46) pairwise potential for a contact between residues of types i and j, and η is a509

scaling factor that increases the effective well depths. Increasing the value of η linearly increases the stabil-510

ity of all native contacts to which it is applied. Values of η were selected individually for each domain and511

interface within the antibody-RBD complexes. We note that disulphide bonds are treated as harmonic bonds512

with kb = 20 kcal/(mol×Å2) rather than as native contacts.513

Selection of η values for antibody domains and interfaces. All coarse-grain simulations were per-514

formed in OpenMM v7.5 using the LangevinMiddleIntegrator (47) with an integration time step of 15 fs, a515

friction coefficient of 0.050 ps−1, and an absolute temperature of 298 K. Values of η were selected based516

on a previously published training set (48). To limit the number of domains and interfaces that required517

simultaneous parameter tuning, we used the same set of η values for all domains and interfaces within each518

antibody and for each RBD monomer (Table S3). The intra-domain values of η were taken in each case as519

the largest value from a training set (see (49) Table S5 ). Likewise, the largest training set value for interfaces520

was used for the HC1—LC1, HC2—LC2, and HC1:HC2 interfaces. The HC1—LC2 interface, which likely521

represents a crystal packing interface, was assigned the training set average value of 1.507. Simulations of522

FD-11A in isolation were performed using the values of η in Table S3 but with the RBD representations523

deleted.524

Coarse-grain steered molecular dynamics simulations of antibody molecular reach. Initial struc-525

tures for steered molecular dynamics were generated by aligning the coarse-grained RBD-antibody-RBD526
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complexes such that one RBD Lys15 (i.e., the residue that is biotinylated and bound to streptavidin in the527

experiment) was at the coordinate system origin and the other on the positive x-axis. A spherical harmonic528

restraint with force constant 50 kcal/(mol×Å2) was applied to the Lys15 at the origin to hold it in place dur-529

ing pulling. A second spherical harmonic restraint with force constant 1 kcal/(mol×Å2) was applied to the530

second Lys15 residues to serve as the trap for steered molecular dynamics. Flat-bottom Root Mean Square531

Deviation (RMSD) restraints with force constant kRMSD = 50 kcal/(mol×Å2) and RMSD threshold of 5532

Å were applied to residues in Fab1, Fab2, the Fc, as well as the globular portions of each RBD monomer533

to prevent overall unfolding while allowing structural fluctuations. Only the RBD linkers, antibody hinge,534

and epitope—paratope interfaces were left unrestrained. Each trajectory was then equilibrated for 1.5 ns to535

allow the coordinates to randomize. After equilibration, the harmonic restraint on the second Lys15 residue536

was pulled with a constant velocity of 1 nm/ns along the positive x-axis to a total displacement of +30537

nm from its original position over the course of 30 ns. A total of 50 statistically independent trajectories538

were run for each of the six antibodies and each of seven different epitope—paratope interface η values,539

η = 1.000, 1.250, 1.500, 1.750, 2.000, 2.250, 2.500 for a total of 2,100 statistically independent trajectories540

(total simulation time 66 µs). The molecular reach was computed from each trajectory as longest distance541

at which both epitope—paratope interfaces have a non-zero fraction of native contacts, Q. Larger values542

of η sometimes result in unfolding of RBD or IgG domains during pulling due to the increased interaction543

strength at the epitope—paratope interfaces. We therefore applied a filter to discard trajectories that ever544

have a Fab or RBD RMSD > 10 Å. Varying this threshold value to 8 or 15 Å was not found to strongly545

influence results. The mean maximum Lys15-Lys15 distance was then computed by averaging the value of546

those trajectories that remain reasonably well folded. The molecular reach estimate from the simulations547

was taken to be the maximum mean value across all η values.548

SARS-CoV-2 neutralisation549

Neutralisation IC50 for the FD-11A antibody was measured with a microneutralization assay as previously550

described (50). Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-551

CoV-2 variants of concern. FD-11A was preincubated with SARS-CoV-2 for 60 min at room temperature552

before being added to Vero CCL-81 cells. Level of infection was measured by counting the number of553

infectious foci.554

For anti-RBD antibodies used in the high-throughput SPR experiment, neutralisation IC50 was measured555

using a Focus Reduction Neutralization Test as described in (5). Briefly, serially diluted antibody was556

incubated with SARS- CoV-2 for 1 hr at 37ºC, afterwards transfered to Vero cell monolayers. The level of557

infection was measured using a focus forming assay.558

Data analysis for high-throughput bivalent SPR559

In this section we explain the detailed workflow for analysis of the high-throughput bivalent SPR experi-560

ments (Fig. 4).561

After double referencing the SPR curves for each antibody concentration, we aligned them to the start562

of the dissociation phase (setting it to ts = 150s) to improve curve alignment. To eliminate artefacts arising563

from the start and end of the association phase (generally large spikes in RU arising from needle motion),564

the first 5 seconds of the association phase, the last 4 seconds of the association phase, and the first 5565
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seconds of the dissociation phase were excluded from the data. We also excluded all SPR curves where the566

maximum response across the entire injection was smaller than 6 RU because this minimal binding is within567

the systematic error for SPR experiments (typically 1 RU per 100 seconds of injection or 6 RU for our 600568

second experiments). Finally, to produce more manageable file sizes we reduced the temporal resolution569

from 10 Hz to 1 Hz and this did not impact our results because the kinetics of the SPR traces were much570

slower than 1 Hz.571

We then fitted the processed data for each antibody using the bivalent Particle-based model (see Particle-572

model data fitting section). The antigen and antibody concentrations for each SPR curve were provided573

as input parameters for the fitting process. The surrogate model used in fitting contained the following574

parameter ranges: log10(kon) ∈ [−5.0, 2.0] with M1 = 42, log10(koff) ∈ [−4.0, 0.0] with M2 = 40,575

log10(kon,b) ∈ [−3.0, 1.5] with M3 = 30, and ε ∈ [2, 35] with M4 = 30. During fitting of the surrogate to576

SPR data, a box constraint that log10(Cp) ∈ [1.0, 4.0] was used. The fitting process was repeated 100 times,577

and the parameters yielding the lowest fitness was recorded. The estimated bivalent model parameters from578

the fitting process were converted into the corresponding biophysical parameters according to Eq. [3] using579

the experimental antigen concentration. The bivalent SPR data was also fit with the ODE-based monovalent580

model (see ODE-based monovalent model section).581

Finally, a quality control procedure was introduced to ensure the accuracy of the bivalent binding pa-582

rameters. First, we checked that the antigen surface could be regenerated after each antibody injection (7 out583

of 80 antibodies could not be removed). Second, we only included data where the particle-model produces584

a close fit to the data (12 out of 80 antibodies could not be fit). Third, we only included data where the585

particle-model produced a fit that was better than the ODE-based monovalent model. We reasoned that SPR586

data that could accurately be fit by the ODE-based monovalent model did not contain information that could587

accurately determine bivalent binding (bivalent binding parameters of 16 out of 80 antibodies could not be588

determined).589

Bivalent SPR data that passed all quality control measures for each antibody were averaged across SPR590

experiments. We report the geometric mean for parameters that varied on a logarithmic range in the model591

(kon, koff, KD, kon,b) and the mean for the molecular reach that varied on a linear range in the model.592

Statistical analysis593

Multiple linear regression We fit a one way multiple linear model in Prism (v 9.5.1) with the following
formula:

y = β0 + β1x1 + ...+ βnxn

where y is the predicted neutralisation IC50 for each antibody, β0 is the y-intercept to fit, (x1, . . . , xn) are the594

values for log10(kon), log10(koff), log10(KD), log10(kon,b), ε, and the blocking epitope distance respectively,595

and (β1, . . . , βn) are the corresponding regression coefficients for each variable. Models contain either all596

variables, or a subset. A Least Squares regression type was used and models were compared using an597

Extra-Sum-of-Squares F test.598
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Figure S1: Workflow for fitting the particle-model to bivalent SPR data. (A) A schematic of the particle-
model chemical reactions (left) used to perform simulations of the association and dissociation phase of
antibody binding in bivalent SPR (middle, red traces), which are averaged to produce the predicted SPR
trace for a given parameter set (middle, black traces). These averaged SPR traces are pre-tabulated for
different parameter values (kon, koff, kon,b, reach - ε) using a computing cluster to produce a surrogate for
the particle-model that is used in data fitting (right). (B) The average number of antigens within reach of
an individual antigen depends on the molecular reach and the antigen density. (C) The relationship between
antigen density and molecular reach when the average number of antigens within reach is 0.02 (equation
plotted is from panel b). (D) The spatial distribution of antigen (top) and the corresponding predicted
bivalent SPR traces (bottom) for different antigen concentrations and molecular reach calculated using the
relationship in panel B. The SPR traces are effectively identical as shown by the small residuals (difference
between the indicated SPR curves) confirming that antibody binding depends on the average number of
antigens within reach, which can be achieved by a short reach at high antigen density or a long reach at
low antigen density. Simulations are performed using an antibody concentration of 1 nM with kon = 0.05 µ
M−1s−1, koff = 0.02s−1, and kon,b = 1.0−1.
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Figure S2: The fitted binding parameters for the IgG FD-11A antibody binding RBD determined by fitting
the particle-model to bivalent SPR data are independent of the RBD antigen density. The indicated parameter
is plotted over the RBD antigen density (N = 42). The coefficient of determination (R2) and the p-value for the
null hypothesis that the fitted line and a horizontal line (i.e. no relationship between the binding parameter and RBD
density) produce an equal fit to the data.
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Figure S3: Representative monovalent and bivalent SPR for the indicated IgG1 antibodies binding RBD. (A)
Representative monovalent SPR traces produced by injecting RBD (2000 nM with 2-fold dilutions) over surfaces
immobilised with the indicated antibody. (B) Representative bivalent SPR traces produced by injecting the indicated
antibodies over surfaces immobilised with RBD. Antibodies were injected using a 2-fold dilution series, with a top
concentration of 300 nM, 5 nM, 5 nM, 5 nM, 5 nM for FD-5D, FI-3A, CR3022, EY-6A and REGN10987 respectively.
RBD was immobilised at 7 - 15 µM.
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Figure S4: The particle-model accurately analyses bivalent SPR generated using the CD19 antigen re-
producing the monovalent binding parameters. Data is generated using purified Spytag-CD19 (antigen)
and an anti-CD19 antibody (SJ25C1). (A) Monovalent SPR (top) is produced by injecting Spytag-CD19
over a surface immobilised with SJ25C1 and bivalent SPR (bottom) is produced by injecting SJ25C1 over
a surface immobilised with Spytag-CD19 (through coupling to amine-coupled Spycatcher). The SPR traces
are generated by 2-fold dilution of CD19 starting at 175 nM (top) or by a 2-fold dilution of SJ25C1 starting
at 33 nM (bottom). Representative SPR traces (black) and model fit (red) are shown for 1 out of 2 rep-
resentative experiments. (B) The indicated parameter produced by monovalent or bivalent SPR. (C) The
indicated parameter produced by bivalent SPR.
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Figure S5: The fitted binding parameters of an anti-phosphotorysine antibody (PY20) interacting with a small
phosphorylated peptide antigen coupled to PEG3 or PEG28 linker. The indicated parameter from N=9 or N=5
independent experiments for PEG3 and PEG28 coupled phosphorylated peptide antigen, respectively. A t-test with a
Holm-Šı́dák correction for multiple comparison was used to determine p-values.
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Figure S6: The fitted binding parameters for an anti-phosphotorysine antibody (PY20) interacting with differ-
ent densities of a small phosphorylated peptide antigen coupled to PEG3. (A) Representative SPR traces (black)
and particle-based model fits (red) for the PY20 antibody injected over surfaces with the indicated concentration of
PEG3 coupled to a small phosphorylated peptide antigen. The antibody was injected at 8 different concentrations
using a 2-fold dilution from a top concentration of 25 nM. (B) The fitted binding parameters plotted over the density
of the small phosphorylated peptide antigen coupled to the SPR chip surface.
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Figure S7: The mean distance between the antigen-binding domains of the IgG1 FD-11A antibody is 13 nm.
The FD-11A Fab structure is used to generate a coarse-grain model of the complete IgG1 FD-11A antibody (see
methods) and is used in coarse-grained MD simulations. (A) Ensemble average time series (dark purple) computed
over five independent 1-µs trajectories of the distance between the centres-of-mass of the coarse-grain interaction sites
that form the paratopes on each Fab binding arm (i.e. the distance between the antigen binding domains). The light
purple shaded region indicates the standard error over the five trajectories at each simulation frame. The dotted black
line indicates the distance between the antigen-binding sites in the structure. (B) Histogram of the inter-paratope or
inter-antigen binding domain distances over each of the five independent trajectories. (C) Block averaging analysis
of the merged trajectory indicates a block size of 1,000 frames is suitable. The mean inter-paratope distance is 13.05
± 0.05 nm (error bar is estimated as the block standard error with a block size of 1000 frames). Block averaging
was performed on a merged trajectory consisting of the final 975 ns of the five independent runs. (D) Coarse-grain
structures of the reference structure (left), minimum reach structure from simulations (middle), and maximum reach
structure from simulations (right). The two heavy chains are colored dark and light blue, the two light chains are
colored red and pink, and the interactions sites constituting the paratopes are colored yellow. The dotted black line in
the leftmost structure indicates the distance between the centers-of-mass of the paratopes in the reference state (14.94
nm).
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Figure S8: Estimating the molecular reach of RBD-specific antibodies using coarse-grained molecular dynamic
simulations. (A) A representative coarse-grained MD simulation trajectory for the indiciated antibody (columns)
showing the calculated force along the pulling direction (Fx), the fraction of native contacts for each antigen interface
(Q, interface 1 in pink and 2 in mauve), the RMSD as a function of time during the simulation for Fabs 1 and 2 (blue
and green, respectively), and the RMSD of RBD 1 and 2 (yellow and orange, respectively). (B) The structure from
the trajectories in panel A that produced the maximum distance between the Lys15 residues on RBD (shown below
the structure) whilst the antibody was bound bivalently. This structure was achieved at the time point indicated by
the vertical magenta lines in panel A. (C) The maximum Lys15-Lys15 distance over the interface binding strength
(η) calculated over the set of trajectories where unfolding does not take place during the MD simulations. Error bars
are 95% confidence intervals computed from bootstrapping with 106 independent samples. Missing data points for
CR3022 and FI3A indicate that all trajectories were unfolded. The molecular reach is defined as the maximum Lys15-
Lys15 distance over all η and indicated by the dashed horizontal line.
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Figure S9: Quality controls for high throughput analysis of 80 RBD antibodies using bivalent SPR. (A-B) Sur-
face stability of RBD was assessed by injecting FD-11A at the beginning and end of each experiment. Representative
SPR traces of the first and last injection of FD-11A (A) and fraction of FD-11A binding at end of the experiment (B).
The fraction is calculated as the RU at 150 s after injection of highest concentration in the first divided by the last
injection. (C) A summary of the antibodies that passed or failed quality control and hence included or excluded from
the analysis, respectively. (D-G) Examples of antibodies representing the four possible quality control outcomes. (D)
The antibody 170 was included because the particle-model produced a good fit and the monovalent model produced
a poor fit. (E) The antibody 170 displays complete regeneration (included) whereas antibody 280 shows only partial
regeneration (excluded). Partial regeneration can be observed by residual RU after the injection of 3 M MgCl2 for 90
s at the end of each SPR cycle (see arrow). (F) The antibody 264 was excluded because the particle-model produced a
poor fit. (G) The antibody 150 was excluded because the particle-based model (left) and the ODE-based monovalent
model (right) produced an equally good fit.

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2023.09.06.556503doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556503
http://creativecommons.org/licenses/by/4.0/


Huhn et al

Front Back

Left 
shoulder 

(LS)

Right
shoulder 

(RS)

Right
flank
(RF)

Neck (N)

Left
flank
(LF)

LS N RS RF LF
10-2

10-1

100

101

n.d.

Epitope Class

N
eu

tra
lis

at
io

n 
IC

50
 (n

M
)

LS N RS RF LF
0

1

2

3

4

5

Epitope Class

Bl
oc

ki
ng

 e
pi

to
pe

 d
is

ta
nc

e,
 D

LS N RS RF LF
0

10

20

30

40

50

Epitope Class

R
ea

ch
 (n

m
)

a b c d

Figure S10: The previously introduced epitope taxonomy for RBD-binding antibodies does not stratify the
molecular reach. (A) The previously introduced epitope taxonomy for RBD antibodies based on five regions. Figure
adapted from (5). (B-D) Antibody neutralisation IC50 (B), epitope blocking distance (C), and molecular reach of each
antibody (D) organised by their taxonomic class.
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Figure S11: The predicted antibody binding potency produces absolute agreement with the experimental neu-
tralisation potency at intermediate antigen densities. The particle-based model was used to predict the concentra-
tion of antibody required to bind 50% of antigen (Predicted IC50) to surfaces randomly distributed with the indicated
density of antigen for (A-I) all antibodies or (K-S) the subset of antibodies that bound within 2.37 nm of the blocking
epitope. A linear fit to the log-transformed IC50 values (solid line) is compared to a line of absolute agreement (dashed
black line - slope 1, y-intercept 0) using an F-test for the null hypothesis that the two lines have the same slope and
intercept. A Bonferroni multiple-comparison correction is applied by multiplying each p-value by 11 (number of anti-
gen densities test). (J,T) Display the slope (top) and intercept (bottom) of the fitted line for the 11 different antigen
densities tested.
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Table S1: All-atom model building details

Antibody FAB structure source Chains used (heavy, light, RBD)

FD-11A 7PQZ A, B, E
FD-5D 7PR0 H, L, E

REGN10987 6XDG C, A, E
CR3022 6W41 H, L, C
EY6A 6ZDH H, L, A
FI3A 7PQY H, L, E
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Table S2: RBD-antibody-RBD chain lengths

Antibody Chain Residues

FD-5D

HC1 1-459
LC1 1-221
HC2 1-459
LC2 1-221

RBD1 1-220
RBD2 1-220

FD-11A

HC1 1-457
LC1 1-218
HC2 1-457
LC2 1-218

RBD1 1-220
RBD2 1-220

REGN10987

HC1 1-450
LC1 1-216
HC2 1-450
LC2 1-216

RBD1 1-220
RBD2 1-220

CR3022

HC1 1-449
LC1 1-221
HC2 1-449
LC2 1-221

RBD1 1-220
RBD2 1-220

EY6A

HC1 1-451
LC1 1-215
HC2 1-451
LC2 1-215

RBD1 1-220
RBD2 1-220

FI3A

HC1 1-447
LC1 1-214
HC2 1-447
LC2 1-214

RBD1 1-220
RBD2 1-220
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Table S3: η values for all antibody and RBD domains and interfaces except the epitope—paratope interfaces.
*HC1 and LC2 share a small interface in the 1HZH crystal structure

Identity Structural Class η

HC1 β 2.480
LC1 β 2.480
HC2 β 2.480
LC2 β 2.480

RBD 1 α/β 1.916
RBD 2 α/β 1.916

HC1—LC1 interface - 2.124
HC2—LC2 interface - 2.124
HC1—HC2 interface - 2.124
HC1—LC2 interface* - 1.507
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