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Abstract 

Understanding how human cognition flexibly supports distinct forms of behavior is a key 

goal of neuroscience. Adaptive behavior relies on context-specific rules that vary across 

situations, as well as on stable knowledge gained from experience. However, the 

mechanisms that allow these influences to be appropriately balanced remain elusive. Here, 

we show that this cognitive flexibility is partly supported by the topographical organization of 

the cortex. The frontoparietal control network (FPCN) is located between regions implicated 

in top-down attention and memory-guided cognition. We hypothesized that the FPCN is 

topographically divided into discrete systems that support these distinct forms of behavior. 

These FPCN subsystems exhibit multiple anatomical and functional similarities to their 

neighboring systems (the dorsal attention network and default mode network respectively). 

This topographic architecture is also mirrored in the functional patterns that emerge in 

different situations: the FPCN subnetworks act as a unified system when long-term memory 

can support behavior, but they segregate into discrete units when working memory, rather 

than long term memory, is necessary for behavioral control. In this way, the topographic 

organization of brain function provides crucial insights into how the human cortex supports 

flexible behavior. 

 

Keywords: flexible cognition, working memory, long-term memory, fronto-parietal control 

network, dorsal attention network, default mode network, cortical topography, cortical 
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Introduction 

Human behavior is inherently flexible, with effective actions varying substantially across 

different situations. In some circumstances, behavior must be guided by information in 

working memory, which allows for the temporary and effortful maintenance of rules that are 

relevant to the current situation. In other scenarios, behaviors are guided by information 

from long-term memory, such as our general knowledge of the world gained through a 

lifetime of experience 1,2. These two modes of cognition depend on different neural 

resources and at times they can be antagonistic. For example, situations like mind-

wandering illustrate what can happen when the contextual regulation of cognition fails 3,4. 

As a result, a key question in neuroscience is how the human brain achieves an appropriate 

functional balance between these two fundamental cognitive modes in a situation specific 

manner to support flexible behavior.   

Research has established that behaviors guided by external inputs encoded in working 

memory often rely on neural processes within the dorsal attention network (DAN) 5, while 

situations in which long-term memory supports cognition often draw on the default mode 

network (DMN) 6. It is hypothesized that these influences are balanced by the brain’s control 

system — the fronto-parietal control network (FPCN) 7–11. Regions of the FPCN are widely 

distributed across the frontal and parietal lobes (see Fig. 1A) and are proposed to implement 

cognitive control by dynamically coordinating activity among diverse brain systems to 

integrate brain-wide processing in a goal directed manner 7–11. Despite evidence that the 

FPCN is commonly recruited across tasks 12–16, it remains unclear how a single system can 

flexibly support the distinct modes of operation required for the wide range of human 

behaviors. Contemporary work suggests that the ability to flexibly adjudicate between 

working memory and long-term knowledge as drivers of behavior might be achieved by 

subdividing the control network into two topographically adjacent yet distinct subnetworks 

FPCN-A and FPCN-B (see Fig. 1A). It is hypothesized that regions of FPCN-A, which are 

closer to sensory-motor regions, are linked to behavioral control when optimal behavior 

depends on working memory information, such as task rules, while FPCN-B, which is more 

anterior on the cortical mantle, is linked to situations when memory is essential for adaptive 
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behavioral control (see Fig. 1A). Consistent with this perspective, FPCN subnetworks are 

hypothesized to have different patterns of activation and functional connectivity: FPCN-A 

exhibits stronger functional connectivity with DAN, while FPCN-B exhibits stronger 

functional connectivity with DMN 11,17,18. Our study builds on this emerging evidence to ask 

(i) how underlying anatomical differences within the FPCN relate to its functional 

differentiation into subsystems, and (ii) how these topographically separated systems adapt 

their interaction patterns to interface with anti-correlated networks (DAN and DMN) in a way 

that supports multiple different modes of operation that allow flexible behavior 11,17,18. 

Our study tests the emerging hypotheses that subnetworks of FPCN are topographically 

proximal to systems linked to external attention and to long-term knowledge, which are 

differentiated anatomically, and that this differentiation enables them to interact with spatially 

adjacent systems. This proposal is related to emerging evidence that the geometry of the 

cortex (i.e., the shape) sculpts its functions 19 and the observation that the principal 

dimension describing functional differentiation within the cortex, often referred to as the 

principal gradient, outlines the physical sequence of networks on the cortical surface 20. This 

principal dimension of functional connectivity within the cortex is anchored at one end by the 

default mode network and at the other by sensory systems. In this topographical scheme, 

the FPCN is located between these two extremes. Compared with sensory-motor systems, 

which are located at one end of a cortical hierarchy, DMN regions at the other end show 

lower myelination 22,24,25, the lowest correspondence between structure and function 26,27, 

the lowest functional similarity across species, and the greatest cortical expansion from 

macaque to human 28,29. Given these observations, we hypothesized that FPCN-A and 

FPCN-B share more similar anatomical features with DAN and DMN, respectively. Yet 

although the broad topographical patterns spanning from unimodal to transmodal regions 

are well documented 1,6,20,21, the patterns for different measurements are not identical 20,22,23, 

leaving the precise topographical positions of FPCN subsystems an open question. 

Furthermore, a novel contribution of this study is to contextualize the mechanisms that 

underpin FPCN-A and FPCN-B’s distinctive functional roles within this anatomical 

framework, helping to explain neural and cognitive flexibility. 
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We investigate how the topography of FPCN subsystems relates to their functional 

interactions with other networks. The FPCN subsystems were defined using Kong’s 

parcellation (2021) 30 , which subdivides the FPCN into subnetworks that capture the 

inherent functional variability of the FPCN. This method enabled us to generate individual-

specific parcellations with heightened homogeneity, allowing us to depict brain organization 

more accurately. We employed well-designed tasks to establish the parcels’ functional 

differentiation and to uncover how their interaction patterns change across contexts to 

support flexible behavior. We hypothesize that the relative proximity of FPCN-A to DAN, and 

of FPCN-B to DMN, plays a pivotal role in flexibly generating distinct cognitive modes that 

are relevant to the updating of working memory versus retrieval from long-term memory (Fig. 

1). Critically, while this topographical organization suggests that adjacent networks will have 

more similarity, both structurally and functionally, the brain also produces flexible patterns of 

behavior based on task demands, in which different subsets of adjacent networks are 

recruited together to address either external or internal task requirements. By examining 

functional similarity across tasks states, we can establish how topography supports different 

cognitive modes, while also confirming that patterns of similarity are not solely a 

consequence of network adjacency. In this way, we establish how the topographical 

organization of the cortical mantle enables diverse interactions of FPCN with networks linked 

to top-down attention and long-term memory, giving rise to different landscapes of neural 

activity in response to different situational demands. 
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Fig. 1. The research hypothesis and task design. A: The research framework. Brain 

organization relates to cortical topography: brain regions supporting perceptual/motor 

features are maximally separated from heteromodal aspects of long-term memory, with 

control regions in the middle. This key dimension of topographical organization might relate 

to a ‘cognitive spectrum’ capturing distinctions between tasks that rely on recently presented 

information in working memory versus long-term knowledge (other spectrums may also 

exist). Regions of FPCN-A are closer to sensory-motor regions and more posterior than 

those of FPCN-B on the cortical mantle. These networks were identified using Kong’s 

parcellation approach 30 , which generates individual-specific parcellations with greater 

homogeneity. Other networks, such as DAN and DMN, are also divided into subnetworks. 

The subnetworks of visual, motor, DAN, and DMN are merged here for illustration. See Fig 

3 for the distribution of each subnetwork. B: Task design. To tap working memory, we 

included two tasks: a spatial working memory task required participants to keep track of 
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sequentially presented locations, while math decisions involved maintaining and 

manipulating numbers which rely more on working memory. To tap long-term memory, we 

included two tasks that required controlled retrieval of knowledge; a semantic feature 

matching task required participants to match probe and target concepts according to a 

particular semantic feature (color or shape), while a semantic association task involved 

deciding if pairs of words were linked in meaning. Response periods are indicated by a red 

box. (V1 = Visual, A1 = Auditory, M1 = Motor, DAN = Dorsal attention network, FPCN = 

Fronto-parietal control network, DMN = Default mode network). 

2. Results 

The results are divided into three sections: (i) first, we take an existing individualized 

parcellation of the cortex identifying two large-scale distributed control networks, 

corresponding to FPCN-A and FPCN-B, and establish that parcels of these networks have 

reliably different topographical locations by quantifying their distance from sensory-motor 

regions on multiple metrics; (ii) next we ask how these differences in topography of FPCN-

A and FPCN-B relate to their functional interaction patterns; (iii) finally, we demonstrate how 

these interaction patterns produce flexible behavior across different task contexts.  

We selected Kong et al.’s parcellation (2021) 30 as the most appropriate choice, since 

this parcellation subdivides the FPCN into subnetworks, which is essential given the inherent 

heterogeneity of the FPCN, and because this method enables us to generate individual-

specific parcellations with heightened homogeneity. The naming of FPCN-A and FPCN-B 

here was consistent with the original Yeo et al.’s parcellation (2011) 31 and Kong et al.’s 

individualized parcellation 30, adapted from the Yeo et al.’s parcellation. However, the 

opposite naming has been used in some previous studies that investigate the functional 

differentiation of FPCN 17,18. We did not use other parcellations, including Power et al. (2011) 

32, Gordon et al. (2016) 33, and Glasser et al. (2016) 24 etc., because FPCN was identified 

as a functional unit without further subdivisions in these atlases.  

2.1 The topographical characteristics of FPCN-A and FPCN-B 

To establish whether the FPCN-A subnetwork is closer to sensory-motor systems, while 
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FPCN-B is proximal to DMN, we examined the topographical positions of FPCN-A and 

FPCN-B on multiple metrics, including cortical geometry, anatomical characteristics, 

principal connectivity gradient values, cortical expansion, and cross-species functional 

similarity. We examined multiple metrics because although these characteristics generally 

show similar topographical patterns – spanning from unimodal to transmodal 1,6,20,21 – they 

do not perfectly align with each other. For example, the correspondence between structure 

and function is weak in the transmodal area 26, and the minimum physical distance to the 

sensory-motor landmarks shows only a moderate correlation with the principal connectivity 

gradient 20. These observations suggest a degree of dissociation between these metrics, 

leaving the precise topographical positions of FPCN subsystems as an open question. This 

motivated us comprehensively capture the topographic positioning of FPCN subnetworks 

across multiple metrics.  

2.1.1 FPCN-A is physically closer to sensorimotor cortex than FPCN-B 

Distance from sensorimotor regions is thought to provide an organizing principle of 

functional differentiation within the cortex 1,6,21,34. Therefore, our first analysis confirmed that 

there were systematic differences in the location of the FPCN-A and FPCN-B networks on 

the cortical surface, in terms of their physical distance to primary sensory-motor landmarks, 

using the human connectome project (HCP) dataset. We calculated the geodesic distance 

between each parcel and three key landmarks associated with primary visual, auditory and 

somatomotor cortices to identify the global minimum geodesic distance to primary 

sensorimotor regions for each parcel. Fig. 2A shows a group-level representation of global 

minimum distance from sensory-motor cortex: transmodal regions are further from these 

landmarks. FPCN-A showed greater physical proximity to sensorimotor cortex than FPCN-

B (t = -100.57, p < 0.001; Fig. 2A and 2B). 
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Fig. 2. FPCN-A was closer to DAN and sensory-motor systems, while FPCN-B was proximal 

to DMN in physical distance, myelin content, cortical thickness, principal connectivity 
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gradient values, cortical expansion, and cross-species in functional similarity. Each 

datapoint in B, D, F, and H represents the data of one participant and each datapoint in J 

and L represents the data of one parcel. We sorted the networks by their mean values across 

participants in B, D, F, and H and across parcels in J and L. A and B – The global minimum 

geodesic distance between each parcel and its closet sensory-motor landmark and the 

global minimum distance for each network (averaged across parcels). FPCN-A was closer 

to sensory-motor landmarks than FPCN-B. C and D – T1w/T2w values were significantly 

lower in association networks than in sensory networks. The T1w/T2w value in FPCN-A was 

higher than in FPCN-B and was closer to the value for sensory-motor cortex. E and F – 

Cortex was generally thicker in control networks and DMN than in sensory motor networks. 

The cortex in FPCN-A was thinner than in FPCN-B. G and H – The principal connectivity 

gradient that explained the most variance in resting-state fMRI captured the separation 

between sensory-motor and transmodal regions. FPCN-A was closer to the sensory-motor 

end of this gradient axis than FPCN-B. I and J – Sensory cortices expanded the least from 

the macaque to the human, while transmodal cortex expanded the most. FPCN-A showed 

less cortical expansion than FPCN-B. K and L – Regions of sensory-motor networks showed 

greater cross-species similarity between humans and macaques, whereas transmodal 

regions showed greater differences. FPCN-A showed greater cross-species similarity than 

FPCN-B.  

2.1.2 FPCN-A was closer than FPCN-B to the unimodal end of the anatomical 

organization defined by myelin content and cortical thickness 

Having confirmed topographic differences in the control subnetworks, we next examined 

whether these are mirrored in anatomical differences. The cortical T1w/T2w map – sensitive 

to regional variation in grey-matter myelin content 22,24,35 – is thought to reflect an anatomical 

hierarchy, with sensorimotor regions showing greater myelination 22 . We hypothesised that 

FPCN-A would have higher levels of myelination than FPCN-B since the analysis above 

showed that FPCN-A was closer to sensorimotor cortex. We analysed participants’ individual 

T1w/T2w maps and cortical thickness maps from the HCP dataset. As expected, myelin 

values were high in sensorimotor cortices and low in association cortices. Among the 
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transmodal networks, FPCN-A had higher myelin values than FPCN-B (t = 46.89, p < 0.001; 

Fig. 2C and 2D). In parallel, since cortical thickness coarsely tracks changes in 

cytoarchitecture and myelin content, we found that the cortex was generally thicker in 

heteromodal control networks and DMN than in sensory motor networks (Fig. 2E and 2F). 

FPCN-A had lower cortical thickness than FPCN-B (t = 34.08, p < 0.001). 

2.1.3 FPCN-A was closer to the unimodal end of the principal connectivity gradient 

than FPCN-B 

Having established that anatomical differences reflect topographical proximity, we next 

explored whether resting state functional connectivity shows a similar pattern. Global 

minimum distance is positively correlated with location on the principal connectivity gradient, 

which organizes neural systems along a spectrum from unimodal to transmodal cortex 20,36. 

We therefore asked whether the parcels of FPCN-A were closer than FPCN-B to the 

unimodal end of the principal connectivity gradient. Dimension reduction analysis was 

performed on the HCP resting state functional connectivity matrix. For 238 out of 245 

participants, the dimension explaining the most variance corresponded to the principal 

gradient as described by Margulies et al. (2016) 20: sensory-motor regions fell at one end of 

this dimension of connectivity (shown in purple-blue in Fig. 2G), while transmodal areas 

were located at the other end (shown in red-orange in Fig. 2H). We averaged the principal 

gradient values of all the parcels within each network for all participants for whom the 

principal gradient explained the most variance. We found that sensory-motor networks fell 

at one end, while control networks and DMN were located the other end. FPCN-A had lower 

values on the principal gradient than FPCN-B (t = 51.93, p < 0.001; Fig. 2G and 2H), 

indicating that FPCN-A was closer to sensorimotor systems on this dimension of connectivity, 

while FPCN-B was closer to the DMN apex of the principal gradient. 

2.1.4 FPCN-A showed less cortical expansion from macaque to human and 

showed greater similarity across species relative to FPCN-B 

 A prominent theory of cortical organization suggests that transmodal networks became 

untethered from sensorimotor systems through evolution 21. Therefore, we hypothesized 
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that FPCN-B would show more cortical expansion and less cross-species similarity in 

functional connectivity than FPCN-A, since it was further from sensorimotor systems. We 

used the evolutionary expansion and cross-species similarity map provided by Xu et al .29. 

To estimate surface areal expansion, human surface area was divided by macaque surface 

area at each of corresponding vertex and then all vertices within each parcel were averaged. 

We found that FPCN-B showed more expansion (t = 2.125, p = 0.039; Fig. 2I and 2J) and 

less cross-species functional similarity than FPCN-A (t = -3.333, p = 0.002; Fig. 2K and 2L). 

 

Fig. 3. Overview of analytic approaches to study the functional interaction patterns of brain 

networks. (I) Individual-specific parcellation divided the whole brain into 400 parcels across 

17 networks 30. (II) Average time series of each parcel. (III) Extraction of features of time 

series for each parcel. (IV) Multi-class classification analysis involved training a classifier to 

learn the mapping from time-series features of parcels to network labels and (V) then to 

predict network labels for parcels. (VI) Network similarity was characterized by the 

normalized confusion matrix: networks with more similar functions would be more likely to 

be incorrectly classified as each other. (VII) Pearson correlation coefficients of the extracted 

features represent the pairwise feature similarity between all possible combinations of brain 

parcels. (VIII) Redundancy quantifies how much information about the brain’s future 

trajectory is predicted redundantly by distinct brain regions. We focused on temporally 
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persistent redundancy, which corresponds to redundant information in the past of both 

regions that is also present in the future 37. (IX) Functional connectivity involved calculating 

Pearson correlation coefficients between the time-series of parcels. Vis = Visual, Aud = 

Auditory, SM = Sensory-motor, DAN = Dorsal attention network, VAN = Ventral attention 

network, FPCN = Fronto-parietal control network, Lang = Language, DMN = Default mode 

network, WM = working memory. 

 

2.2 Functional interaction and activation patterns of FPCN-A and FPCN-B 

 The results above show that FPCN-A and FPCN-B occupy distinct topographical 

positions: FPCN-A is closer to sensory-motor landmarks and DAN, while FPCN-B is closer 

to DMN in geodesic distance, anatomical features relating to myelination, functional 

connectivity patterns, and evolutionary markers. Since DAN and DMN typically show 

negative functional connectivity 38, control subnetworks that are proximal to these systems 

may show a degree of functional separation that reflects their topography. To investigate this 

possibility, we investigated multiple metrics of functional similarity, comparing DAN and DMN 

with control subnetworks A and B to establish whether they showed dissociable patterns of 

functional recruitment in rest, working memory and long-term memory tasks. We would 

expect greater functional similarity between FPCN-A and adjacent DAN, and between 

FPCN-B and adjacent DMN if topography constrains brain function1,6,20,39,40. We investigated 

this prediction in three complementary analyses examining (i) feature classification across 

networks, (ii) functional coupling, and (iii) activation and deactivation patterns modulated by 

task difficulty. Since no single method can conclusively pinpoint network interactions 37,41–43, 

comprehensive evidence from various methods, when contextualized within our broader 

understanding of brain anatomy and function, will provide the most reliable insights. 

2.2.1 FPCN-A was more likely to be misclassified as DAN-A and FPCN-B was more 

likely to be misclassified as DMN-B  

 To reveal network similarity, multi-class classification was used to predict the network 
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labels of parcels using extracted features of the time-series data. These features include 

temporal autocorrelation, kurtosis, and entropy 44 etc., which may capture meaningful 

differences between different types of time series and thus represent promising candidates 

as quantitative phenotypes for distinguishing data of different types (see Method 4.6.6 for 

feature extraction, Method 4.6.7 for classification analysis, Fig. 3 for the analysis pipeline). 

This analysis was motivated by the observation that certain brain regions possess distinct 

features, which equip them to support different functions, while regions with similar features 

are suited to support similar functions, irrespective of whether they exhibit positive or 

negative functional connectivity. For instance, early visual areas and the DMN are situated 

at opposing ends of the timescale hierarchy. The former boasts the shortest timescale, 

marked by rapid temporal autocorrelation decay, while the latter has the longest, 

characterized by gradual autocorrelation decay 23,45–48. Consistently, neural representations 

in early visual areas are minimally influenced by prior knowledge, whereas DMN regions are 

significantly swayed by it 49. In addition, regions with more similar features tend to support 

parallel functions. For example, while FPCN and DMN generally exhibit negative functional 

connectivity, they share some similar attributes including long timescales, suggesting they 

can process inputs over longer periods. As a result, their neural representations are shaped 

by prior knowledge 49 and goal states maintained over time 50. These observations suggest 

that feature similarity can provide valuable information about the functional similarity of 

networks beyond functional connectivity. This unbiased, hypothesis-free analysis that 

combines machine learning with feature extraction can objectively pinpoint the specific 

subnetworks within DAN and DMN that demonstrate a heightened functional similarity to 

FPCN subnetworks and elucidate the functions of FPCN subnetworks. 

We tested the hypothesis that FPCN-A and B parcels would be misclassified as 

belonging to different networks, reflecting their closest neighbors on the topographical 

spectrum 23,44,48: i.e., the classifier might misclassify parcels of FPCN-A as DAN and FPCN-

B as DMN. We found classification accuracy was significantly greater than chance for each 

participant on each task (Fig. S2). Fig. 4 shows the top four networks with the highest 

prediction probabilities within the normalized confusion matrix, plus an additional 
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comparator network; the probabilities for other networks were similar to chance level (Fig. 

S3). 

By analyzing the classification output (i.e., the confusion matrix, Fig. S2), we found that 

FPCN-A and FPCN-B showed similarity to different networks. Specifically, FPCN-A was 

most likely to be misclassified as DAN-A and FPCN-B, while FPCN-B was most likely to be 

misclassified as FPCN-A and DMN-B (Fig. 4, Fig. S3). When the target network was FPCN-

A, there was a higher probability that parcels would be misclassified as DAN-A than as DMN-

B across rest and all the tasks (p < 0.05, FDR corrected; Fig. 4, Fig. S3, Table S1). 

Conversely, when the target network was FPCN-B, parcels were more likely to be 

misclassified as DMN-B than as DAN-A (p < 0.05, FDR corrected; Fig. 4, Fig S3, Table S1). 

These results indicate that the time-series characteristics of FPCN-A were more similar to 

DAN-A and those of FPCN-B were more similar to DMN-B. Therefore, subsequent analyses 

were focused on the functional similarity between DAN-A, DMN-B and the control 

subnetworks. 

 

Fig. 4. The probabilities of classifying FPCN-A and FPCN-B as each network (figure shows 

top four networks plus an additional comparator network). A: FPCN-A was most likely to be 

incorrectly classified as DAN-A at rest and in non-semantic tasks, and as FPCN-B in 
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semantic tasks. It was also misclassified as VAN-B, but rarely misclassified as DMN-B. B: 

FPCN-B was most likely to be misclassified as DMN-B in non-semantic tasks and as FPCN-

A in semantic tasks and at rest. It was also misclassified as DMN-A, and but rarely 

misclassified as DAN-A. Dashed lines represent the chance level. 

2.2.2 FPCN-A showed greater functional interaction with DAN-A, while FPCN-B 

showed greater coupling with DMN-B 

To further characterise how topography affects functional interaction, we examined: (i) 

redundancy, which quantifies how much information about the brain’s future trajectory is 

shared across brain regions and (ii) functional connectivity between parcels, estimated by 

computing Pearson correlation coefficients between their time series. These measures 

revealed the same pattern as the network classification analysis: FPCN-A showed greater 

functional interaction with DAN-A, and FPCN-B showed greater functional interaction with 

DMN-B. These patterns were observed during rest and all the tasks (p < 0.05, FDR corrected; 

Fig. 5, Fig. S4, S5, S6, S8 and S9; Table S2, S3). In summary, both redundancy and 

connectivity analyses indicated greater functional similarity between control networks and 

the networks they were closer to (DAN; DMN); in this way, the topography of control 

subnetworks partly determines their functional tuning.  
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Fig. 5. FPCN-A and FPCN-B coupled with different networks. FPCN-A always coupled 

with DAN-A while FPCN-B always coupled with DMN-B across different conditions. A and C: 

FPCN-A and DAN-A showed stronger redundancy and functional connectivity than FPCN-B 

and DAN-A. B and D: FPCN-B and DMN-B showed stronger redundancy and functional 

connectivity than FPCN-A and DMN-B.  

2.2.3 FPCN-A regions showed greater activation in more demanding conditions, 

while FPCN-B regions showed the opposite pattern 

Given that FPCN-A and FPCN-B occupy different topographical positions on the cortical 

surface and show different strength of coupling with DAN-A and DMN-B, we might expect 

them to show different responses to control demands across tasks that differentially rely on 

dorsal attention and default networks. To test this hypothesis, we examined univariate 

effects of task difficulty at the whole brain level: in the working memory tasks, we contrasted 

hard and easy conditions, while the long-term memory tasks were designed to examine 

parametric effects of difficulty (manipulations of feature similarity in the semantic feature 

matching task and association strength in the semantic association task (see 4.3.3 and 4.3.4 

for detailed information). All p-values were FDR corrected at p < 0.05. For clarity, we focus 

on the results of the four networks of interest below, and for completeness, the results of all 

the networks are shown in Fig. S7.  

FPCN-A showed stronger activation in hard than easy trials across semantic and non-

semantic tasks (Fig. 6). DAN-A also showed positive effects of difficulty in the spatial working 

memory, math and semantic feature matching tasks, yet showed deactivation during more 

difficult decisions in the semantic association task. In this way, FPCN-A showed a consistent 

response to difficulty irrespective of task context (as expected for regions of the “multiple 

demand network” 12 , while DAN-A was not always engaged by semantic difficulty. In contrast, 

FPCN-B and DMN-B showed little or no positive response to difficulty, although FPCN-B 

parcels in dorsomedial prefrontal cortex did show a stronger response to more demanding 

decisions across math, feature matching and semantic association. FPCN-B typically 

deactivated in response to difficulty together with DMN-B (although this pattern was not 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.556465doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556465
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

observed for the semantic association task). Mean activation and deactivation patterns 

largely resembled effects of difficulty (SM 1.4 and Fig. S7). These results highlight a need 

to explain how topography not only supports differentiation of function within control 

subnetworks but also their flexible engagement in different task contexts.  

Fig. 6. Modulation patterns of activation by task difficulty were similar for FPCN-A and DAN-

A, and FPCN-B and DMN-B. FPCN-A showed stronger activation in hard than easy trials 

across semantic and non-semantic tasks. In contrast, FPCN-B typically deactivated in 

response to difficulty together with DMN-B. We examined univariate effects of task difficulty 

in the non-semantic tasks by contrasting hard and easy conditions. We examined the 

difficulty effect in the long-term memory tasks by examining parametric effects of feature 

similarity in the feature matching task and association strength in the association task, 

respectively. 

2.3 The interaction patterns of FPCN-A varied across tasks, while FPCN-B showed 

stable patterns 

Our final analyses tested how the interaction patterns of FPCN subnetworks varied 

across tasks tapping working and long-term memory. FPCN-A was recruited by difficult 

decisions across all four tasks, and was expected to show task dependent connectivity 

patterns, since domain-general control regions show a highly flexible pattern of coupling 9,18. 
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However, regions that support controlled retrieval from long-term memory are thought not 

contribute to control across domains 51–53, and might show similar interaction patterns across 

tasks. Motivated by these findings, we asked whether FPCN-A would show greater 

interaction with DAN-A during non-semantic working memory tasks and with FPCN-B in 

semantic tasks (examining network misclassification, redundancy, and functional 

connectivity). We then asked whether FPCN-B would show consistent interaction with 

FPCN-A and DMN-B across task contexts. Features can differ depending on tasks and brain 

states 54,55 , indicating their potential to depict variations in network coupling across tasks. 

2.3.1 FPCN-A was more likely to be misclassified as DAN-A in the non-semantic 

tasks but as FPCN-B in the semantic association task  

We examined functional network similarity by analyzing the classification output (i.e., 

the confusion matrix) for each task, focussing on differences in the probability of 

misclassifying FPCN-A as DAN-A compared with FPCN-B across tasks. As expected, 

network similarity varied across tasks (Fig. 4A and Fig. S3). FPCN-A was more likely to be 

misclassified as DAN-A than as FPCN-B in non-semantic tasks (spatial working memory 

task: t = 3.913, p = 0.002; math task: t = 5.294, p < 0.001), but there was no difference 

between these networks in the feature matching task when participants needed to retrieve 

long-term memory according to external goals (t = 0.217, p = 0.83). FPCN-A was more likely 

to be misclassified as FPCN-B than as DAN-A in the semantic association task (t = -3.00, p 

= 0.008). All p values are FDR-corrected. In summary, FPCN-A varied its similarity to DAN-

A and FPCN-B networks depending on the task state. This shows how misclassification 

effects go beyond patterns related to spatial adjacency to encompass task states. This shift 

in misclassification contradicts the typical assumption that networks and regions will always 

most closely resemble those that they are adjacent to on the cortical surface. While 

topography constrains the brain’s coupling pattern, it does not determine it entirely. 

2.3.2 FPCN-A showed greater functional interaction with DAN-A than with FPCN-

B in the non-semantic tasks and the opposite pattern in the semantic tasks 

Next, we considered differences in feature similarity, redundancy and functional 
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connectivity between tasks, examining coupling of FPCN-A with DAN-A compared with 

FPCN-B. FPCN-A’s coupling to DAN-A compared with FPCN-B was always greater for the 

non-semantic than semantic tasks (p < 0.001; FWE corrected; Fig. 7). FPCN-A showed 

greater feature similarity, shared more information, and stronger functional connectivity with 

DAN-A in the spatial working memory and math tasks but coupled more with FPCN-B in the 

semantic tasks involving long-term memory (see SM 1.5 and 1.6. for detailed information for 

each task and each measure). Although the topography did not change, this shift in 

interaction challenges the prevailing assumption that networks and regions will consistently 

resemble their most adjacent cortical neighbours. The changing interaction patterns of 

FPCN-A provide convincing evidence to show that topography constrains but does not fully 

explain network connectivity. 

2.3.3 FPCN-B showed consistent interaction with FPCN-A and DMN-B across 

tasks 

Having examined the flexible interaction patterns of FPCN-A, we asked if FPCN-B 

showed similar effects. We compared the probability that FPCN-B was misclassified as 

FPCN-A or as DMN-B in each task, as these were the most confusable networks for FPCN-

B. As shown in Fig. 4B, misclassification was greater for FPCN-A than for DMN-B in the 

semantic feature matching task, when the participants needed to retrieve long-term memory 

according to external goals (t = 2.470, p = 0.019). FPCN-B was misclassified as FPCN-A 

and DMN-B equally often in the semantic association task (t = 1.811, p = 0.080) and the 

non-semantic tasks (spatial working memory task, t = -1.037, p = 0.309; math task, t = -

1.326, p = 0.245). All p values are FDR-corrected. These results show that although FPCN-

B can resemble FPCN-A when people engage in controlled retrieval from long-term memory, 

this network also has a strong similarity with DMN-B across task contexts.  

Finally, we quantified differences in feature similarity, redundancy and functional 

connectivity for FPCN-B across tasks, examining interaction of this network with DMN-B and 

FPCN-A. In contrast to FPCN-A’s flexibility, FPCN-B showed relatively stable interaction 

pattern. There were no differences in redundancy or functional connectivity across tasks 
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(Fig. 7E and 6F; p > 0.05, uncorrected). FPCN-B showed equal redundancy with FPCN-A 

and DMN-B at rest and in all the tasks, with no differences between tasks (Fig. 7E, p > 0.05, 

uncorrected). FPCN-B always showed greater functional connectivity with DMN-B than with 

FPCN-A (Fig. 7F; p < 0.05, FWE corrected). FPCN-B showed greater feature similarity with 

FPCN-A than with DMN-B in the semantic feature matching task (t = 2.317, p = 0.033) but 

showed the opposite pattern in the spatial working memory task (t = -3.153, p = 0.005) and 

this task difference was significant (Fig. 7D; p < 0.002, FWE corrected). FPCN-B more 

closely resembled FPCN-A when people engaged in controlled retrieval from long-term 

memory but overall FPCN-B showed relatively consistent network interaction across tasks. 

Fig. 7. The interaction patterns of FPCN-A varied across tasks, while FPCN-B showed more 

stable patterns. The values in the top panel represent the interaction difference between 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.556465doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556465
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

FPCN-A and DAN-A versus FPCN-A and FPCN-B: positive values mean FPCN-A showed 

greater interaction with DAN-A than with FPCN-B. The values in the bottom panel represent 

the interaction difference between FPCN-B and FPCN-A versus FPCN-B and DMN-B: 

positive values mean FPCN-B showed greater interaction with FPCN-A than with DMN-B. 

A, B and C: The interaction differences in feature similarity, redundancy, and functional 

connectivity between FPCN-A and DAN-A versus FPCN-A and FPCN-B were greater in the 

non-semantic working memory tasks than in the semantic tasks. The task differences 

reflected greater interaction of FPCN-A with DAN-A than with FPCN-B in the non-semantic 

working memory tasks but the opposite pattern during the retrieval of knowledge from long-

term memory. D, E, F: There were no interaction differences in redundancy, and functional 

connectivity between FPCN-B and FPCN-A versus FPCN-B and DMN-B across tasks. The 

difference in feature similarity was greater in the semantic feature matching task than in the 

spatial working memory task because FPCN-B showed greater interaction with FPCN-A 

than with DMN-B in the semantic feature matching task but showed the opposite pattern in 

the spatial working memory task. The white asterisk means the interaction difference was 

significant for that task at a specific threshold (*, p = 0.05; **, p = 0.01; ***, p = 0.001 by 

permutation based maximum t-tests, FWE corrected). The black asterisk means the 

interaction difference was significant across task pairs at a specific threshold (*, p = 0.05; **, 

p = 0.01; ***, p = 0.001 by permutation based maximum t-tests, FWE corrected). 

3. Discussion   

Our study shows that cortical topography, in conjunction with the underlying anatomy, 

provides a landscape in which flexible changes in neural function across situations can be 

understood. This landscape provides an architecture that supports the flexible deployment 

of distinct cognitive modes. By this account, FPCN subnetworks supporting distinct aspects 

of cognitive control are topographically positioned, and anatomically similar to their adjacent 

systems, allowing them to interact in a context-specific manner (Fig. 8). FPCN-A and FPCN-

B are proximal to DAN and DMN respectively and this proximity is reflected by key 

anatomical features, including myelin content, the degree of cortical expansion, and cross-

species similarity. This anatomical similarity complements the topographical organization of 
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FPCN into adjacent subsystems and these aspects together account for important features 

of FPCN’s functional behavior. FPCN-A is more coupled with attention regions (particularly 

DAN-A), while FPCN-B is more coupled with memory regions (particularly DMN-B). 

Importantly, however, these relationships can change across contexts: FPCN-A shows 

stronger functional interaction to DAN-A during working memory and to FPCN-B during tasks 

more reliant on long-term memory. This shift in interaction challenges the prevailing 

assumption that networks and regions will consistently resemble their most adjacent cortical 

neighbors. FPCN-B shows more deactivation in response to demanding tasks and a pattern 

of interaction to both FPCN-A and DMN-B across tasks. The relative flexibility in FPCN-A 

and the relative stability of FPCN-B explains how people can utilize context-specific working 

memory and long-term memory to support flexible behavior.    

These findings confirm that FPCN-A is closer to sensory-motor regions, positioned 

between DAN and FPCN-B on the cortical hierarchy, and can change its interaction to these 

networks depending on the task demands. In contrast, FPCN-B lies between FPCN-A and 

DMN-B and is coupled to both networks (Fig. 8). In this way, the topographical organisation 

of cognitive control regions allows FPCN-A to show the characteristics of a highly flexible 

‘multiple-demand’ network, supporting executive control processes across domains 12,13,56–

61, while the neighbouring FPCN-B shows the characteristics of a memory control network 

51,62–64. This architecture might allow FPCN networks to be influenced by both DAN and 

DMN at different times, even though these networks are typically anti-correlated 50,52,65. In 

this way, our findings explain how previous studies have found both functional dissociations 

and similarities between FPCN and DMN (across different task contexts)18,49,50,53. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.556465doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556465
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

 

Fig. 8. A schematic of the topographic relationships of networks and how this allows them 

to change their interaction patterns according to task demands to support flexible behavior, 
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after Mesulam (1998). FPCN-A and FPCN-B are situated between DAN and DMN and they 

are influenced by their adjacent networks, allowing them to resolve competition and keep a 

functional balance between goal-oriented attentional mechanisms supporting working 

memory (drawing on DAN) and retrieval from long-term memory (supported by DMN). The 

topographic location of FPCN-A – situated between DAN and FPCN-B – allows it to shift its 

interaction towards attentional systems or memory systems according to task demands. In 

a changing environment, the engagement of externally oriented attentional mechanisms 

fractionates regions implicated in cognitive control, such that FPCN-A couples more with 

DAN-A than with FPCN-B in working memory task. This architecture might prevent 

interference from memory-based schema. When cognition instead needs to be guided by 

long-term memory, FPCN-A couples with FPCN-B, making this network less able to track 

fluctuating environmental changes but allowing it to integrate information from DMN. 

The ability of FPCN-A to change its activity in a context specific manner indicates that 

this network might provide a ‘dynamic core’ controlling information flow by modulating 

network interactions in a context-sensitive fashion 66. Dynamic core regions are involved in 

multiple tasks, can integrate more specialized brain regions, and alter their baseline 

communication dynamics to support task-specific computations67–70. In a changing 

environment, interaction of FPCN-A with externally oriented attentional mechanisms 

appears to break apart the FPCN, such that FPCN-A couples more with DAN-A than with 

FPCN-B. This architecture might prevent interference from memory-based schema that 

conflict with the veridical state of the environment. When cognition instead needs to be 

guided by long-term memory, FPCN-A couples more with FPCN-B, making this network less 

able to track fluctuating environmental changes but allowing it to integrate information from 

DMN. Our findings are broadly consistent with the tethering hypothesis 21, which anticipates 

that proximity to sensory-motor regions constrains brain function. By extension, this account 

suggests that the relative separation of FPCN-A from DMN helps to protect information in 

working memory from biases that reflect expectations arising from conceptual knowledge 

and from fluctuations of emotion and motivation. Conversely, the proximity of FPCN-B to 

DMN allows it to support the retrieval of abstract and heteromodal concepts, and to reflect 
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relevant information in memory even when this is at odds with the external environment 71. 

In tasks requiring controlled memory retrieval, these two control systems are expected to 

work together such that the representation of goals in working memory can interact with 

abstract semantic representations 50,52,65. Importantly, our study suggests that part of this 

flexibility may be reflected in the accompanying anatomical differences that mirror the 

topography of these networks.  

There are of course limitations of the current study and remaining questions to be 

addressed. First, we are yet to establish whether the functional architecture we describe is 

relevant to all aspects of long-term memory, since our data are restricted to verbal semantic 

judgements. Future research should examine non-verbal semantic tasks and long-term 

memory beyond the semantic domain. Similarly, this architecture for flexible cognitive control 

may not extend to all working memory tasks, or to controlled perceptual-motor tasks. Other 

network interactions may also be important for flexible human cognition across a broader 

range of tasks, including the FPCN-C subnetwork (also described in the parcellation we 

used), which was not found to strongly contribute to the tasks in this study. Future studies 

can directly compare the flexibility of FPCN-A and FPCN-B using the same participants. 

Future research should also assess the extent to which the mechanisms for flexible 

control described here relate to individual differences in cognitive performance and cognition 

in daily life, and whether topographical differences predict these individual differences in 

behaviour. A previous study that combined task performance and brain data using canonical 

correlation analysis found that working memory and long-term memory were two distinct 

neurocognitive modes that showed different associations with spontaneous thought in the 

lab 72. These modes might relate to the different patterns of interaction we identified between 

control networks; if so, individual differences in the relative strength or frequency of these 

controlled states might predict the extent to which people are able to control long-term 

memory retrieval and update working memory with goal-relevant information from the 

external world. They might also predict the kinds of thoughts that people are likely to have 

in their daily lives, with important implications for health, education, and wellbeing. Finally, 

while it is extremely challenging to examine the causal relationship between topography and 
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function, computational simulations and studies of people with sensory impairment may help 

to elucidate this link.  

In conclusion, this study shows how brain organisation supports mental flexibility. We 

establish that flexible human behavior is in part supported by the topographical separation 

of the frontoparietal system into subnetworks that are proximal to the dorsal attention 

network and default mode network. This topographical organization then allows distinct 

patterns of interaction to emerge in tasks underpinned by working memory and long-term 

knowledge, helping to explain how the brain maintains a functional balance between states 

that rely on top-down attention to the external environment compared with retrieval of 

information from long-term memory.  

4. Materials and Methods 

4.1. Experimental design 

 This study included three datasets, one open dataset – the Human Connectome Project 

(HCP) and two task fMRI datasets collected at the University of York, UK. We analysed the 

structural MRI (sMRI) and resting-state functional MRI (rsfMRI) data of 245 unrelated 

participants who completed all four resting-state scans from the S900 release of HCP 

dataset to investigate the cortical geometry, anatomical hierarchy, functional hierarchy, and 

functional connectivity patterns. To distinguish control processes related to recently 

presented information in working memory from control processes for long-term memory, we 

examined two non-semantic tasks requiring the maintenance of information in working 

memory which have been analysed before 36,50,73 and two semantic long-term memory tasks 

scanned in York, UK. In the non-semantic dataset, participants completed easy and hard 

spatial working memory and arithmetic tasks originally designed to localise domain general 

control regions 13. In the semantic dataset, participants performed a semantic feature 

matching task in which participants were asked to match probe and target concepts 

(presented as written words) according to color or shape and a semantic association task in 

which they were asked to decide if pairs of words were semantically associated or not. The 

contrast between non-semantic and semantic tasks allowed us to investigate how the 
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interaction between control and other networks was modulated by task demands. 

4.2. Participants 

 All participants were right-handed, native English speakers, with normal or corrected-to-

normal vision and no history of psychiatric or neurological illness. All participants provided 

informed consent. For the HCP dataset, the study was approved by the Institutional Review 

Board of Washington University at St. Louis. For the University of York dataset, the research 

was approved by the York Neuroimaging Centre and Department of Psychology ethics 

committees. 

The HCP sample involved data from 245 healthy volunteers (130 males, 115 females), 

aged 23 – 35 years (mean = 28.21, SD = 3.67) 74.  

31 healthy adults (26 females; age: mean ± SD = 20.60 ± 1.68, range: 18 – 25 years) 

performed the spatial working memory and math tasks. One participant with incomplete data 

was removed. A functional run was excluded if (I) relative root mean square (RMS) 

framewise displacement was higher than 0.2 mm, (II) more than 15% of frames showed 

motion exceeding 0.25 mm, or (III) the accuracy of the behavior task was low (3SD below 

the mean). If only run of a task was left for a participant after exclusion, all their data for that 

task were removed. These exclusion criteria resulted in a final sample of 27 participants for 

both the spatial working memory task and the math task.  

31 healthy adults performed the semantic long-term memory tasks (25 females; age: 

mean ± SD = 21.26 ± 2.93, range: 19 – 34 years). Using the same exclusion criteria above 

for the feature matching task, there were 23 participants with 4 runs, 4 participants with 3 

runs, and 1 participant with 2 runs. For the association task, there were 24 participants with 

4 runs, 3 participants with 3 runs, and 3 participants with 2 runs. Another 30 native English 

speakers who did not take part in the main fMRI experiment rated the color and shape 

similarity and semantic association strength for each word pair (21 females; age range: 18 

– 24 years). 
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4.3. Task paradigms 

4.3.1. Spatial working memory task 

Participants were required to maintain four or eight sequentially presented locations in 

a 3×4 grid 75, giving rise to easy and hard spatial working memory conditions. Stimuli were 

presented at the center of the screen across four steps. Each of these steps lasted for 1s 

and highlighted one location on the grid in the easy condition, and two locations in the hard 

condition. This was followed by a decision phase, which showed two grids side by side (i.e., 

two-alternative forced choice (2AFC) paradigm). One grid contained the locations shown on 

the previous four steps, while the other contained one or two locations in the wrong place. 

Participants indicated their response via a button press and feedback was immediately 

provided within in 2.5s. Each run consisted of 12 experimental blocks (6 blocks per condition 

and 4 trials in a 32 s block) and 4 fixation blocks (each 16 s long), resulting in a total time of 

448 s. 

4.3.2. Math task 

Participants were presented with an addition expression on the screen for 1.45s and, 

subsequently made a 2AFC decision indicating their solution within 1s. The easy condition 

used single-digit numbers while the hard condition used two-digit numbers. Each trial ended 

with a blank screen lasting for 0.1s. Each run consisted of 12 experimental blocks (with 4 

trials per block) and 4 fixation blocks, resulting in a total time of 316s.  

4.3.3. Semantic feature matching task 

Participants were required to make a yes/no decision matching probe and target 

concepts (presented as words) according to a particular semantic feature (color or shape), 

specified at the top of the screen during each trial. The feature prompt, probe word, and 

target words were presented simultaneously. Half of the trials were matching trials in which 

participants would be expected to identify shared features; while half of the trials were non-

matching trials in which participants would not be expected to identify shared features. For 
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example, in a color matching trial participants would answer ‘yes’ to the word-pair 

DALMATIANS – COWS, due to their color similarity, whereas they would answer ‘no’ to 

COAL -TOOTH as they do not share a similar color.  

We parametrically manipulated the degree of feature similarity between the probe and 

target concepts, using semantic feature similarity ratings taken from a separate group of 30 

participants on a 5-point Likert Scale. For instance, in color-matching trials, the degree of 

color similarity between DALMATIANS and COWS was found to be very high (i.e., 4.8), 

while that between PUMA and LION was relatively low (i.e., 4.0), despite the participants' 

belief that the two trials had similar color. Conversely, in color non-matching trials, the degree 

of color similarity between CROW and HUMMINGBIRD was relatively high (i.e., 2.5), 

whereas that between COAL and TOOTH was very low (i.e., 1.2), even though the 

participants perceived no similarity in color. For the matching trials, greater feature similarity 

facilitates the decision-making process, while for the non-matching trials, greater feature 

similarity makes the decision more difficult. This parametric design allowed us to model the 

effect of the difficulty of semantic decision in the neural data, and test whether control 

subnetworks showed similar or opposite activation patterns.  

This task included four runs and two conditions (two features: color and shape), 

presented in a mixed design. Each run consisted of four experimental blocks (two 2 min 30 

s blocks per feature), resulting in a total time of 10 min 12 s. In each block, 20 trials were 

presented in a rapid event-related design. In order to maximize the statistical power of the 

rapid event-related fMRI data analysis, the stimuli were presented with a temporal jitter 

randomized from trial to trial 76. The inter-trial interval varied from 3 to 5 s. Each trial started 

with a fixation, followed by the feature, probe word, and target word presented centrally on 

the screen, triggering the onset of the decision-making period. The feature, probe word, and 

target word remained visible until the participant responded, or for a maximum of 3 s. The 

condition order was counterbalanced across runs and run order was counterbalanced 

across participants. Half of the participants pressed a button with their right index finger to 

indicate a matching trial and responded with their right middle finger to indicate a non-

matching trial. Half of the participants pressed the opposite buttons.  
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4.3.4. Semantic association task 

Participants were asked to decide if pairs of words were semantically associated or not 

(i.e., yes/no decision as above) based on their own experience. Overall, there were roughly 

equal numbers of ‘related’ and ‘unrelated’ responses across participants. The same stimuli 

were used in the semantic feature matching task and semantic association task. For 

example, DALMATIANS and COWS are semantically related; COAL and TOOTH are not. 

The feature and association tasks were separated by one week. Similarly, we parametrically 

manipulated the semantic association strength between the probe and target concepts, 

using semantic association strength ratings taken from a separate group of 30 participants 

on a 5-point Likert Scale. For example, in related trials, the association strength between 

PUMA and LION is very strong while for COWS and WHALE it is relatively weak (although 

they are still both animals). In non-related trials, the association strength between 

KINGFISHER and SCORPION is relatively high while BANANA and BRICK is very low 

although participants thought neither were related. For the related trials, stronger 

associations would facilitate decision making, while for unrelated trials, stronger 

associations interfere with the decision making. This parametric design allowed us to model 

the effect of the difficulty of semantic decision in the neural data, and test whether control 

subnetworks showed similar or opposite activation patterns. 

This task included four runs, presented in a rapid event-related design. Each run 

consisted of 80 trials, with about half being related and half being unrelated trials. The 

procedure was the same as the feature matching task except only two words were presented 

on the screen.   

4.4. Image acquisition 

4.4.1. Image acquisition of HCP dataset 

MRI acquisition protocols of the HCP dataset have been previously described 74,77. 

Images were acquired using a customized 3T Siemens Connectome scanner having a 100 

mT/m SC72 gradient set and using a standard Siemens 32-channel radiofrequency receive 
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head coil. Participants underwent the following scans: structural (at least one T1-weighted 

(T1w) MPRAGE and one 3D T2-weighted (T2w) SPACE scan at 0.7-mm isotropic resolution), 

rsfMRI (4 runs ×14 min and 33 s). Since not all participants completed all scans, we only 

included 339 unrelated participants from the S900 release. Whole-brain rsfMRI and task 

fMRI data were acquired using identical multi-band echo planar imaging (EPI) sequence 

parameters of 2-mm isotropic resolution with a TR = 720 ms.  

Subjects were considered for data exclusion based on the mean and mean absolute 

deviation of the relative root-mean-square motion across either four rsfMRI scans or one 

dMRI scan, resulting in four summary motion measures. If a subject exceeded 1.5 times the 

interquartile range (in the adverse direction) of the measurement distribution in two or more 

of these measures, the subject was excluded. In addition, functional runs were flagged for 

exclusion if more than 25% of frames exceeded 0.2 mm frame-wise displacement 

(FD_power). These above exclusion criteria were established before performing the 

analysis 78,79. The data of 91 participants was excluded because of excessive head motion 

and the data of another 3 participants was excluded because their resting data did not have 

all the time points. In total, the data of 245 participants was analysed after exclusions. 

4.4.2. Image acquisition of York Non-semantic dataset 

MRI acquisition protocols have been described previously 50,73. Structural and functional 

data were collected on a Siemens Prisma 3T MRI scanner at the York Neuroimaging Centre. 

The scanning protocols included a T1-weighted MPRAGE sequence with whole-brain 

coverage. The structural scan used: acquisition matrix of 176ௗ×ௗ256ௗ×ௗ256 and voxel size 

1ௗ×ௗ1ௗ×ௗ1 mm3, repetition time (TR) = 2300 ms, and echo time (TE) = 2.26 ms. Functional 

data were acquired using an EPI sequence with an 800 flip angle and using GRAPPA with 

an acceleration factor of 2 in 3 x 3 x 4 mm voxels in 64-axial slices. The functional scan 

used: 55 3-mm-thick slices acquired in an interleaved order (with 33% distance factor), TR 

= 3000 ms, TE = 15 ms, FoV = 192 mm. 
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4.4.3. Image acquisition of York Semantic dataset  

Whole brain structural and functional MRI data were acquired using a 3T Siemens MRI 

scanner utilising a 64-channel head coil, tuned to 123 MHz at York Neuroimaging Centre, 

University of York. The functional runs were acquired using a multi-band multi-echo (MBME) 

EPI sequence, each 11.45 minutes long (TR=1.5 s; TE = 12, 24.83, 37.66 ms; 48 interleaved 

slices per volume with slice thickness of 3 mm (no slice gap); FoV = 24 cm (resolution matrix 

= 3x3x3; 80x80); 75° flip angle; 455 volumes per run; 7/8 partial Fourier encoding and 

GRAPPA (acceleration factor = 3, 36 ref. lines); multi-band acceleration factor = 2). 

Structural T1-weighted images were acquired using an MPRAGE sequence (TR = 2.3 s, TE 

= 2.3 s; voxel size = 1x1x1 isotropic; 176 slices; flip angle = 8°; FoV= 256 mm; interleaved 

slice ordering). We also collected a high-resolution T2-weighted (T2w) scan using an echo-

planar imaging sequence (TR = 3.2 s, TE = 56 ms, flip angle = 120°; 176 slices, voxel size 

= 1x1x1 isotropic; Fov = 256 mm). 

4.5. Image pre-processing  

4.5.1. Image pre-processing of HCP dataset 

We used HCP’s minimal pre-processing pipelines 74. Briefly, for each subject, structural 

images (T1w and T2w) were corrected for spatial distortions. FreeSurfer v5.3 was used for 

accurate extraction of cortical surfaces and segmentation of subcortical structures 80,81. To 

align subcortical structures across subjects, structural images were registered using non-

linear volume registration to the Montreal Neurological Institute (MNI152) space. Functional 

images (rest and task) were corrected for spatial distortions, head motion, and mapped from 

volume to surface space using ribbon-constrained volume to surface mapping.   

Subcortical data were also projected to the set of extracted subcortical structure voxels 

and combined with the surface data to form the standard CIFTI grayordinate space. Data 

were smoothed by a 2-mm FWHM kernel in the grayordinates space. Rest data were 

additionally identically cleaned for spatially specific noise using spatial ICA+FIX 82 and global 

structured noise using temporal ICA 83. For accurate cross-subject registration of cortical 
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surfaces, a multimodal surface matching (MSM) algorithm 84 was used to optimize the 

alignment of cortical areas based on features from different modalities. MSMSulc (“sulc”: 

cortical folds average convexity) was used to initialize MSMAll, which then utilized myelin, 

resting-state network, and rfMRI visuotopic maps. Myelin maps were computed using the 

ratio of T1w/T2w images 82. The HCP’s minimally preprocessed data include cortical 

thickness maps (generated based on the standardized FreeSurfer pipeline with combined 

T1-/T2-reconstruction). For this study, the standard-resolution cortical thickness maps (32k 

mesh) were used. 

4.5.2. Image pre-processing of York Non-semantic and Semantic dataset 

The York datasets were preprocessed using fMRIPrep 20.2.1 [85, RRID:SCR_016216], 

which is based on Nipype 1.5.1 [86, RRID:SCR_002502]. 

4.5.2.1. Anatomical data preprocessing 

The T1w image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection 87, distributed with ANTs 2.3.3 [88, RRID:SCR_004757], and used as 

T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a 

Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 

fast FSL 5.0.9 [89, RRID:SCR_002823]. Brain surfaces were reconstructed using recon-all 

from FreeSurfer 6.0.1 [90, RRID:SCR_001847], and the brain mask estimated previously 

was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter of Mindboggle [91, RRID:SCR_002438]. 

Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, 

MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration 

(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. 

The following templates were selected for spatial normalization: ICBM 152 Nonlinear 

Asymmetrical template version 2009c [92, RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric 
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Average Brain Stereotaxic Registration Model [93, RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym]. 

4.5.5.2. Functional data preprocessing 

For each of the BOLD runs per subject, the following preprocessing was performed. 

First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based on a 

phase-difference map calculated with a dual-echo GRE (gradient-recall echo) sequence, 

processed with a custom workflow of SDCFlows inspired by the epidewarp.fsl script and 

further improvements in HCP Pipelines 74. The fieldmap was then co-registered to the target 

EPI reference run and converted to a displacements field map (amenable to registration 

tools such as ANTs) with FSL’s fugue and other SDCflows tools. Based on the estimated 

susceptibility distortion, a corrected EPI reference was calculated for a more accurate co-

registration with the anatomical reference. The BOLD reference was then co-registered to 

the T1w reference using bbregister (FreeSurfer) which implements boundary-based 

registration 94. Co-registration was configured with six degrees of freedom. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six 

corresponding rotation and translation parameters) were estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9,95). BOLD runs were slice-time corrected 

using 3dTshift from AFNI 20160207 [(27), RRID:SCR_005927]. Since multi-echo BOLD data 

was supplied in the York Semantic dataset, the tedana T2* workflow was used to generate 

an adaptive T2* map and optimally weighted combination of all supplied single echo time 

series. This optimally combined time series was then carried forward for all subsequent 

preprocessing steps. The BOLD time-series were resampled onto the following surfaces 

(FreeSurfer reconstruction nomenclature): fsaverage. Grayordinates files 74 containing 91k 

samples were also generated using the highest-resolution fsaverage as intermediate 

standardized surface space. Several confounding time-series were calculated based on the 

preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global 

signals. FD was computed using two formulations following previous work (absolute sum of 

relative motion; 97, relative root mean square displacement between affines 95). FD and 
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DVARS were calculated for each functional run, both using their implementations in Nipype 

97. Three global signals were extracted within the CSF, the WM, and the whole-brain masks. 

The confound time series derived from head motion estimates and global signals were 

expanded with the inclusion of temporal derivatives and quadratic terms for each 98. Frames 

that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as 

motion outliers. All resamplings were performed with a single interpolation step by 

composing all the pertinent transformations (i.e., head-motion transform matrices, 

susceptibility distortion correction when available, and co-registrations to anatomical and 

output spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 

smoothing effects of other kernels 99. Non-gridded (surface) resamplings were performed 

using mri_vol2surf (FreeSurfer). fMRIPrep used Nilearn 0.6.2 [100 RRID:SCR_001362], 

mostly within the functional processing workflow. The resulting data were in CIFTI 64k-vertex 

grayordinate space. The left hemisphere had 29696 vertices and right hemisphere had 

29716 vertices in total after removing the medial wall. 

Post-processing of the outputs of fMRIPrep version 20.2.1 85 was performed using the 

eXtensible Connectivity Pipeline (XCP) 98,101. For each CIFTI run per subject, the following 

post-processing was performed: before nuisance regression and filtering any volumes with 

framewise-displacement greater than 0.3 mm 97,98 were flagged as outliers and excluded 

from nuisance regression. In total, 36 nuisance regressors were selected from the nuisance 

confound matrices of fMRIPrep output. These nuisance regressors included six motion 

parameters, global signal, mean white matter, and mean CSF signal with their temporal 

derivatives, and the quadratic expansion of six motion parameters, tissue signals and their 

temporal derivatives 98,101,102. These nuisance variables were accounted for in the BOLD 

data using linear regression - as implemented in Scikit-Learn 0.24.2 103. Residual timeseries 

from this regression were then band-pass filtered to retain signals within the 0.01-0.08 Hz 

frequency band. The processed BOLD was smoothed using Connectome Workbench with 

a gaussian kernel size of 6.0 mm (FWHM). Processed functional timeseries were extracted 

from residual BOLD using Connectome Workbench 74 . Many internal operations of XCP 
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use Nibabel 100, numpy 104, and scipy 104.  

4.6. Structural and task fMRI analysis 

4.6.1. Individual-specific parcellation 

Considering the anatomical and functional variability across individuals 105–108, we 

estimated individual-specific areal-level parcellation using a multi-session hierarchical 

Bayesian model (MS-HBM) 30,109. To estimate individual-specific parcellation, we acquired 

‘‘pseudo-resting state’’ timeseries in which the task activation model was regressed from 

feature matching, semantic association, spatial working memory, and math fMRI data 110 

using xcp_d (https://github.com/PennLINC/xcp_d). The task activation model and nuisance 

matrix were regressed out using AFNI’s3dTproject (for similar implementation, see Cui et al. 

111). 

Using a group atlas, this method calculates inter-subject resting-state functional 

connectivity variability, intra-subject resting-state functional connectivity variability, and 

finally parcellates for each single subject based on this prior information. As in Kong et al. 

30,109, we used MS-HBM to define 400 individualized parcels belonging to 17 discrete 

individualized networks for each participant in which control network was divided into 3 sub-

networks, allowing us to explore the heterogeneity of control network. Specifically, we 

calculated all participants’ connectivity profiles, created the group parcellation using the 

average connectivity profile of all participants, estimated the inter-subject and intra-subject 

connectivity variability, and finally calculated each participant’s individualized parcellation. 

This parcellation imposed the Markov random filed (MRF) spatial prior. We used a well-

known areal-level parcellation approach, i.e., the local gradient approach (gMS-HBM), which 

detects local abrupt changes (i.e., gradients) in resting-state functional connectivity across 

the cortex 112. A previous study 113 has suggested combining local gradient 33,112 and global 

clustering 31 approaches for estimating areal-level parcellations. Therefore, we 

complemented the spatial contiguity prior in contiguous MS-HBM (cMS-HBM) with a prior 

based on local gradients in resting-state functional connectivity, which encouraged adjacent 

brain locations with gentle changes in functional connectivity to be grouped into the same 
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parcel. We used the pair of parameters (i.e., beta value = 50, w = 30 and c = 30), which was 

optimized using our own dataset. The same parameters were also used in Kong et al. 30. 

Vertices were parcellated into 400 cortical regions (200 per hemisphere). To parcellate each 

of these parcels, we calculated the average time series of enclosed vertices to get better 

signal noise ratio (SNR) using Connectome Workbench software. This parcel-based time 

series was used for all the following analyses. The same method and parameters were used 

to generate the individual-specific parcellation for the participants in the HCP dataset using 

the resting-state time series except that the task regression was not performed.  

4.6.1.1 Homogeneity of parcels 

To evaluate whether a functional parcellation is successful, parcel homogeneity is 

commonly used 30,33,109. Parcel homogeneity was calculated as the average Pearson’s 

correlations between fMRI time courses of all pairs of vertices within each parcel, adjusted 

for parcel size and summed across parcels 30,109,113. Higher homogeneity means that 

vertices within the same parcel share more similar time courses and indicates better 

parcellation quality. To summarize the parcel homogeneity, we averaged the homogeneity 

value across parcels. We calculated the parcel homogeneity for each run of each participant 

for each task using the individual-specific parcellation and then average them across runs 

for each participant for each task. We also calculated the parcel homogeneity using 

canonical Yeo 17-network group atlas. Using the resting state data of the HCP dataset, Kong 

et al 30 have demonstrated that homogeneity within MS-HBM-based individualized parcels 

was greater than that in the canonical Yeo 17-network group atlas that does not consider 

variation in functional neuroanatomy. The similar pattern was observed using York Non-

semantic and Semantic datasets (Fig. S1). We also observed that the homogeneity of the 

semantic tasks of York Semantic dataset were higher than the non-semantic tasks of York 

Non-semantic dataset. The potential reason might be that we collected T2-weighted images 

for the semantic tasks to improve the skull-stripping, giving a better outcome for pial surface 

reconstruction. Given the known heterogeneity within the FPCN, as well as within the DAN 

and DMN, we did not merge any subnetworks as was done by Dixon et al. (2018) and 

Murphy et al. (2020). 
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4.6.2. Cortical geometry - global minimum distance to primary sensory-motor 

landmarks 

To reveal how the physical proximity to structural landmarks corresponding to primary 

sensory-motor regions influences the function of regions, we calculated the geodesic 

distance between each parcel and key landmarks associated with primary visual, auditory 

and somatomotor cortex. We used these values to identify the minimum geodesic distance 

to primary sensory-motor regions for each parcel. Three landmarks were used: central 

sulcus, which is the topographical landmark corresponding to primary somatosensory/motor 

cortex; temporal transverse sulcus, which provides a landmark for primary auditory cortex; 

and calcarine sulcus, marking the location of primary visual cortex. Since cortical folding 

patterns vary across participants, and individual variability in cortical folding increases with 

cortical surface area, both the shapes of these landmarks and the number of vertices within 

each landmark might show individual variability 114. We used participant-specific landmark 

label files to locate the participant-specific vertices belonging to each landmark and 

participant-specific parcellation to locate the vertices within each parcel 36.  

Geodesic distance along the “midthickness” of the cortical surface (halfway between the 

pial and white matter) was calculated using the Connectome Workbench software with an 

algorithm that measures the shortest path between two vertices on a triangular surface mesh 

115,116. This method returns distance values that are independent of mesh density. Geodesic 

distance was extracted from surface geometry (GIFTI) files, following surface-based 

registration 84. To ensure that the shortest paths would only pass through the cortex, vertices 

representing the medial wall were removed from the triangular mesh in this analysis.  

We calculated the minimum geodesic distance between each vertex and each landmark. 

Specifically, for the landmark central sulcus, we calculated the geodesic distance between 

vertex i outside central sulcus and each vertex within the central sulcus (defined for each 

individual; see above). We then found vertex j within the central sulcus closest to vertex i, 

and extracted this value as the minimum geodesic distance between vertex i and this 
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landmark. To compute the minimum geodesic distance between parcel k and the central 

sulcus, we computed the average minimum distance across all the grayordinate vertices in 

parcel k to the vertices within the central sulcus. We used the same procedure to calculate 

minimum geodesic distance between each parcel and all three sensory-motor landmarks 

(central sulcus and temporal transverse sulci as well as calcarine sulcus). From these three 

minimum geodesic distances identified between parcel k and sensory-motor landmarks, we 

then selected the lowest distance value (i.e., the landmark that was closest to parcel k) to 

define the global minimum distance to sensory-motor regions for parcel k. Then we 

averaged the mean minimum distance of all the parcels within each network for each 

participant and then sorted the networks by the mean minimum distance across participants. 

Finally, we examined whether mean minimum distance of FPCN-A and FPCN-B were 

different by performing a paired t-test.  

4.6.3. Anatomical hierarchy – myelin content and cortical thickness 

We measured myelin which is a non-invasive and valid proxy for anatomical hierarchy 

and captures the anatomical hierarchy better than cortical thickness 22. The gray-matter 

myelin content can be measured via the cortical T1w/T2w map, which is a structural 

neuroimaging map defined by the contrast ratio of T1- to T2-weighted (T1w/T2w) magnetic 

resonance images 24,35,74,82. 

Human T1w/T2w maps were obtained from the HCP in the surface-based CIFTI file 

format. To produce the T1w/T2w maps, high resolution T1- and T2-weighted images were 

first registered to a standard reference space using a state-of-the-art areal-feature-based 

technique 24,35,74.   

Each participant has a myelin map, with each vertex having a myelin value (i.e., 

T1w/T2w). We calculated the myelin value of each parcel by averaging the myelin values of 

all the vertices within this parcel for each participant using the individual-specific parcellation. 

Similarly, we calculated the myelin value of each network by averaging the myelin values of 

all the parcels within each network for each participant and then sorted the networks by the 

mean myelin value across participants. Finally, we examined whether the myelin values of 
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the FPCN-A and FPCN-B were different by performing paired t-tests.  

Cortical thickness coarsely tracks changes in cytoarchitecture and myelin content, and 

can be viewed as a pragmatic surrogate for cortical microstructure. Therefore, we also 

examined cortical thickness of each network which measures the width of gray matter of 

cortex across networks. The procedure was as above, except we used the cortical thickness 

maps and extracted the cortical thickness of each vertex of each participant. 

4.6.4. Function hierarchy - principal connectivity gradient analysis 

To examine the relative position of networks on the principal gradient axis of intrinsic 

connectivity, we performed dimension reduction analysis on resting state functional 

connectivity matrix of HCP dataset. First, the resting-state functional connectivity for each 

run of each participant was calculated using the method in 4.6.10. These individual 

connectivity matrices were then averaged to calculate a group-averaged connectivity matrix. 

The Brainspace Toolbox 117 was used to extract ten group-level gradients from the group-

averaged connectivity matrix (dimension reduction technique = diffusion embedding, kernel 

= None, sparsity = 0.9), in line with previous studies 118. Using identical parameters, 

gradients were then calculated for each individual using their average 400 × 400 resting 

state functional connectivity matrix across four runs. These individual-level gradient maps 

were aligned to the group-level gradient maps using Procrustes rotation to improve 

comparison between the group-level gradients and individual-level gradients (N iterations = 

10). This analysis resulted in ten group-level gradients and ten individual-level gradients for 

each participant explaining maximal whole-brain connectivity variance in descending order. 

For 238 out of 245 participants, the first gradient explaining maximal variance, was the 

principal gradient which captures the separation between unimodal and transmodal regions 

20. Next, we averaged the first gradient values of all the parcels within each network for each 

participant whose first gradient was the principal gradient and then sorted the networks by 

the mean gradient values across participants. Finally, we examined whether the gradient 

values of FPCN-A and FPCN-B were different by performing paired t-tests.  
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4.6.5. Comparing the evolutionary expansion and cross-species similarity between 

FPCN-A and FPCN-B 

We used the evolutionary expansion map and cross-species similarity map 29 from 

https://github.com/TingsterX/alignment_macaque-human. Surface areal expansion map 

was calculated as the human area divided by macaque area at each of corresponding vertex 

on human and macaque surfaces 29. Cross-species similarity is calculated by comparing the 

similarity of whole brain patterns of functional connectivity in macaques and humans 29. We 

extracted the value of each vertex and calculated the mean value of each parcel of the group 

parcellation. Finally, we compared the value between FPCN-A and FPCN-B by conducting 

independent t-tests. 

4.6.6. Feature extraction of the time series data 

We used the highly comparative time-series analysis toolbox, hctsa119,120, to extract 

massive features of the time-series. Using a time-series dataset, hctsa allowed us to 

transform each timeseries to a set of over 7,700 features that each encodes a different 

scientific analysis method 119,120. The extracted features include, but are not limited to, 

distributional properties, entropy and variability, autocorrelation, time-delay embeddings, 

and nonlinear properties of a given time-series 120,121. The hctsa feature extraction analysis 

was performed on the parcellated fMRI time-series of each participant, each task and each 

run separately. Following the feature extraction procedure, the outputs of the operations that 

produced errors were removed and the remaining features (about 6900 features) were 

normalized across parcels using an outlier-robust sigmoidal transform. The normalized 

feature matrix (400 parcels × about 7000 features × 4 runs) was used for further 

classification analysis and feature similarity analysis.  

4.6.7. Classification analysis 

To reveal the network similarity in a data-driven approach, we performed a classification 

analysis using the normalized feature matrix.  
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4.6.7.1. Balanced accuracy of classification analysis 

To examine whether we could classify the network labels of each parcel using the 

extracted massive features, we performed a classification task to investigate how accurately 

a classifier can learn a mapping from time-series features of parcels to network labels of 

these parcels. We combined the normalized features of all the runs of each task for each 

participant and then performed the multi-class classification (17 networks labels) using 

scikit-learn 103, which is a machine learning library written in Python.  

For the multi-class classification, we trained linear support vector machine classifiers 

(sklearn.svm.SVC) to find the hyperplane that maximally separates the samples belonging 

to the difference classes. The parcel numbers of networks are different. For example, both 

FPCN-A and FPCN-B have 25 parcels, while Control-C has 23 parcels. Due to imbalance 

of observations across the networks, we reported balanced classification accuracy122,123. 

Specifically, the balanced accuracy was calculated as the arithmetic mean of sensitivity, (i.e., 

true positive rate which measures the proportion of real positives that are correctly predicted 

out of total positive prediction made by the model), and specificity, (i.e., true negative rate 

which measures the proportion of correctly identified negatives over the total negative 

prediction made by the model). We performed 5-fold cross-validation to prevent overfitting 

leading to optimistic performance estimates. To examine whether the classification accuracy 

was significantly greater than the chance level for each participant and each task, we 

performed the permutation-based multi-class classification analysis in which we randomly 

shuffled the network labels 1000 times within all the runs for each participant for each task. 

This established an empirical distribution of classification accuracy scores under the null 

hypothesis where there is no association between features and network labels 124.  

The data used for classification have about 7000 features and 1600 samples (400 

parcels × 4 runs) in the semantic tasks and 800 samples (400 samples × 2 runs) in the non-

semantic tasks. Machine learning with many more features than samples is challenging, due 

to the so-called curse of dimensionality. The curse of dimensionality describes the explosive 

nature of increasing data dimensions; this increase in the dimensions might increase the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.556465doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556465
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

 

noise and redundancy during its analysis. It has been shown that with a fixed number of 

training samples, the predictive power of any classifier first increases as the number of 

dimensions increase, but after a certain value of number of dimensions, the performance 

deteriorates 125. To explore the curse of dimensionality, we performed the classification using 

all the features and part of the features, respectively. Parts of the features were the top 

features that make major contributions in the classification when using all the features for 

classification. We then compared the classification accuracy using all the features and part 

of the features by conducting a paired t-test. It showed that there is minimal accuracy cost 

when including fewer features and there was no cures of dimensionality. 

4.6.7.2. Confusion matrix of classification analysis 

The classification accuracy allowed us to check whether we can correctly classify the 

network labels of parcels. However, the classification accuracy alone can hide the detail we 

need to diagnose the performance of our model. For example, for multi-class classification, 

high classification accuracy may be observed because all classes are being predicted 

equally well or because one or two classes are being neglected by the model. Therefore, to 

better understand the performance of the classification model, we analyzed the confusion 

matrix, which is a summary of prediction results. In the confusion matrix, a row represents 

an instance of the actual class (i.e., an actual network), whereas a column represents an 

instance of the predicted class (i.e., the predicted network). The diagonal elements 

represent the number of points for which the predicted label is equal to the true label, while 

off-diagonal elements are those that are mislabeled by the classifier. Higher diagonal values 

indicate a higher number of correct predictions. The confusion matrix shows the ways in 

which our classification model is confused when it makes predictions. It gives us insight not 

only into the errors being made by the classifier but more importantly the types of errors that 

are being made. Specifically, we could explore the network similarity by analyzing the 

classification output and how the network similarity varies with task.  

Due to the imbalance of observations across the networks, we normalized the confusion 

matrices by the number of elements in each class. In the current study, we only reported the 
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normalized confusion matrix of control networks. We examined whether the percentages of 

predicted networks were different by conducting paired t-tests. We conducted FDR 

correction at p = 0.05 to control for multiple comparisons. 

4.6.8. Constructing feature similarity matrices 

To investigate how FPCN subnetworks interact with DAN and DMN, we calculated the 

task and resting-state feature similarity. For each normalized feature matrix, we calculated 

Pearson correlation coefficients and transformed them to fisher z to represent the pairwise 

feature similarity between the time-series features of all possible combinations of brain 

parcels. As a result, a 400 × 400 feature similarity matrix was constructed for each individual 

and each run, representing the strength of the similarity of the local temporal fingerprints of 

brain areas. Finally, we averaged the estimates of feature similarity within networks, and 

between pairs of networks, to construct a network-by-network feature similarity matrix. The 

same method was used to calculate the resting-state feature similarity of the HCP dataset 

and construct a network-by-network feature similarity matrix. 

4.6.9. Constructing fMRI redundancy matrices 

To investigate how FPCN subnetworks interact with DAN and DMN, we further 

calculated the redundant interaction. We used the recently developed information approach, 

integrated information decomposition, to decompose time-delayed mutual information into 

redundant, unique, and synergistic information shared with respect to both past and present 

state of both regions37,43. The redundant interaction quantifies how much information about 

the brain’s future trajectory is carried redundantly by distinct brain regions. We focused on 

the temporally persistent redundancy, which corresponds to redundant information in the 

past of both parts that is present in the future of both parts. The temporally persistent 

redundancy was calculated using the Gaussian solver implemented in the JIDT toolbox, 

based on their HRF-deconvolved BOLD signal time series. We calculated the redundant 

interaction for each pair of brain regions, resulting in a 400 × 400 redundancy matrix for per 

participant, per task and per run. Finally, we averaged the estimates of redundancy within 

networks, and between pairs of networks, to construct a network-by-network redundancy 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.556465doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556465
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 

matrix, akin to the one that we constructed from the feature similarity data. 

4.6.10. Constructing fMRI functional connectivity matrices 

To investigate how FPCN subnetworks interact with DAN and DMN, we further 

calculated the task and resting-state functional connectivity. We did not use the traditional 

psychophysiological interaction (PPI) to measure task-state functional connectivity because 

this method can inflate activation-induced task-state functional connectivity (i.e., identify 

regions that are active rather than interacting during the task) 126. Since task activations 

produce spurious but systematic inflation of task-based functional connectivity estimates 126, 

it is necessary to correct for the task-timing confounds by removing the first-order effect of 

task evoked activations (i.e., mean evoked task-related activity; likely active during the task) 

prior to estimating task-state functional connectivity (likely interacting during the task). 

Specifically, we fitted the task timing for each task using a finite impulse response (FIR) 

model 126. This method has been widely used before 127–129. We used an FIR model instead 

of a canonical hemodynamic response function or psychophysiological interactions (PPIs) 

given recent evidence suggesting that the FIR model reduces both false positives and false 

negatives when estimating functional connectivity 126.  

After task regression, we demeaned the residual time series for each parcel and 

calculated the Pearson correlation as the functional connectivity for per participant, per task 

and per run. The Pearson correlation coefficients might be inflated due to the temporal 

autocorrelation present in task fMRI time series data 130. To account for the potential inflation 

of the Pearson correlation coefficients, we corrected the Pearson correlation using a novel 

correction approach – xDF. xDF accounts for distinct autocorrelation in each time series for 

instantaneous and lagged cross-correlation 131. We calculated xDF-adjusted z-scored 

correlation coefficients to compute interregional relationships of bold time series, resulting 

in a 400 × 400 functional connectivity matrix for per participant, per task and per run. Finally, 

we averaged the estimates of functional connectivity within networks, and between pairs of 

networks, to construct a network-by-network functional connectivity matrix. The same 

method was used to calculate the resting-state functional connectivity of the HCP dataset 
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and construct a network-by-network functional connectivity matrix except that the task 

regression was not performed. 

4.6.11. Comparing feature similarity, redundancy and functional connectivity 

difference between networks 

To investigate whether FPCN-A showed greater feature similarity with DAN than FPCN-

B did in each task, we calculated the average feature similarity between FPCN-A and DAN 

and the feature similarity between FPCN-B and DAN, respectively across all runs per 

participant per task, then calculated the relative feature similarity difference (i.e., the feature 

similarity between FPCN-A and DAN minus the feature similarity between FPCN-B and 

DAN), and finally conducted paired-t tests for each task. Then we examined the feature 

similarity between FPCN-B and DMN versus FPCN-A and DMN in the same way. We 

conducted FDR correction at p = 0.05 to control for multiple comparisons. Similarly, we 

investigate whether FPCN-A showed stronger redundancy and functional connectivity with 

DAN than FPCN-B did. We also examined whether FPCN-B showed greater redundancy 

and functional connectivity with DMN than FPCN-A did. The procedure as above, except we 

extracted the redundancy and functional connectivity matrix, respectively. 

We further investigated whether the task influenced the feature similarity difference 

between network pairs using the maximum/minimum permutation test. We might expect that 

feature similarity between FPCN-A and DAN-A versus FPCN-A and FPCN-B would be 

greater in spatial working memory task than in the association task because FPCN-A might 

shift more to DAN in the spatial working memory task that requires an external goal but no 

memory retrieval. To examine this possibility, we calculated the mean feature similarity 

difference between FPCN-A and DAN-A versus FPCN-A and FPCN-B for each task and 

calculated the mean feature similarity difference between each task pair. To test for statistical 

significance, we permutated the task label 10000 times; we then calculated the mean feature 

similarity difference between these two tasks to build a null distribution for each task pair. 

Since we included multiple task pairs, we used the permutation-based maximum mean 

feature similarity difference and minimum mean feature similarity difference values in the 
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null distribution for each task pair to control the family-wise error (FWE) rate (p = 0.05, FWE-

corrected). To evaluate significance, if the observed mean difference value was positive, we 

counted the percentage of times that mean difference values in the maximum null 

distribution were greater than the observed ‘true’ mean difference values; by contrast, if the 

observed mean difference value was negative, we counted the percentage of times of mean 

difference values in the minimum null distribution were less than the observed ‘true’ mean 

difference values. 

Similarly, we investigated whether the task influenced the redundancy and functional 

connectivity difference between network pairs. The procedure was as above, except we 

extracted the redundancy and functional connectivity from the network-by-network 

redundancy and functional connectivity matrix, respectively. We conducted FDR correction 

at p = 0.05 to control for multiple comparisons. 

4.6.12. Task fMRI univariate analysis 

To reveal the functional differentiation between FPCN-A and FPCN-B, we examined 

whether they showed similar or opposite activation patterns. We identified regions that were 

activated or deactivated in the tasks by building a general linear model (GLM). We also 

examined regions where the neural responses were modulated by task difficulty. For 

semantic tasks, we included one task mean regressor and one demeaned parametric 

regressor of semantic rating. We examined how the neural responses were negatively 

modulated by feature similarity rating for the matching trials and positively modulated by 

feature similarity rating for the non-matching trials. For the semantic association task, we 

examined how the neural responses were negatively modulated by semantic association 

strength rating for the related trials and positively modulated semantic association strength 

rating for the non-related trials. For the non-semantic tasks, we included two regressors - 

easy and hard conditions to reveal the regions showing greater activation in the hard than 

easy conditions. For all the tasks, we also modelled incorrect trials as regressors of no 

interest.  

We extracted the beta value of each parcel in these task conditions and tested whether 
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they were significantly activated (i.e., above zero) or deactivated (i.e., below zero) relative 

to implicit baseline (i.e., fixation period) to explore the task mean effect. Then we considered 

parcels that showed stronger or weaker activation in the hard than in the easy condition in 

the spatial working memory and math tasks and that the activations were positively 

modulated to semantic difficulty. These parcels were thought to support general executive 

control. Fixed-effects analyses were conducted using nilearn 100 to estimate the average 

effects across runs within each subject for each parcel. Then we conducted one-sample t-

tests to assess whether the estimated effect-size (i.e., contrast) was significantly different 

from zero across all subjects. We conducted FDR correction at p = 0.05 to control for multiple 

comparisons. Finally, we identified the network that each parcel belonged to 30.  

4.7. Data and materials availability 

The HCP data is publicly available here https://www.humanconnectome.org/. The York data 

is not available due to insufficient consent. Researchers wishing to access the data should 

contact Elizabeth Jefferies or the Chair of the Research Ethics Committee of the York 

Neuroimaging Centre. Data will be released when this is possible under the terms of the UK 

GDPR. Analysis code for this study is available at https://github.com/Xiuyi-Wang/Control 

_Project. 
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