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Abstract

Understanding how human cognition flexibly supports distinct forms of behavior is a key
goal of neuroscience. Adaptive behavior relies on context-specific rules that vary across
situations, as well as on stable knowledge gained from experience. However, the
mechanisms that allow these influences to be appropriately balanced remain elusive. Here,
we show that this cognitive flexibility is partly supported by the topographical organization of
the cortex. The frontoparietal control network (FPCN) is located between regions implicated
in top-down attention and memory-guided cognition. We hypothesized that the FPCN is
topographically divided into discrete systems that support these distinct forms of behavior.
These FPCN subsystems exhibit multiple anatomical and functional similarities to their
neighboring systems (the dorsal attention network and default mode network respectively).
This topographic architecture is also mirrored in the functional patterns that emerge in
different situations: the FPCN subnetworks act as a unified system when long-term memory
can support behavior, but they segregate into discrete units when working memory, rather
than long term memory, is necessary for behavioral control. In this way, the topographic
organization of brain function provides crucial insights into how the human cortex supports

flexible behavior.
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Introduction

Human behavior is inherently flexible, with effective actions varying substantially across
different situations. In some circumstances, behavior must be guided by information in
working memory, which allows for the temporary and effortful maintenance of rules that are
relevant to the current situation. In other scenarios, behaviors are guided by information
from long-term memory, such as our general knowledge of the world gained through a
lifetime of experience 2. These two modes of cognition depend on different neural
resources and at times they can be antagonistic. For example, situations like mind-
wandering illustrate what can happen when the contextual regulation of cognition fails 34,
As a result, a key question in neuroscience is how the human brain achieves an appropriate
functional balance between these two fundamental cognitive modes in a situation specific

manner to support flexible behavior.

Research has established that behaviors guided by external inputs encoded in working
memory often rely on neural processes within the dorsal attention network (DAN) °, while
situations in which long-term memory supports cognition often draw on the default mode
network (DMN) 8. It is hypothesized that these influences are balanced by the brain’s control
system — the fronto-parietal control network (FPCN)7-"'. Regions of the FPCN are widely
distributed across the frontal and parietal lobes (see Fig. 1A) and are proposed to implement
cognitive control by dynamically coordinating activity among diverse brain systems to
integrate brain-wide processing in a goal directed manner "', Despite evidence that the
FPCN is commonly recruited across tasks -6, it remains unclear how a single system can
flexibly support the distinct modes of operation required for the wide range of human
behaviors. Contemporary work suggests that the ability to flexibly adjudicate between
working memory and long-term knowledge as drivers of behavior might be achieved by
subdividing the control network into two topographically adjacent yet distinct subnetworks
FPCN-A and FPCN-B (see Fig. 1A). It is hypothesized that regions of FPCN-A, which are
closer to sensory-motor regions, are linked to behavioral control when optimal behavior
depends on working memory information, such as task rules, while FPCN-B, which is more

anterior on the cortical mantle, is linked to situations when memory is essential for adaptive
3
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behavioral control (see Fig. 1A). Consistent with this perspective, FPCN subnetworks are
hypothesized to have different patterns of activation and functional connectivity: FPCN-A
exhibits stronger functional connectivity with DAN, while FPCN-B exhibits stronger
functional connectivity with DMN '.17:18 Qur study builds on this emerging evidence to ask
(i) how underlying anatomical differences within the FPCN relate to its functional
differentiation into subsystems, and (ii) how these topographically separated systems adapt
their interaction patterns to interface with anti-correlated networks (DAN and DMN) in a way

that supports multiple different modes of operation that allow flexible behavior '1:17:18,

Our study tests the emerging hypotheses that subnetworks of FPCN are topographically
proximal to systems linked to external attention and to long-term knowledge, which are
differentiated anatomically, and that this differentiation enables them to interact with spatially
adjacent systems. This proposal is related to emerging evidence that the geometry of the
cortex (i.e., the shape) sculpts its functions ' and the observation that the principal
dimension describing functional differentiation within the cortex, often referred to as the
principal gradient, outlines the physical sequence of networks on the cortical surface 2. This
principal dimension of functional connectivity within the cortex is anchored at one end by the
default mode network and at the other by sensory systems. In this topographical scheme,
the FPCN is located between these two extremes. Compared with sensory-motor systems,
which are located at one end of a cortical hierarchy, DMN regions at the other end show
lower myelination 222425 the lowest correspondence between structure and function 2627,
the lowest functional similarity across species, and the greatest cortical expansion from
macaque to human 22°, Given these observations, we hypothesized that FPCN-A and
FPCN-B share more similar anatomical features with DAN and DMN, respectively. Yet
although the broad topographical patterns spanning from unimodal to transmodal regions
are well documented 162021 the patterns for different measurements are not identical 202223,
leaving the precise topographical positions of FPCN subsystems an open question.
Furthermore, a novel contribution of this study is to contextualize the mechanisms that
underpin FPCN-A and FPCN-B’s distinctive functional roles within this anatomical

framework, helping to explain neural and cognitive flexibility.
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We investigate how the topography of FPCN subsystems relates to their functional
interactions with other networks. The FPCN subsystems were defined using Kong'’s
parcellation (2021) 30 | which subdivides the FPCN into subnetworks that capture the
inherent functional variability of the FPCN. This method enabled us to generate individual-
specific parcellations with heightened homogeneity, allowing us to depict brain organization
more accurately. We employed well-designed tasks to establish the parcels’ functional
differentiation and to uncover how their interaction patterns change across contexts to
support flexible behavior. We hypothesize that the relative proximity of FPCN-A to DAN, and
of FPCN-B to DMN, plays a pivotal role in flexibly generating distinct cognitive modes that
are relevant to the updating of working memory versus retrieval from long-term memory (Fig.
1). Critically, while this topographical organization suggests that adjacent networks will have
more similarity, both structurally and functionally, the brain also produces flexible patterns of
behavior based on task demands, in which different subsets of adjacent networks are
recruited together to address either external or internal task requirements. By examining
functional similarity across tasks states, we can establish how topography supports different
cognitive modes, while also confirming that patterns of similarity are not solely a
consequence of network adjacency. In this way, we establish how the topographical
organization of the cortical mantle enables diverse interactions of FPCN with networks linked
to top-down attention and long-term memory, giving rise to different landscapes of neural

activity in response to different situational demands.
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A. Research hypotheses
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Fig. 1. The research hypothesis and task design. A: The research framework. Brain
organization relates to cortical topography: brain regions supporting perceptual/motor
features are maximally separated from heteromodal aspects of long-term memory, with
control regions in the middle. This key dimension of topographical organization might relate
to a ‘cognitive spectrum’ capturing distinctions between tasks that rely on recently presented
information in working memory versus long-term knowledge (other spectrums may also
exist). Regions of FPCN-A are closer to sensory-motor regions and more posterior than
those of FPCN-B on the cortical mantle. These networks were identified using Kong’s
parcellation approach 30 | which generates individual-specific parcellations with greater
homogeneity. Other networks, such as DAN and DMN, are also divided into subnetworks.
The subnetworks of visual, motor, DAN, and DMN are merged here for illustration. See Fig
3 for the distribution of each subnetwork. B: Task design. To tap working memory, we

included two tasks: a spatial working memory task required participants to keep track of
6
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sequentially presented locations, while math decisions involved maintaining and
manipulating numbers which rely more on working memory. To tap long-term memory, we
included two tasks that required controlled retrieval of knowledge; a semantic feature
matching task required participants to match probe and target concepts according to a
particular semantic feature (color or shape), while a semantic association task involved
deciding if pairs of words were linked in meaning. Response periods are indicated by a red
box. (V1 = Visual, A1 = Auditory, M1 = Motor, DAN = Dorsal attention network, FPCN =

Fronto-parietal control network, DMN = Default mode network).
2. Results

The results are divided into three sections: (i) first, we take an existing individualized
parcellation of the cortex identifying two large-scale distributed control networks,
corresponding to FPCN-A and FPCN-B, and establish that parcels of these networks have
reliably different topographical locations by quantifying their distance from sensory-motor
regions on multiple metrics; (ii) next we ask how these differences in topography of FPCN-
A and FPCN-B relate to their functional interaction patterns; (iii) finally, we demonstrate how
these interaction patterns produce flexible behavior across different task contexts.

We selected Kong et al.’s parcellation (2021) 3° as the most appropriate choice, since
this parcellation subdivides the FPCN into subnetworks, which is essential given the inherent
heterogeneity of the FPCN, and because this method enables us to generate individual-
specific parcellations with heightened homogeneity. The naming of FPCN-A and FPCN-B
here was consistent with the original Yeo et al.’s parcellation (2011) 3! and Kong et al.’s
individualized parcellation 3°, adapted from the Yeo et al.’s parcellation. However, the
opposite naming has been used in some previous studies that investigate the functional
differentiation of FPCN 718 We did not use other parcellations, including Power et al. (2011)
32 Gordon et al. (2016) 33, and Glasser et al. (2016) 2* etc., because FPCN was identified

as a functional unit without further subdivisions in these atlases.

2.1 The topographical characteristics of FPCN-A and FPCN-B

To establish whether the FPCN-A subnetwork is closer to sensory-motor systems, while
7
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FPCN-B is proximal to DMN, we examined the topographical positions of FPCN-A and
FPCN-B on multiple metrics, including cortical geometry, anatomical characteristics,
principal connectivity gradient values, cortical expansion, and cross-species functional
similarity. We examined multiple metrics because although these characteristics generally
show similar topographical patterns — spanning from unimodal to transmodal 62021 — they
do not perfectly align with each other. For example, the correspondence between structure
and function is weak in the transmodal area 2%, and the minimum physical distance to the
sensory-motor landmarks shows only a moderate correlation with the principal connectivity
gradient 2°. These observations suggest a degree of dissociation between these metrics,
leaving the precise topographical positions of FPCN subsystems as an open question. This
motivated us comprehensively capture the topographic positioning of FPCN subnetworks

across multiple metrics.
2.1.1 FPCN-A is physically closer to sensorimotor cortex than FPCN-B

Distance from sensorimotor regions is thought to provide an organizing principle of
functional differentiation within the cortex 62134, Therefore, our first analysis confirmed that
there were systematic differences in the location of the FPCN-A and FPCN-B networks on
the cortical surface, in terms of their physical distance to primary sensory-motor landmarks,
using the human connectome project (HCP) dataset. We calculated the geodesic distance
between each parcel and three key landmarks associated with primary visual, auditory and
somatomotor cortices to identify the global minimum geodesic distance to primary
sensorimotor regions for each parcel. Fig. 2A shows a group-level representation of global
minimum distance from sensory-motor cortex: transmodal regions are further from these
landmarks. FPCN-A showed greater physical proximity to sensorimotor cortex than FPCN-

B (t = -100.57, p < 0.001; Fig. 2A and 2B).
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Fig. 2. FPCN-A was closer to DAN and sensory-motor systems, while FPCN-B was proximal
to DMN in physical distance, myelin content, cortical thickness, principal connectivity

9


https://doi.org/10.1101/2023.09.06.556465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.06.556465; this version posted September 6, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

gradient values, cortical expansion, and cross-species in functional similarity. Each
datapoint in B, D, F, and H represents the data of one participant and each datapoint in J
and L represents the data of one parcel. We sorted the networks by their mean values across
participants in B, D, F, and H and across parcels in J and L. A and B — The global minimum
geodesic distance between each parcel and its closet sensory-motor landmark and the
global minimum distance for each network (averaged across parcels). FPCN-A was closer
to sensory-motor landmarks than FPCN-B. C and D — T1w/T2w values were significantly
lower in association networks than in sensory networks. The T1w/T2w value in FPCN-A was
higher than in FPCN-B and was closer to the value for sensory-motor cortex. E and F —
Cortex was generally thicker in control networks and DMN than in sensory motor networks.
The cortex in FPCN-A was thinner than in FPCN-B. G and H — The principal connectivity
gradient that explained the most variance in resting-state fMRI captured the separation
between sensory-motor and transmodal regions. FPCN-A was closer to the sensory-motor
end of this gradient axis than FPCN-B. | and J — Sensory cortices expanded the least from
the macaque to the human, while transmodal cortex expanded the most. FPCN-A showed
less cortical expansion than FPCN-B. K and L — Regions of sensory-motor networks showed
greater cross-species similarity between humans and macaques, whereas transmodal
regions showed greater differences. FPCN-A showed greater cross-species similarity than

FPCN-B.

2.1.2 FPCN-A was closer than FPCN-B to the unimodal end of the anatomical

organization defined by myelin content and cortical thickness

Having confirmed topographic differences in the control subnetworks, we next examined
whether these are mirrored in anatomical differences. The cortical T1w/T2w map — sensitive
to regional variation in grey-matter myelin content 222435 — js thought to reflect an anatomical
hierarchy, with sensorimotor regions showing greater myelination 22 . We hypothesised that
FPCN-A would have higher levels of myelination than FPCN-B since the analysis above
showed that FPCN-A was closer to sensorimotor cortex. We analysed participants’ individual
T1w/T2w maps and cortical thickness maps from the HCP dataset. As expected, myelin

values were high in sensorimotor cortices and low in association cortices. Among the
10
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transmodal networks, FPCN-A had higher myelin values than FPCN-B (t = 46.89, p < 0.001;
Fig. 2C and 2D). In parallel, since cortical thickness coarsely tracks changes in
cytoarchitecture and myelin content, we found that the cortex was generally thicker in
heteromodal control networks and DMN than in sensory motor networks (Fig. 2E and 2F).

FPCN-A had lower cortical thickness than FPCN-B (t = 34.08, p < 0.001).

2.1.3 FPCN-A was closer to the unimodal end of the principal connectivity gradient

than FPCN-B

Having established that anatomical differences reflect topographical proximity, we next
explored whether resting state functional connectivity shows a similar pattern. Global
minimum distance is positively correlated with location on the principal connectivity gradient,
which organizes neural systems along a spectrum from unimodal to transmodal cortex 293,
We therefore asked whether the parcels of FPCN-A were closer than FPCN-B to the
unimodal end of the principal connectivity gradient. Dimension reduction analysis was
performed on the HCP resting state functional connectivity matrix. For 238 out of 245
participants, the dimension explaining the most variance corresponded to the principal
gradient as described by Margulies et al. (2016) 2°: sensory-motor regions fell at one end of
this dimension of connectivity (shown in purple-blue in Fig. 2G), while transmodal areas
were located at the other end (shown in red-orange in Fig. 2H). We averaged the principal
gradient values of all the parcels within each network for all participants for whom the
principal gradient explained the most variance. We found that sensory-motor networks fell
at one end, while control networks and DMN were located the other end. FPCN-A had lower
values on the principal gradient than FPCN-B (t = 51.93, p < 0.001; Fig. 2G and 2H),
indicating that FPCN-A was closer to sensorimotor systems on this dimension of connectivity,

while FPCN-B was closer to the DMN apex of the principal gradient.

2.1.4 FPCN-A showed less cortical expansion from macaque to human and

showed greater similarity across species relative to FPCN-B

A prominent theory of cortical organization suggests that transmodal networks became

untethered from sensorimotor systems through evolution 2'. Therefore, we hypothesized
11
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that FPCN-B would show more cortical expansion and less cross-species similarity in
functional connectivity than FPCN-A, since it was further from sensorimotor systems. We
used the evolutionary expansion and cross-species similarity map provided by Xu et al .%°.
To estimate surface areal expansion, human surface area was divided by macaque surface
area at each of corresponding vertex and then all vertices within each parcel were averaged.
We found that FPCN-B showed more expansion (t = 2.125, p = 0.039; Fig. 2| and 2J) and
less cross-species functional similarity than FPCN-A (t = -3.333, p = 0.002; Fig. 2K and 2L).
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Fig. 3. Overview of analytic approaches to study the functional interaction patterns of brain
networks. (l) Individual-specific parcellation divided the whole brain into 400 parcels across
17 networks 3. (Il) Average time series of each parcel. (lll) Extraction of features of time
series for each parcel. (IV) Multi-class classification analysis involved training a classifier to
learn the mapping from time-series features of parcels to network labels and (V) then to
predict network labels for parcels. (VI) Network similarity was characterized by the
normalized confusion matrix: networks with more similar functions would be more likely to
be incorrectly classified as each other. (VII) Pearson correlation coefficients of the extracted
features represent the pairwise feature similarity between all possible combinations of brain
parcels. (VIII) Redundancy quantifies how much information about the brain’s future

trajectory is predicted redundantly by distinct brain regions. We focused on temporally

12
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persistent redundancy, which corresponds to redundant information in the past of both
regions that is also present in the future 37. (IX) Functional connectivity involved calculating
Pearson correlation coefficients between the time-series of parcels. Vis = Visual, Aud =
Auditory, SM = Sensory-motor, DAN = Dorsal attention network, VAN = Ventral attention
network, FPCN = Fronto-parietal control network, Lang = Language, DMN = Default mode

network, WM = working memory.

2.2 Functional interaction and activation patterns of FPCN-A and FPCN-B

The results above show that FPCN-A and FPCN-B occupy distinct topographical
positions: FPCN-A is closer to sensory-motor landmarks and DAN, while FPCN-B is closer
to DMN in geodesic distance, anatomical features relating to myelination, functional
connectivity patterns, and evolutionary markers. Since DAN and DMN typically show
negative functional connectivity %8, control subnetworks that are proximal to these systems
may show a degree of functional separation that reflects their topography. To investigate this
possibility, we investigated multiple metrics of functional similarity, comparing DAN and DMN
with control subnetworks A and B to establish whether they showed dissociable patterns of
functional recruitment in rest, working memory and long-term memory tasks. We would
expect greater functional similarity between FPCN-A and adjacent DAN, and between
FPCN-B and adjacent DMN if topography constrains brain function?.620.3%40 \We investigated
this prediction in three complementary analyses examining (i) feature classification across
networks, (ii) functional coupling, and (iii) activation and deactivation patterns modulated by
task difficulty. Since no single method can conclusively pinpoint network interactions 37-41-43,
comprehensive evidence from various methods, when contextualized within our broader

understanding of brain anatomy and function, will provide the most reliable insights.

2.2.1 FPCN-A was more likely to be misclassified as DAN-A and FPCN-B was more
likely to be misclassified as DMN-B

To reveal network similarity, multi-class classification was used to predict the network
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labels of parcels using extracted features of the time-series data. These features include
temporal autocorrelation, kurtosis, and entropy # etc., which may capture meaningful
differences between different types of time series and thus represent promising candidates
as quantitative phenotypes for distinguishing data of different types (see Method 4.6.6 for
feature extraction, Method 4.6.7 for classification analysis, Fig. 3 for the analysis pipeline).
This analysis was motivated by the observation that certain brain regions possess distinct
features, which equip them to support different functions, while regions with similar features
are suited to support similar functions, irrespective of whether they exhibit positive or
negative functional connectivity. For instance, early visual areas and the DMN are situated
at opposing ends of the timescale hierarchy. The former boasts the shortest timescale,
marked by rapid temporal autocorrelation decay, while the latter has the longest,
characterized by gradual autocorrelation decay 234548, Consistently, neural representations
in early visual areas are minimally influenced by prior knowledge, whereas DMN regions are
significantly swayed by it 4. In addition, regions with more similar features tend to support
parallel functions. For example, while FPCN and DMN generally exhibit negative functional
connectivity, they share some similar attributes including long timescales, suggesting they
can process inputs over longer periods. As a result, their neural representations are shaped
by prior knowledge 4° and goal states maintained over time %°. These observations suggest
that feature similarity can provide valuable information about the functional similarity of
networks beyond functional connectivity. This unbiased, hypothesis-free analysis that
combines machine learning with feature extraction can objectively pinpoint the specific
subnetworks within DAN and DMN that demonstrate a heightened functional similarity to

FPCN subnetworks and elucidate the functions of FPCN subnetworks.

We tested the hypothesis that FPCN-A and B parcels would be misclassified as
belonging to different networks, reflecting their closest neighbors on the topographical
spectrum 234448 j e_, the classifier might misclassify parcels of FPCN-A as DAN and FPCN-
B as DMN. We found classification accuracy was significantly greater than chance for each
participant on each task (Fig. S2). Fig. 4 shows the top four networks with the highest

prediction probabilities within the normalized confusion matrix, plus an additional
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comparator network; the probabilities for other networks were similar to chance level (Fig.

S3).

By analyzing the classification output (i.e., the confusion matrix, Fig. S2), we found that
FPCN-A and FPCN-B showed similarity to different networks. Specifically, FPCN-A was
most likely to be misclassified as DAN-A and FPCN-B, while FPCN-B was most likely to be
misclassified as FPCN-A and DMN-B (Fig. 4, Fig. S3). When the target network was FPCN-
A, there was a higher probability that parcels would be misclassified as DAN-A than as DMN-
B across rest and all the tasks (p < 0.05, FDR corrected; Fig. 4, Fig. S3, Table S1).
Conversely, when the target network was FPCN-B, parcels were more likely to be
misclassified as DMN-B than as DAN-A (p < 0.05, FDR corrected; Fig. 4, Fig S3, Table S1).
These results indicate that the time-series characteristics of FPCN-A were more similar to
DAN-A and those of FPCN-B were more similar to DMN-B. Therefore, subsequent analyses
were focused on the functional similarity between DAN-A, DMN-B and the control

subnetworks.
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Fig. 4. The probabilities of classifying FPCN-A and FPCN-B as each network (figure shows
top four networks plus an additional comparator network). A: FPCN-A was most likely to be

incorrectly classified as DAN-A at rest and in non-semantic tasks, and as FPCN-B in
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semantic tasks. It was also misclassified as VAN-B, but rarely misclassified as DMN-B. B:
FPCN-B was most likely to be misclassified as DMN-B in non-semantic tasks and as FPCN-
A in semantic tasks and at rest. It was also misclassified as DMN-A, and but rarely

misclassified as DAN-A. Dashed lines represent the chance level.

2.2.2 FPCN-A showed greater functional interaction with DAN-A, while FPCN-B
showed greater coupling with DMN-B

To further characterise how topography affects functional interaction, we examined: (i)
redundancy, which quantifies how much information about the brain’s future trajectory is
shared across brain regions and (ii) functional connectivity between parcels, estimated by
computing Pearson correlation coefficients between their time series. These measures
revealed the same pattern as the network classification analysis: FPCN-A showed greater
functional interaction with DAN-A, and FPCN-B showed greater functional interaction with
DMN-B. These patterns were observed during rest and all the tasks (p <0.05, FDR corrected;
Fig. 5, Fig. S4, S5, S6, S8 and S9; Table S2, S3). In summary, both redundancy and
connectivity analyses indicated greater functional similarity between control networks and
the networks they were closer to (DAN; DMN); in this way, the topography of control

subnetworks partly determines their functional tuning.
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Fig. 5. FPCN-A and FPCN-B coupled with different networks. FPCN-A always coupled
with DAN-A while FPCN-B always coupled with DMN-B across different conditions. A and C:
FPCN-A and DAN-A showed stronger redundancy and functional connectivity than FPCN-B
and DAN-A. B and D: FPCN-B and DMN-B showed stronger redundancy and functional
connectivity than FPCN-A and DMN-B.

2.2.3 FPCN-A regions showed greater activation in more demanding conditions,

while FPCN-B regions showed the opposite pattern

Given that FPCN-A and FPCN-B occupy different topographical positions on the cortical
surface and show different strength of coupling with DAN-A and DMN-B, we might expect
them to show different responses to control demands across tasks that differentially rely on
dorsal attention and default networks. To test this hypothesis, we examined univariate
effects of task difficulty at the whole brain level: in the working memory tasks, we contrasted
hard and easy conditions, while the long-term memory tasks were designed to examine
parametric effects of difficulty (manipulations of feature similarity in the semantic feature
matching task and association strength in the semantic association task (see 4.3.3 and 4.3.4
for detailed information). All p-values were FDR corrected at p < 0.05. For clarity, we focus
on the results of the four networks of interest below, and for completeness, the results of all

the networks are shown in Fig. S7.

FPCN-A showed stronger activation in hard than easy trials across semantic and non-
semantic tasks (Fig. 6). DAN-A also showed positive effects of difficulty in the spatial working
memory, math and semantic feature matching tasks, yet showed deactivation during more
difficult decisions in the semantic association task. In this way, FPCN-A showed a consistent
response to difficulty irrespective of task context (as expected for regions of the “multiple
demand network” 2, while DAN-A was not always engaged by semantic difficulty. In contrast,
FPCN-B and DMN-B showed little or no positive response to difficulty, although FPCN-B
parcels in dorsomedial prefrontal cortex did show a stronger response to more demanding
decisions across math, feature matching and semantic association. FPCN-B typically

deactivated in response to difficulty together with DMN-B (although this pattern was not
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observed for the semantic association task). Mean activation and deactivation patterns
largely resembled effects of difficulty (SM 1.4 and Fig. S7). These results highlight a need
to explain how topography not only supports differentiation of function within control

subnetworks but also their flexible engagement in different task contexts.

Spatial WM Math Feature matching Association

DO
L

DD
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DAN-A [ DMN-B FPCN-A |l FPCN-B

Positive
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Fig. 6. Modulation patterns of activation by task difficulty were similar for FPCN-A and DAN-
A, and FPCN-B and DMN-B. FPCN-A showed stronger activation in hard than easy trials
across semantic and non-semantic tasks. In contrast, FPCN-B typically deactivated in
response to difficulty together with DMN-B. We examined univariate effects of task difficulty
in the non-semantic tasks by contrasting hard and easy conditions. We examined the
difficulty effect in the long-term memory tasks by examining parametric effects of feature
similarity in the feature matching task and association strength in the association task,

respectively.

2.3 The interaction patterns of FPCN-A varied across tasks, while FPCN-B showed

stable patterns

Our final analyses tested how the interaction patterns of FPCN subnetworks varied
across tasks tapping working and long-term memory. FPCN-A was recruited by difficult
decisions across all four tasks, and was expected to show task dependent connectivity

patterns, since domain-general control regions show a highly flexible pattern of coupling 8.
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However, regions that support controlled retrieval from long-term memory are thought not
contribute to control across domains %'-53, and might show similar interaction patterns across
tasks. Motivated by these findings, we asked whether FPCN-A would show greater
interaction with DAN-A during non-semantic working memory tasks and with FPCN-B in
semantic tasks (examining network misclassification, redundancy, and functional
connectivity). We then asked whether FPCN-B would show consistent interaction with
FPCN-A and DMN-B across task contexts. Features can differ depending on tasks and brain

states 545° | indicating their potential to depict variations in network coupling across tasks.

2.3.1 FPCN-A was more likely to be misclassified as DAN-A in the non-semantic

tasks but as FPCN-B in the semantic association task

We examined functional network similarity by analyzing the classification output (i.e.,
the confusion matrix) for each task, focussing on differences in the probability of
misclassifying FPCN-A as DAN-A compared with FPCN-B across tasks. As expected,
network similarity varied across tasks (Fig. 4A and Fig. S3). FPCN-A was more likely to be
misclassified as DAN-A than as FPCN-B in non-semantic tasks (spatial working memory
task: t = 3.913, p = 0.002; math task: t = 5.294, p < 0.001), but there was no difference
between these networks in the feature matching task when participants needed to retrieve
long-term memory according to external goals (t = 0.217, p = 0.83). FPCN-A was more likely
to be misclassified as FPCN-B than as DAN-A in the semantic association task (t = -3.00, p
= 0.008). All p values are FDR-corrected. In summary, FPCN-A varied its similarity to DAN-
A and FPCN-B networks depending on the task state. This shows how misclassification
effects go beyond patterns related to spatial adjacency to encompass task states. This shift
in misclassification contradicts the typical assumption that networks and regions will always
most closely resemble those that they are adjacent to on the cortical surface. While

topography constrains the brain’s coupling pattern, it does not determine it entirely.

2.3.2 FPCN-A showed greater functional interaction with DAN-A than with FPCN-

B in the non-semantic tasks and the opposite pattern in the semantic tasks

Next, we considered differences in feature similarity, redundancy and functional
20


https://doi.org/10.1101/2023.09.06.556465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.06.556465; this version posted September 6, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

connectivity between tasks, examining coupling of FPCN-A with DAN-A compared with
FPCN-B. FPCN-A's coupling to DAN-A compared with FPCN-B was always greater for the
non-semantic than semantic tasks (p < 0.001; FWE corrected; Fig. 7). FPCN-A showed
greater feature similarity, shared more information, and stronger functional connectivity with
DAN-A in the spatial working memory and math tasks but coupled more with FPCN-B in the
semantic tasks involving long-term memory (see SM 1.5 and 1.6. for detailed information for
each task and each measure). Although the topography did not change, this shift in
interaction challenges the prevailing assumption that networks and regions will consistently
resemble their most adjacent cortical neighbours. The changing interaction patterns of
FPCN-A provide convincing evidence to show that topography constrains but does not fully

explain network connectivity.

2.3.3 FPCN-B showed consistent interaction with FPCN-A and DMN-B across

tasks

Having examined the flexible interaction patterns of FPCN-A, we asked if FPCN-B
showed similar effects. We compared the probability that FPCN-B was misclassified as
FPCN-A or as DMN-B in each task, as these were the most confusable networks for FPCN-
B. As shown in Fig. 4B, misclassification was greater for FPCN-A than for DMN-B in the
semantic feature matching task, when the participants needed to retrieve long-term memory
according to external goals (t = 2.470, p = 0.019). FPCN-B was misclassified as FPCN-A
and DMN-B equally often in the semantic association task (t = 1.811, p = 0.080) and the
non-semantic tasks (spatial working memory task, t = -1.037, p = 0.309; math task, t = -
1.326, p = 0.245). All p values are FDR-corrected. These results show that although FPCN-
B can resemble FPCN-A when people engage in controlled retrieval from long-term memory,

this network also has a strong similarity with DMN-B across task contexts.

Finally, we quantified differences in feature similarity, redundancy and functional
connectivity for FPCN-B across tasks, examining interaction of this network with DMN-B and
FPCN-A. In contrast to FPCN-A's flexibility, FPCN-B showed relatively stable interaction

pattern. There were no differences in redundancy or functional connectivity across tasks
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(Fig. 7E and 6F; p > 0.05, uncorrected). FPCN-B showed equal redundancy with FPCN-A
and DMN-B at rest and in all the tasks, with no differences between tasks (Fig. 7E, p > 0.05,
uncorrected). FPCN-B always showed greater functional connectivity with DMN-B than with
FPCN-A (Fig. 7F; p < 0.05, FWE corrected). FPCN-B showed greater feature similarity with
FPCN-A than with DMN-B in the semantic feature matching task (t = 2.317, p = 0.033) but
showed the opposite pattern in the spatial working memory task (t = -3.153, p = 0.005) and
this task difference was significant (Fig. 7D; p < 0.002, FWE corrected). FPCN-B more
closely resembled FPCN-A when people engaged in controlled retrieval from long-term

memory but overall FPCN-B showed relatively consistent network interaction across tasks.
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Fig. 7. The interaction patterns of FPCN-A varied across tasks, while FPCN-B showed more

stable patterns. The values in the top panel represent the interaction difference between
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FPCN-A and DAN-A versus FPCN-A and FPCN-B: positive values mean FPCN-A showed
greater interaction with DAN-A than with FPCN-B. The values in the bottom panel represent
the interaction difference between FPCN-B and FPCN-A versus FPCN-B and DMN-B:
positive values mean FPCN-B showed greater interaction with FPCN-A than with DMN-B.
A, B and C: The interaction differences in feature similarity, redundancy, and functional
connectivity between FPCN-A and DAN-A versus FPCN-A and FPCN-B were greater in the
non-semantic working memory tasks than in the semantic tasks. The task differences
reflected greater interaction of FPCN-A with DAN-A than with FPCN-B in the non-semantic
working memory tasks but the opposite pattern during the retrieval of knowledge from long-
term memory. D, E, F: There were no interaction differences in redundancy, and functional
connectivity between FPCN-B and FPCN-A versus FPCN-B and DMN-B across tasks. The
difference in feature similarity was greater in the semantic feature matching task than in the
spatial working memory task because FPCN-B showed greater interaction with FPCN-A
than with DMN-B in the semantic feature matching task but showed the opposite pattern in
the spatial working memory task. The white asterisk means the interaction difference was
significant for that task at a specific threshold (*, p = 0.05; **, p = 0.01; ***, p = 0.001 by
permutation based maximum t-tests, FWE corrected). The black asterisk means the
interaction difference was significant across task pairs at a specific threshold (*, p = 0.05; **,

p = 0.01; ***, p = 0.001 by permutation based maximum t-tests, FWE corrected).

3. Discussion

Our study shows that cortical topography, in conjunction with the underlying anatomy,
provides a landscape in which flexible changes in neural function across situations can be
understood. This landscape provides an architecture that supports the flexible deployment
of distinct cognitive modes. By this account, FPCN subnetworks supporting distinct aspects
of cognitive control are topographically positioned, and anatomically similar to their adjacent
systems, allowing them to interact in a context-specific manner (Fig. 8). FPCN-A and FPCN-
B are proximal to DAN and DMN respectively and this proximity is reflected by key
anatomical features, including myelin content, the degree of cortical expansion, and cross-

species similarity. This anatomical similarity complements the topographical organization of
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FPCN into adjacent subsystems and these aspects together account for important features
of FPCN'’s functional behavior. FPCN-A is more coupled with attention regions (particularly
DAN-A), while FPCN-B is more coupled with memory regions (particularly DMN-B).
Importantly, however, these relationships can change across contexts: FPCN-A shows
stronger functional interaction to DAN-A during working memory and to FPCN-B during tasks
more reliant on long-term memory. This shift in interaction challenges the prevailing
assumption that networks and regions will consistently resemble their most adjacent cortical
neighbors. FPCN-B shows more deactivation in response to demanding tasks and a pattern
of interaction to both FPCN-A and DMN-B across tasks. The relative flexibility in FPCN-A
and the relative stability of FPCN-B explains how people can utilize context-specific working
memory and long-term memory to support flexible behavior.

These findings confirm that FPCN-A is closer to sensory-motor regions, positioned
between DAN and FPCN-B on the cortical hierarchy, and can change its interaction to these
networks depending on the task demands. In contrast, FPCN-B lies between FPCN-A and
DMN-B and is coupled to both networks (Fig. 8). In this way, the topographical organisation
of cognitive control regions allows FPCN-A to show the characteristics of a highly flexible
‘multiple-demand’ network, supporting executive control processes across domains 121356~
61, while the neighbouring FPCN-B shows the characteristics of a memory control network
5162-64 This architecture might allow FPCN networks to be influenced by both DAN and
DMN at different times, even though these networks are typically anti-correlated 905265, |n
this way, our findings explain how previous studies have found both functional dissociations

and similarities between FPCN and DMN (across different task contexts)'849.50.53,
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Cortical topography
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Fig. 8. A schematic of the topographic relationships of networks and how this allows them
to change their interaction patterns according to task demands to support flexible behavior,
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after Mesulam (1998). FPCN-A and FPCN-B are situated between DAN and DMN and they
are influenced by their adjacent networks, allowing them to resolve competition and keep a
functional balance between goal-oriented attentional mechanisms supporting working
memory (drawing on DAN) and retrieval from long-term memory (supported by DMN). The
topographic location of FPCN-A — situated between DAN and FPCN-B — allows it to shift its
interaction towards attentional systems or memory systems according to task demands. In
a changing environment, the engagement of externally oriented attentional mechanisms
fractionates regions implicated in cognitive control, such that FPCN-A couples more with
DAN-A than with FPCN-B in working memory task. This architecture might prevent
interference from memory-based schema. When cognition instead needs to be guided by
long-term memory, FPCN-A couples with FPCN-B, making this network less able to track

fluctuating environmental changes but allowing it to integrate information from DMN.

The ability of FPCN-A to change its activity in a context specific manner indicates that
this network might provide a ‘dynamic core’ controlling information flow by modulating
network interactions in a context-sensitive fashion . Dynamic core regions are involved in
multiple tasks, can integrate more specialized brain regions, and alter their baseline
communication dynamics to support task-specific computations®”-’°. In a changing
environment, interaction of FPCN-A with externally oriented attentional mechanisms
appears to break apart the FPCN, such that FPCN-A couples more with DAN-A than with
FPCN-B. This architecture might prevent interference from memory-based schema that
conflict with the veridical state of the environment. When cognition instead needs to be
guided by long-term memory, FPCN-A couples more with FPCN-B, making this network less
able to track fluctuating environmental changes but allowing it to integrate information from
DMN. Our findings are broadly consistent with the tethering hypothesis 2!, which anticipates
that proximity to sensory-motor regions constrains brain function. By extension, this account
suggests that the relative separation of FPCN-A from DMN helps to protect information in
working memory from biases that reflect expectations arising from conceptual knowledge
and from fluctuations of emotion and motivation. Conversely, the proximity of FPCN-B to

DMN allows it to support the retrieval of abstract and heteromodal concepts, and to reflect
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relevant information in memory even when this is at odds with the external environment 7.
In tasks requiring controlled memory retrieval, these two control systems are expected to
work together such that the representation of goals in working memory can interact with
abstract semantic representations 525265 Importantly, our study suggests that part of this
flexibility may be reflected in the accompanying anatomical differences that mirror the

topography of these networks.

There are of course limitations of the current study and remaining questions to be
addressed. First, we are yet to establish whether the functional architecture we describe is
relevant to all aspects of long-term memory, since our data are restricted to verbal semantic
judgements. Future research should examine non-verbal semantic tasks and long-term
memory beyond the semantic domain. Similarly, this architecture for flexible cognitive control
may not extend to all working memory tasks, or to controlled perceptual-motor tasks. Other
network interactions may also be important for flexible human cognition across a broader
range of tasks, including the FPCN-C subnetwork (also described in the parcellation we
used), which was not found to strongly contribute to the tasks in this study. Future studies

can directly compare the flexibility of FPCN-A and FPCN-B using the same participants.

Future research should also assess the extent to which the mechanisms for flexible
control described here relate to individual differences in cognitive performance and cognition
in daily life, and whether topographical differences predict these individual differences in
behaviour. A previous study that combined task performance and brain data using canonical
correlation analysis found that working memory and long-term memory were two distinct
neurocognitive modes that showed different associations with spontaneous thought in the
lab 72. These modes might relate to the different patterns of interaction we identified between
control networks; if so, individual differences in the relative strength or frequency of these
controlled states might predict the extent to which people are able to control long-term
memory retrieval and update working memory with goal-relevant information from the
external world. They might also predict the kinds of thoughts that people are likely to have
in their daily lives, with important implications for health, education, and wellbeing. Finally,

while it is extremely challenging to examine the causal relationship between topography and
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function, computational simulations and studies of people with sensory impairment may help

to elucidate this link.

In conclusion, this study shows how brain organisation supports mental flexibility. We
establish that flexible human behavior is in part supported by the topographical separation
of the frontoparietal system into subnetworks that are proximal to the dorsal attention
network and default mode network. This topographical organization then allows distinct
patterns of interaction to emerge in tasks underpinned by working memory and long-term
knowledge, helping to explain how the brain maintains a functional balance between states
that rely on top-down attention to the external environment compared with retrieval of

information from long-term memory.
4. Materials and Methods
4.1. Experimental design

This study included three datasets, one open dataset — the Human Connectome Project
(HCP) and two task fMRI datasets collected at the University of York, UK. We analysed the
structural MRI (sMRI) and resting-state functional MRI (rsfMRI) data of 245 unrelated
participants who completed all four resting-state scans from the S900 release of HCP
dataset to investigate the cortical geometry, anatomical hierarchy, functional hierarchy, and
functional connectivity patterns. To distinguish control processes related to recently
presented information in working memory from control processes for long-term memory, we
examined two non-semantic tasks requiring the maintenance of information in working
memory which have been analysed before 36:50.73 and two semantic long-term memory tasks
scanned in York, UK. In the non-semantic dataset, participants completed easy and hard
spatial working memory and arithmetic tasks originally designed to localise domain general
control regions 3. In the semantic dataset, participants performed a semantic feature
matching task in which participants were asked to match probe and target concepts
(presented as written words) according to color or shape and a semantic association task in
which they were asked to decide if pairs of words were semantically associated or not. The

contrast between non-semantic and semantic tasks allowed us to investigate how the
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interaction between control and other networks was modulated by task demands.

4.2. Participants

All participants were right-handed, native English speakers, with normal or corrected-to-
normal vision and no history of psychiatric or neurological illness. All participants provided
informed consent. For the HCP dataset, the study was approved by the Institutional Review
Board of Washington University at St. Louis. For the University of York dataset, the research
was approved by the York Neuroimaging Centre and Department of Psychology ethics

committees.

The HCP sample involved data from 245 healthy volunteers (130 males, 115 females),

aged 23 — 35 years (mean = 28.21, SD = 3.67) 4.

31 healthy adults (26 females; age: mean + SD = 20.60 £ 1.68, range: 18 — 25 years)
performed the spatial working memory and math tasks. One participant with incomplete data
was removed. A functional run was excluded if (I) relative root mean square (RMS)
framewise displacement was higher than 0.2 mm, (ll) more than 15% of frames showed
motion exceeding 0.25 mm, or (lll) the accuracy of the behavior task was low (3SD below
the mean). If only run of a task was left for a participant after exclusion, all their data for that
task were removed. These exclusion criteria resulted in a final sample of 27 participants for

both the spatial working memory task and the math task.

31 healthy adults performed the semantic long-term memory tasks (25 females; age:
mean = SD = 21.26 + 2.93, range: 19 — 34 years). Using the same exclusion criteria above
for the feature matching task, there were 23 participants with 4 runs, 4 participants with 3
runs, and 1 participant with 2 runs. For the association task, there were 24 participants with
4 runs, 3 participants with 3 runs, and 3 participants with 2 runs. Another 30 native English
speakers who did not take part in the main fMRI experiment rated the color and shape
similarity and semantic association strength for each word pair (21 females; age range: 18

— 24 years).
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4.3. Task paradigms

4.3.1. Spatial working memory task

Participants were required to maintain four or eight sequentially presented locations in
a 3x4 grid 7°, giving rise to easy and hard spatial working memory conditions. Stimuli were
presented at the center of the screen across four steps. Each of these steps lasted for 1s
and highlighted one location on the grid in the easy condition, and two locations in the hard
condition. This was followed by a decision phase, which showed two grids side by side (i.e.,
two-alternative forced choice (2AFC) paradigm). One grid contained the locations shown on
the previous four steps, while the other contained one or two locations in the wrong place.
Participants indicated their response via a button press and feedback was immediately
provided within in 2.5s. Each run consisted of 12 experimental blocks (6 blocks per condition
and 4 trials in a 32 s block) and 4 fixation blocks (each 16 s long), resulting in a total time of

448 s.

4.3.2. Math task

Participants were presented with an addition expression on the screen for 1.45s and,
subsequently made a 2AFC decision indicating their solution within 1s. The easy condition
used single-digit numbers while the hard condition used two-digit numbers. Each trial ended
with a blank screen lasting for 0.1s. Each run consisted of 12 experimental blocks (with 4

trials per block) and 4 fixation blocks, resulting in a total time of 316s.

4.3.3. Semantic feature matching task

Participants were required to make a yes/no decision matching probe and target
concepts (presented as words) according to a particular semantic feature (color or shape),
specified at the top of the screen during each trial. The feature prompt, probe word, and
target words were presented simultaneously. Half of the trials were matching trials in which
participants would be expected to identify shared features; while half of the trials were non-

matching trials in which participants would not be expected to identify shared features. For
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example, in a color matching trial participants would answer ‘yes’ to the word-pair
DALMATIANS — COWS, due to their color similarity, whereas they would answer ‘no’ to
COAL -TOOTH as they do not share a similar color.

We parametrically manipulated the degree of feature similarity between the probe and
target concepts, using semantic feature similarity ratings taken from a separate group of 30
participants on a 5-point Likert Scale. For instance, in color-matching trials, the degree of
color similarity between DALMATIANS and COWS was found to be very high (i.e., 4.8),
while that between PUMA and LION was relatively low (i.e., 4.0), despite the participants'
belief that the two trials had similar color. Conversely, in color non-matching trials, the degree
of color similarity between CROW and HUMMINGBIRD was relatively high (i.e., 2.5),
whereas that between COAL and TOOTH was very low (i.e., 1.2), even though the
participants perceived no similarity in color. For the matching trials, greater feature similarity
facilitates the decision-making process, while for the non-matching trials, greater feature
similarity makes the decision more difficult. This parametric design allowed us to model the
effect of the difficulty of semantic decision in the neural data, and test whether control

subnetworks showed similar or opposite activation patterns.

This task included four runs and two conditions (two features: color and shape),
presented in a mixed design. Each run consisted of four experimental blocks (two 2 min 30
s blocks per feature), resulting in a total time of 10 min 12 s. In each block, 20 trials were
presented in a rapid event-related design. In order to maximize the statistical power of the
rapid event-related fMRI data analysis, the stimuli were presented with a temporal jitter
randomized from trial to trial ’®. The inter-trial interval varied from 3 to 5 s. Each trial started
with a fixation, followed by the feature, probe word, and target word presented centrally on
the screen, triggering the onset of the decision-making period. The feature, probe word, and
target word remained visible until the participant responded, or for a maximum of 3 s. The
condition order was counterbalanced across runs and run order was counterbalanced
across participants. Half of the participants pressed a button with their right index finger to
indicate a matching trial and responded with their right middle finger to indicate a non-

matching trial. Half of the participants pressed the opposite buttons.
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4.3.4. Semantic association task

Participants were asked to decide if pairs of words were semantically associated or not
(i.e., yes/no decision as above) based on their own experience. Overall, there were roughly
equal numbers of ‘related’ and ‘unrelated’ responses across participants. The same stimuli
were used in the semantic feature matching task and semantic association task. For
example, DALMATIANS and COWS are semantically related; COAL and TOOTH are not.
The feature and association tasks were separated by one week. Similarly, we parametrically
manipulated the semantic association strength between the probe and target concepts,
using semantic association strength ratings taken from a separate group of 30 participants
on a 5-point Likert Scale. For example, in related trials, the association strength between
PUMA and LION is very strong while for COWS and WHALE it is relatively weak (although
they are still both animals). In non-related trials, the association strength between
KINGFISHER and SCORPION is relatively high while BANANA and BRICK is very low
although participants thought neither were related. For the related trials, stronger
associations would facilitate decision making, while for unrelated trials, stronger
associations interfere with the decision making. This parametric design allowed us to model
the effect of the difficulty of semantic decision in the neural data, and test whether control

subnetworks showed similar or opposite activation patterns.

This task included four runs, presented in a rapid event-related design. Each run
consisted of 80 trials, with about half being related and half being unrelated trials. The
procedure was the same as the feature matching task except only two words were presented

on the screen.
4.4. Image acquisition
4.4.1. Image acquisition of HCP dataset

MRI acquisition protocols of the HCP dataset have been previously described 7477,
Images were acquired using a customized 3T Siemens Connectome scanner having a 100
mT/m SC72 gradient set and using a standard Siemens 32-channel radiofrequency receive
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head coil. Participants underwent the following scans: structural (at least one T1-weighted
(T1w) MPRAGE and one 3D T2-weighted (T2w) SPACE scan at 0.7-mm isotropic resolution),
rsfMRI (4 runs x14 min and 33 s). Since not all participants completed all scans, we only
included 339 unrelated participants from the S900 release. Whole-brain rsfMRI and task
fMRI data were acquired using identical multi-band echo planar imaging (EPI) sequence

parameters of 2-mm isotropic resolution with a TR = 720 ms.

Subjects were considered for data exclusion based on the mean and mean absolute
deviation of the relative root-mean-square motion across either four rsfMRI scans or one
dMRI scan, resulting in four summary motion measures. If a subject exceeded 1.5 times the
interquartile range (in the adverse direction) of the measurement distribution in two or more
of these measures, the subject was excluded. In addition, functional runs were flagged for
exclusion if more than 25% of frames exceeded 0.2 mm frame-wise displacement
(FD_power). These above exclusion criteria were established before performing the
analysis 7879, The data of 91 participants was excluded because of excessive head motion
and the data of another 3 participants was excluded because their resting data did not have

all the time points. In total, the data of 245 participants was analysed after exclusions.
4.4.2. Image acquisition of York Non-semantic dataset

MRI acquisition protocols have been described previously %073, Structural and functional
data were collected on a Siemens Prisma 3T MRI scanner at the York Neuroimaging Centre.
The scanning protocols included a T1-weighted MPRAGE sequence with whole-brain
coverage. The structural scan used: acquisition matrix of 176 x 256 x 256 and voxel size
1x1x1 mm?3, repetition time (TR) = 2300 ms, and echo time (TE) = 2.26 ms. Functional
data were acquired using an EPI sequence with an 800 flip angle and using GRAPPA with
an acceleration factor of 2 in 3 x 3 x 4 mm voxels in 64-axial slices. The functional scan
used: 55 3-mm-thick slices acquired in an interleaved order (with 33% distance factor), TR

= 3000 ms, TE =15 ms, FoV =192 mm.
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4.4.3. Image acquisition of York Semantic dataset

Whole brain structural and functional MRI data were acquired using a 3T Siemens MRI
scanner utilising a 64-channel head coil, tuned to 123 MHz at York Neuroimaging Centre,
University of York. The functional runs were acquired using a multi-band multi-echo (MBME)
EPI sequence, each 11.45 minutes long (TR=1.5s; TE = 12, 24.83, 37.66 ms; 48 interleaved
slices per volume with slice thickness of 3 mm (no slice gap); FoV = 24 cm (resolution matrix
= 3x3x3; 80x80); 75° flip angle; 455 volumes per run; 7/8 partial Fourier encoding and
GRAPPA (acceleration factor = 3, 36 ref. lines); multi-band acceleration factor = 2).
Structural T1-weighted images were acquired using an MPRAGE sequence (TR=2.3s, TE
= 2.3 s; voxel size = 1x1x1 isotropic; 176 slices; flip angle = 8°; FoV= 256 mm; interleaved
slice ordering). We also collected a high-resolution T2-weighted (T2w) scan using an echo-
planar imaging sequence (TR = 3.2 s, TE = 56 ms, flip angle = 120°; 176 slices, voxel size

= 1x1x1 isotropic; Fov = 256 mm).
4.5. Image pre-processing
4.5.1. Image pre-processing of HCP dataset

We used HCP’s minimal pre-processing pipelines 74. Briefly, for each subject, structural
images (T1w and T2w) were corrected for spatial distortions. FreeSurfer v5.3 was used for
accurate extraction of cortical surfaces and segmentation of subcortical structures 881, To
align subcortical structures across subjects, structural images were registered using non-
linear volume registration to the Montreal Neurological Institute (MNI1152) space. Functional
images (rest and task) were corrected for spatial distortions, head motion, and mapped from

volume to surface space using ribbon-constrained volume to surface mapping.

Subcortical data were also projected to the set of extracted subcortical structure voxels
and combined with the surface data to form the standard CIFTI grayordinate space. Data
were smoothed by a 2-mm FWHM kernel in the grayordinates space. Rest data were
additionally identically cleaned for spatially specific noise using spatial ICA+FIX 82 and global
structured noise using temporal ICA . For accurate cross-subject registration of cortical
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surfaces, a multimodal surface matching (MSM) algorithm 8 was used to optimize the
alignment of cortical areas based on features from different modalities. MSMSulc (“sulc”
cortical folds average convexity) was used to initialize MSMAII, which then utilized myelin,
resting-state network, and rfMRI visuotopic maps. Myelin maps were computed using the
ratio of T1w/T2w images 8. The HCP’s minimally preprocessed data include cortical
thickness maps (generated based on the standardized FreeSurfer pipeline with combined
T1-/T2-reconstruction). For this study, the standard-resolution cortical thickness maps (32k

mesh) were used.
4.5.2. Image pre-processing of York Non-semantic and Semantic dataset

The York datasets were preprocessed using fMRIPrep 20.2.1 [#°, RRID:SCR_016216],
which is based on Nipype 1.5.1 [®%, RRID:SCR_002502].

4.5.2.1. Anatomical data preprocessing

The T1w image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection &, distributed with ANTs 2.3.3 [88, RRID:SCR_004757], and used as
T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a
Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using
fast FSL 5.0.9 [#°, RRID:SCR_002823]. Brain surfaces were reconstructed using recon-all
from FreeSurfer 6.0.1 [*°, RRID:SCR_001847], and the brain mask estimated previously
was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray-matter of Mindboggle [°!, RRID:SCR_002438].
Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym,
MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration
(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template.
The following templates were selected for spatial normalization: ICBM 152 Nonlinear
Asymmetrical template version 2009c [*?, RRID:SCR_008796; TemplateFlow ID:

MNI152NLin2009cAsym], FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric
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Average Brain Stereotaxic Registration Model [*, RRID:SCR_002823; TemplateFlow ID:
MNI152NLin6Asym].

4.5.5.2. Functional data preprocessing

For each of the BOLD runs per subject, the following preprocessing was performed.
First, a reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. A BO-nonuniformity map (or fieldmap) was estimated based on a
phase-difference map calculated with a dual-echo GRE (gradient-recall echo) sequence,
processed with a custom workflow of SDCFlows inspired by the epidewarp.fsl script and
further improvements in HCP Pipelines 7. The fieldmap was then co-registered to the target
EPI reference run and converted to a displacements field map (amenable to registration
tools such as ANTs) with FSL’'s fugue and other SDCflows tools. Based on the estimated
susceptibility distortion, a corrected EPI reference was calculated for a more accurate co-
registration with the anatomical reference. The BOLD reference was then co-registered to
the T1w reference using bbregister (FreeSurfer) which implements boundary-based
registration ®. Co-registration was configured with six degrees of freedom. Head-motion
parameters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) were estimated before any
spatiotemporal filtering using mcflirt (FSL 5.0.9,%). BOLD runs were slice-time corrected
using 3dTshift from AFNI 20160207 [(27), RRID:SCR_005927]. Since multi-echo BOLD data
was supplied in the York Semantic dataset, the tedana T2* workflow was used to generate
an adaptive T2* map and optimally weighted combination of all supplied single echo time
series. This optimally combined time series was then carried forward for all subsequent
preprocessing steps. The BOLD time-series were resampled onto the following surfaces
(FreeSurfer reconstruction nomenclature): fsaverage. Grayordinates files 74 containing 91k
samples were also generated using the highest-resolution fsaverage as intermediate
standardized surface space. Several confounding time-series were calculated based on the
preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global
signals. FD was computed using two formulations following previous work (absolute sum of

relative motion; °7, relative root mean square displacement between affines ). FD and
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DVARS were calculated for each functional run, both using their implementations in Nipype
97 Three global signals were extracted within the CSF, the WM, and the whole-brain masks.
The confound time series derived from head motion estimates and global signals were
expanded with the inclusion of temporal derivatives and quadratic terms for each 8. Frames
that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as
motion outliers. All resamplings were performed with a single interpolation step by
composing all the pertinent transformations (i.e., head-motion transform matrices,
susceptibility distortion correction when available, and co-registrations to anatomical and
output spaces). Gridded (volumetric) resamplings were performed using
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels . Non-gridded (surface) resamplings were performed
using mri_vol2surf (FreeSurfer). fMRIPrep used Nilearn 0.6.2 ['°° RRID:SCR_001362],
mostly within the functional processing workflow. The resulting data were in CIFTI 64k-vertex
grayordinate space. The left hemisphere had 29696 vertices and right hemisphere had

29716 vertices in total after removing the medial wall.

Post-processing of the outputs of fMRIPrep version 20.2.1 85 was performed using the
eXtensible Connectivity Pipeline (XCP) %101 For each CIFTI run per subject, the following
post-processing was performed: before nuisance regression and filtering any volumes with
framewise-displacement greater than 0.3 mm °7-% were flagged as outliers and excluded
from nuisance regression. In total, 36 nuisance regressors were selected from the nuisance
confound matrices of fMRIPrep output. These nuisance regressors included six motion
parameters, global signal, mean white matter, and mean CSF signal with their temporal
derivatives, and the quadratic expansion of six motion parameters, tissue signals and their
temporal derivatives 98101102 These nuisance variables were accounted for in the BOLD
data using linear regression - as implemented in Scikit-Learn 0.24.2 193, Residual timeseries
from this regression were then band-pass filtered to retain signals within the 0.01-0.08 Hz
frequency band. The processed BOLD was smoothed using Connectome Workbench with
a gaussian kernel size of 6.0 mm (FWHM). Processed functional timeseries were extracted

from residual BOLD using Connectome Workbench 7 . Many internal operations of XCP
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use Nibabel '°°, numpy %4, and scipy '%4.
4.6. Structural and task fMRI analysis
4.6.1. Individual-specific parcellation

Considering the anatomical and functional variability across individuals 195-108  we
estimated individual-specific areal-level parcellation using a multi-session hierarchical
Bayesian model (MS-HBM) 3019 To estimate individual-specific parcellation, we acquired
“pseudo-resting state” timeseries in which the task activation model was regressed from
feature matching, semantic association, spatial working memory, and math fMRI data "1°
using xcp_d (https://github.com/PennLINC/xcp_d). The task activation model and nuisance

matrix were regressed out using AFNI's3dTproject (for similar implementation, see Cui et al.

111)_

Using a group atlas, this method calculates inter-subject resting-state functional
connectivity variability, intra-subject resting-state functional connectivity variability, and
finally parcellates for each single subject based on this prior information. As in Kong et al.
30109 we used MS-HBM to define 400 individualized parcels belonging to 17 discrete
individualized networks for each participant in which control network was divided into 3 sub-
networks, allowing us to explore the heterogeneity of control network. Specifically, we
calculated all participants’ connectivity profiles, created the group parcellation using the
average connectivity profile of all participants, estimated the inter-subject and intra-subject
connectivity variability, and finally calculated each participant’s individualized parcellation.
This parcellation imposed the Markov random filed (MRF) spatial prior. We used a well-
known areal-level parcellation approach, i.e., the local gradient approach (gMS-HBM), which
detects local abrupt changes (i.e., gradients) in resting-state functional connectivity across
the cortex "'2. A previous study '® has suggested combining local gradient 3312 and global
clustering 3' approaches for estimating areal-level parcellations. Therefore, we
complemented the spatial contiguity prior in contiguous MS-HBM (cMS-HBM) with a prior
based on local gradients in resting-state functional connectivity, which encouraged adjacent

brain locations with gentle changes in functional connectivity to be grouped into the same
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parcel. We used the pair of parameters (i.e., beta value = 50, w = 30 and ¢ = 30), which was
optimized using our own dataset. The same parameters were also used in Kong et al. .
Vertices were parcellated into 400 cortical regions (200 per hemisphere). To parcellate each
of these parcels, we calculated the average time series of enclosed vertices to get better
signal noise ratio (SNR) using Connectome Workbench software. This parcel-based time
series was used for all the following analyses. The same method and parameters were used
to generate the individual-specific parcellation for the participants in the HCP dataset using

the resting-state time series except that the task regression was not performed.
4.6.1.1 Homogeneity of parcels

To evaluate whether a functional parcellation is successful, parcel homogeneity is
commonly used 3033199 Parcel homogeneity was calculated as the average Pearson’s
correlations between fMRI time courses of all pairs of vertices within each parcel, adjusted
for parcel size and summed across parcels 30199113 Higher homogeneity means that
vertices within the same parcel share more similar time courses and indicates better
parcellation quality. To summarize the parcel homogeneity, we averaged the homogeneity
value across parcels. We calculated the parcel homogeneity for each run of each participant
for each task using the individual-specific parcellation and then average them across runs
for each participant for each task. We also calculated the parcel homogeneity using
canonical Yeo 17-network group atlas. Using the resting state data of the HCP dataset, Kong
et al 3° have demonstrated that homogeneity within MS-HBM-based individualized parcels
was greater than that in the canonical Yeo 17-network group atlas that does not consider
variation in functional neuroanatomy. The similar pattern was observed using York Non-
semantic and Semantic datasets (Fig. S1). We also observed that the homogeneity of the
semantic tasks of York Semantic dataset were higher than the non-semantic tasks of York
Non-semantic dataset. The potential reason might be that we collected T2-weighted images
for the semantic tasks to improve the skull-stripping, giving a better outcome for pial surface
reconstruction. Given the known heterogeneity within the FPCN, as well as within the DAN
and DMN, we did not merge any subnetworks as was done by Dixon et al. (2018) and

Murphy et al. (2020).
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4.6.2. Cortical geometry - global minimum distance to primary sensory-motor

landmarks

To reveal how the physical proximity to structural landmarks corresponding to primary
sensory-motor regions influences the function of regions, we calculated the geodesic
distance between each parcel and key landmarks associated with primary visual, auditory
and somatomotor cortex. We used these values to identify the minimum geodesic distance
to primary sensory-motor regions for each parcel. Three landmarks were used: central
sulcus, which is the topographical landmark corresponding to primary somatosensory/motor
cortex; temporal transverse sulcus, which provides a landmark for primary auditory cortex;
and calcarine sulcus, marking the location of primary visual cortex. Since cortical folding
patterns vary across participants, and individual variability in cortical folding increases with
cortical surface area, both the shapes of these landmarks and the number of vertices within
each landmark might show individual variability "'*. We used participant-specific landmark
label files to locate the participant-specific vertices belonging to each landmark and

participant-specific parcellation to locate the vertices within each parcel 36.

Geodesic distance along the “midthickness” of the cortical surface (halfway between the
pial and white matter) was calculated using the Connectome Workbench software with an
algorithm that measures the shortest path between two vertices on a triangular surface mesh
115,116 This method returns distance values that are independent of mesh density. Geodesic
distance was extracted from surface geometry (GIFTI) files, following surface-based
registration 8. To ensure that the shortest paths would only pass through the cortex, vertices

representing the medial wall were removed from the triangular mesh in this analysis.

We calculated the minimum geodesic distance between each vertex and each landmark.
Specifically, for the landmark central sulcus, we calculated the geodesic distance between
vertex i outside central sulcus and each vertex within the central sulcus (defined for each
individual; see above). We then found vertex j within the central sulcus closest to vertex i,

and extracted this value as the minimum geodesic distance between vertex i and this
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landmark. To compute the minimum geodesic distance between parcel k and the central
sulcus, we computed the average minimum distance across all the grayordinate vertices in
parcel k to the vertices within the central sulcus. We used the same procedure to calculate
minimum geodesic distance between each parcel and all three sensory-motor landmarks
(central sulcus and temporal transverse sulci as well as calcarine sulcus). From these three
minimum geodesic distances identified between parcel k and sensory-motor landmarks, we
then selected the lowest distance value (i.e., the landmark that was closest to parcel k) to
define the global minimum distance to sensory-motor regions for parcel k. Then we
averaged the mean minimum distance of all the parcels within each network for each
participant and then sorted the networks by the mean minimum distance across participants.
Finally, we examined whether mean minimum distance of FPCN-A and FPCN-B were

different by performing a paired t-test.
4.6.3. Anatomical hierarchy — myelin content and cortical thickness

We measured myelin which is a non-invasive and valid proxy for anatomical hierarchy
and captures the anatomical hierarchy better than cortical thickness ?2. The gray-matter
myelin content can be measured via the cortical T1w/T2w map, which is a structural
neuroimaging map defined by the contrast ratio of T1- to T2-weighted (T1w/T2w) magnetic

resonance images 24357482,

Human T1w/T2w maps were obtained from the HCP in the surface-based CIFTI file
format. To produce the T1w/T2w maps, high resolution T1- and T2-weighted images were
first registered to a standard reference space using a state-of-the-art areal-feature-based

technique 243574,

Each participant has a myelin map, with each vertex having a myelin value (i.e.,
T1w/T2w). We calculated the myelin value of each parcel by averaging the myelin values of
all the vertices within this parcel for each participant using the individual-specific parcellation.
Similarly, we calculated the myelin value of each network by averaging the myelin values of
all the parcels within each network for each participant and then sorted the networks by the

mean myelin value across participants. Finally, we examined whether the myelin values of
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the FPCN-A and FPCN-B were different by performing paired t-tests.

Cortical thickness coarsely tracks changes in cytoarchitecture and myelin content, and
can be viewed as a pragmatic surrogate for cortical microstructure. Therefore, we also
examined cortical thickness of each network which measures the width of gray matter of
cortex across networks. The procedure was as above, except we used the cortical thickness

maps and extracted the cortical thickness of each vertex of each participant.
4.6.4. Function hierarchy - principal connectivity gradient analysis

To examine the relative position of networks on the principal gradient axis of intrinsic
connectivity, we performed dimension reduction analysis on resting state functional
connectivity matrix of HCP dataset. First, the resting-state functional connectivity for each
run of each participant was calculated using the method in 4.6.10. These individual
connectivity matrices were then averaged to calculate a group-averaged connectivity matrix.
The Brainspace Toolbox "7 was used to extract ten group-level gradients from the group-
averaged connectivity matrix (dimension reduction technique = diffusion embedding, kernel
= None, sparsity = 0.9), in line with previous studies '8 Using identical parameters,
gradients were then calculated for each individual using their average 400 x 400 resting
state functional connectivity matrix across four runs. These individual-level gradient maps
were aligned to the group-level gradient maps using Procrustes rotation to improve
comparison between the group-level gradients and individual-level gradients (N iterations =
10). This analysis resulted in ten group-level gradients and ten individual-level gradients for
each participant explaining maximal whole-brain connectivity variance in descending order.
For 238 out of 245 participants, the first gradient explaining maximal variance, was the
principal gradient which captures the separation between unimodal and transmodal regions
20, Next, we averaged the first gradient values of all the parcels within each network for each
participant whose first gradient was the principal gradient and then sorted the networks by
the mean gradient values across participants. Finally, we examined whether the gradient

values of FPCN-A and FPCN-B were different by performing paired t-tests.
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4.6.5. Comparing the evolutionary expansion and cross-species similarity between

FPCN-A and FPCN-B

We used the evolutionary expansion map and cross-species similarity map 2° from
https://github.com/TingsterX/alignment_macaque-human. Surface areal expansion map
was calculated as the human area divided by macaque area at each of corresponding vertex
on human and macaque surfaces 2°. Cross-species similarity is calculated by comparing the
similarity of whole brain patterns of functional connectivity in macaques and humans 2°. We
extracted the value of each vertex and calculated the mean value of each parcel of the group
parcellation. Finally, we compared the value between FPCN-A and FPCN-B by conducting

independent t-tests.
4.6.6. Feature extraction of the time series data

We used the highly comparative time-series analysis toolbox, hctsa'®129, to extract
massive features of the time-series. Using a time-series dataset, hctsa allowed us to
transform each timeseries to a set of over 7,700 features that each encodes a different
scientific analysis method 19120, The extracted features include, but are not limited to,
distributional properties, entropy and variability, autocorrelation, time-delay embeddings,
and nonlinear properties of a given time-series 120121, The hctsa feature extraction analysis
was performed on the parcellated fMRI time-series of each participant, each task and each
run separately. Following the feature extraction procedure, the outputs of the operations that
produced errors were removed and the remaining features (about 6900 features) were
normalized across parcels using an outlier-robust sigmoidal transform. The normalized
feature matrix (400 parcels x about 7000 features x 4 runs) was used for further

classification analysis and feature similarity analysis.
4.6.7. Classification analysis

To reveal the network similarity in a data-driven approach, we performed a classification

analysis using the normalized feature matrix.
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4.6.7.1. Balanced accuracy of classification analysis

To examine whether we could classify the network labels of each parcel using the
extracted massive features, we performed a classification task to investigate how accurately
a classifier can learn a mapping from time-series features of parcels to network labels of
these parcels. We combined the normalized features of all the runs of each task for each
participant and then performed the multi-class classification (17 networks labels) using

scikit-learn 193, which is a machine learning library written in Python.

For the multi-class classification, we trained linear support vector machine classifiers
(sklearn.svm.SVC) to find the hyperplane that maximally separates the samples belonging
to the difference classes. The parcel numbers of networks are different. For example, both
FPCN-A and FPCN-B have 25 parcels, while Control-C has 23 parcels. Due to imbalance
of observations across the networks, we reported balanced classification accuracy'??123,
Specifically, the balanced accuracy was calculated as the arithmetic mean of sensitivity, (i.e.,
true positive rate which measures the proportion of real positives that are correctly predicted
out of total positive prediction made by the model), and specificity, (i.e., true negative rate
which measures the proportion of correctly identified negatives over the total negative
prediction made by the model). We performed 5-fold cross-validation to prevent overfitting
leading to optimistic performance estimates. To examine whether the classification accuracy
was significantly greater than the chance level for each participant and each task, we
performed the permutation-based multi-class classification analysis in which we randomly
shuffled the network labels 1000 times within all the runs for each participant for each task.
This established an empirical distribution of classification accuracy scores under the null

hypothesis where there is no association between features and network labels 124,

The data used for classification have about 7000 features and 1600 samples (400
parcels x 4 runs) in the semantic tasks and 800 samples (400 samples x 2 runs) in the non-
semantic tasks. Machine learning with many more features than samples is challenging, due
to the so-called curse of dimensionality. The curse of dimensionality describes the explosive

nature of increasing data dimensions; this increase in the dimensions might increase the
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noise and redundancy during its analysis. It has been shown that with a fixed number of
training samples, the predictive power of any classifier first increases as the number of
dimensions increase, but after a certain value of number of dimensions, the performance
deteriorates 2. To explore the curse of dimensionality, we performed the classification using
all the features and part of the features, respectively. Parts of the features were the top
features that make major contributions in the classification when using all the features for
classification. We then compared the classification accuracy using all the features and part
of the features by conducting a paired t-test. It showed that there is minimal accuracy cost

when including fewer features and there was no cures of dimensionality.

4.6.7.2. Confusion matrix of classification analysis

The classification accuracy allowed us to check whether we can correctly classify the
network labels of parcels. However, the classification accuracy alone can hide the detail we
need to diagnose the performance of our model. For example, for multi-class classification,
high classification accuracy may be observed because all classes are being predicted
equally well or because one or two classes are being neglected by the model. Therefore, to
better understand the performance of the classification model, we analyzed the confusion
matrix, which is a summary of prediction results. In the confusion matrix, a row represents
an instance of the actual class (i.e., an actual network), whereas a column represents an
instance of the predicted class (i.e., the predicted network). The diagonal elements
represent the number of points for which the predicted label is equal to the true label, while
off-diagonal elements are those that are mislabeled by the classifier. Higher diagonal values
indicate a higher number of correct predictions. The confusion matrix shows the ways in
which our classification model is confused when it makes predictions. It gives us insight not
only into the errors being made by the classifier but more importantly the types of errors that
are being made. Specifically, we could explore the network similarity by analyzing the

classification output and how the network similarity varies with task.

Due to the imbalance of observations across the networks, we normalized the confusion

matrices by the number of elements in each class. In the current study, we only reported the
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normalized confusion matrix of control networks. We examined whether the percentages of
predicted networks were different by conducting paired t-tests. We conducted FDR

correction at p = 0.05 to control for multiple comparisons.
4.6.8. Constructing feature similarity matrices

To investigate how FPCN subnetworks interact with DAN and DMN, we calculated the
task and resting-state feature similarity. For each normalized feature matrix, we calculated
Pearson correlation coefficients and transformed them to fisher z to represent the pairwise
feature similarity between the time-series features of all possible combinations of brain
parcels. As a result, a 400 x 400 feature similarity matrix was constructed for each individual
and each run, representing the strength of the similarity of the local temporal fingerprints of
brain areas. Finally, we averaged the estimates of feature similarity within networks, and
between pairs of networks, to construct a network-by-network feature similarity matrix. The
same method was used to calculate the resting-state feature similarity of the HCP dataset

and construct a network-by-network feature similarity matrix.
4.6.9. Constructing fMRI redundancy matrices

To investigate how FPCN subnetworks interact with DAN and DMN, we further
calculated the redundant interaction. We used the recently developed information approach,
integrated information decomposition, to decompose time-delayed mutual information into
redundant, unique, and synergistic information shared with respect to both past and present
state of both regions®”:43, The redundant interaction quantifies how much information about
the brain’s future trajectory is carried redundantly by distinct brain regions. We focused on
the temporally persistent redundancy, which corresponds to redundant information in the
past of both parts that is present in the future of both parts. The temporally persistent
redundancy was calculated using the Gaussian solver implemented in the JIDT toolbox,
based on their HRF-deconvolved BOLD signal time series. We calculated the redundant
interaction for each pair of brain regions, resulting in a 400 x 400 redundancy matrix for per
participant, per task and per run. Finally, we averaged the estimates of redundancy within

networks, and between pairs of networks, to construct a network-by-network redundancy
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matrix, akin to the one that we constructed from the feature similarity data.
4.6.10. Constructing fMRI functional connectivity matrices

To investigate how FPCN subnetworks interact with DAN and DMN, we further
calculated the task and resting-state functional connectivity. We did not use the traditional
psychophysiological interaction (PPI) to measure task-state functional connectivity because
this method can inflate activation-induced task-state functional connectivity (i.e., identify
regions that are active rather than interacting during the task) '?6. Since task activations
produce spurious but systematic inflation of task-based functional connectivity estimates 26,
it is necessary to correct for the task-timing confounds by removing the first-order effect of
task evoked activations (i.e., mean evoked task-related activity; likely active during the task)
prior to estimating task-state functional connectivity (likely interacting during the task).
Specifically, we fitted the task timing for each task using a finite impulse response (FIR)
model 28, This method has been widely used before '2-12°. We used an FIR model instead
of a canonical hemodynamic response function or psychophysiological interactions (PPIs)
given recent evidence suggesting that the FIR model reduces both false positives and false

negatives when estimating functional connectivity 26.

After task regression, we demeaned the residual time series for each parcel and
calculated the Pearson correlation as the functional connectivity for per participant, per task
and per run. The Pearson correlation coefficients might be inflated due to the temporal
autocorrelation present in task fMRI time series data '3°. To account for the potential inflation
of the Pearson correlation coefficients, we corrected the Pearson correlation using a novel
correction approach — xDF. xDF accounts for distinct autocorrelation in each time series for
instantaneous and lagged cross-correlation '3'. We calculated xDF-adjusted z-scored
correlation coefficients to compute interregional relationships of bold time series, resulting
in a 400 x 400 functional connectivity matrix for per participant, per task and per run. Finally,
we averaged the estimates of functional connectivity within networks, and between pairs of
networks, to construct a network-by-network functional connectivity matrix. The same

method was used to calculate the resting-state functional connectivity of the HCP dataset
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and construct a network-by-network functional connectivity matrix except that the task

regression was not performed.

4.6.11. Comparing feature similarity, redundancy and functional connectivity

difference between networks

To investigate whether FPCN-A showed greater feature similarity with DAN than FPCN-
B did in each task, we calculated the average feature similarity between FPCN-A and DAN
and the feature similarity between FPCN-B and DAN, respectively across all runs per
participant per task, then calculated the relative feature similarity difference (i.e., the feature
similarity between FPCN-A and DAN minus the feature similarity between FPCN-B and
DAN), and finally conducted paired-t tests for each task. Then we examined the feature
similarity between FPCN-B and DMN versus FPCN-A and DMN in the same way. We
conducted FDR correction at p = 0.05 to control for multiple comparisons. Similarly, we
investigate whether FPCN-A showed stronger redundancy and functional connectivity with
DAN than FPCN-B did. We also examined whether FPCN-B showed greater redundancy
and functional connectivity with DMN than FPCN-A did. The procedure as above, except we

extracted the redundancy and functional connectivity matrix, respectively.

We further investigated whether the task influenced the feature similarity difference
between network pairs using the maximum/minimum permutation test. We might expect that
feature similarity between FPCN-A and DAN-A versus FPCN-A and FPCN-B would be
greater in spatial working memory task than in the association task because FPCN-A might
shift more to DAN in the spatial working memory task that requires an external goal but no
memory retrieval. To examine this possibility, we calculated the mean feature similarity
difference between FPCN-A and DAN-A versus FPCN-A and FPCN-B for each task and
calculated the mean feature similarity difference between each task pair. To test for statistical
significance, we permutated the task label 10000 times; we then calculated the mean feature
similarity difference between these two tasks to build a null distribution for each task pair.
Since we included multiple task pairs, we used the permutation-based maximum mean

feature similarity difference and minimum mean feature similarity difference values in the

48


https://doi.org/10.1101/2023.09.06.556465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.06.556465; this version posted September 6, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

null distribution for each task pair to control the family-wise error (FWE) rate (p = 0.05, FWE-
corrected). To evaluate significance, if the observed mean difference value was positive, we
counted the percentage of times that mean difference values in the maximum null
distribution were greater than the observed ‘true’ mean difference values; by contrast, if the
observed mean difference value was negative, we counted the percentage of times of mean
difference values in the minimum null distribution were less than the observed ‘true’ mean

difference values.

Similarly, we investigated whether the task influenced the redundancy and functional
connectivity difference between network pairs. The procedure was as above, except we
extracted the redundancy and functional connectivity from the network-by-network
redundancy and functional connectivity matrix, respectively. We conducted FDR correction

at p = 0.05 to control for multiple comparisons.

4.6.12. Task fMRI univariate analysis

To reveal the functional differentiation between FPCN-A and FPCN-B, we examined
whether they showed similar or opposite activation patterns. We identified regions that were
activated or deactivated in the tasks by building a general linear model (GLM). We also
examined regions where the neural responses were modulated by task difficulty. For
semantic tasks, we included one task mean regressor and one demeaned parametric
regressor of semantic rating. We examined how the neural responses were negatively
modulated by feature similarity rating for the matching trials and positively modulated by
feature similarity rating for the non-matching trials. For the semantic association task, we
examined how the neural responses were negatively modulated by semantic association
strength rating for the related trials and positively modulated semantic association strength
rating for the non-related trials. For the non-semantic tasks, we included two regressors -
easy and hard conditions to reveal the regions showing greater activation in the hard than
easy conditions. For all the tasks, we also modelled incorrect trials as regressors of no

interest.

We extracted the beta value of each parcel in these task conditions and tested whether
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they were significantly activated (i.e., above zero) or deactivated (i.e., below zero) relative
to implicit baseline (i.e., fixation period) to explore the task mean effect. Then we considered
parcels that showed stronger or weaker activation in the hard than in the easy condition in
the spatial working memory and math tasks and that the activations were positively
modulated to semantic difficulty. These parcels were thought to support general executive
control. Fixed-effects analyses were conducted using nilearn ' to estimate the average
effects across runs within each subject for each parcel. Then we conducted one-sample t-
tests to assess whether the estimated effect-size (i.e., contrast) was significantly different
from zero across all subjects. We conducted FDR correction at p = 0.05 to control for multiple

comparisons. Finally, we identified the network that each parcel belonged to 3°.

4.7. Data and materials availability

The HCP data is publicly available here https://www.humanconnectome.org/. The York data
is not available due to insufficient consent. Researchers wishing to access the data should
contact Elizabeth Jefferies or the Chair of the Research Ethics Committee of the York
Neuroimaging Centre. Data will be released when this is possible under the terms of the UK
GDPR. Analysis code for this study is available at https://github.com/Xiuyi-Wang/Control

_Project.
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