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ABBREVIATIONS

ACN acetonitrile

CAR T-cell chimeric antigen receptor T-cell

CTL cytotoxic T lymphocytes

CYp Cytochrome-P-Oxygenase

dda data-dependent acquisition

dia data-independent acquisition

FA formic acid

GO Gene Ontology

(s/m)HLA (soluble/membrane) human leukocyte
antigen

IgG Immunoglobuline G

IEDB Immune Epitope Database & Tools

IM ion mobility

IMBAS Streptavidin based immunopeptidomics
workflow (IMmunopeptidomics by
Biotinylated Antibodies and Streptavidin)

MeOH methanol

MHC major histocompatibility complex

PASEF parallel accumulation — serial fragmentation

PBS phosphate-buffered saline

py_diAID Python package for Data-Independent
Acquisition with an Automated Isolation
Design

SPD samples per day

TIMS trapped ion mobility spectrometry
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ABSTRACT

Distinction of non-self from self is the major task of the immune system. Immunopeptidomics
studies the peptide repertoire presented by the human leukocyte antigen (HLA) protein,
usually on tissues. However, HLA peptides are also bound to plasma soluble HLA (sHLA), but
little is known about their origin and potential for biomarker discovery in this readily available
biofluid. Currently, immunopeptidomics is hampered by complex workflows and limited
sensitivity, generally requiring several mL of plasma for the detection of hundreds of HLA
peptides. Here, we take advantage of recent improvements in the throughput and sensitivity
of mass spectrometry (MS)-based proteomics to develop a highly-sensitive, automated and
economical workflow for HLA peptide analysis, termed Immunopeptidomics by Biotinylated
Antibodies and Streptavidin (IMBAS). IMBAS-MS quantifies more than 5,000 HLA class |
peptides from only 200 uL of plasma, in just 30 minutes. Our technology revealed that the
plasma immunopeptidome of healthy donors is remarkably stable throughout a year and
strongly correlated between individuals with overlapping HLA types. Immunopeptides
originating from diverse tissues, including the brain, are proportionately represented. We
conclude that sHLAs are a promising avenue for immunology and precision oncology.

INTRODUCTION

The immune system relies on the human leukocyte antigen (HLA) peptide-protein complex to
present immunopeptides derived from both endogenous and exogenous sources to circulating
T-cells. These immunopeptides play a crucial role in immune surveillance, as they enable
elimination of abnormal or infected cells. Upon recognition of a peptide-HLA protein complex by
cytotoxic T lymphocytes (CTLs), downstream cascades are activated, causing the presenting cell
to undergo apoptosis. This biological principle is exploited in immunotherapeutic strategies such
as CAR T-cell treatment or mRNA peptide vaccination®. A crucial but challenging step is the
identification of peptides specifically presented by tumor cells. Most efforts have focused on the
enrichment of membrane bound human leukocyte antigen (mHLA) receptors with their bound
immunopeptides from tumor tissue. This is followed by mass spectrometric identification in
search of tumor specific antigens or neoepitopes?,3.

In addition to the membrane anchored HLA proteins, a soluble fraction (sHLA) can be enriched
from blood and other body fluids®. sHLAs are thought to arise by shedding, cleavage from the cell
surface or the expression of a splicing variant lacking the membrane anchoring domain>.
Although their function and exact release mechanisms remain unclear, although it is known to
change in a disease context®. In the case of cancer, a disproportionate fraction of peptides in
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relation to the total tumor mass may originate from tumor tissue?® representing a potential
additional source for tumor antigens’. Whereas the analysis of HLA peptides from mHLAs
requires substantial tissue amounts from surgery, sHLAs are rather easily accessible through
minimal invasive procedures like a regular blood withdrawal without placing additional burden
on patients. However, despite the clear potential for disease diagnosis and treatment monitoring
in a clinical setup®19, there are only few studies investigating sHLAs and they typically only
identified hundreds of them from milliliters of plasma®*7:2.

Beyond clinical applications, another attraction of the sHLA immunopeptidome is that it can serve
as an unlimited source of native immunopeptides from diverse HLA backgrounds. As importantly,
an extensive repertoire of sHLA peptides from a diversity of healthy donors could potentially
serve as a resource to improve general knowledge about peptide processing and presentability!?.
In contrast, due to limited analytical sensitivity and tissue accessibility mHLA data is currently
restricted to a few hundred different alleles, with on average around 5,000 up to 160,000 (HLA-
A0201) associated MHC peptides identified by mass spectrometry?2.

In this study, we address the limitations of sHLA immunopeptidomics and characterize its nature
over time in healthy donors. We describe an automated workflow for efficient ‘one-pot’
enrichment of HLA immunopeptides followed by ultra-high sensitive mass spectrometry (MS),
termed IMBAS-MS for Immunopeptidomics by Biotinylated Antibodies and Streptavidin.
Quantifying immunopeptides from a few hundred microliters showed that the
immunopeptidome is stable in healthy individuals for over a year and exhibits high reproducibility
between overlapping HLA types. IMBAS-MS allowed profiling of sHLA to a depth of over 10,000
peptides per person, which were broadly representative of different tissues.

EXPERIMENTAL PROCEDURES

Plasma collection from healthy donors

Plasma was obtained by withdrawing blood from eight healthy donors (specified in
Supplementary Table 1) in EDTA tubes (BD Vacutainer K2E; REF 367525). The tubes were inverted
three times and centrifuged at 2000xg for 20 min at 4°C. The plasma was separated, aliquoted
and snap-frozen and stored at -80°C.

To determine the HLA types of healthy donors, genomic DNA was extracted from buccal swabs.
Cotton swabs were used to obtain oral mucosa samples, placed in protease buffer (30 mM Tris-
HCl, pH 8, 0.5% Tween-20, 0.5% IGEPAL CA-630) and proteins were digested with 100 pg
proteinase K per sample for 12 min at 50°C in a thermal shaker. The enzyme was inactivated at
75°C for 30 min and genomic DNA was purified using the QlAamp DNA Micro Kit (Qiagen). HLA
class | (HLA-A, HLA-B, HLA-C) and class Il (DRB1, DQB1, DPB1) loci were amplified using the
NGSgo®-MX6-1 kit (GenDx) and multiplexed sequencing libraries were prepared using the Ultra™
Il FS DNA Library Prep Kit for Illumina (NEB). Libraries were sequenced on a NovaSeq 6000 system
(llumina) in 150 bp paired-end mode and the genotype data were analyzed using the
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NGSengine® software (GenDx). Blood was sampled from healthy donors, who provided written
informed consent, with prior approval of the ethics committee of the Max Planck Society.

Affinity purification of HLA Molecules

Plasma samples were thawed on ice, diluted 1:2 with PBS (Gibco) and incubated overnight,
shaking at 4°C with variable amounts of biotinylated W6/32 antibody (custom produced by inVivo
Bioscience). Captured HLA molecules were enriched using magnetic streptavidin beads (ReSyn
Bioscience) and washed first with 100 pl of 150 mM HCl in 10mM Tris pH8.5, then 100 pl of 450
mM HCl in 10 mM Tris pH 8.5 and finally 100 pl of 10 mM Tris pH 8.5 at 4°C. The sHLA molecules
were eluted from the beads using 150 pl elution buffer (200 mM glycine pH 2), transferred into
prewetted 30 kDa MWCO plates (Millipore) and filtered at 4000xg for 20 min. The flowthrough
was directly loaded onto Evotips Pure following the recommended standard procedure. Briefly,
Evotips were activated by 1-propanol, washed two times with 50 uL buffer B (99.9% ACN, 0.1%
FA) and two times with 50 pL buffer A (99.9% ddH20, 0.1% FA). 70 pL buffer A was briefly spined
on the disks and sample elution was loaded by 80 sec centrifugation. Evotips were then washed
with 50 plL buffer A and stored with buffer A on top. All centrifugation steps were performed at
700 x g for 1 min. The whole protocol was performed in a semi-automated fashion using the
Agilent Bravo liquid handling platform.

Immunopeptide fractionation

To acquire deep fractionated immunopeptidomes, 5 ml of plasma per individual were thawed at
once, distributed in 10 wells of a 96 deep-well plate and processed with the same workflow as
described above. The final elutions were pooled in two wells before loading onto the MWCO
filter plate and combined into one single peptide pool after centrifugation. Fractionation was
carried out on an AssayMAP Bravo Sample Prep Platform (Agilent), using the Fractionation v1.1
Protocol in the Protein Sample Prep Workbench v3.2.0 with standard settings. 5 ul C18 Cartridges
(Agilent) were used as solid phase, six elution fractions were collected, using high-pH buffers with
increasing acetonitrile concentrations (ammonium hydroxide solution, pH 10; 7, 12, 15, 23, 30
and 40% acetonitrile, respectively). The 40% acetonitrile buffer was used for priming and 7% for
equilibration of the cartridges.

DDA and DIA LC-MS acquisition

Peptides were separated with the Evosep One LC system using predefined gradients as
mentioned in each section. The majority of data was acquired using the Whisper40 method over
an 15 cm Aurora Elite CSI column (AUR3-15075C18-CSl, lonOpticks) at 50°C C inside a
nanoelectrospray ion source (Captive spray source, Bruker). The mobile phases were 0.1% FA in
LC-MS grade water (buffer A) and 99.9% ACN with 0.1% FA (buffer B). For gradient testing, the
15SPD, 30SPD and 60SPD method was used in combination with a 15 cm PepSep (150 um ID and
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1.5 um bead size, Bruker) connected to a 10um ID ZDV emitter (Bruker). The LC system was
coupled to a timsTOF Ultra instrument (Bruker).

When operated in dda-PASEF mode, a ten PASEF/MSMS scan per topN acquisition method was
used with a precursor signals intensity threshold at 500 arbitrary units. An adapted polygon in
the m/z-IM plane was used to exclude adverse ions, but include single-charge precursors. The
mass spectrometer was operated in sensitivity mode with an accumulation and ramp time of
100ms. Precursors were isolated with a 2 Th window below m/z 700 and 3 Th above and actively
excluded for 0.4 min when reaching a target intensity threshold of 20,000 arbitrary units. A range
from 100 to 1700 m/z and 0.6 to 1.6 Vs cm-2 was covered with a collision energy from 20 eV at
0.6 Vs cm-2 ramped linearly to 59 eV at 1.6 Vs cm-2.

When operating in dia-PASEF mode, we used optimal dia-PASEF methods generated with our
Python tool py_diAID3C. These dia-PASEF methods optimally cover the precursor cloud in m/z-IM
plane, while being highly efficient with 1.17 s cycle time. We generated acquisition schemes
specifically for dominant HLA types that cover up to 99.9% of all precursor species including singly
charged ions, with 8 dia-PASEF scans, where each scan is divided into two ion mobility windows.
The method covers precursors within 300 — 1200 Da. Other settings remained the same as for
dda-PASEF.

Raw data analysis

DDA data was analyzed using FragPipe 19.1 with the nonspecific HLA workflow!®=2%, The quality
of identified peptides was assessed using MHCVizPipe (v0.7.11) 3.

DIA data was analyzed using DIA-NN version 1.8.1 with standard settings searching against
sample specific predicted libraries generated using the AlphaPeptDeep package
(https://github.com/MannLabs/alphapeptdeep) together with the peptdeep_hla
(https://github.com/MannLabs/PeptDeep-HLA) DL model. Sample specific immunopeptide lists
(from DDA analysis or directDIA results generated using Spectronaut 17) were used to tune an
immunopeptide deep learning model which reports a peptide list with high likelihood of being a
presented immunopeptide in this sample from an unspecific in silico digest of a human fasta. The
peptide list of each individual is used for transfer learning to predict individual- or sample-specific
spectral library. Library sizes are adjustable using a precision cutoff (probability >= 0.7) in the
peptdeep_hla DL model. The ‘report.tsv’ table was used for further analysis.

Statistical analysis

All data analysis was performed using R. Unless stated differently, only peptides predicted to bind
to any of a donors HLA-type were used for downstream analysis. Peptides were defined to be
binders as provided by MHCVizPipe interfacing NetMHCpan 4.1. Binder Frequency (BF) scores
were reported as provided by MHCVizPipe. The BF score describes the fraction of peptides
predicted to bind the provided HLA Alleles within the expected length range. The UpSet plots
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were generated using a custom script. Only intersections which have a size of 20% of the smallest
included dataset are displayed.

Experimental design and statistical rational

All experiments were done using human plasma obtained as described above. Altogether, the
dataset including raw data files and search results were uploaded to MassIVE (see below). We
used the same plasma batch for the benchmarking and technical evaluation. In brief,
measurements with different gradients, input amounts or from different donors were acquired
in triplicates unless mentioned differently. The experimental design and statistical rational are
described in the respective figure legends. Workflow replicates were acquired to evaluate
reproducibility and quantitative accuracy.

RESULTS

IMBAS-MS design and evaluation

Earlier sHLA workflows have used several milliliters of plasma for enrichment, limiting throughput
and applicability. We aimed to develop a workflow that is highly reproducible, sensitive and
allows for deep immunopeptidome coverage, without neglecting throughput and cost. To
accommodate all these aspects, we optimized IMBAS (Immunopeptidomics by Biotinylated
Antibodies and Streptavidin) in a 96-well format that could be processed in parallel. We
automated the immunoaffinity enrichment on a Bravo liquid handling robot (Agilent) with less
than two hours of hands-on time for the entire procedure (Fig. 1A).
The workflow was designed to be flexible, thus the enrichment can either be performed by hand
or by any robot with a magnetic plate and a cooled plate station. IMBAS-MS is modular and
although not demonstrated here, can directly be applied to cell lysates or biopsy samples by
adding a homogenization and lysis step up front. The enrichment, washing and elution steps take
place within the same well, minimizing transfer steps and reducing sample loss due to plastic
contact. A key aspect of IMBAS is the replacement of the standard ProteinA/G-IgG domain
interaction between the antibody and bead matrix. To achieve this, we chose to use biotinylated
antibodies which can be captured with streptavidin beads. The high specificity and stability of the
streptavidin-biotin interaction allows to omit chemical crosslinking of the desired anti-HLA-
antibody to the slurry upfront of the enrichment protocol, saving time and material. Additionally,
this eliminates the plasma preclearance step. Following the enrichment, the eluent is molecular-
weight filtered and the resulting, separated peptides are loaded onto Evotips. In this way, an
entire 96-well plate can be prepared and MS-data acquired within three days with minimal
reagent preparation and cost. For technical details of the protocol see Experimental Methods.
To evaluate IMBAS-MS, we first identified and quantified immunopeptides from 200 pL plasma
from the same donor at different HPLC flowrates and gradient lengths, from 21 min up to 88 min
long gradients (termed 60 to 15 Samples Per Day (SPD)). The standard methods on the Evosep
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system have 1 pL/min down to 0.22 pL/min flowrates with throughputs of 15, 30 and 60 SPD. We
reasoned that the recently introduced very low flow gradients of only 100 nL/min (Whisper
gradients20 or 40) that had substantially boosted sensitivity for single-cell analysis'® would also
be beneficial for HLA peptides. Indeed, the nanoflow gradients substantially outperformed the
standard gradients with more than 3,000 immunopeptide identifications in data-dependent
acquisition (DDA) (Fig 1B). The Whisper20 gradient identified only 10% more peptides than the
Whisper20 gradient, at the cost of doubled measurement time (Fig. 1B). With a focus on
maximizing depth and throughput, we chose the Whisper40 gradient (31 min length) for all
subsequent experiments.

A key advantage of our workflow is that it needs much less plasma input than the milliliters used
before. To investigate input requirements and tradeoffs, we enriched sHLA from only 10 pL up to
500 pL of plasma. Volumes from 10 pL to 100 plL plasma can be processed in a standard 96 well
plate. They required only 1 ug of antibody for efficient enrichment and did not benefit from
increasing the antibody amount 10-fold (Fig. 1C). For higher volumes — for instance 200 ul —
higher antibody amounts boosted immunopeptide identifications about 20%. Over the entire
tested input range, we identified from 500 to 4,500 immunopeptides in data dependent
acquisition (DDA).

To investigate the purity of our immunopeptidomes, we inspected their length distribution, their
calculated binder scores and presence of singly charged precursors. ldentified peptides retained
expected features such as a strong preference of nonameric peptides and a significant proportion
of singly charged precursors (Supplementary Figure 1). The fraction of peptides with high binding
scores (BF) within the expected length range was 0.9, further indicating high purity of the
enriched and identified peptides (see Experimental Methods).

IMBAS-MS also demonstrates high quantitative reproducibility between replicates at 500 plL
(Pearson correlation of 0.97). Even with ten-fold reduced input, reproducibility is largely retained
with a Pearson correlation of 0.81 (Figure 1D and E).

Based on the results above, in particular the purity and depth of the immunopeptide fraction, we
chose a sample volume of 200 pL as an optimal combination for data quality, sample availability,
ease of handling and cost effectiveness.
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Figure 1: IMBAS-MS design and evaluation. (A) Schematic representation of the sHLA IMBAS-
MS workflow. Plasma is incubated with anti-HLA antibody (W6/32) and subjected to our
automated bead-based enrichment workflow on a liquid handling robot (Agilent Bravo). Eluted
peptides are loaded onto StageTips (Evotips) and measured by ultra-high sensitivity LC-MS/MS
(Evosep and Bruker timsTOF Ultra). (B) Immunopeptide identifications from enrichment of 200
uL plasma using different gradient types and lengths. Low-flow gradients (Whisper40 and 20 on
the Evosep, dark blue) show an increased sensitivity by identifying over 3,000 immunopeptides.
The total uniquely identified immunopeptides per triplicate (light bar) as well as the average
and standard deviation (SD) per replicate (black lines) is plotted. (C) Evaluation of various input
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amounts using 1 ug (purple) or 10 ug (blue) of W6/32 antibody. The ‘*’ indicates that this data
point was not acquired due to plasma/antibody requirements. For unique peptide number
determination see B); dw: deep-well plate. (D) Quantification correlation shows high
reproducibility between workflow replicates using 500 pL plasma. (E) Pearson correlation
between 50 pL and 500 pL of the same plasma sample.

Predicted library-based DIA for immunopeptidomics

Having evaluated IMBAS-MS with data dependent acquisition (DDA) methods, we set out to
couple it with data-independent acquisition (DIA) based mass spectrometry, which promises
much greater depth and higher data completeness between experiments!41>, A major challenge
for efficient and comprehensive analysis of DIA data is the selection or generation of a suitable
spectral library. Three different strategies are commonly used: experimental libraries, typically
acquired by DDA; pseudospectra-based libraries extracted by directDIA as introduced by DIA-
Umpire'® and implemented in Spectronaut; and libraries in which fragment intensities are
predicted by deep learning'*'’. In connection with the latter approach, we recently introduced a
deep learning based framework called AlphaPeptDeep, which predicts spectral libraries tailored
for different MS platforms, only based on a database file of the proteome in FASTA format or just
a peptide list as input®®. It contains the PeptDeep-HLA model which makes use of the inherent
similarity of immunopeptides present within one person based on their HLA type. Given a
preliminary list of identified peptides, this package then predicts a large subset of HLA peptides
that are potentially present in this allelotype(s). Here, we compared three different modes of
library generation in AlphaPeptDeep, purely experimental libraries and pseudospectra-extracted
libraries (Fig. 2A).

First, we built an experimental DDA library using MSFragger'®=2! on the above-described dilution
series files, which resulted in nearly 7,000 identified precursors. Spectronaut internally builds a
directDIA extracted list of peptides, in this case containing around 2,000 identified precursors
from the replicates searched in parallel. Using AlphaPeptDeep, we predicted the fragment
intensities of the set of immunopeptides constituting the ‘pan library’, with around 385,000
precursors (MSV000084172;PXD004894). The PeptDeep-HLA model only needs about 1,000
identified immunopeptides to learn how to extract potential immunopeptides from a FASTS for
the allelotypes in question. For this, we compare two strategies, using either peptides identified
in DDA experiments or from a directDIA search of the same file. On this basis, AlphaPeptDeep
generated two large libraries (about 1 and 0.5 million precursors, respectively). Figure 2B
compares the different DIA library sizes and their overlap.

With the exception of the directDIA strategy as currently implemented in Spectronaut, DIA
always substantially outperformed DDA, as expected (Fig. 2C). Although a directDIA based
analysis strategy as a standalone solution is not able to outperform a DDA immunopeptidomics
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analysis, a combination of directDIA with AlphaPeptDeep increased the depth by up to 67%
compared to the DDA experiment (Fig 2C). Importantly, this increase in depth did not come at
the expense of the quality of the data, as judged by the peptide length distribution and the binder
scores which ranged from 0.9 for the experimental library to 0.98 for the DDA tuned library
(Supplements). All three computational libraries, the pan library as well as the sample specific
libraries outperform the experimental library while retaining the vast majority of peptides (Fig
2D). Given the small difference between the results from predicting the library based on DDA
data or extracted peptides by directDIA, we suggest that the latter strategy will be attractive for
immunopeptidomics in the future as no additional DDA experiments are required any more.

We conclude that the combination of directDIA and AlphaPeptDeep enables us to acquire deep
DIA based immunopeptidomes from a single measurement of a sample.
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Figure 2: Evaluation of different strategies of predicted library-based DIA (A) Overview of the
library generation process. (B) Overlap of experimental library, pseudospectra library (directDIA),
pan library and AlphaPeptDeep predicted libraries. (C) Triplicate measurement of
immunopeptides from 200 pL plasma analyzed using different DIA data analysis strategies. DDA
identifications are shown for comparison (left of the stippled vertical line). Library matching
strategies are described in the main text. The height of the bar represents overall uniquely
identified immunopeptides per triplicate and the mean per run as a horizontal black line with
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standard deviation. (D) Overlap of identified peptides analyzed with different library strategies
(C).

Deep soluble immunopeptidomics in comparison to mHLA immunopeptidomics

Previous state of the art reports used around 10 mL plasma per donor to reach a median depth
of around 1,000 unique immunopeptides with a maximum of 2,500 for healthy donors’~222 . With
our sample specific predicted spectral libraries and DIA acquisition IMBAS-MS, surpassed those
results with just 2% of the input material (200 uL of plasma) (Fig. 3A). From one blood withdrawal
that yielded 5 ml of plasma, we quantified up to 13,000 immunopeptides from six fractions per
individual, six-fold higher than before (Fig 3A). (Note that the previous studies employed Q
Exactive instruments rather than the latest generation Bruker timsTOFs.)

In total, the experiment above covered nearly 40,000 unique immunopeptides from 28 different
alleles in six donors (Fig 3B). This is a large number, as evidenced by the fact that in some cases
(e.g. HLA-C0401) this data surpasses the number of epitopes reported by the community
database Immune Epitope Database & Tools (IEDB) which for this allelotype contains around
5,000 peptides identified by mass spectrometry compared to our 8,000
(https://www.iedb.org/result_v3.php?cookie_id=13cd62).

Next, we used our in-depth data to assess whether the soluble immunopeptidome displayed
similar physicochemical properties as those described for their membrane bound equivalents.
We noted that immunopeptides identified from sHLA show a strong enrichment of nonameric
peptides, similar to what is known for immunopeptides from membrane bound equivalents (Fig
3Q).

Comparing the ratio of peptides which bind strongly (%Rank <0.5) to their cognate HLA protein
to those that bind weakly (0.5<%Rank<2), we did not find significant differences in pairwise
comparisons of HLA types present in our sHLA dataset or an mHLA dataset? (Fig. 3D). Given the
easy accessibility of the sHLA peptidome by IMBAS-MS and its close correspondence to the mHLA
peptidome, we conclude that plasma is a very attractive source to increase our general
knowledge of immunopeptides.
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Fig. 3: Deep soluble immunopeptidome retains properties described for mHLA based

immunopeptidomes. (A) Immunopeptides identified by IMBAS-MS from 200 uL plasma by DDA
(blue), DIA (green) or six separately analyzed fractions from 5 ml plasma (light green) from six
healthy donors. For comparison the stippled red lines indicate the maximum and median
identifications from 10 mL of ‘non-cancerous plasma’’.* The asterisk highlights that the 5 m| DIA
runs were measured in six fractions. (B) Strong or weak predicted binders from (A) across HLA-
types. Asterisks mark types present in multiple people. (C) Length distribution of identified HLA
class | peptides of all samples in (A). (D) The fraction of strong binders for each allele present in
our soluble HLA dataset from (A) compared to the fraction reported in a reference mHLA dataset
(HLA-Ligandatlas?).

Tissue origin of sHLA peptides

A fundamental and still an open question is to what degree each organ contributes to the sHLA
peptidome and we reasoned that our deep and unbiased dataset on healthy donors could shed
light on this. To infer the origin of the soluble immunopeptidome we compare our
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immunopeptidome data to a recent and deep proteome atlas of 29 healthy tissues?3. In that
proteome dataset, each gene was classified into one of four groups, namely (i) expressed in all
tissues, (ii) group enriched, (iii) tissue enhanced and (iv) tissue enriched. We transferred these
classifications to our deep, fractionated sHLA peptidome to assign organ specificity to it. Next,
we compared the frequency of group enriched, tissue enhanced and tissue enriched genes
represented in the immunopeptidome to the frequency of those groups within the proteome of
each tissue. Note that this assumes that proteins expressed in different organs have a similar
chance to be presented by HLA proteins. That would make the fraction of genes assigned to each
organ within the immunopeptidome a good estimate of the overall representation of that organ.
We observed that the median frequency of classified genes in our immunopeptidome dataset
correlates well with the frequency of those within the organ proteome dataset (R? between 0.8
and 0.84). As an example, around 7.5% of all genes identified in the duodenum proteome were
classified as group enriched?3. This is very close to the value of 8% of all genes in our soluble
immunopeptidomes. As can be seen in Figure 4A, ‘tissue enriched genes’ are less frequent in the
proteome and in the immunopeptidome than genes belonging to the two less enriched groups.
A notable exception from the above general observation are brain enriched genes. They are
represented at around 3% within the immunopeptidomes, while encompassing around 5% of the
brain proteome (Fig 4A). We speculate that sHLA-protein-peptide complexes may be partially
filtered by the blood brain barrier or that brain specific genes are somewhat less likely to be
presented, perhaps due to slow protein turnover. Another reason could be a lack of peptides
originating from those proteins that have an affinity to one of the analyzed alleles in our dataset.
In addition, we assessed whether the immunopeptidome quantified from the measurement of
only 200 pL has sufficient depth to infer organ specific gene ontology enrichment terms. Indeed,
applying the above gene classification strategy allows to discern organ function specific gene sets
represented by immunopeptides as illustrated for donor#1 for liver enriched genes and brain
enriched genes (Fig 4 B).

Interestingly in view of the different sizes of the organs, on a quantitative level, peptides
representing all organs are distributed equally over the peptide abundance range with no clear
trend of specific organs being represented by more high abundant species or vice versa. For
example, both brain and liver assigned immunopeptides cover all three orders of magnitude in
peptide intensities (Fig 4C, other organs see Supplementary Figure 2).

Among the set of tissue enriched liver genes common to three donors with shared HLA types, the
trend of immunopeptide intensities is generally similar (Fig. 4D). However, there are clear
differences in the presentation of Cytochrome-P-Oxygenase 2A6 (CYP) and CYP3A4, which are
involved in the metabolization of nicotine and pharmaceutical drugs, respectively (red arrows).
This may be attributable to lifestyle differences or genetic differences between donors.
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Our results demonstrate that the soluble immunopeptidome is overall representative of the
organs constituting the body. They also suggest a considerable potential of plasma
immunopeptidome analysis for studying system-wide changes in the human proteome and in
providing novel insights into physiological and pathological processes that are presented to the
immune system.
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Figure 4: Tissue origin of immunopeptides. (A) Comparison of the fraction of immunopeptides
assigned to different organs as inferred from a reference proteome dataset?>. Genes and
immunopeptides are classified as group enriched, tissue enhanced and tissue enriched
depending on their degree of enrichment in the corresponding proteins reference proteome.
The immunopeptidome dataset is the same as in Figure 3A. Points on or close to the diagonal
indicate that the organ is equally represented in the peptidome and the proteome. (B) GO-term
enrichment of immunopeptides whose proteins were assigned as tissue enhanced in brain or
liver from donor #1 (dataset from Figure 3A, 200 uL DIA). Terms are representative of tissue
specific functions. (C) Intensity rank plot of peptides derived from group enriched, tissue
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enhanced and tissue enriched genes colored by their respective organ assignment (dataset as in
(B)). (D) Median intensity traces of selected liver tissue enriched immunopeptides for three
donors. The iBAQ intensities for the corresponding genes from the reference proteome dataset
are plotted for reference.

SHLA immunopeptidomic reproducability over time and between donors

While the immunopeptidome is thought to change considerably upon disease, little is known
about its stability in healthy persons over time. To address this fundamental question, we
followed an initially healthy person over a year. We sampled plasma at and shortly after the initial
time point (16h apart) to gauge short term biological variation, at the five-month mark and at the
end of the year. At about 11 months, the donor contracted COVID-19, and we sampled their
immunopeptidome as soon as they were not positive any more (Supplementary Table 1).
Throughout the entire time period more than half of all sHLA peptides were detectable and
quantifiable, with 88 to 93% being shared in at least two timepoints (Fig. 5A). Remarkably,
guantitative reproducibility over the entire year was very high (Pearson correlation of 0.97
between the first and the last timepoint (Fig. 5B)). The first two sampling points that were only
16h apart, also agreed very well with each other, suggesting that time of day did not have a large
influence. Even the immunopeptidome shortly after COVID-19 infection did not show large
variations at a global scale.

Having established temporal stability of the sHLA peptidome in a single healthy donor, we next
compared the immunopeptidomes of eight healthy donors (Supplementary Table 1).

A Principal Component Analysis (PCA) clearly clustered workflow replicates of the same donor
but next grouped donors by shared types or supertypes (Fig 5C). Supporting this, a similar
grouping emerged from pairwise Jaccard distances, which also revealed up to 50% overlap of
identified peptide sequences between different donors with overlapping or similar presenting
alleles (Fig. 5D).

Overall, the immunopeptidome of the different donors at best exhibited only a loose correlation
(Fig 5E). However, when selecting donors with a Jaccard similarity of more than 30%, the pairwise
quantitative correlation significantly improved (Fig 5F). Interestingly, donor 1 and donor 3 have
a low Jaccard similarity (3%) between them - despite sharing one HLA-type (HLA-C0304);
nonetheless, those 3% peptides show a high Pearson correlation.

These findings highlight the consistency and stability of the plasma immunopeptidome, further
supporting its usefulness for insights into potential commonalities and variations among
individuals.
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Figure 5: The plasma immunopeptidome is stable over time and quantitative reproducible

between healthy controls. (A) Immunopeptides identified by IMBAS-MS of a healthy donor over
the course of a year. Two closely spaced time points at the start assess short term variation, and
the 11-month time point is immediately post-COVID 19. Dark blue represents peptides shared
between all timepoints and light blue represents peptides only measured at one time point. (B)
Pearson correlation of immunopeptide quantities between timepoint 0 and after 12 months. (C)
Principal component analysis of immunopeptidomes from 8 different healthy donors. Numbers
refer to the different donors and colors represent the replicates. (D)Clustered heatmap of Jaccard
similarities of immunopeptidomes between healthy donors (B). Note that 7 and 2 have only two
replicates. (E) Unfiltered imputed Pearson correlation between healthy donors (B). The sample
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order was taken from the clusters built by Jaccard similarities in (C). (F) Filtered pairwise complete
Pearson correlation of median intensities between donors showing a Jaccard similarity of more
than 0.3 with at least one other donor (conditions without shared peptides are grey).

DISCUSSION AND OUTLOOK

Here we developed and applied IMBAS-MS, an improved approach to immunopeptidomics, with
drastically enhanced sensitivity. This user-friendly and adaptable workflow replaces the
traditional ProteinA/G affinity-based capture of anti-HLA antibodies?* with a streptavidin-biotin
one. This enables generic use of any biotinylated antibody, regardless of their immunoglobulin
type and greatly simplifies plasma-based immunopeptidomics by eliminating the need for plasma
pre-clearance with its associated losses.

IMBAS-MS also eliminates nearly all hands-on time, in turn enabling the rapid preparation and
acquisition of a large number of samples, which will be especially important in clinical
environments. We expect IMBAS-MS to have the same advantages in tissue-based
immunopeptidomics and we plan to explore this aspect in the future.

As part of our workflow, we have also implemented Data Independent Acquisition (DIA) to
expand the depth of the immunopeptidomic data. To tackle the challenge of creating a suitable
search space for immunopeptidomics, we employed personalized HLA peptide libraries®®. This
considerably reduces the number of potential 9mers to 12mers in a human FASTA to be searched,
increasing the number of significant identifications. In contrast to other library generation
strategies?>?%, our approach eliminates the need for any upfront measurements and can be
transferred between MS platforms. It also avoids building a library from Data Dependent
Acquisition (DDA) runs and could be adapted to supertype or study-specific libraries, potentially
incorporating common post-translational modifications.

As a next step, we envision combining IMBAS-MS with multiplexed DIA and in particular to use
one of the channels as a reference channel?”:28. By decoupling identification and quantification,
the reference channel improves proteomics depth, sensitivity and comparability between
samples.

Our results highlight the potential diagnostic applicability beyond identifying cancer neoepitopes.
They demonstrate the presence of very large numbers of immunopeptides in plasma samples,
further supporting the notion of plasma as a valuable, non-invasive source of
immunopeptides*11:2°,

We observed that the immunopeptides found in plasma are mostly representative of the tissue
proteome. However, brain-associated proteins where less represented and it would be
interesting to investigate mechanisms of presentation of these sHLAs in the plasma. We also
demonstrated the existence of a stable healthy plasma immunopeptidome, both quantitatively
and qualitatively, across different healthy individuals. This finding is highly relevant for clinical
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applications, as it suggests that a general baseline healthy immunopeptidome can be established.
In turn, this could significantly facilitate the identification of disease-specific immunopeptide
signatures and aid in the development of novel diagnostic markers and therapeutic strategies.
Such an approach could extend the diagnostic potential of plasma immunopeptidome profiling
within and beyond the search for neoepitopes in the context of cancer. This may provide insights
into a wide range of pathological conditions that involve alterations in immune responses, such
as autoimmune disorders, infectious diseases or inflammatory conditions. In this context, the
minimal-invasive nature of plasma-based immunopeptidome profiling combined with the
streamlined IMBAS-MS technology could enable a patient-friendly approach to disease
monitoring and personalized medicine, facilitating earlier intervention and more effective
treatment strategies.

Clearly, future studies are needed to expand upon these exciting findings by investigating basic
aspects of sHLA generation and presentation and the diagnostic capabilities of plasma
immunopeptide signatures in specific disease states. Combined with ongoing development of the
underlying analytical technology, sHLA peptidomics may become an important addition to the
arsenal of precision medicine.
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