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ABBREVIATIONS  

ACN acetonitrile 

CAR T-cell chimeric antigen receptor T-cell 

CTL cytotoxic T lymphocytes 

CYP Cytochrome-P-Oxygenase 

dda data-dependent acquisition 

dia data-independent acquisition 

FA formic acid 

GO  Gene Ontology 

(s/m)HLA (soluble/membrane) human leukocyte 
antigen 

IgG Immunoglobuline G 

IEDB Immune Epitope Database & Tools 

IM ion mobility 

IMBAS Streptavidin based immunopeptidomics 
workflow (IMmunopeptidomics by 
Biotinylated Antibodies and Streptavidin) 

MeOH methanol 

MHC major histocompatibility complex 

PASEF parallel accumulation – serial fragmentation 

PBS phosphate-buffered saline 

py_diAID Python package for Data-Independent 
Acquisition with an Automated Isolation 
Design 

SPD samples per day 

TIMS trapped ion mobility spectrometry 
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ABSTRACT 
Distinction of non-self from self is the major task of the immune system. Immunopeptidomics 
studies the peptide repertoire presented by the human leukocyte antigen (HLA) protein, 
usually on tissues. However, HLA peptides are also bound to plasma soluble HLA (sHLA), but 
little is known about their origin and potential for biomarker discovery in this readily available 
biofluid. Currently, immunopeptidomics is hampered by complex workflows and limited 
sensitivity, generally requiring several mL of plasma for the detection of hundreds of HLA 
peptides. Here, we take advantage of recent improvements in the throughput and sensitivity 
of mass spectrometry (MS)-based proteomics to develop a highly-sensitive, automated and 
economical workflow for HLA peptide analysis, termed Immunopeptidomics by Biotinylated 
Antibodies and Streptavidin (IMBAS). IMBAS-MS quantifies more than 5,000 HLA class I 
peptides from only 200 µL of plasma, in just 30 minutes. Our technology revealed that the 
plasma immunopeptidome of healthy donors is remarkably stable throughout a year and 
strongly correlated between individuals with overlapping HLA types. Immunopeptides 
originating from diverse tissues, including the brain, are proportionately represented. We 
conclude that sHLAs are a promising avenue for immunology and precision oncology.  
 
 
 
 
 
INTRODUCTION 
The immune system relies on the human leukocyte antigen (HLA) peptide-protein complex to 
present immunopeptides derived from both endogenous and exogenous sources to circulating 
T-cells. These immunopeptides play a crucial role in immune surveillance, as they enable 
elimination of abnormal or infected cells. Upon recognition of a peptide-HLA protein complex by 
cytotoxic T lymphocytes (CTLs), downstream cascades are activated, causing the presenting cell 
to undergo apoptosis. This biological principle is exploited in immunotherapeutic strategies such 
as CAR T-cell treatment or mRNA peptide vaccination1. A crucial but challenging step is the 
identification of peptides specifically presented by tumor cells. Most efforts have focused on the 
enrichment of membrane bound human leukocyte antigen (mHLA) receptors with their bound 
immunopeptides from tumor tissue. This is followed by mass spectrometric identification in 
search of tumor specific antigens or neoepitopes2,3.  
In addition to the membrane anchored HLA proteins, a soluble fraction (sHLA) can be enriched 
from blood and other body fluids4. sHLAs are thought to arise by shedding, cleavage from the cell 
surface or the expression of a splicing variant lacking the membrane anchoring domain5. 
Although their function and exact release mechanisms remain unclear, although it is known to 
change in a disease context6. In the case of cancer, a disproportionate fraction of peptides in 
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relation to the total tumor mass may originate from tumor tissue4, representing a potential 
additional source for tumor antigens7. Whereas the analysis of HLA peptides from mHLAs 
requires substantial tissue amounts from surgery, sHLAs are rather easily accessible through 
minimal invasive procedures like a regular blood withdrawal without placing additional burden 
on patients. However, despite the clear potential for disease diagnosis and treatment monitoring 
in a clinical setup8–10, there are only few studies investigating sHLAs and they typically only 
identified hundreds of them from milliliters of plasma4,7,8.  
Beyond clinical applications, another attraction of the sHLA immunopeptidome is that it can serve 
as an unlimited source of native immunopeptides from diverse HLA backgrounds. As importantly, 
an extensive repertoire of sHLA peptides from a diversity of healthy donors could potentially 
serve as a resource to improve general knowledge about peptide processing and presentability11. 
In contrast, due to limited analytical sensitivity and tissue accessibility mHLA data is currently 
restricted to a few hundred different alleles, with on average around 5,000 up to 160,000 (HLA-
A0201) associated MHC peptides identified by mass spectrometry12.  
In this study, we address the limitations of sHLA immunopeptidomics and characterize its nature 
over time in healthy donors. We describe an automated workflow for efficient ‘one-pot’ 
enrichment of HLA immunopeptides followed by ultra-high sensitive mass spectrometry (MS), 
termed IMBAS-MS for Immunopeptidomics by Biotinylated Antibodies and Streptavidin. 
Quantifying immunopeptides from a few hundred microliters showed that the 
immunopeptidome is stable in healthy individuals for over a year and exhibits high reproducibility 
between overlapping HLA types. IMBAS-MS allowed profiling of sHLA to a depth of over 10,000 
peptides per person, which were broadly representative of different tissues.  
 
EXPERIMENTAL PROCEDURES 
Plasma collection from healthy donors 
Plasma was obtained by withdrawing blood from eight healthy donors (specified in 
Supplementary Table 1) in EDTA tubes (BD Vacutainer K2E; REF 367525). The tubes were inverted 
three times and centrifuged at 2000xg for 20 min at 4°C. The plasma was separated, aliquoted 
and snap-frozen and stored at -80°C.   
To determine the HLA types of healthy donors, genomic DNA was extracted from buccal swabs. 
Cotton swabs were used to obtain oral mucosa samples, placed in protease buffer (30 mM Tris-
HCl, pH 8, 0.5% Tween-20, 0.5% IGEPAL CA-630) and proteins were digested with 100 µg 
proteinase K per sample for 12 min at 50°C in a thermal shaker. The enzyme was inactivated at 
75°C for 30 min and genomic DNA was purified using the QIAamp DNA Micro Kit (Qiagen). HLA 
class I (HLA-A, HLA-B, HLA-C) and class II (DRB1, DQB1, DPB1) loci were amplified using the 
NGSgo®-MX6-1 kit (GenDx) and multiplexed sequencing libraries were prepared using the Ultra™ 
II FS DNA Library Prep Kit for Illumina (NEB). Libraries were sequenced on a NovaSeq 6000 system 
(Illumina) in 150 bp paired-end mode and the genotype data were analyzed using the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.05.556309doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556309
http://creativecommons.org/licenses/by/4.0/


5 
 

NGSengine® software (GenDx). Blood was sampled from healthy donors, who provided written 
informed consent, with prior approval of the ethics committee of the Max Planck Society. 
 
Affinity purification of HLA Molecules 
Plasma samples were thawed on ice, diluted 1:2 with PBS (Gibco) and incubated overnight, 
shaking at 4°C with variable amounts of biotinylated W6/32 antibody (custom produced by inVivo 
Bioscience). Captured HLA molecules were enriched using magnetic streptavidin beads (ReSyn 
Bioscience) and washed first with 100 µl of 150 mM HCl in 10mM Tris pH8.5, then 100 µl of 450 
mM HCl in 10 mM Tris pH 8.5 and finally 100 µl of 10 mM Tris pH 8.5 at 4°C. The sHLA molecules 
were eluted from the beads using 150 µl elution buffer (200 mM glycine pH 2), transferred into 
prewetted 30 kDa MWCO plates (Millipore) and filtered at 4000xg for 20 min. The flowthrough 
was directly loaded onto Evotips Pure following the recommended standard procedure. Briefly, 
Evotips were activated by 1-propanol, washed two times with 50 µL buffer B (99.9% ACN, 0.1% 
FA) and two times with 50 µL buffer A (99.9% ddH2O, 0.1% FA). 70 µL buffer A was briefly spined 
on the disks and sample elution was loaded by 80 sec centrifugation. Evotips were then washed 
with 50 µL buffer A and stored with buffer A on top. All centrifugation steps were performed at 
700 x g for 1 min.  The whole protocol was performed in a semi-automated fashion using the 
Agilent Bravo liquid handling platform.  
 
Immunopeptide fractionation 
To acquire deep fractionated immunopeptidomes, 5 ml of plasma per individual were thawed at 
once, distributed in 10 wells of a 96 deep-well plate and processed with the same workflow as 
described above. The final elutions were pooled in two wells before loading onto the MWCO 
filter plate and combined into one single peptide pool after centrifugation. Fractionation was 
carried out on an AssayMAP Bravo Sample Prep Platform (Agilent), using the Fractionation v1.1 
Protocol in the Protein Sample Prep Workbench v3.2.0 with standard settings. 5 µl C18 Cartridges 
(Agilent) were used as solid phase, six elution fractions were collected, using high-pH buffers with 
increasing acetonitrile concentrations (ammonium hydroxide solution, pH 10; 7, 12, 15, 23, 30 
and 40% acetonitrile, respectively). The 40% acetonitrile buffer was used for priming and 7% for 
equilibration of the cartridges. 
 
DDA and DIA LC-MS acquisition 
Peptides were separated with the Evosep One LC system using predefined gradients as 
mentioned in each section. The majority of data was acquired using the Whisper40 method over 
an 15 cm Aurora Elite CSI column (AUR3-15075C18-CSI, IonOpticks) at 50°C C inside a 
nanoelectrospray ion source (Captive spray source, Bruker). The mobile phases were 0.1% FA in 
LC-MS grade water (buffer A) and 99.9% ACN with 0.1% FA (buffer B). For gradient testing, the 
15SPD, 30SPD and 60SPD method was used in combination with a 15 cm PepSep (150 um ID and 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.05.556309doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556309
http://creativecommons.org/licenses/by/4.0/


6 
 

1.5 um bead size, Bruker) connected to a 10um ID ZDV emitter (Bruker). The LC system was 
coupled to a timsTOF Ultra instrument (Bruker). 
When operated in dda-PASEF mode, a ten PASEF/MSMS scan per topN acquisition method was 
used with a precursor signals intensity threshold at 500 arbitrary units. An adapted polygon in 
the m/z-IM plane was used to exclude adverse ions, but include single-charge precursors. The 
mass spectrometer was operated in sensitivity mode with an accumulation and ramp time of 
100ms. Precursors were isolated with a 2 Th window below m/z 700 and 3 Th above and actively 
excluded for 0.4 min when reaching a target intensity threshold of 20,000 arbitrary units. A range 
from 100 to 1700 m/z and 0.6 to 1.6 Vs cm-2 was covered with a collision energy from 20 eV at 
0.6 Vs cm-2 ramped linearly to 59 eV at 1.6 Vs cm-2. 
When operating in dia-PASEF mode, we used optimal dia-PASEF methods generated with our 
Python tool py_diAID30. These dia-PASEF methods optimally cover the precursor cloud in m/z-IM 
plane, while being highly efficient with 1.17 s cycle time. We generated acquisition schemes 
specifically for dominant HLA types that cover up to 99.9% of all precursor species including singly 
charged ions, with 8 dia-PASEF scans, where each scan is divided into two ion mobility windows. 
The method covers precursors within 300 – 1200 Da. Other settings remained the same as for 
dda-PASEF. 
 
Raw data analysis 
DDA data was analyzed using FragPipe 19.1 with the nonspecific HLA workflow19–21. The quality 
of identified peptides was assessed using MHCVizPipe (v0.7.11) 31.  
DIA data was analyzed using DIA-NN version 1.8.1 with standard settings searching against 
sample specific predicted libraries generated using the AlphaPeptDeep package 
(https://github.com/MannLabs/alphapeptdeep) together with the peptdeep_hla 
(https://github.com/MannLabs/PeptDeep-HLA) DL model. Sample specific immunopeptide lists 
(from DDA analysis or directDIA results generated using Spectronaut 17) were used to tune an 
immunopeptide deep learning model which reports a peptide list with high likelihood of being a 
presented immunopeptide in this sample from an unspecific in silico digest of a human fasta. The 
peptide list of each individual is used for transfer learning to predict individual- or sample-specific 
spectral library. Library sizes are adjustable using a precision cutoff (probability >= 0.7) in the 
peptdeep_hla DL model. The ‘report.tsv’ table was used for further analysis. 
 
Statistical analysis 
All data analysis was performed using R. Unless stated differently, only peptides predicted to bind 
to any of a donors HLA-type were used for downstream analysis. Peptides were defined to be 
binders as provided by MHCVizPipe interfacing NetMHCpan 4.1. Binder Frequency (BF) scores 
were reported as provided by MHCVizPipe. The BF score describes the fraction of peptides 
predicted to bind the provided HLA Alleles within the expected length range. The UpSet plots 
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were generated using a custom script. Only intersections which have a size of 20% of the smallest 
included dataset are displayed.   
 
Experimental design and statistical rational 
All experiments were done using human plasma obtained as described above. Altogether, the 
dataset including raw data files and search results were uploaded to MassIVE (see below). We 
used the same plasma batch for the benchmarking and technical evaluation. In brief, 
measurements with different gradients, input amounts or from different donors were acquired 
in triplicates unless mentioned differently. The experimental design and statistical rational are 
described in the respective figure legends. Workflow replicates were acquired to evaluate 
reproducibility and quantitative accuracy.  
 

RESULTS 
IMBAS-MS design and evaluation 
Earlier sHLA workflows have used several milliliters of plasma for enrichment, limiting throughput 
and applicability. We aimed to develop a workflow that is highly reproducible, sensitive and 
allows for deep immunopeptidome coverage, without neglecting throughput and cost. To 
accommodate all these aspects, we optimized IMBAS (Immunopeptidomics by Biotinylated 
Antibodies and Streptavidin) in a 96-well format that could be processed in parallel. We 
automated the immunoaffinity enrichment on a Bravo liquid handling robot (Agilent) with less 
than two hours of hands-on time for the entire procedure (Fig. 1A).  
The workflow was designed to be flexible, thus the enrichment can either be performed by hand 
or by any robot with a magnetic plate and a cooled plate station. IMBAS-MS is modular and 
although not demonstrated here, can directly be applied to cell lysates or biopsy samples by 
adding a homogenization and lysis step up front. The enrichment, washing and elution steps take 
place within the same well, minimizing transfer steps and reducing sample loss due to plastic 
contact. A key aspect of IMBAS is the replacement of the standard ProteinA/G-IgG domain 
interaction between the antibody and bead matrix. To achieve this, we chose to use biotinylated 
antibodies which can be captured with streptavidin beads. The high specificity and stability of the 
streptavidin-biotin interaction allows to omit chemical crosslinking of the desired anti-HLA-
antibody to the slurry upfront of the enrichment protocol, saving time and material. Additionally, 
this eliminates the plasma preclearance step. Following the enrichment, the eluent is molecular-
weight filtered and the resulting, separated peptides are loaded onto Evotips. In this way, an 
entire 96-well plate can be prepared and MS-data acquired within three days with minimal 
reagent preparation and cost. For technical details of the protocol see Experimental Methods.   
To evaluate IMBAS-MS, we first identified and quantified immunopeptides from 200 µL plasma 
from the same donor at different HPLC flowrates and gradient lengths, from 21 min up to 88 min 
long gradients (termed 60 to 15 Samples Per Day (SPD)). The standard methods on the Evosep 
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system have 1 µL/min down to 0.22 µL/min flowrates with throughputs of 15, 30 and 60 SPD. We 
reasoned that the recently introduced very low flow gradients of only 100 nL/min (Whisper 
gradients20 or 40) that had substantially boosted sensitivity for single-cell analysis13 would also 
be beneficial for HLA peptides. Indeed, the nanoflow gradients substantially outperformed the 
standard gradients with more than 3,000 immunopeptide identifications in data-dependent 
acquisition (DDA) (Fig 1B). The Whisper20 gradient identified only 10% more peptides than the 
Whisper20 gradient, at the cost of doubled measurement time (Fig. 1B). With a focus on 
maximizing depth and throughput, we chose the Whisper40 gradient (31 min length) for all 
subsequent experiments.  
A key advantage of our workflow is that it needs much less plasma input than the milliliters used 
before. To investigate input requirements and tradeoffs, we enriched sHLA from only 10 µL up to 
500 µL of plasma. Volumes from 10 µL to 100 µL plasma can be processed in a standard 96 well 
plate. They required only 1 µg of antibody for efficient enrichment and did not benefit from 
increasing the antibody amount 10-fold (Fig. 1C). For higher volumes – for instance 200 µl – 
higher antibody amounts boosted immunopeptide identifications about 20%. Over the entire 
tested input range, we identified from 500 to 4,500 immunopeptides in data dependent 
acquisition (DDA).  
To investigate the purity of our immunopeptidomes, we inspected their length distribution, their 
calculated binder scores and presence of singly charged precursors.  Identified peptides retained 
expected features such as a strong preference of nonameric peptides and a significant proportion 
of singly charged precursors (Supplementary Figure 1). The fraction of peptides with high binding 
scores (BF) within the expected length range was 0.9, further indicating high purity of the 
enriched and identified peptides (see Experimental Methods).  
IMBAS-MS also demonstrates high quantitative reproducibility between replicates at 500 µL 
(Pearson correlation of 0.97). Even with ten-fold reduced input, reproducibility is largely retained 
with a Pearson correlation of 0.81 (Figure 1D and E).  
Based on the results above, in particular the purity and depth of the immunopeptide fraction, we 
chose a sample volume of 200 µL as an optimal combination for data quality, sample availability, 
ease of handling and cost effectiveness.  
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Figure 1: IMBAS-MS design and evaluation. (A) Schematic representation of the sHLA IMBAS-
MS workflow. Plasma is incubated with anti-HLA antibody (W6/32) and subjected to our 
automated bead-based enrichment workflow on a liquid handling robot (Agilent Bravo). Eluted 
peptides are loaded onto StageTips (Evotips) and measured by ultra-high sensitivity LC-MS/MS 
(Evosep and Bruker timsTOF Ultra). (B) Immunopeptide identifications from enrichment of 200 
µL plasma using different gradient types and lengths. Low-flow gradients (Whisper40 and 20 on 
the Evosep, dark blue) show an increased sensitivity by identifying over 3,000 immunopeptides. 
The total uniquely identified immunopeptides per triplicate (light bar) as well as the average 
and standard deviation (SD) per replicate (black lines) is plotted. (C) Evaluation of various input 
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amounts using 1 ug (purple) or 10 ug (blue) of W6/32 antibody. The ‘*’ indicates that this data 
point was not acquired due to plasma/antibody requirements. For unique peptide number 
determination see B); dw: deep-well plate. (D) Quantification correlation shows high 
reproducibility between workflow replicates using 500 µL plasma. (E) Pearson correlation 
between 50 µL and 500 µL of the same plasma sample. 
 
 
Predicted library-based DIA for immunopeptidomics  
Having evaluated IMBAS-MS with data dependent acquisition (DDA) methods, we set out to 
couple it with data-independent acquisition (DIA) based mass spectrometry, which promises 
much greater depth and higher data completeness between experiments14,15. A major challenge 
for efficient and comprehensive analysis of DIA data is the selection or generation of a suitable 
spectral library. Three different strategies are commonly used: experimental libraries, typically 
acquired by DDA; pseudospectra-based libraries extracted by directDIA as introduced by DIA-
Umpire16 and implemented in Spectronaut; and libraries in which fragment intensities are 
predicted by deep learning14,17. In connection with the latter approach, we recently introduced a 
deep learning based framework called AlphaPeptDeep, which predicts spectral libraries tailored 
for different MS platforms, only based on a database file of the proteome in FASTA format or just 
a peptide list as input18. It contains the PeptDeep-HLA model which makes use of the inherent 
similarity of immunopeptides present within one person based on their HLA type. Given a 
preliminary list of identified peptides, this package then predicts a large subset of HLA peptides 
that are potentially present in this allelotype(s). Here, we compared three different modes of 
library generation in AlphaPeptDeep, purely experimental libraries and pseudospectra-extracted 
libraries (Fig. 2A).   
First, we built an experimental DDA library using MSFragger19–21 on the above-described dilution 
series files, which resulted in nearly 7,000 identified precursors. Spectronaut internally builds a 
directDIA extracted list of peptides, in this case containing around 2,000 identified precursors 
from the replicates searched in parallel. Using AlphaPeptDeep, we predicted the fragment 
intensities of the set of immunopeptides constituting the ‘pan library’, with around 385,000 
precursors (MSV000084172;PXD004894). The PeptDeep-HLA model only needs about 1,000 
identified immunopeptides to learn how to extract potential immunopeptides from a FASTS for 
the allelotypes in question. For this, we compare two strategies, using either peptides identified 
in DDA experiments or from a directDIA search of the same file. On this basis, AlphaPeptDeep 
generated two large libraries (about 1 and 0.5 million precursors, respectively). Figure 2B 
compares the different DIA library sizes and their overlap.  
With the exception of the directDIA strategy as currently implemented in Spectronaut, DIA 
always substantially outperformed DDA, as expected (Fig. 2C). Although a directDIA based 
analysis strategy as a standalone solution is not able to outperform a DDA immunopeptidomics 
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analysis, a combination of directDIA with AlphaPeptDeep increased the depth by up to 67% 
compared to the DDA experiment (Fig 2C). Importantly, this increase in depth did not come at 
the expense of the quality of the data, as judged by the peptide length distribution and the binder 
scores which ranged from 0.9 for the experimental library to 0.98 for the DDA tuned library 
(Supplements). All three computational libraries, the pan library as well as the sample specific 
libraries outperform the experimental library while retaining the vast majority of peptides (Fig 
2D). Given the small difference between the results from predicting the library based on DDA 
data or extracted peptides by directDIA, we suggest that the latter strategy will be attractive for 
immunopeptidomics in the future as no additional DDA experiments are required any more.  
We conclude that the combination of directDIA and AlphaPeptDeep enables us to acquire deep 
DIA based immunopeptidomes from a single measurement of a sample. 
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Figure 2: Evaluation of different strategies of predicted library-based DIA (A) Overview of the 
library generation process. (B) Overlap of experimental library, pseudospectra library (directDIA), 
pan library and AlphaPeptDeep predicted libraries. (C) Triplicate measurement of 
immunopeptides from 200 µL plasma analyzed using different DIA data analysis strategies. DDA 
identifications are shown for comparison (left of the stippled vertical line). Library matching 
strategies are described in the main text. The height of the bar represents overall uniquely 
identified immunopeptides per triplicate and the mean per run as a horizontal black line with 
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standard deviation. (D) Overlap of identified peptides analyzed with different library strategies 
(C). 
 
 
Deep soluble immunopeptidomics in comparison to mHLA immunopeptidomics  
Previous state of the art reports used around 10 mL plasma per donor to reach a median depth 
of around 1,000 unique immunopeptides with a maximum of 2,500 for healthy donors7–9,22 . With 
our sample specific predicted spectral libraries and DIA acquisition IMBAS-MS, surpassed those 
results with just 2% of the input material (200 µL of plasma) (Fig. 3A). From one blood withdrawal 
that yielded 5 ml of plasma, we quantified up to 13,000 immunopeptides from six fractions per 
individual, six-fold higher than before (Fig 3A). (Note that the previous studies employed Q 
Exactive instruments rather than the latest generation Bruker timsTOFs.) 
In total, the experiment above covered nearly 40,000 unique immunopeptides from 28 different 
alleles in six donors (Fig 3B). This is a large number, as evidenced by the fact that in some cases 
(e.g. HLA-C0401) this data surpasses the number of epitopes reported by the community 
database Immune Epitope Database & Tools (IEDB) which for this allelotype contains around 
5,000 peptides identified by mass spectrometry compared to our 8,000 
(https://www.iedb.org/result_v3.php?cookie_id=13cd62). 
Next, we used our in-depth data to assess whether the soluble immunopeptidome displayed 
similar physicochemical properties as those described for their membrane bound equivalents. 
We noted that immunopeptides identified from sHLA show a strong enrichment of nonameric 
peptides, similar to what is known for immunopeptides from membrane bound equivalents (Fig 
3C). 
Comparing the ratio of peptides which bind strongly (%Rank <0.5) to their cognate HLA protein 
to those that bind weakly (0.5<%Rank<2), we did not find significant differences in pairwise 
comparisons of HLA types present in our sHLA dataset or an mHLA dataset2 (Fig. 3D). Given the 
easy accessibility of the sHLA peptidome by IMBAS-MS and its close correspondence to the mHLA 
peptidome, we conclude that plasma is a very attractive source to increase our general 
knowledge of immunopeptides. 
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Fig. 3: Deep soluble immunopeptidome retains properties described for mHLA based 
immunopeptidomes. (A) Immunopeptides identified by IMBAS-MS from 200 µL plasma by DDA 
(blue), DIA (green) or six separately analyzed fractions from 5 ml plasma (light green) from six 
healthy donors. For comparison the stippled red lines indicate the maximum and median 
identifications from 10 mL of ‘non-cancerous plasma’7.* The asterisk highlights that the 5 ml DIA 
runs were measured in six fractions. (B) Strong or weak predicted binders from (A) across HLA-
types. Asterisks mark types present in multiple people. (C) Length distribution of identified HLA 
class I peptides of all samples in (A). (D) The fraction of strong binders for each allele present in 
our soluble HLA dataset from (A) compared to the fraction reported in a reference mHLA dataset 
(HLA-Ligandatlas2). 
 
 
Tissue origin of sHLA peptides 
A fundamental and still an open question is to what degree each organ contributes to the sHLA 
peptidome and we reasoned that our deep and unbiased dataset on healthy donors could shed 
light on this. To infer the origin of the soluble immunopeptidome we compare our 
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immunopeptidome data to a recent and deep proteome atlas of 29 healthy tissues23. In that 
proteome dataset, each gene was classified into one of four groups, namely (i) expressed in all 
tissues, (ii) group enriched, (iii) tissue enhanced and (iv) tissue enriched. We transferred these 
classifications to our deep, fractionated sHLA peptidome to assign organ specificity to it. Next, 
we compared the frequency of group enriched, tissue enhanced and tissue enriched genes 
represented in the immunopeptidome to the frequency of those groups within the proteome of 
each tissue. Note that this assumes that proteins expressed in different organs have a similar 
chance to be presented by HLA proteins. That would make the fraction of genes assigned to each 
organ within the immunopeptidome a good estimate of the overall representation of that organ.  
We observed that the median frequency of classified genes in our immunopeptidome dataset 
correlates well with the frequency of those within the organ proteome dataset (R2 between 0.8 
and 0.84). As an example, around 7.5% of all genes identified in the duodenum proteome were 
classified as group enriched23. This is very close to the value of 8% of all genes in our soluble 
immunopeptidomes. As can be seen in Figure 4A, ‘tissue enriched genes’ are less frequent in the 
proteome and in the immunopeptidome than genes belonging to the two less enriched groups.  
A notable exception from the above general observation are brain enriched genes. They are 
represented at around 3% within the immunopeptidomes, while encompassing around 5% of the 
brain proteome (Fig 4A). We speculate that sHLA-protein-peptide complexes may be partially 
filtered by the blood brain barrier or that brain specific genes are somewhat less likely to be 
presented, perhaps due to slow protein turnover. Another reason could be a lack of peptides 
originating from those proteins that have an affinity to one of the analyzed alleles in our dataset. 
In addition, we assessed whether the immunopeptidome quantified from the measurement of 
only 200 µL has sufficient depth to infer organ specific gene ontology enrichment terms. Indeed, 
applying the above gene classification strategy allows to discern organ function specific gene sets 
represented by immunopeptides as illustrated for donor#1 for liver enriched genes and brain 
enriched genes (Fig 4 B). 
Interestingly in view of the different sizes of the organs, on a quantitative level, peptides 
representing all organs are distributed equally over the peptide abundance range with no clear 
trend of specific organs being represented by more high abundant species or vice versa. For 
example, both brain and liver assigned immunopeptides cover all three orders of magnitude in 
peptide intensities (Fig 4C, other organs see Supplementary Figure 2).  
 
Among the set of tissue enriched liver genes common to three donors with shared HLA types, the 
trend of immunopeptide intensities is generally similar (Fig. 4D). However, there are clear 
differences in the presentation of Cytochrome-P-Oxygenase 2A6 (CYP) and CYP3A4, which are 
involved in the metabolization of nicotine and pharmaceutical drugs, respectively (red arrows). 
This may be attributable to lifestyle differences or genetic differences between donors.    
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Our results demonstrate that the soluble immunopeptidome is overall representative of the 
organs constituting the body. They also suggest a considerable potential of plasma 
immunopeptidome analysis for studying system-wide changes in the human proteome and in 
providing novel insights into physiological and pathological processes that are presented to the 
immune system. 

 
Figure 4: Tissue origin of immunopeptides. (A) Comparison of the fraction of immunopeptides 
assigned to different organs as inferred from a reference proteome dataset23.  Genes and 
immunopeptides are classified as group enriched, tissue enhanced and tissue enriched 
depending on their degree of enrichment in the corresponding proteins reference proteome.  
The immunopeptidome dataset is the same as in Figure 3A. Points on or close to the diagonal 
indicate that the organ is equally represented in the peptidome and the proteome. (B) GO-term 
enrichment of immunopeptides whose proteins were assigned as tissue enhanced in brain or 
liver from donor #1 (dataset from Figure 3A, 200 µL DIA). Terms are representative of tissue 
specific functions. (C) Intensity rank plot of peptides derived from group enriched, tissue 
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enhanced and tissue enriched genes colored by their respective organ assignment (dataset as in 
(B)). (D) Median intensity traces of selected liver tissue enriched immunopeptides for three 
donors. The iBAQ intensities for the corresponding genes from the reference proteome dataset 
are plotted for reference. 
 
 
sHLA immunopeptidomic reproducability over time and between donors 
While the immunopeptidome is thought to change considerably upon disease, little is known 
about its stability in healthy persons over time. To address this fundamental question, we 
followed an initially healthy person over a year. We sampled plasma at and shortly after the initial 
time point (16h apart) to gauge short term biological variation, at the five-month mark and at the 
end of the year. At about 11 months, the donor contracted COVID-19, and we sampled their 
immunopeptidome as soon as they were not positive any more (Supplementary Table 1).  
Throughout the entire time period more than half of all sHLA peptides were detectable and 
quantifiable, with 88 to 93% being shared in at least two timepoints (Fig. 5A). Remarkably, 
quantitative reproducibility over the entire year was very high (Pearson correlation of 0.97 
between the first and the last timepoint (Fig. 5B)). The first two sampling points that were only 
16h apart, also agreed very well with each other, suggesting that time of day did not have a large 
influence. Even the immunopeptidome shortly after COVID-19 infection did not show large 
variations at a global scale.  
Having established temporal stability of the sHLA peptidome in a single healthy donor, we next 
compared the immunopeptidomes of eight healthy donors (Supplementary Table 1). 
A Principal Component Analysis (PCA) clearly clustered workflow replicates of the same donor 
but next grouped donors by shared types or supertypes (Fig 5C). Supporting this, a similar 
grouping emerged from pairwise Jaccard distances, which also revealed up to 50% overlap of 
identified peptide sequences between different donors with overlapping or similar presenting 
alleles (Fig. 5D). 
Overall, the immunopeptidome of the different donors at best exhibited only a loose correlation 
(Fig 5E). However, when selecting donors with a Jaccard similarity of more than 30%, the pairwise 
quantitative correlation significantly improved (Fig 5F). Interestingly, donor 1 and donor 3 have 
a low Jaccard similarity (3%) between them - despite sharing one HLA-type (HLA-C0304); 
nonetheless, those 3% peptides show a high Pearson correlation.  
These findings highlight the consistency and stability of the plasma immunopeptidome, further 
supporting its usefulness for insights into potential commonalities and variations among 
individuals. 
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Figure 5: The plasma immunopeptidome is stable over time and quantitative reproducible 
between healthy controls. (A) Immunopeptides identified by IMBAS-MS of a healthy donor over 
the course of a year. Two closely spaced time points at the start assess short term variation, and 
the 11-month time point is immediately post-COVID 19. Dark blue represents peptides shared 
between all timepoints and light blue represents peptides only measured at one time point. (B) 
Pearson correlation of immunopeptide quantities between timepoint 0 and after 12 months. (C) 
Principal component analysis of immunopeptidomes from 8 different healthy donors. Numbers 
refer to the different donors and colors represent the replicates. (D)Clustered heatmap of Jaccard 
similarities of immunopeptidomes between healthy donors (B). Note that 7 and 2 have only two 
replicates. (E) Unfiltered imputed Pearson correlation between healthy donors (B). The sample 
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order was taken from the clusters built by Jaccard similarities in (C). (F) Filtered pairwise complete 
Pearson correlation of median intensities between donors showing a Jaccard similarity of more 
than 0.3 with at least one other donor (conditions without shared peptides are grey). 
 
 
DISCUSSION AND OUTLOOK 
Here we developed and applied IMBAS-MS, an improved approach to immunopeptidomics, with 
drastically enhanced sensitivity. This user-friendly and adaptable workflow replaces the 
traditional ProteinA/G affinity-based capture of anti-HLA antibodies24 with a streptavidin-biotin 
one. This enables generic use of any biotinylated antibody, regardless of their immunoglobulin 
type and greatly simplifies plasma-based immunopeptidomics by eliminating the need for plasma 
pre-clearance with its associated losses. 
IMBAS-MS also eliminates nearly all hands-on time, in turn enabling the rapid preparation and 
acquisition of a large number of samples, which will be especially important in clinical 
environments. We expect IMBAS-MS to have the same advantages in tissue-based 
immunopeptidomics and we plan to explore this aspect in the future.  
As part of our workflow, we have also implemented Data Independent Acquisition (DIA) to 
expand the depth of the immunopeptidomic data. To tackle the challenge of creating a suitable 
search space for immunopeptidomics, we employed personalized HLA peptide libraries18. This 
considerably reduces the number of potential 9mers to 12mers in a human FASTA to be searched, 
increasing the number of significant identifications. In contrast to other library generation 
strategies25,26, our approach eliminates the need for any upfront measurements and can be 
transferred between MS platforms. It also avoids building a library from Data Dependent 
Acquisition (DDA) runs and could be adapted to supertype or study-specific libraries, potentially 
incorporating common post-translational modifications. 
As a next step, we envision combining IMBAS-MS with multiplexed DIA and in particular to use 
one of the channels as a reference channel27,28. By decoupling identification and quantification, 
the reference channel improves proteomics depth, sensitivity and comparability between 
samples.  
Our results highlight the potential diagnostic applicability beyond identifying cancer neoepitopes. 
They demonstrate the presence of very large numbers of immunopeptides in plasma samples, 
further supporting the notion of plasma as a valuable, non-invasive source of 
immunopeptides4,11,29. 
We observed that the immunopeptides found in plasma are mostly representative of the tissue 
proteome. However, brain-associated proteins where less represented and it would be 
interesting to investigate mechanisms of presentation of these sHLAs in the plasma. We also 
demonstrated the existence of a stable healthy plasma immunopeptidome, both quantitatively 
and qualitatively, across different healthy individuals. This finding is highly relevant for clinical 
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applications, as it suggests that a general baseline healthy immunopeptidome can be established. 
In turn, this could significantly facilitate the identification of disease-specific immunopeptide 
signatures and aid in the development of novel diagnostic markers and therapeutic strategies. 
Such an approach could extend the diagnostic potential of plasma immunopeptidome profiling 
within and beyond the search for neoepitopes in the context of cancer. This may provide insights 
into a wide range of pathological conditions that involve alterations in immune responses, such 
as autoimmune disorders, infectious diseases or inflammatory conditions. In this context, the 
minimal-invasive nature of plasma-based immunopeptidome profiling combined with the 
streamlined IMBAS-MS technology could enable a patient-friendly approach to disease 
monitoring and personalized medicine, facilitating earlier intervention and more effective 
treatment strategies. 
Clearly, future studies are needed to expand upon these exciting findings by investigating basic 
aspects of sHLA generation and presentation and the diagnostic capabilities of plasma 
immunopeptide signatures in specific disease states. Combined with ongoing development of the 
underlying analytical technology, sHLA peptidomics may become an important addition to the 
arsenal of precision medicine.   
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