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ABSTRACT
Background

Age represents a significant risk factor for the development of Alzheimer's disease (AD); however,
recent research has documented an influencing role of sex in several features of AD. Understanding
the impact of sex on specific molecular mechanisms associated with AD remains a critical challenge

to creating tailored therapeutic interventions.

Methods

The exploration of the sex-based differential impact on disease (SDID) in AD used a systematic
review to first select transcriptomic studies of AD with data regarding sex in the period covering
2002 to 2021 with a focus on the primary brain regions affected by AD - the cortex (CT) and the
hippocampus (HP). A differential expression analysis for each study and two tissue-specific meta-
analyses were then performed. Focusing on the CT due to the presence of significant SDID-related
alterations, a comprehensive functional characterization was conducted: protein-protein network
interaction and over-representation analyses to explore biological processes and pathways and a

VIPER analysis to estimate transcription factor activity.
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Results

We selected 8 CT and 5 HP studies from the Gene Expression Omnibus (GEO) repository for tissue-
specific meta-analyses. We detected 389 significantly altered genes in the SDID comparison in the
CT. Generally, female AD patients displayed more affected genes than males; we grouped said genes
into six subsets according to their expression profile in female and male AD patients. Only subset |
(repressed genes in female AD patients) displayed significant results during functional profiling.
Female AD patients demonstrated more significant impairments in biological processes related to
the regulation and organization of synapsis and pathways linked to neurotransmitters (glutamate
and GABA) and protein folding, AP aggregation, and accumulation compared to male AD patients.
These findings could partly explain why we observe more pronounced cognitive decline in female AD
patients. Finally, we detected 23 transcription factors with different activation patterns according to
sex, with some associated with AD for the first time. All results generated during this study are

readily available through an open web resource Metafun-AD (https://bioinfo.cipf.es/metafun-ad/).

Conclusion

Our meta-analyses indicate the existence of differences in AD-related mechanisms in female and
male patients. These sex-based differences will represent the basis for new hypotheses and could

significantly impact precision medicine and improve diagnosis and clinical outcomes in AD patients.

Keywords: Alzheimer's disease, cognitive function, meta-analysis, sex-based difference impact

disease, transcriptomics

Highlights

0 Female AD patients possess more affected genes than male AD patients.

0 389 genes from the sex-based differential impact on disease comparison significantly impact
the cerebral cortex and suggest a more significant effect on cognitive function in female AD

patients.

0 The cluster of repressed genes in female AD patients functionally impacts glutamate and

GABA neurotransmitters and AP deposition.

00 Female AD patients exhibit several transcription factors with significantly different activity

patterns compared to male AD patients.

0 This work includes Metafun-AD, an open and interactive web tool to explore all generated
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data and results.

BACKGROUND

AD represents the most common form of dementia in the aged population. The latest update from
the World Health Organization (WHO, 2023) indicates that more than 55 million persons have
dementia worldwide, with AD representing 60-70% of the cases. Of note, AD incidence is rising fast
(about 10 million new cases each year), with over 131 million AD cases estimated to occur by 2050
[1]. Currently, AD remains incurable and terminal and represents a leading cause of dependency,

disability, and mortality [2, 3].

The brain of AD patients suffers from significant levels of neuronal death. The neuropathology
relates to the accumulation of amyloid-beta (AB) protein plaques and neurofibrillary tangles of the
Tau protein [4, 5]. Excess AP plaques and Tau tangles prompt processes disrupting neuronal
communication, metabolism, and repair, thereby disrupting homeostasis [6]. The limbic system (and
the HP in particular, which remains critical to the formation of new memories and learning)
represents the first point of attack. Subsequently, AD sufferers undergo deterioration in the CT,
resulting in the inability to control emotional outbursts and carry out daily tasks. Finally, the
brainstem becomes damaged in advanced stages, which causes organ failure. In general, AD is
clinically characterized by memory loss but presents with other cognitive and behavior-related

symptoms.

The causes of AD remain relatively unknown. While genetic factors seem to determine early-onset
AD, the interaction between risk and environmental factors may drive late-onset AD, which
encompasses 95% of all cases [7]. Several studies have also highlighted sex as a critical risk factor in
neurodegenerative diseases and the development of late-onset AD [8—11]. Females comprise two-
thirds of all AD patients [12] and sex-related differences are evident in patterns of disease
manifestation and the rates of cognitive decline and brain atrophy, suggesting sex as a crucial
variable in disease heterogeneity [13—19]. Nevertheless, we understand relatively little about the
molecular mechanisms for the evident sex bias in AD patients; however, multi-omics analyses and
datasets from human AD samples and animal models offer an excellent platform to study sex-related
molecular and pathway alterations. Including sex as a variable in AD research will improve precision

medicine strategies and provide for more rapid advances in diagnosis and treatment.
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To investigate sex-based differences in AD, we provide two independent meta-analyses of gene
expression datasets that consider the sex of human AD patients. We performed one meta-analysis in
the CT (eight studies) and the other in the HP (five studies), given that the CT and HP represent the
two central brain regions affected by AD pathogenesis. Our in-silico approach revealed the
expression of differentially-expressed gene subsets in female and male AD patients. At a functional
level, these gene clusters mainly involve functions related to neurotransmission regulation, synapses
and pre-synapses, calcium signaling, pH reduction, MAPK activity, ubiquitination, and protein
folding. Additionally, female AD patients presented with the significantly upregulated expression of
transcription factors with different activity patterns (ADNP, HMGNS3, IRF3, KLF5, KLF9, MAZ, MBD3,
MYNN, PRDM14, SIX5, and ZNF207 — activated; GTF2B, HOXB13, NANOG, NME2, PCGF2, SNAI2,
ZBTB7A, ZC3H8, ZHX1, and ZHX2 - repressed). Additionally, two transcription factors (CEBPZ and
TERFS) displayed divergent expression patterns by sex. We highlight the freely available nature of

our results in the Metafun-AD web tool as a starting point for future studies.

METHODS

All bioinformatics and statistical analysis were performed using R version 4.2.1 software [20].

Study Search and Selection

Available datasets were collected from the Gene Expression Omnibus (GEQ) [21] public repository. A
systematic search of all published studies in public repositories (2002-2021) was conducted during

2021, following the preferred reporting items for systematic reviews and meta-analyses (PRISMA)

guidelines [22]. Keywords employed in the search were "Alzheimer," "Alzheimer's Disease", and

"AD". The following inclusion criteria were applied:

0 Transcriptomic studies on Homo sapiens

0 Control and AD-affected patients included

0 Sex, disease/control status, age, and brain region variables registered

0 RNA extracted directly from post-mortem brain tissues (no cell lines or cultures)
0 Brain tissues from either the CT or HP

0 Sample size > 3 for case and control groups in both sexes

Normalized gene expression data of 8 microarray AD datasets (GSE118553, GSE1297, GSE132903,
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GSE15222, GSE29378, GSE37263, GSE48350, GSE5281, and GSE84422) and the raw counts' matrix of
the GSE125583 RNA-sequencing study from the GEO repository were retrieved. Data downloading
was performed using the GEOquery R package [23] for microarray studies and manually for the RNA-

sequencing study.

Individual Transcriptomics Analysis

For each selected study, an individual transcriptomics analysis comprised two steps: preprocessing

and differential expression analysis.

Data preprocessing included the standardization of the terminology for the clinical variables in each
study, the homogenization of gene annotation, and exploratory data analysis. For the microarray
datasets, the normalization methods performed by the original authors were assessed, log;
transforming data matrices when necessary. All probe sets were annotated to HUGO gene symbols
[24] using the annotation provided by each microarray platform. The median of expression values
was calculated when dealing with duplicated probe-to-symbol mappings. For the RNA-sequencing
dataset, the count matrix was preprocessed using the edgeR R package [25] and transformed using
the Voom function included in the limma R package [26]. The exploratory analysis included
unsupervised clustering and PCA to detect expression patterns between samples and genes and the

presence of batch effects in each study.

Differential expression analyses were performed using the limma R package to detect the sex-based

differential expression of genes. To achieve this goal, the following comparison was applied:

(AD.female - Control.female) - (AD.male - Control.male)

This comparison allows the detection of genes with a sex-based differential impact on disease
(SDID). Genes with a log, fold change (LFC) greater than zero show either a higher increase or a
lesser decrease in expression in female AD patients when comparing the effect of the disease
between sexes. On the contrary, genes with an LFC lower than zero have a higher increase or a
lesser decrease in expression in male AD patients when comparing the effect of the disease between

sexes.

To gain a better understanding of the sex-based differential behavior detected with the previous
comparison, two additional comparisons were performed: A case vs. control comparison performed
only in females (AD.female - Control.female) that evaluates the impact of AD in females (IDF) and

another performed only in males (AD.male - Control.male), that informs us about the impact AD in
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males (IDM).

These comparisons were applied separately to all CT and HP samples. The patients’ age was included
in the limma linear model as a blocking factor to reduce its impact on the results. P-values were
corrected using the Benjamini-Hochberg procedure [27] and considered significant when below a

threshold of 0.05.

Gene Expression Meta-Analysis

Differential gene expression results were integrated into a meta-analysis [28] for each brain region
(CT and HP). Meta-analyses were implemented with the R package metafor [29] under the
DerSimonian & Laird random-effects model [30], considering individual study heterogeneity. This
model considers the variability of individual studies by increasing the weights of studies with less
variability when computing meta-analysis results. Thus, the most robust functions between studies

are highlighted.

P-values, corrected p-values, LFC, LFC standard error (SE), and LFC 95% confidence intervals (Cl)
were calculated for each evaluated gene. Genes with corrected p-values lower than 0.05 were
considered significant, and both funnel and forest plots were computed for each. These
representations were evaluated to assess for possible biased results, where the LFC represents the
effect size of a gene, and the SE of the LFC serves as a study precision measure [31]. Sensitivity
analysis (leave-one-out cross-validation) was conducted for each significant gene to verify
alterations in the results due to the inclusion of any study. The Open Targets platform (release

22.09) [32] was used to explore the associations of significant genes with AD.

Sex-based Functional Signature in the CT

Gene meta-analysis of CT data revealed gene sets with a significantly differential expression pattern
between male and female AD patients. Several analyses were conducted to identify the functional

implications of these differences.

Over-Representation Analysis (ORA) [33] through clusterProfiler and ReactomePA R packages [34,
35] was first used to determine the biological functions and pathways overrepresented in all
significant gene subsets. P-values and corrected p-values were calculated for each GO (Gene
Ontology) term from the "Biological Processes" GO ontology [36] and each Reactome pathway [37].
Every function and pathway with a corrected p-value lower than 0.05 was labeled as over-

represented in each gene set.
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Protein-protein interaction (PPl) networks were then calculated using the STRING web tool for each
subset of genes [38]. The total number of edges was examined, and PPl enrichment was assessed

using the default parameters for each network.

A VIPER analysis [39] with human regulons obtained from the DoRothEA R package [40] was
performed to estimate transcription factor activity. Regulons with a confidence level of A, B, C, or D
were selected, excluding those with less than 25 genes (n = 217). The p-values were corrected using
the Benjamini & Hochberg method. Normalized enrichment scores (NES) were calculated by VIPER

as a measure of relative transcription factor activity.

Metafun-AD Web Tool

All data and results generated in the different steps of the meta-analysis are available in the
Metafun-AD web tool [41], which is freely accessible to any user and allows the confirmation of the
results described in this manuscript and the exploration of other results of interest. The front end
was developed using Quarto 1.2 [42], and the interactive graphics used in this web resource have

been implemented with plotly [43].

This easy-to-use resource is divided into eight sections: 1) framework and summary of analysis
results in each phase. Then, 2) systematic review conducted to identify studies and, for each of
them, the detailed results of the 3) exploratory analysis and differential expression. 4) The gene
meta-analysis results from the different meta-analyses. Sections 5-7) provide detailed tables and
figures corresponding to the results of the three functional profiling methods (ORA, PPI, and
Transcription Factor Activity). Finally, section 8) provides a synthesis of the bioinformatics methods.
Through the web, the user can interact with the web tool through graphics and tables and search for

specific information for a gene or function.

RESULTS

In this study, we aimed to investigate the existence of sex-based differences associated with AD
using a systematic review and two meta-analyses of transcriptomics studies. We obtained data from
those studies that included information on the sex of the patients from the GEO repository. We
conducted one meta-analysis for each of the two primary brain regions affected by AD pathogenesis
- CT (eight studies) and HP (five studies). Subsequently, we explored the biological implications of

the CT meta-analysis results by utilizing three distinct functional profiling methods - ORA, PPI
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network construction, and transcription factor activity analysis.

Systematic Review and Study Selection

In our search for studies on AD, we identified 76 non-duplicated entries, 40 of which (52%) included
both male and female patients. After applying inclusion and exclusion criteria (Methods, Figure 1),
we selected 14 studies for comparison; however, we excluded 4 after an exploratory analysis. Thus,
we analyzed 10 studies comprising 2508 samples (909 controls and 1599 AD cases) from the CT and
HP (Table 1). Figure 2 presents the sex distribution by study and brain region, with an overall
proportion of 44% males and 56% females. The median age of the participants was 85. Table 1 and

Figure 2 report additional information on the selected studies and their clinicopathological features.
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Figure 1. The flow of information through the distinct phases of the systematic review following

PRISMA statement guidelines [22]
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Table 1. Studies selected after the systematic review

Publication
Study Platform Brain area
(PMID)
GSE118553 lllumina HumanHT-12 V4.0 expression beadchip cT [44]
GSE125583 lllumina HiSeq 2500 o) [45]
GSE1297 Affymetrix Human Genome U133A Array HP [46]
GSE132903 lllumina HumanHT-12 V4.0 expression beadchip cT [47]
GSE15222 Sentrix HumanRef-8 Expression BeadChip cT [48]
GSE29378 Illumina HumanHT-12 V3.0 expression beadchip HP [49]
GSE37263 Affymetrix Human Exon 1.0 ST Array cT [50]
GSE48350 Affymetrix Human Genome U133 Plus 2.0 Array CT, HP [51]
GSE5281 Affymetrix Human Genome U133 Plus 2.0 Array CT, HP [52]
GSE84422 Affymetrix Human Genome U133A/U133B Arrays CT, HP [53]
Brain areas: Cortex (CT) and Hippocampus (HP)
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Figure 2. The number of samples per study divided by sex, study, and experimental group. AD —

Alzheimer's disease, CT — cortex, HP — hippocampus.
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Individual Transcriptomic Analysis

We conducted exploratory and processing steps on the datasets to ensure their comparability in
subsequent analyses. We applied log, transformation to studies GSE1297, GSE5281, GSE15222,
GSE29378, and GSE48350 to homogenize magnitude order and then filtered out samples from
regions different from CT and HP from all studies. We excluded studies GSE44768, GSE44770,
GSE44771, and GSE33000 from the selection.

The differential expression results for each study provided a variable number of significantly altered
genes across comparisons and studies (Table 2). In the case of the SDID comparison, only GSE15222,

GSE29378, and GSE84422 reported the significantly altered expression of genes.

Table 2. Summary of differential gene expression analysis by brain region and comparison

Significantly Altered Genes: Significantly Altered Genes: Significantly Altered Genes:
IDF IDM SDID
LFC>0 LFC<0 Total LFC>0 LFC<0 | Total [LFC>0 LFC<0 Total
GSE118553
387 291 678 759 401 1160 0 0 0
(cm
GSE125583
4461 4230 8691 3366 3482 6948 0 0 0
(cT)
GSE1297 (HP) 2 0 2 0 0 0 0 0 0
GSE132903
5925 4782 10707 4643 4473 9116 0 0 0
(cm
GSE15222 (CT) 5042 3699 8741 2054 1628 3682 267 148 415
GSE29378 (HP) 63 21 84 347 193 540 0 1 1
GSE37263 (CT) 0 0 0 0 0 0 0 0 0
GSE48350 (CT) 28 34 62 2 6 8 0 0 0
GSE48350 (HP) 760 421 1181 15 1 16 0 0 0
GSE5281 (CT) 718 2307 3025 618 3815 4433 0 0 0
GSE5281 (HP) 96 70 166 138 111 249 0 0 0
GSE84422 (CT) 109 235 344 355 490 845 174 89 263
GSE84422 (HP) 0 0 0 0 0 0 0 0 0

CT = cortex tissue, HP = hippocampus tissue, IDF = Impact of the disease in females, IDM = Impact of the disease in

males, and SDID = sex-based differential impact on disease

12
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Gene-expression meta-analyses reveal sex differences in the cortex

For each different comparison (IDF, IDM, and SDID), we performed a gene expression meta-analysis
in the HP and CT, analyzing eight studies for the CT and five for the HP. We employed the SDID
comparison to determine the genes with sex-based differential expression patterns in AD. We then
performed the IDF and the IDM comparisons to provide more details regarding the impact of sex in

this subset of genes.

The SDID comparison revealed no significantly altered gene expression in the HP; therefore, we
excluded this region from further functional analyses. The SDID comparison did, however, detect
389 genes with significantly altered expression in the CT. Additionally, the IDF and IDM comparisons
revealed 3763 and 1876 differentially expressed genes in AD in females and males, respectively

(Supplementary Table 1).

We divided the 389 genes with significantly altered gene expression in the SDID comparison
according to their significance and LFC value in the IDF, IDM, and SDID comparisons (Figures 3A and

3B). The six resultant subsets of genes were:

I More repressed genes in AD females (179 genes)
II.  More expressed genes in AD females (57 genes)
. More repressed genes in AD males (14 genes)
V. More expressed genes in AD males (6 genes)
V. Increased in AD females related to AD males (69 genes)

VI. Decreased in AD females related to AD males (64 genes)

Functional profiling of significant genes in the CT

We functionally characterized the gene subsets described above through ORA and the calculation of
PPl networks; however, we only obtained significant results in the "More repressed genes in AD

females" subset (Subset ).

ORA results with gene subset | revealed a significant overrepresentation of 34 GO terms (BP
ontology) and 20 Reactome pathways (Figure 3D, Supplementary Table 3). Most significant GO
terms related to processes involved in synaptic organization (GO:0050808, GO0:0099174,
G0:0050807, G0:0099173), assembly (GO:1905606, GO:0099054, GO0:0051963), and vesicle-
mediated transport (G0:0099003), and the regulation of membrane potential (G0:0042391,

13
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G0:0060078, G0O:1904062), axonogenesis (GO:0061564, GO:0007409), and cytoskeleton-dependent
intracellular transport (GO:0030705), which play essential roles in the development and function of
neurons. Most significant Reactome pathways also participated in the neuronal system (R-HSA-
112316), including Neurotransmitter receptors and postsynaptic signal transmission (R-HSA-112314),
GABA receptor activation (R-HSA-977443), Ca2+ pathway (R-HSA-4086398), and Negative regulation
of NMDA receptor-mediated neuronal transmission (R-HSA-9617324).

The calculated PPI network revealed significantly more interactions between genes than expected for
a random set of genes of the same size and degree distribution, with a PPl enrichment p-value of
1.27 x 10-11 (Figure 3C). We computed gene clusters using the MCL clustering method included in
the STRING web tool. As a result, we elucidated 10 clusters composed of at least 3 genes, most
functionally related to neurological processes such as synapsis (Table 3). STRING provided the

functional enrichments in each cluster (Supplementary Table 2).
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Figure 3. Genes with a sex-based differential impact on disease detected in the cerebral cortex. A)
Upset plot of the intersections between the differentially expressed genes encountered in the IDF, IFM,
and SDID comparisons. Only the intersections containing significantly altered gene expression in the SDID
are shown. B) Tile plot of every gene composing the six resulting Subsets (I-VI). The direction of
expression and significance are reflected for female and male patients, with the following color pattern:
blue - underexpression, red - overexpression, and darker colors - statistical significance (adjusted p-value
< 0.05). C) PPI network calculated from gene Subset I, showing only network edges with an interaction
score greater than 0.7. Network nodes are colored according to their cluster (See Table 3). D} Dot Plots
summarizing the significant GO biological processes (left) and Reactome pathways (right) detected by

ORA in gene Subset I.
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repressed genes in affected females

(8 genes; red)

LRRC7, MEF2C, NBEA, NEDD4L

Cluster Genes Relevant Significant Functions
G0:1900449: Regulation of glutamate
Cluster 1 CACNG3, CAMK2A, DLG3, GLRB, receptor signaling pathway

R-HSA-112314: Neurotransmitter receptors

and postsynaptic signal transmission

Cluster 2

(7 genes; brown)

ATP6AP2, ATP6VI1A, ATP6V1B2,
ATP6V1C1, ATP6VID, SEH1L, SLBP

G0:0051452: Intracellular pH reduction
R-HSA-9639288: Amino acids regulate
mTORC1

Cluster 3

(7 genes; yellow)

ARL8B, FKBP1B, HOMER1, ITPR1,
PPP3CB, PPP3R1, PRKCB

G0:0019722: Calcium-mediated signaling
R-HSA-5607763: CLEC7A (Dectin-1) induces
NFAT activation

Cluster 4

(6 genes; pearl)

AMPH, EFNB3, NECAP1, PNMAZ2,
SH3GL2, VPS35

G0:0098793: Presynapse
R-HSA-8856828: Clathrin-mediated

endocytosis

Cluster 5 (4 genes;

fucsia)

MADD, MAP2K1, MAP2K4,
PPP2R5D

G0:0000187: Activation of MAPK activity
R-HSA-450294: MAP kinase activation

Cluster 6 (4 genes;

pista green)

ARHGEF9, GABRA1, GABRAS,
GABRG2

G0:0051932: Synaptic transmission,
GABAergic
R-HSA-977443: GABA receptor activation

Cluster 7 (4 genes;
blue)

CDC37L1, DNAJA2, DNAJA4,
HSP90AB1

G0:0006457: Protein folding
R-HSA-3371497: HSP90 chaperone cycle for

steroid hormone receptors (SHR)

Cluster 8 (4 genes; light
blue)

NCAM2, NRCAM, PRNP, SCN4B

R-HSA-445095: Interaction between L1 and
Ankyrins

Cluster 9 (3 genes;

dark green)

COPS8, DCAF6, TESPA1

G0:0010387: COP9 signalosome assembly
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G0:0070979: Protein K11-linked
Cluster 10 (3 genes;
UBE2E2, UBE2T, UBE2W ubiquitination
green)

Transcription Factors Activity in the CT

The transcription factor activity analysis (VIPER analysis) of the consensus profiles calculated from
the three meta-analyses (IDF, IDM, and SDID) reported 23 transcription factors with sex-affected
patterns of expression (adjusted p-value < 0.05 in SDID). We split these transcription factors into

three groups according to their profile: "Activated," "Repressed,"” and "Divergent" (Figure 4).

We labeled as Activated the eleven transcription factors with NES of > 0 in the IDF, IDM, and SDID
comparisons. These transcription factors are predicted to be activated in both female and male AD
patients but significantly increased in females compared to males (Genes - ADNP, HMGN3, IRF3,
KLF5, KLF9, MAZ, MBD3, MYNN, PRDM14, SIX5, and ZNF207).

We labeled as "Repressed" the ten transcription factors with an NES of < 0 in the IDF, IDM, and SDID
comparisons. These transcription factors are predicted to be repressed in female and male AD
patients, with a significantly greater expression in female AD patients than in male AD patients

(Genes - GTF2B, HOXB13, NANOG, NME2, PCGF2, SNAI2, ZBTB7A, ZC3H8, ZHX1, and ZHX2).

The two "Divergent" transcription factors possessed NES values with different signs in the IDF, IDM,
and SDID comparisons. In the case of CEBPZ, results indicate activation in female AD patients and
repression in male AD patients; meanwhile, results indicate TERF2 activation in male AD patients and

repressed female AD patients.
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Figure 4. Transcription factors with significantly altered activity calculated from the SDID comparison
(adjusted p-value < 0.05). Activation values are measured as normalized enrichment scores (NES).
Transcription factors labeled as "Activated" display positive values of NES in all comparisons, "Repressed"
display negative values of NES in all comparisons, and "Divergent" display qualitative differences in their

activation across the IDF, IDM, and SDID comparisons.
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DISCUSSION

AD patients suffer from progressive memory loss and other cognitive features, although etiology and
pathogenesis remain complex. Recent omics-based studies have focused on exploring the influence
of sex on neurodegenerative disease [54, 55]. Although discrepancies exist, a large collective of
studies has provided evidence for the influence of sex on risk factors, prevalence and incidence,
clinical manifestation, and treatment response [8, 56, 57]; therefore, evaluating the impact of sex-
based differences on AD remains critical to improving prevention, diagnosis, and outcomes in female
and male patients. We investigated sex-based differences in the molecular mechanisms associated
with AD by performing two specific meta-analyses in brain regions primarily impacted by AD —the CT
and HP. While the CT represents the central region involved in cognitive functions, the HP takes part
in mental processes related to memory and those related to the production and regulation of

emotional states and spatial navigation.

Our results demonstrated that gene expression in female AD patients is more significantly affected
than in male AD patients. We found no significantly differentially expressed genes in the SDID
comparison in the HP; however, analysis of the CT revealed 389 significantly differentially expressed
genes in the SDID comparison. Therefore, this work focused on CT and the genes repressed in female
AD patients (Subset 1) that significantly impacted the functional profiling. Consistent with our
findings, a multi-omics review performed by Lei Guo and colleagues stated that only 20% of selected
omics studies of sex-based differences in AD describe male-specific changes, with molecular-evel
changes primarily described in females [57]. We detected significantly differentially expressed genes
in the SDID comparison in female AD patients in the CT, the central region of the brain involved in
cognitive function. This may represent a potential reason females present with a more rapid decline

and cognitive deterioration [58].

We divided the resulting network of the Subset | genes in female AD patients from the SDID
comparison into 10 clusters whose significantly altered processes mainly affected signal
neurotransmission, AB aggregation, and deposition, which all critically impact cognitive impairment.
Wang et al. reported the ATP6VIA gene in cluster 2 as a critical regulator in AD and related to
cognitive deficits using a multi-omics approach that was later experimentally confirmed [59]. The
downregulation of these critical genes in females may contribute significantly to the sex-based

differences associated with AD.
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Female AD patients also displayed dysregulation in genes encoding glutamate and GABA
neurotransmitters, which would disturb the synaptic circuit (presynaptic, postsynaptic, and
transmission). Synaptic loss significantly correlates with cognitive deficits in AD [60]; furthermore,
neurotransmitter imbalance can influence synaptic plasticity (the fundamental ability of synapses to
change their strength), which plays a crucial role in learning and memory [61]. Glutamate - the most
important excitatory neurotransmitter in the central nervous system with particular relevance in
memory and recovery - is also considered the primary mediator of sensory, motor, cognitive, and
emotional information [62]. Conversely, GABA, which is widely distributed in the neurons of the CT,
acts as an inhibitory messenger, thereby stopping the action of excitatory neurotransmitters.
Additionally, GABA contributes to motor control, vision, and anxiety regulation, among other CT

functions [63].

The interaction between L1 and Ankyrin proteins also appeared significantly altered in female AD
patients. Several components of this family of scaffold proteins have been linked to
neurodegenerative diseases (including AD) through the modulation of neuronal excitability and

neuronal connectivity via ion channels [64, 65].

The accumulation of misfolded proteins in the human brain represents a critical factor in many
neurodegenerative diseases, including AD [66]; indeed, a balance between the mechanisms that
mediate protein folding, elimination, trafficking, AR aggregation, and deposition remains crucial to
AD development. Female AD patients present with dysregulated pH values and calcium-mediated
signaling, which are integrally involved in synapsis and neurotoxicity [67]. Aging is associated with
more significant brain acidosis, which may affect AD-associated pathophysiological processes such as
AP aggregation or inflammation [68]. Meanwhile, calcium signaling can promote the accumulation of
AB plaques and neurofibrillary tangles in the brain [69] and remains critical for synaptic activity and
memory, a process closely related to signal transduction pathways such as the MAPK kinase pathway
[701, which also undergoes significant alterations in female AD patients. Said patients also presented
alterations in the amino acids that regulate mTORC1 signaling, which relates to autophagy inhibition,
clearance, and abnormal protein formation in human neurons and mice [71, 72]. Sex-based
differences in autophagy and the association with AD have been extensively reviewed [73], with the
authors proposing that lower basal autophagic activity observed in females leads to lower levels of
neural protection mediated by the clearance of aggregated proteins such as AP and hyper-
phosphorylated Tau tangles. This mechanism would increase the risk of AD and greater pathologic
severity in females. Furthermore, autophagy requires the suppressed transcription of genes such as

ATP6AP2 [74], which we observed in female AD patients in this study.
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Protein folding and the HSP90 chaperone cycle for steroid hormone receptors represent additional
functions related to protein abnormalities that displayed alterations in female AD patients. The
steroid receptor-mediated regulation of HSP90 function remains critical for their signal-transducing
function and their participation in the folding, stabilization, and trafficking of proteins [75].
Imbalances affecting the function of HSP90 and other chaperones can contribute to tauopathies, AD
onset, and disease progression [76, 77]; moreover, imbalances/abnormalities in endocytotic
processes represent among the earliest alterations associated with AD. The dysregulation of clathrin-
mediated endocytosis in female AD patients plays a significant role in the internalization of amyloid
precursor protein (APP) and AP generation [78]. AB generation and cognitive decline also is
associated with NFAT activation [79], which we found altered and related to dectin-1 in female AD
patients. COP9 signalosome assembly participates in ubiquitin-mediated proteolysis [80], and the
disruption of COP9 signalosome in parasites causes the dysregulation of the ubiquitin-proteasome
pathway, therefore impacting protein degradation and cell death [81]. The dysregulation of Protein
K11-linked ubiquitination, which functions in protein degradation and inflammation, also represents

an essential factor [82—-84].

We discovered 23 transcription factors with significant differential expression in the SDID
comparison, which we then classified into three groups considering their expression profile in the IDF
and IDM comparisons. While 11 transcription factors displayed an "activated" profile in female and
male AD patients, the elevated levels observed in females make these transcription factors potential
targets. Studies have linked aberrant ADNP expression to neural developmental disorders and
proposed as a novel marker for the onset of frontotemporal dementia [85, 86]. Seefelder et al. linked
HMN3 to Huntington's disease [87], while IRF3 participates in AD progression and cognitive
impairment [88]. Studies have linked KFL5 and KFL9 to AD progression and development [89, 90],
MAZ participates in amyloidosis [91], MBD3 induces neurotoxicity in mice [92], and MYNN has
significant diagnostic value in AD patients [93]. Studies have linked PRDM14 to pluripotency, motor
neurons, and brain germinoma [94], while Seznec et al. associated SIX5 with abnormal tau expression

[95].

We also found several "Repressed" transcription factors in female and male AD patients but with
significantly greater repression in females. Lee et al. identified GTF2B as a dysregulated transcription
factor in AD [96]; however, HOXB13, previously linked to prostate cancer risk [97, 98], has been
linked with AD for the first time in this study. Nanog is a pluripotency stem cell marker important in

stem cell therapies for neurodegenerative diseases [99, 100]. Studies have linked NME proteins in
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cancer progression [101]; however, this study represents the first link between NME2 in AD and any
neural disorders. Finally, Florentinus-Mefailoski et al. reported increased levels of PCFG2 in AD [102].
Our study also linked multiple zinc-finger transcription factors related to cancer progression and
neural development to AD for the first time. The EMT-transcription factor SNAI2 is vital for neural
crest specification, cell migration, and survival during neural crest development and has therapeutic
implications in neuroblastoma cells [103]. Studies in hepatocarcinoma cells reported that ZBTB7A
may regulate neural development [104], while Zou et al. described Zc3h8 as a repressor of
inflammation in zebrafish [105]. ZHX1 and ZHX2 participate in the development and progression of
several types of cancer, and the low expression of both impacts a poor prognosis in chronic

lymphocytic leukemia [106].

CEBPZ and TERF2 represent transcription factors with divergent gene expression patterns in females
and males. CEBPZ, which belongs to a family of transcription factors relevant to immune response
control and inflammation [107], is "Activated" in female AD patients and "Repressed" in male AD
patients. Studies have associated additional components of this family with neuroinflammation, an
early event in AD [108, 109]. TERF2 is "Repressed" in female AD patients and "Activated" in male AD
patients and has been related to senescence in AD [110, 111]. Wu et al. positively correlated the

expression of TRF1 and TRF2 in AD patients with age and Tau protein levels in blood serum [112].

Strengths and limitations

Exploring sexual bias may significantly improve clinical outcomes in female and male AD patients; we
employed an in-silico approach using computational models as powerful tools for evaluating and
integrating data. As the sample size increases with the number of studies integrated into the meta-
analysis, we can detect more subtle effects and provide greater consensus and statistical power in
the obtained results [54, 55, 113-115]. Additionally, our in-silico analysis is based on FAIR data
(Findable, Accessible, Interoperable, Reusable) [116], which we believe to be particularly relevant;
indeed, we believe the sharing and reusing of research data to be critical in making advances. In-
silico integrative approaches to analyze sex-based differences in gene transcription in AD patients
have been carried out; for example, Paranjpe et al. systematically meta-analyzed RNA-sequencing
data collected from brain samples [117]. Instead, our study discriminates between the two primarily
affected brain regions (CT and HP) in two different meta-analyses, leading to more region-specific
results. Moreover, we conducted our analyses using the limma R package for individual differential
expression analyses [26] and then the metafor R package for the gene expression meta-analyses
[29], which allowed us to analyze data following our SDID comparison, which includes four

experimental groups and identifies sex-based differences in AD, considering the inherent variability
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among males and females in healthy conditions. The joint use of the IDM, IDF, and SDID comparisons
allowed us to more precisely classify the genes with significantly altered expression levels in the
significant comparison into ten clusters according to their expression profile across the four

experimental groups.

Our study has some noteworthy limitations. First, while our methodology favors the detection of
robust expression patterns across the different studies included, it may also mask more subtle
expression patterns specific to the different subtypes of AD. In this regard, due to the lack of
information in some studies, the type of AD (LOAD and EOAD) or the genotypic status of the APOE
gene has not been included as covariates in the analysis.Our study has some noteworthy limitations.
First, while our methodology favors the detection of robust expression patterns across the different
studies included, it may also mask more subtle expression patterns specific to the different subtypes
of AD. In this regard, due to the lack of information in some studies, the type of AD (LOAD and

EOAD) or the genotypic status of the APOE gene has not been included as covariates in the analysis.

Lastly, cumulative evidence points to the influence of sex in various disorders; however, it remains
challenging to encounter data segregation by sex in research studies, even in those conducted to
explore diagnostic/prognostic factors. For example, we excluded 40 (48%) studies from our
systematic review due to the absence of information regarding sex; therefore, we highlight the need
to include information regarding sex in research studies and databases, given their vast relevance to

health.

Perspectives and significance

The results obtained in this study contribute to a better understanding of the impact of sex-based
differences at molecular and functional levels in AD. The genes, biological processes, pathways, and
transcription factors identified in the SDID comparison represent a source of valid targets to improve

clinical outcomes and the springboard for future research as comparisons with other studies.

CONCLUSIONS

Our results highlight sex-based differences as more evident in female AD patients, particularly
affecting the cerebral cortex whose neurons are mainly responsible for cognitive processing. We
identified impairments in the primary neurotransmitters (glutamate and GABA) and different
mechanisms for generating/depositing A plaques. We also identified genes and transcription factors
representing novel options that may guide new therapeutic strategies. More studies that consider

sex as a critical dimension are required for a better interpretation of the results and to avoid masking
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subtle differences that could impact tailored interventions. Lastly, we underline the relevance of

sharing data and working in open platforms for scientific progress.
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