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Abstract

Spatial transcriptomic and proteomic measurements enable high-dimensional characterization
of tissues. However, understanding organizations of cells at different spatial scales and
extracting tissue structures of interest remain challenging tasks that require extensive human
annotations. To address this need for consistent identification of tissue structures, in this work,
we present a novel annotation method Spatial Cellular Graph Partitioning (SCGP) that allows
unsupervised identification of tissue structures that reflect the anatomical and functional units of
human tissues. We further present a reference-query extension pipeline SCGP-Extension that
enables the generalization of existing reference tissue structures to previously unseen samples.
Our experiments demonstrate reliable and robust partitionings of both spatial transcriptomics
and proteomics datasets encompassing different tissue types and profiling techniques.
Downstream analysis on SCGP-identified tissue structures reveals disease-relevant insights
regarding diabetic kidney disease and skin disorder, underscoring its potential in facilitating
spatial analysis and driving new discoveries.

Introduction

All human organs exhibit characteristic tissue structures that are required for homeostasis and
function. These structures are diverse in form, scale and function and are typically composed of
multiple cell types organized into spatial patterns. Disruptions to these structures are usually
indicative of a disease process1,2. Recent advances in in situ molecular profiling techniques,
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including spatial transcriptomics3–7 and proteomics8–11 techniques, have allowed us to observe
detailed molecular phenotypes and cell states in tissue context, enabling the exploration of
interactions between entities at different spatial scales, ranging from cells12 and cellular
neighborhoods13,14 to tissue organization15 and patient-level characteristics16,17. However,
connecting observations of multi-scale tissue structures to molecular pathways and cellular
communities remains a challenging task.

Many existing analysis pipelines18,19 for spatially resolved data are cell-centric: cells are
identified and annotated through segmentation20, clustering, and classification21,22. Uncovering
the multi-scale tissue structures in parallel with the cell annotations can enable more
comprehensive understanding of tissues and facilitates downstream analysis focused on
specific structures-of-interest. Moreover, when comparing diverse samples from different
experiments or with different disease conditions, it is necessary to consistently recognize the
same set of tissue structures across all samples. In practice, this is best accomplished by
extending annotations on a well-studied set of samples to previously unseen samples, a
process we refer to as “generalization”.

In recent studies, computational methods integrating molecular profiling with spatial information
have been proposed. Some of these methods aim to improve analysis of cell-level
characteristics, such as better cell type prediction23,24 and intercellular communication
modeling12,25. Another line of research focuses on annotating larger structures or spatial
domains, exploring their interactions and disease-relevance. Such annotations are performed
based on clustering of cell type composition13,26 or locally-smoothed cell features15, topic
modeling27, Bayesian modeling28, optimal transport29, graph Fourier transform30, and graph
neural networks16,31,32. Many of these methods are unsupervised and lack the ability to
generalize. When new data is introduced, model retraining or re-fitting is necessary to annotate
unseen data. Consequently, downstream analysis on structures-of-interest are restricted to only
the training/fitting data, as consistent annotations on out-of-sample data can not be reliably
acquired. Similarly, recognizing tissue structures from unseen hematoxylin and eosin (H&E)
stained pathology images is a widely-studied task often resolved in a supervised manner33–36.
However, these tools tend to be more tissue type-specific and require substantial annotated
training datasets.

To create a universal, robust, and generalizable tissue structure segmentation tool, we present a
novel unsupervised partitioning method called Spatial Cellular Graph Partitioning (SCGP) in this
work. SCGP is a fast and flexible method designed to identify the anatomical and functional
units in human tissues. It can be effectively applied to both spatial proteomics and
transcriptomics measurements. We further introduce a reference-query extension pipeline,
SCGP-Extension, which enables the generalization usage of extending a set of reference tissue
structures to previously unseen query samples. SCGP-Extension can address challenges
ranging from experimental artifacts, batch effects, to disease condition differences and more,
greatly enhancing SCGP’s robustness and versatility. To the best of our knowledge, SCGP is
the first method validated on both spatial transcriptomics and proteomics data, as well as the
first method purpose-built for generalization. We demonstrate its applications to five spatial
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proteomics and transcriptomics datasets collected on different tissue types comprising more
than 1.6 million cells. The tissue structures identified by SCGP are evaluated against human
annotations, benchmarked extensively against related software tools, and applied in
downstream analysis that reveals disease-relevant biological insights.

Results

Unsupervised Partitioning of Spatial Cellular Graphs
To address the task of tissue structure identification, we developed a computational method
SCGP that performs community detection on graph representations of tissue samples.
Nodes in the graphs are small spatial units characterized by spatial coordinates and gene or
protein expression at the location (Methods). In the representative case of multiplexed
immunofluorescence (mIF) images37, nodes are defined on cells identified through the
segmentation pipeline20(Fig. 1A). However, this concept of nodes can be further extended to
accommodate broader spatial transcriptomics and proteomics data, such as spots in spatial
transcriptomics sequencing measurements7 or small square patches in single-molecule
fluorescence images3. In this study, we primarily present and discuss cell and spot based SCGP
analysis. An alternative patch-based SCGP experiment can be found in Supplementary Note 5
and Supplementary Fig. 8.

Two types of edges are constructed between nodes (Fig. 1B and Methods). Spatial edges are
constructed between nodes based on Delaunay triangulation of node coordinates. These edges
aim to capture the adjacency relationships between cells. Feature edges are constructed
between nodes that share similar expression profiles.
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Fig. 1Workflow for SCGP and SCGP-Extension. A. Raw mIF images of example kidney samples show multiple
tissue structures. B. Graph representations of mIF images are constructed on nodes (white circles) representing cells
or other spatial units. Spatial edges (solid lines) and feature edges (dashed arrows) are constructed to reflect spatial
closeness and feature similarity. C. Leiden graph community detection identifies partitions representing tissue
structures. D. The query sample shares similar structures as the reference partitions. E. Graph representation of the
query sample is constructed with additional pseudo-nodes (colored circles in the white box) extracted from the
reference partitions. Reference-query edges (brown dashed arrows) are constructed between query nodes and
pseudo-nodes. F. Leiden graph community detection yields both existing partitions that align with reference and new
partitions that are previously unseen.

Leiden graph community detection algorithm38 is then applied to the graphs, yielding partitions
that represent the different tissue structures (Fig. 1C). The central aspect of this method is the
joint contribution of two types of edges. Spatial edges guarantee the spatial continuity of the
identified tissue structures, differentiating the method from cell type clustering in that multi-cell
tissue structures will appear as cohesive entities. Feature edges interrelate tissue structures of
the same type even if they are spatially separated (e.g., two glomeruli from different kidney
samples), ensuring the consistency of tissue structure interpretation across samples. The
relative quantity and contribution of each category of edge is a parameter that, while robust in
our experiments, can be tuned. Throughout our experiments, we maintained a comparable
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amount of spatial and feature edges for community detection, see Methods for more details
regarding hyperparameter settings of SCGP.

SCGP Identifies Structures in Kidney Tissues
To examine the ability of SCGP to recognize known tissue structures, we assessed its
performance on a cohort of 17 tissue sections from 12 individuals with diabetes and various
stages of diabetic kidney disease (DKD)39. Tissue samples were imaged using the mIF platform
CO-Detection by indexing (CODEX)9 and further annotated for four major kidney compartments:
glomeruli, blood vessels, distal tubules, and proximal tubules. This cohort will be referred to as
the DKD Kidney dataset (Methods) in the subsequent text.

Together with SCGP, we applied a diverse set of unsupervised annotation tools13,15,24,27,31 to the
DKD Kidney dataset. All methods were applied to the combination of all 17 samples containing
137,654 cells, i.e., in a joint partitioning manner. Clustering/partitioning outputs on
representative samples are visualized in Fig. 2A and Supplementary Fig. 1A, with the leftmost
panels illustrating the raw mIF images with key biomarkers. Due to the unsupervised nature of
the output, we reordered the output clusters of each method in accordance with manually
annotated compartments. In Fig. 2A, the top panel for each column shows the output, and the
bottom panel highlights the mismatches. Across samples, partitions annotated by SCGP
frequently demonstrated the highest fidelity to manual annotations.
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Figure 2 Unsupervised annotations of DKD Kidney samples. A. Annotations from SCGP and other unsupervised
annotation methods recognize tissue structures aligned with manually annotated compartments. Nodes representing
cells are colored according to the assigned clusters/partitions in the top panels, colors not listed in the legend (e.g.,
cyan) refer to clusters/partitions that cannot be matched to any compartment. Mismatched nodes are highlighted in
red in the bottom panels. B. ARIs are calculated between unsupervised annotations and manual annotations. SCGP
performed significantly better than all other methods (P < .001, Wilcoxon signed-rank test). C. For each manually
annotated compartment, F1s are calculated between manual annotations and the most overlapped cluster/partition.
D. Signature protein biomarkers for SCGP-identified partitions match expectations of kidney tissue structures. E.
SCGP annotations on samples with different classes of DKD show varying levels of alignment accuracy. DM (i.e.,
healthy kidney) and DKD classes represent the different progression stages, assigned by following the Tervaert
classification40.
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We calculated Adjusted Rand Index (ARI) between manually annotated compartments and the
unsupervised partitions to evaluate their alignments (Fig. 2B). SCGP achieved the top
performance with a mean ARI of 0.57 (SD = 0.15), significantly outperforming all other methods
(P < .001, Wilcoxon signed-rank test). Notably, ARI downweighs compartments that are smaller
in size, while glomeruli, though having less coverage, are the major functional units in kidneys
and carry much greater importance in downstream analysis. To break down the performance
metrics, we calculated F1 scores for individual compartments between manual annotations and
the most overlapped cluster/partition (Methods and Fig. 2C). We found that UTAG15, Cellular
Neighborhood (CN)13,26, and SCGP performed the best at recognizing glomeruli (F1 ~ 0.8),
while SpiceMix24, SpaGCN31, and Spatial LDA27 excelled at recognizing tubule structures.
Overall, SCGP achieved best average accuracy in discerning all the manually annotated
compartments.

We further looked into the details of the SCGP-identified partitions by highlighting signature
protein biomarkers that are enriched in each partition (Fig. 2D and Supplementary Fig. 1B).
The heatmap corresponds well to our expectation, with CCR641 and Nestin42 among the top
biomarkers for glomeruli, CXCR343 and MUC144 for proximal and distal tubules. Interestingly, by
grouping performances based on the disease progression40, we found that unsupervised
annotations aligned better with manually annotated compartments in healthy (DM) or mild DKD
samples (DKD Class I, IIA). The substantial decrease in ARI and F1 for severe DKD samples
(DKD class IIB, III) indicates how normal tissue structures and functions are dysregulated in
DKD (Fig. 2E).

SCGP Identifies Layers in Human Brain Data
Next, we assessed SCGP’s performance on a spatial transcriptomics dataset from human
dorsolateral prefrontal cortex (DLPFC)45 that was acquired using the Visium platform7. In
contrast to the mIF approach, the Visium platform features a grid of spatially barcoded
oligonucleotide arrays that can be used for mRNA capture and library preparation. Each array
(i.e., spot) consists of multiple cells. We adapted our method by treating each spot as a node
and defining edges based on the grid and gene count information (Methods).

DLPFC contains 12 individual samples annotated with 7 compartments: 6 cortical layers (L1-6)
and white matter (WM). We directly compared our method against existing tools developed for
spatial transcriptomics data, including BayesSpace28, SpaGCN, and SpiceMix, in recognizing
manually annotated layers. In the first experiment, we conducted clustering/partitioning on each
sample independently. Results on a representative sample are demonstrated in Fig. 3A,
revealing a clear layer-wise pattern in the tissue structures. Among the benchmarked methods,
SCGP and SpiceMix achieved top ARI scores, exhibiting superior alignment with the ground
truth compartments marked by dashed lines. We calculated quantitative metrics for all 12
samples (Fig. 3B-C) and demonstrated that SCGP achieves comparable, if not superior,
performance (median ARI = 0.51, median F1 = 0.65) as the unsupervised annotation tools
designed for spatial transcriptomics.
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Figure 3 Unsupervised annotations of human DLPFC samples. A. Annotations from SCGP and other benchmarked
methods on a representative sample (151673). Note that Layer 2 and Layer 4 are not fully recognized. Boundaries
between ground truth layers are annotated as dashed lines. B. ARIs are calculated between unsupervised
annotations and ground truth layers on 12 samples, with each sample annotated independently. C. F1s are calculated
on each layer between unsupervised annotations and ground truth. Average F1s for all 12 samples are illustrated in
the box plot.

We then evaluated if joint partitioning the combination of multiple samples can help improve
performances. Following the experiment design by Chidester et al.24, we applied unsupervised
annotation tools to the combination of four samples collected from the same donor
(Supplementary Fig. 2A, C, D). Methods including BayesSpace, SpaGCN, and SpiceMix
performed better than independent clustering results, while UTAG and SCGP yielded worse
results. To address the performance drop, we adopted the solution described in the next
section: extending the superior partitions from the selected reference sample to the remaining
samples.

SCGP Extends Existing Tissue Structures to Unseen Samples
In practical applications, it is often advantageous to conduct the initial clustering/partitioning on
a selected subset of high-quality samples, inspect them for validity, then extend the resulting
annotations to a wider range of data. This generalization approach can be useful for performing
inference on prospective data, suppressing unwanted noise or batch effects, comparing
samples across disease conditions, and detecting unseen disease states. However, existing
unsupervised annotation tools have very limited support for this functionality. Most methods
(e.g., UTAG, SpaGCN) require either retraining or re-fitting the clustering model or the addition
of separate prediction models to extend existing partitions. To address this need, here we
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present a specialized reference-query extension pipeline SCGP-Extension to effectively handle
the generalization usage.

SCGP-Extension begins with partitioning a group of high-quality reference samples. Resulting
partitions are assumed to represent the ground truth structures and are referred to as reference
partitions (Fig. 1D). Through random sampling of nodes from the reference data, we construct
representative nodes for each reference partition, named “pseudo-nodes” (Methods). Next,
given unseen query samples, their graphs are constructed with explicit addition of the
pseudo-nodes (Fig. 1E), which connect to query nodes based on feature similarity. The
following graph community detection step is conducted with partitions of the pseudo-nodes
pre-assigned and fixed. Consequently, query nodes resembling pseudo-nodes are assigned the
corresponding partition. Query nodes that do not resemble any reference partitions will form
their own groups and be assigned as newly discovered partitions (Fig. 1F).

To demonstrate how SCGP-Extension improves partitioning performance, we revisited the joint
partitioning experiment of DLPFC samples. Provided that independent partitioning on one
representative sample yielded successful results (Fig. 3A), we adapted this sample as a
reference and extended its partitions to the rest. SCGP-Extension outputs considerably
outperformed SCGP (Supplementary Fig. 2A), achieving higher alignment (ARI) and accuracy
(F1) scores (Supplementary Fig. 2C-D) comparable with other spatial transcriptomics
annotation methods. Additionally, we tested methods that utilize partial ground truth, in which
the extension of labels outperformed predictive modeling (Supplementary Fig. 2B and
Supplementary Note 1).

Moreover, SCGP-Extension can generalize across disease conditions and help identify unseen
disease states. Without the extension pipeline, we observed suboptimal SCGP partitions in
severe DKD samples from the DKD Kidney dataset (Fig. 4A, Fig. 2E and Supplementary Fig.
1A), where glomeruli exhibited elevated levels of fibrosis (e.g., Collagen IV) and decreased
expression of native biomarkers (e.g., CCR6). When jointly partitioning these samples with
healthy and mild DKD samples, fibrotic glomeruli were often misrecognized as blood vessels
(black arrows in Fig. 4A). Similarly, predictive models trained with manual annotations showed
limited success in identifying fibrotic glomeruli (Fig. 4A, XGB Prediction). To overcome these
challenges, we applied SCGP-Extension to generalize primary partitions from healthy and mild
DKD samples to severe DKD samples. SCGP-extension yielded superior results (Fig. 4A,
SCGP-Extension), preserving most of the original partitions while uncovering two new
structures: the purple partition outlined fibrotic glomeruli, characterized by the depleted native
biomarkers and enriched Collagen expression (Fig. 4B); and the red partition, characterized by
elevated CD45 and CD68 expression (Fig. 4B), suggesting the infiltration of immune cells (e.g.,
macrophages). Compared to the joint partitioning and predictive model outcomes,
SCGP-extension delivered more accurate results both visually and quantitatively (Fig. 4C).
Furthermore, it highlighted partitions of unseen disease states, offering valuable insights into the
process of disease progression.
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Figure 4 Versatile applications of SCGP-Extension. A. Compared to joint partitioning or predictive models,
SCGP-Extension better recognized the fibrotic glomeruli (purple dashed circles) in severe DKD samples, and
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identified a previously unseen immune aggregates partition (red boxes). B. Extension to severe DKD samples
improved partition alignment and accuracy. C. Heatmap shows signature protein biomarkers for extended partitions in
the severe DKD samples, note the additional fibrotic glomeruli and immune aggregates partitions. D. In the TR
Kidney dataset, SCGP partitioned a cohort of kidney samples with heavy inflammation (top row). SCGP-Extension
further extended the partitions to control samples with minimal immune responses (bottom row). E. In the Lung IMC
dataset, SCGP-Extension recognized a new tissue structure submucosal glands (purple) in the query samples that is
unseen in references. F. SCGP and SCGP-Extension aligned better with manual annotations of lung samples.
SCGP-Extension achieved significantly better ARIs than all other methods (P < .001, Wilcoxon signed-rank test). G.
In the UCSF Derm dataset, SCGP-Extension consistently partitioned samples from multiple experiments with
different skin conditions.

We further assessed the performance of SCGP on a separate dataset comprising kidney tissue
samples from patients who experienced transplant rejection (TR Kidney dataset, Methods). The
analysis derived the same set of tissue structures from samples regardless of differences in
disease conditions and biomarkers (Fig. 4D). Furthermore, to compare samples exhibiting
various degrees of immune responses, we extended partitions from reference samples with
heavy inflammation and immune signatures to query samples with minimal inflammation.
SCGP-Extension consistently annotated structures of the same type (Fig. 4D and
Supplementary Fig. 3D), highlighting the different distributions of tissue structures in these two
conditions (Supplementary Note 2). Notably, SCGP-Extension effectively dealt with a variable
background artifact present in one sample of the TR Kidney dataset (Supplementary Fig. 6).

SCGP-Extension can identify unseen anatomical structures in query samples. To assess the
broader applicability of SCGP and SCGP-Extension, we evaluated our methods on an Imaging
Mass Cytometry (IMC) dataset collected on healthy lung specimens (Lung IMC dataset,
Methods), which also contains manual annotations for anatomical structures. SCGP achieved
remarkable alignment with manual annotations (median ARI=0.464), but tissue structures
across samples were assigned to different partitions (Supplementary Fig. 4A). To address this
issue, we conducted primary SCGP on a well-integrated subset of samples and extended
partitions to the remaining samples (Supplementary Note 3). Notably, SCGP successfully
identified two anatomical structures (submucosal glands and cartilage) that were absent in the
reference, assigning them as unseen tissue structures while preserving all the known structures
(Fig. 4E). SCGP-Extension also achieved significantly better alignment scores (median
ARI=0.564, Fig. 4F and Supplementary Fig. 4B-C) than all other benchmarked methods (P <
.001, Wilcoxon signed-rank test).

SCGP-Extension can also help mitigate batch effects between experiments. On a cohort of skin
samples collected from four separate experiments (UCSF Derm dataset, Methods), we
employed different unsupervised annotation methods to define tissue structures. The UCSF
Derm dataset comprised samples of different skin conditions, sharing similar anatomical
structures (Supplementary Table 1). Both UTAG and SCGP failed to link tissue structures from
different samples (Supplementary Note 4 and Supplementary Fig. 7A-B). We then attempted
SCGP-Extension by defining reference partitions on samples from one experiment
(Supplementary Fig. 5A) and extending them to the rest (Supplementary Fig. 5B-D).
Regardless of batch effects between experiments and differences in disease conditions,
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SCGP-Extension successfully recognized consistent partitions reflecting anatomical structures
across samples (Fig. 4G, Supplementary Fig. 7D).

SCGP Partitions Assist Downstream Analysis of Disease States
Partitions acquired by unsupervised annotation using SCGP reflect the anatomical and
functional structures of the subject tissues. In this section we use two datasets to demonstrate
how these tissue structures can facilitate analysis of disease states and enable the discovery of
biological insights regarding disease-relevant partitions.

In the DKD Kidney dataset, samples were collected from individuals with different DKD classes.
Based on the partitioning of these samples, we were interested in exploring correlations
between tissue structures and disease progression. Fig. 5A illustrates three representative
samples of different DKD classes along with their tissue structures annotated by SCGP and
SCGP-Extension. Clear visual differences between samples can be observed: Tubules and
glomeruli were much denser in the healthy sample, while these structures gradually deformed
over the course of DKD, accompanied by fibrosis and infiltration of immune cells. These
changes were also reflected in the tissue structures: A significant increase (P < 0.001,
Jonckheere-Terpstra test46) in area proportion of the basement membrane partition was
observed across samples (Fig. 5B), reflecting the degradation of normal kidney structures. An
immune aggregate partition (red) and a fibrotic glomerular partition (purple) were identified in
the severe DKD sample with SCGP-Extension, which were not present in healthy and mild DKD
samples.

Furthermore, to characterize how DKD affects glomerular functions, we assessed the protein
biomarker expression of individual glomerulus (dashed circles in Fig. 5A), annotated by deriving
connected components of the SCGP glomeruli partitions. Results suggested that glomeruli
undergo significant loss of native proteins (CCR6) throughout the disease progression (P <
0.001, Jonckheere-Terpstra test, Fig. 5C), with high intra-sample and inter-sample
heterogeneity.
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Figure 5 Downstream analysis of disease states with SCGP-identified partitions. A. Three representative samples of
different DKD classes are illustrated, note the fibrosis of glomeruli and increase in the area of the basement
membrane partition (light blue-colored nodes). Glomeruli are segmented by dashed circles. B. Box plot shows that
the area proportion of the basement membrane partition significantly increases (P < 0.001, Jonckheere-Terpstra test)
in DKD samples. Each dot represents a tissue sample. C. Expression of native proteins (CCR6) significantly
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decreases (P < 0.001, Jonckheere-Terpstra test) in glomeruli of DKD patients. Each dot represents an individual
glomerulus, and each box summarizes glomeruli from one patient. Note the heterogeneity observed within a single
tissue sample (A., bottom row) and between patients with the same DKD class. D. Two samples from the UCSF
Derm dataset with different skin conditions are illustrated. E. Area proportion of the immune aggregates partition
significantly increases in atopic dermatitis samples (P < 0.001, two-sided two-sample t-test). F. Epidermal layers show
significant thickening in atopic dermatitis samples (P < 0.001, two-sided two-sample t-test).

We next applied the partition-based analysis to the UCSF Derm dataset comprising normal
samples and atopic dermatitis samples. Representative samples visualized in Fig. 5D shows
notable differences in terms of epidermal thickness and immune cell densities. We verified these
visual signatures using SCGP partition information: Area proportion of the immune aggregates
partition was calculated and demonstrated significant increases in atopic dermatitis samples (P
< 0.001, two-sided two-sample t-test, Fig. 5E). Thickness of the epidermal layer was
characterized using the contour of the epidermis partition, which showed significant increases
as well (P < 0.001, two-sided two-sample t-test, Fig. 5F). Patients with atopic dermatitis also
exhibit a much more heterogeneous distribution of epidermal thickness47.

Discussion
In this work, we present SCGP, an unsupervised annotation tool for spatial transcriptomics and
proteomics measurements. SCGP embeds spatial information and biomarker expression of
subject tissues into graph representations, and performs Leiden graph community detection to
identify partitions corresponding to anatomical and functional structures. The reference-query
extension pipeline, SCGP-Extension, further boosts the potential of the method by enabling
generalization of existing tissue structures to unseen samples. Our experiments demonstrate
the power of SCGP and SCGP-Extension in identifying tissue structures in various data cohorts
and show how tissue structures assist downstream biomedical research and discoveries.

We compared SCGP against a list of unsupervised annotation tools that similarly utilize both
spatial information and molecular profiling output. Representative methods such as CN, UTAG,
and Spatial LDA define different concepts of neighborhoods, usually based on distance
thresholding, and annotate them through unsupervised clustering. These methods tend to work
well only for structures of specific spatial scales. Another class of methods use graph
representations of tissue samples, where the spatial organizations of cells are modeled in the
graph structures. Computational tools including latent variable modeling and graph neural
networks are applied to annotate nodes (cells) according to their graph context, but a large
drawback is the separation between spatially disconnected samples. SCGP follows the graph
representation approach and enhances it with nearest neighbor feature edges, thereby weaving
all samples into one cohesive graph.

Moreover, SCGP-Extension is the first method that addresses the long-standing need of
generalizing structures to previously unseen samples. SCGP-Extension resembles supervised
learning tools in that models apply knowledge learned from the reference samples (i.e., training
data) to unseen query samples (i.e., test data). Simultaneously, SCGP-Extension can isolate
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novel tissue structures during inference. In practice,we have demonstrated that
SCGP-Extension can help overcome common challenges including experimental artifacts, batch
effects, and different disease conditions. Additionally, it can help uncover unseen disease states
and anatomical structures.

SCGP and SCGP-Extension offer outstanding running time performance compared to many
unsupervised annotation tools, some of which require extensive parameter estimations or
optimizations (Supplementary Note 6 and Supplementary Table 2). In practice, this
advantage allows for applications to much larger datasets and facilitates model parameter
tuning to obtain optimal partitions.

SCGP and SCGP-Extension are validated to manage various spatial proteomics and
transcriptomics measurements effectively, requiring only minimal parameter adjustments
(Methods). The two major parameters involved are the density of feature edges and the
granularity of partitioning. In our experiments, both were maintained in similar settings, with a
comparable number of feature edges and spatial edges, and resolution parameters that yield
five to six partitions. Specifically for SCGP-Extension, an additional parameter, the extent of
extension, controls the balance between generalizing existing partitions and exploring new
partitions. In examples involving different disease conditions, certain tissue structures may
experience changes in their expression profiles (e.g., fibrosis, immune infiltration), and the
decision of whether to integrate or separate these structures will depend on the specific
downstream applications.

Nevertheless, we acknowledge the presence of certain caveats in SCGP and SCGP-Extension,
which hinder their applications in specific scenarios. One limitation is that SCGP can only
reliably detect coarse structures (i.e., four-seven structures), especially during joint partitioning
of multiple samples. Increasing granularity will cause structures of the same type from different
samples being assigned to separate partitions, complicating interpretations. The other
disadvantage is that our methods appear to be less suitable for identifying thin-layer structures.
Due to the design of the hybrid graph, spatial edges are isotropic for the purpose of community
detection. Thin-layer structures exhibiting much denser spatial connections in their normal
directions than tangential directions are harder to detect. In the DLPFC study, alternative
methods (e.g., BayesSpace, SpiceMix) can identify thinner structures under more granular
settings, while SCGP tends to bisect existing layers in the orthogonal direction. Refining the
spatial edges to reflect the anisotropy of tissues would be a direction to improve the
performances of SCGP.

In addition to addressing the aforementioned drawbacks, several avenues for improving SCGP
can be pursued in future research. One direction is the integration of multi-modal data, such as
morphology embeddings from H&E staining, which would greatly enrich the feature space and
allow SCGP to account for cellular and tissue-level morphological differences. Secondly, rather
than performing fully unsupervised partitioning from scratch, incorporating prior knowledge of
the expected tissue structures to SCGP, similar to how reference partitions contribute to
SCGP-Extension, might yield better-aligned results. Looking ahead, SCGP opens new
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opportunities for analyzing and understanding spatially-resolved molecular profiling data. By
inserting a middle layer between cell-level annotations and sample/patient-level characteristics,
it facilitates research and discoveries by enabling better dissection of samples and encouraging
analysis tailored to specific structures-of-interest.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.05.556133doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556133
http://creativecommons.org/licenses/by-nd/4.0/


17

Methods

Datasets
We used five spatial proteomics and transcriptomics datasets collected from diverse tissue
types in this work. An overview of the statistics and primary phenotypes can be found in
Supplementary Table 1. This subsection will provide additional information on each dataset.
Please refer to the source publications for full details.

DKD Kidney Dataset39

Kidney samples were obtained from patients with diabetes and healthy kidneys (DM, five
individuals), DKD classes IIA, and IIB (two individuals per class), IIA-B intermediate (two
individuals), and III (one individual). Twenty-three cores, each 0.5 mm in diameter, were
sampled from twelve tissue blocks and assembled into a tissue microarray (TMA). The TMA
block was further sectioned into 5 µm slices.

A TMA section was imaged and characterized using the CO-Detection by indexing (CODEX)
platform. After excluding medulla samples and quality control, a total of 17 cortical section
samples across various DKD classes were acquired. Each sample was imaged for 21 protein
biomarkers (see columns in Supplementary Fig. 1B).

DLPFC Dataset45

Spatial gene expression in human postmortem DLPFC tissue sections was profiled using two
pairs of “spatial replicates” from three independent neurotypical adult donors on the Visium
platform, each pair comprising two directly adjacent, 10-µm serial tissue sections, with the
second pair located 300 µm posterior to the first. In total 12 samples are collected and
examined. We downloaded the filtered count matrices for all 12 samples from the spatialLIBD
project48.

In the independent partitioning experiment (Fig. 3), we filtered the count matrices to exclude
spike-in genes, mitochondrial genes, and genes that have nonzero expression in fewer than
three spots. Expression matrices were normalized to have the same total counts per spot
(median of all pre-normalize spots), log-transformed and reduced to the top 50 principal
components.

In the joint partitioning experiment (Supplementary Fig. 2), we followed the preprocessing
steps outlined in SpiceMix24: Genes having nonzero expression in less than 10% of spots were
removed. Expression matrices were normalized to have total counts of 10,000 per spot and
log-transformed. We further reduced the expression to the top 40 principal components.

TR Kidney Dataset
Kidney samples were obtained from patients who underwent allograft nephrectomy, as
previously described49. Briefly, a TMA was constructed using 2 mm cores of cortical tissue.
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The TMA comprised 7 samples of normal, peritumoral renal cortex (from patients
undergoing native nephrectomy for tumor removal), and 43 samples of cortex from patients
undergoing allograft nephrectomies. After sectioning of the tissue block, only 41 cores from
allograft nephrectomies remained.

An FFPE embedded tissue microarray core of human kidney samples were stained and
acquired on the PhenoCycler Fusion using a 51-plex biomarker panel (Supplementary Fig.
3C) by the Enable Lab. 5 normal and 17 transplant rejection kidney samples were used in
this study.

Lung IMC Dataset15,50

Lung samples were acquired from three healthy donor lung specimens. In total 26 samples
were imaged using IMC with 28 biomarkers (see columns in Supplementary Fig. 4D). Tissue
samples were collected with a particular focus on airways extending from proximal bronchi and
succeeding divisions to terminal and respiratory bronchioles.

Each image was manually annotated with organ-specific microanatomical domains: airways,
connective tissue, submucosal glands, vessels, cartilages, and alveolar space. These manually
annotated domains were used as labels for unsupervised annotations. Additionally, cells in
these samples were phenotyped into seven broad clusters of cell identity: CD8 T cells,
macrophages, mast cells, smooth muscle cells, endothelial cells, epithelial cells, and connective
tissue cells. Cell type information was used in CN and Spatial LDA, other methods only used
biomarker expression data.

We downloaded preprocessed biomarker expression matrices and domain/cell type annotations
from the source publication51.

UCSF Derm Dataset
Tissue samples were acquired as 2-4 mm punch or shave skin biopsy specimens from healthy
control and atopic dermatitis patients. In total, 44 skin samples were obtained and stained in 4
experiments with varying biomarker panels by the Enable Medicine Lab. See Supplementary
Table 1 for a detailed breakdown of experiments and patient skin disorders. 35 shared protein
biomarkers were used in the unsupervised annotation analysis with UTAG and SCGP.

Preprocessing
The Visium DLPFC dataset was downloaded and normalized as specified above, with no
additional processing or batch correction executed. The Lung IMC dataset was downloaded as
matrices of preprocessed and normalized biomarker expression, no additional processing was
executed.

For the three CODEX datasets, we followed the preprocessing pipeline established in the prior
work by Wu et al.16 Briefly, a neural network-based cell segmentation tool DeepCell20 was
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applied to DAPI images to identify nuclei, which were further dilated to obtain whole-cell
segmentation.

Next, the biomarker expression for biomarker in cell was computed following the strategy𝑗 𝑖
below52:

● For channel , mean pixel intensity within the cell segmentation mask of cell was𝑗 𝑖

calculated and denoted as . The set of expression values for all cells in the same𝑥
𝑖
(𝑗)

sample was denoted as .{𝑥
1
(𝑗),  𝑥

2
(𝑗),  ...} 𝑋(𝑗)

● Normalized expression value for channel was calculated using quantile normalization𝑗
and arcsinh transformation:

𝑓(𝑥
𝑖
(𝑗)) =  𝑎𝑟𝑐𝑠𝑖𝑛ℎ(

𝑥
𝑖
(𝑗)

5𝑄(0.2;𝑋(𝑗))
)

in which represents the 20-th quantile of and is the inverse𝑄(0. 2; 𝑋(𝑗)) 𝑋(𝑗) 𝑎𝑟𝑐𝑠𝑖𝑛ℎ

hyperbolic sine function. The set of all normalized expression values {𝑓(𝑥
1
(𝑗)),  𝑓(𝑥

2
(𝑗)),  ...}

was denoted as .𝑓(𝑋(𝑗))
● z-score of normalized expression value was calculated:

𝑧(𝑥
𝑖
(𝑗)) =

𝑓(𝑥
𝑖
(𝑗)) − 𝑀𝐸𝐴𝑁(𝑓(𝑋(𝑗)))

𝑆𝐷(𝑓(𝑋(𝑗)))

It should be noted that SCGP does not require any cell clustering or classification inputs, it
infers partitions using biomarker expression values of cells.

Spatial Cellular Graph Partitioning (SCGP)
SCGP is an unsupervised annotation tool that recognizes tissue structures by partitioning
graphs constructed based on the spatial organization of cells (or other units) in the subject
tissue sample(s). The SCGP pipeline comprises the following steps.

Construction of Nodes
Nodes represent small spatial regions in the tissue, and are indivisible units throughout the
partitioning process. In this study, we employed three different strategies for defining nodes:

● Cells: Nodes are defined based on individual cells, which are identified via the cell
segmentation preprocessing step specified above. Biomarker expression values are
calculated and normalized accordingly, and these values are set as the node features.

● (Visium) Spots: In the DLPFC dataset, nodes are defined based on the barcoded spots
used in the Visium platform, each measuring gene expression in a circular area 55 µm in
diameter. The normalized gene expression values or top principal components are set as
node features.

● Patches: In the patch-based SCGP experiment (Supplementary Note 4), nodes are
defined based on small square patches with 12 µm side lengths on the mIF images,
sampled using a sliding window mechanism (stride equals patch side length). Only
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patches within the spatial range of tissue are retained (>85% overlap), and the average
fluorescence intensities for each biomarker channel are used as node features.

Construction of Spatial Edges
Spatial edges are constructed between spatially adjacent nodes to embed the spatial closeness
relationship into the graph.

● Cells: A Delaunay triangulation is conducted on centroid coordinates of all cells from the
same sample. Node pairs that share edges in the triangulation output are connected,
excluding any edge exceeding 35 µm in length.

● (Visium) Spots: Nodes (i.e., spots) are spatially arranged in a close-packing manner.
Each node is connected to its six closest neighboring nodes.

● Patches: Nodes (i.e., patches) are spatially arranged in a regular 2D grid. Each node is
connected to its four immediately adjacent nodes.

Construction of Feature Edges
Feature edges are constructed between nodes with similar biomarker expression profiles. For
node , its nearest neighboring nodes in the expression space are identified based on𝑖 𝑘
Euclidean distances between node features (e.g., z-scored protein expression values, principal
components of the gene expression). We used the nearest neighbor descent53 approximate
queries implemented in PyNNDescent for better computational efficiency.

In practice, is a hyperparameter that controls the balance between spatial coherence and𝑘
expression consistency within partitions. We typically set it to an integer that delivers a similar
amount of feature edges as spatial edges, usually between 3 and 6. Minor changes in do not𝑘
change partition outcomes in our experiments, but a larger ( ) might result in spatially𝑘 𝑘 > 8
fragmented partitions.

Graph Community Detection
Nodes, spatial edges, and feature edges define the spatial cellular graph input for SCGP. We
used the Leiden algorithm38 to detect graph communities.

We adapted the python implementation in leidenalg, and we used the Constant Potts
Model54 as the quality function for community detection
(leidenalg.CPMVertexPartition). Additional arguments include:

● Edge weights: For each edge, its weight is defined as the inverse of Euclidean distance
between the node features of the two nodes it connects. We further normalized all edge
weights by their median value.

● Resolution parameter (γ): γ controls the density of the output communities.

Note that the resolution parameter γ is the second major hyperparameter of SCGP, regulating
the granularity of the output partitions. We empirically tuned γ to generate 4-7 partitions based
on our understanding of the corresponding tissues. Higher γ will sometimes result in the same
tissue structures being assigned to different partitions in different samples. This is likely due to
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the fact that inter-sample feature edges are sparser (and hold less weights) than intra-sample
edges.

Post-processing
Upon acquiring the initial partition outcomes, optional post-processing steps can be executed to
refine the results:

● Size Filtering: Partitions accounting for less than 0.2% of all nodes are discarded.
● Spatial smoothing: For any node who holds a different partition assignment from all its

spatial neighbors, we reassigned it to the partition held by the majority of its spatial
neighbors (>50%) if applicable. This step will remove the rare cases where a lone node
appears in a spatially-coherent structure.

SCGP-Extension (Reference-Query Extension)
SCGP-Extension extends a given set of reference partitions to unseen query samples. Query
samples are processed in the same manner as specified in the SCGP pipeline for graph
construction. Reference partitions are defined on the reference nodes, which should be in the
same format as nodes in the query samples. These partitions are usually generated through a
primary SCGP run on the reference samples. It is worth noting that technically any form of
discrete labels can be employed as reference partitions. Supplementary Note 1 demonstrates
an example experiment that extended ground truth labels to query samples.

Construction of Pseudo-nodes
The major difference between SCGP-Extension and SCGP is the introduction of pseudo-nodes
that serve as guidance for query sample partitioning. Based on the reference nodes and their
reference partitions, pseudo-nodes can be created for each partition via two strategies:

● Selection: A median node feature vector is calculated using all reference nodes affiliated
with the partition. The Euclidean distance between each node’s feature vector and the
median vector is calculated. Representative nodes that have closest distances to the
median vector are selected as pseudo-nodes.

● Random sampling: The mean and covariance of the node feature vector are calculated
using all reference nodes affiliated with the partition. Pseudo-nodes are generated by
sampling multivariate normal random variables based on the mean and covariance.

In practice, we typically generate 100 pseudo-nodes for each partition, but the size can be
adjusted based on the number of nodes in the reference and query samples. The two strategies
tend to yield comparable results, we empirically prefer the selection strategy.

Note that prior to their integration into the query graph, dense feature edges are added to the
pseudo-nodes – 20 nearest neighbors for each pseudo-node if in total 100 nodes per partition
are used. This is to guarantee well-structured communities within the pseudo-nodes.
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Construction of Reference-Query Edges
Pseudo-nodes are then integrated into the query graph via additional reference-query edges.
For each node in the query graph, its nearest neighbors in the pseudo-nodes based on𝑘'
Euclidean distances between node features are identified. An additional ratio parameter (𝑟

) is included to regulate the strengths of reference-query edges. Given a total of0 < 𝑟 ≤ 1 𝑁
nodes in the query graph, the initial nearest neighbor search will yield reference-query𝑁𝑘'
edges. These edges are sorted by edge weights (i.e., Euclidean distances), with only the top

edges with the highest weights or closest distances retained.𝑟𝑁𝑘'

The completed query graph comprises spatial edges, intra-sample feature edges ( -nearest𝑘
neighbors within the query nodes), and reference-query feature edges ( -downsampled𝑟 𝑘'
-nearest neighbors between query nodes and pseudo-nodes). and are two additional𝑟 𝑘'
hyperparameters in SCGP-Extension, which control the degree of matching between query
nodes and reference partitions. In practice we adjusted , and so that the total number of𝑘 𝑘' 𝑟
feature edges slightly surpasses the number of spatial edges (~1.2x), with an equal number of
intra-sample feature edges and reference-query feature edges. is typically set to 0.5, which𝑟
ensures that nodes from unseen tissue structures are not excessively connected to the
pseudo-nodes, thereby avoiding forced alignment with existing reference partitions. However,
based on the task and understanding of subject tissues, can be set to a higher value for𝑟
enhanced alignment.

Graph Community Detection with Fixed Membership Assignment
The same community detection strategy is used to identify partitions in the query sample:
Leiden algorithm with the Constant Potts Model as quality function. Additional arguments
including edge weights and resolution parameter are specified in the same manner asγ
specified in the SCGP pipeline.

Notably, as pseudo-nodes are created for reference partitions, their assignments are
predetermined and fixed throughout the partition optimization process55 using the
is_membership_fixed argument of the
leidenalg.Optimiser().optimise_partition method. As a result, query nodes that
are similar to any of the existing reference partitions will be assigned to the corresponding
group, while nodes further away will be assigned to new partitions. The resolution parameter γ
will also control the level of alignment between query nodes and reference partitions: higher γ
will lead to scattered query nodes, while lower will force the alignment.γ

Predictive Modeling for Partition Extension
An alternative approach to extend existing partitions to unseen samples is through constructing
a predictive model and applying it for inference. This is demonstrated in two experiments in Fig.
4A and Supplementary Note 1. In these experiments, we used manual annotations of
reference samples to train gradient boosted tree classifiers, which were subsequently applied to
unseen query samples.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.05.556133doi: bioRxiv preprint 

https://paperpile.com/c/otNRbC/ewbK
https://doi.org/10.1101/2023.09.05.556133
http://creativecommons.org/licenses/by-nd/4.0/


23

The training dataset was constructed using the same set of reference nodes and used manual
annotations as labels. The input contained reference node features, as well as 1-hop
aggregated node features, which were computed by averaging features from the center nodes
and their immediate spatial neighbors (defined by distance thresholding). This augmentation
was inspired by the UTAG and SpaGCN methods and allowed the model to have larger fields of
view. The test inputs for the query nodes were formulated similarly, and the trained models were
employed to infer their cluster/partition assignments.

We evaluated a range of common machine learning methods including logistic regression, linear
SVR, k-nearest neighbor classifier, and random forest. Gradient boosted trees implemented via
XGBoost56 yielded the best performance.

Evaluation Metrics
On the DKD Kidney dataset, DLPFC dataset, and Lung IMC dataset, we employed manual
annotations to assess the performances of various unsupervised annotation tools. The following
metrics were applied:

● Adjusted Rand Index57 (ARI) and Rand Index (RI): ARI and RI are measures that
evaluate the similarity between two data clusterings, in which ARI also takes into
account the probabilities of random agreement between two clusterings. ARI ranges
from -1 to 1, where 1 indicates perfect agreement and 0 indicates a random agreement.
We adapted the implementation in scikit-learn58:
sklearn.metrics.adjusted_rand_score. RI ranges from 0 to 1, where 1
indicates perfect agreement. RI is only used in the Lung IMC dataset to reproduce
metrics reported in its source publication. We adapted the implementation in
scikit-learn: sklearn.metrics.rand_score.

● Homogeneity Score: homogeneity score measures if all points within one unsupervised
cluster are members of a single label class. It ranges from 0 to 1, where 1 indicates
perfect agreement. We adapted the implementation in scikit-learn:
sklearn.metrics.homogeneity_score.

● F1 Score: F1 is an accuracy measure calculated as the harmonic mean of precision and
recall. For each label compartment, the F1 score is calculated through the following
process:

○ Labels: 1s are assigned to all nodes affiliated with the target label compartment,
0s are assigned to the rest.

○ Predictions: For a given partition, predictions are calculated using the indicator
function of whether a node is assigned to that specific partition. A series of
predictions will be derived for all partitions identified by the unsupervised
annotation tool.

○ Metrics: Multiple F1s are calculated based on the labels and the series of
predictions. The highest F1 score corresponds to the partition that has the best
match with the target label compartment, and this score is taken as the final
score.
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Supplementary Notes

1. Identify Tissue Structures in DLPFC with Partial Ground Truth
In the DLPFC four-sample joint partitioning experiment, among all the methods that generated
unsupervised partitions/clusters, SpiceMix and SCGP-Extension achieved top performances
with ARI over 0.6 (Supplementary Fig. 2A). To further improve annotation accuracy, we
attempted utilizing the reference-query extension pipeline as well as the predictive modeling
strategy with partial ground truth inputs.

This experiment simulated the application scenario in which we first acquire manual annotations
on one specific sample from a dataset and then generalize it across all the remaining samples.
One approach is to train a predictive model using the ground truth annotations and apply it to
the rest. We adapted the gradient boosted tree method implemented in the XGBoost package
and trained it with annotations from a representative sample (151673). Prediction results on
other samples were well-aligned (Supplementary Fig. 2B, XGB Prediction), with a joint ARI of
0.64, surpassing all the unsupervised methods.

We further applied the reference-query extension pipeline using partial ground truth annotations,
which follows the exact same steps as SCGP-Extension but using ground truth annotations
instead of SCGP partitions as references. Two variants were tested, with different layers as
references (Supplementary Fig. 2B, Label-Extension columns): Label1-Extension used all
layers, while Label2-Extension excluded Layer 4. Results demonstrated better performances
than SCGP-Extension and XGB Prediction (Supplementary Fig. 2C), achieving a joint ARI of
0.69.

Notably, characterization of the two thinner layers (Layer 2 and Layer 4, downward triangles and
squares in Supplementary Fig. 2D) were worse in most methods, including ones that utilize
partial ground truth. Layer 4 was especially unstable across samples, suggested by the noisy
predictions on test samples from the XGB model. In fact, excluding Layer 4 in the reference
yielded better ARI performances for Label2-Extension.

2. Annotate Transplant Rejection Kidney Samples with SCGP
We conducted CODEX imaging on a series of kidney tissue samples obtained from patients
who experienced rejection responses after kidney transplantation61 (TR Kidney dataset,
Methods). These tissues exhibit heavily deformed native kidney structures and substantial
inflammation and immune cell infiltration. To assess the broader applicability of SCGP and
SCGP-Extension, we performed the following analysis to identify and annotate common tissue
structures across samples in this cohort.

We ran SCGP on a subset of ten samples with heavy rejection responses, encompassing
approximately 363k cells (Supplementary Fig. 3A). The selection of these samples was based
on considerations of data quality and computational efficiency. The primary SCGP run yielded 6
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major partitions corresponding to kidney tissue structures including tubules, glomeruli, and
blood vessels. Remarkably, despite the TR Kidney dataset being imaged using a different
biomarker panel than the DKD Kidney dataset, we successfully derived the same set of tissue
structures using different protein biomarker signatures (Supplementary Fig. 3C). Particularly in
the case of glomeruli, the absence of partition-specific biomarkers (e.g., CCR6, Nestin) did not
impair SCGP’s ability to recognize these structures. Theoretically, the differences in the
expression patterns of multiple proteins are reflected by the vector distances between cells,
which enable SCGP to isolate the glomeruli from their surrounding tissues. An additional
partition (red) exhibiting high expression of immune cell biomarkers including CD45, CD20, and
CD4 suggested the presence of substantial amounts of immune cells.

Subsequently, we attempted extending the primary partitions to a group of control samples with
minimal immune responses, comprising five samples and around 110k cells. These samples
were not well-integrated using SCGP (Supplementary Fig. 6B), where the same tissue
structures from different samples were assigned to separate partitions. On the contrary,
SCGP-Extension consistently recognized the same set of tissue structures (Fig. 4D and
Supplementary Fig. 3B). We further noticed major differences between the two conditions:
normal samples displayed much denser spatial organization of tubules and higher biomarker
expression (e.g., CD31, CD34) in glomeruli.

Notably, we observed unsuccessful partitions in one sample of the TR Kidney dataset,
potentially due to the uneven background signals of several biomarkers (Supplementary Fig.
6A-C, bottom row). Unsupervised annotation tools tend to highlight the most prominent
differences between nodes, which, in this specific sample, come from the background artifact
(gray partition in Supplementary Fig. 3B). SCGP-Extension, instead, enforces external
references of known tissue structures, thereby downweighting the influences of unwanted
signals. As a result, we successfully identified consistent tissue structures using
SCGP-Extension (Supplementary Fig. 6D).

3. Annotate Healthy Lung Samples with SCGP
We employed SCGP and various unsupervised annotation tools to analyze a cohort of healthy
lung specimens imaged using IMC (Lung IMC dataset, Methods). The dataset was adopted
from a recent study15,50 and consisted of 26 samples with 28 biomarkers. Samples were
manually annotated for major anatomical structures including airway, alveolar space, connective
tissue, vessels, submucosal glands, and cartilage.

We first applied all unsupervised annotation tools to the combination of all 26 samples in a joint
partitioning manner. Among all tested methods, UTAG, SpiceMix, and SCGP aligned better with
manual annotations (Supplementary Fig. 4A). We further evaluated the alignment scores for
each sample (Fig. 4F), and SCGP exhibited top performance with a median ARI of 0.464,
followed by SpiceMix (median ARI=0.416) and UTAG (median ARI=0.364). Two additional
clustering metrics presented by Kim et al.15: homogeneity score and rand index were also
calculated and visualized (Supplementary Fig. 4B-C), showing similar outcomes.
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However, even though partitions in each individual sample aligned well with manual
annotations, the same tissue structures from different samples were often disconnected, as
indicated by the different coloring of partitions in Supplementary Fig. 4A. To address this issue,
we applied SCGP to a well-integrated subset comprising seven samples, in which tissue
structures were consistently recognized across samples. Using this subset as references, we
extended their partitions to the remaining samples. Notably, two manually annotated anatomical
structures: submucosal glands and cartilage were absent in the reference samples. During
extension, we successfully isolated them as unseen partitions not attached to any of the existing
tissue structures (red and purple nodes in Fig. 4E, Supplementary Fig. 4D). As a result,
SCGP-Extension demonstrated the best agreement with manual annotations and achieved
significantly higher ARI scores (median ARI=0.564, P < 0.001, Wilcoxon signed-rank test).

4. Annotate Skin Samples of Different Disease Conditions with SCGP
We further assessed SCGP using a collection of four experiments on skin samples with different
disease conditions (UCSF Derm dataset, Methods). These samples were imaged using
CODEX in four separate experiments employing different biomarker panels. We extracted the
shared biomarkers and performed unsupervised annotations using SCGP.

We conducted the initial SCGP experiment on 17 samples comprising 365k cells from
experiment 1 (Supplementary Table 1). Major tissue structures including the epidermis layers,
dermis layer, immune aggregates, and glands were recognized (Supplementary Fig. 5A, E).
Next, we attempted both joint partitioning and reference-query extension on the remaining
samples from other experiments. Both UTAG and SCGP experienced difficulties in integrating
samples when applied in a joint partitioning manner, assigning different partitions to epidermis
layers from different samples. This was likely due to the systematic differences between
experiments (Supplementary Fig. 7A-B). SCGP-Extension, instead, delivered satisfactory
results, recognizing consistent tissue structures across experiments. (Supplementary Fig.
5B-D and Supplementary Fig. 7D).

It is visually evident that samples of different disease conditions exhibit distinct spatial
organizations of tissue structures. We aimed to further investigate the differences and correlate
different disease conditions with tissue structure-level interpretations. To achieve this, we
proposed heuristic metrics based on tissue structure annotations and assessed them across
samples. We first derived the lengths and thicknesses of the epidermis layers using the
corresponding annotations. Based on the coordinates of all the nodes assigned to the epidermis
partition, we created contours surrounding these nodes. Lengths and thicknesses of epidermis
layers were calculated treating the contours as masks (Fig. 5D). By comparing epidermis
thicknesses across samples, we noticed that atopic dermatitis samples had significant
thickenings (P < 0.001, two-sided two-sample t-test) of epidermis, showing a wide distribution of
thicknesses (Fig. 5F). In the other metric, we quantified the density of immune aggregates by
deriving the area proportion of the immune aggregate partitions. Results suggested significant
enrichment of immune cells in atopic dermatitis samples compared to normal samples47 (P <
0.00, two-sided two-sample t-test).
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5. Annotate mIF Images as Spatial Grids of Patches with SCGP
For spatial proteomics measurements (CODEX and IMC), we primarily discussed applications of
SCGP to spatial graphs of cells in the main text, which require the preprocessing step of cell
segmentation. In various scenarios where cell segmentation is unavailable or fails to meet
expectations, an alternative approach would be defining spatial units that are not reliant on cells.
We here present an example application of SCGP to samples from the DKD Kidney dataset,
employing small square patches as spatial units for the graph community detection.

To begin, we dissected the mIF images into small square patches through a sliding window
mechanism (Supplementary Fig. 8A), which transformed the images into spatial grids of image
patches. We then naturally established graph representations of the grids by treating each patch
as a node, with its feature encapsulating the summarized protein biomarker expression. Spatial
edges were constructed between immediately adjacent patches, and feature edges were
created between patches that shared similar expression profiles. This treatment shares
similarities with a Visium spatial transcriptomics dataset, as it examines the tissue sample using
a regular grid. The resolution of the grid can be adjusted by varying the size of the patches. In
this particular experiment, the side length of each patch was set to 12 µm, similar to the
diameter of a cell.

We conducted joint partitioning using SCGP on three representative samples of different DKD
classes (Supplementary Fig. 8B-C), results aligned remarkably well with the manual
annotations of healthy and mild DKD samples, identifying the same set of tissue structures. In
the severe DKD (IIB) sample, the fibrotic glomeruli were not recognized as blood vessels (as in
cell-based SCGP) or as a separate partition (as in SCGP-Extension) shown in Fig. 4A. Instead,
they were assigned as combinations of the basement membrane and normal glomeruli
partitions, suggesting the degradation of normal glomerular structures into scar tissues.
Additionally, patch-based SCGP recognized a distinct immune aggregates partition that is
enriched in CD45, CD68, and DAPI (i.e., higher cell density) expression (Supplementary Fig.
8C). This partition was also spatially more abundant in the severe DKD sample, agreeing with
our understanding of DKD progression.

6. Running Time of Unsupervised Annotation Methods
We estimated running time for all unsupervised annotation methods on two major tasks:

● Joint clustering/partitioning of 17 samples from the DKD Kidney dataset, containing
137,654 cells;

● Joint clustering/partitioning of 4 samples from the same specimen (Br8100) from the
DLPFC Visium dataset, containing 14,364 spots.

The time profiling is performed on an amazon cloud service ec2 instance (r6i.16xlarge or
g4dn.16xlarge if GPU is required). See Supplementary Table 2 for full results.

Among all the tested methods, CN, UTAG, SCGP, and SCGP-Extension had the shortest
running time, comparable to common clustering algorithms. SpaGCN had slightly longer running
time owing to its network optimization procedure; it still completed the DKD Kidney experiment
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within 10 minutes. Spatial LDA, BayesSpace and SpiceMix required substantially more time to
finish the optimizations, posing considerable challenges in hyperparameter tuning.

For unsupervised annotation methods benchmarked in this work, we searched the
hyperparameter space (e.g., resolution parameter, number of clusters) for each method and
chose the best-performing results that produced 6-7 clusters. Below we briefly described the
pipelines for these methods, please refer to their source publications and code bases for full
details.

● KMeans
○ Input: Biomarker expression vectors of cells/spots;
○ Clustering: KMeans algorithm, implemented by scikit-learn58.

● Leiden38

○ Input: -nearest neighbor ( ) graph constructed using the biomarker𝑘 𝑘 = 15
expression vectors of cells/spots;

○ Clustering: Leiden algorithm, implemented by leidenalg
(https://github.com/vtraag/leidenalg).

● Cellular Neighborhood (CN)13,26

○ Input: Cell types are first identified through leiden clustering. For each cell, a
composition (frequency of cell types) vector is calculated based on a window of
20 nearest neighboring cells (including the center cell) as measured by Euclidean
distance between X/Y coordinates.

○ Clustering: KMeans algorithm, implemented by scikit-learn.
○ Not applied to the DLPFC dataset due to requirements of cell types.

● UTAG15

○ Input: For each cell/spot, an average biomarker expression vector is calculated
over all neighboring cells/spots and the center cell/spot within a window
surrounding the center cell/spot thresholded by Euclidean distance (18μm in
DKD Kidney dataset), referred to as the spatially aggregated feature matrix. 𝑘
-nearest neighbor ( ) graph is then constructed using the aggregated𝑘 = 15
expression vectors.

○ Clustering: Leiden algorithm, implemented by leidenalg.
● Spatial LDA27

○ Input: Cell types are first identified through leiden clustering. For each cell, its
local environment is encoded as the count of cell types (bag-of-cell) within a
window surrounding the center cell thresholded by Euclidean distance (20μm in
DKD Kidney dataset). Spatial prior (i.e., adjacency between cells) is first
constructed by computing the Voronoi partitioning of cell positions, in which pairs
of cells that share a facet in the Voronoi partitioning are connected, then reduced
to a minimum spanning tree based on the edges.

○ Clustering: Latent Dirichlet Allocation with spatial prior, implemented in
https://github.com/calico/spatial_lda.

○ Not applied to the DLPFC dataset due to requirements of cell types.
● BayesSpace28
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○ Input: Top principal components of the log transformed and normalized gene
expression counts.

○ Clustering: Spots are modeled using a fully Bayesian model with a Markov
random field prior, specified by the Potts model. Model parameters are estimated
using a Markov chain Monte Carlo method. We adapted codes (in R) from
https://edward130603.github.io/BayesSpace/articles/BayesSpace.html.

○ Only used on the DLPFC data.
● SpaGCN31

○ Input: Biomarker expression vectors of cells/spots are reduced to their top 20
principal components and then constructed into a weighted undirected graph, in
which edges are weighted by Euclidean distances (histology information is not
included in this study).

○ Clustering: A one-layer graph convolutional network on the input graph generates
initial embeddings for cells/spots, which are clustered using the Louvain
algorithm. Network parameters and cluster centroids are optimized by minimizing
a soft assignment-based loss function using stochastic gradient descent with
momentum until convergence. We adapted codes from
https://github.com/jianhuupenn/SpaGCN.

● SpiceMix24

○ Input: a Hidden Markov Random Field model is constructed based on the
graphical model, which treats cells/spots as nodes and connects spatially
adjacent pairs (through Delaunay triangulation) with edges.

○ Clustering: Cells/spots are first clustered using the Louvain algorithm to initialize
estimates of hidden states and model parameters, which are further iteratively
optimized via coordinate ascent. We adapted codes from
https://github.com/ma-compbio/SpiceMix.
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Supplementary Figures

Supplementary Figure 1 Additional examples and results on the DKD Kidney dataset. A. Clustering/partitioning
outputs from unsupervised annotation tools on four samples of different DKD classes are illustrated. Qualitatively,
Leiden clustering identified cell types that are not spatially smooth; CN defined an extra cluster (cyan) for proximal
tubules; UTAG defined multiple smaller clusters (light green, gray, purple) that do not correspond to any
compartments; Spatial LDA and SpiceMix had more noisy annotations for glomeruli (orange); SpaGCN
misrecognized some regions as blood vessels; SCGP misrecognized some fibrotic glomeruli as blood vessels. B. Full
heatmap for all biomarkers tested in the DKD Kidney dataset shows signature protein biomarkers for SCGP
partitions, with each partition corresponding to a manually annotated compartment.
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Supplementary Figure 2 Joint partitioning of four DLPFC samples. A. Joint unsupervised annotations recognized
major layers in four DLPFC samples. B. Supervised annotations and reference-query extensions utilizing labels of
one sample (the top row) yielded better outcomes. Note that Layer 4 cannot be robustly recognized even with partial
ground truth labels. C. ARIs are calculated between joint annotations and ground truth labels for each sample (gray
markers) and the joint of all samples (colored circles). Methods utilizing partial ground truth yielded better
performances, in which extension performs better than XGBoost predictions. D. F1s are calculated between joint
annotations and ground truth labels on each of the 7 layers (gray markers), and average values over all layers are
plotted as colored circles. Note the accuracy for Layer 2 and Layer 4 are constantly worse.
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Supplementary Figure 3 SCGP annotations of TR Kidney dataset. A. Primary SCGP experiment on samples with
heavy inflammation defined six major partitions. B. Partitions were extended to normal samples that have minimal
inflammation. Note the absence of the immune aggregates partition and the denser arrangement of tubules and
glomeruli. C. Signature protein biomarker expression for the six tissue structures identified by SCGP are visualized in
the heatmap.
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Supplementary Figure 4 SCGP annotations of Lung IMC dataset. A. Clustering/partitioning outputs from various
unsupervised annotation tools on representative lung samples are visualized. SCGP-Extension achieved the best
visual alignment with manual annotations. B. and C. Metrics15 (homogeneity score and rand index) are calculated
between unsupervised annotations and manual annotations. D. Signature protein biomarker expression for the tissue
structures identified by SCGP-Extension are visualized in the heatmap, corresponding to the six manually annotated
compartments. Note that submucosal glands and cartilage are two tissue structures only identified in the query
samples.
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Supplementary Figure 5 SCGP annotations of UCSF Derm dataset. A. Primary SCGP annotations on samples from
experiment 1 defined major partitions. B-D. Partitions were extended to samples from different experiments that have
different skin conditions E. Signature protein biomarker expression for the major partitions identified by SCGP are
visualized in the heatmap.
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Supplementary Figure 6 Annotating representative samples from TR Kidney dataset using variants of SCGP. A.
UTAG defined partitions do not correspond well to tissue structures. B. SCGP failed to assign structures of the same
type into the same partitions. Note the different coloring of samples. C. Individual SCGP partitions of different
samples were matched post hoc to reflect shared tissue structures. Note that the uneven background interfered with
partitions. D. SCGP-Extension enabled consistent recognition of tissue structures regardless of artifact (uneven
background) and disease condition differences.
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Supplementary Figure 7 Annotating representative samples from UCSF Derm dataset using variants of SCGP. A.
and B. Joint partitioning with UTAG and SCGP failed to assign structures of the same type into the same partitions.
Note the different coloring of epidermis in the samples. C Individual partitions of different samples are matched post
hoc to reflect shared tissue structures. D. Reference-query extension pipeline enabled consistent recognition of tissue
structures across samples from multiple experiments with different skin conditions.
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Supplementary Figure 8 SCGP annotations of mIF images as spatial grids of patches A. mIF image was first
dissected into small patches through a sliding window. Each patch was summarized as a feature vector representing
biomarker expression within the field of view. Spatial graph of patches was constructed as input to SCGP. B. SCGP
on the patch grids of three mIF images yielded similar results as cell-based SCGP, recognizing tubules, glomeruli,
blood vessels, and immune aggregates in the tissue. C. Signature protein biomarker expressions are visualized in the
heatmap for the partitions identified by patch-based SCGP.
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Supplementary Tables
Supplementary Table 1 Details of datasets: number of samples/cells/patients and major grouping or patient characteristics.

Dataset N (samples) N (cells/spots) N (patients) Major groups / patient characteristics

DKD Kidney 17 137,654 12

Kidney sections with different DKD classes:
● Healthy kidneys from diabetic individuals (DM): 7 sections
● DKD class IIA: 2 sections
● DKD class IIA-B: 3 sections
● DKD class IIB: 4 sections
● DKD class III: 1 section

DLPFC 12 47,681 3 Postmortem DLPFC samples from three independent neurotypical adult
donors

TR Kidney 22 765,129 22
Kidney samples sorted into two groups:

● Case group: 17 samples (transplant rejection)
● Control group: 5 samples (normal)

Lung IMC 26 69,830 3
Lung samples from three healthy donor lung specimens: sections of airways
extending from proximal bronchi and succeeding divisions to terminal and
respiratory bronchioles.

UCSF Derm 44 588,867 33

Skin samples with different skin conditions:
● Atopic Dermatitis (AD)
● Normal (N)

The dataset is collected from 4 experiments:
● Experiment 1: 22 samples (22 AD)
● Experiment 2: 3 samples (3 N)
● Experiment 3: 11 samples (4 AD, 4 N)
● Experiment 4: 8 samples (2 AD, 3 N)
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Supplementary Table 2 Running time of unsupervised annotation methods.

Method DKD Kidney
(17 samples, 137,654 cells)

DLPFC
(4 samples, 14,364 spots)

KMeans <10s
KMeans: 2s

<10s
KMeans: 1s

Leiden38 1min
Leiden: 50s

<10s
Leiden: 5s

CN13
24s
Composition vectors: 22s
KMeans: 2s

N/A

UTAG15
2min
Aggregate expression: 53s
Leiden: 50s

12s
Aggregate expression: 7s
Leiden: 5s

Spatial LDA27
25min
Count vectors + spatial prior: 30s
LDA: 1500s

N/A

BayesSpace28 N/A 17min
Parameter estimation: 1030s

SpaGCN31
7min
Construct graph: 68s
GCN optimization: 360s

23s
Construct graph: 3s
GCN optimization: 20s

SpiceMix24
4.5h
Construct graph: 10s
Louvain: 1000s
Optimization (100 iterations): 15000s

1.25h
Construct graph: 5s
Louvain: 30s
Optimization (200 iterations): 4500s

SCGP
1min
Construct graph: 30s
Leiden: 30s

<10s
Construct graph: 2s
Leiden: 2s

SCGP-Extension
2min
Reference SCGP (14 samples): 55s
Pseudo-nodes: 10s
Query extension (3 samples): 60s

10s
Reference SCGP (1 sample): 1s
Pseudo-nodes: 1s
Query extension (3 samples): 8s
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