

1 **Investigating Task-Free Functional Connectivity Patterns in 2 Newborns Using functional Near-Infrared Spectroscopy**

3
4 **Homa Vahidi¹, Alexandra Kowalczyk², Kevin Stubbs³, Melab Musabi², Sriya
5 Roychaudhuri², Michaela Kent¹, Soume Bhattacharya², Sandrine de Ribaupierre⁴, Keith
6 St. Lawrence⁵, Yalda Mohsenzadeh⁶, Emma Duerden⁷**

7
8 ¹ Schulich School of Medicine and Dentistry, Western University, London, ON, Canada

9 ² Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON,
10 Canada

11 ³ Brain and Mind Institute, Western University, London, ON, Canada

12 ⁴ Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University,
13 London, ON, Canada

14 ⁵ Department of Medical Biophysics, Western University, London, ON, Canada

15 ⁶ Department of Computer Science, Western University, London, ON, Canada

16 ⁷ Faculty of Education, Western University, London, ON, Canada

17 Corresponding author:

18 Emma G. Duerden, PhD

19 Applied Psychology, Faculty of Education

20 Western University

21 1137 Western Road

22 London, Ontario, N6G 1G7

23 E-mail: eduerden@uwo.ca

24 Tel: 519-661-2111 x88694

25

26

27

28

29

30

31

32

33

34

35 **Abstract**

36 **Significance:** Resting-state networks (RSN), particularly the sensorimotor network, begin to develop in the third
37 trimester of pregnancy and mature extensively by term age. The integrity and structure of these networks have been
38 linked to neurological health outcomes in neonates, highlighting the significance of monitoring RSN development. To
39 this end, functional near-infrared spectroscopy (fNIRS) has emerged as a neuroimaging technique that utilizes near-
40 infrared light to indirectly measure neural activity by detecting changes in oxygenated (HbO) and deoxygenated (HbR)
41 hemoglobin concentrations. Compared to other imaging methods, fNIRS is non-invasive and allows for naturalistic
42 monitoring of neural activity at the bedside, particularly in awake infants.

43 **Aim:** Use fNIRS to expand on previous findings regarding the development of functional networks in awake neonates.

44 **Approach:** fNIRS was acquired in 41 term-born neonates (17 females, gestational age range=36+0 to 42+1 weeks)
45 within the first 48 hours after birth.

46 **Results:** Group level analysis of functional connectivity showed strong positive connectivity in most channel-pairs
47 over the sensorimotor network, especially the left hemisphere ($q < 0.05$). Next, we examined the relationship between
48 functional connectivity, gestational age and postnatal age, while controlling for sex and subject effects. Both
49 gestational and postnatal age were found to be positively associated with an increase in functional connectivity in the
50 sensorimotor RSN, especially in channels covering the posterior portion.

51 **Conclusions:** Our findings emphasize the importance of considering developmental changes in functional networks
52 in awake infants. Moreover, our study demonstrates the potential of fNIRS as a valuable tool for studying neural
53 activity in naturalistic settings in neonates.

54 **Keywords:** fNIRS, Newborn, Development, Connectivity
55

56

57

58

59 **1 Introduction**

60 Task-free, or resting-state functional networks, which reflect the synchronized activity of
61 different brain regions during rest, have been extensively studied in adult populations¹ and are
62 known to play a critical role in cognitive, motor, and sensory processes². These networks emerge
63 *in utero* and maintain a well-characterized structure throughout adulthood^{3,4,5,6,7}. Alterations in
64 these networks have been linked to various neurodevelopmental and psychiatric disorders^{8,9}.
65 However, there continues to be a need for better characterizing these networks, especially in very
66 early stages of development.

67 The first few hours and days of life mark a highly influential transition period for neonates.
68 During this time, newborns are exposed to a multitude of novel sensory and motor experiences,
69 laying the foundation for their cognitive and behavioral development¹⁰. Newborns receiving
70 critical care soon after birth, particularly preterm babies (<37 weeks' gestation), often lack the
71 typical sensory and motor stimulations that healthy infants experience in the first few days of
72 life¹¹. This delay in sensory and motor enrichment may have implications for neurological and
73 cognitive development. As such, characterizing resting-state functional networks in healthy
74 newborns in this critical period is a first step toward gaining insights into early
75 neurodevelopment.

76 Most of our current knowledge about resting-state networks comes from previous functional
77 magnetic resonance imaging (fMRI) studies. Yet, conducting fMRI on newborns presents unique
78 challenges, such as infants' susceptibility to motion and sensitivity to loud noises. To overcome
79 these limitations, functional near-infrared spectroscopy (fNIRS) emerges as a promising
80 alternative that can expand our understanding of the development of resting-state networks, with

81 the goal of monitoring these networks in a clinically relevant manner, particularly in neonates at
82 risk of poor neurodevelopmental outcomes.

83 fNIRS allows for studies of cortical hemodynamic brain activity analogous to fMRI but in a
84 more practical and comfortable manner, making it suitable for use in newborns even in clinical
85 settings¹². With higher temporal resolution than fMRI, fNIRS enables the determination of
86 changes in the concentrations of both oxy- (HbO) and deoxy-hemoglobin (HbR), providing
87 valuable insights into neuronal activity. Additionally, fNIRS can be employed for long-term
88 recordings¹³, making it highly applicable in clinical settings for continuous monitoring of brain
89 function in vulnerable neonates.

90 While a few studies have investigated resting-state networks in newborns using fNIRS^{14,15,16}, less
91 is known about the early development of these networks in the first few hours of life which is a
92 critical period when the brain is most vulnerable to injury¹⁷. Uchitel and colleagues (2023) used
93 high-density diffuse optical tomography (HD-DOT) to examine sleep states in relation to resting-
94 state networks (RSN), offering valuable insights into the intricate interactions between neural
95 activity and sleep processes in newborns and further indicate that bedside fNIRS is highly
96 feasible in newborns. The sensorimotor network is expected to play a fundamental role in early
97 sensorimotor development. More specifically, studying the development of the sensorimotor
98 network in newborns is of particular interest, as this period marks a critical time for early motor
99 exploration and sensory experiences that shape neural connections. By investigating the
100 associations between gestational and postnatal age and sensorimotor connectivity, we hope to
101 gain valuable insights into neurodevelopmental processes specific to this critical period. Given
102 the importance of sensorimotor network development in the newborn brain, we aimed to use
103 fNIRS to characterize this network. In a heterogeneous cohort of newborns who were born in a

104 tertiary care center, we collected fNIRS data within the first 48 hours of life. We hypothesized
105 that both gestational and postnatal age would be significantly associated with increased fNIRS-
106 based connectivity in the sensorimotor network in these infants.

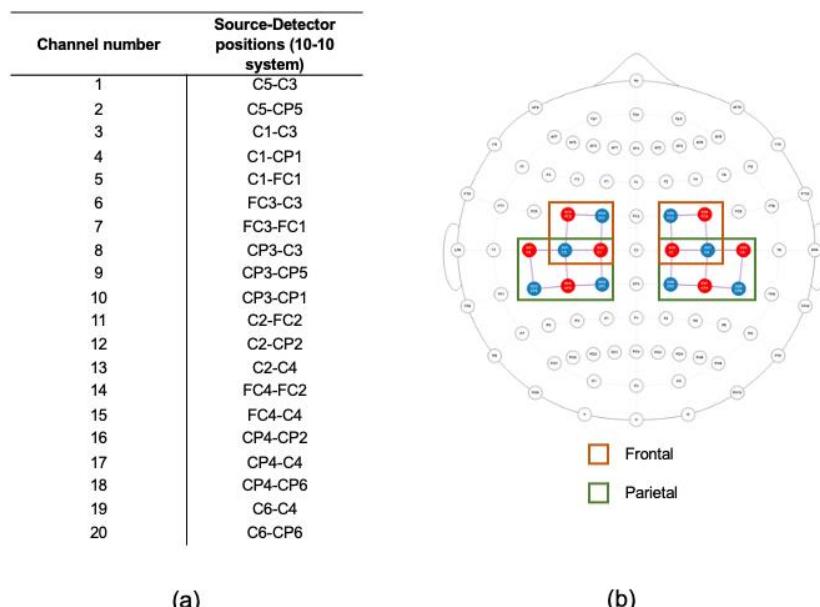
107

108 **2 Methods**

109 *2.1 Study Setting and Participants*

110 Participants were recruited from the Post-Partum Care Unit (PPCU) at Victoria Hospital, London,
111 Ontario. Participants eligible for the study were healthy neonates born on or after 36 weeks of
112 gestation. Neonates were excluded from the study based on the following criteria: congenital
113 malformation or syndrome, antenatal exposure to illicit drugs, postnatal infection, and suspected
114 brain injury. This study was approved by the Health Sciences Research Ethics Board of Western
115 University and was conducted in accordance with the Declaration of Helsinki. All families
116 provided written informed consent prior to data collection.

117 *2.2 Demographic Data*


118 Demographic and clinical information on maternal and newborn health were extracted from
119 medical charts by a pediatric nurse or pediatrician. These data included: gestational age, postnatal
120 age (age since birth), sex, and head size.

121 *2.3 fNIRS Data Collection*

122 Upon entering the PPCU, the healthcare team identified any families whose newborn would be
123 eligible to participate in our study. All eligible families were first approached by their primary
124 nurse to give verbal consent to be approached by researchers. After receiving written informed
125 consent, the newborns' head circumferences were measured and fit with an optode-prepopulated
126 properly-sized fNIRS cap (34-38 cm). When possible, we recorded data after infants were fed to
127 decrease the likelihood of motion and general fussiness.

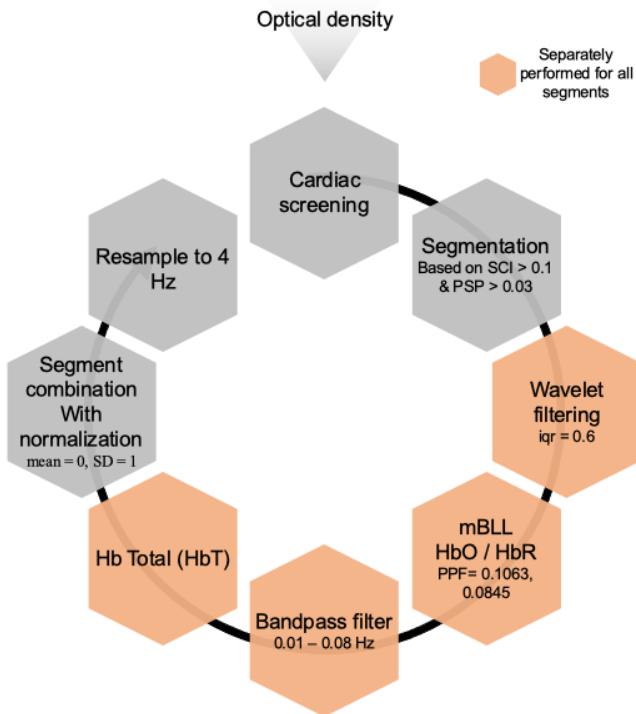
128 We recorded task-free fNIRS signal from 61 infants at the bedside using a multichannel NIRS²
129 system (NIRStar Software v14.0, NIRx Medical Technologies LLC, Berlin, Germany) at a
130 sampling rate of 10.17 Hz. Our optode setup included 8 LED sources (760 and 850 nm) and 8

131 detectors which yielded 20 channels (10 per hemisphere). As confirmed with devfOLD¹⁸, our
132 montage covered frontal and parietal regions of the sensorimotor network in both hemispheres.
133 Based on devfOLD's Lobar atlas at 60% specificity, 6 channels were located above the frontal
134 lobe, 12 channels were located above the parietal portion, and 2 channels were included in both
135 (See Fig. 1). Data were recorded for a minimum of 6 minutes and maximum of 10 minutes in each
136 newborn to ensure stable and accurate functional connectivity calculations¹⁹. Data from 4
137 participants were excluded from preprocessing and analysis due to system malfunction and
138 suboptimal calibration at the time of data collection. The remaining 57 (93%) infants comprised
139 of 25 female and 32 male newborns with a mean gestational age of 39.01 ± 1.21 weeks and a mean
140 postnatal age of 23.66 ± 11.75 hours.

141
142 **Figure 1.** (a) 10-10 locations of source-detector pairs. (b) a 2-D top view of the montage used. Sources are shown in
143 red, detectors are shown in blue, and channels between them are shown in purple. Channels overlaying the frontal
144 portions of the sensorimotor network are highlighted by the orange rectangle and channels overlaying the parietal
145 portions are highlighted by the green rectangle
146

147 2.4 fNIRS Preprocessing and Quality Assurance

148 All data pruning, preprocessing, and analysis were performed with MATLAB 2022b (The
149 MathWorks Inc., Natick, Massachusetts, USA) using AnalyzIR Toolbox²⁰, Homer2²¹, and in-
150 house scripts.


151 *2.4.1 Channel/participant screening and exclusion*

152 Raw data were first transformed to optical density. All channels in the 57 datasets were then
153 screened for the presence of cardiac pulsation using an in-house cardiac detection method. This
154 method combines scalp coupling index²², an indicator of how well each optode was contacting the
155 scalp, with patterns in the frequency domain to flag channels without cardiac pulsation. For each
156 dataset, all channels without cardiac pulsation were excluded. This process was verified through
157 visual inspection. We fully excluded 12 datasets where no channels had detectable cardiac
158 pulsation. See Figure. S1 for a group spatial map of all remaining channels. Next, for each of the
159 remaining 45 datasets, we calculated scalp coupling index (SCI) and peak spectral power (PSP) in
160 5-s windows with 4-s overlaps for a cardiac range of 60–210 beats per minute, the cardiac range
161 commonly reported in infants²³. For each dataset, we used a SCI threshold of 0.1 and a PSP
162 threshold of 0.03 to identify motion-free segments of at least 50-s. Brief motion artifacts (less than
163 2-s) were ignored during segmenting. While the SCI and PSP thresholds used were considerably
164 lower than the defaults introduced in QT-NIRS²⁴, we evaluated several different values (by
165 visually inspecting each dataset before and after segmentation) and selected the most appropriate
166 thresholds for our sample. Datasets were excluded if they did not produce any >50-s motion-free
167 segments or if they had a total segment length less than 2.5-min, the minimum recommended
168 dataset length for fNIRS resting-state functional connectivity analysis in infants¹⁹. This led to the
169 removal of 4 datasets, leaving 41 datasets for further preprocessing and analysis.

170 The aforementioned steps led to a total of 16 (28%) datasets being excluded from further analyses.
171 The remaining sample (n=41, 17 females) had a mean gestational age of 39.08 ± 1.31 weeks and
172 a postnatal age of 22.93 ± 11.20 hours. We performed a chi-square test of independence to identify
173 any sex differences between our dataset before and after participant exclusions. We additionally
174 performed two 2-sample t-tests to identify any significant differences in gestational and postnatal
175 ages. We found no statistically significant differences between the original dataset and the post-
176 exclusion dataset.

177 *2.4.2 Preprocessing pipeline*

178 The motion-free segments were preprocessed independently. Wavelet filtering with a standard
179 deviation threshold of 0.8 (equivalent to a Homer iqr of 0.6) was applied to remove short motion
180 spikes and slow drifts. Next, optical density data were transformed to estimated changes in HbO
181 and HbR concentrations using the Modified Beer-Lambert Law. Age-appropriate partial
182 pathlength factors were used (0.1063 for 760 nm and 0.0845 for 850 nm)²⁵. Additionally, channel
183 lengths were scaled to the cap size used. A bandpass filter (0.01 - 0.08 Hz) was applied to HbO
184 and HbR separately. The data were then converted to estimated change in total hemoglobin
185 concentration (HbT = HbO + HbR), which has been shown to have improved functional
186 connectivity reproducibility across participants²⁶. For each dataset, we normalized (mean = 0, SD
187 = 1) and combined all segments. The final data were resampled to 4 Hz before calculating
188 spontaneous functional connectivity (sFC). See Figure 2 for an overview of quality assurance and
189 preprocessing steps.

190
191
192
193

Figure 2. Overview of fNIRS data preprocessing steps. The black circular arrow indicates processing order starting with cardiac screening and ending with resampling to 4 Hz before sFC analysis.

194 2.5 Analysis Pipeline

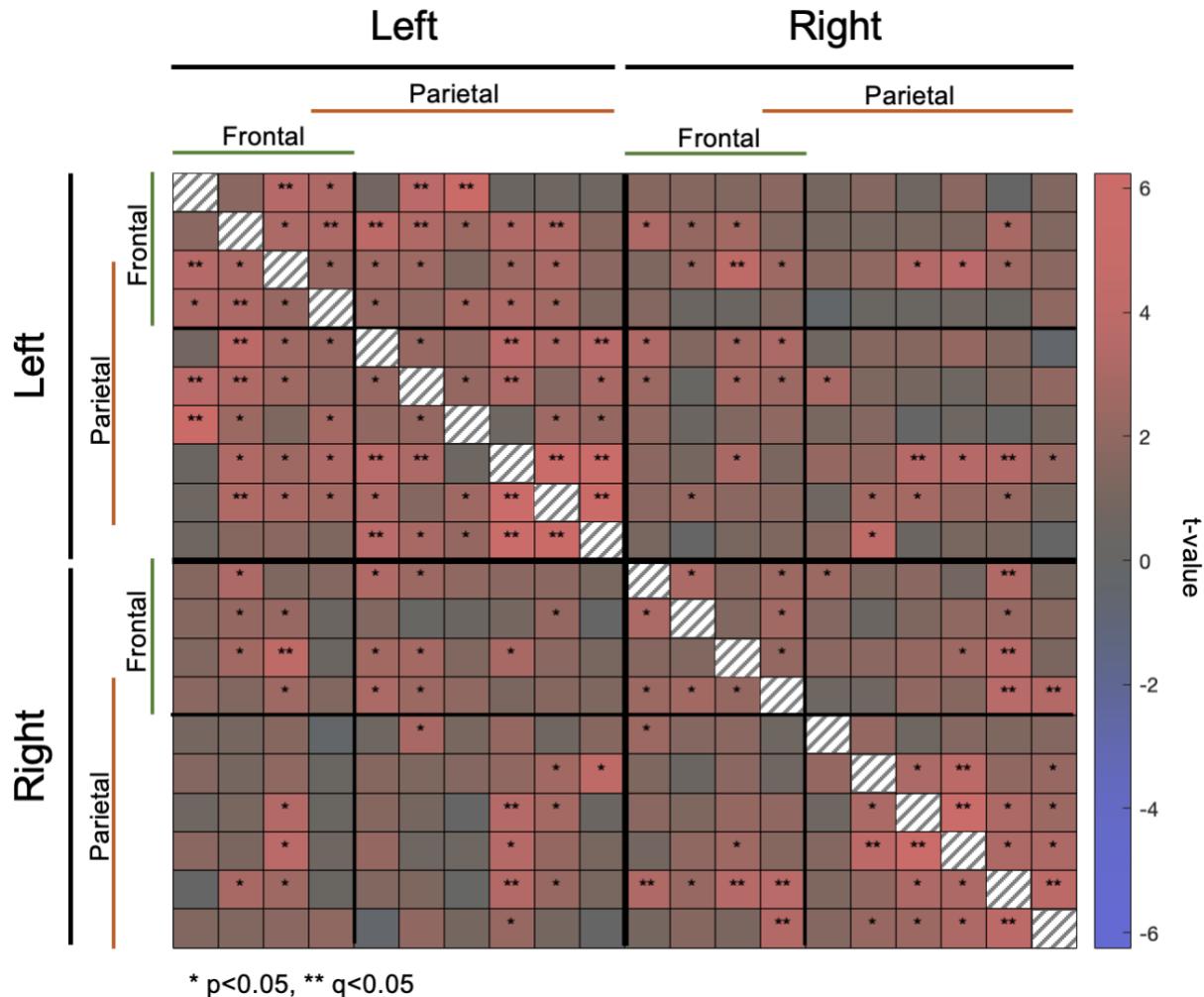
195 2.5.1 Spontaneous functional connectivity (sFC)

196 We used AnalyzIR Toolbox's correlation method to calculate sFC. More specifically, for each
197 dataset, we created a 20x20 symmetric correlation matrix by calculating Pearson's R correlation
198 coefficients between the time series of all possible channel-pairs. Correlation coefficients were
199 then z-transformed. We performed a single-sample t-test for each unique channel-pair evaluating
200 sFC > 0.

201 2.5.2 Relating spontaneous functional connectivity (sFC) to gestational age and postnatal age

202 We used linear mixed effects (LME) modelling to evaluate the relationship between sFC and both
203 gestational and postnatal age while accounting for variability due to biological sex and between-
204 subject effects. Modelling was performed independently for each channel pair. Gestational age and

205 postnatal age were included as fixed variables while subject ID and sex were included as random
206 and grouping variables. Each channel-pair's model produced a t-value and p-value for both
207 gestational age and postnatal age, which indicates their linear relation to sFC across the sample.

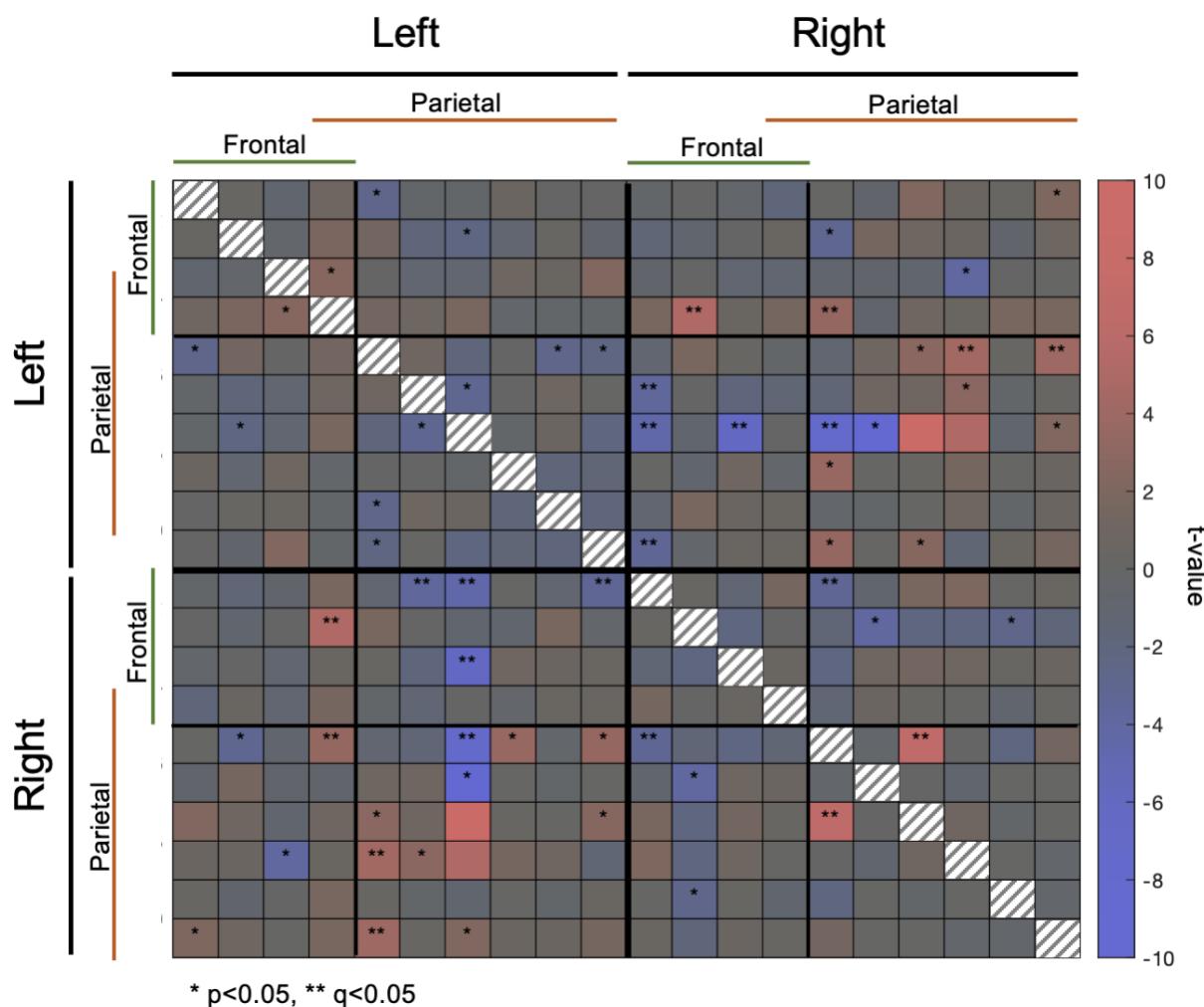

208 *2.5.3 Statistical analysis*

209 All statistical analyses were performed using MATLAB. We explored the relationship between
210 sFC and both gestational age and postnatal age. These results were corrected for multiple
211 comparisons using the false discovery rate (FDR) with a q-value set at 0.05. The number of
212 channel-pairs (n=190) were used to calculate the degrees of freedom.

213 **3 Results**

214 *3.1 Exploring Spatial Patterns in Spontaneous Functional Connectivity (sFC)*

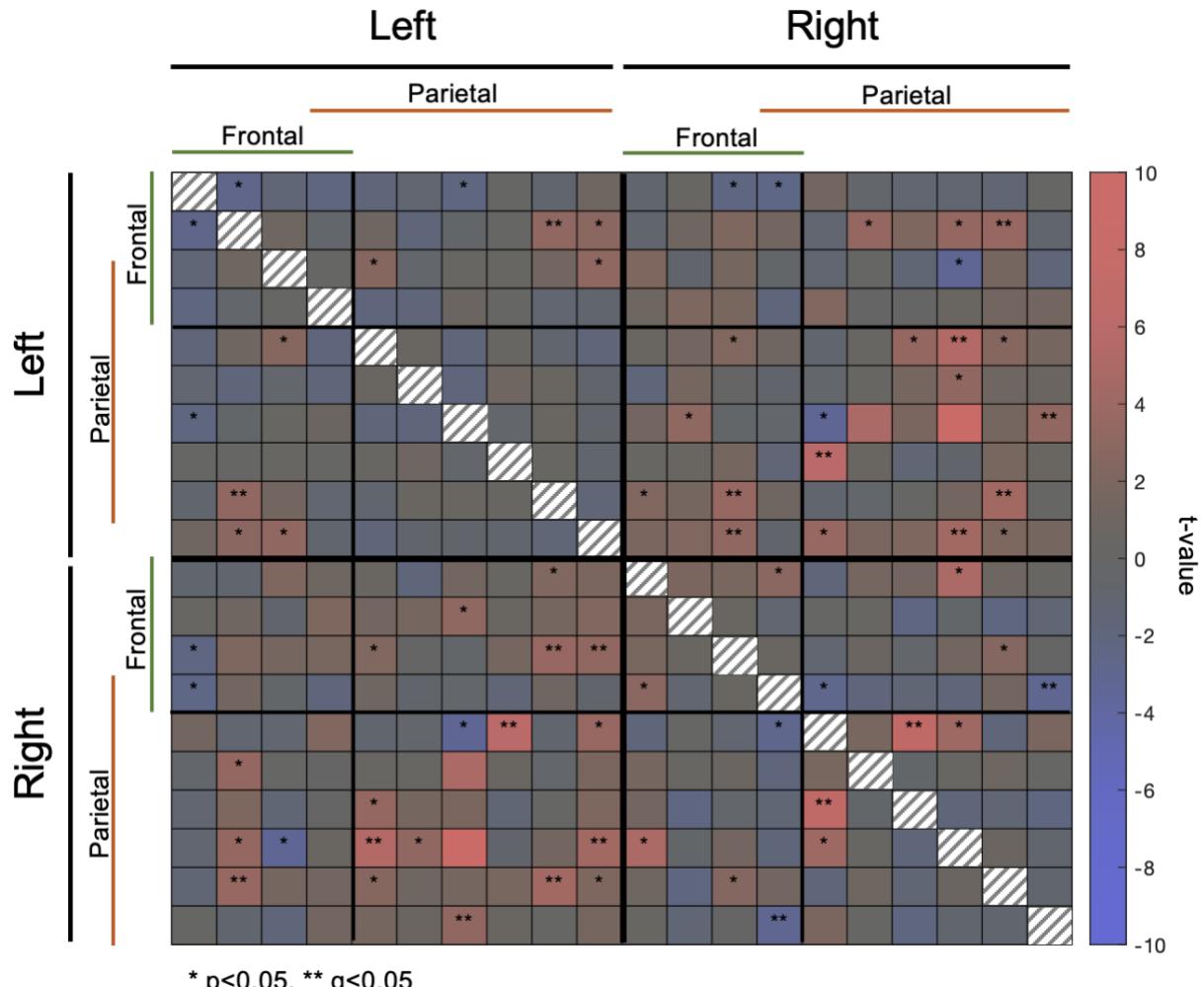
215 First, we examined the presence of any existing spatial sFC trends in our sample. We observed
216 several significant positively correlated intra- and interhemispheric channels, especially in the left
217 hemisphere (Figs. 3 and S2). Specifically, we observed positive connectivity ($p<0.05$) in 32/45
218 (~71%) of all possible intrahemispheric channel-pairs in the left hemisphere, 20/45 (~44%) of all
219 possible intrahemispheric channel-pairs in the right hemisphere, and 27/100 (27%) of all possible
220 interhemispheric channel-pairs. The sFC patterns in HbT were comparable to those seen in HbO
221 (See Figs. S3 and S4). The sFC patterns in HbR were generally much weaker (See Figs. S5 and
222 S6).



* p<0.05, ** q<0.05

223
224 **Figure 3. Matrix showing group spontaneous functional connectivity (sFC) for HbT (n=41).** Channels
225 overlaying the frontal and parietal portion of the sensorimotor network are denoted with the green and orange lines,
226 respectively, with one channel overlaying both. False discovery rate (FDR) was used to correct for multiple
227 comparisons. Channel-pairs that exhibited significant connectivity after FDR correction are highlighted using **
228 while channel-pairs with significant connectivity before FDR correction are highlighted using *. The color of matrix
229 cells represents the t-value calculated for that channel-pair's connectivity. The diagonal is not informative.
230

231 3.2 Relating Spontaneous Functional Connectivity (sFC) to Gestational Age and Postnatal Age
232 We identified several channel-pairs within and across the left and right hemispheres where
233 increasing gestational age was significantly associated with both increasing and decreasing sFC
234 (Figs. 4 and S7). Specifically, increasing gestational age was significantly associated with
235 increasing sFC in 11/100 interhemispheric, 1/45 left intrahemispheric, and 1/45 right
236 intrahemispheric channel-pairs. However, increasing gestational age was significantly associated


237 with decreasing sFC in 8/100 interhemispheric, 5/45 left intrahemispheric, and 4/45 right
238 intrahemispheric channel-pairs. The positive relationship between gestational age and sFC was
239 mainly seen in channel-pairs connecting the parietal portion of the right sensorimotor network to
240 the left sensorimotor network where 10 channel-pairs displayed this relationship. However, the
241 negative relationship between gestational age and sFC was mainly seen in intrahemispheric
242 channel pairs in the parietal portion of the left hemisphere as well as channel-pairs that connected
243 the frontal portion of the right sensorimotor network to the parietal portion of the left hemisphere.

244
245 **Figure 4. Matrix demonstrating gestational-age related patterns in spontaneous functional connectivity (sFC)**
246 ($n=41$). Channels overlaying the frontal and parietal portion of the sensorimotor network are denoted with the green
247 and orange lines, respectively, with one channel overlaying both. False discovery rate (FDR) was used to correct for
248 multiple comparisons. Channel-pairs whose connectivity exhibited a significant relationship with gestational age
249 after FDR correction are highlighted using ** while channel-pairs showing a significant relationship before FDR

correction are highlighted using *. The color of matrix cells represents the t-value calculated for that channel-pair. The diagonal is not informative.

We also identified several intrahemispheric and interhemispheric channel-pairs where increasing postnatal age was mainly associated with increasing sFC (Figs. 5 and S8). Specifically, increasing postnatal age was significantly associated with increasing sFC in 18/100 interhemispheric, 4/45 left intrahemispheric, and 5/45 right intrahemispheric channel-pairs. However, increasing postnatal age was significantly associated with decreasing sFC in 4/100 interhemispheric, 2/45 left intrahemispheric, and 2/45 right intrahemispheric channel pairs. The positive relationship between postnatal age and sFC was mainly seen in channel-pairs connecting the parietal portion of the right sensorimotor network to the left sensorimotor network and channel-pairs connecting the frontal portion of the right hemisphere to the parietal but not the frontal portion of the left hemisphere.

* p<0.05, ** q<0.05

262
263 **Figure 5. Matrix demonstrating postnatal-age related patterns in spontaneous functional connectivity (sFC)**
264 (**n=41**). Channels overlaying the frontal and parietal portion of the sensorimotor network are denoted with the green
265 and orange lines, respectively, with one channel overlaying both. False discovery rate (FDR) was used to correct for
266 multiple comparisons. Channel-pairs whose connectivity exhibited a significant relationship with postnatal age after
267 FDR correction are highlighted using ** while channel-pairs showing a significant relationship before FDR
268 correction are highlighted using *. The color of matrix cells represents the t-value calculated for that channel-pair.
269 The diagonal is not informative.

270
271

272 **4 Discussion**

273 This work evaluated functional changes in sensorimotor RSN connectivity in the first few days of
274 life in healthy newborns. We collected 10-minute fNIRS recordings from healthy newborns within
275 the first 48 hours of life in the hospital setting. We evaluated the relationship between sFC and
276 gestational and postnatal age, while accounting for variability due to biological sex and between-
277 subject effects. We identified a strong, left-lateralized sensorimotor RSN for which connectivity,
278 particularly in channels covering the parietal portion of the network, had a positive relationship
279 with older gestational and postnatal ages. We also assessed sensorimotor RSN developmental
280 changes during the first hours of life spent in the *ex-utero* environment. Bilateral sensorimotor
281 RSN connectivity was significantly strengthened during the first days of life, pointing to the rapid
282 development of the sensorimotor network and highlighting the importance of mapping out the
283 trajectories of structural and functional development in this critical period of life. We mapped the
284 connectivity between all channel-pairs in the sensorimotor RSN in our sample. Similar to previous
285 fMRI and fNIRS studies in neonates^{3,27,13}, we observed strong positive interhemispheric and
286 intrahemispheric connectivity in the sensorimotor network. We observed the strongest
287 connectivity between channel-pairs within the left hemisphere. Human sensorimotor functions are
288 often left lateralized depending on handedness preference²⁸. As more than 90 percent of the
289 general population prefers using their right hand to perform most motor tasks²⁹, this lateralization
290 may be determined early on in development. In fact, ultrasound monitoring of fetal arm
291 movements has indicated a potential asymmetry in hand preference as early as the second
292 trimester³⁰. Additionally, this preference has been associated with a left-dominant lateralization in
293 the sensorimotor cortex³¹. As such, the strong intrahemispheric connectivity we observed in the
294 left hemisphere could be an early indicator of laterality in the sensorimotor network.

295 We further examined the relationship between gestational age, postnatal age and sFC in the
296 sensorimotor network. Older gestational ages were associated with a modest increase in bilateral
297 connectivity in the sensorimotor network. More specifically, we observed a positive relationship
298 between gestational age and sFC in several channel-pairs that connected the parietal portion of
299 right hemisphere to channels across the left hemisphere. The positive relationship observed
300 between gestational age and connectivity was somewhat weaker than those reported in previous
301 fMRI studies³. Unexpectedly, we also observed a negative relationship between gestational age
302 and sFC in a few channel-pairs connecting the frontal portion of the right hemisphere to the left
303 hemisphere. Our findings could be due to the older gestational age range of our sample compared
304 to previous studies. More specifically, previous fMRI and fNIRS studies reporting a strong positive
305 relationship between gestational age and sFC have also included preterm neonates and thus had a
306 wider gestational age range^{3,6}. In turn, the current study in healthy term-born infants might be
307 capturing sFC in a narrower developmental window, with fewer maturational changes that could
308 be evidenced with fNIRS²⁷. Development of cortical RSNs is reflective of synchronous maturation
309 of cortical gray matter and white matter. Essential to this process *in utero* is subplate connectivity
310 reflected in synaptogenesis and thalamo-cortical projections. This period is marked by rapid
311 synaptogenesis, which is offset by neuronal apoptosis and pruning of weaker synapses^{32,33}.
312 Additionally, a key factor in RSN development is myelination. Broadly, subcortical areas
313 myelinate first followed by the posterior cortex and frontal cortex. More specifically, myelination
314 begins in the central sulcus and extends toward the posterior cortex followed by the frontotemporal
315 locations. The structural and functional maturation of these processes are shaped by neuronal
316 activity and external stimuli in the extrauterine environment^{32,34}.

317 Postnatal age (i.e., hours since birth) was associated with widespread unilateral and bilateral
318 connectivity across channels covering the sensorimotor network. Findings may reflect heightened
319 neuronal activity in the postnatal environment due to the exposure to novel environmental stimuli
320 in the first hours of life. Ferradal and colleagues (2016), utilizing HD-DOT, recorded task-free
321 oscillations in brain activity in newborns during a similar postnatal period (i.e., within the first 2
322 days of life) also reported strong interhemispheric connectivity in middle temporal, visual, and
323 auditory RSNs¹⁶. However, limited intrahemispheric connectivity was reported for the same
324 networks. While our findings were primarily localized to the territory of the sensorimotor network,
325 we found increasing interhemispheric and some evidence for left-sided intrahemispheric
326 connectivity at older postnatal ages in this RSN during natural sleep/rest. Intra-hemispheric
327 connectivity may be a key factor supporting hemispheric specialization³⁵. The first few days of
328 life are characterized by jerky and non-goal directed general movements, in addition to early motor
329 reflexes³⁶. The first days and weeks of life are characterized by the development of coordinated
330 motor movements^{37,38}. Absence of these sensorimotor behaviors may be an indicator for poor
331 neurodevelopment later in life³⁹. In turn, the use of fNIRS at the bedside may identify early
332 biomarkers for typical sensorimotor development.

333 *4.1 Study Limitations*

334 Our study included a heterogenous sample of day-old newborns who were tested with a
335 standardized fNIRS protocol. Despite the challenges faced by recruiting this vulnerable
336 population, our results provide evidence for the emergence of robust RSNs as well as inter- and
337 intra-hemispheric connectivity that is associated with brain maturational stages. However, our
338 study had several limitations that are inherent to fNIRS data collection in infants. Namely, we
339 excluded datasets and/or channels of subpar quality that led to variable number of viable

340 channels in each dataset. The regression method we employed to assess the relationship between
341 sFC and both gestational and postnatal age accounted for the number of channel-pairs used.
342 Nonetheless, it is advisable for future studies to employ larger sample sizes to corroborate and
343 expand upon our findings.
344 Our montage was confined to motor, premotor, and sensory cortical regions. Consequently, we
345 were unable to examine developmental changes in other RSNs during this crucial phase. Prior
346 fMRI studies involving newborns have showcased consistent and robust developmental pathways
347 for networks encompassing sensory and motor regions (e.g., sensorimotor, auditory, and visual
348 networks)³. However, the developmental trajectories identified for more complex networks (e.g.,
349 the Default Mode Network) are more variable and tend to be challenging to examine due to the
350 coarse spatial resolution of fNIRS. As a result, for the scope of this study, we opted to concentrate
351 solely on the sensorimotor network; however, future work could also include whole-head coverage
352 to better characterize the sensorimotor networks in relation to other RSNs to better understand
353 early cortical connectomics.
354 Further, newborns' sensory and motor function was not assessed. All newborns enrolled in this
355 study were examined by a pediatrician and were healthy in relation their motor development.
356 Furthermore, subject-related effects were accounted for in our regression model. Incorporating
357 standardized neurodevelopmental assessments could expand on how sensorimotor RSN
358 characteristics predict motor outcomes.
359 *4.2 Conclusions*
360 This study aimed to advance our understanding of the development of sensorimotor RSNs in
361 healthy newborns using fNIRS. By exploring functional connectivity within the sensorimotor
362 RSNs and how it is associated with gestational and postnatal age, this study contributes to our

363 understanding of normative brain development during early yet critical stages of life. While our
364 study demonstrates the feasibility of using fNIRS at the bedside in neonates, our findings also
365 highlight the challenges associated with fNIRS data collection and analysis in postpartum care
366 centers. Given the utility of fNIRS in healthy newborns and neonates impacted by critical illness,
367 our study highlights the need for improved fNIRS methodologies tailored for this vulnerable
368 population.

369

370 **5 References**

371 1. R. F. Betzel et al., “Changes in structural and functional connectivity among resting-state
372 networks across the human lifespan,” *NeuroImage* **102**, 345–357 (2014)
373 [doi:[10.1016/j.neuroimage.2014.07.067](https://doi.org/10.1016/j.neuroimage.2014.07.067)].

374 2. M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: A review on
375 resting-state fMRI functional connectivity,” *European Neuropsychopharmacology* **20**(8),
376 519–534 (2010) [doi:[10.1016/j.euroneuro.2010.03.008](https://doi.org/10.1016/j.euroneuro.2010.03.008)].

377 3. V. Doria et al., “Emergence of resting state networks in the preterm human brain,” *Proc.
378 Natl. Acad. Sci. U.S.A.* **107**(46), 20015–20020 (2010) [doi:[10.1073/pnas.1007921107](https://doi.org/10.1073/pnas.1007921107)].

379 4. M. Cao, H. Huang, and Y. He, “Developmental connectomics from infancy through early
380 childhood,” *Trends in Neurosciences* **40**(8), 494–506 (2017)
381 [doi:[10.1016/j.tins.2017.06.003](https://doi.org/10.1016/j.tins.2017.06.003)].

382 5. C. D. Smyser and J. J. Neil, “Use of resting state functional MRI to study brain development
383 and injury in neonates,” *Semin Perinatol* **39**(2), 130–140 (2015)
384 [doi:[10.1053/j.semperi.2015.01.006](https://doi.org/10.1053/j.semperi.2015.01.006)].

385 6. C. D. Smyser et al., “Neonatal brain injury and aberrant connectivity,” *NeuroImage* **185**,
386 609–623 (2019) [doi:[10.1016/j.neuroimage.2018.07.057](https://doi.org/10.1016/j.neuroimage.2018.07.057)].

387 7. M. P. van den Heuvel et al., “The neonatal connectome during preterm brain development,”
388 *Cereb Cortex* **25**(9), 3000–3013 (2015) [doi:[10.1093/cercor/bhu095](https://doi.org/10.1093/cercor/bhu095)].

389 8. N. D. Woodward and C. J. Cascio, “Resting-state functional connectivity in psychiatric
390 disorders,” *JAMA Psychiatry* **72**(8), 743 (2015) [doi:[10.1001/jamapsychiatry.2015.0484](https://doi.org/10.1001/jamapsychiatry.2015.0484)].

391 9. J. V. Hull et al., “Resting-state functional connectivity in autism spectrum disorders: A
392 review,” *Frontiers in Psychiatry* **7** (2017).

393 10. J. L. Williams and D. Corbetta, “Assessing the impact of movement consequences on the
394 development of early reaching in infancy,” *Front. Psychol.* **7** (2016)
395 [doi:[10.3389/fpsyg.2016.00587](https://doi.org/10.3389/fpsyg.2016.00587)].

396 11. K. Philpott-Robinson et al., “The impact of the Neonatal Intensive Care Unit on sensory and
397 developmental outcomes in infants born preterm: A scoping review,” *British Journal of
398 Occupational Therapy* **80** (2017) [doi:[10.1177/0308022617709761](https://doi.org/10.1177/0308022617709761)].

399 12. L. M. N. Kebaya et al., “Three-dimensional cranial ultrasound and functional near-infrared
400 spectroscopy for bedside monitoring of intraventricular hemorrhage in preterm neonates,”
401 *Sci Rep* **13**(1), 3730 (2023) [doi:[10.1038/s41598-023-30743-4](https://doi.org/10.1038/s41598-023-30743-4)].

402 13. J. Uchitel et al., “Cot-side imaging of functional connectivity in the developing brain during
403 sleep using wearable high-density diffuse optical tomography,” *NeuroImage* **265**, 119784
404 (2023) [doi:[10.1016/j.neuroimage.2022.119784](https://doi.org/10.1016/j.neuroimage.2022.119784)].

405 14. G. Taga et al., “Spontaneous oscillation of oxy- and deoxy- hemoglobin changes with a
406 phase difference throughout the occipital cortex of newborn infants observed using non-
407 invasive optical topography,” *Neuroscience Letters* **282**(1), 101–104 (2000)
408 [doi:[10.1016/S0304-3940\(00\)00874-0](https://doi.org/10.1016/S0304-3940(00)00874-0)].

409 15. F. Homae et al., “Development of global cortical networks in early infancy,” *J. Neurosci.*
410 **30**(14), 4877–4882 (2010) [doi:[10.1523/JNEUROSCI.5618-09.2010](https://doi.org/10.1523/JNEUROSCI.5618-09.2010)].

411 16. S. L. Ferradal et al., “Functional imaging of the developing brain at the bedside using diffuse
412 optical tomography,” *Cereb. Cortex* **26**(4), 1558–1568 (2016) [doi:[10.1093/cercor/bhu320](https://doi.org/10.1093/cercor/bhu320)].

413 17. K. B. Nelson and J. K. Lynch, “Stroke in newborn infants,” *Lancet Neurol* **3**(3), 150–158
414 (2004) [doi:[10.1016/S1474-4422\(04\)00679-9](https://doi.org/10.1016/S1474-4422(04)00679-9)].

415 18. X. Fu and J. E. Richards, “devfOLD: a toolbox for designing age-specific fNIRS channel
416 placement,” *Neurophotonics* **8**(4), 045003 (2021) [doi:[10.11117/1.NPh.8.4.045003](https://doi.org/10.11117/1.NPh.8.4.045003)].

417 19. J. Wang, Q. Dong, and H. Niu, “The minimum resting-state fNIRS imaging duration for
418 accurate and stable mapping of brain connectivity network in children,” *Sci Rep* **7**(1), 6461
419 (2017) [doi:[10.1038/s41598-017-06340-7](https://doi.org/10.1038/s41598-017-06340-7)].

420 20. H. Santosa et al., “The NIRS Brain AnalyzIR Toolbox,” *Algorithms* **11**(5), 73 (2018)
421 [doi:[10.3390/a11050073](https://doi.org/10.3390/a11050073)].

422 21. T. J. Huppert et al., “HomER: a review of time-series analysis methods for near-infrared
423 spectroscopy of the brain,” *Appl Opt* **48**(10), D280-298 (2009) [doi:[10.1364/ao.48.00d280](https://doi.org/10.1364/ao.48.00d280)].

424 22. L. Pollonini et al., “Auditory cortex activation to natural speech and simulated cochlear
425 implant speech measured with functional near-infrared spectroscopy,” *Hear Res* **309**, 84–93
426 (2014) [doi:[10.1016/j.heares.2013.11.007](https://doi.org/10.1016/j.heares.2013.11.007)].

427 23. S. Pildner von Steinburg et al., “What is the ‘normal’ fetal heart rate?” *PeerJ* **1**, e82 (2013)
428 [doi:[10.7717/peerj.82](https://doi.org/10.7717/peerj.82)].

429 24. S. M. Hernandez and L. Pollonini, “NIRSpot: A tool for quality assessment of fNIRS
430 scans,” in *Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy,
431 OCT, OTS, BRAIN)*, p. BM2C.5, Optica Publishing Group, Washington, DC (2020)
432 [doi:[10.1364/BRAIN.2020.BM2C.5](https://doi.org/10.1364/BRAIN.2020.BM2C.5)].

433 25. F. Scholkmann and M. Wolf, “General equation for the differential pathlength factor of the
434 frontal human head depending on wavelength and age,” *J. Biomed. Opt* **18**(10), 105004
435 (2013) [doi:[10.11117/1.JBO.18.10.105004](https://doi.org/10.11117/1.JBO.18.10.105004)].

436 26. S. L. Novi, R. B. M. L. Rodrigues, and R. C. Mesquita, “Resting state connectivity patterns
437 with near-infrared spectroscopy data of the whole head,” *Biomed. Opt. Express* **7**(7), 2524
438 (2016) [doi:[10.1364/BOE.7.002524](https://doi.org/10.1364/BOE.7.002524)].

439 27. E. Turk et al., “Functional connectome of the fetal brain,” *J. Neurosci.* **39**(49), 9716–9724
440 (2019) [doi:[10.1523/JNEUROSCI.2891-18.2019](https://doi.org/10.1523/JNEUROSCI.2891-18.2019)].

441 28. L. Janssen, R. G. J. Meulenbroek, and B. Steenbergen, “Behavioral evidence for left-
442 hemisphere specialization of motor planning,” *Exp Brain Res* **209**(1), 65–72 (2011)
443 [doi:[10.1007/s00221-010-2519-5](https://doi.org/10.1007/s00221-010-2519-5)].

444 29. C. McManus, “Half a century of handedness research: Myths, truths; fictions, facts;
445 backwards, but mostly forwards,” *Brain Neurosci Adv* **3**, 2398212818820513 (2019)
446 [doi:[10.1177/2398212818820513](https://doi.org/10.1177/2398212818820513)].

447 30. V. Parma et al., “The origin of human handedness and its role in pre-birth motor control,” *Sci
448 Rep* **7**(1), 16804 (2017) [doi:[10.1038/s41598-017-16827-y](https://doi.org/10.1038/s41598-017-16827-y)].

449 31. S. G. Erberich et al., “Somatosensory lateralization in the newborn brain,” *NeuroImage*
450 **29**(1), 155–161 (2006) [doi:[10.1016/j.neuroimage.2005.07.024](https://doi.org/10.1016/j.neuroimage.2005.07.024)].

451 32. L. Mrzljak et al., “Prenatal development of neurons in the human prefrontal cortex. II. A
452 quantitative Golgi study,” *J. Comp. Neurol.* **316**(4), 485–496 (1992)
453 [doi:[10.1002/cne.903160408](https://doi.org/10.1002/cne.903160408)].

454 33. Z. Petanjek et al., “Lifespan alterations of basal dendritic trees of pyramidal neurons in the
455 human prefrontal cortex: A layer-specific pattern,” *Cerebral Cortex* **18**(4), 915–929 (2008)
456 [doi:[10.1093/cercor/bhm124](https://doi.org/10.1093/cercor/bhm124)].

457 34. C. J. Shatz, “Emergence of order in visual system development.,” *Proceedings of the
458 National Academy of Sciences* **93**(2), 602–608 (1996) [doi:[10.1073/pnas.93.2.602](https://doi.org/10.1073/pnas.93.2.602)].

459 35. N. Tzourio-Mazoyer, “Intra- and inter-hemispheric connectivity supporting hemispheric
460 specialization,” in Micro-, Meso- and Macro-Connectomics of the Brain, H. Kennedy, D. C.
461 Van Essen, and Y. Christen, Eds., Springer, Cham (CH) (2016).

462 36. H.-G. Lenard, H. von Bernuth, and H. F. R. Prechtl, “Reflexes and their telationship to
463 behavioural state in the newborn,” *Acta Paediatrica* **57**(3), 177–185 (1968)
464 [doi:[10.1111/j.1651-2227.1968.tb04676.x](https://doi.org/10.1111/j.1651-2227.1968.tb04676.x)].

465 37. T. E. Hannan and A. Fogel, “A case-study assessment of ‘pointing’ during the first three
466 months of life,” *Percept Mot Skills* **65**(1), 187–194 (1987) [doi:[10.2466/pms.1987.65.1.187](https://doi.org/10.2466/pms.1987.65.1.187)].

467 38. E. Gajewska et al., “Achieving motor development milestones at the age of three months
468 may determine, but does not guarantee, proper further fevelopment,” *The Scientific World
469 Journal* **2013**, e354218 (2013) [doi:[10.1155/2013/354218](https://doi.org/10.1155/2013/354218)].

470 39. M. Hadders-Algra, “General movements: a window for early identification of children at
471 high risk for developmental disorders,” *The Journal of Pediatrics* **145**(2, Supplement), S12–
472 S18 (2004) [doi:[10.1016/j.jpeds.2004.05.017](https://doi.org/10.1016/j.jpeds.2004.05.017)].

473

474 **6 Data and Code Availability**

475 The data and code used in this study is available upon request.

476 **7 Conflicts of Interest**

477 The authors have no conflicts of interest to disclose.

478 **8 Acknowledgements**

479 The authors extend their sincerest gratitude to all the families and staff members of the post-partum
480 unit who made this research possible. The authors would also like to acknowledge New Frontiers
481 in Research Fund, NSERC CRSNG, Brain Canada Foundation, and CIHR whose financial
482 contributions were essential to this study.