

Experimental nerve block study on painful withdrawal reflex responses in humans

2

3 Oumie Thorell^{1,2*}, David A. Mahns¹, Jan Otto³, Jaquette Liljencrantz⁴, Mats Svantesson², Håkan
4 Olausson², Saad S. Nagi^{1,2}

5

6 ¹School of Medicine, Western Sydney University, Australia; ²Department of Biomedical and Clinical
7 Sciences, Linköping University, Sweden; ³Department of Neurology, University Hospital Schleswig-
8 Holstein Kiel, Germany; ⁴Department of Anesthesiology and Intensive Care, Institute of Clinical
9 Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden

10

11

12 * Corresponding author

13 E-mail: oumie.thorell@liu.se (OT)

14

15

16

17

18

19

20

21

22 Abstract

23 The nociceptive withdrawal reflex (NWR) is a protective limb withdrawal response triggered by
24 painful stimuli, used to assess spinal nociceptive excitability. Conventionally, the NWR is understood
25 as having two reflex responses: a short-latency A β -mediated response, considered tactile, and a
26 longer-latency A δ -mediated response, considered nociceptive. However, nociceptors with conduction
27 velocities similar to A β tactile afferents have been identified in human skin. In this study, we
28 investigated the effect of a preferential conduction block of A β fibers on pain perception and NWR
29 signaling evoked by intradermal electrical stimulation in healthy participants. We recorded a total of
30 198 NWR responses in the intact condition, and no dual reflex responses occurred within our latency
31 bandwidth (50-150 ms). The current intensity required to evoke the NWR was magnitude higher than
32 the perceptual pain threshold, indicating that NWR did not occur before pain was felt. In the block
33 condition, when the A β -mediated tuning fork sensation was lost while A δ -mediated nonpainful
34 cooling was still detectable (albeit reduced), we observed that the reflex was abolished. Further,
35 short-latency electrical pain intensity at pre-block thresholds was greatly reduced, with any residual
36 pain sensation having a longer latency. Although electrical pain was unaffected at suprathreshold
37 current intensities, the reflex could not be evoked despite a two-fold increase in the pre-block current
38 intensity and a five-fold increase in the pre-block pulse duration. These observations lend support to
39 the possible involvement of A β -fiber inputs in pain and reflex signaling.

40

41

42

43 Introduction

44 Pain involves cognitive, genetic, and psychosocial factors [1-4]. Currently, pain assessment mainly
45 relies on individuals' self-report which has limitations. In the early 20th century, reflexes were
46 extensively studied by Sherrington who observed coordinated muscle movements, such as flexion
47 followed by stepping movements, that correlated with the intensity of noxious stimulation [5]. This
48 phenomenon is often termed the nociceptive withdrawal reflex (NWR) and involves a complex
49 interplay between top-down and bottom-up influences [6-9]. It was initially suggested that the NWR
50 may serve as a readout of pain, but several studies have since highlighted that the relationship
51 between pain and reflex is not clearcut [10-16]. Nonetheless, the reflex is a useful tool for monitoring
52 the excitability of nociceptive spinal systems.

53

54 The NWR is often reported as consisting of two distinct electromyographic (EMG) responses with an
55 intervening silent period [10, 17, 18]. These responses, RII and RIII, are attributed to different
56 peripheral afferents: RII to large, thickly myelinated afferents with A β -fiber conduction velocities (CV)
57 and RIII to smaller, thinly myelinated afferents with A δ -fiber CVs [19]. It is generally argued that the
58 RII is non-painful, and it is the RIII that represents spinal nociceptive signaling [10, 20, 21]. Thus, it is
59 common practice to exclude the first NWR component from the reflex analysis. However, there is no
60 consensus on where in time the separation between RII and RIII should occur. Using a 90-ms cutoff,
61 for instance, it was found that NWR responses shorter than 90 ms were just as painful as those that
62 were \geq 90 ms [22]. Further, the NWR may comprise of single EMG responses occurring at different
63 latencies and stimulation intensities, questioning the involvement of distinct peripheral afferent
64 classes [20, 22].

65

66 It was recently reported that human skin is equipped with a specific class of high-threshold
67 mechanoreceptors with A β conduction velocities. These receptors encode noxious mechanical stimuli
68 and produce painful percepts when selectively activated through low-current intraneuronal stimulation
69 [23-25]. This discovery raises the question of whether A β inputs contribute to painful NWR signaling
70 in humans. Part of the ambiguity in the literature around latencies is due to the paucity of direct
71 recordings from A δ afferent fibers in humans, thereby relying on indirect measurements to infer their
72 conduction velocities. Indeed, in animals, the conduction velocity of D-hair afferents is used as a
73 cutoff between A β and A δ populations [26]; however, D-hair afferents have not yet been
74 characterized in humans.

75

76 In the current study, we employed preferential A β -fiber conduction blocks and tested pain and reflex
77 responses evoked by intradermal electrical stimulation before, during, and upon recovery from the
78 block. Nerve conduction blocks are widely used in the somatosensory field to study the functions of
79 primary afferent fibers [27-29]. In the block condition where tuning fork sensation was abolished
80 while nonpainful cooling remained relatively preserved – readouts of A β - and A δ -fiber activity,
81 respectively – we found that reflex responses at pre-block thresholds could not be evoked. Further,
82 short-latency pain intensity at pre-block electrical thresholds was significantly reduced during the
83 block, with any residual pain sensation having a longer latency. Although pain could be evoked at
84 higher stimulus intensities, the reflex could not be evoked during the block despite considerable
85 increases to the pre-block stimulus intensities and duration, hinting at the potential involvement of
86 A β fibers in driving our nocifensive behaviors.

87

88 **Methods**

89 **Participants**

90 Twenty-five healthy participants (17 males and 8 females), aged 18-39 years, took part in this study.
91 The exclusion criteria included neurological and musculoskeletal disorders, skin diseases, diabetes,
92 and the use of pain-relieving or psychoactive medications. The study was approved by the Swedish
93 Ethical Review Authority (dnr 2020-04207). Written informed consent was obtained from all
94 participants before the start of the experiment. The study was conducted in accordance with the
95 Helsinki Declaration. Participants were seated comfortably in a chair with the knee flexed to ~130°.

96

97 **EMG recordings**

98 Three self-adhesive recording electrodes (Kendall ECG electrodes, 57x34 mm, Medtronics, USA) were
99 attached to the right tibialis anterior (TA) muscle serving as active, reference, and ground points. EMG
100 recording settings comprised a 1 mV range, 1 kHz low pass filter, 0.3 Hz high pass filter, and 20 kHz
101 sampling rate (LabChart v8.1.16, ADInstruments, Dunedin, New Zealand).

102

103 **Intradermal electrical stimulation**

104 Two uninsulated tungsten microelectrodes (FHC Inc., Bowdoin, USA) were inserted just below the
105 metatarsophalangeal joint of the right foot sole, separated by 5 mm, to deliver focal electrical
106 stimulation. The microelectrodes had a tip diameter of 5-10 μ m and a shaft of 200 μ m. Each stimulus
107 trial consisted of 5 square pulses delivered at a frequency of 200 Hz with a pulse duration of 0.2 ms.
108 These stimuli were generated using a constant current bipolar stimulator (DS8R, Digitimer, Hydeway,
109 UK). In cases where a reflex could not be evoked with a pulse duration of 0.2 ms, a longer pulse

110 duration of 1 ms was used. The interstimulus intervals were varied from trial to trial (at least >6 s) to
111 prevent habituation and/or cognitive suppression of the reflex response. To avoid visual and auditory
112 cues, a partition was placed between the participant and the experimenter, and a silent mouse was
113 used to trigger the stimuli.

114

115 **Perception and reflex threshold measurements**

116 Participants were instructed to remain relaxed during the recordings, which were performed without
117 any muscle contraction. Current intensities were slowly increased in increments of 1-3 mA until the
118 first (nonpainful) sensation was reported. This was taken as the detection threshold (DET^{th}). The same
119 procedure was repeated to establish the minimum current required to evoke a painful percept (pain
120 threshold ($PAIN^{th}$)). NWR thresholds (NWR^{th}) were determined based on at least two successful trials
121 at same current intensity. Participants were asked to rate the intensity of pain on a visual analog scale
122 (VAS) ranging from 0 to 10, with 0 representing “no pain” and 10 representing the “worst imaginable
123 pain” (Response meter, ADInstruments, Dunedin, New Zealand). Participants were instructed to move
124 the analog scale only if the sensation was perceived as painful, and they were free to interpret pain
125 according to their individual experiences. Pain qualities were captured using a short-form McGill Pain
126 Questionnaire [30] immediately following $PAIN^{th}$ and NWR^{th} measurements (a total of six times).

127

128 **Reflex analysis**

129 Reflex latencies, Z scores, and pain ratings were analyzed in MATLAB (r2021b, MathWorks Inc, Natick,
130 Massachusetts). Z scores were calculated as the difference between peak amplitude (50-150 ms post-
131 stimulus onset) and mean baseline amplitude (-0.15 to 0 ms relative to the stimulus onset), divided by
132 the standard deviation of baseline EMG activity. The minimum current intensity required to evoke a

133 reflex response was taken as the *NWR*th. Responses with latencies exceeding 150 ms after stimulus
134 onset were excluded from the analysis to avoid voluntary/startle responses that can follow reflex
135 elicitation [31].

136

137 **Nerve block**

138 An ischemic nerve block progressively affects large myelinated fibers that signal vibration, followed by
139 small myelinated fibers that signal innocuous cold, and finally, unmyelinated fibers that signal warmth
140 sensations [27-29, 32-34]. To induce the block, an air-filled pressure cuff (Riester GmbH, Jungingen,
141 Germany) was placed over the right ankle and inflated to 300 mm Hg for up to an hour [35]. The block
142 was applied distal to the TA muscle EMG was recorded from.

143

144 In order to track the progression of the nerve block, vibration perception (test for A β -fiber function)
145 was tested on the foot sole in three ways: 1. With a tuning fork (128 Hz, American Diagnostic
146 Corporation, NY, USA) using a two-alternative forced choice detection task (2AFC) where participants
147 reported whether the tuning fork was perceived as “vibration” or “no vibration”; 2. With a punctate
148 Piezo electric stimulator (probe diameter: 1.3 cm, Dancer Design, UK) where participants rated the
149 intensity of vibration (20 or 200 Hz) on an analog scale ranging from 0 (“no vibrating sensation”) to 10
150 (“highest vibrating intensity”); 3. Using a 3AFC detection task where participants reported whether
151 vibration at 200, 20, and 0 Hz was perceived as “high”, “low” or “no” vibration. Participants wore
152 earplugs during vibration tests to prevent auditory cues. When participants could no longer
153 distinguish whether the tuning fork was stationary or vibrating, the blockade of A β fibers was
154 considered successful. In addition, it was expected that vibratory stimuli would be rated as less

155 intense during the block, and participants would be unable to discriminate between 20 and 200 Hz
156 frequencies.

157

158 To assess A δ - and C-fiber functions, we conducted simple detection tasks by placing a cold and hot
159 metal rod, which had been immersed in ice and a water bath at 45°C, respectively, against the
160 metatarsophalangeal joint of the foot and contralateral (intact) foot sole every ~5 minutes.
161 Participants were asked to verbally report what they felt and whether the intensity between the two
162 sites was the same or different. This allowed for frequent testing of thermal sensibility. As soon as the
163 tuning fork sensation was lost, and other vibratory tests were performed, detection thresholds for
164 cooling and warming were measured on the foot sole using the method of limits. The thermode probe
165 had dimensions of 30 x 30 mm (TSA-II, Medoc Ltd., Ramat Yishai, Israel) and the rate of temperature
166 change was 1°C/s, starting from a neutral temperature of 32°C [36]. Each modality was tested four
167 times. In the condition where the vibration sense was blocked while temperature senses remained,
168 perceptual responses at PAI/N^{th} and reflex responses at NWR^{th} were tested (at least 3 times).

169

170 In the pre-block condition, reaction time measurements were conducted 10 times at the PAI/N^{th}
171 stimulus intensity. During this assessment, participants were asked to press a button as soon as they
172 felt a painful sensation. The inter-stimulus intervals were pseudorandomized (mean: 3.7 s, min: 1.1 s,
173 max: 7.5 s). During the block, if any pain was reported by the participants at the PAI/N^{th} , the reaction
174 time measurements were tested again.

175

176 Upon release of the nerve block, vibratory and thermal sensibilities were monitored and upon
177 recovery to pre-block levels (typically within 20-30 min), PAI/N^{th} and NWR^{th} were measured again.

178

179 **Control experiment**

180 To confirm that any effect of the nerve block on pain and reflex responses was due to the blockade of
181 peripheral A-fiber inputs rather than central or other factors, in five participants we ran control
182 experiments with the ischemic cuff applied to the contralateral (left) leg. Pain and reflex responses
183 were measured from the standard (right) leg.

184

185 **Statistical analysis**

186 The experiment followed a quantitative, repeated-measurement design in which participants were
187 always tested in three conditions: before (Baseline), during (Block), and after (Recovery) of the nerve
188 block. Descriptive statistics and analyses were performed in Prism (9.0.2, GraphPad Software, San
189 Diego, USA). Non-parametrical statistical tests were chosen because of the dataset's medium to small
190 sample sizes, non-normal distribution (as indicated by normality tests), skewed distribution (QQ-plots,
191 skewness, and kurtosis), and/or high standard deviation (SD) in relation to mean values (>50%).
192 Wilcoxon test was used to compare two related groups. Friedman's test was used to compare
193 multiple related groups and Kruskal-Wallis for multiple non-related groups. Dunn's test was used as a
194 post hoc for multiple comparisons. Spearman's rank was used to investigate correlations with a 95%
195 confidence interval (CI). A p-value of < 0.05 was considered statistically significant. The a-priori sample
196 size estimation was based on a pilot study where we observed an effect size (f) of 0.255. We then
197 used a 1- β error probability (power) of 0.80, and α error probability of 0.05, which gave a total sample
198 size of 27. Post hoc power analysis, based on f(0.27), α (0.05), and a sample size of 25, gave a power of

199 82.6. Sample size and power calculations were performed in G* Power (open software, v3.1.9.7). Data
200 are shown as median with interquartile range.

201

202 **Results**

203 Under baseline conditions, NWR was successfully evoked in 22 out of 25 participants. The current
204 intensity required to reach DET^{th} was the lowest, followed by $PAIN^{th}$, and finally NWR^{th} (Fig 1A-B).
205 Consequently, all reflex thresholds occurred in response to a painful stimulus (pain intensity range:
206 0.3-6 on VAS of 0-10). A breakdown into individual reflex responses reveals that only 9 out of 198, or
207 less than 5%, were rated as nonpainful, and in no participant were two consecutive reflex responses
208 rated as nonpainful. The NWR responses had Z scores ranging from 1 to 61 and occurred at latencies
209 between 65 and 137 ms after stimulus onset (mean latency: 91 ms). Out of these, 80 (40.4%) NWR
210 responses had latencies under 90 ms, a cutoff for defining RII reflexes as used in prior studies [e.g. 15,
211 16, 37]. In another study, involving transcutaneous electrical stimulation, dual reflex responses (RII
212 and RIII) were observed in 12% of reflex recordings [22]. In the current study using intradermal
213 electrical stimulation, no instances of dual RII-RIII responses were observed (Fig 1C). In a subset of
214 participants ($n = 7$), the reflex could only be evoked using a 1-ms pulse duration. There were no
215 differences in pain ratings or NWR latencies at $PAIN^{th}$ and NWR^{th} between the 0.2-ms and 1-ms
216 responses, hence the data were combined (Fig S1A-D).

217

218 **Fig 1. Characterization of pain and reflex responses evoked by intradermal electrical stimulation. A.**
219 The first trace shows the absence of an EMG response at the nonpainful detection threshold (DET^{th}).
220 The second trace shows a pain rating at the pain threshold ($PAIN^{th}$), although no EMG response was

221 detected. The third trace shows an EMG response at the NWR threshold (NWR^{th}). **B.** DET^{th} , $PAIN^{th}$, and
222 NWR^{th} were significantly different (DET^{th} : 0.5 (0.2) mA, $PAIN^{th}$: 2.0 (1.5) mA, NWR^{th} : 13.5 (12.0) mA,
223 $f(2) = 44.00$, $p < 0.0001$, post hoc test: ** $P = 0.0027$; **** $P < 0.0001$, $n = 22$, Friedman test). **C.** A total
224 of 198 NWR responses were recorded with no instances of dual EMG bursts within our latency
225 bandwidth (50-150 ms).

226

227 Preferential block of A β fibers

228 Somatosensory tests were performed to gauge the progression of the ischemic nerve block. During
229 baseline and recovery conditions, participants performed with 100% accuracy in the vibration
230 discrimination tasks (2AFC, 3AFC). During the block for >20 min but <1 hour, participants could no
231 longer distinguish whether the tuning fork was stationary or vibrating. Further, the vibration intensity
232 ratings declined significantly (Fig 2A-B), and vibration discrimination was significantly impaired (Fig
233 2C).

234

235 Cold detection thresholds (CDTs) were significantly altered (median difference from baseline = 7.2°C)
236 during the nerve block (Fig. 2D). However, in no participant did the mean CDTs shift to the cold pain
237 threshold range (reported as $\leq 10-14^{\circ}\text{C}$) [38], indicating that cooling remained detectable within the
238 nonpainful range during the block. The change in CDT (baseline vs. block) was unrelated to the block
239 duration (Fig S2A). Further, considering 23°C as the lower border of normal values for innocuous cold
240 detection in the foot [39], we found no differences when comparing pain ratings (at $PAIN^{th}$) between
241 participants with CDT above or below the lower border of innocuous CDT (Fig S2B).

242

243 Warm detection thresholds (WDTs) were not significantly different between baseline and block
244 conditions, or between block and recovery conditions (Fig 2E). A significant correlation was found
245 between the change in WDT and the duration of the nerve block (Fig S2C).

246

247 **NWR abolished by preferential A β -fiber block**

248 During the nerve block, all responses at pre-block *NWRth* were abolished (Fig. 2F). Despite further
249 increases in stimulus intensity (up to 2 times the pre-block *NWRth*) and/or prolonging of the pulse
250 duration (extended to 1 ms), the reflex did not recover during the nerve block. This was true even for
251 those participants (n=5) whose block CDTs were within 1-3°C of their intact CDTs, yet no reflex
252 responses were evoked.

253

254 **Fig 2. Assessment of vibratory and thermal perception and NWR during nerve block. A-C.** Vibration
255 intensity ratings for 200 Hz (A) and 20 Hz (B) declined significantly during the nerve block (200 Hz:
256 baseline 9.9 (1.4), block 1.8 (4.4), recovery 9.9 (1.2), $f(2) = 32.38$, $p < 0.0001$; 20 Hz: baseline 5.1 (1.6),
257 block 0.3 (1.6), recovery 5.1 (1.7), $f(2) = 33.77$, $p < 0.0001$, post hoc test: ****P < 0.0001, ns > 0.9999,
258 n = 22, Friedman test). Vibration discrimination (6 trials per condition) was also significantly impaired
259 during the block (3AFC: baseline 6.0 (0.0), block 3.0 (3.0), recovery 6.0 (0.0), $f(2) = 40$, $p < 0.0001$, post
260 hoc test: ****P < 0.0001, ns > 0.9999, n = 21, Friedman test). **D-E.** Cold detection thresholds (CDTs)
261 significantly changed during the block (baseline 28.8 (1.9)°C, block 21.6 (5.6)°C, recovery 28.0 (2.8)°C,
262 $f(2) = 35.27$, $p < 0.0001$, post hoc test: ****P < 0.0001, ns = 0.395, n = 22, Friedman test). The dotted
263 line at 23°C represents the lower border of normal values for innocuous cold detection, with cold pain
264 emerging $\leq 10-14$ °C. Warm detection thresholds (WDTs) remained unchanged during the block but
265 were elevated in the recovery condition compared to baseline (baseline 35.8 (3.6)°C, block 37.0

266 (3.3)°C, recovery 38.4 (5.5)°C, $f(2) = 7.44$, $p = 0.024$, post hoc test: * $P = 0.031$, ns (baseline vs block) >
267 0.9999, ns (baseline vs recovery) = 0.150, $n = 22$, Friedman test). **F**. The reflex responses were
268 completely abolished during the nerve block (NWR latencies: baseline 90.0 (14.0) ms, block 0.0 (0.0)
269 ms, recovery 92.5 (13.0) ms, $p = 0.052$, $U = 4113$, $n = 198$, Mann Whitney test).

270

271 **Reduced pain during preferential A β -fiber block**

272 During the nerve block, pain ratings at the pre-block PAI/N^{th} current intensity dropped significantly,
273 resulting in the complete abolition of pain in 14 out of 22 participants (Fig 3A). Reaction time
274 measurements at the pre-block PAI/N^{th} current intensity were significantly delayed (baseline 258.8 ms,
275 block 426.2 ms, $n=6$), suggesting perception mediated via slower-conducting first-order afferents (Fig
276 S3A). In four participants, pain ratings at PAI/N^{th} increased during the nerve block, an effect unrelated
277 to the block duration (Fig S3B). Further, these four participants were not different from the other
278 participants when comparing reflex latencies, pain ratings at PAI/N^{th} or NWR^{th} , vibration sensibility, or
279 temperature thresholds (Fig S3C-H).

280

281 The most frequently chosen descriptors for characterizing pain quality at PAI/N^{th} were “sharp” and
282 “stabbing” (Fig 3C). At NWR^{th} , “shooting” and “hot-burning” were also frequently chosen (Fig 3D). The
283 proportion of descriptor intensity ranked as moderate and severe increased with increasing stimulus
284 intensity from PAI/N^{th} to NWR^{th} (mild-moderate-severe: 74-21-5% to 53-39-8%, respectively; Fig 3C-D).

285

286 During the block, while the NWR was abolished (Fig 2F), pain ratings at the pre-block NWR^{th} did not
287 differ from baseline levels. However, the overall occurrence of descriptors (and their corresponding
288 intensity) reduced by 71% and 66% at PAI/N^{th} and NWR^{th} , respectively (Fig 3E-F).

289

290 In the control experiment, pain ratings at *PAI*th and *NWR*th, as well as NWR latencies, remained
291 unchanged when the nerve block was applied to the contralateral leg (Fig S4A-C).

292

293 **Fig 3. Effect of nerve block on pain intensity and quality. A.** Reduction in pain ratings at *PAI*th during
294 nerve block. Pain ratings at the pre-block *PAI*th current intensity were significantly reduced during
295 the block (baseline 0.9 (0.7), block 0.0 (0.7), recovery 1.0 (0.9), $f(2) = 11.55$, $p = 0.003$, post hoc test:
296 * $P = 0.013$, ** $P = 0.008$, ns > 0.999 , $n = 22$, Friedman test). Pain was completely abolished in 14
297 participants, greatly reduced in another 4, and increased in the remaining 4 (highlighted in red). **B.**
298 Pain ratings at the pre-block *NWR*th current intensity did not significantly change across conditions
299 (baseline 2.8 (3.1), block 1.8 (3.2), recovery 3.0 (2.2), $f(2) = 6.181$, $p = 0.0331$, post hoc test: ns
300 (baseline vs block and baseline vs recovery) = 0.071, ns (baseline vs block) > 0.9999 , $n = 22$, Friedman
301 test). The 4 participants who showed an increase in *PAI*th during nerve block in (a) are highlighted in
302 red. **C-D.** Pain qualities at the pre-block *PAI*th current intensity are shown on the left, while pain
303 qualities at the pre-block *NWR*th current intensity are shown on the right. **E-F.** Pain qualities at block
304 *PAI*th current intensity are shown on the left and pain qualities at block *NWR*th current intensity are
305 shown on the right. On each occasion, participants chose any number of descriptors and ranked their
306 intensity as mild, moderate, or severe. Thus, the maximum number of “events” for each descriptor
307 equals the number of participants ($n=22$). The y-axis shows how many times a descriptor was chosen,
308 and the x-axis shows the complete list of descriptors from the McGill short-form questionnaire.

309

310

311 Discussion

312 A preferential A β -fiber block significantly reduced pain and completely abolished NWR responses. The
313 involvement of specific classes within the A-fiber population remains to be delineated. However, the
314 abolition of *NWR*th responses during the block, despite using suprathreshold intensities in a condition
315 in which cold perception, while reduced, was still detectable, invites speculation that A β nociceptors
316 might be involved. Likewise, the reduction in *PAIN*th ratings during the block aligns with previous
317 findings of reduced mechanical pain perception in patients with selective A β deafferentation and
318 normal mechanical pain perception in patients with selective small-fiber deafferentation [23, 40].

319

320 The recently discovered A β nociceptors in human skin are particularly well-suited to signal percepts
321 and responses requiring rapid transmission of nociceptive information from the periphery [23, 25,
322 41]. In microneurography, intraneuronal stimulation of A β nociceptors produces painful percepts at the
323 same current intensities where intraneuronal stimulation of A β tactile afferents produces nonpainful
324 percepts [23].

325

326 In the literature, the short-latency reflex component is considered non-nociceptive with the fast-
327 conducting presumed “tactile” inputs thought to serve a role in posture correction or the inhibition of
328 the late reflex response [10, 13, 20]. In the current study using intradermal electrical stimulation, we
329 found no instances of dual NWR responses (e.g. two reflex responses within the same reflex recording
330 time window). The NWR responses in our data had latencies ranging from 65 to 137 ms (mean
331 latency: 91 ms), corresponding to a potential mix of RII and RIII latencies; however, they were rated as
332 equally painful regardless of latency. Further, when examining the data from all individual reflex trials,
333 only 9 out of 198 reflex responses (4.5%) were perceived as non-painful. The non-painful reflexes did

334 not have the shortest latencies and the absence of pain could perhaps be a momentary shift in the
335 attention of the participants, as they never rated two consecutive reflex responses as non-painful.

336

337 In the current study, we used intradermal stimulation (needle electrodes), whereas the conventional
338 approach is to use surface electrodes. In a previous study where surface electrical stimulation was
339 used, 12.4% of the NWR responses had a dual component. Further, 14.2% of the NWR responses
340 were rated as non-painful, and those had latencies ranging from 64 to 140 ms, with a median latency
341 at 83.0 ms [22]. While a study using both needle and surface electrodes noted the absence of the
342 early component of the reflex response (RII) during surface stimulation [11], another study found no
343 difference between the two methods [42]. Intradermal electrodes, as used in the current study, are
344 likely to stimulate the terminal branches of cutaneous afferents rather than the nerve endings
345 themselves, resulting in a less synchronized afferent volley, perhaps resembling a more natural
346 stimulus compared to surface electrodes [20]. The targeted nerves (sural or tibial) or stimulation
347 paradigms (duration and number of pulses) could be other factors determining if dual NWR responses
348 are observed or not.

349

350 We used short-duration electrical pulses (0.2 ms) to preferentially activate larger-diameter fibers,
351 based on the strength-duration relationship for electric excitation of myelinated axons [43-45]. In a
352 few participants, the reflex was elicited using a longer pulse duration (1 ms), but this did not suggest
353 activation of different nerve fibers, as latencies and pain ratings were not different from reflexes
354 elicited at shorter pulse durations (Fig. S1A-D). Consistent with earlier studies, and our pilot
355 observations, using a single pulse failed to evoke NWR responses, indicating that temporal summation
356 of repeated stimuli is required for reflex elicitation [7, 42, 46]. Typically, this need for multiple stimuli

357 is overlooked when calculating conduction velocity in the afferent limb, as measurements are
358 routinely made from the onset of the first pulse which usually fails to evoke an NWR. As NWR
359 responses are typically elicited by trains of pulses separated by 2-5 ms, the conduction velocity of the
360 afferent fibers contributing to the response could be underestimated, leading to bias towards the
361 slower (A δ) conduction range. Furthermore, the observations that NWR latencies are reduced by 3-4
362 ms during voluntary muscle contraction [17] and that motor neuronal response is enhanced for 50-
363 150 ms following low-threshold electrical stimulation [47] indicate that the motor neuronal pool is a
364 key determinant of the timing and amplitude of the NWR.

365

366 NWR relies on temporal summation driven by high-frequency repeated stimuli. In this context, the
367 high impulse rates (up to 300 Hz) produced by A β nociceptors [23, 48] in response to noxious stimuli
368 suggests that this class of afferent fiber is ideally suited for detection (and rapid relay) of information
369 about noxious stimuli and to contribute to the generation of NWR. Indeed, the function of pain as a
370 warning system necessitates the rapid transmission of information from the periphery to execute
371 appropriate motor responses and meet behavioral requirements.

372

373 During the block, pain ratings at the pre-block PAI/N^{th} current intensity were significantly reduced,
374 along with the frequency of pain descriptors and their corresponding intensities. The most frequently
375 chosen pain descriptor “sharp” matches the percept evoked by selective activation of single A β
376 nociceptors using low-current intraneuronal stimulation [23]. During the block, overall pain ratings at
377 the pre-block NWR^{th} current intensity did not change, but the frequency of pain descriptors and their
378 corresponding intensities were greatly reduced. It may be that the increase in stimulus intensities
379 from PAI/N^{th} to NWR^{th} led to the activation of additional afferent types (A δ and possibly C fibers),

380 which might explain the persistence of pain at the pre-block NWR^{th} current intensity during the block.
381 This shift towards reliance on small-diameter inputs is reflected in the prolonged reaction times for
382 electrical pain at PA/N^{th} during the block (baseline 258.8 ms, block 426.2 ms), which now fall within
383 the same range as reaction times for cold detection – a known A δ function [49].

384

385 During the block, while pain ratings at pre-block PA/N^{th} were reduced or abolished in most
386 participants, in four of them, the pain was intensified. However, only the pain ratings, and not the
387 NWR responses, differed from the other participants (Fig S3C).

388

389 Nociceptive responses can be modulated by another nociceptive stimulus in a phenomenon known as
390 diffuse noxious inhibitory control (DNIC), where ‘pain inhibits pain’. This is caused by inhibition in the
391 spinal dorsal horn by nociceptive input from an adjacent part of the body [50]. The DNIC phenomenon
392 has also been tested in relation to the NWR, resulting in increased NWR thresholds following
393 exposure to noxious cold, heat, and muscular exercise [51]. To investigate potential DNIC effects on
394 electrical pain and reflex, we performed control experiments with the blood pressure cuff applied to
395 the contralateral leg. However, we found that pain and the NWR persisted ipsilaterally, indicating that
396 the diminution of pain and the complete abolition of NWR were the result of a preferential loss of A β
397 inputs when the cuff was applied to the ipsilateral leg rather than a DNIC effect.

398

399 During the block, CDT was significantly affected (reduced sensitivity), and detection thresholds are
400 known to be variable. However, no difference was found in pain ratings at pre-block PA/N^{th} between
401 participants with reduced and normal cold sensitivity during the block. Importantly, during the block,
402 despite a two-fold increase in pre-block NWR^{th} and a five-fold increase in pulse duration, the reflex

403 could not be evoked, even though all participants could still detect cooling in the nonpainful range
404 ($>10-14^{\circ}\text{C}$) mediated by A δ fibers. Warm sensibility, a function of C fibers, remained unaffected during
405 the block ($p > 0.999$). WDT values were statistically elevated in the recovery condition compared to
406 baseline, which could possibly be a consequence of increased blood flow to the limb upon cuff
407 release, masking the participants' ability to detect warm temperatures. A longer waiting time for full
408 recovery (>30 min) might have eliminated that difference.

409

410 We made several important observations regarding pain and the NWR in our experimental conditions.
411 The NWR consisted of a single response, evoked at stimulus intensities that were always painful, with
412 no NWR thresholds observed below the pain threshold. During a preferential block of A β afferents,
413 pain at the perception threshold was diminished, and the NWR was abolished. These results suggest
414 the possible involvement of very fast-conducting afferents in pain perception and NWR signaling and
415 may be relevant for understanding the functions of recently discovered human A β nociceptors.

416

417 **Acknowledgements**

418

419 We would like to thank Magnus Kronander for his helpful contributions to data compilation and
420 analysis.

421

422 References

423 1. Khera T, Rangasamy V. Cognition and Pain: A Review. *Front Psychol.* 2021;12:673962. Epub 20210521.
424 doi: 10.3389/fpsyg.2021.673962. PubMed PMID: 34093370; PubMed Central PMCID:
425 PMCPMC8175647.

426 2. Rischer KM, Gonzalez-Roldan AM, Montoya P, Gigl S, Anton F, van der Meulen M. Distraction from
427 pain: The role of selective attention and pain catastrophizing. *Eur J Pain.* 2020;24(10):1880-91. Epub
428 20200813. doi: 10.1002/ejp.1634. PubMed PMID: 32677265; PubMed Central PMCID:
429 PMCPMC7689692.

430 3. Fillingim RB. Individual differences in pain: understanding the mosaic that makes pain personal. *Pain.*
431 2017;158 Suppl 1(Suppl 1):S11-S8. doi: 10.1097/j.pain.0000000000000775. PubMed PMID: 27902569;
432 PubMed Central PMCID: PMCPMC5350021.

433 4. Willer JC. Anticipation of pain-produced stress: electrophysiological study in man. *Physiol Behav.*
434 1980;25(1):49-51. doi: 10.1016/0031-9384(80)90181-x. PubMed PMID: 7413819.

435 5. Sherrington CS. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. *J
436 Physiol.* 1910;40(1-2):28-121. doi: 10.1113/jphysiol.1910.sp001362. PubMed PMID: 16993027;
437 PubMed Central PMCID: PMCPMC1533734.

438 6. Carstens E, Hartung M, Stelzer B, Zimmermann M. Suppression of a hind limb flexion withdrawal reflex
439 by microinjection of glutamate or morphine into the periaqueductal gray in the rat. *Pain.*
440 1990;43(1):105-12. doi: 10.1016/0304-3959(90)90055-l. PubMed PMID: 1980535.

441 7. Sandrini G, Serrao M, Rossi P, Romanuello A, Crucu G, Willer JC. The lower limb flexion reflex in
442 humans. *Prog Neurobiol.* 2005;77(6):353-95. Epub 20051228. doi: 10.1016/j.pneurobio.2005.11.003.
443 PubMed PMID: 16386347.

444 8. Rhudy JL, Williams AE, McCabe KM, Nguyen MA, Rambo P. Affective modulation of nociception at
445 spinal and supraspinal levels. *Psychophysiology.* 2005;42(5):579-87. doi: 10.1111/j.1469-
446 8986.2005.00313.x. PubMed PMID: 16176380.

447 9. Andersen OK. Studies of the organization of the human nociceptive withdrawal reflex. Focus on
448 sensory convergence and stimulation site dependency. *Acta Physiol (Oxf)*. 2007;189 Suppl 654:1-35.
449 doi: 10.1111/j.1748-1716.2007.01706.x. PubMed PMID: 17439638.

450 10. Hugon M. Exteroceptive Reflexes to Stimulation of the Sural Nerve in Normal Man. In: Desmedt JE,
451 editor. *Human Reflexes, Pathophysiology of Motor Systems, Methodology of Human Reflexes*. 3.
452 Brussels: Karger; 1973. p. 713-29.

453 11. de Willer JC. Comparative study of perceived pain and nociceptive flexion reflex in man. *Pain*.
454 1977;3(1):69-80. doi: 10.1016/0304-3959(77)90036-7. PubMed PMID: 876668.

455 12. Dowman R. Spinal and supraspinal correlates of nociception in man. *Pain*. 1991;45(3):269-81. doi:
456 10.1016/0304-3959(91)90051-X. PubMed PMID: 1876436.

457 13. Ellrich J, Treede RD. Convergence of nociceptive and non-nociceptive inputs onto spinal reflex
458 pathways to the tibialis anterior muscle in humans. *Acta Physiol Scand*. 1998;163(4):391-401. doi:
459 10.1046/j.1365-201X.1998.t01-1-00392.x. PubMed PMID: 9789583.

460 14. Popescu A, LeResche L, Truelove EL, Drangsholt MT. Gender differences in pain modulation by diffuse
461 noxious inhibitory controls: a systematic review. *Pain*. 2010;150(2):309-18. Epub 20100616. doi:
462 10.1016/j.pain.2010.05.013. PubMed PMID: 20557999.

463 15. Ruscheweyh R, Kreusch A, Albers C, Sommer J, Marziniak M. The effect of distraction strategies on pain
464 perception and the nociceptive flexor reflex (RIII reflex). *Pain*. 2011;152(11):2662-71. Epub 20110916.
465 doi: 10.1016/j.pain.2011.08.016. PubMed PMID: 21925793.

466 16. Ydrefors J, Karlsson T, Wentzel Olausson U, Ghafouri B, Johansson AC, Olausson H, et al. Automated
467 Nociceptive Withdrawal Reflex Measurements Reveal Normal Reflex Thresholds and Augmented Pain
468 Ratings in Patients with Fibromyalgia. *J Clin Med*. 2020;9(6). Epub 20200625. doi: 10.3390/jcm9061992.
469 PubMed PMID: 32630430; PubMed Central PMCID: PMCPMC7356211.

470 17. Hagbarth KE. Spinal withdrawal reflexes in the human lower limbs. *J Neurol Neurosurg Psychiatry*.
471 1960;23(3):222-7. doi: 10.1136/jnnp.23.3.222. PubMed PMID: 14398771; PubMed Central PMCID:
472 PMCPMC497412.

473 18. Grimby L. Normal plantar response: integration of flexor and extensor reflex components. *J Neurol
474 Neurosurg Psychiatry*. 1963;26(1):39-50. doi: 10.1136/jnnp.26.1.39. PubMed PMID: 13950500;
475 PubMed Central PMCID: PMCPMC495534.

476 19. Lloyd DPC. Neuron Patterns Controlling Transmisson of Ipsilateral Hind Limb Reflexes in Cat. *Journal of
477 Neurophysiology*. 1943;6(4):293-315. doi: 10.1152/jn.1943.6.4.293.

478 20. Shahani BT, Young RR. Human flexor reflexes. *J Neurol Neurosurg Psychiatry*. 1971;34(5):616-27. doi:
479 10.1136/jnnp.34.5.616. PubMed PMID: 5122389; PubMed Central PMCID: PMCPMC493877.

480 21. Danziger N, Fournier E, Bouhassira D, Michaud D, De Broucker T, Santarcangelo E, et al. Different
481 strategies of modulation can be operative during hypnotic analgesia: a neurophysiological study. *Pain*.
482 1998;75(1):85-92. doi: 10.1016/S0304-3959(97)00208-X. PubMed PMID: 9539677.

483 22. Thorell O, Ydrefors J, Svantesson M, Gerdle B, Olausson H, Mahns DA, Nagi SS. Investigations into an
484 overlooked early component of painful nociceptive withdrawal reflex responses in humans. *Frontiers in
485 Pain Research*. 2023;3. doi: 10.3389/fpain.2022.1112614.

486 23. Nagi SS, Marshall AG, Makdani A, Jarocka E, Liljencrantz J, Ridderstrom M, et al. An ultrafast system for
487 signaling mechanical pain in human skin. *Sci Adv*. 2019;5(7):eaaw1297. Epub 20190703. doi:
488 10.1126/sciadv.aaw1297. PubMed PMID: 31281886; PubMed Central PMCID: PMCPMC6609212.

489 24. Yu H, Usoskin D, Nagi SS, Hu Y, Kupari J, Bouchatta O, et al. Single-Soma Deep RNA sequencing of
490 Human DRG Neurons Reveals Novel Molecular and Cellular Mechanisms Underlying Somatosensation.
491 bioRxiv. 2023:2023.03.17.533207. doi: 10.1101/2023.03.17.533207.

492 25. Ng KKW, Lafée O, Bouchatta O, Makdani AD, Marshall AG, Olausson H, et al. Human Foot Outperforms
493 the Hand in Mechanical Pain Discrimination. *eNeuro*. 2024;11(2). Epub 20240215. doi:

494 10.1523/ENEURO.0412-23.2024. PubMed PMID: 38272674; PubMed Central PMCID: PMC10875634.

495

496 26. Djouhri L, Lawson SN. Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. *Brain Res Brain Res Rev.* 2004;46(2):131-45. doi: 10.1016/j.brainresrev.2004.07.015. PubMed PMID: 15464202.

497

498

499 27. Mackenzie RA, Burke D, Skuse NF, Lethlean AK. Fibre function and perception during cutaneous nerve 500 block. *J Neurol Neurosurg Psychiatry.* 1975;38(9):865-73. doi: 10.1136/jnnp.38.9.865. PubMed PMID: 1185225; PubMed Central PMCID: PMCPMC492115.

501

502 28. Torebjork HE, Hallin RG. Perceptual changes accompanying controlled preferential blocking of A and C 503 fibre responses in intact human skin nerves. *Exp Brain Res.* 1973;16(3):321-32. doi: 10.1007/BF00233334. PubMed PMID: 4686614.

504

505 29. Nagi SS, Rubin TK, Chelvanayagam DK, Macefield VG, Mahns DA. Allodynia mediated by C-tactile 506 afferents in human hairy skin. *J Physiol.* 2011;589(Pt 16):4065-75. Epub 20110704. doi: 10.1113/jphysiol.2011.211326. PubMed PMID: 21727219; PubMed Central PMCID: PMCPMC3180003.

507

508 30. Melzack R. The short-form McGill Pain Questionnaire. *Pain.* 1987;30(2):191-7. doi: 10.1016/0304- 509 3959(87)91074-8. PubMed PMID: 3670870.

510

511 31. Dowman R. Possible startle response contamination of the spinal nociceptive withdrawal reflex. *Pain.* 1992;49(2):187-97. doi: 10.1016/0304-3959(92)90142-X. PubMed PMID: 1608645.

512

513 32. Laursen RJ, Graven-Nielsen T, Jensen TS, Arendt-Nielsen L. The effect of compression and regional 514 anaesthetic block on referred pain intensity in humans. *Pain.* 1999;80(1-2):257-63. doi: 10.1016/s0304- 3959(98)00214-0. PubMed PMID: 10204738.

515

516 33. Mahns DA, Nagi SS. An investigation into the peripheral substrates involved in the tactile modulation of 517 cutaneous pain with emphasis on the C-tactile fibres. *Exp Brain Res.* 2013;227(4):457-65. Epub 20130421. doi: 10.1007/s00221-013-3521-5. PubMed PMID: 23604625.

518 34. Gasser HS, Erlanger J. THE RÔLE OF FIBER SIZE IN THE ESTABLISHMENT OF A NERVE BLOCK BY
519 PRESSURE OR COCAINE. *American Journal of Physiology-Legacy Content*. 1929;88(4):581-91. doi:
520 10.1152/ajplegacy.1929.88.4.581.

521 35. Sharma JP, Salhotra R. Tourniquets in orthopedic surgery. *Indian J Orthop*. 2012;46(4):377-83. doi:
522 10.4103/0019-5413.98824. PubMed PMID: 22912509; PubMed Central PMCID: PMCPMC3421924.

523 36. Hilz MJ, Stemper B, Axelrod FB, Kolodny EH, Neundorfer B. Quantitative thermal perception testing in
524 adults. *J Clin Neurophysiol*. 1999;16(5):462-71. doi: 10.1097/00004691-199909000-00008. PubMed
525 PMID: 10576229.

526 37. Sandrini G, Arrigo A, Bono G, Nappi G. The nociceptive flexion reflex as a tool for exploring pain control
527 systems in headache and other pain syndromes. *Cephalalgia*. 1993;13(1):21-7. doi: 10.1046/j.1468-
528 2982.1993.1301021.x. PubMed PMID: 8448783.

529 38. Magerl W, Krumova EK, Baron R, Tolle T, Treede RD, Maier C. Reference data for quantitative sensory
530 testing (QST): refined stratification for age and a novel method for statistical comparison of group data.
531 *Pain*. 2010;151(3):598-605. Epub 20101020. doi: 10.1016/j.pain.2010.07.026. PubMed PMID:
532 20965658.

533 39. Rolke R, Baron R, Maier C, Tolle TR, Treede DR, Beyer A, et al. Quantitative sensory testing in the
534 German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values.
535 *Pain*. 2006;123(3):231-43. Epub 20060511. doi: 10.1016/j.pain.2006.01.041. PubMed PMID: 16697110.

536 40. Ridderström M, Svantesson M, Thorell O, Magounakis T, Minde J, Olausson H, Nagi SS. High prevalence
537 of carpal tunnel syndrome in individuals with rare nerve growth factor-beta mutation. *Brain Commun*.
538 2020;2(2):fcaa085. Epub 20200625. doi: 10.1093/braincomms/fcaa085. PubMed PMID: 32954334;
539 PubMed Central PMCID: PMCPMC7472894.

540 41. Yu H, Usoskin D, Nagi SS, Hu Y, Kupari J, Bouchatta O, et al. Single-Soma Deep RNA sequencing of
541 Human DRG Neurons Reveals Novel Molecular and Cellular Mechanisms Underlying Somatosensation.

542 bioRxiv. 2023. Epub 20230928. doi: 10.1101/2023.03.17.533207. PubMed PMID: 36993480; PubMed
543 Central PMCID: PMCPMC10055202.

544 42. Meinck HM, Piesiur-Strehlow B, Koehler W. Some principles of flexor reflex generation in human leg
545 muscles. *Electroencephalogr Clin Neurophysiol*. 1981;52(2):140-50. doi: 10.1016/0013-4694(81)90161-
546 9. PubMed PMID: 6167423.

547 43. Hill AV. The Strength-Duration Relation for Electric Excitation of Medullated Nerve. *Proceedings of the
548 Royal Society of London Series B, Biological Sciences*. 1936;119(815):440-53.

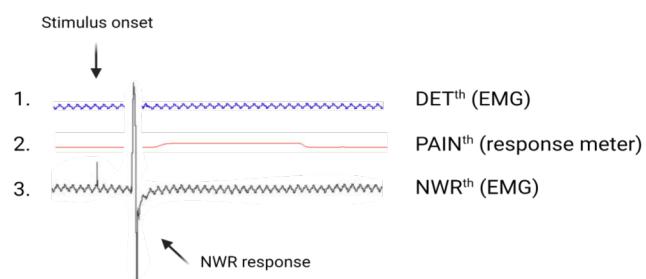
549 44. Wesselink WA, Holsheimer J, Boom HB. A model of the electrical behaviour of myelinated sensory
550 nerve fibres based on human data. *Med Biol Eng Comput*. 1999;37(2):228-35. doi:
551 10.1007/bf02513291. PubMed PMID: 10396827.

552 45. Szlavik RB, de Bruin H. The effect of stimulus current pulse width on nerve fiber size recruitment
553 patterns. *Med Eng Phys*. 1999;21(6-7):507-15. doi: 10.1016/s1350-4533(99)00074-0. PubMed PMID:
554 10624746.

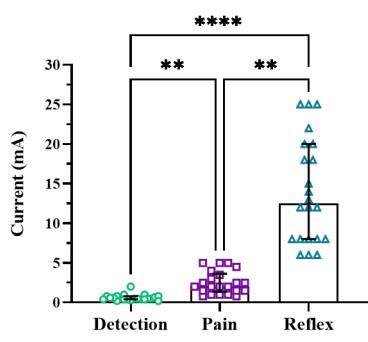
555 46. Tørring J, Pedersen E, Klemar B. Standardisation of the electrical elicitation of the human flexor reflex.
556 *J Neurol Neurosurg Psychiatry*. 1981;44(2):129-32. doi: 10.1136/jnnp.44.2.129. PubMed PMID:
557 7217968; PubMed Central PMCID: PMCPMC490843.

558 47. Shahani B. Flexor reflex afferent nerve fibres in man. *J Neurol Neurosurg Psychiatry*. 1970;33(6):786-91.
559 doi: 10.1136/jnnp.33.6.786. PubMed PMID: 5531898; PubMed Central PMCID: PMCPMC493593.

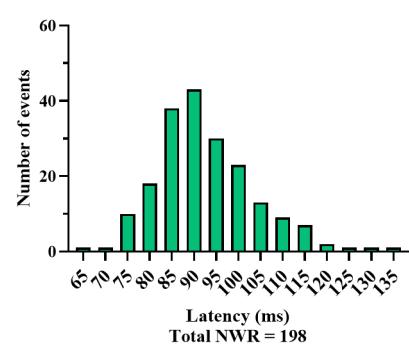
560 48. Bouchatta O, Brodzki M, Manouze H, Carballo GB, Kindström E, de-Faria FM, et al. PIEZO2-dependent
561 rapid pain system in humans and mice. *bioRxiv*. 2023:2023.12.01.569650. doi:
562 10.1101/2023.12.01.569650.

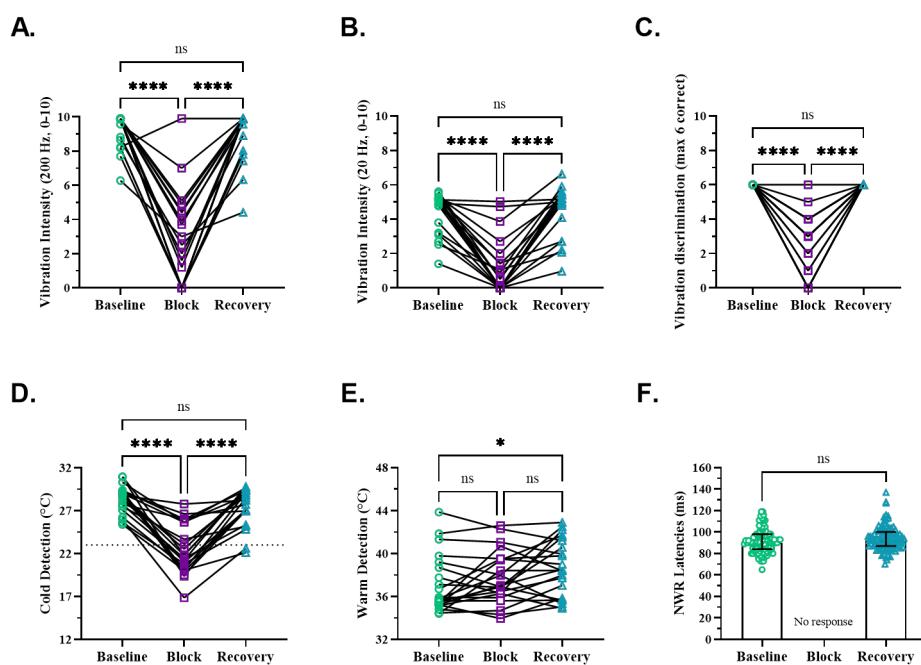

563 49. Yarnitsky D, Ochoa JL. Warm and cold specific somatosensory systems. Psychophysical thresholds,
564 reaction times and peripheral conduction velocities. *Brain*. 1991;114 (Pt 4):1819-26. doi:
565 10.1093/brain/114.4.1819. PubMed PMID: 1884180.

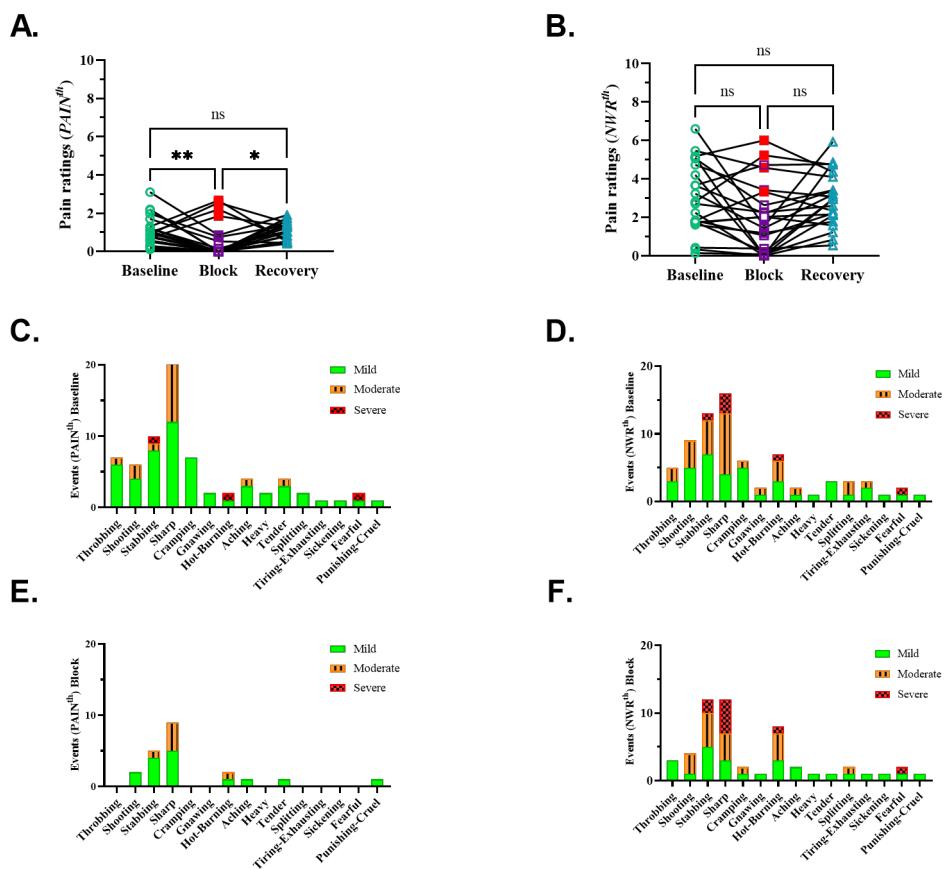
566 50. Le Bars D, Villanueva L, Bouhassira D, Willer JC. Diffuse noxious inhibitory controls (DNIC) in animals
567 and in man. *Patol Fiziol Eksp Ter.* 1992;(4):55-65. PubMed PMID: 1303506.


568 51. Willer JC, Roby A, Le Bars D. Psychophysical and electrophysiological approaches to the pain-relieving
569 effects of heterotopic nociceptive stimuli. *Brain.* 1984;107 (Pt 4):1095-112. doi:
570 10.1093/brain/107.4.1095. PubMed PMID: 6509310.

571


A.




B.

C.

